WO2010103927A1 - 導電性シートおよび電極 - Google Patents

導電性シートおよび電極 Download PDF

Info

Publication number
WO2010103927A1
WO2010103927A1 PCT/JP2010/052887 JP2010052887W WO2010103927A1 WO 2010103927 A1 WO2010103927 A1 WO 2010103927A1 JP 2010052887 W JP2010052887 W JP 2010052887W WO 2010103927 A1 WO2010103927 A1 WO 2010103927A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
active material
conductive
electrode
fibers
Prior art date
Application number
PCT/JP2010/052887
Other languages
English (en)
French (fr)
Inventor
西山正一
石田栄一
安田佳明
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2011503763A priority Critical patent/JP5400866B2/ja
Priority to EP10750681.8A priority patent/EP2408046B1/en
Priority to CA2754051A priority patent/CA2754051C/en
Publication of WO2010103927A1 publication Critical patent/WO2010103927A1/ja
Priority to US13/226,010 priority patent/US8211573B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/806Nonwoven fibrous fabric containing only fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24992Density or compression of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/626Microfiber is synthetic polymer

Definitions

  • the present invention relates to a conductive sheet useful as a member of a power storage device such as a lithium ion secondary battery or an electric double layer capacitor, and an electrode containing an active material inside the conductive sheet.
  • Patent Document 1 discloses an example of a negative electrode obtained by sintering a mixture of active material particles containing silicon and conductive metal powder in a non-oxidizing atmosphere on the surface of a current collector. Yes.
  • copper or a copper alloy is used for the metal foil or the conductive metal powder constituting the current collector.
  • Patent Document 2 discloses a negative electrode in which a thin film made of a metal alloyed with lithium or an alloy containing this metal is formed on a current collector made of a material that is not alloyed with lithium.
  • a thin film made of a metal alloyed with lithium or an alloy containing this metal is formed on a current collector made of a material that is not alloyed with lithium.
  • an uneven negative electrode active material layer is selectively formed in a predetermined pattern on the current collector by applying a photoresist method and a plating technique.
  • gap between the negative electrode active materials formed in columnar shape absorbs the volume expansion of a negative electrode active material, and avoids collapse of an active material.
  • an electrode in which a binder, an active material, and a conductive agent are kneaded to form a paste, and this is coated on a current collector foil.
  • selecting the binder according to the type and characteristics of the active material and conductive material, and increasing the uniformity and density of the electrodes require advanced technology, which is not only extremely difficult, but also fully exploits the characteristics of the active material. I wouldn't.
  • Patent Document 3 a three-dimensional network plastic substrate having an internal communication space is subjected to metal vapor deposition (or plating) by an arc ion plating method to form a support, and an electrode active material and a conductive agent are applied thereto.
  • a lithium battery electrode kneaded and supported by a binder has been proposed, and an electrode is manufactured by filling and applying a kneaded active material paste to a support.
  • This electrode can reduce the amount of binder and conductive agent used compared with a metal thin plate as an electrode substrate, and can improve the adhesion between the electrode substrate and the active material, so that the number of charge / discharge can be increased, the discharge capacitance, The battery performance such as electrical output can be improved.
  • the hole diameter of the plastic substrate containing the active material is preferably about 50 to 100 ⁇ m, and in order to contain a sufficient active material, the substrate has to be made to have a low density. The current density that can be extracted from the conductive support is reduced, and as a result, the internal resistance is increased.
  • An object of the present invention is to enable the use of an active material made of a carbonaceous material, a high-capacity negative electrode active material such as silicon having a large volume expansion, and the ability to collect current from the active material. It is to provide a conductive sheet and an electrode formed from the conductive sheet.
  • Another object of the present invention is to provide a conductive sheet capable of dramatically improving productivity as compared with the conventional method, and an electrode formed from the conductive sheet.
  • the inventors of the present invention have a conductive sheet (A) formed from fibers having a specific fiber diameter and having a specific apparent specific gravity, and a specific fiber diameter.
  • the conductive sheet in which the conductive ultrafine fiber sheet (B) is laminated (i) both the sheets (A) and (B) have a conductive fibrous network structure that is intertwined three-dimensionally.
  • the present invention has been completed.
  • the present invention is a conductive sheet having a surface resistance of 10 ⁇ / ⁇ or less on each side, the conductive sheet comprising fibers having a diameter of 3 ⁇ m to 20 ⁇ m, and an apparent specific gravity of 0.05 to 0.50 g.
  • This is a conductive sheet comprising a sheet (A) having / cm 3 and a sheet (B) made of fibers having a diameter of 3 ⁇ m or less and laminated on the sheet (A).
  • the sheet (B) may be a sheet obtained by making a non-woven fabric conductive, and the non-woven fabric is composed of a non-woven fabric formed by an electrospinning method or a melt blown method with an organic polymer as a main component. Also good.
  • the organic polymer mainly constituting such a sheet (B) may be at least one selected from the group consisting of polyvinylidene fluoride, polyamide, polypropylene, polyester and polyacrylonitrile, for example.
  • the sheet (A) may be a fibrous material formed with an organic polymer as a main constituent component.
  • the sheet (B) may have a larger apparent specific gravity than the sheet (A).
  • the present invention is also an electrode formed from the conductive sheet and containing at least an active material,
  • the active material is contained in at least the gaps between the constituent fibers of the sheet (A), (ii) at least the constituent fibers of the sheet (A) are covered with the active material, or (Iii)
  • the above-mentioned electrodes (i) and (ii) are also included.
  • the active material may be, for example, a particulate active material, and at least the particulate active material may be directly filled between the constituent fibers of the sheet (A).
  • the active material may cover at least the constituent fibers of the sheet (A) by vapor deposition.
  • Such an active material may be, for example, a negative electrode active material capable of occluding and releasing lithium ions, such as a carbonaceous material, a silicon simple substance, a silicon compound, a tin simple substance, a tin compound, and a germanium compound. It may contain at least one selected from the group consisting of
  • Such an electrode can be used for a lithium secondary battery or an electric double layer capacitor.
  • the present invention provides a sheet (A) having an apparent specific gravity of 0.05 to 0.40 g / cm 3 , comprising fibers having a diameter of more than 3 ⁇ m and not more than 20 ⁇ m, and fibers constituting the sheet (A).
  • a conductive sheet having a structure in which a sheet (B) having a small diameter and a fiber having a diameter of 3 ⁇ m or less is laminated, and the surface resistance of both surfaces of the conductive sheet is 10 ⁇ / ⁇ or less, respectively.
  • the conductive sheet is also included.
  • the fiber diameter means a fiber diameter calculated or measured by the method described in Examples.
  • the conductive sheet of the present invention is formed from fibers having a specific fiber diameter, and a sheet (A) having a specific apparent specific gravity and an ultrafine fiber sheet (B) having a specific fiber diameter are laminated. Both the sheets (A) and (B) have a conductive fibrous network structure that is three-dimensionally entangled, and a conductive path can be secured throughout the entire electrode layer. Therefore, the following effects are exhibited.
  • the conductive sheet of the present invention has a conductive ultrafine fiber layer having a specific fiber diameter in the sheet (B), and has high current collecting property due to high fiber density, such as copper foil. A current collector foil is not required. Further, the high-density ultrafine fiber layer of the sheet (B) also has a function of preventing the active material from being detached when the active material is filled from the sheet (A) side or when the electrode is used.
  • the sheet (B) when the sheet (B) is composed of a nonwoven fabric formed by an electrospinning method or a melt blown method, the density of the fibers of the sheet (B) can be improved to increase its current collecting property, Since the sheets (A) and (B) can be bonded by thermocompression bonding, it is possible to omit an adhesive necessary for stacking the sheets.
  • an ultrafine fiber layer can be formed by an electrospinning method or a melt blown method, and the chemical stability with respect to an electrolytic solution is excellent.
  • the conductive sheet is excellent in flexibility, so even if it is an active material having a large volume expansion, its stress. Can be effectively relaxed.
  • the sheet (B) has an apparent specific gravity larger than that of the sheet (A), the sheet (B) is effective in preventing the active material filled when used as an electrode from coming off the conductive sheet. This makes it possible to directly fill the powdered active material, that is, to simplify the process in electrode production.
  • the electrode of the present invention is formed of a conductive sheet and contains an active material at least in the gaps between the constituent fibers of the sheet (A), or at least covers the constituent fibers of the sheet (A). Therefore, it is possible to effectively relieve the stress of the active material, suppress the collapse and separation of the active material, and even when the active material is collapsed, it is possible to ensure conduction, The characteristics can be improved.
  • the electrode of the present invention it is possible to directly fill the particulate active material, thereby not only improving the cushioning property against the active material but also increasing the filling amount of the active material. It becomes.
  • the active material can be coated on the constituent fibers by vapor deposition, and such an electrode has a higher leakage because the active material has less leakage and the effect of the active material is enhanced. It becomes a performance electrode.
  • the active material is composed of a negative electrode active material that occludes / releases lithium ions, such as carbonaceous material, silicon simple substance or silicon compound, tin simple substance and tin compound, germanium compound, for example, the negative electrode capacity of a lithium secondary battery It is possible to increase the cycle characteristics and improve the cycle characteristics.
  • the conductive sheet according to one embodiment of the present invention is formed of a fiber having a specific fiber diameter, and includes a conductive sheet (A) having an apparent specific gravity of 0.05 to 0.50 g / cm 3 and ultrafine fibers.
  • the conductive sheets (B) to be formed are laminated, and the fiber materials of both the sheets (A) and (B) form a three-dimensionally entangled fibrous network structure.
  • fiber material For example, the organic material, glass, metal material, etc. which exist stably as a fiber and have electroconductivity are mentioned.
  • the sheet (A) constituting the conductive sheet of the present invention mainly has a function as a container containing an active material, and the fiber diameter thereof is, for example, in the range of 3 ⁇ m to 20 ⁇ m, more preferably. May be more than 3 ⁇ m and 20 ⁇ m or less, more preferably 4 to 15 ⁇ m, particularly preferably 5 to 10 ⁇ m. Further, the fiber diameter may exceed 3 ⁇ m.
  • the sheet When the fiber diameter is too small (for example, less than 3 ⁇ m), the sheet is densified and the space surrounded by the fibers is small, which is disadvantageous in that it does not easily contain the active material.
  • the number of fibers is too small and the conductive path formed of conductive fibers becomes a sparse structure, and the effect of reducing internal resistance is reduced.
  • conduction failure occurs when the expandable active material collapses.
  • the apparent specific gravity of the sheet (A) needs to be 0.05 to 0.5 g / cm 3 , preferably 0.05 to 0.4 g / cm 3 , more preferably 0.1 to 0.3 g. / Cm 3 .
  • the apparent specific gravity exceeds 0.5 g / cm 3 , the void ratio decreases and the active material that can be included decreases, and for example, sufficient performance as an electricity storage device cannot be obtained.
  • An apparent specific gravity of less than 0.05 g / cm 3 is not preferable because the handling properties of the sheet are lowered.
  • the sheet (A) of the conductive sheet may be easier to fill when the specific gravity is low and the thickness is high.
  • the apparent specific gravity is preferably 0.1 g / cm 3 or more.
  • the apparent specific gravity of the sheet (A) can also be evaluated as a fiber volume content.
  • the fiber volume content represents the ratio (volume%) of the volume of the fiber to the total volume of the sheet (A), specifically, (Apparent specific gravity of sheet A) / (density of fibers used in sheet A) ⁇ 100 May be converted as
  • the fiber volume content can also be measured according to JIS K 7075, and the fiber volume content of the sheet (A) may be, for example, about 3.5 to 40%, preferably It may be about 5 to 30%, more preferably about 7 to 25%.
  • the thickness of the sheet (A) is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 30 ⁇ m or more. If the thickness is too thin (for example, less than 10 ⁇ m), the strength and rigidity of the sheet are insufficient, and the handleability and workability are impaired. Moreover, there is a possibility that the amount of active material that can be carried is reduced.
  • the upper limit of the thickness of the sheet (A) can be appropriately set according to the filling amount of the active material, but may be, for example, 300 ⁇ m or less, and preferably 200 ⁇ m or less. .
  • the sheet (A) constituting the conductive sheet of the present invention As a manufacturing method of the sheet (A) constituting the conductive sheet of the present invention, (1) A method of producing a fibrous material from a conductive polymer, and forming the fibrous material into a sheet such as paper, nonwoven fabric, or woven fabric to obtain a conductive fibrous sheet, (2) A conductive filler is kneaded into a non-conductive polymer, a fibrous material is produced from the obtained conductive filler mixed polymer, and the conductive sheet is formed into a sheet such as paper, non-woven fabric, or woven fabric.
  • a method for obtaining a conductive sheet, or a method for forming a sheet after carbonization of a fibrous material, activation as necessary A method of obtaining a conductive sheet by forming a fibrous metal into a sheet, such as paper, nonwoven fabric, or woven fabric,
  • the present invention is not limited thereto.
  • a bundle of fibrous materials is manufactured from a non-conductive polymer, and a sheet is formed after forming a conductive metal layer on the surface of the fiber bundle. Also good.
  • the fibers (1) to (4) can be obtained by a known method such as melt spinning, wet spinning, dry spinning, etc., depending on the polymer to be used. Process it. In order to adjust the fineness, it is possible to combine or spin different types of polymers to divide the fibers or to dissolve and remove one component after sea-island composite spinning. Further, a sheet can be obtained by a spunbond method or a melt blown method in which a sheet is formed following the spinning process.
  • the conductive polymer used in the method (1) is not particularly limited as long as it can form a conductive sheet giving the above-mentioned surface resistance range, but polyaniline, polyethylenedioxythiophene, polythiophene, polybenzothiophene.
  • Conductive organic polymers such as polyimidazole, polybenzimidazole, polyparaphenylene, and polypyrrole are preferably used.
  • the non-conductive polymer used in the method (2) or (3) is not particularly limited as long as it is an organic polymer that can form a fibrous material, but polyester, polyamide, polyacrylonitrile, polyvinyl chloride, polyvinyl chloride. Alcohol, ethylene-vinyl acetate copolymer, polysulfone, polyethylene, polypropylene, polyvinylidene fluoride and the like can be exemplified, and polyester and polypropylene are particularly preferable.
  • These conductive or non-conductive organic polymers may be homopolymers, but may be copolymers (including graft or block copolymers), carboxylic acid groups, epoxy groups, etc.
  • the polymer may be modified so as to contain a reactive functional group. Further, two or more kinds of these polymers can be mixed and used.
  • These polymer materials can be made into a fibrous material by, for example, dissolving in an appropriate solvent and solution spinning.
  • the fibrous material is formed with an organic polymer as a main constituent. That is, among the constituents of the fibrous material, the organic polymer accounts for 50% by weight or more, preferably 80% by weight or more, and a conductive filler and other additives are contained as other constituents as necessary.
  • a conductive filler is kneaded into the nonconductive organic polymer.
  • the filler is not particularly limited as long as it provides desired conductivity, and examples thereof include graphite, carbon black, carbon nanotube, metal powder, aluminum paste, copper sulfide and zinc white powder.
  • the conductive filler is kneaded by adding and stirring and mixing the filler in the polymer solution adjustment process, or adding the conductive filler in the process of melt extrusion of the polymer to obtain a conductive filler kneaded polymer chip. And a method of adjusting a spinning dope using as a raw material.
  • a fibrous material may be produced by kneading these fillers into a conductive organic polymer.
  • conductivity is imparted to a fibrous sheet made of a non-conductive polymer or glass fiber.
  • the method for imparting electrical conductivity is not particularly limited as long as the surface resistance of the obtained fibrous material sheet falls within the above-mentioned range. For example, impregnation, coating, plating, vapor deposition of conductive paint on the fibrous material. Etc.
  • the conductive paint used for the coating of the conductive paint is not particularly limited, and includes, for example, a conductive component such as metal powder and carbon and an adhesive resin component such as acrylic, epoxy, and vinyl resin. Is preferably a paint in which is dissolved or dispersed in an organic solvent or water. A known method is employed as the coating method.
  • the thickness of the coating layer for the fibers may be, for example, about 0.1 to 10 ⁇ m, preferably about 0.5 to 5 ⁇ m, more preferably about 1 to 4 ⁇ m.
  • a conductive metal such as nickel, copper, silver, iron, or aluminum is used.
  • a known electrolytic method or electroless method is employed.
  • a Watt bath a copper sulfate solution in the case of copper, a silver cyanide solution in the case of silver, and a ferrous sulfate solution in the case of iron are preferably used.
  • the method is not limited.
  • the thickness of the plating is adjusted so that the surface resistance is in the above range, and is, for example, about 0.1 to 10 ⁇ m, preferably about 0.2 to 3 ⁇ m, more preferably about 0.2 to 2.5 ⁇ m. May be.
  • a conductive metal can be used without any particular limitation, and examples thereof include metals such as copper, aluminum, nickel, iron, gold, silver, tungsten, chromium, titanium, and alloys of these metals.
  • a suitable one can be selected depending on the application. Copper, nickel, and a copper-nickel alloy are particularly preferred for use in lithium ion secondary batteries, and aluminum is particularly preferred for use in electric double layer capacitors.
  • a sputtering method As a vapor deposition method, a sputtering method, a physical vapor deposition method (PVD), a plasma enhanced chemical vapor deposition method (PECVD), a thermal chemical vapor deposition method, an ion beam evaporation method, a vacuum evaporation method, an electron beam evaporation method, or the like is appropriately used. . Further, after vapor deposition on one surface, vapor deposition may be performed on the other surface, or double-side vapor deposition may be performed at a time.
  • the deposition thickness may be, for example, about 0.1 to 10 ⁇ m, preferably about 0.2 to 3 ⁇ m, more preferably about 0.2 to 2.5 ⁇ m.
  • examples of the carbonized organic polymer used include carbonized organic polymers having fiber-forming ability such as polyvinyl alcohol, polyacrylonitrile, and phenol resin.
  • Various additives such as acids, metal chlorides, and iodine may be added to these carbonizable organic polymers for the purpose of efficiently carbonizing under an inert atmosphere and activating as necessary to improve the yield.
  • the treatment temperature during carbonization is, for example, in the range of 600 to 2000 ° C.
  • An activated carbon fibrous sheet with a large specific surface area can also be formed by performing steam activation, carbon dioxide activation, etc. at a temperature of 600 ° C. or higher after carbonization.
  • a conductive filler is kneaded into a non-conductive polymer made of a solvent-soluble resin and formed into a fibrous shape.
  • a method of dissolving and removing a resin with a solvent from a resin-conductor composite obtained by coating the fibrous material made of the non-conductive polymer with a conductive paint, metal plating or vapor deposition, etc., firing For example, a method of removing or carbonizing the resin may be used.
  • the obtained fibrous metal may be further accumulated to form a sheet.
  • changing the cross-sectional shape of the fiber or imparting irregularities to the surface improves the adhesion between the active material and the fibrous network, and the active material is removed. It is useful because it suppresses.
  • the cross-section modification can be achieved by a known method such as nozzle shape control during spinning. Further, for imparting irregularities to the fiber surface, for example, a known method such as kneading particles at the time of spinning and removing in a subsequent process or treatment with plasma can be used.
  • the sheet (B) constituting the conductive sheet of the present invention comprises fibers having a diameter of 3 ⁇ m or less.
  • the fiber diameter exceeds 3 ⁇ m, the internal resistance increases because the fiber density is small and the current collecting property is not sufficient. Also, the effect of preventing the active material from falling out becomes low.
  • the fiber diameter of the fibers constituting the sheet (B) is preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the lower limit of the fiber diameter is not particularly limited, but is, for example, 0.03 ⁇ m or more, preferably 0.1 ⁇ m or more, and more preferably 0.3 ⁇ m or more from the viewpoints of strength, handleability, and productivity.
  • the fiber constituting the sheet (B) has a smaller fiber diameter than the fiber constituting the sheet (A) from the viewpoint of filling the active material into the conductive sheet and preventing the active material from coming out of the sheet.
  • the fiber diameter of the fibers constituting the sheet (B) may be 1/2 or less, preferably 1/3 or less of the fiber diameter of the fibers constituting the sheet (A).
  • seat (B) is 1 of the fiber diameter of the fiber which comprises a sheet
  • the thickness of the sheet (B) is not particularly limited, but the sheet does not carry an active material, and is, for example, 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably in order to reduce the bulk of the battery. It may be 5 ⁇ m or less.
  • the ratio of the thickness of the sheet (B) to the sheet (A) can be appropriately set according to the thickness of the sheets (A) and (B).
  • the ratio of the sheet (B) / sheet (A ) 1/200 to 1/5, preferably 1/150 to 1/8.
  • the sheet (B) can be produced by the same method as the sheet (A).
  • the electrostatic spinning method and the melt blown method are particularly advantageous.
  • the diameter of the fiber obtained by the electrostatic spinning method can be adjusted depending on the polymer used and the conditions, but a sheet made of fibers having a diameter of 1 ⁇ m or less can be easily obtained.
  • the polymer is not particularly limited as long as it is soluble in a solvent.
  • solvent-soluble polymers include polyvinylidene fluoride, polyamide, polypropylene, and polyester, which have chemical stability against electrolytes and redox. Is favorable and is preferably used.
  • melt blown method a sheet composed of fibers of about 0.5 to 5 ⁇ m can be obtained, and a melt-moldable polymer such as polypropylene or polyester is preferable.
  • Conductive polymer or non-conductive polymer kneaded with conductive filler is often difficult to electrospin or meltblown.
  • plating or vapor deposition is performed. The method is advantageous.
  • the conductive sheet (A) and the sheet (B) are laminated in at least two layers, and each sheet (A) and (B) is made conductive at the fiber level. Formed of conductive fibers.
  • the conductive sheet of the present invention has a surface resistance of 10 ⁇ / ⁇ or less on each side in a state where the sheet (A) and the sheet (B) are laminated.
  • Necessary preferably 1 ⁇ / ⁇ or less, more preferably 0.1 ⁇ / ⁇ or less.
  • the conductive sheet of the present invention can electrically separate the sheet (A) and the sheet (B) and laminate the electrically conductive sheets (A) and (B).
  • the laminate After laminating the conductive sheet (A) and the sheet (B), the laminate can be made conductive by plating, vapor deposition, or carbonization.
  • the method described above in the section of the sheet (A) can be appropriately used for plating, vapor deposition, or carbonization.
  • the most preferred embodiment is a non-conductive polymer (for example, polyester) short fiber (for example, a fiber length of 0.5 to 20 mm).
  • a paper sheet (corresponding to the sheet (A)) obtained by papermaking a sheet (sheet (A)) of about 1, preferably about 10 to 10 mm, by electrospinning, a solvent-soluble polymer (for example, polyvinylidene fluoride, etc.) ultrafine fiber sheet (sheet ( Equivalent to B)), and after laminating by thermocompression bonding, plating or vapor deposition.
  • the laminated structure of the conductive sheet of the present invention is not limited to a simple stack of the sheet (A) and the sheet (B), but is centered on (A)-(B)-(A) and the sheet (B). It is also possible to fill the active material into the sheet (A) disposed on both sides.
  • the apparent specific gravity of the conductive sheet of the present invention is, for example, about 0.1 to 0.4 g / cm 3 , preferably about 0.15 to 0.35 g / cm 3 , more preferably 0.2 to 0. It may be about 3 g / cm 3 .
  • an example of the active material used for the electrode of the present invention is activated carbon.
  • the electrode filled with activated carbon is suitably used as an electric double layer capacitor polarizable electrode, for example.
  • Another example of the active material is a negative electrode active material that absorbs and releases lithium ions.
  • the negative electrode active material include carbonaceous materials such as graphite and hard carbon, silicon simple substance and its compound, tin simple substance and its compound, and germanium compound, and at least one of them can be selected. .
  • the electrode filled with these negative electrode active materials is suitably used, for example, as a negative electrode of a lithium ion secondary battery.
  • the particulate active material may be filled as it is, or the active material dispersed in a paste form. It may be filled. Furthermore, as long as a predetermined filling amount can be achieved, a known vapor phase process or wet process such as a vacuum deposition method, a gas deposition method, or a CVD method may be used. Among these, from the viewpoint of simplicity of the process, it is preferable to directly fill the granular active material into the gaps of the conductive sheet.
  • the average particle diameter of the active material can be selected from a wide range of, for example, 0.1 to 100 ⁇ m, preferably 0.5 to 80 ⁇ m, more preferably 1 to 50 ⁇ m. May be.
  • the active material-filled sheet there is no problem whether the active material is contained in either the sheet (A) or the sheet (B), but usually there is more active material in the sheet (A) having more voids than the sheet (B). In many cases, the sheet (A) contains an active material, which is preferable in terms of electrode performance.
  • the active material powder is blown from the side of the sheet (A) with an air flow. It can be filled by a method such as filling with an active material or supplying a constant amount of active material.
  • the active material used for coating the fiber surface is lithium ion.
  • a silicon simple substance and its compound, a tin simple substance and its compound, and a germanium compound are mentioned, At least 1 can be selected from these.
  • a silicon simple substance and a silicon alloy are particularly preferable from the viewpoint of increasing capacity.
  • an electrode filled with these negative electrode active materials is suitably used as a negative electrode of a lithium ion secondary battery.
  • the above-mentioned conductive sheet is activated by using a known vapor phase process or wet process such as a vacuum deposition method, a gas deposition method, and a CVD method.
  • a known vapor phase process or wet process such as a vacuum deposition method, a gas deposition method, and a CVD method.
  • the method of vapor-depositing a substance with respect to an electroconductive sheet is mentioned, It is preferable to employ
  • the deposition amount of the active material can be selected according to the battery configuration, but from the viewpoint of the balance between capacity and cycle characteristics, a range of 50 nm to 10 ⁇ m, preferably 50 nm to 1 ⁇ m, more preferably 55 to 80 nm can be exemplified. .
  • the sheet (A) and the sheet (B) in the electrode are integrated by pressing or the like.
  • the retention of the active material contained in the sheet (A) may be improved.
  • the obtained active material vapor-deposited sheet is preferably adjusted by pressing to an apparent specific gravity considering a relaxation space corresponding to the expansion of the active material.
  • the electrode of the present invention thus obtained is suitably used as an electrode for an electricity storage device.
  • the conductive sheet of the present invention is, for example, in addition to the electric double layer capacitor polarizable electrode and the lithium ion secondary battery negative electrode, the positive electrode of the lithium ion secondary battery, the positive electrode of the lithium ion capacitor, and the negative electrode
  • the present invention can be applied to a device using an active material, and an active material used for each of the devices can be filled or deposited to form an electrode.
  • Fiber diameter of sheet (A) Converted from the fineness of the fiber.
  • the conductive sheet was conditioned by allowing it to stand for 24 hours or more under conditions of a temperature of 20 ° C. and a humidity of 65%.
  • a test piece having a length of 2 cm and a width of 1 cm was taken from this sheet, and a resistance measuring device “MULTITIMETER” manufactured by Yokogawa Hewlett-Packard Co. was used between both ends of the test piece to apply a voltage of 10 V.
  • the resistance value ( ⁇ ) was measured.
  • the surface resistance value of each test piece was calculated
  • Surface resistance ( ⁇ / ⁇ ) R ⁇ (W / L)
  • W width of the test piece (1 cm)
  • L length of the test piece (2 cm)
  • Example 1 (Creation of conductive sheet) Paper making method using a polyester fineness of 1.0 dtex (diameter: 10 ⁇ m), a short fiber of 5 mm, 70 parts of a core component polyester, and a core component polyester and a sheath component modified polyester core-sheath type composite fiber (N720, Kuraray Co., Ltd.) Thus, a sheet (A) having a basis weight of 20 g / m 2 , an apparent specific gravity of 0.2 g / cm 3 and a thickness of 105 ⁇ m was prepared. Then, an ultrafine fiber sheet (B) of polyvinylidene fluoride was sprayed on one side of the sheet (A) by electrostatic spinning.
  • the above sheet (A) is laid on a target, polyvinylidene fluoride is dissolved in DMF at a concentration of 5% and placed in a syringe, and 20 KV is placed between the tip of the syringe and the target.
  • a voltage was applied to form a 2 ⁇ m thick layer of polyvinylidene fluoride fibers having a diameter of 0.5 ⁇ m on the sheet (A), and thermocompression bonded to obtain a laminated sheet.
  • this laminated sheet was plated with metallic copper (Cu) by an electroless plating method to obtain a conductive sheet (plating thickness: 1 to 2 ⁇ m).
  • the surface resistance of the obtained conductive sheet was 0.08 ⁇ / ⁇ on the sheet (A) side and 0.02 ⁇ / ⁇ on the sheet (B) side.
  • the apparent specific gravity of the conductive sheet after plating was 0.24 g / cm 3 .
  • the apparent specific gravity of the sheet (B) was larger than that of the sheet (A).
  • the thickness of the sheet (A) of the obtained conductive sheet was 98 ⁇ m, and the apparent specific gravity of the sheet A was 0.21 g / cm 3 (fiber volume content 15.2%).
  • (Create electrode) The obtained conductive sheet is vibrated with the polyvinylidene fluoride layer as the lower surface, and the artificial graphite powder (average particle size 15 ⁇ m) is 100 g / m 2 from the upper surface (sheet (A) side). Were supplied in a fixed amount to fill the voids of the conductive sheet. Thereafter, flat pressing was performed at 120 ° C. to obtain an electrode having a thickness of 90 ⁇ m in which the current collecting layer and the active material layer were integrated.
  • a lithium ion secondary battery using the electrode as a negative electrode was prepared.
  • a solution obtained by dissolving lithium hexafluorophosphate as a nonaqueous electrolyte in a 1/1 (volume ratio) mixture of ethylene carbonate and 1,2-dimethoxyethane at a concentration of 1 mol / L A lithium ion secondary battery for evaluation using a polyethylene microporous film having a thickness of 30 ⁇ m as a separator was prepared.
  • the initial charge capacity 330 mAh / g
  • the initial discharge capacity 315 mAh / g
  • the efficiency at the first charge / discharge 95.5%
  • the discharge capacity at the 10th cycle 310 mAh / g
  • the cycle retention after 10 cycles It was 98.4%, and it was confirmed that it was a lithium ion secondary battery excellent in initial charge / discharge efficiency and cycleability.
  • Example 2 (Creation of conductive sheet) A polypropylene sheet (B) having a diameter of 3 ⁇ m and a thickness of 10 ⁇ m prepared by a melt blown method was laminated on one side of a sheet (A) prepared in the same manner as in Example 1 by thermocompression bonding. Subsequently, this laminated sheet was plated with metallic copper (Cu) by an electroless plating method to obtain a conductive sheet (plating thickness: 3 ⁇ m). The surface resistance of the obtained conductive sheet was 0.08 ⁇ / ⁇ on the (A) side and 0.06 ⁇ / ⁇ on the meltblown sheet side. The apparent specific gravity of the electroconductive sheet after plating was 0.21 g / cm 3 .
  • the apparent specific gravity of the sheet (B) was larger than that of the sheet (A).
  • the thickness of the sheet (A) of the obtained conductive sheet was 98 ⁇ m, and the apparent specific gravity of the sheet A was 0.21 g / cm 3 (fiber volume content 15.2%).
  • an electrode and a lithium ion battery were prepared and evaluated in the same manner as in Example 1.
  • Example 3 (Create electrode) A single electrode (Si) was vapor-deposited on the conductive sheet obtained in the same manner as in Example 1 by vacuum vapor deposition to produce an electrode. At this time, Si powder of 200 to 300 mesh and a purity of 99.999% were used as the vapor deposition source, and the vapor deposition thickness was equivalent to 1000 mm (0.1 ⁇ m). Thereafter, flat pressing was performed at 120 ° C. to obtain an electrode having a thickness of 20 ⁇ m in which the current collecting layer and the active material layer were integrated.
  • Example 1 a conductive sheet was prepared in the same manner as in Example 1 except that the basis weight of the sheet (A) was 70 g / cm 2 and the apparent specific gravity was 0.70 g / cm 3 .
  • the obtained conductive sheet had few voids that could be filled with the active material, and it was difficult to uniformly fill the active material particles up to the inside.
  • Example 3 A conductive sheet was obtained in the same manner as in Example 2, except that a polyester spunbond sheet having a diameter of 25 ⁇ m was used instead of the polypropylene sheet by the melt blown method. The obtained sheet was inferior in active material retention due to the loss of particles when filled with the active material.
  • a conductive sheet was prepared in the same manner as in Example 1 except that short fibers having a diameter of 30 ⁇ m and a fiber length of 5 mm were used as the polyester fibers used in the sheet (A), and a lithium ion battery was prepared in the same manner as in Reference Example 1. And evaluated. In the process after filling with the active material, the active material dropped out. In the evaluation of the battery, the initial charge capacity was 310 mAh / g, the initial discharge capacity was 220 mAh / g, and the efficiency during the initial charge / discharge was as low as 71.0%. It is presumed that the conductive path inside the sheet has a sparse structure and the capacity of the filled active material cannot be effectively utilized.
  • Example 4 A conductive sheet, an electrode, and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that the plating conditions were changed.
  • Example 5 A conductive sheet, an electrode, and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that the plating conditions were changed.
  • Example 4 The evaluation results of Example 4 and Comparative Example 5 are summarized in Table 1. As is apparent from the table, the performance of the battery using the conductive sheet having a higher surface resistance than the range of the present invention is poor.
  • Example 5 An electrode (negative electrode) was prepared in the same manner as in Example 1 except that 50 g / m 2 of silicon powder having an average particle size of 5 ⁇ m was filled instead of the artificial graphite powder, and the battery was evaluated in the same manner.
  • Table 2 compares the battery performance of Example 5 and Comparative Example 6.
  • a conductive sheet suitable for filling or vapor deposition of an active material can be obtained, and an active material layer can be formed without using a binder, a conductive aid, and a solvent. It is useful in various industrial fields related to the production and use of power storage devices to be used, particularly lithium ion secondary batteries and electric double layer capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、直径が3μm~20μmの繊維からなる、見掛け比重0.05~0.50g/cmを有するシート(A)と、直径が3μm以下の繊維からなるシート(B)とが積層された構造を含む導電性シートであって、該導電性シートの両面の表面抵抗が10Ω/□以下である導電性シート;および導電性シートから形成され、活物質を少なくとも含んでいる電極について提供する。前記シート(A)は、有機ポリマーを主たる構成成分として形成された繊維状物であってもよい。

Description

導電性シートおよび電極 関連出願
 本出願は、日本国で2009年3月9日に出願した特願2009-054468の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 本発明は、リチウムイオン二次電池、電気二重層キャパシタ等の蓄電デバイスの部材として有用な導電性シート及び当該導電性シートの内部に活物質を含んでなる電極に関する。
 近年、地球温暖化対策の一環にて、電力回生用途、太陽電池、風力発電等の出力平準化用途、動力そのものの代替用途等に、リチウムイオン二次電池、電気二重層キャパシタ等の蓄電デバイスが注目されており、高出力化、高容量化に関する研究が諸方面ですすめられている。
 この中で特に、リチウムイオン二次電池用負極の研究分野において、従来一般的な負極材料である黒鉛等の炭素質材料に加えて、負極容量を増大できるケイ素やスズ等の元素を活物質中に含む負極材料が注目されている。これらの負極材料はリチウムイオンの吸蔵に伴って大きく膨張する傾向があり、活物質粒子が割れて崩壊したり、集電体層から活物質層が剥離したりして、負極の導電性が低下する可能性があるので、これを抑制するための技術が重要となっている。
 例えば、特許文献1には、ケイ素を含む活物質粒子と導電性金属粉末との混合体を、集電体の表面上で非酸化性雰囲気において焼結して得られる負極の例が開示されている。ここで集電体を構成する金属箔や導電性金属粉末には銅または銅合金が用いられる。
 しかしながら、この構成の負極では、製造時の焼結工程によって、リチウムとは電気化学的に反応しないCu-Si化合物が生成して負極容量が低下する。また、高温下での焼結が必須なため、集電体に用いる銅が溶解あるいは硬化する可能性がある。このような現象が発生すると、集電体としての柔軟性が失われることになり、電極群を構成する際に支障となる可能性がある。
 また特許文献2には、リチウムとは合金化しない材料からなる集電体上に、リチウムと合金化する金属またはこの金属を含有する合金からなる薄膜が形成された負極が開示されている。この構成においては、フォトレジスト法とメッキ技術等を適用して、集電体上に所定のパターンで選択的に凹凸状の負極活物質層を形成する。そして、柱状に形成された負極活物質間の空隙が負極活物質の体積膨張を吸収することによって、活物質の崩壊を回避する。
 しかしながら、このような構成の負極を作製するためには、負極活物質層をパターン化するためのフォトレジストマスクを形成する必要がある。そして、このような複雑な前処理は生産性を制限してしまう。
 一方、従来からバインダーと活物質及び導電剤を混練してペーストとなし、これを集電箔にコーティングして塗布した電極が知られている。ここでは活物質や導電材の種類・特性に応じたバインダーの選択や、電極の均一性や密度を高めるには高度な技術を必要とし、困難を極めるばかりか、活物質の特性を十分に引き出すことができなかった。
 これに対し、特許文献3は、内部連通空間を有する三次元網状のプラスチック基体にアークイオンプレーティング法により金属蒸着(またはめっき)を施して支持体を作り、これに電極活物質および導電剤を結着剤で混練りして担持させたリチウム系電池用電極を提案しており、混練りした活物質ペーストを支持体へ充填・塗布して電極を製造している。この電極は、金属薄板を電極基板とするよりも結着剤・導電剤の使用量を減少することができ、電極基盤と活物質の密着を向上させることにより充放電可能回数、放電電気容量、電気出力等の電池性能を向上させることが可能であるとしている。
 しかし、活物質を内包するプラスチック基体の孔の径は50~100μm程度のものが好ましいとされており、充分な活物質を内包するためには前記基体を低密度にせざるを得ないため、導電性支持体から取り出せる電流密度は小さくなり、その結果内部抵抗が増加してしまう。
特開2002-260637号公報 特開2004-127561号公報 特開平06-349481号公報
 本発明の目的は、炭素質材料からなる活物質や、体積膨張の大きなケイ素などの高容量負極活物質などの使用を可能とし、かつ、活物質からの集電性を高くすることが可能な導電性シート、およびこの導電性シートから形成された電極を提供することである。
 本発明のほかの目的は、従来方法に比べて飛躍的に生産性を向上させることができる導電性シート、およびこの導電性シートから形成された電極を提供することである。
 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、特定の繊維直径を有する繊維から形成され、特定の見かけ比重を有する導電性シート(A)と、特定の繊維直径を有する導電性の極細繊維シート(B)とが積層された導電性シートでは、(i)シート(A)および(B)の双方において、三次元的に絡み合った導電性の繊維状ネットワーク構造を有し、電極層全体にくまなく導電パスを確保できるとともに、(ii)体積膨張の大きな活物質の応力緩和が可能となること、さらに、(iii)極細繊維シート(B)によってその集電性を向上することが可能であることを見出し、本発明を完成した。
 すなわち、本発明は、両面の表面抵抗がそれぞれ10Ω/□以下である導電性シートであって、前記導電性シートは、直径が3μm~20μmの繊維からなる、見掛け比重0.05~0.50g/cmを有するシート(A)と、直径が3μm以下の繊維からなり、前記シート(A)に積層されたシート(B)とを含む導電性シートである。
 例えば、前記シート(B)は、不織布を導電化したシートであってもよく、前記不織布は、有機ポリマーを主たる構成成分として、静電紡糸法またはメルトブローン法により形成された不織布から構成されていてもよい。
 このようなシート(B)を主として構成する有機ポリマーは、例えば、ポリフッ化ビニリデン、ポリアミド、ポリプロピレン、ポリエステルおよびポリアクリロニトリルからなる群から選択された少なくとも一種であってもよい。一方、シート(A)は、有機ポリマーを主たる構成成分として形成された繊維状物であってもよい。
 また、シート(B)は、シート(A)よりも大きな見掛け比重を有していてもよい。
 本発明は、また、前記導電性シートから形成されるとともに、活物質を少なくとも含んでいる電極であって、
 前記電極では、(i)少なくともシート(A)の構成繊維間の空隙に前記活物質が含まれているか、(ii)少なくともシート(A)の構成繊維を前記活物質が被覆しているか、または(iii)上記(i)および(ii)の双方である電極についても包含する。
 前記活物質は、例えば、粒子状活物質であってもよく、少なくともシート(A)の構成繊維間に前記粒子状活物質が直接充填されていてもよい。
 また、活物質が、蒸着により、少なくともシート(A)の構成繊維を被覆していてもよい。
 このような活物質は、例えば、リチウムイオンを吸蔵・放出することが可能な負極活物質であってもよく、例えば、炭素質材料、ケイ素単体、ケイ化合物、スズ単体、スズ化合物、およびゲルマニウム化合物からなる群より選ばれた少なくとも1つを含んでいてもよい。
 このような電極は、リチウム二次電池または電気二重層キャパシタに用いられることが可能である。
 また、本発明は、直径が3μmを超えて20μm以下の繊維からなる、見掛け比重0.05~0.40g/cmを有するシート(A)と、前記シート(A)を構成する繊維よりも小さな直径を有するとともに、その直径が3μm以下の繊維からなるシート(B)とが積層された構造を含む導電性シートであって、該導電性シートの両面の表面抵抗が、それぞれ10Ω/□以下である導電性シートについても包含する。
 なお、本発明において、繊維の直径とは実施例に記載された方法により算出または測定された繊維径を意味している。
 本発明の導電性シートは、特定の繊維直径を有する繊維から形成され、特定の見かけ比重を有するシート(A)と、特定の繊維直径を有する極細繊維シート(B)とが積層されているため、シート(A)および(B)の双方において、三次元的に絡み合った導電性の繊維状ネットワーク構造を有し、電極層全体にくまなく導電パスを確保できる。そのため、以下の効果を発現する。
 1)バインダー及び助電剤の使用を省略することが可能となり、活物質充填量の増加による容量増加と電極内部の電気抵抗が低減できる。
 2)体積膨張の大きな活物質の応力緩和が可能となり、活物質の崩壊、剥離が抑制される。また、活物質が崩壊しても導通を確保することができるので、サイクル特性が改善できる。
 3)また、本発明の導電性シートは、シート(B)に特定の繊維径の導電性の極細繊維層を有しており、繊維の密度が高いため集電性が高く、銅箔等の集電箔が不要となる。また、当該シート(B)の高密度な極細繊維層は、活物質をシート(A)側から充填する際や、電極の使用時の活物質の抜けを防止する機能をも有する。
 特に、シート(B)が、静電紡糸法またはメルトブローン法により形成された不織布から構成されている場合、シート(B)の繊維の密度を向上させてその集電性を高めることができるとともに、シート(A)および(B)を熱圧着により接着させることが可能となるため、シートの積層に必要な接着剤を省略することが可能となる。
 また、特定の有機ポリマーを用いてシート(B)を構成すると、静電紡糸法またはメルトブローン法により極細繊維層を形成可能であると共に、電解液などに対する化学安定性にも優れる。
 また、シート(A)が、有機ポリマーを主たる構成成分として形成された繊維状物である場合、導電性シートは柔軟性に優れているため、体積膨張の大きな活物質であっても、その応力を有効に緩和することができる。
 また、シート(B)が、シート(A)よりも大きな見掛け比重を有する場合、シート(B)は、電極として用いられる際に充填される活物質が導電シートからの抜けを防止するのに有効に用いることができ、それによって、粉体状活物質の直接充填、すなわち電極製造における工程簡略化を可能とならしめるものである。
 また、本発明の電極は、導電性シートから形成され、少なくともシート(A)の構成繊維間の空隙に活物質を含んでいたり、少なくともシート(A)の構成繊維を活物質が被覆しているため、活物質の応力を有効に緩和し、活物質の崩壊や剥離を抑制することが可能であり、また、活物質が崩壊した場合であっても、導通を確保することができるので、サイクル特性が改善できる。
 特に、本発明の電極では、粒子状の活物質を直接充填することが可能であり、これにより活物質に対するクッション性を向上することができるだけでなく、活物質の充填量を増加させることも可能となる。
 一方で、本発明の電極では、蒸着により活物質を構成繊維に被覆させることも可能であり、このような電極は活物質の漏れが一層少なく、また活物質の効果を高められるので、より高い性能の電極となる。
 活物質が、炭素質材料、ケイ素単体或いはケイ化合物、スズ単体及びスズ化合物、ゲルマニウム化合物などのリチウムイオンを吸蔵・放出する負極活物質で構成される場合、例えば、リチウム二次電池の負極容量を増大することが可能であるとともに、そのサイクル特性を向上することが可能である。
 以下に本発明を詳細に説明する。
 本発明の一実施形態の導電性シートは、特定の繊維径を有する繊維で形成されるとともに、見掛け比重0.05~0.50g/cmを有する導電性シート(A)と、極細繊維から形成される導電性シート(B)とが積層され、シート(A)とシート(B)の双方の繊維素材は、それぞれ、三次元的に絡み合った繊維状ネットワーク構造を形成するものである。
 前記繊維素材としては、特に制限はなく、例えば、繊維として安定に存在し、かつ導電性を有する有機素材、ガラス、金属素材等が挙げられる。
 [シート(A)]
 本発明の導電性シートを構成するシート(A)は、主として活物質を含有する容器としての機能を持つもので、その繊維直径は、例えば、繊維直径は3μm~20μmの範囲であり、より好ましくは3μmを超えて20μm以下であってもよく、さらに好ましくは4~15μm、特に好ましくは5~10μmの範囲であってもよい。また、その繊維直径は3μmを超えていてもよい。
 繊維の直径が小さすぎる(例えば、3μm未満)場合はシートが高密度化し、繊維で囲まれる空間が小さくなるので、活物質を充分含有し難く不都合である。逆に大きすぎる(例えば、20μmよりも大きい)場合、繊維本数が少なすぎて導電性繊維で形成される導電パスが疎な構造となり、内部抵抗の低減効果が小さくなる。或いは、膨張性の活物質が崩壊した場合に導通不良となる。
 シート(A)の見掛け比重は、0.05~0.5g/cmであることが必要であり、好ましくは0.05~0.4g/cm、さらに好ましくは0.1~0.3g/cmである。
 また、見掛け比重が0.5g/cmを超えると、空隙の割合が低くなって、包含しうる活物質が少なくなり、例えば蓄電デバイスとして充分な性能を得られなくなる。見掛け比重が0.05g/cm未満では、シートのハンドリング性が低下するため好ましくない。
 導電性シートに活物質を充填する場合は、該導電性シートのシート(A)は、低比重で厚い方が充填が容易な場合がある。また見かけ比重は0.1g/cm以上であることが好ましい。
 なお、ここで、シート(A)の見掛け比重は、繊維体積含有率として評価することも可能である。この場合、繊維体積含有率とは、シート(A)の全体積に対する繊維の体積の割合(体積%)を表わすものであり、具体的には、
(シートAの見掛け比重)/(シートAで用いられる繊維の密度)×100
として換算してもよい。
 なお、繊維体積含有率は、JIS K 7075に準じて測定することも可能であり、シート(A)の繊維体積含有率は、例えば、3.5~40%程度であってもよく、好ましくは5~30%程度、より好ましくは7~25%程度であってもよい。
 シート(A)の厚みは、好ましくは10μm以上であり、より好ましくは20μm以上であり、さらに好ましく30μm以上であってもよい。厚みが薄すぎる(例えば、10μm未満)では、シートの強度や剛性が不足し、取り扱い性や加工性が損なわれる。また、担持しうる活物質量が少なくなってしまう虞がある。なお、シート(A)の厚みの上限は、活物質の充填量などに応じて適宜設定することが可能であるが、例えば、300μm以下であってもよく、好ましくは200μm以下であってもよい。
 本発明の導電性シートを構成するシート(A)の製造方法としては、
 (1)導電性ポリマーから繊維状物を製造し、これを紙・不織布・織物等のシート状に成形して導電性繊維状物シートを得る方法、
 (2)非導電性ポリマーに導電性フィラーを練り込み、得られた導電性フィラー混合ポリマーから繊維状物を製造し、これを紙・不織布・織物等のシート状に成形して導電性シートを得る方法、
 (3)非導電性ポリマーから製造した繊維状物、或いはガラス繊維を紙・不織布・織物等のシート状に成形した後、導電性塗料による含浸、コーティング、金属めっきまたは蒸着等により、導電性金属層を繊維状物の表面に形成して導電性シートを得る方法、
 (4)炭化性有機ポリマーから繊維状物を製造し、これを紙・不織布・織物等のシート状に成形して繊維状物シートを得た後、炭化、さらに必要に応じて賦活することで、導電性シートを得る方法、或いは、繊維状物を炭化、必要に応じて賦活した後、シート成形する方法
および、
 (5)繊維状金属をシート状に紙・不織布・織物等に成形して、導電性シートを得る方法、
等が挙げられるが、これらに限定されるものではなく、例えば、非導電性ポリマーから繊維状物の束を製造し、この繊維束表面に導電性金属層を形成してからシートを形成してもよい。
 上記(1)~(4)の繊維は、使用するポリマーに応じて、溶融紡糸、湿式紡糸、乾式紡糸などの公知の方法によって得ることができ、これを紙・不織布・織物等のシート状に加工すればよい。繊度を調整するために、異種ポリマーを複合・または混合紡糸して、繊維を分割したり、海島複合紡糸の後、一方の成分を溶解除去することも可能である。
 また、紡糸工程に引き続いてシート化するスパンボンド法やメルトブローン法により、シートを得ることもできる。
 上記(1)の方法において用いられる導電性ポリマーとしては、上述の表面抵抗の範囲を与える導電性シートが形成できるものであれば特に限定されないが、ポリアニリン、ポリエチレンジオキシチオフェン、ポリチオフェン、ポリベンゾチオフェン、ポリイミダゾール、ポリベンゾイミダゾール、ポリパラフェニレン、ポリピロール等の導電性有機ポリマーが好ましく用いられる。
 上記(2)または(3)の方法において用いられる非導電性ポリマーとしては、繊維状物を形成し得る有機ポリマーであれば特に限定されないが、ポリエステル、ポリアミド、ポリアクリルニトリル、ポリ塩化ビニル、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、ポリスルフォン、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン等を例示することができるが、とりわけポリエステル、ポリプロピレンが好ましい。
 これらの導電性または非導電性有機ポリマーは、単独重合体であってもよいが、共重合体(グラフトまたはブロック共重合体を含む)であってもよく、また、カルボン酸基、エポキシ基等の反応性官能基を含むように変性されたポリマーであってもよい。さらに、2種類以上のこれらのポリマーを混合して用いることもできる。これらのポリマー素材は、例えば適当な溶剤に溶解して溶液紡糸することにより、繊維状物とすることができる。
 このような場合、繊維状物は有機ポリマーを主たる構成成分として形成されている。すなわち、繊維状物の構成成分のうち、有機ポリマーが50重量%以上、好ましくは80重量%以上を占め、必要に応じて導電性フィラーその他の添加物が他の構成成分として含有される。
 上記(2)の方法では、非導電性有機ポリマーに導電性のフィラーが練り込まれる。フィラーとしては、所望の導電性を与えるものであれば特に限定されないが、グラファイト、カーボンブラック、カーボンナノチューブ、金属粉末、アルミペースト、硫化銅や亜鉛華の粉末等が例示される。導電性のフィラーの練り込みは、ポリマー溶液調整過程でフィラーを添加・攪拌混合する方法、ポリマーを溶融押出する過程で導電性フィラーを添加して、導電性フィラー練り込みポリマーチップを得て、これを原料として紡糸原液を調整する方法等が挙げられる。なお、上記(1)の方法において、これらのフィラーを導電性有機ポリマーに練り込んで繊維状物を製造してもよい。
 上記(3)の方法では、非導電性ポリマー或いはガラス繊維からなる繊維状物シートに、導電性を付与する。導電性を付与する方法としては、得られる繊維状物シートの表面抵抗が上述の範囲となるのであれば特に限定されず、例えば、繊維状物への導電性塗料の含浸、コーティング、めっき、蒸着等が挙げられる。
 上記の導電性塗料のコーティングに用いられる導電性塗料は特に限定されないが、例えば金属粉、カーボン等の導電性成分と、アクリル、エポキシ、ビニル樹脂等の接着性樹脂成分とを含み、これらの成分が有機溶剤または水に溶解または分散されている塗料が好ましい。コーティングの方法としては、公知の方法が採用される。繊維に対するコート層の厚みとしては、例えば、0.1~10μm程度、好ましくは0.5~5μm程度、より好ましくは1~4μm程度であってもよい。
 上記のめっきには、ニッケル、銅、銀、鉄、アルミニウム等の導電性金属が用いられる。めっきの方法としては、公知の電解法または無電解法等が採用される。電解法によりニッケルをめっきする場合にはワット浴、銅の場合には硫酸銅溶液、銀の場合にはシアン化銀溶液、鉄の場合には硫酸第1鉄溶液が好ましく用いられるが、これらの方法に限定されるものではない。めっきの厚さは、表面抵抗が上述の範囲となるように調整され、例えば、0.1~10μm程度、好ましくは0.2~3μm程度、より好ましくは0.2~2.5μm程度であってもよい。
 上記の蒸着には、導電性を有する金属を特に制限なく使用することができ、例えば銅、アルミニウム、ニッケル、鉄、金、銀、タングステン、クロム、チタン等の金属またはこれらの金属の合金が挙げられ、用途によって好適なものを選択できる。リチウムイオン二次電池の用途には、銅、ニッケル、銅―ニッケル合金が特に好ましく、電気二重層キャパシタの用途にはアルミニウムが特に好ましい。蒸着方法としては、スパッタリング法、物理的気相蒸着法(PVD)、プラズマ強化化学蒸着法(PECVD)、熱化学蒸着法、イオンビーム蒸発法、真空蒸着法、電子線蒸発法等が適宜用いられる。また、一面に蒸着を行った後、他面に蒸着を行ってもよいし、一度で両面蒸着を行ってもよい。蒸着厚みとしては、例えば、0.1~10μm程度、好ましくは0.2~3μm程度、より好ましくは0.2~2.5μm程度であってもよい。
 上記(4)の方法において、用いられる炭化性有機ポリマーとしては、例えば、ポリビニルアルコール、ポリアクリロニトリル、フェノール樹脂等の繊維形成能を有する炭化性有機ポリマーが挙げられる。これらの炭化性有機ポリマーに、不活性雰囲気下で効率的に炭化、必要に応じて賦活させて収率を向上させる目的で、酸、金属塩化物、ヨウ素等の各種添加剤を添加してもよい。炭化の際の処理温度は、例えば、600~2000℃の範囲である。炭化後にさらに、600℃以上の温度で、水蒸気賦活や炭酸ガス賦活等を行うことにより、比表面積の大きな活性炭繊維状物シートを形成することもできる。
 上記(5)の方法において、繊維状金属を得る方法としては、市販の金属細線をそのまま用いるほかに、溶剤可溶な樹脂からなる非導電性ポリマーに、導電性フィラーを練り込み繊維状に成形するか、該非導電性ポリマーからなる繊維状物に導電性塗料によるコーティング、金属めっきまたは蒸着等を施すことで得られる樹脂-導電体の複合体から、溶剤等により樹脂を溶解除去する方法、焼成により樹脂を除去もしくは炭化させる方法等が挙げられる。得られた繊維状金属を、さらに集積してシートとしてもよい。
 なお、上記(1)~(5)の各方法において、繊維の断面形状を異形化、あるいは表面に凹凸を付与することは、活物質と繊維状ネットワークの接着性を向上させ、活物質の脱落を抑制することから有用である。断面異形化は、紡糸時のノズル形状制御等、公知の方法により達成可能である。また、繊維表面への凹凸付与は、例えば紡糸時に粒子を練り込んでおき、後工程で除去する、あるいはプラズマにより処理する等の公知の方法を用いることができる。
[シート(B)]
 一方、本発明の導電性シートを構成するシート(B)は、直径3μm以下の繊維からなる。繊維の直径が3μmを超える場合は、繊維の密度が小さく集電性が十分でないため内部抵抗が増加してしまう。また活物質の抜け防止効果も低くなってしまう。
 また、シート(B)を構成する繊維の繊維径は好ましくは2μm以下、更に好ましくは1μm以下である。繊維径の下限は、特に限定するものではないが、強度や取り扱い性、生産性の観点から、例えば、0.03μm以上、好ましくは0.1μm以上、更に好ましくは0.3μm以上である。
 活物質を導電性シート内部に充填させるとともに、活物質がシートから抜け出るのを防ぐ観点から、シート(B)を構成する繊維は、シート(A)を構成する繊維よりも、その繊維径が小さいのが好ましい。例えば、シート(B)を構成する繊維の繊維径は、シート(A)を構成する繊維の繊維径の1/2以下であってもよく、好ましくは1/3以下であってもよい。また、シート(A)を構成する繊維の繊維径に応じて適宜設定することができるが、シート(B)を構成する繊維の繊維径は、シート(A)を構成する繊維の繊維径の1/10以上であることが多い。
 また、シート(B)の厚みは特に限定するものではないが、当該シートは活物質を担持するものではなく、電池の嵩を小さくする意味で、例えば20μm以下、好ましくは10μm以下、より好ましくは5μm以下であってもよい。
 また、シート(A)に対するシート(B)の厚みの比は、シート(A)および(B)の厚みに応じて適宜設定することが可能であるが、例えば、シート(B)/シート(A)=1/200~1/5、好ましくは1/150~1/8であってもよい。
 一方、シート(B)については、シート(A)と同様の方法で製造することができるが、繊維径が極めて小さいことから、特に静電紡糸法及びメルトブローン法が有利である。静電紡糸法により得られる繊維の直径は、用いるポリマーや条件により調整が可能であるが、直径が1μm以下の繊維からなるシートを容易に得ることができる。ポリマーは溶剤に可溶なものであれば特に限定されるものではないが、溶剤可溶性ポリマーとしては、たとえば、ポリフッ化ビニリデンやポリアミド、ポリプロピレン、ポリエステルなどが、電解液や酸化還元に対する化学的安定性が良好であり、好ましく用いられる。また、炭化することで導電化する場合はポリアクリロニトリルを用いることが好ましい。
 一方、メルトブローン法では概ね0.5~5μmの繊維からなるシートを得ることができ、溶融成形可能なポリマー、例えばポリプロピレンやポリエステルが好ましい。
 導電性ポリマーや、非導電性ポリマーに導電性フィラーを練り込んだものは静電紡糸やメルトブローンすることが困難である場合が多いので、加工しやすいポリマーでシートを形成した後、めっきや蒸着する方法が有利である。
[導電性シート]
 本発明の導電性シートは、それぞれ導電性を有するシート(A)とシート(B)とが少なくとも2層で積層されており、各シート(A)および(B)は、繊維レベルで導電化された導電性繊維から形成されている。
 本発明の導電性シートは、安定した集電性の観点からシート(A)とシート(B)を積層した状態で積層シート両面の表面抵抗が、それぞれの面において10Ω/□以下であることが必要であり、好ましくは1Ω/□以下、更に好ましくは0.1Ω/□以下である。
 本発明の導電性シートは、前述したように、シート(A)とシート(B)をそれぞれ個別に導電化し、それぞれ導電化したシート(A)および(B)を積層することもできるが、未導電性のシート(A)とシート(B)とをそれぞれ積層した後に、その積層体をめっきまたは蒸着、或いは炭化することにより導電化することもできる。その場合、めっき、蒸着、或いは炭化の手段については、シート(A)の項において上述した手法を適宜用いることができる。
 繊維及びシートの製造工程の安定性やコスト、シートの取り扱い性等の観点から、最も好ましい実施態様は、非導電性ポリマー(例えば、ポリエステルなど)の短繊維(例えば、繊維長0.5~20mm程度、好ましくは1~10mm程度)を抄紙して得た紙(シート(A)に相当)の上に、静電紡糸により溶剤可溶性ポリマー(たとえば、ポリフッ化ビニリデンなど)の極細繊維シート(シート(B)に相当)を吹きつけ、熱圧着により積層した後、めっきまたは蒸着する方法である。
 この方法によれば繊維の選択の幅が広く各シートの親和性の高いものを選択でき、更に溶融した極細繊維が直接シート(A)に相当するシート上でシート化されるので、各シートの互いの接着性が高いことでも好ましい。
 なお、本発明の導電性シートの積層構造は、単にシート(A)とシート(B)を重ねたものに限らず、(A)-(B)-(A)と、シート(B)を中心とした3層構造にし、両面に配設されたシート(A)に活物質を充填することも可能である。
 また、本発明の導電性シートの見掛け比重は、例えば、0.1~0.4g/cm程度、好ましくは0.15~0.35g/cm程度、さらに好ましくは0.2~0.3g/cm程度であってもよい。
[電極]
 本発明の電極は、上記の導電性シートの内部に活物質を含ませることで得られる。電極は、活物質が蒸着などで構成繊維を被覆する、活物質蒸着シートとして用いても良いし、活物質が、導電性シートの内部(特に、シート(A)の内部)へ充填されている、活物質充填シートとして用いても良い。また、本発明の電極では、蒸着などにより導電性シートの繊維を活物質で被覆したのちに、粒子状の活物質を更に充填してもよい。
(活物質充填シート)
 本発明の電極に用いられる活物質としては、一例として活性炭が挙げられる。活性炭が充填された電極は、例えば、電気二重層キャパシタ分極性電極として好適に用いられる。
 また、活物質の別の例としては、リチウムイオンを吸蔵・放出する負極活物質が挙げられる。負極活物質としては、例えば黒鉛、ハードカーボン類等の炭素質材料、ケイ素単体およびその化合物、スズ単体及びその化合物、およびゲルマニウム化合物が挙げられ、これらの中から少なくとも1つを選択することができる。これらの負極活物質が充填された電極は、例えば、リチウムイオン二次電池の負極として好適に用いられる。
 活物質を充填する場合、シート内部へ充填される限り、活物質の形状については特に制限はなく、粒子状の活物質をそのまま充填してもよいし、活物質をペースト状に分散したものを充填してもよい。さらに、所定の充填量を達成できるのであれば、真空蒸着法、ガスデポジション法、CVD法、等の公知の気相プロセスやウェットプロセスを使用してもよい。これらのうち、工程の簡便性の観点から、粉粒状の活物質を、導電性シートの空隙に対して直接充填することが好ましい。
 粒子状の活物質を充填する場合、活物質の平均粒子径は、例えば、0.1~100μmの広い範囲から選択可能であり、好ましくは0.5~80μm、より好ましくは1~50μmであってもよい。
 また、粒子状の活物質の充填量は、活物質の種類に応じて適宜決定することができるが、例えば、30~250g/m程度、好ましくは50~200g/m程度、より好ましくは80~150g/m程度であってもよい。
 活物質充填シートでは、活物質はシート(A)、シート(B)のいずれに含まれていても問題ないが、通常、シート(B)より空隙の多いシート(A)に活物質がより多く含まれている場合が多く、シート(A)において、活物質が含まれていると、電極の性能上好ましい。
 導電性シートの間隙に、粒子状の活物質を直接充填するにあたっては、工程の簡便性の観点からドライプロセスを用いることが好ましく、シート(A)の側から活物質粉体を気流で吹きつけて充填する、或いは活物質を定量供給して充填する、等の方法で充填することができる。
(活物質蒸着シート)
 一方、本発明の電極において、活物質の少なくとも一部が構成繊維の少なくとも一部を被覆している場合(すなわち、活物質蒸着シート)、繊維表面の被覆に用いられる活物質としては、リチウムイオンを吸蔵・放出する負極活物質が挙げられる。負極活物質としては、ケイ素単体及びその化合物、スズ単体及びその化合物、及びゲルマニウム化合物が挙げられ、これらの中から少なくとも1つを選択することができる。これらの中でも、高容量化の観点からケイ素単体、ケイ素合金が特に好ましい。さらに、電極にこれらの負極活物質を充填した電極は、リチウムイオン二次電池の負極として好適に用いられる。
 構成繊維の表面に活物質を被覆する方法としては、例えば、上記の導電性シートに真空蒸着法、ガスデポジション法、CVD法、等の公知の気相プロセスやウェットプロセスを使用して、活物質を導電性シートに対して蒸着する方法が挙げられ、特に工程簡略化の観点から、上記(3)における蒸着法に引き続き、活物質を蒸着する方法を採用することが好ましい。活物質の蒸着量は、電池構成に応じて選択することができるが、容量とサイクル特性のバランスの観点から、50nm~10μm、好ましくは50nm~1μm、より好ましくは55~80nmの範囲が例示できる。
 上述した活物質充填シートおよび活物質蒸着シートに対しては、必要に応じて、活物質を導電性シートに付与した後に、プレス等により、電極におけるシート(A)とシート(B)との一体性とともに、シート(A)に含まれている活物質の保持性を向上させてもよい。
 得られた活物質蒸着シートは、プレスにより、活物質の膨張に応じた緩和空間を考慮した見掛け比重に調整することが好ましい。こうして得られた本発明の電極は、蓄電デバイスの電極として好適に用いられる。
 なお、本発明では、バインダー及び助電剤の使用を省略することが可能であるが、必要に応じて、活物質と一般に用いられている導電剤やバインダーを併用することも可能である。
 本発明の導電性シートは、以上に述べたように、例えば、電気二重層キャパシタ分極性電極、リチウムイオン二次電池負極以外にも、リチウムイオン二次電池の正極、リチウムイオンキャパシタの正極、負極等、活物質を利用するデバイスに適用可能であり、それぞれに使用される活物質を充填または蒸着して電極とすることができる。
 以下、実施例により本発明をより詳細に説明するが、本発明は実施例により何ら制限されるものではない。尚、実施例における各物性値は以下の方法により測定した。
(シート(A)の繊維直径)
 繊維の繊度から換算した。
(シート(A)の厚さ)
 得られた導電性シートの断面の顕微鏡写真から測定した。
(シート(A)の見掛け比重)
 シート(A)の目付けと厚さから計算した。
(シート(B)の繊維直径)
 走査型電子顕微鏡(SEM)により撮影し、ネガ上に見られる繊維を任意に30本選び、これらの繊維径をデジタイザーにより計測し、その平均値を求めた。 
(シート(A)と(B)の見掛け比重の比較)
 導電性シートの断面の走査電子顕微鏡写真から面積あたりの繊維断面の占める割合と、各シートの構成樹脂の比重との積を指標として比較した。
(表面抵抗の測定)
 導電性シートを、温度20℃、湿度65%の条件下で24時間以上放置させて調湿した。このシートから長さ2cm×幅1cmの試験片を採取し、該試験片の両端間に、横河ヒューレットパッカード社製の抵抗値測定機「MULTIMETER」を使用して、10Vの電圧をかけてその抵抗値(Ω)を測定した。そして、以下の式により各試験片の表面抵抗値を求め、これを25試験片について行い、その平均値を試料の表面抵抗とした。
  表面抵抗(Ω/□)=R×(W/L)
  R:試験片の抵抗値(Ω)、W:試験片の幅(1cm)、L:試験片の長さ(2cm)
[実施例1]
(導電性シートの作成)
 ポリエステルよりなる繊度1.0デシテックス(直径10μm)、繊維長5mmの短繊維70部および芯成分ポリエステル、鞘成分変性ポリエステルの芯鞘型複合繊維(株式会社クラレ製N720)30部を用い、抄紙法により目付け20g/m、見掛け比重0.2g/cm、厚み105μmのシート(A)を作成した。
 ついで、このシート(A)の片面に静電紡糸により、ポリフッ化ビニリデンの極細繊維シート(B)を吹きつけた。この静電紡糸の手順としては、ターゲット上に上記シート(A)を敷設し、ポリフッ化ビニリデンを5%の濃度でDMFに溶解してシリンジに入れ、シリンジの先端とターゲットとの間に20KVの電圧を印加し、シート(A)上に直径0.5μmのポリフッ化ビニリデン繊維よりなる厚さ2μmの層を形成せしめ、熱圧着して積層シートを得た。
 次いで、この積層シートに、無電解メッキ法により、金属銅(Cu)をメッキし、導電性シートを得た(めっき厚み:1~2μm)。得られた導電性シートの表面抵抗は、シート(A)側で0.08Ω/□、シート(B)側で0.02Ω/□であった。めっき後の導電性シートの見掛け比重は0.24g/cmであった。また、断面を観察した結果、シート(B)はシート(A)よりも見掛け比重が大きかった。また、得られた導電性シートのシート(A)の厚さは98μmであり、シートAの見掛け比重は0.21g/cm(繊維体積含有率15.2%)であった。
(電極の作成)
 得られた導電性シートに対し、ポリフッ化ビニリデン層を下面とした状態で微振動させながら、上面(シート(A)側)から人造黒鉛粉末(平均粒子径15μm)を100g/mとなるように定量供給し、導電性シートの空隙に充填させた。然る後に、120℃にて平板プレスして、集電層と活物質層が一体となった厚みが90μmの電極を得た。
(評価用リチウムイオン二次電池の作成)
 ここで得られた電極の充放電特性を評価するために、該電極を負極とするリチウムイオン二次電池を作成した。対極にリチウム箔を使用し、非水電解質として六フッ化リン酸リチウムをエチレンカーボネートと1,2-ジメトキシエタンの1/1(体積比)混合液に1モル/Lの濃度で溶解した溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。
 作製したリチウムイオン二次電池を一晩室温で放置した後、(株)ナガノ製の二次電池充放電試験装置を用い、テストセルの電圧が0Vに達するまで1mAの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が20μAを下回った時点で充電を終了した。放電は1mAの定電流で放電を行い、セル電圧が1.8Vを上回った時点で放電を終了し、放電容量を求めた。
 上記の操作を繰り返し、評価用リチウムイオン二次電池の10サイクルの充放電試験を行った。その結果、初回充電容量:330mAh/g、初回放電容量:315mAh/g、初回充放電時の効率:95.5%、10サイクル目の放電容量:310mAh/g、10サイクル後のサイクル保持率:98.4%であり、初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。
[実施例2]
(導電性シートの作成)
 実施例1と同様に作成したシート(A)の片面に、メルトブローン法により作成した直径3μm、厚さ10μmのポリプロピレンシート(B)を熱圧着により積層した。
 次いで、この積層シートに、無電解メッキ法により、金属銅(Cu)をメッキし、導電性シートを得た(めっき厚み:3μm)。得られた導電性シートの表面抵抗は、(A)側で0.08Ω/□、メルトブローンシート側で0.06Ω/□であった。めっき後の導電性シートの見掛け比重は0.21g/cmであった。また、断面を観察した結果、シート(B)はシート(A)よりも見掛け比重が大きかった。また、得られた導電性シートのシート(A)の厚さは98μmであり、シートAの見掛け比重は0.21g/cm(繊維体積含有率15.2%)であった。
 該シートを用いて、実施例1と同様の方法で電極及びリチウムイオン電池を作製し、評価した結果、初回充電容量:318mAh/g、初回放電容量:298mAh/g、初回充放電時の効率:93.7%、10サイクル目の放電容量:291mAh/g、10サイクル後のサイクル保持率:97.7%と優れたものであった。
[実施例3]
(電極の作成)
 実施例1と同様にして得られた導電性シートに、真空蒸着法により、シリコン単体(Si)を蒸着して電極を作成した。このとき、蒸着源としてSi粉末200~300mesh、純度99.999%を使用し、蒸着厚みは1000Å(0.1μm)相当であった。然る後に、120℃にて平板プレスして、集電層と活物質層が一体となった厚みが20μmの電極を得た。
(評価用リチウムイオン二次電池の作成)
 得られた電極の充放電特性を実施例1と同様の方法により評価した。その結果、初回充電容量:1210mAh/g、初回放電容量:980mAh/g、初回充放電時の効率:81.0%、10サイクル目の放電容量:900mAh/g、10サイクル後のサイクル保持率:91.8%であり、高容量で、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。
[比較例1]
 実施例1において、シート(A)の目付けを70g/cm、見掛け比重を0.70g/cmとする以外は、実施例1と同様にして導電性シートを作成した。得られた導電性シートは、活物質を充填できる空隙が少ない上、内部まで均質に活物質粒子を充填させることが困難なものであった。
[比較例2]
 実施例1と同様に作成したシート(A)にポリフッ化ビニリデン層を積層することなく、金属銅をメッキし、導電性シートを作成した。得られた導電性シートの表面抵抗は、両面とも0.08Ω/□であったが、活物質を充填させる際に粒子の抜けが起こり、活物質保持性に劣るものであった。また、参考例1と同様にリチウムイオン電池を作成して性能を評価した結果、初回充電容量:330mAh/g、初回放電容量:260mAh/g、初回充放電時の効率:78.8%と満足できるものではなかった。極細繊維シートを使用しなかったために、集電性が悪くなったものと推察される。
[比較例3]
 メルトブローン法によるポリプロピレン製のシートに代えて、直径が25μmのポリエステルスパンボンドシートを用いた以外は、実施例2と同様の操作で導電性シートを得た。得られたシートは、活物質を充填させる際に粒子の抜けが起こり、活物質保持性に劣るものであった。
[比較例4]
 シート(A)に用いるポリエステル繊維として、直径30μm、繊維長5mmの短繊維を用いる以外は、実施例1と同様にして導電性シートを作成し、参考例1と同様にリチウムイオン電池を作成して評価した。
 活物質を充填した後の工程では、活物質の脱落が目立った。電池の評価においては、初回充電容量:310mAh/g、初回放電容量:220mAh/g、初回充放電時の効率:71.0%と低いものであった。シート内部の導電パスが疎な構造となり、充填した活物質の容量を有効活用できなかったと推定される。
[実施例4]
 メッキ条件を変更した以外は実施例1と同様に導電性シート、電極、評価用リチウムイオン二次電池を作成した。
[比較例5]
 メッキ条件を変更した以外は実施例1と同様に導電性シート、電極、評価用リチウムイオン二次電池を作成した。
 実施例4と比較例5の評価結果を表1にまとめた。表から明らかなように、本発明の範囲よりも表面抵抗の高い導電性シートをもちいた電池の性能は劣悪である。
Figure JPOXMLDOC01-appb-T000001
[実施例5]
 人造黒鉛粉末に代えて、平均粒径5μmのシリコン粉末を50g/m充填した以外は実施例1と同様に電極(負極)を作成し、同様に電池評価を行った。
[比較例6]
 一方、同じシリコン粉末を70部、バインダーとしてポリフッ化ビニリデン10部、導電剤として炭素粉末20部を混練、圧延してシート化し、銅箔に貼り付けて電極(負極)を作成し、同様に電池評価を行った。
 実施例5と比較例6の電池性能を表2で比較した。本発明の電極を用いることにより、体積膨張の大きなシリコンを負極活物質として使用した場合のサイクル寿命が、大幅に改善されることが明白である。
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、活物質の充填あるいは蒸着に好適な導電性シートが得られ、バインダー、導電助剤、溶媒を使用せずに活物質層を形成することが可能となるため、活物質を利用する蓄電デバイス、特にリチウムイオン二次電池および電気二重層キャパシタの製造および利用に関係する産業上の各分野において有用である。
 以上のとおり、図面を参照しながら本発明の好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
 

Claims (12)

  1.  両面の表面抵抗がそれぞれ10Ω/□以下である導電性シートであって、前記導電性シートは、直径が3μm~20μmの繊維からなる、見掛け比重0.05~0.50g/cmを有するシート(A)と、直径が3μm以下の繊維からなり、前記シート(A)に積層されたシート(B)とを含む導電性シート。
  2.  シート(B)が、不織布を導電化したシートであり、前記不織布は、有機ポリマーを主たる構成成分として、静電紡糸法またはメルトブローン法により形成された不織布から構成されている請求項1に記載の導電性シート。
  3.  シート(B)を主として構成する有機ポリマーが、ポリフッ化ビニリデン、ポリアミド、ポリプロピレン、ポリエステルおよびポリアクリロニトリルからなる群から選択された少なくとも一種である請求項1または2に記載の導電性シート。
  4.  シート(A)が、有機ポリマーを主たる構成成分として形成された繊維状物である請求項1から3のいずれか一項に記載の導電性シート。
  5.  シート(B)が、シート(A)よりも大きな見掛け比重を有する請求項1から4のいずれか一項に記載の導電性シート。
  6.  請求項1から5のいずれか一項に記載された導電性シートから形成されるとともに、活物質を少なくとも含んでいる電極であって、
     前記電極では、(i)少なくともシート(A)の構成繊維間の空隙に前記活物質が含まれているか、(ii)少なくともシート(A)の構成繊維を前記活物質が被覆しているか、または(iii)上記(i)および(ii)の双方である電極。
  7.  活物質が粒子状活物質であり、少なくともシート(A)の構成繊維間に前記粒子状活物質が直接充填されている、請求項6に記載の電極。
  8.  活物質が、蒸着により、少なくともシート(A)の構成繊維を被覆している、請求項6に記載の電極。
  9.  活物質が、炭素質材料、ケイ素単体、ケイ化合物、スズ単体、スズ化合物、およびゲルマニウム化合物からなる群より選ばれた少なくとも1つを含む、請求項6から8のいずれか一項に記載の電極。
  10.  活物質が、リチウムイオンを吸蔵・放出することが可能な負極活物質である、請求項6から9のいずれか一項に記載の電極。
  11.  リチウム二次電池または電気二重層キャパシタに用いられる、請求項6から10のいずれか一項に記載の電極。
  12.  直径が3μmを超えて20μm以下の繊維からなる、見掛け比重0.05~0.40g/cmを有するシート(A)と、前記シート(A)を構成する繊維よりも小さな直径を有するとともに、その直径が3μm以下の繊維からなるシート(B)とが積層された構造を含む導電性シートであって、該導電性シートの両面の表面抵抗が、それぞれ10Ω/□以下である導電性シート。
PCT/JP2010/052887 2009-03-09 2010-02-24 導電性シートおよび電極 WO2010103927A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011503763A JP5400866B2 (ja) 2009-03-09 2010-02-24 導電性シートおよび電極
EP10750681.8A EP2408046B1 (en) 2009-03-09 2010-02-24 Conductive sheet and electrode
CA2754051A CA2754051C (en) 2009-03-09 2010-02-24 Conductive sheet and electrode
US13/226,010 US8211573B2 (en) 2009-03-09 2011-09-06 Multilayered conductive sheet and electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009054468 2009-03-09
JP2009-054468 2009-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/226,010 Continuation US8211573B2 (en) 2009-03-09 2011-09-06 Multilayered conductive sheet and electrode

Publications (1)

Publication Number Publication Date
WO2010103927A1 true WO2010103927A1 (ja) 2010-09-16

Family

ID=42728217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052887 WO2010103927A1 (ja) 2009-03-09 2010-02-24 導電性シートおよび電極

Country Status (7)

Country Link
US (1) US8211573B2 (ja)
EP (1) EP2408046B1 (ja)
JP (1) JP5400866B2 (ja)
KR (1) KR101653019B1 (ja)
CA (1) CA2754051C (ja)
TW (1) TWI452757B (ja)
WO (1) WO2010103927A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137206A1 (ja) * 2012-03-12 2013-09-19 ダイワボウホールディングス株式会社 導電性繊維構造物、金属多孔構造物、電池用電極材、及び電池
US20130323602A1 (en) * 2011-04-08 2013-12-05 Mitsui Mining & Smelting Co., Ltd. Composite metal foil and production method therefor
US8617751B2 (en) 2011-02-07 2013-12-31 Japan Vilene Company, Ltd. Water control sheet, gas diffusion sheet, membrane-electrode assembly and polymer electrolyte fuel cell
JP2014512066A (ja) * 2011-03-15 2014-05-19 ナノ−ヌーベル プロプライアタリー リミテッド バッテリー
JP2014096296A (ja) * 2012-11-09 2014-05-22 National Institute Of Advanced Industrial & Technology 電解析出法を利用するリチウム二次電池用ファイバー正極の製造方法、及びリチウム二次電池用ファイバー正極
JP2019091669A (ja) * 2017-11-17 2019-06-13 旭化成株式会社 二次電池用不織布集電体
JPWO2022118692A1 (ja) * 2020-12-01 2022-06-09

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9172099B2 (en) * 2010-11-15 2015-10-27 GM Global Technology Operations LLC Nano-fibers for electrical power generation
EP2793303B1 (de) * 2013-04-16 2017-08-09 VARTA Micro Innovation GmbH Lithium-Ionen-Zelle mit optimierter Elektrodenkinetik
EP2846384B1 (en) * 2013-09-04 2019-03-20 VARTA Microbattery GmbH Thin and flexible electrochemical cell
CN107978732B (zh) * 2014-06-20 2020-03-27 东莞新能源科技有限公司 极片及电池
KR101622354B1 (ko) * 2014-10-14 2016-05-18 울산과학기술원 삼차원구조 전극의 제조 방법, 그리고 상기 전극을 포함하는 전기 화학 소자
KR101728828B1 (ko) * 2016-04-01 2017-04-20 울산과학기술원 삼차원구조 전극, 및 이를 포함하는 전기 화학 소자
KR20180049401A (ko) * 2016-11-01 2018-05-11 주식회사 아모그린텍 전극 및 이를 이용한 이차전지와 전극의 제조방법
CN109755497B (zh) 2017-11-08 2022-10-25 株式会社Lg新能源 具有三维结构的电极和包含其的电化学装置
WO2022226814A1 (zh) * 2021-04-28 2022-11-03 宁德新能源科技有限公司 电极极片及包含其的电化学装置和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313326A (ja) * 2001-04-19 2002-10-25 Sanyo Electric Co Ltd リチウム二次電池の製造方法
JP2004193062A (ja) * 2002-12-13 2004-07-08 Japan Vilene Co Ltd 電池用集電材及びこれを用いた電池
JP2005347147A (ja) * 2004-06-04 2005-12-15 Pionics Co Ltd リチウム二次電池用負極活物質粒子および負極の製造方法
JP2007122927A (ja) * 2005-10-25 2007-05-17 Bussan Nanotech Research Institute Inc 導電性シート
JP2008028258A (ja) * 2006-07-24 2008-02-07 Nisshinbo Ind Inc 積層シートおよびその製造方法
JP2008198470A (ja) * 2007-02-13 2008-08-28 Sumitomo Electric Ind Ltd 電池用不織布基板の製造方法、およびそれを用いた電池用電極および電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655467B2 (ja) * 1990-07-24 1994-07-27 三島製紙株式会社 電気絶縁層を有する耐熱難燃導電シートおよびその製造法
JP3427435B2 (ja) 1993-04-14 2003-07-14 上村工業株式会社 リチウム系二次電池用電極及びリチウム系二次電池
US5434024A (en) 1993-04-14 1995-07-18 C. Uyemura & Co., Ltd. Electrode
AT408288B (de) * 2000-05-10 2001-10-25 Funktionswerkstoffe Forschungs Mehrschichtige elektrode
JP4212263B2 (ja) 2000-09-01 2009-01-21 三洋電機株式会社 リチウム二次電池用負極及びその製造方法
CA2420104C (en) 2000-09-01 2012-10-30 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and method for producing the same
JP4037229B2 (ja) 2002-09-30 2008-01-23 日立マクセル株式会社 リチウム二次電池用電極と、これを負極とするリチウム二次電池
KR20070026426A (ko) * 2004-03-24 2007-03-08 미쓰비시 쥬시 가부시끼가이샤 전도성 열가소성 수지 필름 및 전도성 열가소성 수지 적층필름
JP4594965B2 (ja) * 2007-08-09 2010-12-08 パナソニック株式会社 リチウムイオン二次電池用負極集電体、リチウムイオン二次電池用負極およびリチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313326A (ja) * 2001-04-19 2002-10-25 Sanyo Electric Co Ltd リチウム二次電池の製造方法
JP2004193062A (ja) * 2002-12-13 2004-07-08 Japan Vilene Co Ltd 電池用集電材及びこれを用いた電池
JP2005347147A (ja) * 2004-06-04 2005-12-15 Pionics Co Ltd リチウム二次電池用負極活物質粒子および負極の製造方法
JP2007122927A (ja) * 2005-10-25 2007-05-17 Bussan Nanotech Research Institute Inc 導電性シート
JP2008028258A (ja) * 2006-07-24 2008-02-07 Nisshinbo Ind Inc 積層シートおよびその製造方法
JP2008198470A (ja) * 2007-02-13 2008-08-28 Sumitomo Electric Ind Ltd 電池用不織布基板の製造方法、およびそれを用いた電池用電極および電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2408046A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617751B2 (en) 2011-02-07 2013-12-31 Japan Vilene Company, Ltd. Water control sheet, gas diffusion sheet, membrane-electrode assembly and polymer electrolyte fuel cell
JP2014512066A (ja) * 2011-03-15 2014-05-19 ナノ−ヌーベル プロプライアタリー リミテッド バッテリー
US9876230B2 (en) 2011-03-15 2018-01-23 Nano-Nouvelle Pty Ltd Batteries
US9595719B2 (en) * 2011-04-08 2017-03-14 Mitsui Mining & Smelting Co., Ltd. Composite metal foil and production method therefor
US20130323602A1 (en) * 2011-04-08 2013-12-05 Mitsui Mining & Smelting Co., Ltd. Composite metal foil and production method therefor
JPWO2013137206A1 (ja) * 2012-03-12 2015-08-03 ダイワボウホールディングス株式会社 導電性繊維構造物、金属多孔構造物、電池用電極材、及び電池
WO2013137206A1 (ja) * 2012-03-12 2013-09-19 ダイワボウホールディングス株式会社 導電性繊維構造物、金属多孔構造物、電池用電極材、及び電池
JP2014096296A (ja) * 2012-11-09 2014-05-22 National Institute Of Advanced Industrial & Technology 電解析出法を利用するリチウム二次電池用ファイバー正極の製造方法、及びリチウム二次電池用ファイバー正極
JP2019091669A (ja) * 2017-11-17 2019-06-13 旭化成株式会社 二次電池用不織布集電体
JP6995579B2 (ja) 2017-11-17 2022-01-14 旭化成株式会社 二次電池用不織布集電体
JPWO2022118692A1 (ja) * 2020-12-01 2022-06-09
WO2022118692A1 (ja) * 2020-12-01 2022-06-09 クラレクラフレックス株式会社 集電体、電極および非水電解質電池
JP7431348B2 (ja) 2020-12-01 2024-02-14 クラレクラフレックス株式会社 集電体、電極および非水電解質電池

Also Published As

Publication number Publication date
US20110318642A1 (en) 2011-12-29
JP5400866B2 (ja) 2014-01-29
TWI452757B (zh) 2014-09-11
EP2408046B1 (en) 2017-08-23
KR101653019B1 (ko) 2016-08-31
EP2408046A1 (en) 2012-01-18
EP2408046A4 (en) 2014-10-08
US8211573B2 (en) 2012-07-03
JPWO2010103927A1 (ja) 2012-09-13
CA2754051A1 (en) 2010-09-16
TW201042803A (en) 2010-12-01
CA2754051C (en) 2017-07-11
KR20110132571A (ko) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5400866B2 (ja) 導電性シートおよび電極
Agubra et al. Composite nanofibers as advanced materials for Li-ion, Li-O2 and Li-S batteries
JP2010080419A (ja) 導電性シートおよび電極用シート
KR101900243B1 (ko) 리튬 이온 전지를 위한 나노 섬유를 포함하는 애노드 물질
Lee et al. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries
JP5527317B2 (ja) リチウムイオン二次電池用負極及びこれを用いた電池
US20110163274A1 (en) Electrode composite, battery electrode formed from said composite, and lithium battery comprising such an electrode
WO2015093411A1 (ja) リチウムイオン電池用電極、リチウムイオン電池及びリチウムイオン電池用電極の製造方法
KR101209847B1 (ko) 다공성 cnf 집전체 및 이를 이용한 전극과 그의 제조방법
KR101276336B1 (ko) 다공성 cnf 집전체를 이용한 리튬 이온 커패시터용 전극과 그의 제조방법 및 이를 이용한 리튬 이온 커패시터
JP5679260B2 (ja) 硫黄と導電性ポリマーよりなる複合体
KR20130116420A (ko) 리튬 이차 전지용 음극 조립체 및 이의 제조 방법
JP4973892B2 (ja) キャパシタ
JP4973882B2 (ja) キャパシタ
CN111699575A (zh) 锂二次电池用负极和包含所述锂二次电池用负极的锂二次电池
Baboukani et al. Electrostatic spray deposited Sn-SnO2-CNF composite anodes for lithium ion storage
JP2019091669A (ja) 二次電池用不織布集電体
JP2012204121A (ja) 蓄電デバイス用電極
JP2005243588A (ja) リチウム電池用集電材、その製造方法、及びリチウム電池
KR101984852B1 (ko) 나노 섬유 그물구조를 활용한 전극 및 이의 제조방법
KR20240003992A (ko) 이차전지용 음극 및 이를 포함하는 이차전지
KR20240112424A (ko) 도전재 분산액, 이를 이용하여 제조한 이차전지용 음극 및 이를 포함하는 이차전지
JP2024156417A (ja) 電極支持体
JP4973897B2 (ja) キャパシタ
KR20240113498A (ko) 리튬 금속 전극, 리튬 이온 전극의 제조 방법 및 리튬 이온 배터리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011503763

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2754051

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010750681

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010750681

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117022305

Country of ref document: KR

Kind code of ref document: A