WO2015170377A1 - 電力変換装置および電力変換装置の電力変換方法 - Google Patents

電力変換装置および電力変換装置の電力変換方法 Download PDF

Info

Publication number
WO2015170377A1
WO2015170377A1 PCT/JP2014/062285 JP2014062285W WO2015170377A1 WO 2015170377 A1 WO2015170377 A1 WO 2015170377A1 JP 2014062285 W JP2014062285 W JP 2014062285W WO 2015170377 A1 WO2015170377 A1 WO 2015170377A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
power conversion
converter
inverter
terminal
Prior art date
Application number
PCT/JP2014/062285
Other languages
English (en)
French (fr)
Inventor
央 上妻
幸男 服部
徹也 川島
彬 三間
大輔 松元
馬淵 雄一
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/062285 priority Critical patent/WO2015170377A1/ja
Priority to JP2016517757A priority patent/JP6198941B2/ja
Priority to US15/304,171 priority patent/US10008953B2/en
Publication of WO2015170377A1 publication Critical patent/WO2015170377A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to a power conversion device including a converter and an inverter, and a power conversion method of the power conversion device.
  • UPS Uninterruptible Power-supply System
  • the uninterruptible power supply device includes components such as a bus bar, a short-circuit fault protection fuse, and a capacitor for smoothing DC power in addition to the semiconductor module.
  • components such as a bus bar, a short-circuit fault protection fuse, and a capacitor for smoothing DC power in addition to the semiconductor module.
  • it is essential to reduce the size of the capacitor in addition to the size of the power semiconductor module.
  • it is necessary to reduce the number of parallels by reducing the capacitance.
  • Patent Document 1 The technique regarding the ripple current reduction of a power converter is described in Patent Document 1, for example.
  • the subject of the abstract of Patent Document 1 is described as “Providing a power conversion device that suppresses ripple current flowing in a current smoothing capacitor”.
  • the solution of the abstract is “a power source composed of a battery Vb and a current smoothing capacitor C, and three-phase bridge circuits 1A and 1B connected in parallel. Each bridge circuit is in accordance with a PWM signal from the drive circuits 11A and 11B. Operates and converts power to drive the first motor 25A and the second motor 25B
  • the triangular wave generators 7 and 8 generate triangular waves TR1 and TR2 having a phase difference of 90 °, both of which are powered or regenerated.
  • the PWM signal for driving the first motor is generated based on the triangular wave TR1 and the PWM signal for driving the second motor is generated based on the triangular wave TR2.
  • the phase of the ripple current generated in each bridge circuit due to the phase difference between the two triangular wave signals. are offset by 180 ° and cancel each other out, so that the ripple current flowing in the current smoothing capacitor C can be kept small.
  • Patent Document 1 The technology of Patent Document 1 is premised on that two inverter units drive different loads. This is different from a general use state of an uninterruptible power supply and requires two inverter units, so it is difficult to contribute to downsizing.
  • the uninterruptible power supply requires a fuse element between each phase for short circuit protection in the event of a failure. Since the interphase impedance is increased by this fuse, even if the technique of Patent Document 1 is applied to the uninterruptible power supply, there is a possibility that the ripple current reduction effect cannot be ensured.
  • the inverter and the converter are often composed of individual units. Therefore, for example, the wiring distance between corresponding phases increases like the U phase of the inverter and the R phase of the converter, the interphase impedance increases, and the ripple current increases.
  • an object of the present invention is to reduce the ripple current of a capacitor in a power conversion device including an inverter and a converter.
  • the first invention includes power conversion that includes a stacked conductor in which conductors are stacked and a plurality of power conversion units, and supplies power from a commercial power source to a load via a converter and an inverter. It was a vessel.
  • This power conversion unit includes a power semiconductor module, a capacitor, and a main circuit bus bar, and includes a positive side terminal, a negative side terminal, and an AC / DC terminal, and the positive side terminals are mutually connected via a laminated conductor.
  • the negative terminals are connected to each other.
  • At least one of the power conversion units constitutes a phase of a converter that converts alternating current input to an AC / DC terminal and supplies it as direct current between its positive side terminal and negative side terminal.
  • At least one other conversion unit forms a phase of an inverter that converts direct current supplied via its positive terminal and negative terminal and supplies alternating current to the AC / DC terminal.
  • the power conversion unit constituting a predetermined phase of the inverter has its own positive side terminal adjacent to the positive side terminal of the power conversion unit constituting the phase of the corresponding converter via the laminated conductor.
  • the negative side terminal of the power conversion unit is connected adjacently to the negative side terminal of the power conversion unit constituting the phase of the converter corresponding to the negative side terminal.
  • a laminated conductor in which conductors are laminated, a plurality of power conversion units, and a control circuit that outputs a three-phase PWM control signal, from a commercial power source to a load via a converter and an inverter.
  • the power conversion method of the power conversion device to be fed is used.
  • the power conversion unit includes a power semiconductor module, a capacitor, and a main circuit bus bar.
  • the power conversion unit includes a positive terminal, a negative terminal, and an AC / DC terminal, and the positive terminals are connected to each other through a laminated conductor.
  • the negative terminals are connected to each other.
  • At least three of the power conversion units constitute a three-phase converter that converts the alternating current input to the AC / DC terminal and supplies it as a direct current between its positive terminal and negative terminal.
  • At least three other power conversion units constitute a three-phase inverter that converts direct current supplied through its positive terminal and negative terminal and supplies alternating current to the AC / DC terminal.
  • Each phase of the three-phase inverter and each phase of the corresponding three-phase converter are arranged adjacent to each other, and the control circuit generates an inverter triangular wave signal and outputs the inverter triangular wave signal.
  • inverter three-phase PWM signal generator This is supplied to the inverter three-phase PWM signal generator, generates a converter triangular wave signal synchronized with the inverter triangular wave signal at the same frequency and with a predetermined phase difference, and supplies the converter triangular wave signal to the converter three-phase PWM signal generator.
  • Other means will be described in the embodiment for carrying out the invention.
  • the ripple current of the capacitor can be reduced in the power conversion device including the inverter and the converter.
  • FIG. 1 is a perspective view showing the configuration of the uninterruptible power supply 1 in the first embodiment.
  • the uninterruptible power supply 1 includes power conversion units 2r, 2s, 2t, 2u, 2v, 2w, 2h-1, 2h-2 having the same configuration as a PN laminated bus bar 3. Connected and configured.
  • the PN laminated bus bar 3 is a laminated conductor in which conductors are laminated.
  • the power conversion unit 2 may be simply described.
  • a power semiconductor module 21 including cooling fins 22, capacitors C 1 and C 2, and fuse elements 24 and 25 are assembled in a main circuit bus bar 23 that is a PN / AC laminate bus bar.
  • the power semiconductor module 21 includes a control signal terminal 26.
  • FIG. 2 is a top view showing the configuration of the uninterruptible power supply 1 in the first embodiment.
  • the three power conversion units 2r, 2s, and 2t constitute the R phase, S phase, and T phase of the converter.
  • the main circuit bus bar 23 of the power conversion unit 2r includes an R terminal at the top.
  • the main circuit bus bar 23 of the power conversion unit 2s includes an S terminal at the top.
  • the main circuit bus bar 23 of the power conversion unit 2t has a T terminal at the top.
  • These R terminal, S terminal, and T terminal are AC / DC terminals of the power conversion units 2r, 2s, and 2t.
  • the three power conversion units 2u, 2v, and 2w constitute the U phase, V phase, and W phase of the inverter.
  • the main circuit bus bar 23 of the power conversion unit 2u has a U terminal at the top.
  • the main circuit bus bar 23 of the power conversion unit 2v has a V terminal at the top.
  • the main circuit bus bar 23 of the power conversion unit 2w includes a W terminal at the top.
  • the phases corresponding to the inverter and the converter of the first embodiment are the U phase of the inverter, the R phase of the converter, the V phase of the inverter, the S phase of the converter, the W phase of the inverter, and the T phase of the converter.
  • the U-phase power conversion unit 2u of the inverter and the R-phase power conversion unit 2r of the converter are adjacently arranged in parallel.
  • the V-phase power conversion unit 2v of the inverter and the S-phase power conversion unit 2s of the converter are adjacently arranged in parallel.
  • the W-phase power conversion unit 2w of the inverter and the T-phase power conversion unit 2t of the converter are arranged adjacently and in parallel.
  • the two power conversion units 2h-1 and 2h-2 are connected in parallel to form a part of the chopper.
  • the main circuit bus bar 23 of the power conversion units 2h-1 and 2h-2 includes a C terminal at the top.
  • the C terminal is an AC / DC terminal of the power conversion units 2h-1 and 2h-2.
  • the chopper of the uninterruptible power supply 1 in the first embodiment doubles the allowable power by connecting two power conversion units 2h-1 and 2h-2 in parallel. Thereby, even when the electric power which a chopper requires exceeds the rated electric power of the power semiconductor module 21 of each power conversion unit 2, it can respond.
  • uninterruptible power supply 1 may be configured by connecting a plurality of power conversion units 2 in parallel to each phase of the converter and the inverter.
  • FIG. 3 is a development view showing the configuration of the uninterruptible power supply 1 in the first embodiment.
  • the P terminal (positive terminal) of each power conversion unit 2 is screwed to the P side of the PN laminated bus bar 3 and is electrically connected.
  • the N terminal (negative terminal) of each power conversion unit 2 is screwed and electrically connected to the N side of the PN laminate bus bar 3.
  • the uninterruptible power supply 1 has the same shape of the power conversion unit 2 for each phase, aligns the P terminal and the N terminal on a single plane, and connects each P terminal and each N terminal with a PN laminated bus bar 3. It is possible to reduce interphase impedance by electrical connection.
  • the PN laminate bus bar 3 is disposed on the same side with respect to each main circuit bus bar 23.
  • the PN laminate bus bar 3 is screwed to fuse elements 24 and 25 screwed to the side surface of each main circuit bus bar 23. Thereby, the PN laminate type bus bar 3 can mechanically fix each power conversion unit 2.
  • FIG. 4 is a perspective view showing the configuration of the uninterruptible power supply 1 in the first embodiment.
  • FIG. 5 is a development view showing the configuration of the uninterruptible power supply 1 in the first embodiment.
  • the power conversion unit 2 includes a power semiconductor module 21, cooling fins 22, capacitors C 1 and C 2, fuse elements 24 and 25, and a main circuit bus bar 23.
  • the P terminal in the fuse element 24 is screwed to the P pole bus bar in the main circuit bus bar 23 and is electrically connected.
  • the N terminal in the fuse element 25 is screwed to the N pole bus bar in the main circuit bus bar 23 and is electrically connected.
  • the AC / DC terminal of the power semiconductor module 21 is electrically connected to the AC pole bus bar in the main circuit bus bar 23 and connected to the outside as terminals U, V, W, R, S, T, and C.
  • the power semiconductor module 21 includes a control signal terminal 26.
  • This control signal terminal 26 is connected to a host control circuit.
  • each power conversion unit 2r, 2s, 2t, 2u, 2v, 2w, 2h-1, 2h-2 constituting the converter, inverter, and chopper is composed of the same parts. It can reduce development costs and reduce fixed costs such as parts management and maintenance of production lines.
  • FIG. 6 is a schematic configuration diagram showing the uninterruptible power supply 1.
  • the uninterruptible power supply 1 includes a converter 11, an inverter 12, a chopper 13, and an upper control circuit 4 that controls these.
  • the converter 11 is a three-phase converter that converts three-phase AC power supplied from the commercial power supply 5 into DC power and supplies the DC power to the inverter 12 and the chopper 13.
  • the inverter 12 is a three-phase inverter that converts DC power into three-phase AC power and supplies the same to the load 7.
  • the chopper 13 boosts or lowers DC power to a predetermined voltage and stores it in the storage battery 6.
  • the control circuit 4 controls the converter 11, the inverter 12, and the chopper 13. In the uninterruptible power supply 1, the chopper 13 is not an essential function.
  • the chopper 13 supplies the power stored in the storage battery 6 to the inverter 12 as DC power.
  • the inverter 12 converts this DC power into AC power and supplies it to the load 7.
  • the uninterruptible power supply 1 can supply power to the load 7 without interruption.
  • FIG. 7 is an equivalent circuit diagram showing the configuration of the converter 11.
  • the converter 11 includes power conversion units 2 r, 2 s, 2 t and is further controlled by the converter control unit 44.
  • the converter 11 converts the three-phase AC power from the three-phase AC commercial power source 5 into DC power between the PNs.
  • the power conversion unit 2r includes an upper arm switching element QH and a rectifying element DH, a lower arm switching element QL and a rectifying element DL, and fuse elements 24 and 25.
  • the switching element QH and the rectifying element DH in the upper arm and the switching element QL and the rectifying element DL in the lower arm constitute a half bridge circuit 27.
  • IGBTs Insulated Gate Bipolar Transistors
  • Diodes are used for the rectifying elements DH and DL.
  • the fuse element 24 connects the P side of the PN laminate bus bar 3 and the collector of the switching element QH.
  • the rectifying element DH is connected in the direction from the emitter to the collector of the switching element QH.
  • the emitter of switching element QH is connected to the collector of switching element QL and AC terminal R.
  • Capacitor C1 and capacitor C2 are connected in parallel between the collector of switching element QH and the emitter of switching element QL. In the circuit diagram of FIG. 7, the parallel connection of the capacitor C1 and the capacitor C2 is omitted, and a single capacitor symbol is shown.
  • the gate of switching element QH is connected to converter control unit 44.
  • the fuse element 25 connects the emitter of the switching element QL and the N side of the PN laminate bus bar 3.
  • the rectifying element DL is connected in the direction from the emitter to the collector of the switching element QL.
  • the gate of switching element QL is connected to converter control unit 44.
  • the power conversion unit 2s is configured similarly to the power conversion unit 2r except that the connection node between the emitter of the switching element QH and the collector of the switching element QL is connected to the AC terminal S.
  • the power conversion unit 2t is configured in the same manner as the power conversion unit 2r except that the connection node between the emitter of the switching element QH and the collector of the switching element QL is connected to the AC terminal T.
  • the three-phase AC power supplied from the commercial power supply 5 is supplied to the power conversion units 2r, 2s, and 2t of the respective phases of the converter 11 via the AC terminals R, S, and T.
  • the switching element QH and the rectifying element DH in the upper arm of the power conversion units 2r, 2s, and 2t, and the switching element QL and the rectifying element DL in the lower arm are controlled in switching timing by the converter control unit 44, and this AC power is converted. Rectify.
  • FIG. 8 is an equivalent circuit diagram showing the configuration of the inverter 12.
  • the inverter 12 includes power conversion units 2 u, 2 v, 2 w and is further controlled by an inverter control unit 43.
  • the inverter 12 converts DC power between the PNs into three-phase AC power.
  • the power conversion unit 2u is configured similarly to the power conversion unit 2r (see FIG. 7) except that the connection node between the emitter of the switching element QH and the collector of the switching element QL is connected to the AC terminal U.
  • the power conversion unit 2v is configured in the same manner as the power conversion unit 2r (see FIG. 7) except that the connection node between the emitter of the switching element QH and the collector of the switching element QL is connected to the AC terminal V.
  • the power conversion unit 2w is configured in the same manner as the power conversion unit 2r (see FIG. 7) except that the connection node between the emitter of the switching element QH and the collector of the switching element QL is connected to the AC terminal W. .
  • the power conversion unit 2 can be shared and the number of component types can be reduced.
  • the DC power converted by the converter 11 is supplied between PNs.
  • the switching elements QH and rectifying elements DH in the upper arms of the power conversion units 2u, 2v and 2w, and the switching elements QL and rectifying elements DL in the lower arms are controlled in switching timing by the inverter control unit 43, and this DC power is converted. It is converted into AC power and output to AC terminals U, V, W.
  • FIG. 9 is an equivalent circuit diagram showing the configuration of the chopper 13.
  • the chopper 13 includes a power conversion unit 2 h-1 and a reactor LI, and is further controlled by the chopper controller 45.
  • the chopper 13 mutually converts a low-voltage DC voltage generated by the storage battery 6 and a high-voltage DC voltage between the PNs.
  • the power conversion unit 2h-1 is configured in the same manner as the power conversion unit 2r (see FIG. 7) except that the connection node between the emitter of the switching element QH and the collector of the switching element QL is connected to the terminal C. .
  • Reactor LI connects the positive electrode of storage battery 6 and terminal C.
  • the operation of the chopper 13 will be described with reference to FIG. 9 as appropriate.
  • the switching element QL on the lower arm of the power conversion unit 2h-1 is on, energy is stored in the reactor LI connected between the storage battery 6 and the terminal C.
  • the rectifier element DH of the upper arm is turned on by the counter electromotive voltage generated by the reactor LI.
  • a voltage obtained by adding the DC voltage of the storage battery 6 and the counter electromotive voltage of the reactor LI is generated at the output end of the chopper 13.
  • the chopper controller 45 can arbitrarily set the step-up ratio by controlling the switching timing of the power conversion unit 2h-1.
  • the converter 11, the inverter 12, and the chopper 13 mounted on the uninterruptible power supply 1 of the first embodiment all have the switching element QH and the rectifying element DH of the upper arm, the switching element QL of the lower arm, and
  • the basic configuration is a two-level half-bridge circuit 27 in which a rectifying element DL is connected in series.
  • FIG. 10 is an equivalent circuit diagram showing the power conversion unit in the first embodiment.
  • the power conversion unit includes, for example, a U-phase power conversion unit 2 u of the inverter 12 and an R-phase power conversion unit 2 r of the converter 11.
  • An equivalent circuit between the P terminal of the power conversion unit 2u and the P terminal of the power conversion unit 2r is represented by a series connection of a resistor RP and a coil LP.
  • An equivalent circuit between the N terminal of the power conversion unit 2u and the N terminal of the power conversion unit 2r is indicated by a series connection of a resistor RN and a coil LN.
  • the series connection of the resistor RP and the coil LP and the series connection of the resistor RN and the coil LN indicate the interphase impedance.
  • the U-phase power conversion unit 2u of the inverter 12 has its own P terminal connected via the PN laminate bus bar 3 adjacent to the P terminal of the power conversion unit 2r constituting the corresponding R phase.
  • the power conversion unit 2u is connected adjacent to the N terminal of the power conversion unit 2r constituting the R phase corresponding to the N terminal of the power conversion unit 2u via the PN laminate bus bar 3.
  • the sneak current Iac_RU from the power semiconductor module 21 of the power conversion unit 2r to the power conversion unit 2u increases.
  • the ripple current Irip_U of the capacitors C1 and C2 in the power conversion unit 2u is a difference between the current Ipm_U drawn by the power semiconductor module 21 of the power conversion unit 2r and the sneak current Iac_RU. Therefore, by reducing the interphase impedance and increasing the sneak current Iac_RU, the current Ipm_U drawn by the power semiconductor module 21 and the sneak current Iac_RU are made equal.
  • the switching timing of inverter 12 and converter 11 is controlled so that the phase of current Ipm_U and the phase of sneak current Iac_RU are the same. Thereby, the ripple current Irip_U that is the difference between the current Ipm_U and the sneak current Iac_RU can be reduced.
  • FIG. 11 is a configuration diagram illustrating a control system of the uninterruptible power supply 1 according to the first embodiment.
  • the control circuit 4 includes a fundamental wave signal generation unit 41, a carrier signal generation unit 42, an inverter control unit 43, and a converter control unit 44.
  • the control circuit 4 controls the inverter 12, the converter 11, and the chopper 13.
  • the fundamental wave signal generation unit 41 generates the inverter three-phase fundamental wave signal Binv and the converter three-phase fundamental wave signal Bcnv so as to be synchronized at the same frequency and with a predetermined phase difference.
  • the inverter three-phase fundamental wave signal Binv generated by the fundamental wave signal generator 41 includes a U-phase fundamental wave signal Bu, a V-phase fundamental wave signal Bv, and a W-phase fundamental wave signal Bw. Supplied to the unit 43.
  • the carrier signal generation unit 42 is a triangular wave signal generation unit that generates an inverter carrier signal Cinv that is a triangular wave signal of the inverter and a converter carrier signal Ccnv that is a triangular wave signal of the converter.
  • the carrier signal generation unit 42 generates the inverter carrier signal Cinv and the converter carrier signal Ccnv so as to synchronize with the same frequency and a predetermined phase difference.
  • the inverter control unit 43 generates a three-phase PWM signal for the inverter 12.
  • the inverter carrier signal Cinv input from the carrier signal generation unit 42 and the inverter three-phase fundamental signal Binv are respectively compared by a comparator (not shown) to generate an inverter three-phase control signal Ginv.
  • the inverter three-phase control signal Ginv is a PWM signal, and includes U-phase control signals UH and UL, V-phase control signals VH and VL, and W-phase control signals WH and WL.
  • the U-phase control signals UH and UL are input to the gates of the switching elements QH and QL of the U-phase power conversion unit 2u.
  • V-phase control signals VH and VL are input to the gates of switching elements QH and QL of V-phase power conversion unit 2v.
  • the W-phase control signals WH and WL are input to the gates of the switching elements QH and QL of the W-phase power conversion unit 2w.
  • Converter three-phase fundamental wave signal Bcnv generated by fundamental wave signal generation unit 41 includes an R-phase fundamental wave signal Br, an S-phase fundamental wave signal Bs, and a T-phase fundamental wave signal Bt. Supplied to the unit 44.
  • Converter control unit 44 generates a three-phase PWM signal of converter 11.
  • the converter carrier signal Ccnv input from the carrier signal generation unit 42 and the inverter three-phase fundamental wave signal Binv are respectively compared by a comparator (not shown) to generate a converter three-phase control signal Gcnv.
  • Converter three-phase control signal Gcnv is a PWM signal, and includes R-phase control signals RH and RL, S-phase control signals SH and SL, and T-phase control signals TH and TL.
  • the R-phase control signals RH and RL are input to the gates of the switching elements QH and QL of the R-phase power conversion unit 2r.
  • the S-phase control signals SH and SL are input to the gates of the switching elements QH and QL of the S-phase power conversion unit 2s.
  • the T-phase control signals TH and TL are input to the gates of the switching elements QH and QL of the T-phase power conversion unit 2t.
  • FIG. 12 is a waveform diagram showing control signals when the uninterruptible power supply 1 according to the first embodiment is asynchronous.
  • the upper graph shows signal waveforms related to the R-phase control signal of the converter 11.
  • the solid line represents the R-phase fundamental signal Br.
  • the broken line indicates the converter carrier signal Ccnv.
  • the lower graph shows signal waveforms related to the U-phase control signal of the inverter 12.
  • the solid line indicates the U-phase fundamental wave signal Bu.
  • the broken line indicates the inverter carrier signal Cinv.
  • the R-phase fundamental wave signal Br of the converter 11 and the U-phase fundamental wave signal Bu of the inverter 12 are shifted by a phase difference ⁇ b.
  • phase difference between the R-phase fundamental wave signal Br and the U-phase fundamental wave signal Bu is defined as ⁇ b. Further, the converter carrier signal Ccnv and the inverter carrier signal Cinv are shifted by a phase difference ⁇ c. In the following description, the phase difference between the converter carrier signal Ccnv and the inverter carrier signal Cinv is defined as ⁇ c.
  • FIG. 13 is a waveform diagram showing control signals during synchronization of the uninterruptible power supply 1 in the first embodiment.
  • the meanings of the vertical axis and the horizontal axis in each graph in FIG. 13 are the same as those in each graph in FIG.
  • the R-phase fundamental wave signal Br of the converter 11 and the U-phase fundamental wave signal Bu of the inverter 12 have the same phase, and the phase difference ⁇ b is 0 degree.
  • the converter carrier signal Ccnv and the inverter carrier signal Cinv have the same phase, and the phase difference ⁇ c is 0 degree.
  • FIG. 14 is a frequency spectrum of the current Ipm_U of the power semiconductor module 21 of the uninterruptible power supply 1 in the first embodiment.
  • the current Ipm_U is a current drawn by the power semiconductor module 21 of the U-phase power conversion unit 2 u of the inverter 12.
  • the frequency spectrum of the current Ipm_U includes a signal component S1_1 in a difference frequency band between the carrier signal frequency Fc and the fundamental wave signal frequency Fb, a signal component S1_1A in an addition frequency band of the carrier signal frequency Fc and the fundamental wave signal frequency Fb, and a double carrier.
  • Signal component S1_2 in the signal frequency band.
  • FIG. 15 is a frequency spectrum of the sneak current Iac_RU of the power semiconductor module 21 of the uninterruptible power supply 1 in the first embodiment.
  • the sneak current Iac_RU is a current that sneaks from the power semiconductor module 21 of the R-phase power conversion unit 2 r of the converter 11 to the U-phase power conversion unit 2 r of the inverter 12.
  • the frequency spectrum of the sneak current Iac_RU includes a signal component S2_1 in the difference frequency band between the carrier signal frequency Fc and the fundamental wave signal frequency Fb, a signal component S2_1A in the sum frequency band of the carrier signal frequency Fc and the fundamental wave signal frequency Fb, and 2 Signal component S2_2 of the double carrier signal frequency band.
  • phase difference between the signal component S1_1 and the signal component S2_1 is expressed by the following equation (1).
  • phase difference between the signal component S1_1A and the signal component S2_1A is expressed by the following equation (2).
  • phase difference between the signal component S1_2 and the signal component S2_2 is expressed by the following equation (3).
  • the ripple current Irip_U of the capacitors C1 and C2 in the U-phase power conversion unit 2u of the inverter 12 is equal to the current Ipm_U drawn by the power semiconductor module 21 of the U-phase power conversion unit 2r of the inverter 12.
  • the ripple current Irip_U which is the difference between the current Ipm_U and the sneak current Iac_RU, can be reduced.
  • FIG. 16 is a graph showing the ripple current reduction effect.
  • the ripple current Irip_U when the phase difference ⁇ c and the phase difference ⁇ b are changed is expressed as follows. Show. According to this, when the phase difference ⁇ b is in the range of ⁇ 45 degrees to +45 degrees and the phase difference ⁇ c is in the range of ⁇ 20 degrees to +20 degrees, the ripple current is reduced by synchronously controlling the inverter 12 and the converter 11.
  • the inverter 12 and the converter 11 can be controlled synchronously to similarly reduce the ripple current. Play.
  • FIG. 17 is a top view illustrating the configuration of the uninterruptible power supply 1 ⁇ / b> A according to the second embodiment.
  • the uninterruptible power supply 1A in the second embodiment includes power conversion units 2h-1 and 2h-2 that constitute the chopper 13 at both ends. Is located. Other than that is comprised similarly to the uninterruptible power supply 1 of 1st Embodiment.
  • the power conversion units 2u, 2v, and 2w that constitute the inverter 12 and the power conversion units 2r, 2s, and 2t that constitute the converter 11 have phases corresponding to each other. Adjacent and parallel.
  • the U-phase power conversion unit 2u of the inverter 12 and the R-phase power conversion unit 2r of the converter 11 are arranged adjacent to each other in parallel.
  • power conversion units 2h-1 and 2h-2 constituting chopper 13 are arranged at the end of uninterruptible power supply 1A, respectively.
  • FIG. 18 is an equivalent circuit diagram showing a configuration of the uninterruptible power supply 1A in the second embodiment.
  • the ripple current Irip flowing in the capacitors C1 and C2 attached to each power conversion unit 2 is the difference between the current Ipm drawn by the power semiconductor module 21 of the own phase and the current Iac flowing from the power semiconductor module 21 of the other phase.
  • the P terminal and the N terminal of each power conversion unit 2 are electrically connected by the PN laminate type bus bar 3, respectively, and the impedance between the capacitors C1 and C2 of each phase is reduced, whereby the power semiconductor module 21
  • current In addition to the capacitors C1 and C2 of the own phase, current also flows from the capacitors C1 and C2 of the other phases.
  • the ripple current Irip flowing through the capacitors C1 and C2 of the own phase is derived from the current Ipm drawn by the power semiconductor module 21 of the own phase, the current Iac flowing from the power semiconductor module 21 of the other phase, and the capacitors C1 and C2 of the other phases. It is a current obtained by taking the difference of the sneak current Icap from. Therefore, by increasing the sneak current Icap from the other-phase capacitors C1 and C2, it is possible to reduce the ripple current Irip borne by the own-phase capacitors C1 and C2.
  • FIG. 19 is an interphase impedance characteristic diagram of the uninterruptible power supply 1A according to the second embodiment.
  • the vertical axis in the figure indicates the interphase impedance.
  • the horizontal axis of the figure indicates the frequency.
  • the solid line indicates the impedance Z1 between the power semiconductor module 21 and the self-phase capacitors C1 and C2 in the power conversion unit 2h-1 and the power conversion unit 2v.
  • the rough broken line indicates the impedance Z2 between the power semiconductor module 21 of the central power conversion unit 2v and the capacitors C1, C2 of the other phases.
  • the fine broken line indicates the impedance Z2A between the power semiconductor module 21 of the power conversion unit 2h-1 at the end and the capacitors C1 and C2 of the other phases.
  • the impedance Z1 is increased in the band of the carrier signal frequencies Fc and 2 ⁇ Fc where the ripple current components are concentrated.
  • the carrier signal frequency Fc as the impedances Z2 and Z2A are lower than the impedance Z1, the current Icap flowing from the capacitors C1 and C2 of the other phases increases, and the ripple current Irip can be reduced.
  • the impedance Z2 is lower than the impedance Z2A at the carrier signal frequency Fc. Therefore, the power conversion unit 2v in the central portion has a larger current Icap from the other-phase capacitors C1 and C2 than the power conversion unit 2h-1 in the end portion, and reduces the ripple current of the capacitors C1 and C2 in the own phase. It is possible.
  • the power conversion units 2h-1 and 2h-2 of the chopper 13 are arranged at the end of the uninterruptible power supply 1A, compared with the power conversion unit 2 of the other phase, the power conversion units 2h-1 and 2h-2
  • the impedance Z2A between the phase capacitors C1 and C2 increases, the current Icap flowing from the other phase capacitors C1 and C2 decreases, and the ripple current of the self-phase capacitors C1 and C2 increases.
  • the uninterruptible power supply device 1A in the second embodiment reduces the ripple current of the capacitors C1 and C2 of the power conversion unit 2 of the inverter 12 and converter 11 having a high drive rate, and ensures long-term reliability.
  • Units 2u, 2v, 2w and power conversion units 2r, 2s, 2t are arranged in the center. Furthermore, the power conversion units 2h-1 and 2h-2 of the chopper 13 having a low drive rate are arranged at the end of the uninterruptible power supply 1A.
  • FIG. 20 is a top view illustrating the configuration of the uninterruptible power supply 1 ⁇ / b> B according to the third embodiment.
  • the uninterruptible power supply 1B shown in FIG. 20 includes power conversion units 2u, 2v, and 2w that constitute the inverter 12, power conversion units 2r, 2s, and 2t that constitute the converter 11, Corresponding phases are adjacent and arranged in parallel.
  • the uninterruptible power supply 1B is configured such that the power conversion unit 2h-1 constituting the chopper 13 is an R-phase power conversion unit of the converter 11. 2r and the V-phase power conversion unit 2v of the inverter 12. Further, a power conversion unit 2 h-2 constituting the chopper 13 is arranged between the S-phase power conversion unit 2 s of the converter 11 and the W-phase power conversion unit 2 w of the inverter 12.
  • the uninterruptible power supply 1B of the third embodiment includes intermediate power conversion units 2h-1 and 2h-2 constituting the chopper 13. It is arranged in the part.
  • the impedance between the power semiconductor module 21 and the other-phase capacitors C1 and C2 in the power conversion unit 2 disposed in the intermediate portion can be reduced as compared with the case where it is disposed in the end portion.
  • the current Icap flowing from the other-phase capacitors C1 and C2 increases, and the ripple current of the self-phase capacitors C1 and C2 can be reduced.
  • the ripple current specification required for the power conversion unit 2 constituting the chopper 13 is compared with the ripple current specification of the power conversion unit 2 of the inverter 12 / converter 11. It is effective in severe cases.
  • FIG. 21 is a diagram illustrating a schematic configuration of an uninterruptible power supply 1C according to the fourth embodiment.
  • the uninterruptible power supply 1C of the fourth embodiment assumes that the output power capacity specification is twice that of the uninterruptible power supply 1 (see FIG. 2) of the first embodiment, and the inverter 12, the converter 11, and the chopper 13 are configured to double the parallel number of each power conversion unit 2.
  • the inverter 12 includes power conversion units 2u-1, 2u-2 that constitute the U phase, power conversion units 2v-1, 2v-2 that constitute the V phase, and power conversion units 2w-1, 2w-2.
  • Converter 11 includes power conversion units 2r-1 and 2r-2 that constitute the R phase, power conversion units 2s-1 and 2s-2 that constitute the S phase, and power conversion units 2t-1 and 2t that constitute the T phase. 2t-2.
  • the chopper 13 includes power conversion units 2h-1, 2h-2, 2h-3, and 2h-4.
  • Each power conversion unit 2 is common to the power conversion unit 2 shown in FIGS. 4 and 5, and the P terminal and the N terminal of each power conversion unit 2 are electrically connected by a PN laminate type bus bar 3. Has been.
  • power conversion units 2u-1, 2u-2, 2v-1, 2v-2, 2w-1, 2w-2 constituting the inverter 12, and a power conversion unit 2r-1 constituting the converter 11 , 2r-2, 2s-1, 2s-2, 2t-1, 2t-2, the power conversion units 2 corresponding to each phase are adjacently arranged in parallel.
  • the U-phase power conversion units 2u-1 and 2u-2 of the inverter 12 and the R-phase power conversion units 2r-1 and 2r-2 of the converter 11 can reduce the impedance between corresponding phases.
  • the ripple current flowing in the capacitors C1 and C2 of each power conversion unit 2 can be reduced.
  • FIG. 22 is a diagram illustrating a schematic configuration of an uninterruptible power supply 1D according to the fifth embodiment.
  • the uninterruptible power supply 1D of the fifth embodiment assumes that the output power capacity specification has doubled and the inverter 12 -It is set as the structure which doubled the parallel number of each power conversion unit 2 which comprises the converter 11 and the chopper 13.
  • each power conversion unit 2 constituting the inverter 12 and the power conversion unit 2 constituting the converter 11 are arranged such that corresponding power conversion units 2 are adjacent to each other in parallel.
  • U-phase power conversion unit 2u-1 of inverter 12, R-phase power conversion unit 2r-1 of converter 11, U-phase power conversion unit 2u-2 of inverter 12, and R-phase power conversion of converter 11 Units 2r-2 are arranged adjacently in parallel in this order.
  • V-phase power conversion unit 2v-1 of inverter 12, S-phase power conversion unit 2s-1 of converter 11, V-phase power conversion unit 2v-2 of inverter 12, and S-phase power conversion of converter 11 Units 2s-2 are arranged adjacently in parallel in this order.
  • W-phase power conversion unit 2w-1 of inverter 12 T-phase power conversion unit 2t-1 of converter 11, W-phase power conversion unit 2w-2 of inverter 12, and T-phase power conversion of converter 11 Units 2t-2 are arranged adjacently in parallel in this order.
  • the uninterruptible power supply 1D of the fifth embodiment can minimize the impedance between the corresponding phases, and can reduce the ripple current flowing in the capacitors C1 and C2 of each power conversion unit 2.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • a part or all of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware such as an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by a processor interpreting and executing a program that realizes each function.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other. Examples of modifications of the present invention include the following (a) and (b).
  • the above embodiment refers to the uninterruptible power supply, it can be applied to different types of power converters and is not limited to the configuration of the above embodiment.
  • IGBTs are used as the switching elements QH and QL, and diodes are used as the rectifying elements DH and DL.
  • the present invention is not limited to these, and other types of elements can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

無停電電源装置(1)は、PNラミネート型バスバー(3)と複数の電力変換ユニット(2)とを有し、商用電源からコンバータとインバータとを介して負荷へ給電する電力変換器である。電力変換ユニット(2)は、パワー半導体モジュール(21)とコンデンサC1,C2と主回路バスバー(23)とを含み、PNラミネート型バスバー(3)を介して各正側端子と各負側端子とが相互に接続される。電力変換ユニット(2)の少なくとも1台は、コンバータの相を構成する。電力変換ユニット(2)の他の少なくとも1台は、インバータの相を構成し、自身の正側端子がPNラミネート型バスバー(3)を介して、これに対応するコンバータの相を構成する電力変換ユニット(2)の正側端子と隣接して接続され、自身の負側端子が、これに対応するコンバータの相を構成する電力変換ユニット(2)の負側端子と隣接して接続される。

Description

電力変換装置および電力変換装置の電力変換方法
 本発明は、コンバータとインバータとを含む電力変換装置、および、その電力変換装置の電力変換方法に関する。
 近年の電力変換装置は、その主要部品であるパワー半導体モジュールの技術革新によって、より高速なスイッチング動作を実現し、このパワー半導体から発する損失を低減させている。これにより、特に冷却器を小型化することができ、その結果、電力変換装置を小型化可能である。特に、UPS(Uninterruptible Power-supply System)と呼ばれる無停電電源装置は、データセンタ向けに、地価の高い都市近郊に設置されることが多いため、設置面積の小さいことが望まれる。
 無停電電源装置は、半導体モジュールに加え、バスバー、短絡故障保護用ヒューズ、直流電力を平滑化させるためのコンデンサなどの部品から成り立っている。無停電電源装置の小型化には、パワー半導体モジュールの小型化に加え、コンデンサの小型化も必須となる。
 コンデンサを小型化するには、容量の削減による並列数削減が必要である。コンデンサの必要容量の削減するためには、変換器のリプル電流を低減することが必須である。
 電力変換器のリプル電流低減に関する技術は、例えば、特許文献1に記載されている。特許文献1の要約書の課題には、「電流平滑用コンデンサに流れるリプル電流を抑えるようにした電力変換装置を提供する。」と記載されている。要約書の解決手段には、「バッテリVbと電流平滑用コンデンサCからなる電源に、三相ブリッジ回路1Aと1Bが並列に接続される。各ブリッジ回路は駆動回路11A、11BからのPWM信号に従って動作し、電力変換して第1モータ25A、第2モータ25Bを駆動する。三角波発生器7、8は、90°の位相差を有する三角波TR1、TR2を発生する。両モータがともに力行または回生運転時に、第1モータを駆動するPWM信号は三角波TR1、第2モータを駆動するPWM信号は三角波TR2に基づいて作成される。両三角波信号の位相差により各ブリッジ回路で発生するリプル電流の位相は180°ずれ、互いに打ち消し合って電流平滑用コンデンサCに流れるリプル電流を小さく抑えることができる。」と記載されている。
特開2002-300800号公報
 特許文献1の技術は、2つのインバータユニットが、それぞれ別の負荷を駆動することが前提である。これは、一般的な無停電電源装置の使用状況とは異なり、かつ、2つのインバータユニットを要するので、小型化には寄与しづらい。
 特許文献1の技術によりリプル電流低減効果を確保するには、2つのインバータユニット間の配線距離を短くして相間インピーダンスを低減させ、相間回り込み電流を増大させる必要がある。しかし、無停電電源装置は、故障時の短絡保護のため、各相間にヒューズ素子を必要とする。このヒューズにより相間インピーダンスが増大するので、特許文献1の技術を無停電電源装置に適用しても、リプル電流低減効果を確保できない虞がある。
 無停電電源装置においてインバータとコンバータとは、それぞれ個別ユニットで構成されることが多い。そのため、例えば、インバータのU相とコンバータのR相のように対応する相間の配線距離が増大し、相間インピーダンスが増大し、リプル電流が増加する。
 そこで、本発明は、インバータとコンバータを含む電力変換装置において、コンデンサのリプル電流を低減することを課題とする。
 前記した課題を解決するため、第1の発明は、導電体が積層された積層導電体と複数の電力変換ユニットとを有し、商用電源からコンバータとインバータとを介して負荷へ給電する電力変換器とした。この電力変換ユニットは、パワー半導体モジュールとコンデンサと主回路バスバーとを含み、正側端子、負側端子、およびAC・DC端子を備え、積層導電体を介して、各々の正側端子が相互に接続され、かつ、各々の負側端子が相互に接続されている。前記電力変換ユニットの少なくとも1台は、AC・DC端子に入力された交流を変換して、自身の正側端子と負側端子との間に直流として供給するコンバータの相を構成し、前記電力変換ユニットの他の少なくとも1台は、自身の正側端子と負側端子とを介して供給される直流を変換してAC・DC端子に交流を供給するインバータの相を構成する。インバータの所定の相を構成する前記電力変換ユニットは、自身の正側端子が前記積層導電体を介して、これに対応するコンバータの相を構成する前記電力変換ユニットの正側端子と隣接して接続され、自身の負側端子が前記積層導電体を介して、これに対応するコンバータの相を構成する前記電力変換ユニットの負側端子と隣接して接続される。
 第2の発明では、導電体が積層された積層導電体と複数の電力変換ユニットと、三相のPWM制御信号を出力する制御回路を有し、商用電源からコンバータとインバータとを介して負荷へ給電する電力変換装置の電力変換方法とした。電力変換ユニットは、パワー半導体モジュールとコンデンサと主回路バスバーとを含み、正側端子、負側端子、およびAC・DC端子を備え、積層導電体を介して、各々の正側端子が相互に接続され、かつ、各々の負側端子が相互に接続されている。電力変換ユニットの少なくとも3台は、AC・DC端子に入力された交流を変換して、自身の正側端子と負側端子との間に直流として供給する三相コンバータを構成する。電力変換ユニットの他の少なくとも3台は、自身の正側端子と負側端子とを介して供給される直流を変換してAC・DC端子に交流を供給する三相インバータを構成する。前記三相インバータの各相と、これに対応する前記三相コンバータの各相とは、それぞれ隣接して配置されており、前記制御回路は、インバータ三角波信号を生成して、当該インバータ三角波信号をインバータ三相PWM信号生成部に供給し、前記インバータ三角波信号と同一周波数かつ所定の位相差で同期するコンバータ三角波信号を生成して、当該コンバータ三角波信号をコンバータ三相PWM信号生成部に供給する。
 その他の手段については、発明を実施するための形態のなかで説明する。
 本発明によれば、インバータとコンバータを含む電力変換装置において、コンデンサのリプル電流を低減することが可能となる。
第1の実施形態における無停電電源装置の構成を示す斜視図である。 第1の実施形態における無停電電源装置の構成を示す上視図である。 第1の実施形態における無停電電源装置の構成を示す展開図である。 第1の実施形態における電力変換ユニットの構成を示す斜視図である。 第1の実施形態における電力変換ユニットの構成を示す展開図である。 無停電電源装置を示す概略の構成図である。 コンバータの構成を示す等価回路図である。 インバータの構成を示す等価回路図である。 チョッパの構成を示す等価回路図である。 第1の実施形態における無停電電源装置を示す等価回路図である。 第1の実施形態における無停電電源装置の制御系を示す構成図である。 第1の実施形態における無停電電源装置の非同期時の制御信号を示す波形図である。 第1の実施形態における無停電電源装置の同期時の制御信号を示す波形図である。 第1の実施形態における無停電電源装置のパワー半導体モジュール電流の周波数スペクトラム波形図である。 第1の実施形態における無停電電源装置のパワー半導体モジュール電流の周波数スペクトラム波形図である。 リプル電流低減効果を示すグラフである。 第2の実施形態における無停電電源装置の構成を示す上視図である。 第2の実施形態における無停電電源装置の構成を示す回路図である。 第2の実施形態における無停電電源装置の相間インピーダンス特性図である。 第3の実施形態における無停電電源装置の構成を示す上視図である。 第4の実施形態における無停電電源装置の概略の構成を示す図である。 第5の実施形態における無停電電源装置の概略の構成を示す図である。
 以下、図を参照して本発明を実施するための形態について説明する。なお、実施形態においては、電力変換装置の代表例として、無停電電源装置について説明する。
(第1の実施形態)
 図1は、第1の実施形態における無停電電源装置1の構成を示す斜視図である。
 図1および図2に示すように、無停電電源装置1は、同一構成の電力変換ユニット2r,2s,2t,2u,2v,2w,2h-1,2h-2が、PNラミネート型バスバー3で接続されて構成される。PNラミネート型バスバー3は、導電体が積層された積層導電体である。以下、各電力変換ユニットを特に区別しないときには、単に電力変換ユニット2と記載する場合がある。
 電力変換ユニット2は、冷却用フィン22を備えるパワー半導体モジュール21と、コンデンサC1,C2と、ヒューズ素子24,25とが、PN・ACラミネート型バスバーである主回路バスバー23にアッセンブルされている。パワー半導体モジュール21は、制御信号端子26を備えている。
 図2は、第1の実施形態における無停電電源装置1の構成を示す上視図である。
 3台の電力変換ユニット2r,2s,2tは、コンバータのR相・S相・T相を構成する。電力変換ユニット2rの主回路バスバー23は、上部にR端子を備える。電力変換ユニット2sの主回路バスバー23は、上部にS端子を備える。電力変換ユニット2tの主回路バスバー23は、上部にT端子を備える。これらR端子・S端子・T端子は、電力変換ユニット2r,2s,2tのAC・DC端子である。
 3台の電力変換ユニット2u,2v,2wは、インバータのU相・V相・W相を構成する。電力変換ユニット2uの主回路バスバー23は、上部にU端子を備える。電力変換ユニット2vの主回路バスバー23は、上部にV端子を備える。電力変換ユニット2wの主回路バスバー23は、上部にW端子を備える。これらU端子・V端子・W端子は、電力変換ユニット2u,2v,2wのAC・DC端子である。
 さらに、図1および図2に示す通り、インバータとコンバータの対応する相同士が隣接して平行に配置されている。第1の実施形態のインバータとコンバータの対応する相とは、インバータのU相とコンバータのR相、インバータのV相とコンバータのS相、インバータのW相とコンバータのT相である。
 インバータのU相の電力変換ユニット2uと、コンバータのR相の電力変換ユニット2rとは、隣接して平行に配置されている。インバータのV相の電力変換ユニット2vと、コンバータのS相の電力変換ユニット2sとは、隣接して平行に配置されている。インバータのW相の電力変換ユニット2wと、コンバータのT相の電力変換ユニット2tとは、隣接して平行に配置されている。
 この構成により、対応する相間のインピーダンスを最小化でき、各電力変換ユニット2のコンデンサC1,C2に流れるリプル電流を低減可能である。
 2台の電力変換ユニット2h-1,2h-2は、並列接続してチョッパの一部を構成する。電力変換ユニット2h-1,2h-2の主回路バスバー23は、上部にC端子を備える。このC端子は、電力変換ユニット2h-1,2h-2のAC・DC端子である。第1の実施形態における無停電電源装置1のチョッパは、2台の電力変換ユニット2h-1,2h-2を並列接続させることにより、許容できる電力を2倍としている。これにより、チョッパが要する電力が、個々の電力変換ユニット2のパワー半導体モジュール21の定格電力を超える場合でも対応可能である。
 なお、無停電電源装置1は、コンバータおよびインバータの各相に対しても、同様にして、複数台の電力変換ユニット2を並列接続させて構成してもよい。
 図3は、第1の実施形態における無停電電源装置1の構成を示す展開図である。
 図3に示すように、各電力変換ユニット2のP端子(正側端子)は、PNラミネート型バスバー3のP側にネジ止めされて、電気的に接続される。各電力変換ユニット2のN端子(負側端子)は、PNラミネート型バスバー3のN側にネジ止めされて、電気的に接続される。無停電電源装置1は、各相の電力変換ユニット2を同一形状とし、P端子とN端子とを一平面上にそろえ、かつ各P端子と各N端子とを、PNラミネート型バスバー3でそれぞれ電気的に接続することで、相間インピーダンスを低減可能である。
 PNラミネート型バスバー3は、各主回路バスバー23に対して同一側面上に配置されている。PNラミネート型バスバー3は、各主回路バスバー23の側面にネジ止めされたヒューズ素子24,25に、ネジ止めされている。これにより、PNラミネート型バスバー3は、各電力変換ユニット2を機械的に固定することができる。
 図4は、第1の実施形態における無停電電源装置1の構成を示す斜視図である。
 図5は、第1の実施形態における無停電電源装置1の構成を示す展開図である。
 図4および図5に示すように、電力変換ユニット2は、パワー半導体モジュール21と、冷却用フィン22と、コンデンサC1,C2と、ヒューズ素子24,25と、主回路バスバー23から構成される。
 ヒューズ素子24におけるP端子は、主回路バスバー23におけるP極バスバーにネジ止めされて、電気的に接続される。ヒューズ素子25におけるN端子は、主回路バスバー23におけるN極バスバーにネジ止めされて、電気的に接続される。
 そして、パワー半導体モジュール21のAC・DC端子は、主回路バスバー23におけるAC極バスバーに電気的に接続されて、端子U,V,W,R,S,T,Cとして外部と接続される。
 また、パワー半導体モジュール21は、制御信号端子26を備える。この制御信号端子26は、上位の制御回路と接続される。
 第1の実施形態のように、コンバータ、インバータ、チョッパを構成する各電力変換ユニット2r,2s,2t,2u,2v,2w,2h-1,2h-2を、同一部品で構成することで、開発コストを削減できると共に部品管理・製造ラインの維持などの固定費削減にも効果がある。
 図6は、無停電電源装置1を示す概略の構成図である。
 図6に示すように、無停電電源装置1は、コンバータ11と、インバータ12と、チョッパ13と、これらを制御する上位の制御回路4とを備える。
 コンバータ11は、商用電源5から供給される三相交流電力を直流電力に変換して、インバータ12とチョッパ13とに供給する三相のコンバータである。
 インバータ12は、直流電力を再び三相交流電力に変換して負荷7に供給する三相のインバータである。
 チョッパ13は、直流電力を、所定電圧に昇圧または降圧し、蓄電池6に蓄える。
 制御回路4は、コンバータ11と、インバータ12と、チョッパ13とを制御する。なお、無停電電源装置1において、チョッパ13は必須の機能ではない。
 商用電源5が何らかの理由で停電した場合、チョッパ13は、蓄電池6に蓄えた電力をインバータ12に直流電力として供給する。インバータ12は、この直流電力を交流電力に変換して負荷7に供給する。これにより、無停電電源装置1は、負荷7へ途切れることなく給電することができる。
 図7は、コンバータ11の構成を示す等価回路図である。
 図7に示すように、コンバータ11は、電力変換ユニット2r,2s,2tを備えており、更にコンバータ制御部44によって制御される。コンバータ11は、三相交流の商用電源5からの三相交流電力を、PN間の直流電力に変換する。
 電力変換ユニット2rは、上アームのスイッチング素子QHおよび整流素子DHと、下アームのスイッチング素子QLおよび整流素子DLと、ヒューズ素子24,25とを備えている。上アームのスイッチング素子QHおよび整流素子DHと、下アームのスイッチング素子QLおよび整流素子DLとは、ハーフブリッジ回路27を構成する。スイッチング素子QH,QLは、IGBT(Insulated Gate Bipolar Transistor)が用いられている。整流素子DH,DLは、ダイオードが用いられている。
 ヒューズ素子24は、PNラミネート型バスバー3のP側とスイッチング素子QHのコレクタとを接続している。整流素子DHは、スイッチング素子QHのエミッタからコレクタへの方向に接続される。スイッチング素子QHのエミッタは、スイッチング素子QLのコレクタと、交流端子Rとに接続される。コンデンサC1とコンデンサC2とは、スイッチング素子QHのコレクタとスイッチング素子QLのエミッタとの間に並列接続される。なお、図7の回路図では、コンデンサC1とコンデンサC2の並列接続を省略して、単一のコンデンサの記号で示している。スイッチング素子QHのゲートは、コンバータ制御部44に接続される。
 ヒューズ素子25は、スイッチング素子QLのエミッタとPNラミネート型バスバー3のN側とを接続している。整流素子DLは、スイッチング素子QLのエミッタからコレクタへの方向に接続される。スイッチング素子QLのゲートは、コンバータ制御部44に接続される。
 電力変換ユニット2sは、スイッチング素子QHのエミッタとスイッチング素子QLのコレクタとの接続ノードが、交流端子Sに接続されることを除き、電力変換ユニット2rと同様に構成されている。
 電力変換ユニット2tは、スイッチング素子QHのエミッタとスイッチング素子QLのコレクタとの接続ノードが、交流端子Tに接続されることを除き、電力変換ユニット2rと同様に構成されている。
 以下、図7を適宜参照して、コンバータ11の動作を説明ずる。
 商用電源5から供給された三相の交流電力は、交流端子R,S,Tを介して、コンバータ11の各相の電力変換ユニット2r,2s,2tに供給される。電力変換ユニット2r,2s,2tの上アームのスイッチング素子QHおよび整流素子DHと、下アームのスイッチング素子QLおよび整流素子DLとは、コンバータ制御部44でスイッチングタイミングを制御されて、この交流電力を整流する。
 図8は、インバータ12の構成を示す等価回路図である。
 図8に示すように、インバータ12は、電力変換ユニット2u,2v,2wを備えており、更にインバータ制御部43によって制御される。インバータ12は、PN間の直流電力を三相交流電力に変換する。
 電力変換ユニット2uは、スイッチング素子QHのエミッタとスイッチング素子QLのコレクタとの接続ノードが、交流端子Uに接続されることを除き、電力変換ユニット2r(図7参照)と同様に構成されている。
 電力変換ユニット2vは、スイッチング素子QHのエミッタとスイッチング素子QLのコレクタとの接続ノードが、交流端子Vに接続されることを除き、電力変換ユニット2r(図7参照)と同様に構成されている。
 電力変換ユニット2wは、スイッチング素子QHのエミッタとスイッチング素子QLのコレクタとの接続ノードが、交流端子Wに接続されることを除き、電力変換ユニット2r(図7参照)と同様に構成されている。
 これにより、電力変換ユニット2を共通化して、部品種類数を削減することが可能になる。
 以下、図8を適宜参照して、インバータ12の動作を説明ずる。
 コンバータ11により変換された直流電力は、PN間に供給される。電力変換ユニット2u,2v,2wの上アームのスイッチング素子QHおよび整流素子DHと、下アームのスイッチング素子QLおよび整流素子DLとは、インバータ制御部43でスイッチングタイミングを制御されて、この直流電力を交流電力に変換し、交流端子U,V,Wに出力する。
 図9は、チョッパ13の構成を示す等価回路図である。
 図9に示すように、チョッパ13は、電力変換ユニット2h-1とリアクトルLIとを備えており、更にチョッパ制御部45によって制御される。チョッパ13は、蓄電池6による低圧の直流電圧とPN間の高圧の直流電圧とを相互に変換するものである。
 電力変換ユニット2h-1は、スイッチング素子QHのエミッタとスイッチング素子QLのコレクタとの接続ノードが端子Cに接続されることを除き、電力変換ユニット2r(図7参照)と同様に構成されている。これにより、電力変換ユニット2を共通化して、部品種類数を削減することが可能になる。
 リアクトルLIは、蓄電池6の正極と端子Cとを接続する。
 以下、図9を適宜参照して、チョッパ13の動作を説明ずる。
 電力変換ユニット2h-1の下アームのスイッチング素子QLがオンしている間に、蓄電池6と端子Cとの間に接続されたリアクトルLIにエネルギーが蓄積される。次に、スイッチング素子QLがオフした際に、リアクトルLIが発する逆起電圧により上アームの整流素子DHがオンする。これより、チョッパ13の出力端には、蓄電池6の直流電圧とリアクトルLIの逆起電圧とを加算した電圧が生じる。これにより、チョッパ13は、蓄電池6の直流電圧を昇圧する。チョッパ制御部45は、電力変換ユニット2h-1のスイッチングタイミングを制御することにより、昇圧比を任意に設定可能である。
 以上より、第1の実施形態の無停電電源装置1に搭載されるコンバータ11・インバータ12・チョッパ13は、いずれも、上アームのスイッチング素子QHおよび整流素子DHと、下アームのスイッチング素子QLおよび整流素子DLとが直列に接続された2レベルのハーフブリッジ回路27を基本構成としている。
 次に本実施の形態による、リプル電流低減効果について示す。
 図10は、第1の実施形態における電力変換部を示す等価回路図である。
 図10に示すように、電力変換部は、例えばインバータ12のU相の電力変換ユニット2uと、コンバータ11のR相の電力変換ユニット2rとで構成される。電力変換ユニット2uのP端子と電力変換ユニット2rのP端子との間の等価回路は、抵抗RPとコイルLPの直列接続で示される。電力変換ユニット2uのN端子と電力変換ユニット2rのN端子との間の等価回路は、抵抗RNとコイルLNの直列接続で示される。抵抗RPとコイルLPの直列接続と、抵抗RNとコイルLNの直列接続とは、相間インピーダンスを示している。
 電力変換部は、電力変換ユニット2uと電力変換ユニット2rを隣接配置することで、2つの相間の配線を短くでき、相間インピーダンスを低減できる。インバータ12のU相の電力変換ユニット2uは、自身のP端子がPNラミネート型バスバー3を介して、これに対応するR相を構成する電力変換ユニット2rのP端子と隣接して接続される。電力変換ユニット2uは、自身のN端子がPNラミネート型バスバー3を介して、これに対応するR相を構成する電力変換ユニット2rのN端子と隣接して接続される。
 この相間インピーダンスの低下に反比例して、電力変換ユニット2rのパワー半導体モジュール21から、電力変換ユニット2uへの回り込み電流Iac_RUが大きくなる。
 この時、電力変換ユニット2uにおけるコンデンサC1,C2のリプル電流Irip_Uは、電力変換ユニット2rのパワー半導体モジュール21が引きこむ電流Ipm_Uと、回り込み電流Iac_RUとの差分である。
 よって、相間インピーダンスを低減し、回り込み電流Iac_RUを増大させることで、パワー半導体モジュール21が引きこむ電流Ipm_Uと回り込み電流Iac_RUとが等しくなるようにする。更に、電流Ipm_Uの位相と回り込み電流Iac_RUの位相が同位相となるように、インバータ12、およびコンバータ11のスイッチングタイミングを制御する。これにより、電流Ipm_Uと回り込み電流Iac_RUとの差分であるリプル電流Irip_Uを低減可能である。
 図11は、第1の実施形態における無停電電源装置1の制御系を示す構成図である。
 制御回路4は、基本波信号生成部41と、キャリア信号生成部42と、インバータ制御部43と、コンバータ制御部44とで構成される。制御回路4は、インバータ12と、コンバータ11と、チョッパ13とを制御する。
 基本波信号生成部41は、インバータ三相基本波信号Binvと、コンバータ三相基本波信号Bcnvとを、同一周波数かつ所定の位相差で同期するように生成する。基本波信号生成部41で生成されるインバータ三相基本波信号Binvは、U相の基本波信号Buと、V相の基本波信号Bvと、W相の基本波信号Bwとを含み、インバータ制御部43に供給される。
 キャリア信号生成部42は、インバータの三角波信号であるインバータキャリア信号Cinvと、コンバータの三角波信号であるコンバータキャリア信号Ccnvとを生成する三角波信号生成部である。キャリア信号生成部42は、インバータキャリア信号Cinvとコンバータキャリア信号Ccnvとを、同一周波数かつ所定の位相差で同期するように生成する。
 インバータ制御部43は、インバータ12の三相PWM信号を生成する。インバータ制御部43では、キャリア信号生成部42から入力されるインバータキャリア信号Cinvと、インバータ三相基本波信号Binvとを、それぞれ不図示のコンパレータで比較し、インバータ三相制御信号Ginvを生成する。インバータ三相制御信号Ginvは、PWM信号であり、U相の制御信号UH,ULと、V相の制御信号VH,VLと、W相の制御信号WH,WLとを含む。
 U相の制御信号UH,ULは、U相の電力変換ユニット2uのスイッチング素子QH,QLのゲートに入力される。V相の制御信号VH,VLは、V相の電力変換ユニット2vのスイッチング素子QH,QLのゲートに入力される。W相の制御信号WH,WLは、W相の電力変換ユニット2wのスイッチング素子QH,QLのゲートに入力される。
 基本波信号生成部41で生成されるコンバータ三相基本波信号Bcnvは、R相の基本波信号Brと、S相の基本波信号Bsと、T相の基本波信号Btとを含み、コンバータ制御部44に供給される。
 コンバータ制御部44は、コンバータ11の三相PWM信号を生成する。コンバータ制御部44では、キャリア信号生成部42から入力されるコンバータキャリア信号Ccnvと、インバータ三相基本波信号Binvとを、それぞれ不図示のコンパレータで比較し、コンバータ三相制御信号Gcnvを生成する。コンバータ三相制御信号Gcnvは、PWM信号であり、R相の制御信号RH,RLと、S相の制御信号SH,SLと、T相の制御信号TH,TLとを含む。
 R相の制御信号RH,RLは、R相の電力変換ユニット2rのスイッチング素子QH,QLのゲートに入力される。S相の制御信号SH,SLは、S相の電力変換ユニット2sのスイッチング素子QH,QLのゲートに入力される。T相の制御信号TH,TLは、T相の電力変換ユニット2tのスイッチング素子QH,QLのゲートに入力される。
 図12は、第1の実施形態における無停電電源装置1の非同期時の制御信号を示す波形図である。
 上側のグラフは、コンバータ11のR相の制御信号に係る各信号波形を示している。実線は、R相の基本波信号Brを示している。破線は、コンバータキャリア信号Ccnvを示している。
 下側のグラフは、インバータ12のU相の制御信号に係る各信号波形を示している。実線は、U相の基本波信号Buを示している。破線は、インバータキャリア信号Cinvを示している。
 図12において、コンバータ11のR相の基本波信号Brと、インバータ12のU相の基本波信号Buとは、位相差ΔΦbだけずれている。以下の説明では、R相の基本波信号BrとU相の基本波信号Buの位相差を、ΔΦbと定義する。
 また、コンバータキャリア信号Ccnvとインバータキャリア信号Cinvとは、位相差ΔΦcだけずれている。以下の説明では、コンバータキャリア信号Ccnvとインバータキャリア信号Cinvとの位相差を、ΔΦcと定義する。
 図13は、第1の実施形態における無停電電源装置1の同期時の制御信号を示す波形図である。図13の各グラフの縦軸と横軸の意味は、図12の各グラフと同様である。
 図13において、コンバータ11のR相の基本波信号Brと、インバータ12のU相の基本波信号Buとは同位相であり、位相差ΔΦbは0度である。
 また、コンバータキャリア信号Ccnvとインバータキャリア信号Cinvとは同位相であり、位相差ΔΦcは0度である。
 図14は、第1の実施形態における無停電電源装置1のパワー半導体モジュール21の電流Ipm_Uの周波数スペクトルである。
 電流Ipm_Uは、インバータ12のU相の電力変換ユニット2uのパワー半導体モジュール21が引き込む電流である。電流Ipm_Uの周波数スペクトルは、キャリア信号周波数Fcと基本波信号周波数Fbの差分周波数帯の信号成分S1_1と、キャリア信号周波数Fcと基本波信号周波数Fbの加算周波数帯の信号成分S1_1Aと、2倍キャリア信号周波数帯の信号成分S1_2とを含む。
 図15は、第1の実施形態における無停電電源装置1のパワー半導体モジュール21の回り込み電流Iac_RUの周波数スペクトルである。
 回り込み電流Iac_RUは、コンバータ11のR相の電力変換ユニット2rのパワー半導体モジュール21から、インバータ12のU相の電力変換ユニット2rへ回り込む電流である。この回り込み電流Iac_RUの周波数スペクトルは、キャリア信号周波数Fcと基本波信号周波数Fbの差分周波数帯の信号成分S2_1と、キャリア信号周波数Fcと基本波信号周波数Fbの加算周波数帯の信号成分S2_1Aと、2倍キャリア信号周波数帯の信号成分S2_2とを含む。
 信号成分S1_1と、信号成分S2_1との位相差は、以下の式(1)で示される。
Figure JPOXMLDOC01-appb-M000001
 信号成分S1_1Aと、信号成分S2_1Aとの位相差は、以下の式(2)で示される。
Figure JPOXMLDOC01-appb-M000002
 信号成分S1_2と、信号成分S2_2との位相差は、以下の式(3)で示される。
Figure JPOXMLDOC01-appb-M000003
 図10に示したように、インバータ12のU相の電力変換ユニット2uにおけるコンデンサC1,C2のリプル電流Irip_Uは、インバータ12のU相の電力変換ユニット2rのパワー半導体モジュール21が引きこむ電流Ipm_Uと、回り込み電流Iac_RUとの差分となる。
 よって、電流Ipm_Uと、回り込み電流Iac_RUとの位相が同位相となるように、すなわち、位相差ΔΦbと位相差ΔΦcとが0度となるように、インバータ12、および、コンバータ11のスイッチングタイミングを制御することで、電流Ipm_Uと、回り込み電流Iac_RUとの差分であるリプル電流Irip_Uを低減可能となる。
 図16は、リプル電流の低減効果を示すグラフである。
 ここでは、図10に示した等価回路の力率が1、変調度が0.8の三角波比較三相PWM動作時において、位相差ΔΦcと位相差ΔΦbとを変化させたときのリプル電流Irip_Uを示している。
 これによれば、位相差ΔΦbが-45度から+45度の範囲、かつ、位相差ΔΦcが-20度から+20度の範囲において、インバータ12とコンバータ11を同期制御させることで、リプル電流を低減させる効果を奏する。
 また、位相差ΔΦbが135度から225度の範囲、かつ、位相差ΔΦcが160度から200度の範囲において、インバータ12とコンバータ11を同期制御させることでも、同様にリプル電流を低減させる効果を奏する。
(第2の実施形態)
 図17は、第2の実施形態における無停電電源装置1Aの構成を示す上視図である。図2に示す第1の実施形態の無停電電源装置1と同一の要素には、同一の符号を付与している。
 第2の実施形態における無停電電源装置1Aは、第1の実施形態の無停電電源装置1(図2参照)とは異なり、チョッパ13を構成する電力変換ユニット2h-1,2h-2が両端に位置している。それ以外は、第1の実施形態の無停電電源装置1と同様に構成されている。
 すなわち、電力変換装置である無停電電源装置1Aは、インバータ12を構成する電力変換ユニット2u,2v,2wと、コンバータ11を構成する電力変換ユニット2r,2s,2tとは、対応する相同士が隣接して平行に配置される。例えば、インバータ12のU相の電力変換ユニット2uと、コンバータ11のR相の電力変換ユニット2rとは、隣接して平行に配置される。
 さらに、無停電電源装置1Aの端部には、チョッパ13を構成する電力変換ユニット2h-1,2h-2が、それぞれ配置される。
 図18は、第2の実施形態における無停電電源装置1Aの構成を示す等価回路図である。
 各電力変換ユニット2に取り付けられたコンデンサC1,C2に流れるリプル電流Iripは、自相のパワー半導体モジュール21が引きこむ電流Ipmと、他相のパワー半導体モジュール21から回り込む電流Iacとの差分である。
 このとき、各電力変換ユニット2のP端子とN端子とをPNラミネート型バスバー3により、それぞれ電気的に接続し、各相のコンデンサC1,C2間のインピーダンスを低減することで、パワー半導体モジュール21には、自相のコンデンサC1,C2に加え、他相のコンデンサC1,C2からも電流が流れ込む。
 すなわち、自相のコンデンサC1,C2に流れるリプル電流Iripは、自相のパワー半導体モジュール21が引きこむ電流Ipmから、他相のパワー半導体モジュール21から回り込む電流Iacと、他相のコンデンサC1,C2からの回り込み電流Icapの差分をとった電流となる。よって、他相のコンデンサC1,C2からの回り込み電流Icapを増大させることで、自相のコンデンサC1,C2が負担するリプル電流Iripを低減することが可能となる。
 図19は、第2の実施形態における無停電電源装置1Aの相間インピーダンス特性図である。図の縦軸は、相間インピーダンスを示している。図の横軸は、周波数を示している。
 実線は、電力変換ユニット2h-1と電力変換ユニット2vとにおいて、パワー半導体モジュール21から自相のコンデンサC1,C2間のインピーダンスZ1を示している。
 荒い破線は、中央部の電力変換ユニット2vのパワー半導体モジュール21から他相のコンデンサC1,C2間のインピーダンスZ2を示している。細かい破線は、端部の電力変換ユニット2h-1のパワー半導体モジュール21から他相のコンデンサC1,C2間のインピーダンスZ2Aを示している。
 他相のコンデンサC1,C2間のインピーダンスを低減して回り込み電流Icapを増大するには、図19に示すようにリプル電流成分が集中するキャリア信号周波数Fc、2×Fcの帯域において、インピーダンスZ1に対し、インピーダンスZ2,Z2Aが低くなるように設計することが望ましい。
 キャリア信号周波数Fcにおいて、インピーダンスZ1に対し、インピーダンスZ2,Z2Aが低いほど、他相のコンデンサC1,C2から回り込む電流Icapが増大し、リプル電流Iripを低減可能となる。
 図19により、インピーダンスZ2Aに対し、インピーダンスZ2は、キャリア信号周波数Fcで低い値となっている。よって、中央部の電力変換ユニット2vは、端部の電力変換ユニット2h-1よりも他相のコンデンサC1,C2からの回り込む電流Icapが大きく、自相のコンデンサC1,C2のリプル電流を低減することが可能である。
 一方、チョッパ13の電力変換ユニット2h-1,2h-2は、無停電電源装置1Aの端部に配置されているため、他相の電力変換ユニット2と比較して、パワー半導体モジュール21から他相のコンデンサC1,C2間のインピーダンスZ2Aが大きくなり、他相のコンデンサC1,C2から回り込む電流Icapが小さく、自相のコンデンサC1,C2のリプル電流が大きくなる。
 第2の実施形態における無停電電源装置1Aは、駆動率の高いインバータ12・コンバータ11の電力変換ユニット2のコンデンサC1,C2のリプル電流を低減し、長期信頼性を確保するため、これら電力変換ユニット2u,2v,2wと、電力変換ユニット2r,2s,2tとを中心部に配置している。更に、駆動率の低いチョッパ13の電力変換ユニット2h-1,2h-2は、無停電電源装置1Aの端部に配置している。
(第3の実施形態)
 図20は、第3の実施形態における無停電電源装置1Bの構成を示す上視図である。図2に示す第1の実施形態の無停電電源装置1と同一の要素には、同一の符号を付与している。
 図20に示す無停電電源装置1Bは、第1の実施形態と同様に、インバータ12を構成する電力変換ユニット2u,2v,2wと、コンバータ11を構成する電力変換ユニット2r,2s,2tと、対応する相同士が隣接して平行に配置されている。
 第3の実施形態における無停電電源装置1Bは、第1の実施形態の無停電電源装置1とは異なり、チョッパ13を構成する電力変換ユニット2h-1が、コンバータ11のR相の電力変換ユニット2rと、インバータ12のV相の電力変換ユニット2vとの間に配置されている。更にチョッパ13を構成する電力変換ユニット2h-2が、コンバータ11のS相の電力変換ユニット2sと、インバータ12のW相の電力変換ユニット2wとの間に配置されている。
 第3の実施形態の無停電電源装置1Bは、第1の実施形態の無停電電源装置1(図2参照)とは異なり、チョッパ13を構成する電力変換ユニット2h-1,2h-2が中間部に配置されている。中間部に配置された電力変換ユニット2におけるパワー半導体モジュール21から他相のコンデンサC1,C2間のインピーダンスは、端部に配置した時と比較し低減できる。これにより、他相のコンデンサC1,C2からの回り込む電流Icapが増大し、自相のコンデンサC1,C2のリプル電流を低減可能となる。
 よって、第3の実施形態の無停電電源装置1Bは、チョッパ13を構成する電力変換ユニット2に要求されるリプル電流仕様が、インバータ12・コンバータ11の電力変換ユニット2のリプル電流仕様と比較して厳しい場合において有効である。
(第4の実施形態)
 図21は、第4の実施形態における無停電電源装置1Cの概略の構成を示す図である。
 第4の実施形態の無停電電源装置1Cは、第1の実施形態の無停電電源装置1(図2参照)と比較して、出力電力容量仕様が2倍となった時を想定し、インバータ12・コンバータ11・チョッパ13を構成する各電力変換ユニット2の並列数を2倍とした構成としている。
 インバータ12は、U相を構成する電力変換ユニット2u-1,2u-2と、V相を構成する電力変換ユニット2v-1,2v-2と、W相を構成する電力変換ユニット2w-1,2w-2とから構成される。
 コンバータ11は、R相を構成する電力変換ユニット2r-1,2r-2と、S相を構成する電力変換ユニット2s-1,2s-2と、T相を構成する電力変換ユニット2t-1,2t-2とから構成される。
 チョッパ13は、電力変換ユニット2h-1,2h-2,2h-3,2h-4から構成されている。
 なお各電力変換ユニット2は、図4および図5に示す電力変換ユニット2と共通であり、各電力変換ユニット2のP端子とN端子とは、PNラミネート型バスバー3により、それぞれ電気的に接続されている。
 図21に示す通り、インバータ12を構成する電力変換ユニット2u-1,2u-2,2v-1,2v-2,2w-1,2w-2と、コンバータ11を構成する電力変換ユニット2r-1,2r-2,2s-1,2s-2,2t-1,2t-2とは、対応する相単位の電力変換ユニット2同士が隣接して平行に配置されている。
 例えば、インバータ12のU相の電力変換ユニット2u-1,2u-2と、コンバータ11のR相の電力変換ユニット2r-1,2r-2とは、この構成により対応する相間のインピーダンスを低減でき、各電力変換ユニット2のコンデンサC1,C2に流れるリプル電流を低減できる。
(第5の実施形態)
 図22は、第5の実施形態における無停電電源装置1Dの概略の構成を示す図である。
 第5の実施形態の無停電電源装置1Dは、第4の実施形態の無停電電源装置1C(図21参照)と同様に、出力電力容量仕様が2倍となった時を想定し、インバータ12・コンバータ11・チョッパ13を構成する各電力変換ユニット2の並列数を2倍とした構成としている。
 図22に示す通り、インバータ12を構成する各電力変換ユニット2と、コンバータ11を構成する電力変換ユニット2とは、対応する相の電力変換ユニット2同士が隣接して平行に配置されている。
 インバータ12のU相の電力変換ユニット2u-1と、コンバータ11のR相の電力変換ユニット2r-1と、インバータ12のU相の電力変換ユニット2u-2と、コンバータ11のR相の電力変換ユニット2r-2とが、この順番で隣接して平行に配置される。
 インバータ12のV相の電力変換ユニット2v-1と、コンバータ11のS相の電力変換ユニット2s-1と、インバータ12のV相の電力変換ユニット2v-2と、コンバータ11のS相の電力変換ユニット2s-2とが、この順番で隣接して平行に配置される。
 インバータ12のW相の電力変換ユニット2w-1と、コンバータ11のT相の電力変換ユニット2t-1と、インバータ12のW相の電力変換ユニット2w-2と、コンバータ11のT相の電力変換ユニット2t-2とが、この順番で隣接して平行に配置される。
 第5の実施形態の無停電電源装置1Dは、この構成により、対応する相間のインピーダンスを最小化でき、各電力変換ユニット2のコンデンサC1,C2に流れるリプル電流を低減できる。
(変形例)
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
 上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路などのハードウェアで実現してもよい。上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現してもよい。
 各実施形態に於いて、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には、殆ど全ての構成が相互に接続されていると考えてもよい。
 本発明の変形例として、例えば、次の(a),(b)のようなものがある。
(a) 上記実施形態では、無停電電源装置について言及しているが、異なる種類の電力変換器への適用も可能であり、上記の実施形態の構成に限定されるものではない。
(b) 上記実施形態では、スイッチング素子QH,QLとしてIGBTを用い、整流素子DH,DLとしてダイオードを用いている。しかし、これらに限られず、他の種類の素子を適用することも可能である。
1,1A~1D 無停電電源装置 (電力変換装置)
11 コンバータ
12 インバータ
13 チョッパ
2 電力変換ユニット
21 パワー半導体モジュール
22 冷却用フィン
23 主回路バスバー
24,25 ヒューズ素子
26 制御信号端子
27 ハーフブリッジ回路
3 PNラミネート型バスバー (積層導電体)
4 制御回路
41 基本波信号生成部
42 キャリア信号生成部 (三角波信号生成部)
43 インバータ制御部 (インバータ三相PWM信号生成部)
44 コンバータ制御部 (コンバータ三相PWM信号生成部)
45 チョッパ制御部
5 商用電源
6 蓄電池
7 負荷
C1,C2 コンデンサ
DH,DL 整流素子
QH,QL スイッチング素子

Claims (15)

  1.  導電体が積層された積層導電体と複数の電力変換ユニットとを有し、商用電源からコンバータとインバータとを介して負荷へ給電する電力変換器であって、
     前記電力変換ユニットは、パワー半導体モジュールとコンデンサと主回路バスバーとを含み、正側端子、負側端子、およびAC・DC端子を備え、前記積層導電体を介して、各々の正側端子が相互に接続され、かつ、各々の負側端子が相互に接続されており、
     前記電力変換ユニットの少なくとも1台は、AC・DC端子に入力された交流を変換して、自身の正側端子と負側端子との間に直流として供給するコンバータの相を構成し、
     前記電力変換ユニットの他の少なくとも1台は、自身の正側端子と負側端子とを介して供給される直流を変換してAC・DC端子に交流を供給するインバータの相を構成し、
     インバータの所定の相を構成する前記電力変換ユニットは、自身の正側端子が前記積層導電体を介して、これに対応するコンバータの相を構成する前記電力変換ユニットの正側端子と隣接して接続され、自身の負側端子が前記積層導電体を介して、これに対応するコンバータの相を構成する前記電力変換ユニットの負側端子と隣接して接続される、
     ことを特徴とする電力変換装置。
  2.  前記積層導電体は、各前記主回路バスバーに対して同一側面上に配置される、
     ことを特徴とする請求項1に記載の電力変換装置。
  3.  複数の前記電力変換ユニットによって、三相インバータと三相コンバータとを構成し、
     前記三相インバータの各相と、これに対応する前記三相コンバータの各相とは、それぞれ隣接して配置される、
     ことを特徴とする請求項1に記載の電力変換装置。
  4.  三相のPWM制御信号を出力する制御回路を更に含み、
     前記制御回路は、
     インバータ三角波信号と、前記インバータ三角波信号と同一周波数かつ所定の位相差で同期するコンバータ三角波信号とを生成する三角波信号生成部と、
     前記インバータ三角波信号が供給されるインバータ三相PWM信号生成部と、
     前記コンバータ三角波信号が供給されるコンバータ三相PWM信号生成部と、
     を含んで構成されることを特徴とする請求項3に記載の電力変換装置。
  5.  前記制御回路は、
     インバータ三相基本波信号と、前記インバータ三相基本波信号と同一周波数かつ所定の位相差で同期するコンバータ三相基本波信号とを生成する基本波信号生成部を含んで構成され、
     前記インバータ三相PWM信号生成部には、前記インバータ三相基本波信号が供給され、
     前記コンバータ三相PWM信号生成部には、前記コンバータ三相基本波信号が供給される、
     ことを特徴とする請求項4に記載の電力変換装置。
  6.  前記インバータ三角波信号と前記コンバータ三角波信号の位相差は、-20度から+20度の範囲であり、
     所定の相の前記インバータ三相基本波信号と、これに対応する各相の前記コンバータ三相基本波信号の位相差は、-45度から+45度の範囲である、
     ことを特徴とする請求項5に記載の電力変換装置。
  7.  前記インバータ三角波信号と前記コンバータ三角波信号の位相差は、160度から200度の範囲であり、
     所定の相の前記インバータ三相基本波信号と、これに対応する各相の前記コンバータ三相基本波信号の位相差は、135度から225度の範囲である、
     ことを特徴とする請求項5に記載の電力変換装置。
  8.  前記電力変換ユニットの他の少なくとも1台は、AC・DC端子に入力された直流信号を電圧変換して正側端子と負側端子との間に変換直流として供給する直流変換部を構成する、
     ことを特徴とする請求項1に記載の電力変換装置。
  9.  複数の前記電力変換ユニットは、同一平面上に一列に並列配置されており、両端の2台は、直流変換部を構成する、
     ことを特徴とする請求項8に記載の電力変換装置。
  10.  複数の前記電力変換ユニットは、同一平面上に一列に並列配置されており、両端の2台は、インバータの相またはコンバータの相を構成する、
     ことを特徴とする請求項8に記載の電力変換装置。
  11.  複数の前記電力変換ユニットによって、三相インバータと三相コンバータとを構成し、
     前記三相インバータの各相と前記三相コンバータの各相とは、それぞれ複数の電力変換ユニットが並列接続されて構成される、
     ことを特徴とする請求項1に記載の電力変換装置。
  12.  前記三相インバータの所定の相を構成する複数の電力変換ユニットと、これに対応する前記三相コンバータの相を構成する複数の電力変換ユニットとは、それぞれ交互に隣接して配置される、
     ことを特徴とする請求項11に記載の電力変換装置。
  13.  前記三相インバータの各相と、これに対応する前記三相コンバータの各相とは、隣接して配置される、
     ことを特徴とする請求項11に記載の電力変換装置。
  14.  導電体が積層された積層導電体と複数の電力変換ユニットと、三相のPWM制御信号を出力する制御回路を有し、商用電源からコンバータとインバータとを介して負荷へ給電する電力変換器であって、
     前記電力変換ユニットは、パワー半導体モジュールとコンデンサと主回路バスバーとを含み、正側端子、負側端子、およびAC・DC端子を備え、前記積層導電体を介して、各々の正側端子が相互に接続され、かつ、各々の負側端子が相互に接続されており、
     前記電力変換ユニットの少なくとも3台は、AC・DC端子に入力された交流を変換して、自身の正側端子と負側端子との間に直流として供給する三相コンバータを構成し、
     前記電力変換ユニットの他の少なくとも3台は、自身の正側端子と負側端子とを介して供給される直流を変換してAC・DC端子に交流を供給する三相インバータを構成し、
     前記三相インバータの各相と、これに対応する前記三相コンバータの各相とは、それぞれ隣接して配置されており、
     前記制御回路は、
     インバータ三角波信号を生成して、当該インバータ三角波信号をインバータ三相PWM信号生成部に供給し、
     前記インバータ三角波信号と同一周波数かつ所定の位相差で同期するコンバータ三角波信号を生成して、当該コンバータ三角波信号をコンバータ三相PWM信号生成部に供給する、
     ことを特徴とする電力変換装置の電力変換方法。
  15.  前記制御回路は、
     インバータ三相基本波信号を生成して、当該インバータ三相基本波信号を前記インバータ三相PWM信号生成部に供給し、
     前記インバータ三相基本波信号と同一周波数かつ所定の位相差で同期するコンバータ三相基本波信号とを生成して、当該コンバータ三相基本波信号を前記コンバータ三相PWM信号生成部に供給する、
     ことを特徴とする請求項14に記載の電力変換装置の電力変換方法。
PCT/JP2014/062285 2014-05-07 2014-05-07 電力変換装置および電力変換装置の電力変換方法 WO2015170377A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/062285 WO2015170377A1 (ja) 2014-05-07 2014-05-07 電力変換装置および電力変換装置の電力変換方法
JP2016517757A JP6198941B2 (ja) 2014-05-07 2014-05-07 電力変換装置
US15/304,171 US10008953B2 (en) 2014-05-07 2014-05-07 Power conversion device and power conversion method for power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/062285 WO2015170377A1 (ja) 2014-05-07 2014-05-07 電力変換装置および電力変換装置の電力変換方法

Publications (1)

Publication Number Publication Date
WO2015170377A1 true WO2015170377A1 (ja) 2015-11-12

Family

ID=54392247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062285 WO2015170377A1 (ja) 2014-05-07 2014-05-07 電力変換装置および電力変換装置の電力変換方法

Country Status (3)

Country Link
US (1) US10008953B2 (ja)
JP (1) JP6198941B2 (ja)
WO (1) WO2015170377A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017099063A (ja) * 2015-11-18 2017-06-01 富士電機株式会社 電力変換装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105580503B (zh) * 2014-03-27 2019-03-01 株式会社日立制作所 电力变换单元、电力变换装置、以及电力变换装置的制造方法
DE102014111421A1 (de) * 2014-08-11 2016-02-11 Woodward Kempen Gmbh Niederinduktive Schaltungsanordnung eines Umrichters
CN106716815B (zh) * 2014-09-25 2019-03-15 日立汽车系统株式会社 电力变换装置
US10148190B2 (en) * 2015-04-20 2018-12-04 Mitsubishi Electric Corporation Power conversion device
JP6348460B2 (ja) * 2015-07-08 2018-06-27 東芝三菱電機産業システム株式会社 電力変換システム
US10137798B2 (en) * 2015-08-04 2018-11-27 Ford Global Technologies, Llc Busbars for a power module assembly
EP3145286B1 (en) * 2015-09-15 2019-05-01 ABB Schweiz AG Heat dissipation in power electronic assemblies
CN108604866B (zh) * 2016-01-21 2020-06-12 三菱电机株式会社 电力变换装置
US20180191336A1 (en) * 2017-01-03 2018-07-05 General Electric Company Systems and methods for power modules
US20220240376A1 (en) * 2017-01-03 2022-07-28 Transportation Ip Holdings, Llc Systems and methods for power modules
US10236791B1 (en) * 2018-03-23 2019-03-19 Sf Motors, Inc. Inverter module having multiple half-bridge modules for a power converter of an electric vehicle
US11332087B2 (en) * 2018-06-04 2022-05-17 Westinghouse Air Brake Technologies Corporation Phase module assembly of a multi-phase inverter
WO2020066246A1 (ja) * 2018-09-27 2020-04-02 富士電機株式会社 無停電電源装置
EP3987892A1 (en) * 2019-06-24 2022-04-27 Volvo Construction Equipment AB A power converter assembly and a power system
WO2021186538A1 (ja) 2020-03-17 2021-09-23 東芝三菱電機産業システム株式会社 ラミネートブスバー、電力変換器、電力変換装置および無停電電源装置
CN114374267B (zh) * 2022-03-21 2022-06-17 浙江浙能能源服务有限公司 一种方舱核酸实验室的多电源混合供电投切系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833336A (ja) * 1994-07-20 1996-02-02 Hitachi Ltd 電力変換装置
JP2001268912A (ja) * 2000-03-17 2001-09-28 Hitachi Ltd 電力変換装置
JP2002051569A (ja) * 2000-08-03 2002-02-15 Toshiba Corp 電力変換装置
JP2008503994A (ja) * 2004-06-23 2008-02-07 アーベーベー・シュバイツ・アーゲー 低高調波多相コンバータ回路
WO2008099049A1 (en) * 2007-02-15 2008-08-21 Kone Corporation Apparatus and method for controlling the motor power
WO2009040933A1 (ja) * 2007-09-28 2009-04-02 Mitsubishi Electric Corporation 電力変換装置
WO2010106652A1 (ja) * 2009-03-18 2010-09-23 東芝三菱電機産業システム株式会社 無停電電源装置
JP2012151939A (ja) * 2011-01-17 2012-08-09 Mitsubishi Electric Corp 電力変換装置
JP2013059151A (ja) * 2011-09-07 2013-03-28 Toshiba Mitsubishi-Electric Industrial System Corp 3レベル電力変換装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300800A (ja) 2001-03-30 2002-10-11 Nissan Motor Co Ltd 電力変換装置
JP2005051569A (ja) * 2003-07-30 2005-02-24 Nec Corp 情報提供システム及びその方法並びにそれに用いる携帯情報端末及びサーバ
WO2007113979A1 (ja) * 2006-03-30 2007-10-11 Mitsubishi Electric Corporation 電力変換装置およびその組み立て方法
FR2985597B1 (fr) * 2012-01-05 2014-10-24 Valeo Equip Electr Moteur Dispositif d'assemblage de capacites pour convertisseur electronique
US9240732B2 (en) * 2012-05-22 2016-01-19 Drs Power & Control Technologies, Inc. Harmonic regulator for current source rectification and inversion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833336A (ja) * 1994-07-20 1996-02-02 Hitachi Ltd 電力変換装置
JP2001268912A (ja) * 2000-03-17 2001-09-28 Hitachi Ltd 電力変換装置
JP2002051569A (ja) * 2000-08-03 2002-02-15 Toshiba Corp 電力変換装置
JP2008503994A (ja) * 2004-06-23 2008-02-07 アーベーベー・シュバイツ・アーゲー 低高調波多相コンバータ回路
WO2008099049A1 (en) * 2007-02-15 2008-08-21 Kone Corporation Apparatus and method for controlling the motor power
WO2009040933A1 (ja) * 2007-09-28 2009-04-02 Mitsubishi Electric Corporation 電力変換装置
WO2010106652A1 (ja) * 2009-03-18 2010-09-23 東芝三菱電機産業システム株式会社 無停電電源装置
JP2012151939A (ja) * 2011-01-17 2012-08-09 Mitsubishi Electric Corp 電力変換装置
JP2013059151A (ja) * 2011-09-07 2013-03-28 Toshiba Mitsubishi-Electric Industrial System Corp 3レベル電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017099063A (ja) * 2015-11-18 2017-06-01 富士電機株式会社 電力変換装置

Also Published As

Publication number Publication date
US20170033593A1 (en) 2017-02-02
JP6198941B2 (ja) 2017-09-20
US10008953B2 (en) 2018-06-26
JPWO2015170377A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6198941B2 (ja) 電力変換装置
CN104054245B (zh) 功率转换装置
US9036379B2 (en) Power converter based on H-bridges
US9337746B2 (en) Multilevel inverter
JP5132175B2 (ja) 電力変換装置
KR20110028304A (ko) 전력 변환 장치
US8248828B2 (en) Medium voltage inverter system
US9780658B2 (en) Intermediate voltage circuit current converter in five-point topology
JP6104736B2 (ja) 電力変換装置
US20140161646A1 (en) Electric drivetrain of a device, and gas compression equipment including such a drivetrain
Grandi et al. Fault-tolerant control strategies for quad inverter induction motor drives with one failed inverter
US20150008856A1 (en) Multi-level medium-voltage inverter
JP6665456B2 (ja) パワー半導体装置
JPH02202324A (ja) 高圧電源装置
JP7446932B2 (ja) 電力変換装置およびスイッチ装置
EP2858230B1 (en) Power conversion apparatus
US20130258729A1 (en) Medium voltage power apparatus
JP4765006B2 (ja) 電力変換システム
JP3171551B2 (ja) 高電圧出力電力変換装置
JP2004153951A (ja) 半導体電力変換回路
JPH11252992A (ja) 電力変換装置
JP5551929B2 (ja) 直列多重電力変換方法、直列多重電力駆動方法、および多重変圧器
JP6433579B2 (ja) 電力変換装置
WO2015128455A2 (en) Three-phase to three-phase ac converter
JP7175649B2 (ja) 三相電力変換装置及び無停電電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517757

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15304171

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891482

Country of ref document: EP

Kind code of ref document: A1