WO2010106652A1 - 無停電電源装置 - Google Patents

無停電電源装置 Download PDF

Info

Publication number
WO2010106652A1
WO2010106652A1 PCT/JP2009/055306 JP2009055306W WO2010106652A1 WO 2010106652 A1 WO2010106652 A1 WO 2010106652A1 JP 2009055306 W JP2009055306 W JP 2009055306W WO 2010106652 A1 WO2010106652 A1 WO 2010106652A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
chopper
phase
sub
Prior art date
Application number
PCT/JP2009/055306
Other languages
English (en)
French (fr)
Inventor
カズヒデ エドワルド 佐藤
雅博 木下
山本 融真
達明 安保
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2009/055306 priority Critical patent/WO2010106652A1/ja
Priority to KR1020117020978A priority patent/KR101302276B1/ko
Priority to JP2011504657A priority patent/JP5436537B2/ja
Priority to US13/202,478 priority patent/US9548630B2/en
Priority to CN2009801582219A priority patent/CN102356533A/zh
Publication of WO2010106652A1 publication Critical patent/WO2010106652A1/ja
Priority to US15/365,405 priority patent/US9775266B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This invention relates to an uninterruptible power supply, and more particularly to an uninterruptible power supply provided with a converter, an inverter, and a chopper.
  • an uninterruptible power supply has been widely used as a power supply for stably supplying AC power to an important load such as a computer system.
  • an uninterruptible power supply generally has a converter that converts commercial AC power into DC power, and converts DC power into AC power and supplies it to a load. And a chopper that applies the DC power generated by the converter to the battery when receiving commercial AC power, and supplies the DC power of the battery to the inverter during a power failure of the commercial AC power.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-298516
  • JP 7-298516 A JP 7-298516 A
  • the conventional uninterruptible power supply is divided into three units of a converter, an inverter, and a chopper, and a cooler is provided for each unit, so there is a problem that the apparatus becomes large.
  • the main object of the present invention is to provide a small uninterruptible power supply.
  • the uninterruptible power supply When the uninterruptible power supply according to the present invention is supplied with a converter that converts first AC power into DC power, an inverter that converts DC power into second AC power, and the first AC power.
  • a chopper that supplies DC power from the converter to the power storage device and supplies DC power from the power storage device to the inverter when the supply of the first AC power is stopped, and a first cooling that cools the converter and the chopper And a second cooler for cooling the inverter.
  • the converter, the chopper, and the first cooler constitute one unit.
  • a first cooler for cooling the converter and the chopper and a second cooler for cooling the inverter are provided, and the converter, the chopper, and the first cooler are one body.
  • the unit is configured. Therefore, it is possible to reduce the size of the apparatus as compared with the conventional case in which a cooler is provided in each of the converter and the chopper.
  • FIG. 2 is a circuit diagram showing configurations of a PWM converter, a chopper, and a PWM inverter shown in FIG. 1.
  • FIG. 2 is a circuit block diagram schematically showing heat generated by the uninterruptible power supply shown in FIG. 1. It is a figure which shows the method to cool the PWM converter, chopper, and PWM inverter which were shown in FIG. It is a figure which shows the structure of the cooler shown in FIG. It is a circuit block diagram which shows the structure of the uninterruptible power supply by Embodiment 1 of this invention.
  • FIG. 1 is a circuit block diagram showing configurations of a PWM converter, a chopper, and a PWM inverter shown in FIG. 1.
  • FIG. 2 is a circuit block diagram schematically showing heat generated by the uninterruptible power supply shown in FIG. 1. It is a figure which shows the method to cool the PWM converter, chopper, and PWM inverter which were shown in FIG. It is a figure which shows the structure of
  • FIG. 7 is a circuit diagram showing a configuration of a converter / chopper circuit and a PWM inverter shown in FIG. 6.
  • FIG. 7 is a circuit block diagram schematically showing heat generated in the uninterruptible power supply shown in FIG. 6.
  • FIG. 4 is a diagram showing a method for cooling the converter / chopper circuit and the PWM inverter shown in FIG. 3.
  • FIG. 6 is a circuit diagram showing a modification of the first embodiment. It is a circuit block diagram which shows the principal part of the uninterruptible power supply by Embodiment 2 of this invention. It is a figure which shows the method of cooling the power converter circuit shown in FIG.
  • the uninterruptible power supply device includes an input filter 1, a PWM converter 2, a chopper 4, a PWM inverter 4, an output filter 5, and a battery (power storage device) 6.
  • the input filter 1 is provided between the commercial AC power supply 7 and the PWM converter 2.
  • the input filter 1 is a low-pass filter that passes a signal having an AC voltage frequency (for example, 60 Hz) and blocks a signal having a carrier frequency (for example, 10 kHz) generated by the PWM converter 2. Therefore, the AC voltage is transmitted from the commercial AC power supply 7 to the PWM converter 2 via the input filter 1, and the carrier frequency voltage generated by the PWM converter 2 is blocked by the input filter 1. This prevents the commercial AC power source 7 from being affected by the carrier frequency voltage generated by the PWM converter 2.
  • PWM converter 2 includes a plurality of sets of IGBT (Insulated Gate Bipolar Transistor) elements and inverters, and generates a positive voltage and a negative voltage based on an AC voltage applied from commercial AC power supply 7 through input filter 1.
  • IGBT Insulated Gate Bipolar Transistor
  • Each of the plurality of IGBT elements of the PWM converter 2 is PWM-controlled at the carrier frequency, and keeps the positive voltage and the negative voltage constant while keeping the input current in a sine wave and keeping the input power factor at 1.
  • the chopper 3 includes a plurality of sets of IGBT elements and diodes. During normal operation in which an AC voltage is supplied from the commercial AC power supply 7, the chopper 3 supplies DC power from the PWM converter 2 to the battery 6 and AC from the commercial AC power supply 7. At the time of a power failure in which the supply of voltage is stopped, DC power is supplied from the battery 6 to the PWM inverter 4.
  • PWM inverter 4 includes a plurality of sets of IGBT elements and diodes, and generates an AC voltage based on a positive voltage and a negative voltage supplied from PWM converter 2 or chopper 3.
  • Each of the plurality of IGBT elements of the PWM inverter 4 is PWM-controlled at a carrier frequency (for example, 10 kHz) higher than the frequency of the alternating voltage (for example, 60 Hz), and maintains the output voltage at a constant sine wave voltage.
  • the output filter 5 is provided between the PWM inverter 4 and a load (for example, a computer system) 8.
  • the output filter 5 is a low-pass filter that allows a signal having an AC voltage frequency to pass therethrough and blocks a carrier frequency signal generated by the PWM inverter 4. Therefore, the AC voltage is transmitted from the PWM inverter 4 to the load 8 via the output filter 5, and the carrier frequency voltage generated by the PWM inverter 4 is blocked by the output filter 5. This prevents the load 8 from being affected by the carrier frequency voltage generated in the PWM inverter 4.
  • FIG. 2 is a circuit diagram showing the configuration of the PWM converter 2, the chopper 3, and the PWM inverter 4.
  • the PWM converter 2 includes IGBT elements Q1R, Q2R, Q1S, Q2S, Q1T, Q2T, diodes D1R, D2R, D1S, D2S, D1T, D2T, capacitors C1R, C1S, C1T, and fuses F1R, F2R, F1S. , F2S, F1T, F2T.
  • Input nodes N1 to N3 of PWM converter 2 receive a three-phase AC voltage from commercial AC power supply 7 via input filter 1, respectively.
  • the collectors of IGBT elements Q1R, Q1S, Q1T are connected to positive voltage node N4 via fuses F1R, F1S, F1T, respectively, and their emitters are connected to nodes N1-N3, respectively.
  • the collectors of IGBT elements Q2R, Q2S, and Q2T are connected to nodes N1 to N3, respectively, and their emitters are connected to a negative voltage node N5 through fuses F2R, F2S, and F2T, respectively.
  • the diodes D1R, D2R, D1S, D2S, D1T, D2T are connected in antiparallel to the IGBT elements Q1R, Q2R, Q1S, Q2S, Q1T, Q2T, respectively.
  • Capacitors C1R, C1S, C1T have one terminals connected to the collectors of IGBT elements Q1R, Q1S, Q1T, respectively, and the other terminals connected to the emitters of IGBT elements Q2R, Q2S, Q2T, respectively.
  • each of the IGBT elements Q1R, Q2R, Q1S, Q2S, Q1T, and Q2T is turned on / off at a timing according to the phase of the three-phase AC voltage. Be controlled. Thereby, the node N4 is charged to a positive voltage, and the node N5 is charged to a negative voltage. Further, at the time of a power failure in which the supply of the three-phase AC voltage from the commercial AC power supply 7 is stopped, each of the IGBT elements Q1R, Q2R, Q1S, Q2S, Q1T, and Q2T is fixed to the off state.
  • the fuses F1R, F2R, F1S, F2S, F1T, and F2T are cut to protect the circuit. Further, the voltages at nodes N4 and N5 are smoothed and stabilized by capacitors C1R, C1S, and C1T.
  • the chopper 3 includes IGBT elements Q1A, Q2A, Q1B, Q2B, Q1C, Q2C, diodes D1A, D2A, D1B, D2B, D1C, D2C, capacitors C1A, C1B, C1C, and fuses F1A, F2A, F1B, F2B, Includes F1C and F2C.
  • the input / output node N6 of the chopper 3 is connected to the positive electrode of the battery 6, and the node N5 is connected to the negative electrode of the battery 6.
  • the collectors of IGBT elements Q1A, Q1B, Q1C are connected to node N4 via fuses F1A, F1B, F1C, respectively, and their emitters are all connected to node N6.
  • the collectors of IGBT elements Q2A, Q2B, Q2C are all connected to node N6, and their emitters are connected to node N5 via fuses F2A, F2B, F2C, respectively.
  • Diodes D1A, D2A, D1B, D2B, D1C, and D2C are connected in antiparallel to IGBT elements Q1A, Q2A, Q1B, Q2B, Q1C, and Q2C, respectively.
  • Capacitors C1A, C1B, and C1C have one terminals connected to the collectors of IGBT elements Q1A, Q1B, and Q1C, respectively, and the other terminals connected to the emitters of IGBT elements Q2A, Q2B, and Q2C, respectively.
  • each of the IGBT elements Q1A, Q2A, Q1B, Q2B, Q1C, and Q2C is turned on / off at a timing according to the phase of the three-phase AC voltage. Be controlled. Thereby, a minute DC power is supplied to the battery 6 and the battery 6 is charged. Further, at the time of a power failure when the supply of the three-phase AC voltage from the commercial AC power supply 7 is stopped, each of the IGBT elements Q1A, Q2A, Q1B, Q2B, Q1C, Q2C is on / off controlled at a predetermined frequency, and the battery 6 DC power is supplied from the inverter 4 to the inverter 4.
  • the chopper 3 since the chopper 3 needs to supply the same power as the PWM converter 2 to the PWM inverter 4 at the time of a power failure, the current drive capability of the chopper 3 is set to the same level as the PWM converter 2. For this reason, the chopper 3 includes the same number and size of the IGBT elements Q, the diode D, the capacitor C, and the fuse F as the PWM converter 2.
  • the fuses F1A, F2A, F1B, F2B, F1C, and F2C are cut to protect the circuit. Further, the voltages at nodes N4 and N5 are smoothed and stabilized by capacitors C1A, C1B, and C1C.
  • the PWM inverter 4 includes IGBT elements Q1U, Q2U, Q1V, Q2V, Q1W, Q2W, diodes D1U, D2U, D1V, D2V, D1W, D2W, capacitors C1U, C1V, C1W, and fuses F1U, F2U, F1V, F2V. , F1W, F2W.
  • Output nodes N7 to N9 of the PWM inverter 4 are connected to the load 8 via the output filter 5, respectively.
  • the collectors of IGBT elements Q1U, Q1V, and Q1W are connected to node N4 via fuses F1U, F1V, and F1W, respectively, and their emitters are connected to nodes N7 to N9, respectively.
  • the collectors of IGBT elements Q2U, Q2V, Q2W are connected to nodes N7 to N9, respectively, and their emitters are connected to node N5 via fuses F2U, F2V, F2W, respectively.
  • the diodes D1U, D2U, D1V, D2V, D1W, and D2W are connected in reverse parallel to the IGBT elements Q1U, Q2U, Q1V, Q2V, Q1W, and Q2W, respectively.
  • Capacitors C1U, C1V, C1W have one terminals connected to the collectors of IGBT elements Q1U, Q1V, Q1W, respectively, and the other terminals connected to the emitters of IGBT elements Q2U, Q2V, Q2W, respectively.
  • Each of the IGBT elements Q1R, Q2R, Q1S, Q2S, Q1T, and Q2T is ON / OFF controlled at a timing according to the phase of the three-phase AC voltage.
  • a three-phase AC voltage is output to nodes N7 to N8. Therefore, a three-phase AC voltage is supplied to the load 8 during a period in which DC power is supplied from the battery 6 even during a power failure.
  • the PWM converter 2, the chopper 3, and the PWM inverter 4 are fixed to the coolers 11 to 13, respectively. Heat generated in the PWM converter 2, the chopper 3, and the PWM inverter 4 is transmitted to the coolers 11 to 13, respectively. The heat of the coolers 11 to 13 is dissipated into the air. Thereby, the temperature rise of PWM converter 2, chopper 3, and PWM inverter 4 is suppressed.
  • the R-phase part CO-R, the S-phase part CO-S, and the T-phase part CO-T of the PWM converter 2 are sequentially arranged on the surface of the cooler 11.
  • the R-phase portion CO-R is a portion corresponding to the R-phase of the three-phase AC voltage from the commercial AC power supply 7, and includes an element whose symbol ends with R in the PWM converter 2 of FIG.
  • the S-phase part CO-S is a part corresponding to the S-phase of the three-phase AC voltage from the commercial AC power supply 7, and includes an element whose symbol ends with S in the PWM converter 2 of FIG.
  • the T-phase portion CO-R is a portion corresponding to the T-phase of the three-phase AC voltage from the commercial AC power supply 7 and includes an element whose symbol ends with T in the PWM converter 2 of FIG.
  • the A-phase portion CH-A is a portion corresponding to the R-phase of the PWM converter 2 and includes an element having a symbol A at the end of the chopper 3 in FIG.
  • the B-phase portion CH-B is a portion corresponding to the S-phase of the PWM converter 2 and includes an element with a symbol ending in B in the chopper 3 of FIG.
  • the C-phase portion CH-C is a portion corresponding to the T-phase of the PWM converter 2 and includes an element having a C suffix in the chopper 3 of FIG.
  • the U-phase portion IN-U, the V-phase portion IN-V, and the W-phase portion IN-W of the PWM inverter 4 are sequentially arranged on the surface of the cooler 13.
  • the U-phase portion IN-U is a portion corresponding to the U-phase of the three-phase AC voltage supplied to the load 8 and includes an element whose symbol ends with U in the PWM inverter 4 of FIG.
  • the V-phase portion IN-V is a portion corresponding to the V-phase of the three-phase AC voltage supplied to the load 8 and includes an element with a symbol ending in V in the PWM inverter 4 of FIG.
  • the W-phase portion IN-W is a portion corresponding to the W-phase of the three-phase AC voltage supplied to the load 8 and includes an element with a symbol ending in W in the PWM inverter 4 of FIG.
  • the cooler 11 is formed of a metal having high thermal conductivity (for example, aluminum). As shown in FIG. 5, the cooler 11 includes a flat plate portion 11a and a plurality of fins 11b provided on the back surface of the flat plate portion 11a. Including.
  • the PWM converter 2 is fixed to the surface of the flat plate portion 11a in a state where the heat generated by the IGBT element Q and the diode D is conducted to the flat plate portion 11a.
  • the heat of the flat plate portion 11a is dissipated into the air from the surfaces of the plurality of fins 11b.
  • the other coolers 12 and 13 have the same configuration as the cooler 11.
  • the PWM converter 2 and the cooler 11, the chopper 3 and the cooler 12, and the PWM inverter 4 and the cooler 13 each constitute an integral unit.
  • the cooling capacity of the cooler is determined by its size and increases with the size. Although the time when the chopper 3 is actually used after a power failure occurs is short, the same heat as the PWM converter 2 is generated during use, so the cooler 12 having the same size as the cooler 11 of the PWM converter 2 is used for the chopper 3. Has been. The heat generated by the PWM converter 2 and the PWM inverter 4 is substantially the same. Therefore, the coolers 11 to 13 are the same size.
  • the apparatus becomes large. If the three coolers 11 to 13 are used, the apparatus can be made compact by stacking in the vertical direction, for example.
  • the uninterruptible power supply shown in FIGS. 1 to 5 has a problem that the size of the device is still large. Hereinafter, in the embodiment, this problem is solved.
  • FIG. 6 is a circuit block diagram showing the configuration of the uninterruptible power supply according to Embodiment 1 of the present invention, and is a diagram compared with FIG. In FIG. 6, this uninterruptible power supply differs from the uninterruptible power supply of FIG. 1 in that the PWM converter 2 and the chopper 3 are replaced with a converter / chopper circuit 20.
  • the converter / chopper circuit 20 is a combination of the PWM converter 2 and the chopper 3 into one circuit.
  • FIG. 7 is a circuit diagram showing the configuration of the converter / chopper circuit 20 and the PWM inverter 4, which is compared with FIG.
  • the converter / chopper circuit 20 includes an R-phase portion CO-R, an S-phase portion CO-S, and a T-phase portion CO-T of the PWM converter 2 and an A-phase portion CH-A, B-phase portion of the chopper 3.
  • CH-B and C-phase part CH-C are alternately arranged one by one, and capacitors C1R, C1S, C1T and fuses F1R, F2R, F1S, F2S, F1T, F2T of PWM converter 2 are omitted. .
  • the capacitors C1A, C1B, C1C and the fuses F1A, F2A, F1B, F2B, F1C, F2C are shared by the PWM converter 2 and the chopper 3. Is possible. Thereby, the number of parts can be reduced, the size of the apparatus can be reduced, and the cost of the apparatus can be reduced.
  • Capacitor C1R and fuses F1R and F2R are removed from R-phase portion CO-R, the collector of IGBT element Q1R is connected to the collector of IGBT element Q1A, and the emitter of IGBT element Q2R is connected to the emitter of IGBT element Q2A.
  • the capacitor C1S and the fuses F1S and F2S are removed from the S-phase portion CO-S, the collector of the IGBT element Q1S is connected to the collector of the IGBT element Q1B, and the emitter of the IGBT element Q2S is connected to the emitter of the IGBT element Q2B.
  • Capacitor C1T and fuses F1T and F2T are removed from T-phase portion CO-T, the collector of IGBT element Q1T is connected to the collector of IGBT element Q1C, and the emitter of IGBT element Q2T is connected to the emitter of IGBT element Q2C.
  • the on / off control of the IGBT element Q is performed similarly to the circuit of FIG.
  • the A-phase portion CH-A, B-phase portion CH-B, and C-phase portion CH-C of the converter / chopper circuit 20 and the PWM inverter 4 are operated, and the converter / chopper circuit 20 and the PWM inverter 4 are operated.
  • a large amount of heat is generated in each inverter 4. Therefore, the heat generated in the converter / chopper circuit 20 and the heat generated in the PWM inverter 4 are substantially the same during normal operation and during a power failure. Therefore, the cooler for the converter / chopper circuit 20 may be the same as the cooler 13 of the PWM inverter 4.
  • the converter / chopper circuit 20 and the PWM inverter 4 are fixed to the coolers 21 and 13, respectively. Heat generated by the converter / chopper circuit 20 and the PWM inverter 4 is transmitted to the coolers 21 and 13, respectively. The heat of the coolers 21 and 13 is dissipated into the air. Thereby, the temperature rise of converter / chopper circuit 20 and PWM inverter 4 is suppressed.
  • the C-phase part CH-C is sequentially arranged on the surface of the cooler 20.
  • the R-phase portion CO-R is a portion corresponding to the R-phase of the three-phase AC voltage from the commercial AC power supply 7, and includes an element with a suffix R in the PWM converter 2 in FIG.
  • the A-phase portion CH-A is a portion corresponding to the R-phase of the PWM converter 2 and includes an element having a suffix A in the chopper 3 of FIG.
  • the S-phase portion CO-S is a portion corresponding to the S-phase of the three-phase AC voltage from the commercial AC power supply 7 and includes an element whose symbol ends with S in the PWM converter 2 of FIG.
  • the B-phase portion CH-B is a portion corresponding to the S-phase of the PWM converter 2 and includes an element with a symbol ending in B in the chopper 3 of FIG.
  • the T-phase part CO-R is a part corresponding to the T-phase of the three-phase AC voltage from the commercial AC power supply 7, and includes an element with a symbol ending in T in the PWM converter 2 in FIG.
  • the C-phase portion CH-C is a portion corresponding to the T-phase of the PWM converter 2 and includes an element having a C suffix in the chopper 3 of FIG.
  • the U-phase portion IN-U, the V-phase portion IN-V, and the W-phase portion IN-W of the PWM inverter 4 are sequentially arranged on the surface of the cooler 13.
  • the cooler 21 is the same as the cooler 11 of FIG. Converter / chopper circuit 20 and cooler 21, and PWM inverter 4 and cooler 13 constitute an integral unit.
  • Embodiment 1 since the capacitor C, the fuse F, and the cooler 21 are shared by the converter and the chopper, the apparatus can be reduced in size.
  • the converter / chopper circuit 20 is divided into three converter / chopper circuits 20a-20c, and the cooler 21 is divided into three coolers 21a-21c.
  • the converter / chopper circuits 20a to 20c may be fixed to the coolers 21a to 21c, respectively.
  • Converter / chopper circuit 20a includes an R-phase portion CO-R and an A-phase portion CH-A
  • converter / chopper circuit 20b includes an S-phase portion CO-S and a B-phase portion CH-B
  • converter / chopper circuit 20c includes T phase part CO-T and C phase part CH-C are included.
  • Converter / chopper circuit 20a and cooler 21a, converter / chopper circuit 20b and cooler 21b, converter / chopper circuit 20c and cooler 21c each constitute one unit. Even in this modified example, the same effect as in the first embodiment can be obtained.
  • FIG. 11 is a circuit diagram showing a main part of the uninterruptible power supply according to Embodiment 2 of the present invention, and is a diagram contrasted with FIG. In FIG. 11, this uninterruptible power supply is different from the uninterruptible power supply of FIG. 2 in that the PWM converter 2, the chopper 3, and the PWM inverter 4 are replaced with three power conversion circuits 30 to 32. .
  • the R phase part CO-R, the A phase part CH-A, and the U phase part IN-U are combined, and the capacitors C1R, C1U and the fuses F1R, F2R, F1U, F2U are omitted.
  • the S-phase part CO-S, the B-phase part CH-B, and the V-phase part IN-V are combined, and the capacitors C1S and C1V and the fuses F1S, F2S, F1V, and F2V are omitted.
  • the T-phase part CO-T, the C-phase part CH-C, and the W-phase part IN-W are combined, and the capacitors C1T and C1W and the fuses F1T, F2T, F1W, and F2W are omitted.
  • the capacitors C1A, C1B, C1C and the fuses F1A, F2A, F1B, F2B, F1C, F2C are shared by the PWM converter 2 and the chopper 3. Is possible.
  • any one fuse F of the PWM converter 2, the chopper 3, and the PWM inverter 4 is blown, the entire uninterruptible power supply becomes unusable, so that the PWM converter 2, the chopper 3 and the PWM inverter 4
  • the fuses F1A, F2A, F1B, F2B, F1C, and F2C can be shared. Thereby, the number of parts can be reduced, the size of the apparatus can be reduced, and the cost of the apparatus can be reduced.
  • Capacitor C1R and fuses F1R and F2R are removed from R-phase portion CO-R, the collector of IGBT element Q1R is connected to the collector of IGBT element Q1A, and the emitter of IGBT element Q2R is connected to the emitter of IGBT element Q2A.
  • Capacitor C1U and fuses F1U and F2U are removed from U-phase portion IN-U, the collector of IGBT element Q1U is connected to the collector of IGBT element Q1A, and the emitter of IGBT element Q2U is connected to the emitter of IGBT element Q2A.
  • capacitor C1S and the fuses F1S and F2S are removed from the S-phase portion CO-S, the collector of the IGBT element Q1S is connected to the collector of the IGBT element Q1B, and the emitter of the IGBT element Q2S is connected to the emitter of the IGBT element Q2B.
  • Capacitor C1V and fuses F1V and F2V are removed from V-phase portion IN-V, the collector of IGBT element Q1V is connected to the collector of IGBT element Q1B, and the emitter of IGBT element Q2V is connected to the emitter of IGBT element Q2B.
  • the capacitor C1T and the fuses F1T and F2T are removed from the T-phase portion CO-T, the collector of the IGBT element Q1T is connected to the collector of the IGBT element Q1C, and the emitter of the IGBT element Q2T is connected to the emitter of the IGBT element Q2C.
  • Capacitor C1W and fuses F1W and F2W are removed from W-phase portion IN-W, the collector of IGBT element Q1W is connected to the collector of IGBT element Q1C, and the emitter of IGBT element Q2W is connected to the emitter of IGBT element Q2C.
  • the on / off control of the IGBT element Q is performed similarly to the circuit of FIG.
  • the power conversion circuits 30 to 32 when the power conversion circuits 30 to 32 are operated, heat is generated in the IGBT element Q and the diode D.
  • the R-phase portion CO-R and U-phase portion IN-U of the power conversion circuit 30 and the S-phase portion CO-S and V-phase of the power conversion circuit 31 are used.
  • the part IN-V, the T-phase part CO-T and the W-phase part IN-W of the power conversion circuit 32 are operated, and a large amount of heat is generated in each of the power conversion circuits 30 to 32.
  • the A phase portion CH-A and the U phase portion IN-U of the power conversion circuit 30, the B phase portion CH-B and the V phase portion IN-V of the power conversion circuit 31, The C phase portion CH-C and the W phase portion IN-W of the power conversion circuit 32 are operated, and large heat is generated in each of the power conversion circuits 30 to 32. Therefore, the heat generated in each of the power conversion circuits 30 to 32 is substantially the same during normal operation and during a power failure. Since the number of IGBT elements Q driven by each of power conversion circuits 30 to 32 is 2/3 times the number of IGBT elements Q driven by PWM inverter 4, each of power conversion circuits 30 to 32 The generated heat is 2/3 times the heat generated by the PWM inverter 4. Therefore, the size of each cooler of the power conversion circuits 30 to 32 is 2/3 times the size of the cooler 13 of the PWM inverter 4.
  • the power conversion circuits 30 to 32 are fixed to the coolers 33 to 35, respectively.
  • the heat generated in the power conversion circuits 30 to 32 is transmitted to the coolers 33 to 35, respectively.
  • the heat of the coolers 33 to 35 is dissipated into the air. As a result, the temperature rise of the power conversion circuits 30 to 32 is suppressed.
  • the R-phase part CO-R, the A-phase part CH-A, and the U-phase part IN-U of the power conversion circuit 30 are sequentially arranged on the surface of the cooler 33.
  • the R-phase portion CO-R is a portion corresponding to the R-phase of the three-phase AC voltage from the commercial AC power supply 7, and includes an element with a symbol ending in R in the power conversion circuit 30 in FIG.
  • the A-phase portion CH-A is a portion corresponding to the R-phase of the PWM converter 2 and includes an element having a suffix A in the power conversion circuit 30 in FIG.
  • the U-phase portion IN-U is a portion corresponding to the U-phase of the three-phase AC voltage supplied to the load 8 and includes an element whose symbol ends with U in the power conversion circuit 30 in FIG.
  • the S-phase portion CO-S, the B-phase portion CH-B, and the V-phase portion IN-V of the power conversion circuit 31 are sequentially arranged on the surface of the cooler 34.
  • the S-phase portion CO-S is a portion corresponding to the S-phase of the three-phase AC voltage from the commercial AC power supply 7, and includes an element whose symbol ends with S in the power conversion circuit 31 of FIG.
  • the B-phase portion CH-B is a portion corresponding to the S-phase of the PWM converter 2 and includes an element with a suffix “B” in the power conversion circuit 31 of FIG.
  • the V-phase portion IN-V is a portion corresponding to the V-phase of the three-phase AC voltage supplied to the load 8 and includes an element with a symbol ending in V in the power conversion circuit 31 of FIG.
  • the T-phase portion CO-T, the C-phase portion CH-C, and the W-phase portion IN-W of the power conversion circuit 32 are sequentially arranged on the surface of the cooler 35.
  • the T-phase portion CO-T is a portion corresponding to the T-phase of the three-phase AC voltage from the commercial AC power supply 7, and includes an element whose symbol ends with T in the power conversion circuit 32 of FIG.
  • the C-phase portion CH-C is a portion corresponding to the T-phase of the PWM converter 2 and includes an element whose code ends with C in the power conversion circuit 32 of FIG.
  • the W-phase portion IN-W is a portion corresponding to the W-phase of the three-phase AC voltage supplied to the load 8 and includes an element with a symbol ending in W in the power conversion circuit 32 of FIG.
  • the sizes of the coolers 33 to 35 are 2/3 times the sizes of the coolers 11 to 13 shown in FIGS. 4 (a) to (c), respectively.
  • the power conversion circuit 30 and the cooler 33, the power conversion circuit 31 and the cooler 34, and the power conversion circuit 32 and the cooler 35 constitute an integral unit.
  • the converter, the chopper, and the inverter are combined for each phase to form the three power conversion circuits 30 to 32, and the coolers 33 to 35 are provided in the power conversion circuits 30 to 32, respectively.

Abstract

 この無停電電源装置は、コンバータ/チョッパ回路(20)を冷却する冷却器(21)と、PWMインバータ(4)を冷却する冷却器(13)とを備えており、コンバータ/チョッパ回路(20)および冷却器(21)は1体のユニットを構成している。したがって、PWMコンバータ(2)およびチョッパ(3)の各々に冷却器(11,12)を設けていた従来に比べ、装置の小型化を図ることができる。

Description

無停電電源装置
 この発明は無停電電源装置に関し、特に、コンバータとインバータとチョッパを備えた無停電電源装置に関する。
 従来より、コンピュータシステム等の重要負荷に交流電力を安定的に供給するための電源装置として、無停電電源装置が広く用いられている。たとえば特開平7-298516号公報(特許文献1)に示されるように、無停電電源装置は一般に、商用交流電力を直流電力に変換するコンバータと、直流電力を交流電力に変換して負荷に供給するインバータと、商用交流電力の受電時はコンバータで生成された直流電力をバッテリに与え、商用交流電力の停電時はバッテリの直流電力をインバータに与えるチョッパとを備えている。
特開平7-298516号公報
 しかし、従来の無停電電源装置は、コンバータ、インバータ、およびチョッパの3つのユニットに分割され、各ユニット毎に冷却器が設けられていたので、装置が大型化すると言う問題があった。
 それゆえに、この発明の主たる目的は、小型の無停電電源装置を提供することである。
 この発明に係る無停電電源装置は、第1の交流電力を直流電力に変換するコンバータと、直流電力を第2の交流電力に変換するインバータと、第1の交流電力が供給されている場合はコンバータから電力貯蔵装置に直流電力を供給し、第1の交流電力の供給が停止されている場合は電力貯蔵装置からインバータに直流電力を供給するチョッパと、コンバータおよびチョッパを冷却する第1の冷却器と、インバータを冷却する第2の冷却器とを備えたものである。コンバータ、チョッパ、および第1の冷却器は1体のユニットを構成している。
 この発明に係る無停電電源装置では、コンバータおよびチョッパを冷却する第1の冷却器と、インバータを冷却する第2の冷却器とが設けられ、コンバータ、チョッパ、および第1の冷却器は1体のユニットを構成している。したがって、コンバータおよびチョッパの各々に冷却器を設けていた従来に比べ、装置の小型化を図ることができる。
この発明の基礎となる無停電電源装置の構成を示す回路ブロック図である。 図1に示したPWMコンバータ、チョッパ、およびPWMインバータの構成を示す回路図である。 図1に示した無停電電源装置で発生する熱を模式的に示す回路ブロック図である。 図3に示したPWMコンバータ、チョッパ、およびPWMインバータを冷却する方法を示す図である。 図4に示した冷却器の構成を示す図である。 この発明の実施の形態1による無停電電源装置の構成を示す回路ブロック図である。 図6に示したコンバータ/チョッパ回路およびPWMインバータの構成を示す回路図である。 図6に示した無停電電源装置で発生する熱を模式的に示す回路ブロック図である。 図3に示したコンバータ/チョッパ回路およびPWMインバータを冷却する方法を示す図である。 実施の形態1の変更例を示す回路図である。 この発明の実施の形態2による無停電電源装置の要部を示す回路ブロック図である。 図3に示した電力変換回路を冷却する方法を示す図である。
符号の説明
 1 入力フィルタ、2 PWMコンバータ、3 チョッパ、4 PWMインバータ、5 出力フィルタ、6 バッテリ、7 商用交流電源、8 負荷、11~13,21,21a~21c、33~35 冷却器、11a 平板部、11b フィン、20 コンバータ/チョッパ回路、30~32 電力変換回路、Q IGBT素子、D ダイオード、C コンデンサ、F ヒューズ、CO-R R相部、CO-S S相部、CO-T T相部、CH-A A相部、CH-B B相部、CH-C C相部、IN-U U相部、IN-V V相部、IN-W W相部。
 実施の形態について説明する前に、まず本願発明の基礎となる無停電電源装置について説明する。図1に示すように、無停電電源装置は、入力フィルタ1、PWMコンバータ2、チョッパ4、PWMインバータ4、出力フィルタ5、およびバッテリ(電力貯蔵装置)6を備える。
 入力フィルタ1は、商用交流電源7とPWMコンバータ2との間に設けられる。入力フィルタ1は、交流電圧の周波数(たとえば、60Hz)の信号を通過させ、PWMコンバータ2で発生するキャリア周波数(たとえば、10kHz)の信号を遮断する低域通過フィルタである。したがって、交流電圧は商用交流電源7から入力フィルタ1を介してPWMコンバータ2に伝達され、PWMコンバータ2で発生したキャリア周波数の電圧は入力フィルタ1で遮断される。これにより、商用交流電源7がPWMコンバータ2で発生したキャリア周波数の電圧の影響を受けることが防止される。
 PWMコンバータ2は、複数組のIGBT(Insulated Gate Bipolar Transistor)素子およびインバータを含み、商用交流電源7から入力フィルタ1を介して与えられる交流電圧に基づいて、正電圧および負電圧を生成する。PWMコンバータ2の複数のIGBT素子の各々は、キャリア周波数でPWM制御され、入力電流を正弦波に保ち、入力力率を1に保ちながら、正電圧および負電圧の各々を一定に保つ。
 チョッパ3は、複数組のIGBT素子およびダイオードを含み、商用交流電源7から交流電圧が供給されている通常運転時は、PWMコンバータ2からバッテリ6に直流電力を供給し、商用交流電源7から交流電圧の供給が停止された停電時は、バッテリ6からPWMインバータ4に直流電力を供給する。
 PWMインバータ4は、複数組のIGBT素子およびダイオードを含み、PWMコンバータ2またはチョッパ3から供給される正電圧および負電圧に基づいて、交流電圧を生成する。PWMインバータ4の複数のIGBT素子の各々は、交流電圧の周波数(たとえば、60Hz)よりも高いキャリア周波数(たとえば、10kHz)でPWM制御され、出力電圧を一定の正弦波電圧に保つ。
 出力フィルタ5は、PWMインバータ4と負荷(たとえばコンピュータシステム)8との間に設けられる。出力フィルタ5は、交流電圧の周波数の信号を通過させ、PWMインバータ4で発生するキャリア周波数の信号を遮断する低域通過フィルタである。したがって、交流電圧はPWMインバータ4から出力フィルタ5を介して負荷8に伝達され、PWMインバータ4で発生したキャリア周波数の電圧は出力フィルタ5で遮断される。これにより、負荷8がPWMインバータ4で発生したキャリア周波数の電圧の影響を受けることが防止される。
 図2は、PWMコンバータ2、チョッパ3、およびPWMインバータ4の構成を示す回路図である。図2において、PWMコンバータ2は、IGBT素子Q1R,Q2R,Q1S,Q2S,Q1T,Q2T、ダイオードD1R,D2R,D1S,D2S,D1T,D2T、コンデンサC1R,C1S,C1T、およびヒューズF1R,F2R,F1S,F2S,F1T,F2Tを含む。PWMコンバータ2の入力ノードN1~N3は、それぞれ商用交流電源7から入力フィルタ1を介して三相交流電圧を受ける。
 IGBT素子Q1R,Q1S,Q1TのコレクタはそれぞれヒューズF1R,F1S,F1Tを介して正電圧のノードN4に接続され、それらのエミッタはそれぞれノードN1~N3に接続される。IGBT素子Q2R,Q2S,Q2TのコレクタはそれぞれノードN1~N3に接続され、それらのエミッタはそれぞれヒューズF2R,F2S,F2Tを介して負電圧のノードN5に接続される。
 ダイオードD1R,D2R,D1S,D2S,D1T,D2Tは、それぞれIGBT素子Q1R,Q2R,Q1S,Q2S,Q1T,Q2Tに逆並列に接続される。コンデンサC1R,C1S,C1Tの一方端子はそれぞれIGBT素子Q1R,Q1S,Q1Tのコレクタに接続され、それらの他方端子はそれぞれIGBT素子Q2R,Q2S,Q2Tのエミッタに接続される。
 商用交流電源7から三相交流電圧が供給されている通常運転時は、IGBT素子Q1R,Q2R,Q1S,Q2S,Q1T,Q2Tの各々は、三相交流電圧の位相に応じたタイミングでオン/オフ制御される。これにより、ノードN4が正電圧に充電されるとともに、ノードN5が負電圧に充電される。また、商用交流電源7からの三相交流電圧の供給が停止された停電時は、IGBT素子Q1R,Q2R,Q1S,Q2S,Q1T,Q2Tの各々はオフ状態に固定される。
 なお、何らかの原因で過電流が流れた場合は、ヒューズF1R,F2R,F1S,F2S,F1T,F2Tが切断されて回路が保護される。また、コンデンサC1R,C1S,C1TによってノードN4,N5の電圧が平滑化および安定化される。
 また、チョッパ3は、IGBT素子Q1A,Q2A,Q1B,Q2B,Q1C,Q2C、ダイオードD1A,D2A,D1B,D2B,D1C,D2C、コンデンサC1A,C1B,C1C、およびヒューズF1A,F2A,F1B,F2B,F1C,F2Cを含む。チョッパ3の入出力ノードN6はバッテリ6の正電極に接続され、ノードN5はバッテリ6の負電極に接続される。
 IGBT素子Q1A,Q1B,Q1CのコレクタはそれぞれヒューズF1A,F1B,F1Cを介してノードN4に接続され、それらのエミッタはともにノードN6に接続される。IGBT素子Q2A,Q2B,Q2CのコレクタはともにノードN6に接続され、それらのエミッタはそれぞれヒューズF2A,F2B,F2Cを介してノードN5に接続される。
 ダイオードD1A,D2A,D1B,D2B,D1C,D2Cは、それぞれIGBT素子Q1A,Q2A,Q1B,Q2B,Q1C,Q2Cに逆並列に接続される。コンデンサC1A,C1B,C1Cの一方端子はそれぞれIGBT素子Q1A,Q1B,Q1Cのコレクタに接続され、それらの他方端子はそれぞれIGBT素子Q2A,Q2B,Q2Cのエミッタに接続される。
 商用交流電源7から三相交流電圧が供給されている通常運転時は、IGBT素子Q1A,Q2A,Q1B,Q2B,Q1C,Q2Cの各々は、三相交流電圧の位相に応じたタイミングでオン/オフ制御される。これにより、バッテリ6に微小な直流電力が供給され、バッテリ6が充電される。また、商用交流電源7からの三相交流電圧の供給が停止された停電時は、IGBT素子Q1A,Q2A,Q1B,Q2B,Q1C,Q2Cの各々が所定の周波数でオン/オフ制御され、バッテリ6からインバータ4に直流電力が供給される。
 なお、停電時にはチョッパ3はPWMコンバータ2と同じ電力をPWMインバータ4に供給する必要があるので、チョッパ3の電流駆動能力はPWMコンバータ2と同レベルに設定されている。このため、チョッパ3は、PWMコンバータ2と同じ数およびサイズのIGBT素子Q、ダイオードD、コンデンサC、およびヒューズFで構成されている。
 また、何らかの原因で過電流が流れた場合は、ヒューズF1A,F2A,F1B,F2B,F1C,F2Cが切断されて回路が保護される。また、コンデンサC1A,C1B,C1CによってノードN4,N5の電圧が平滑化および安定化される。
 また、PWMインバータ4は、IGBT素子Q1U,Q2U,Q1V,Q2V,Q1W,Q2W、ダイオードD1U,D2U,D1V,D2V,D1W,D2W、コンデンサC1U,C1V,C1W、およびヒューズF1U,F2U,F1V,F2V,F1W,F2Wを含む。PWMインバータ4の出力ノードN7~N9は、それぞれ出力フィルタ5を介して負荷8に接続される。
 IGBT素子Q1U,Q1V,Q1WのコレクタはそれぞれヒューズF1U,F1V,F1Wを介してノードN4に接続され、それらのエミッタはそれぞれノードN7~N9に接続される。IGBT素子Q2U,Q2V,Q2WのコレクタはそれぞれノードN7~N9に接続され、それらのエミッタはそれぞれヒューズF2U,F2V,F2Wを介してノードN5に接続される。
 ダイオードD1U,D2U,D1V,D2V,D1W,D2Wは、それぞれIGBT素子Q1U,Q2U,Q1V,Q2V,Q1W,Q2Wに逆並列に接続される。コンデンサC1U,C1V,C1Wの一方端子はそれぞれIGBT素子Q1U,Q1V,Q1Wのコレクタに接続され、それらの他方端子はそれぞれIGBT素子Q2U,Q2V,Q2Wのエミッタに接続される。
 IGBT素子Q1R,Q2R,Q1S,Q2S,Q1T,Q2Tの各々は、三相交流電圧の位相に応じたタイミングでオン/オフ制御される。これにより、ノードN7~N8に三相交流電圧が出力される。したがって、停電時でもバッテリ6から直流電力が供給されている期間は三相交流電圧が負荷8に供給される。
 なお、何らかの原因で過電流が流れた場合は、ヒューズF1U,F2U,F1V,F2V,F1W,F2Wが切断されて回路が保護される。また、コンデンサC1U,C1V,C1WによってノードN4,N5の電圧が平滑化および安定化される。
 ところで、図3(a)(b)に示すように、PWMコンバータ2、チョッパ3、およびPWMインバータ4を運転するとIGBT素子QおよびダイオードDで熱が発生する。ただし、商用交流電源7から交流電力が供給されている通常運転時は、図3(a)に示すように、PWMコンバータ2およびPWMインバータ4で大きな熱が発生し、チョッパ3で発生する熱は小さい。また、商用交流電源7からの電力供給が停止されてバッテリ6から電力供給される停電時は、チョッパ3およびPWMインバータ4で大きな熱が発生し、PWMコンバータ2で発生する熱は小さい。
 また、図4(a)~(c)に示すように、PWMコンバータ2、チョッパ3、およびPWMインバータ4はそれぞれ冷却器11~13に固定されている。PWMコンバータ2、チョッパ3、およびPWMインバータ4で発生した熱は、それぞれ冷却器11~13に伝達される。冷却器11~13の熱は、空気中に放散される。これにより、PWMコンバータ2、チョッパ3、およびPWMインバータ4の温度上昇が抑制される。
 また、図4(a)において、PWMコンバータ2のR相部CO-R、S相部CO-S、およびT相部CO-Tは冷却器11の表面に順に配置される。R相部CO-Rは、商用交流電源7からの三相交流電圧のR相に対応する部分であり、図2のPWMコンバータ2のうちの符号の末尾がRの素子を含む。S相部CO-Sは、商用交流電源7からの三相交流電圧のS相に対応する部分であり、図2のPWMコンバータ2のうちの符号の末尾がSの素子を含む。T相部CO-Rは、商用交流電源7からの三相交流電圧のT相に対応する部分であり、図2のPWMコンバータ2のうちの符号の末尾がTの素子を含む。
 また、図4(b)において、チョッパ3のA相部CH-A、B相部CH-B、およびC相部CH-Cは冷却器12の表面に順に配置される。A相部CH-Aは、PWMコンバータ2のR相に対応する部分であり、図2のチョッパ3のうちの符号の末尾がAの素子を含む。B相部CH-Bは、PWMコンバータ2のS相に対応する部分であり、図2のチョッパ3のうちの符号の末尾がBの素子を含む。C相部CH-Cは、PWMコンバータ2のT相に対応する部分であり、図2のチョッパ3のうちの符号の末尾がCの素子を含む。
 また、図4(c)において、PWMインバータ4のU相部IN-U、V相部IN-V、およびW相部IN-Wは冷却器13の表面に順に配置される。U相部IN-Uは、負荷8に供給される三相交流電圧のU相に対応する部分であり、図2のPWMインバータ4のうちの符号の末尾がUの素子を含む。V相部IN-Vは、負荷8に供給される三相交流電圧のV相に対応する部分であり、図2のPWMインバータ4のうちの符号の末尾がVの素子を含む。W相部IN-Wは、負荷8に供給される三相交流電圧のW相に対応する部分であり、図2のPWMインバータ4のうちの符号の末尾がWの素子を含む。
 また、冷却器11は、熱伝導率の高い金属(たとえばアルミニウム)で形成されており、図5に示すように、平板部11aと、平板部11aの裏面に設けられた複数のフィン11bとを含む。PWMコンバータ2は、IGBT素子QおよびダイオードDで発生した熱が平板部11aに伝導する状態で、平板部11aの表面に固定される。平板部11aの熱は、複数のフィン11bの表面から空気中に放散される。他の冷却器12,13も冷却器11と同じ構成である。PWMコンバータ2と冷却器11、チョッパ3と冷却器12、およびPWMインバータ4と冷却器13は、それぞれ一体のユニットを構成している。
 また、冷却器の冷却能力は、そのサイズで決まり、サイズに応じて大きくなる。停電が起こって実際にチョッパ3が使用される時間は短いが、使用時にはPWMコンバータ2と同じ熱が発生するので、チョッパ3にはPWMコンバータ2の冷却器11と同じサイズの冷却器12が使用されている。また、PWMコンバータ2とPWMインバータ4で発生する熱は略同じである。したがって、冷却器11~13は同じサイズである。
 なお、PWMコンバータ2、チョッパ3、およびPWMインバータ4を1つの大きな冷却器に搭載することも考えられるが、装置が大型化してしまう。3つの冷却器11~13を使用すれば、たとえば上下方向に積み重ねることにより、装置をコンパクトにすることができる。しかし、図1~図5で示した無停電電源装置では、装置寸法がまだ大きいと言う問題があった。以下、実施の形態では、この問題が解決される。
 [実施の形態1]
 図6は、この発明の実施の形態1による無停電電源装置の構成を示す回路ブロック図であって、図1と対比される図である。図6において、この無停電電源装置が図1の無停電電源装置と異なる点は、PWMコンバータ2およびチョッパ3がコンバータ/チョッパ回路20で置換されている点である。コンバータ/チョッパ回路20は、PWMコンバータ2とチョッパ3を1つの回路にまとめたものである。
 また、図7は、コンバータ/チョッパ回路20およびPWMインバータ4の構成を示す回路図であって、図2と対比される図で有る。図7において、コンバータ/チョッパ回路20は、PWMコンバータ2のR相部CO-R、S相部CO-S、およびT相部CO-Tとチョッパ3のA相部CH-A、B相部CH-B、およびC相部CH-Cとを1つずつ交互に配置し、PWMコンバータ2のコンデンサC1R,C1S,C1TおよびヒューズF1R,F2R,F1S,F2S,F1T,F2Tを省略したものである。PWMコンバータ2は通常運転時に使用され、チョッパ3は主に停電時に使用されるので、PWMコンバータ2とチョッパ3でコンデンサC1A,C1B,C1CおよびヒューズF1A,F2A,F1B,F2B,F1C,F2Cを共用することが可能である。これにより、部品点数を減らすことができ、装置寸法の小型化、装置の低コスト化を図ることができる。
 詳しく説明すると、A相部CH-A、B相部CH-B、およびC相部CH-Cは図1で示した通りである。R相部CO-RからコンデンサC1RおよびヒューズF1R,F2Rが除去され、IGBT素子Q1RのコレクタはIGBT素子Q1Aのコレクタに接続され、IGBT素子Q2RのエミッタはIGBT素子Q2Aのエミッタに接続される。
 S相部CO-SからコンデンサC1SおよびヒューズF1S,F2Sが除去され、IGBT素子Q1SのコレクタはIGBT素子Q1Bのコレクタに接続され、IGBT素子Q2SのエミッタはIGBT素子Q2Bのエミッタに接続される。T相部CO-TからコンデンサC1TおよびヒューズF1T,F2Tが除去され、IGBT素子Q1TのコレクタはIGBT素子Q1Cのコレクタに接続され、IGBT素子Q2TのエミッタはIGBT素子Q2Cのエミッタに接続される。IGBT素子Qのオン/オフ制御は、図2の回路と同様に行なわれる。
 また、図8(a)(b)に示すように、コンバータ/チョッパ回路20およびPWMインバータ4を運転するとIGBT素子QおよびダイオードDで熱が発生する。この無停電電源装置では、通常運転時は、コンバータ/チョッパ回路20のうちのR相部CO-R、S相部CO-S、およびT相部CO-TとPWMインバータ4が運転され、図8(a)に示すように、コンバータ/チョッパ回路20およびPWMインバータ4の各々で大きな熱が発生する。また、停電時は、コンバータ/チョッパ回路20のうちのA相部CH-A、B相部CH-B、およびC相部CH-CとPWMインバータ4が運転され、コンバータ/チョッパ回路20およびPWMインバータ4の各々で大きな熱が発生する。したがって、通常運転時においても停電時においても、コンバータ/チョッパ回路20で発生する熱とPWMインバータ4で発生する熱は略同じである。よって、コンバータ/チョッパ回路20用の冷却器は、PWMインバータ4の冷却器13と同じものでよい。
 また、図9(a)(b)に示すように、コンバータ/チョッパ回路20およびPWMインバータ4はそれぞれ冷却器21,13に固定されている。コンバータ/チョッパ回路20およびPWMインバータ4で発生した熱は、それぞれ冷却器21,13に伝達される。冷却器21,13の熱は、空気中に放散される。これにより、コンバータ/チョッパ回路20およびPWMインバータ4の温度上昇が抑制される。
 また、図9(a)において、コンバータ/チョッパ回路20のR相部CO-R、A相部CH-A、S相部CO-S、B相部CH-B、T相部CO-T、C相部CH-Cは冷却器20の表面に順に配置される。R相部CO-Rは、商用交流電源7からの三相交流電圧のR相に対応する部分であり、図7のPWMコンバータ2のうちの符号の末尾がRの素子を含む。A相部CH-Aは、PWMコンバータ2のR相に対応する部分であり、図7のチョッパ3のうちの符号の末尾がAの素子を含む。
 S相部CO-Sは、商用交流電源7からの三相交流電圧のS相に対応する部分であり、図7のPWMコンバータ2のうちの符号の末尾がSの素子を含む。B相部CH-Bは、PWMコンバータ2のS相に対応する部分であり、図7のチョッパ3のうちの符号の末尾がBの素子を含む。
 T相部CO-Rは、商用交流電源7からの三相交流電圧のT相に対応する部分であり、図7のPWMコンバータ2のうちの符号の末尾がTの素子を含む。C相部CH-Cは、PWMコンバータ2のT相に対応する部分であり、図7のチョッパ3のうちの符号の末尾がCの素子を含む。
 また、図9(b)において、PWMインバータ4のU相部IN-U、V相部IN-V、およびW相部IN-Wは冷却器13の表面に順に配置される。また、冷却器21は、図5の冷却器11と同じものである。コンバータ/チョッパ回路20と冷却器21、およびPWMインバータ4と冷却器13は、それぞれ一体のユニットを構成している。
 この実施の形態1では、コンバータとチョッパでコンデンサC、ヒューズF、および冷却器21を共用するので、装置の小型化を図ることができる。
 なお、図10(a)~(d)に示すように、コンバータ/チョッパ回路20を3つのコンバータ/チョッパ回路20a~20cに分割するとともに、冷却器21を3つの冷却器21a~21cに分割し、コンバータ/チョッパ回路20a~20cをそれぞれ冷却器21a~21cに固定してもよい。コンバータ/チョッパ回路20aはR相部CO-RおよびA相部CH-Aを含み、コンバータ/チョッパ回路20bはS相部CO-SおよびB相部CH-Bを含み、コンバータ/チョッパ回路20cはT相部CO-TおよびC相部CH-Cを含む。コンバータ/チョッパ回路20aと冷却器21a、コンバータ/チョッパ回路20bと冷却器21b、コンバータ/チョッパ回路20cと冷却器21cは、それぞれ1体のユニットを構成している。この変更例でも、実施の形態1と同じ効果が得られる。
  [実施の形態2]
 図11は、この発明の実施の形態2による無停電電源装置の要部を示す回路図であって、図2と対比される図である。図11において、この無停電電源装置が図2の無停電電源装置と異なる点は、PWMコンバータ2、チョッパ3、およびPWMインバータ4が3つの電力変換回路30~32で置換されている点である。
 電力変換回路30は、R相部CO-R、A相部CH-A、およびU相部IN-Uをまとめ、コンデンサC1R,C1UおよびヒューズF1R,F2R,F1U,F2Uを省略したものである。電力変換回路31は、S相部CO-S、B相部CH-B、およびV相部IN-Vをまとめ、コンデンサC1S,C1VおよびヒューズF1S,F2S,F1V,F2Vを省略したものである。電力変換回路32は、T相部CO-T、C相部CH-C、およびW相部IN-Wをまとめ、コンデンサC1T,C1WおよびヒューズF1T,F2T,F1W,F2Wを省略したものである。
 PWMコンバータ2は通常運転時に使用され、チョッパ3は主に停電時に使用されるので、PWMコンバータ2とチョッパ3でコンデンサC1A,C1B,C1CおよびヒューズF1A,F2A,F1B,F2B,F1C,F2Cを共用することが可能である。また、PWMコンバータ2、チョッパ3、およびPWMインバータ4のいずれか1つのヒューズFが切れた場合は、無停電電源装置全体が使用不能になるので、PWMコンバータ2、チョッパ3、およびPWMインバータ4でヒューズF1A,F2A,F1B,F2B,F1C,F2Cを共用することが可能である。これにより、部品点数を減らすことができ、装置寸法の小型化、装置の低コスト化を図ることができる。
 詳しく説明すると、A相部CH-A、B相部CH-B、およびC相部CH-Cは図1で示した通りである。R相部CO-RからコンデンサC1RおよびヒューズF1R,F2Rが除去され、IGBT素子Q1RのコレクタはIGBT素子Q1Aのコレクタに接続され、IGBT素子Q2RのエミッタはIGBT素子Q2Aのエミッタに接続される。U相部IN-UからコンデンサC1UおよびヒューズF1U,F2Uが除去され、IGBT素子Q1UのコレクタはIGBT素子Q1Aのコレクタに接続され、IGBT素子Q2UのエミッタはIGBT素子Q2Aのエミッタに接続される。
 S相部CO-SからコンデンサC1SおよびヒューズF1S,F2Sが除去され、IGBT素子Q1SのコレクタはIGBT素子Q1Bのコレクタに接続され、IGBT素子Q2SのエミッタはIGBT素子Q2Bのエミッタに接続される。V相部IN-VからコンデンサC1VおよびヒューズF1V,F2Vが除去され、IGBT素子Q1VのコレクタはIGBT素子Q1Bのコレクタに接続され、IGBT素子Q2VのエミッタはIGBT素子Q2Bのエミッタに接続される。
 T相部CO-TからコンデンサC1TおよびヒューズF1T,F2Tが除去され、IGBT素子Q1TのコレクタはIGBT素子Q1Cのコレクタに接続され、IGBT素子Q2TのエミッタはIGBT素子Q2Cのエミッタに接続される。W相部IN-WからコンデンサC1WおよびヒューズF1W,F2Wが除去され、IGBT素子Q1WのコレクタはIGBT素子Q1Cのコレクタに接続され、IGBT素子Q2WのエミッタはIGBT素子Q2Cのエミッタに接続される。IGBT素子Qのオン/オフ制御は、図2の回路と同様に行なわれる。
 また、電力変換回路30~32を運転するとIGBT素子QおよびダイオードDで熱が発生する。この無停電電源装置では、通常運転時は、電力変換回路30のうちのR相部CO-RおよびU相部IN-Uと、電力変換回路31のうちのS相部CO-SおよびV相部IN-Vと、電力変換回路32のうちのT相部CO-TおよびW相部IN-Wが運転され、電力変換回路30~32の各々で大きな熱が発生する。
 また、停電時は、電力変換回路30のうちのA相部CH-AおよびU相部IN-Uと、電力変換回路31のうちのB相部CH-BおよびV相部IN-Vと、電力変換回路32のうちのC相部CH-CおよびW相部IN-Wが運転され、電力変換回路30~32の各々で大きな熱が発生する。したがって、通常運転時においても停電時においても、電力変換回路30~32の各々で発生する熱は略同じである。また、電力変換回路30~32の各々で駆動されるIGBT素子Qの数はPWMインバータ4で駆動されるIGBT素子Qの数の2/3倍であるので、電力変換回路30~32の各々で発生する熱はPWMインバータ4で発生する熱の2/3倍である。よって、電力変換回路30~32の各々の冷却器のサイズは、PWMインバータ4の冷却器13のサイズの2/3倍で足りる。
 また、図12(a)~(c)に示すように、電力変換回路30~32はそれぞれ冷却器33~35に固定されている。電力変換回路30~32で発生した熱は、それぞれ冷却器33~35に伝達される。冷却器33~35の熱は、空気中に放散される。これにより、電力変換回路30~32の温度上昇が抑制される。
 また、図12(a)において、電力変換回路30のR相部CO-R、A相部CH-A、U相部IN-Uは冷却器33の表面に順に配置される。R相部CO-Rは、商用交流電源7からの三相交流電圧のR相に対応する部分であり、図11の電力変換回路30のうちの符号の末尾がRの素子を含む。A相部CH-Aは、PWMコンバータ2のR相に対応する部分であり、図11の電力変換回路30のうちの符号の末尾がAの素子を含む。U相部IN-Uは、負荷8に供給される三相交流電圧のU相に対応する部分であり、図11の電力変換回路30のうちの符号の末尾がUの素子を含む。
 また、図12(b)において、電力変換回路31のS相部CO-S、B相部CH-B、V相部IN-Vは冷却器34の表面に順に配置される。S相部CO-Sは、商用交流電源7からの三相交流電圧のS相に対応する部分であり、図11の電力変換回路31のうちの符号の末尾がSの素子を含む。B相部CH-Bは、PWMコンバータ2のS相に対応する部分であり、図11の電力変換回路31のうちの符号の末尾がBの素子を含む。V相部IN-Vは、負荷8に供給される三相交流電圧のV相に対応する部分であり、図11の電力変換回路31のうちの符号の末尾がVの素子を含む。
 また、図12(c)において、電力変換回路32のT相部CO-T、C相部CH-C、W相部IN-Wは冷却器35の表面に順に配置される。T相部CO-Tは、商用交流電源7からの三相交流電圧のT相に対応する部分であり、図11の電力変換回路32のうちの符号の末尾がTの素子を含む。C相部CH-Cは、PWMコンバータ2のT相に対応する部分であり、図11の電力変換回路32のうちの符号の末尾がCの素子を含む。W相部IN-Wは、負荷8に供給される三相交流電圧のW相に対応する部分であり、図11の電力変換回路32のうちの符号の末尾がWの素子を含む。
 冷却器33~35のサイズは、それぞれ図4(a)~(c)の冷却器11~13のサイズの2/3倍である。また、電力変換回路30と冷却器33、電力変換回路31と冷却器34、電力変換回路32と冷却器35は、それぞれ一体のユニットを構成している。
 この実施の形態2では、コンバータとチョッパとインバータを各相毎にまとめて3つの電力変換回路30~32を構成し、電力変換回路30~32にそれぞれ冷却器33~35を設けたので、装置の小型化を図ることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (6)

  1.  第1の交流電力を直流電力に変換するコンバータ(CO-R,CO-S,CO-T)と、
     前記直流電力を第2の交流電力に変換するインバータ(IN-U,IN-V,IN-W)と、
     前記第1の交流電力が供給されている場合は前記コンバータから電力貯蔵装置(6)に直流電力を供給し、前記第1の交流電力の供給が停止されている場合は前記電力貯蔵装置から前記インバータに直流電力を供給するチョッパ(CH-A,CH-B,CH-C)と、
     前記コンバータおよび前記チョッパを冷却する第1の冷却器(21)と、
     前記インバータを冷却する第2の冷却器(13)とを備え、
     前記コンバータ、前記チョッパ、および前記第1の冷却器は1体のユニットを構成している、無停電電源装置。
  2.  前記コンバータ(CO-R,CO-S,CO-T)は、第1および第2のノード間に直列接続された複数の第1スイッチング素子(Q1R,Q2R)と、それぞれ前記複数の第1スイッチング素子に逆並列に接続された複数の第1ダイオード(D1R,D2R)とを含み、
     前記チョッパ(CH-A,CH-B,CH-C)は、前記第1および第2のノード間に直列接続された複数の第2スイッチング素子(Q1A,Q2A)と、それぞれ前記複数の第2スイッチング素子に逆並列に接続された複数の第2ダイオード(D1A,D2A)とを含み、
     さらに、前記第1および第2のノード間に接続されたコンデンサ(C1A)と、
     第1の直流電圧のノード(N4)と前記第1のノード間に接続された第1のヒューズ(F1A)と、
     第2の直流電圧のノード(N5)と前記第2のノード間に接続された第2のヒューズ(F2A)とを備える、請求の範囲第1項に記載の無停電電源装置。
  3.  第1の交流電力を直流電力に変換するコンバータ(CO-R,CO-S,CO-T)と、
     前記直流電力を第2の交流電力に変換するインバータ(IN-U,IN-V,IN-W)と、
     前記第1の交流電力が供給されている場合は前記コンバータから電力貯蔵装置(6)に直流電力を供給し、前記第1の交流電力の供給が停止されている場合は前記電力貯蔵装置から前記インバータに直流電力を供給するチョッパ(CH-A,CH-B,CH-C)とを備え、
     前記第1の交流電力は三相交流電力であり、
     前記コンバータは、それぞれ前記第1の交流電力の三相に対応する3つの副コンバータ(CO-R,CO-S,CO-T)を含み、
     前記チョッパは、それぞれ前記3つの副コンバータに対応して設けられた3つの副チョッパ(CH-A,CH-B,CH-C)を含み、
     さらに、各副コンバータに対応して設けられ、対応の副コンバータおよび副チョッパを冷却する第1の冷却器(21a,21b,または21c)と、
     前記インバータを冷却する第2の冷却器とを備え、
     各副コンバートと、それに対応する副チョッパおよび第1の冷却器とは1体のユニットを構成している、無停電電源装置。
  4.  各副コンバータは、第1および第2のノード間に直列接続された複数の第1スイッチング素子(Q1R,Q2R)と、それぞれ前記複数の第1スイッチング素子に逆並列に接続された複数の第1ダイオード(D1R,D2R)とを含み、
     各副チョッパは、前記第1および第2のノード間に直列接続された複数の第2スイッチング素子(Q1A,Q2A)と、それぞれ前記複数の第2スイッチング素子に逆並列に接続された複数の第2ダイオード(D1A,D2A)とを含み、
     さらに、各ユニットに対応して設けられ、前記第1および第2のノード間に接続されたコンデンサ(C1A)と、
     各ユニットに対応して設けられ、第1の直流電圧のノード(N4)と前記第1のノード間に接続された第1のヒューズ(F1A)と、
     各ユニットに対応して設けられ、第2の直流電圧のノード(N5)と前記第1のノード間に接続された第2のヒューズ(F2A)とを備える、請求の範囲第3項に記載の無停電電源装置。
  5.  第1の交流電力を直流電力に変換するコンバータ(CO-R,CO-S,CO-T)と、
     前記直流電力を第2の交流電力に変換するインバータ(IN-U,IN-V,IN-W)と、
     前記第1の交流電力が供給されている場合は前記コンバータから電力貯蔵装置(6)に直流電力を供給し、前記第1の交流電力の供給が停止されている場合は前記電力貯蔵装置から前記インバータに直流電力を供給するチョッパ(CH-A,CH-B,CH-C)とを備え、
     前記第1の交流電力は三相交流電力であり、
     前記コンバータは、それぞれ前記第1の交流電力の三相に対応する3つの副コンバータ(CO-R,CO-S,CO-T)を含み、
     前記チョッパは、それぞれ前記3つの副コンバータに対応して設けられた3つの副チョッパ(CH-A,CH-B,CH-C)を含み、
     前記インバータは、それぞれ前記3つの副コンバータに対応して設けられた3つの副インバータ(IN-U,IN-V,IN-W)を含み、
     さらに、各副コンバータに対応して設けられ、対応の副コンバータ、副チョッパ、および副インバータを冷却する冷却器(30,31,または32)を備え、
     各副コンバータと、それに対応する副チョッパ、副インバータおよび冷却器とは1体のユニットを構成している、無停電電源装置。
  6.  各副コンバータは、第1および第2のノード間に直列接続された複数の第1スイッチング素子(Q1R,Q2R)と、それぞれ前記複数の第1スイッチング素子に逆並列に接続された複数の第1ダイオード(D1R,D2R)とを含み、
     各副チョッパは、前記第1および第2のノード間に直列接続された複数の第2スイッチング素子(Q1A,Q2A)と、それぞれ前記複数の第2スイッチング素子に逆並列に接続された複数の第2ダイオード(D1A,D2A)とを含み、
     各副インバータは、前記第1および第2のノード間に直列接続された複数の第3スイッチング素子(Q1U,Q2U)と、それぞれ前記複数の第3スイッチング素子に逆並列に接続された複数の第3ダイオード(D1U,D2U)とを含み、
     さらに、各ユニットに対応して設けられ、前記第1および第2のノード間に接続されたコンデンサ(C1A)と、
     各ユニットに対応して設けられ、第1の直流電圧のノード(N4)と前記第1のノード間に接続された第1のヒューズ(F1A)と、
     各ユニットに対応して設けられ、第2の直流電圧のノード(N5)と前記第2のノード間に接続された第2のヒューズ(F2A)とを備える、請求の範囲第5項に記載の無停電電源装置。
PCT/JP2009/055306 2009-03-18 2009-03-18 無停電電源装置 WO2010106652A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2009/055306 WO2010106652A1 (ja) 2009-03-18 2009-03-18 無停電電源装置
KR1020117020978A KR101302276B1 (ko) 2009-03-18 2009-03-18 무정전 전원 장치
JP2011504657A JP5436537B2 (ja) 2009-03-18 2009-03-18 無停電電源装置
US13/202,478 US9548630B2 (en) 2009-03-18 2009-03-18 Compact uninterruptible power supply apparatus with cooling units
CN2009801582219A CN102356533A (zh) 2009-03-18 2009-03-18 不间断供电电源装置
US15/365,405 US9775266B2 (en) 2009-03-18 2016-11-30 Modular uninterruptible power supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/055306 WO2010106652A1 (ja) 2009-03-18 2009-03-18 無停電電源装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/202,478 A-371-Of-International US9548630B2 (en) 2009-03-18 2009-03-18 Compact uninterruptible power supply apparatus with cooling units
US15/365,405 Continuation US9775266B2 (en) 2009-03-18 2016-11-30 Modular uninterruptible power supply apparatus

Publications (1)

Publication Number Publication Date
WO2010106652A1 true WO2010106652A1 (ja) 2010-09-23

Family

ID=42739322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055306 WO2010106652A1 (ja) 2009-03-18 2009-03-18 無停電電源装置

Country Status (5)

Country Link
US (2) US9548630B2 (ja)
JP (1) JP5436537B2 (ja)
KR (1) KR101302276B1 (ja)
CN (1) CN102356533A (ja)
WO (1) WO2010106652A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170377A1 (ja) * 2014-05-07 2015-11-12 株式会社日立製作所 電力変換装置および電力変換装置の電力変換方法
JP2017099063A (ja) * 2015-11-18 2017-06-01 富士電機株式会社 電力変換装置
CN107105597A (zh) * 2016-02-22 2017-08-29 富士电机株式会社 电源装置
JP2019054581A (ja) * 2017-09-13 2019-04-04 東芝三菱電機産業システム株式会社 電力変換装置
WO2019180784A1 (ja) * 2018-03-19 2019-09-26 東芝三菱電機産業システム株式会社 電力変換装置
JP2019170083A (ja) * 2018-03-23 2019-10-03 株式会社日立製作所 電力変換装置
JP7477940B1 (ja) 2022-11-08 2024-05-02 株式会社Tmeic 無停電電源装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208276B2 (en) * 2009-02-20 2012-06-26 Toshiba Mitsubishi-Electric Indsutrial Systems Corporation Power conversion device
JP5486604B2 (ja) 2009-09-25 2014-05-07 東芝三菱電機産業システム株式会社 無停電電源装置
CN102577074B (zh) 2009-09-30 2015-03-04 东芝三菱电机产业系统株式会社 功率转换系统
CN103715751A (zh) * 2014-01-08 2014-04-09 雷小燕 一种可转换二合一移动电源
CN104901410A (zh) * 2014-03-04 2015-09-09 伊顿公司 一种ups电路
WO2016139763A1 (ja) * 2015-03-04 2016-09-09 株式会社日立製作所 電力変換ユニットおよび電力変換装置
US10587203B2 (en) * 2016-11-17 2020-03-10 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
KR102293965B1 (ko) * 2016-11-17 2021-08-25 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전력 변환 장치
CN110892788B (zh) 2017-05-18 2022-10-28 恩文特服务有限责任公司 通用功率转换器
JP6706395B2 (ja) * 2017-10-25 2020-06-03 東芝三菱電機産業システム株式会社 電力変換装置
CN107888083B (zh) * 2017-12-20 2024-03-26 西安中车永电电气有限公司 一种内燃机车交流传动系统主电路功率单元
FR3096191B1 (fr) * 2019-05-13 2021-06-04 Alstom Transp Tech Dispositif d’alimentation en énergie électrique, chaîne de traction et véhicule électrique associés
KR20220106502A (ko) * 2021-01-22 2022-07-29 엘에스일렉트릭(주) 무정전 전원 공급 모듈

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928291U (ja) * 1982-08-16 1984-02-22 株式会社明電舎 電力変換装置
JPH07298516A (ja) * 1994-04-22 1995-11-10 Yuasa Corp 無停電電源装置
JPH0833336A (ja) * 1994-07-20 1996-02-02 Hitachi Ltd 電力変換装置
JPH08154374A (ja) * 1994-11-25 1996-06-11 Hitachi Ltd 電力変換装置の保護装置
JP2001352763A (ja) * 2000-04-03 2001-12-21 Sanken Electric Co Ltd 電力変換装置
JP2003259657A (ja) * 2002-03-06 2003-09-12 Fuji Electric Co Ltd 電力変換装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928291A (ja) * 1982-08-06 1984-02-14 Nec Corp 磁気バブルメモリ用パツケ−ジの製造方法
US4709318A (en) * 1986-10-22 1987-11-24 Liebert Corporation UPS apparatus with control protocols
US5027264A (en) * 1989-09-29 1991-06-25 Wisconsin Alumni Research Foundation Power conversion apparatus for DC/DC conversion using dual active bridges
US5381330A (en) * 1993-09-08 1995-01-10 Grundl & Hoffmann Half-bridge arrangement for switching electrical power
US5625548A (en) * 1994-08-10 1997-04-29 American Superconductor Corporation Control circuit for cryogenically-cooled power electronics employed in power conversion systems
JPH09130995A (ja) * 1995-10-31 1997-05-16 Toshiba Corp 無停電電源装置
US5870286A (en) * 1997-08-20 1999-02-09 International Business Machines Corporation Heat sink assembly for cooling electronic modules
US5945746A (en) * 1997-08-21 1999-08-31 Tracewell Power, Inc. Power supply and power supply/backplane assembly and system
JP3447543B2 (ja) * 1998-02-02 2003-09-16 東芝トランスポートエンジニアリング株式会社 電力変換装置
JP2000166119A (ja) * 1998-11-25 2000-06-16 Mitsubishi Electric Corp 無停電電源装置
JP3606780B2 (ja) * 1999-12-24 2005-01-05 東芝三菱電機産業システム株式会社 無停電電源装置
TW513850B (en) 2000-04-03 2002-12-11 Shan Ken Oenki Kabushiki Kaish Electric power converting apparatus
US6972957B2 (en) * 2002-01-16 2005-12-06 Rockwell Automation Technologies, Inc. Modular power converter having fluid cooled support
KR100500244B1 (ko) * 2003-02-07 2005-07-11 삼성전자주식회사 전원공급장치 및 그 제어방법
JP2006074965A (ja) * 2004-09-06 2006-03-16 Honda Motor Co Ltd 電源装置
JP4410670B2 (ja) * 2004-12-10 2010-02-03 山洋電気株式会社 無停電電源装置
KR101158455B1 (ko) 2009-03-05 2012-06-19 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
CA2761022C (en) 2009-04-17 2015-08-18 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply system
JP5486604B2 (ja) 2009-09-25 2014-05-07 東芝三菱電機産業システム株式会社 無停電電源装置
CN102577074B (zh) 2009-09-30 2015-03-04 东芝三菱电机产业系统株式会社 功率转换系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928291U (ja) * 1982-08-16 1984-02-22 株式会社明電舎 電力変換装置
JPH07298516A (ja) * 1994-04-22 1995-11-10 Yuasa Corp 無停電電源装置
JPH0833336A (ja) * 1994-07-20 1996-02-02 Hitachi Ltd 電力変換装置
JPH08154374A (ja) * 1994-11-25 1996-06-11 Hitachi Ltd 電力変換装置の保護装置
JP2001352763A (ja) * 2000-04-03 2001-12-21 Sanken Electric Co Ltd 電力変換装置
JP2003259657A (ja) * 2002-03-06 2003-09-12 Fuji Electric Co Ltd 電力変換装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170377A1 (ja) * 2014-05-07 2015-11-12 株式会社日立製作所 電力変換装置および電力変換装置の電力変換方法
JPWO2015170377A1 (ja) * 2014-05-07 2017-04-20 株式会社日立製作所 電力変換装置および電力変換装置の電力変換方法
US10008953B2 (en) 2014-05-07 2018-06-26 Hitachi, Ltd. Power conversion device and power conversion method for power conversion device
JP2017099063A (ja) * 2015-11-18 2017-06-01 富士電機株式会社 電力変換装置
CN107105597A (zh) * 2016-02-22 2017-08-29 富士电机株式会社 电源装置
JP2017153190A (ja) * 2016-02-22 2017-08-31 富士電機株式会社 電源装置
JP2019054581A (ja) * 2017-09-13 2019-04-04 東芝三菱電機産業システム株式会社 電力変換装置
WO2019180784A1 (ja) * 2018-03-19 2019-09-26 東芝三菱電機産業システム株式会社 電力変換装置
JPWO2019180784A1 (ja) * 2018-03-19 2020-09-03 東芝三菱電機産業システム株式会社 電力変換装置
CN111869042A (zh) * 2018-03-19 2020-10-30 东芝三菱电机产业系统株式会社 电力转换装置
CN111869042B (zh) * 2018-03-19 2022-08-02 东芝三菱电机产业系统株式会社 电力转换装置
JP2019170083A (ja) * 2018-03-23 2019-10-03 株式会社日立製作所 電力変換装置
JP7477940B1 (ja) 2022-11-08 2024-05-02 株式会社Tmeic 無停電電源装置

Also Published As

Publication number Publication date
US9548630B2 (en) 2017-01-17
CN102356533A (zh) 2012-02-15
US20170086329A1 (en) 2017-03-23
US9775266B2 (en) 2017-09-26
JPWO2010106652A1 (ja) 2012-09-20
US20110299307A1 (en) 2011-12-08
KR101302276B1 (ko) 2013-09-02
JP5436537B2 (ja) 2014-03-05
KR20110114716A (ko) 2011-10-19

Similar Documents

Publication Publication Date Title
JP5436537B2 (ja) 無停電電源装置
JP6412266B2 (ja) 無停電電源装置
JP5803683B2 (ja) マルチレベル電力変換回路
JP6450019B2 (ja) 無停電電源装置
EP2463996B1 (en) AC-to-AC converter and method for converting a first frequency AC-voltage to a second frequency AC-voltage
WO2011111175A1 (ja) パワー半導体モジュール、電力変換装置および鉄道車両
US10027242B2 (en) Vehicle power conversion device
JP2014217270A (ja) 3レベル電力変換装置用ハーフブリッジ
JP5323287B1 (ja) インバータ装置
JP6821268B2 (ja) 電力変換装置
JP6304017B2 (ja) 半導体装置
JP3729117B2 (ja) 電力変換装置
JP7153137B2 (ja) 電力変換装置及び電気式駆動ユニット
JP2006042406A (ja) 電力変換装置のスタック構造
JP2006149199A (ja) 鉄道車両用電力変換装置
JP2003259657A (ja) 電力変換装置
KR20200096719A (ko) 반도체 단락 회로 전도 손실을 감소시키기 위한 3-레벨 펄스 폭 변조 기술
JP2012157138A (ja) 電力変換装置のスタック構造
JP5558401B2 (ja) 電力変換装置
JP2005117783A (ja) 電力変換器のスタック構造
Hofmann et al. Design and modulation optimization of an mmc based braking chopper
Lei et al. Extreme high power density T-modular-multilevel-converter for medium voltage motor drive
JP7119923B2 (ja) 電力変換器
WO2023157120A1 (ja) 電力変換装置
JP6561663B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158221.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13202478

Country of ref document: US

Ref document number: 2011504657

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117020978

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841857

Country of ref document: EP

Kind code of ref document: A1