WO2010098305A1 - 骨セメント組成物及び骨セメント組成物キット並びに骨セメント硬化体の形成方法 - Google Patents

骨セメント組成物及び骨セメント組成物キット並びに骨セメント硬化体の形成方法 Download PDF

Info

Publication number
WO2010098305A1
WO2010098305A1 PCT/JP2010/052703 JP2010052703W WO2010098305A1 WO 2010098305 A1 WO2010098305 A1 WO 2010098305A1 JP 2010052703 W JP2010052703 W JP 2010052703W WO 2010098305 A1 WO2010098305 A1 WO 2010098305A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
bone cement
acrylate
cement composition
particles
Prior art date
Application number
PCT/JP2010/052703
Other languages
English (en)
French (fr)
Inventor
中村 孝志
公志 後藤
渋谷 武宏
上田 泰行
徳雄 吹田
今村 匡志
啓晃 西井
Original Assignee
国立大学法人京都大学
アドバンスド・メディックス株式会社
石原産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, アドバンスド・メディックス株式会社, 石原産業株式会社 filed Critical 国立大学法人京都大学
Priority to NO10746186A priority Critical patent/NO2402041T3/no
Priority to EP10746186.5A priority patent/EP2402041B1/en
Priority to CN201080009452.6A priority patent/CN102333553B/zh
Priority to ES10746186.5T priority patent/ES2655887T3/es
Priority to CA2752411A priority patent/CA2752411C/en
Priority to JP2011501593A priority patent/JP5602127B2/ja
Priority to DK10746186.5T priority patent/DK2402041T3/da
Priority to US13/203,221 priority patent/US8609746B2/en
Publication of WO2010098305A1 publication Critical patent/WO2010098305A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0047Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L24/0073Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix
    • A61L24/0089Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix containing inorganic fillers not covered by groups A61L24/0078 or A61L24/0084
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/02Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/06Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention relates to a bone cement composition, a bone cement composition kit, and a method for producing a hardened bone cement.
  • a PMMA bone cement composition generally contains polymethyl methacrylate, a methyl methacrylate monomer that is a polymerizable monomer, and a polymerization initiator, and the methyl methacrylate monomer is polymerized in the presence of polymethyl methacrylate. By doing so, the viscosity gradually increases and finally a cured body is formed.
  • a PMMA bone cement composition that has been conventionally used has biocompatibility, but has bioactivity, that is, bone-binding ability to bind to bone. Because it is not a thing, especially when used as an adhesive to fix the artificial joint and the surrounding bone, the adhesive will be isolated from the surrounding bone after a long period of time after application, Due to this, there is a problem that loosening occurs between the artificial joint and the bone. To solve this problem, titanium dioxide particles are added for the purpose of imparting bioactivity. A composition has been proposed (see, for example, Patent Document 1).
  • Such a bone cement composition is usually in a state where the viscosity is somewhat high by starting the polymerization reaction of the methyl methacrylate monomer by kneading immediately before application, such as during surgery, and leaving the kneaded material to stand. It is used by being applied to the application target part by handling work.
  • the present invention has been made based on the above circumstances, and its purpose is to shorten the downtime, which is the time required to achieve a good handling operation, and to start the handling operation as a result.
  • Bone cement composition capable of obtaining high working efficiency by shortening the time required for the preparation, bone cement composition kit for obtaining bone cement composition, and bone cement hardening obtained by hardening bone cement composition It is in providing the manufacturing method of a body.
  • the bone cement composition of the present invention comprises a (meth) acrylate polymer large particle having an average particle diameter of 10 to 60 ⁇ m, a (meth) acrylate polymer small particle having an average particle diameter of 0.1 to 2.0 ⁇ m, Containing a (meth) acrylate monomer and a polymerization initiator,
  • the content ratio of the (meth) acrylate polymer small particle is 5 to 30% by mass with respect to the total amount of the (meth) acrylate polymer small particle and the (meth) acrylate polymer large particle.
  • the bone cement composition of the present invention preferably contains a filler.
  • the filler preferably contains at least titanium dioxide particles.
  • the titanium dioxide particles are preferably spherical particles having a median diameter measured by a laser diffraction / scattering particle size distribution meter of 0.5 to 7.0 ⁇ m.
  • the filler may contain barium sulfate and / or zirconium oxide.
  • part or all of the (meth) acrylate polymer small-diameter particles are preferably contained in the form of aggregates having an average particle diameter of 30 to 50 ⁇ m.
  • the bone cement composition kit of the present invention is a bone cement composition kit for obtaining the above-mentioned bone cement composition, wherein (meth) acrylate polymer large-diameter particles, (meth) acrylate polymer small-diameter particles and polymerization initiation It contains a polymerization initiator-containing kit component containing an agent and a monomer-containing kit component containing a (meth) acrylate monomer.
  • the polymerization initiator-containing kit component preferably contains a filler containing at least titanium dioxide particles.
  • part or all of the (meth) acrylate polymer small-diameter particles are preferably contained in the form of aggregates having an average particle diameter of 30 to 50 ⁇ m.
  • the method for producing a hardened bone cement according to the present invention comprises a large (meth) acrylate polymer particle having an average particle size of 10 to 60 ⁇ m and a small (meth) acrylate polymer particle having an average particle size of 0.1 to 2.0 ⁇ m.
  • the (meth) acrylate polymer small-diameter particles are used in an amount of 5 to 30% by mass based on the total amount of the (meth) acrylate polymer small-diameter particles and the (meth) acrylate polymer large-diameter particles.
  • the method for producing a hardened bone cement of the present invention it is preferable to polymerize the (meth) acrylate monomer through a process of leaving a kneaded product of the (meth) acrylate monomer and the polymerization initiator.
  • kneading of the (meth) acrylate monomer and the polymerization initiator is carried out together with the (meth) acrylate polymer large-diameter particles and the (meth) acrylate polymer small-diameter particles at least. It is preferably carried out in the presence of a filler containing titanium particles.
  • a part or all of the (meth) acrylate polymer small-diameter particles are kneaded in the form of an aggregate having an average particle diameter of 30 to 50 ⁇ m.
  • the (meth) acrylate polymer large-diameter particles and the (meth) acrylate polymer small-diameter particles having a specific average particle diameter smaller than that of the large-diameter particles are in a specific ratio. Since the time required to reach a state having sufficient viscosity required for performing the handling work is shortened by being contained, the time required to be able to perform a good handling work As a result, the time required for starting the handling work is shortened, resulting in high work efficiency. Such an effect is particularly prominent when a filler containing titanium dioxide particles is contained, and the addition of the filler can reduce the downtime which tends to require a long time. Therefore, work efficiency can be improved.
  • the bone cement composition kit of the present invention since the bone cement composition can be obtained by simply kneading the kit components, a hardened body of the bone cement composition can be easily produced, Since the (meth) acrylate monomer and the polymerization initiator are separate kit components, the (meth) acrylate monomer is polymerized in a stored state or a transported state before application. Can be prevented.
  • the polymerization reaction of a (meth) acrylate monomer for forming a base component in the hardened bone cement to be formed is a large particle of (meth) acrylate polymer.
  • the time required to achieve a state of having a sufficient viscosity required to proceed quickly in the initial stage by being performed in the presence of the (meth) acrylate-based polymer small-diameter particles and perform a good handling operation Because of this, the downtime, which is the time required to get a good handling work, is shortened, and as a result, the time required to start the handling work is shortened. Efficiency can be obtained.
  • FIG. 13 It is a SEM photograph which shows the surface (before being immersed in a pseudo body fluid) of the bone cement hardening body obtained from the composition which concerns on Example 13.
  • FIG. 13 It is a SEM photograph which shows the surface after being immersed in the simulated body fluid of the bone cement hardening body obtained from the composition which concerns on Example 13.
  • FIG. 13 It is a SEM photograph which shows the surface after being immersed in the pseudo body fluid of the bone cement hardening body obtained from the composition which concerns on Example 14.
  • FIG. It is a SEM photograph which shows the surface after being immersed in the pseudo body fluid of the bone cement hardening body obtained from the composition which concerns on Example 15.
  • FIG. 15 It is a SEM photograph which shows the surface (before being immersed in a pseudo body fluid) of the bone cement hardening body obtained from the composition which concerns on Example 13.
  • FIG. 17 It is the photograph of the bone cement hardened
  • the bone cement composition of the present invention comprises a (meth) acrylate monomer, a polymerization initiator, and a (meth) acrylate polymer large particle having an average particle size of 10 to 60 ⁇ m, preferably 20 to 60 ⁇ m.
  • the bone cement composition of the present invention comprises (meth) acrylate monomer and (meth) acrylate polymer large-diameter particles as well as (meth) acrylate polymer small-diameter particles as components for substrate formation.
  • the (meth) acrylate monomer which is a polymerizable monomer among the material forming components, is polymerized so that the viscosity gradually increases and becomes a paste, which is finally cured to form a cured product. It is.
  • the cured product obtained by curing the bone cement composition of the present invention has a base component composed of a polymer formed by polymerizing a (meth) acrylate-based monomer, and this (meth) acrylate-based polymer. It is formed by (meth) acrylate polymer large-diameter particles and (meth) acrylate polymer small-diameter particles that constitute a substrate forming component together with a monomer.
  • the (meth) acrylate polymer small-diameter particles which are essential components of the bone cement composition of the present invention, are in a state where a good handling operation can be performed in the process of hardening the bone cement composition, specifically, a sufficient viscosity. It acts as a dow time adjusting agent for adjusting and shortening the dow time, which is the time required to reach the state of having.
  • dow time means that the kneaded material adheres to the surgical latex glove after starting kneading in the measurement method “ISO5833 Annex B” based on the ISO standard, which is an international standard for acrylic surgical bone cement. It is defined as the time required to disappear.
  • These (meth) acrylate polymer small-diameter particles are required to have an average particle diameter of 0.1 ⁇ m or more and 2.0 ⁇ m or less, preferably 0.1 to 1.0 ⁇ m, particularly preferably 0.1 ⁇ 0.7 ⁇ m.
  • the average particle diameter of the (meth) acrylate-based polymer small-diameter particles is a median diameter measured by a laser diffraction / scattering particle size distribution meter.
  • a particle size distribution measuring device “Microtrac” manufactured by Nikkiso Co., Ltd.
  • the (meth) acrylate-based polymer small-diameter particles have an effect of shortening the downtime by setting the average particle size to 2.0 ⁇ m or less.
  • the downtime is preferably 2.5. Although it can be in the range of ⁇ 5 minutes, it is not easy to produce particles having an average particle size of less than 0.1 ⁇ m.
  • the (meth) acrylate-based polymer small-diameter particles are obtained by polymerizing a (meth) acrylate-based monomer as a polymerizable monomer.
  • a (meth) acrylate-based monomer as a polymerizable monomer.
  • Specific examples thereof include (A) methyl methacrylate (MMA), ethyl Along with polymethyl methacrylate (PMMA), polyethyl methacrylate (PEMA), polybutyl methacrylate (PBMA) and other polyalkyl methacrylates (B) methyl methacrylate, which are polymers of methacrylate (EMA) and alkyl methacrylate monomers such as butyl methacrylate A copolymer obtained by copolymerizing at least one selected from the group consisting of styrene, ethyl methacrylate and methyl acrylate, (C) bisphenol-A diglycidyl dimethacrylate (Bis-GMA), 2
  • the (meth) acrylate polymer small diameter particles constituting the bone cement composition of the present invention are made of the same or similar material as the (meth) acrylate polymer large diameter particles which together constitute the substrate forming component. It is preferable. Specifically, it is polymethyl methacrylate (PMMA) or a copolymer using methyl methacrylate as a polymerizable monomer because of the relationship between the (meth) acrylate polymer large-diameter particles and the (meth) acrylate monomer. In particular, polymethyl methacrylate (PMMA) is preferable.
  • the (meth) acrylate polymer small-diameter particles those having a weight average molecular weight of preferably 100,000 or more, more preferably 100,000 to 400,000, and particularly preferably 150,000 to 400,000 are used. preferable.
  • the weight average molecular weight of the (meth) acrylate-based polymer small-diameter particles in the range of 100,000 to 400,000, the downtime can be sufficiently shortened, and the obtained cured product has sufficient mechanical properties. It can have strength.
  • the reason why the weight average molecular weight is particularly preferably 150,000 to 400,000 is that when the weight average molecular weight of the (meth) acrylate-based polymer small-diameter particles is 150,000 or less, the dow time is reduced.
  • the primary particle shape is spherical.
  • the shape of the (meth) acrylate polymer small-diameter particles spherical, high fluidity is obtained, and thereby uniform dispersibility in the composition is obtained.
  • the particle shape of the (meth) acrylate polymer small-diameter particles can be confirmed by observing them with an electron micrograph.
  • the (meth) acrylate-based polymer small-diameter particles having such a configuration can easily obtain small-sized and spherical polymer particles, for example, a (meth) acrylate-based monomer as a polymerizable monomer in an aqueous medium.
  • a (meth) acrylate-based monomer as a polymerizable monomer in an aqueous medium.
  • pulverizing polymer particles obtained by this polymerization reaction for example, using emulsion polymerization or suspension polymerization, for example, it can be produced by pulverization. Can be produced by the following known methods.
  • the optimum method for producing the (meth) acrylate-based polymer small-diameter particles used in the bone cement composition of the present invention for example, polymerization of a (meth) acrylate-based monomer as a polymerizable monomer is started.
  • This is called soap-free polymerization in which a redox catalyst consisting of potassium persulfate and sodium thiosulfate is used as an agent, a divalent copper ion compound is used as a polymerization accelerator, and a polymerization reaction is performed under a polymerization temperature of 70 ° C. or higher.
  • a method is mentioned. According to this method, the average particle diameter of the obtained (meth) acrylate polymer can be easily adjusted to a desired range.
  • the (meth) acrylate-based polymer small-diameter particles may be composed of primary particles, but a part or all of the (meth) acrylate-based polymer small-diameter particles are aggregates. It is preferably contained in the form.
  • the aggregate of (meth) acrylate-based polymer small-diameter particles preferably has an average particle diameter of 30 to 50 ⁇ m, more preferably 30 to 45 ⁇ m, and particularly preferably 35 to 45 ⁇ m.
  • the shape of the aggregate of the (meth) acrylate-based polymer small-diameter particles is preferably a spherical shape such as a true sphere or a substantially spherical shape.
  • the shape of the aggregate of the (meth) acrylate-based polymer small-diameter particles can be confirmed by observing with an electron micrograph, and the average particle diameter is based on an electron microscopic (SEM) photograph. The median diameter to be measured.
  • the (meth) acrylate-based polymer small-diameter particles are contained in the form of an aggregate having a specific size in the range of 30 to 50 ⁇ m in average particle diameter. Since it is equivalent to or close to that of polymer large-diameter particles, a highly uniform state can be obtained when the composition is kneaded, so that the effect of shortening the downtime is greatly exerted, and the downtime is further reduced. The effect that it can be set to a preferable range of 2.5 to 4 minutes is obtained.
  • Aggregates of (meth) acrylate-based polymer small-diameter particles having such a configuration can be produced by a method of obtaining a dispersion of (meth) acrylate-based polymer small-diameter particles and spray-drying the dispersion. Specifically, by using a spray drying device, a dispersion of small (meth) acrylate polymer particles is ejected from the nozzle of the spray drying device as fine mist droplets, sprayed into hot air and dried. The particle shape is obtained as a dry granulated product having a spherical shape.
  • an ordinary spray dryer such as an ordinary spray dryer can be used, and the spraying method is the properties of the dispersion of small-sized (meth) acrylate polymer particles and the processing capacity of the spray dryer.
  • a disk type, a pressure nozzle type, a two-fluid nozzle type, a four-fluid nozzle type, or the like can be selected as appropriate.
  • the content ratio of the (meth) acrylate polymer small particle is 5 with respect to the total amount of the (meth) acrylate polymer small particle and the (meth) acrylate polymer large particle. It is required to be not less than 30% by mass and not more than 30% by mass, preferably 5 to 20% by mass, more preferably 10 to 20% by mass, and still more preferably 10 to 15% by mass.
  • the content ratio of the (meth) acrylate polymer small-diameter particles is preferably 0.7 to 23.0% by mass, more preferably 1.5 to 15.0% by mass, based on the entire composition. %. Further, the content is preferably 1.5 to 24.0% by mass, more preferably 2.5 to 15.0% by mass, based on the entire base material forming component.
  • the (meth) acrylate polymer large-diameter particles which are essential components of the bone cement composition of the present invention, constitute a substrate forming component.
  • the (meth) acrylate polymer large-diameter particles are required to have an average particle diameter of 10 ⁇ m or more and 60 ⁇ m or less, preferably 20 to 60 ⁇ m, more preferably 30 to 50 ⁇ m, and particularly preferably 35. ⁇ 45 ⁇ m.
  • the average particle diameter of the (meth) acrylate polymer large-diameter particles is a median diameter measured by a laser diffraction / scattering particle size distribution meter.
  • a particle size distribution measuring device “Microtrac” manufactured by Nikkiso Co., Ltd.
  • the average particle size of the (meth) acrylate polymer large-diameter particles is excessively small, the desired downtime cannot be obtained from the relationship with the curing time as the curing time is shortened.
  • the average particle size of the (meth) acrylate polymer large particle is excessive, it is necessary to increase the content of the (meth) acrylate polymer small particle in order to obtain the desired dow time.
  • Increasing the content ratio of the (meth) acrylate-based polymer small-diameter particles causes an increase in the curing temperature, making it impossible to perform a good handling operation.
  • the (meth) acrylate polymer large particle is obtained by polymerizing a (meth) acrylate monomer as a polymerizable monomer.
  • the (meth) acrylate-based polymer large-diameter particles are preferably those obtained by polymerizing a polymerizable monomer having the same quality as the (meth) acrylate-based monomer, both of which constitute the substrate forming component.
  • a polymerizable monomer having the same quality as the (meth) acrylate-based monomer both of which constitute the substrate forming component.
  • PMMA polymethyl methacrylate
  • PMMA Polymethyl methacrylate
  • PMMA Polymethyl methacrylate
  • the (meth) acrylate polymer large-diameter particles preferably have a weight average molecular weight of 100,000 or more, more preferably 130,000 to 170,000.
  • the (meth) acrylate polymer large-diameter particles are usually composed of primary particles, and the particle shape is preferably spherical.
  • the shape of the (meth) acrylate polymer large-diameter particles is preferably spherical.
  • the particle shape of the (meth) acrylate polymer large-diameter particles can be confirmed by observing with an electron micrograph in the same manner as the particle shape of the (meth) acrylate polymer small-diameter particles.
  • the (meth) acrylate polymer large particle having such a configuration is a polymerization reaction of, for example, a (meth) acrylate monomer as a polymerizable monomer in an aqueous medium.
  • a (meth) acrylate monomer as a polymerizable monomer in an aqueous medium.
  • emulsion polymerization or suspension polymerization can be used, and the polymer particles obtained by this polymerization reaction can be crushed as necessary.
  • the content ratio of the (meth) acrylate-based polymer large-diameter particles is preferably 10 to 70% by mass, more preferably 25 to 70% by mass with respect to the entire composition. . Further, it is preferably 20 to 75% by mass, and more preferably 40 to 75% by mass with respect to the entire base material forming component.
  • the (meth) acrylate monomer that is an essential component of the bone cement composition of the present invention constitutes a component for forming a base material, and the (meth) acrylate monomer that is a polymerizable monomer is polymerized. As a result, the bone cement composition is cured, and as a result, a cured product is obtained.
  • the (meth) acrylate monomer examples include those exemplified as a polymerizable monomer for obtaining a (meth) acrylate polymer that constitutes a component for forming a substrate together with an alkyl methacrylate monomer, a dimethacrylate monomer, and the like. Is mentioned.
  • a preferred specific example of the (meth) acrylate monomer is methyl methacrylate (MMA).
  • the content ratio of the (meth) acrylate monomer is preferably 19 to 35% by mass, more preferably 24 to 35% by mass, based on the entire composition. Further, the content is preferably 20 to 70% by mass, more preferably 25 to 50% by mass, based on the entire base material forming component.
  • polymerization initiator As the polymerization initiator which is an essential component of the bone cement composition of the present invention, for example, benzoyl peroxide, tert-butyl peroxide, lauroyl peroxide, azobisisobutyronitrile and the like can be used. Among these, it is preferable to use benzoyl peroxide because the polymerization reaction of the (meth) acrylate-based monomer is quickly started and the reaction is easily sustained.
  • the content of the polymerization initiator is preferably 1 to 10 parts by mass, more preferably 2 to 9 parts by mass with respect to 100 parts by mass of the (meth) acrylate monomer.
  • the content ratio of the polymerization initiator is too small, there is a possibility that the polymerization reaction of the (meth) acrylate monomer is difficult to proceed.
  • the content ratio of the polymerization initiator is excessive, the polymerization initiator tends to remain in the cured product formed by polymerization of the (meth) acrylate monomer.
  • the bone cement composition of the present invention is an essential component, (meth) acrylate polymer small diameter particles, (meth) acrylate polymer large diameter particles and (meth) acrylate monomers for forming a substrate,
  • a filler is contained for the purpose of imparting a function according to the intended use to the finally obtained cured product, and the polymerization reaction of the (meth) acrylate monomer is further promoted.
  • a polymerization accelerator is contained together with the polymerization initiator.
  • polymerization accelerator for example, N, N-dimethyl-p-toluidine, 2,4,6-tris (dimethylaminomethyl) phenol and the like can be used. Of these, N, N-dimethyl-p-toluidine is preferably used because the polymerization reaction of the (meth) acrylate monomer proceeds rapidly.
  • the content of the polymerization accelerator is preferably 0.4 to 5.0 parts by mass, more preferably 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the (meth) acrylate monomer.
  • the content ratio of the polymerization accelerator is too small, there is a possibility that the polymerization reaction of the (meth) acrylate monomer is difficult to proceed.
  • the content ratio of the polymerization accelerator is excessive, the polymerization accelerator tends to remain in the cured product formed by polymerization of the (meth) acrylate monomer.
  • the filler is made of an inorganic substance such as titanium dioxide, calcium phosphate (hydroxyapatite, tricalcium phosphate), barium sulfate, silicon oxide (silica), aluminum oxide (alumina), zirconium oxide (zirconia), and these inorganic substances are used alone or A combination of two or more selected as appropriate can be used.
  • titanium dioxide is preferable. The reason for this is that titanium dioxide itself has an apatite-forming ability in a body fluid environment. By containing a filler made of titanium dioxide, the finally obtained cured body has high bioactivity. This is because it has a function.
  • the filler is preferably made of titanium dioxide as described above, but together with titanium dioxide, other inorganic substances, specifically calcium phosphate (hydroxyapatite, tricalcium phosphate), barium sulfate, silicon oxide ( Silica), aluminum oxide (alumina), zirconium oxide (zirconia), or the like may be used in combination. Among these, what uses together the zirconium oxide which has an X-ray contrast effect, and barium sulfate is preferable.
  • the content rate of a filler is 5 mass% or more with respect to the whole composition.
  • the mixing ratio thereof can be set as appropriate, but the content ratio of titanium dioxide contained in the filler is relative to the entire composition.
  • the content is preferably 5 to 50% by mass, more preferably 5 to 40% by mass, still more preferably 5 to 30% by mass, and particularly preferably 10 to 25% by mass.
  • the content ratio of titanium dioxide contained in the filler is too small, there is a possibility that sufficient bioactivity cannot be obtained.
  • the content ratio of titanium dioxide contained in the filler is excessive, the cured product formed by polymerizing the (meth) acrylate monomer may have a low physical strength.
  • the content is preferably 5% by mass or more based on the entire composition from the viewpoint of contrast properties. More preferably, it is 10 mass% or more, More preferably, it is 15 mass% or more.
  • the filler preferably contains at least titanium dioxide particles.
  • the titanium dioxide particles constituting the filler have a median diameter of 0.5 measured by a laser diffraction / scattering particle size distribution meter. It is preferably from 7.0 to 7.0 ⁇ m, more preferably from 1.5 to 7.0 ⁇ m, still more preferably from 2.0 to 7.0 ⁇ m, particularly preferably from 2.0 to 6.5 ⁇ m.
  • a particle size distribution measuring device “LA-950” manufactured by Horiba, Ltd.
  • the cured product formed by polymerizing the (meth) acrylate monomer may have a low physical strength.
  • the median diameter of the titanium dioxide particles is excessive, the physical strength of the cured product formed by polymerization of the (meth) acrylate monomer is excessively increased. There is a possibility that adverse effects such as a tendency to cause a fracture due to an increase in the difference in physical strength with the bone related to the application site.
  • the titanium dioxide particles preferably have a BET specific surface area measured by a nitrogen adsorption method of 0.5 to 7.0 m 2 / g, more preferably 0.5 to 5.0 m 2 / g, 0.5 to 4.0 m 2 / g is preferable, and 0.5 to 3.0 m 2 / g is particularly preferable.
  • a BET specific surface area measuring apparatus “MONOSORB” manufactured by Yuasa Ionics Co., Ltd.
  • the BET specific surface area of the titanium dioxide particles When the BET specific surface area of the titanium dioxide particles is too small, the median diameter becomes large, and as a result, the physical strength of the cured product formed by polymerization of the (meth) acrylate-based monomer becomes excessively large. In addition, the hardened body and the bone related to the application site of the composition have a large physical strength difference, which causes adverse effects such as easy fracture. On the other hand, when the BET specific surface area of the titanium dioxide particles is excessive, the (meth) acrylate monomer is caused by the median diameter being too small, the titanium dioxide particles being in an aggregated state, or a porous state. Physical strength (for example, bending strength) that is practically required for a cured product formed by polymerizing the resin cannot be obtained.
  • the titanium dioxide particles constituting the bone cement composition of the present invention preferably have a median diameter of 1.5 to 7.0 ⁇ m and a BET specific surface area of 0.5 to 5.0 m 2 / g. More preferably, the median diameter is 1.5 to 7.0 ⁇ m and the BET specific surface area is 0.5 to 4.0 m 2 / g. The median diameter is 2.0 to 7.0 ⁇ m and the BET ratio is More preferably, the surface area is 0.5 to 4.0 m 2 / g, the median diameter is 2.0 to 6.5 ⁇ m, and the BET specific surface area is 0.5 to 3.0 m 2 / g. Is particularly preferred.
  • Titanium dioxide particles have various known shapes such as plates, flakes, needles, rods, fibers, and columns in addition to granular or indefinite shapes obtained by ordinary industrial production methods. However, it is preferable to have a granular particle shape, and preferred specific examples of the granular shape include a spherical shape such as a true spherical shape or a substantially spherical shape.
  • a spherical shape such as a true spherical shape or a substantially spherical shape.
  • the cured product is dispersed in a highly uniform state, it is expected that the effect of suppressing the detachment of the titanium dioxide particles from the cured product can be obtained. Moreover, in the bone cement composition of this invention, it is preferable that all the titanium dioxide particles which comprise the said composition have an equivalent shape.
  • the titanium dioxide particles constituting the bone cement composition of the present invention may have any of the rutile type, anatase type and brookite type crystal structures, and are amorphous. However, since it has higher apatite forming ability (bioactive ability), it is preferably rutile type titanium dioxide particles.
  • Titanium dioxide particles have a higher ability to form apatite (bioactivity), so the particle surface has hydrophilicity in a range that does not adversely affect the affinity with (meth) acrylate polymers. It is preferable.
  • an acid cleaning treatment can be mentioned.
  • the titanium dioxide particles have few impurities from the viewpoint of preventing in vivo safety and adverse effects on the artificial joint, and specifically, the purity of titanium dioxide is 99% by mass or more. And more preferably 99.5% by mass or more, on the other hand, from the viewpoint of the affinity with the (meth) acrylate polymer, the bioactivity and physical strength of the composition In such a range that does not cause any harmful effects, an organic material such as a silane coupling agent or a small amount of an inorganic material such as silica or alumina can be used.
  • Titanium dioxide particles having such a structure can be produced by a normal method.
  • titanic acid is used as a raw material, and a slurry of titanic acid as the raw material is subjected to a wet pulverization treatment as necessary. It is optimal to produce by a technique of obtaining a dry granulated body by spray drying treatment and obtaining titanium dioxide particles through a step of firing the dried granulated body. According to this method, the median diameter of the obtained titanium dioxide particles can be easily adjusted to a desired range.
  • orthotitanic acid and metatitanic acid can be specifically used.
  • orthotitanic acid is obtained by alkali neutralizing an aqueous solution of a titanium compound such as titanium tetrachloride or titanyl sulfate in the presence of a seed as required, and is also referred to as “titanium hydroxide”. , “Ti (OH) 4 ” or “TiO 2 .2H 2 O”. Since this orthotitanic acid is amorphous, crystal dislocation is performed in the firing process so that the titanium dioxide particles obtained even at a low heating temperature (firing temperature) have a rutile crystal structure.
  • Metatitanic acid is obtained by thermally hydrolyzing a titanium compound such as titanyl sulfate in an aqueous solution in the presence of a seed as necessary.
  • TiO (OH) 2 or “TiO 2 .H 2 O”
  • a compound having an anatase type crystal structure is preferably used as a raw material.
  • a slurry is prepared by suspending titanic acid as a raw material in a solvent such as water.
  • a wet pulverization process, a spray drying process and a firing process in which the obtained titanic acid slurry is provided will be described in detail below.
  • wet pulverization treatment a titanic acid slurry as a raw material is pulverized to pulverize titanic acid in the slurry, and the pulverized titanic acid is dispersed in a solvent. A ground titanic acid dispersion is obtained.
  • This wet pulverization treatment can be adjusted so that the median diameter of the titanium dioxide particles obtained by the subsequent spray drying treatment and firing treatment is reduced by dispersing the titanic acid in the slurry. Therefore, it is a preferable process to perform.
  • a colloid mill or the like is used to circulate the slurry in the gap between the rotating circular grinding stones and give a frictional force or a shearing force, or, for example, a ball mill, dyno mill, sand
  • the slurry is filled with a spherical medium of rigid beads (eg, hard glass, ceramic, etc.) in a cylinder with a stirrer using a grinder and mixed, and then ground by high-speed stirring, physical impact by vibration, shearing, friction, etc.
  • a method etc. can be used.
  • other pulverization methods using a pressure emulsifier type device or a high-speed stirring device can also be used.
  • a rutile rearrangement promoting seed is mixed in the titanic acid slurry or the ground titanic acid dispersion obtained by wet grinding.
  • the rutile dislocation promoting seed is a micronuclear crystal having a rutile crystal structure, and promotes the rutile rearrangement of titanate.
  • the rutile rearrangement promoting seed specifically, for example, a seed added when hydrolyzing titanyl sulfate as a raw material in a method of producing a rutile-type titanium dioxide white pigment by a conventionally known sulfuric acid method can be used.
  • the mixing amount of the rutile rearrangement promoting seed can be set as appropriate, but since the rutile rearrangement can be sufficiently generated, the mass ratio with the titanium dioxide present in the titanic acid slurry or the pulverized titanic acid dispersion liquid. The amount is preferably such that (mass of titanium dioxide in titanic acid / mass of titanium dioxide in the rutile rearrangement promoting seed) is in the range of 90/10 to 99/1.
  • a normal mixing device such as a stirrer mixer and a mixer can be used. It can be performed simultaneously with the pulverization process, that is, the wet pulverization process.
  • a disk type, a pressure nozzle type, a two-fluid nozzle type, a four-fluid nozzle type, and the like can be appropriately selected.
  • the drying conditions (spray drying temperature) of the mist droplets are preferably such that the supply air temperature is 150 to 250 ° C. and the exhaust temperature is 60 to 120 ° C.
  • the spray drying treatment for example, adjusting the titanium dioxide concentration in the titanic acid slurry or pulverized titanic acid dispersion, and adjusting the number of revolutions of the disc when selecting the disc type as the spraying method of the spray dryer.
  • the pressure nozzle type, two-fluid nozzle type, and four-fluid nozzle type are selected as the spraying method of the spray dryer, the size of the droplets to be sprayed is adjusted by adjusting the spraying pressure.
  • the median diameter and BET specific surface area of the obtained dry granulated body can be controlled.
  • the obtained dried granulated product can have an equivalent spherical particle shape.
  • Firing treatment In this firing treatment, the dried granulated material obtained in the spray drying treatment is fired under a temperature condition (specifically, 250 ° C or higher) higher than the spray drying temperature related to the spray drying treatment. By doing this, fired particles made of titanium dioxide are obtained. According to this firing treatment, the crystal structure and hardness of the fired particles can be adjusted together with the median diameter and BET specific surface area of the fired particles obtained.
  • the firing temperature is preferably 500 to 1200 ° C, more preferably 700 to 1000 ° C, and particularly preferably 800 to 950 ° C.
  • the firing temperature is less than 500 ° C.
  • the crystal dislocation that causes the obtained titanium dioxide particles to have a rutile-type crystal structure does not proceed easily.
  • the firing temperature exceeds 1200 ° C., the hardness of the obtained titanium dioxide particles becomes high, so that there is a possibility that the bone or artificial joint is worn by the titanium dioxide particles at the application site of the composition.
  • the firing time can be appropriately set. Specifically, by setting the firing time to 30 minutes to 10 hours, a sufficient effect by firing on the fired particles to be formed, specifically, to the rutile body. The effect of promoting phase transition can be obtained.
  • the firing atmosphere is not particularly limited, but is preferably an atmosphere in which oxygen such as air is present from an economical viewpoint. Further, in the firing treatment, for the purpose of uniformly imparting the firing load, after the first firing treatment is performed at a firing temperature of 500 to 800 ° C., the second firing treatment is further performed at a firing temperature of 800 to 1200 ° C. It may be a thing.
  • the calcined particles formed through the wet pulverization process, the spray drying process, and the calcining process are used as they are as the constituent material of the bone cement composition of the present invention, that is, the bone cement composition of the present invention.
  • the constituent material of the bone cement composition of the present invention that is, the bone cement composition of the present invention.
  • it can be used as a constituent titanium dioxide particle (filler), if necessary, a higher hydrophilicity is imparted to the particle surface for the purpose of obtaining a higher apatite-forming ability (bioactive ability). Therefore, it is preferable to subject the fired particles obtained in the firing treatment to an acid cleaning treatment.
  • the acid cleaning treatment can be performed, for example, by preparing a slurry of calcined particles, mixing the slurry and acid, and stirring at room temperature or under heating. Titanium dioxide particles can be obtained through solid-liquid separation treatment, washing treatment and drying treatment, and if necessary, crushing treatment.
  • the acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid, and organic acids such as acetic acid, citric acid, and oxalic acid.
  • the acid concentration in the mixture of slurry and acid is, for example, 0.01 to 10 mol / L.
  • This acid cleaning treatment is a treatment performed to impart higher hydrophilicity to the surface of the titanium dioxide particles as necessary, and in addition to the calcined particles, titanium dioxide produced by other methods other than the above. It can also be applied to particles.
  • a centrifugal grinder for the purpose of selecting a material having a desired median diameter, for example, by performing a wet pulverization process using a ball mill, a dyno mill, a sand grinder, etc.
  • steps such as mixing titanium dioxide particles having different median diameters and / or BET specific surface areas can be used.
  • the bone cement composition of the present invention may contain, for example, a pigment, an antibiotic, a bone growth factor, and other pharmaceutically acceptable optional components in addition to the filler and the polymerization accelerator.
  • the bone cement composition of the present invention configured as described above has a certain degree of viscosity by, for example, starting a polymerization reaction of a (meth) acrylate monomer by kneading immediately before application, and leaving the kneaded material to stand. It is applied by performing a handling operation for applying to the application target part when the state becomes high, and forming a cured body in the application target part.
  • the bone cement composition of the present invention contains (meth) acrylate-based polymer small-diameter particles having a specific average particle diameter as a base material-forming component in a specific ratio, thereby reducing the downtime.
  • the downtime as the time required to reach a state having sufficient viscosity required for performing a good handling operation can be reduced. It can be 5-5 minutes. Therefore, according to the bone cement composition of the present invention, since the downtime can be shortened, high work efficiency can be obtained by shortening the time required for starting the handling work.
  • the downtime can be shortened and the setting time tends to be slightly delayed, the time from the elapse of the downtime to the setting, that is, the working time There is a possibility that it is possible to improve the workability associated with the increase in the length.
  • the bone cement composition of the present invention contains a filler containing at least titanium dioxide particles, the ability to form apatite in a body fluid environment possessed by the titanium dioxide particles per se is expressed. Active ability is obtained. Furthermore, since the titanium dioxide particles constituting the filler have a specific size, good physical strength according to the intended use will be exhibited, and thus high physical strength can be obtained. . And when the filler containing at least titanium dioxide particles is contained in this way, the effect that the downtime can be shortened is remarkably exhibited. Since the downtime that tends to require time can be shortened, work efficiency can be improved.
  • the bone cement composition of the present invention can obtain high work efficiency by shortening the downtime, it is preferable to work in as short a time as possible, particularly during surgery.
  • bioactive ability is obtained and high physical strength is obtained. It becomes even more suitable as an adhesive for fixing to a bone, an artificial joint fixing agent, an artificial bone forming material, and the like.
  • Such a bone cement composition of the present invention is an essential component, a component for base material formation comprising (meth) acrylate-based polymer small particle, (meth) acrylate-based polymer large particle, and (meth) acrylate monomer, and A polymerization initiator and other components that can be produced by mixing them as necessary.
  • each component is housed in a separate housing member in advance. And can be prepared as necessary.
  • the bone cement composition kit of the present invention is a bone cement composition kit for obtaining the bone cement composition of the present invention.
  • This bone cement composition kit of the present invention is an essential component of the bone cement composition of the present invention to be formed, and is a (meth) acrylate polymer small particle, (meth) acrylate polymer large particle, (meta )
  • a monomer-containing kit component containing at least a (meth) acrylate monomer among acrylate monomers and polymerization initiators, and a polymerization initiator-containing kit component containing at least a polymerization initiator.
  • Such a bone cement composition kit of the present invention is a kit component in which a (meth) acrylate monomer and a polymerization initiator are separate from the viewpoint of preventing a (meth) acrylate monomer from undergoing a polymerization reaction before application.
  • each component of the bone cement composition to be formed can be an individual kit component, but convenience for carrying the bone cement composition kit and simplicity of the polymerization reaction operation From this point of view, it is preferable to comprise two kit components, a monomer-containing kit component and a polymerization initiator-containing kit component.
  • a bone cement composition kit comprising two kit components, a monomer-containing kit component and a polymerization initiator-containing kit component, (meth) acrylate-based polymer small-diameter particles among the essential components of the bone cement composition to be formed, Since the (meth) acrylate polymer large-diameter particles and the polymerization initiator are usually solid, and the (meth) acrylate monomer is usually liquid, the monomer-containing kit component includes Only the (meth) acrylate monomer is contained, and the polymerization initiator-containing kit component contains the (meth) acrylate polymer small particle and the (meth) acrylate polymer large particle together with the polymerization initiator. Is preferred.
  • the (meth) acrylate-based polymer small-diameter particles are more preferably partly or entirely contained in the form of aggregates having an average particle diameter of 30 to 50 ⁇ m.
  • the obtained bone cement composition is an essential constituent, specifically, (meth) acrylate polymer small particle, (meth) acrylate polymer large particle,
  • the filler and / or polymerization accelerator containing at least titanium dioxide particles are contained together with the (meth) acrylate monomer and the polymerization initiator, these filler and / or polymerization accelerator are respectively It can be a separate kit component different from the monomer-containing kit component and the polymerization initiator-containing kit component, but it is contained in one of the two kit components from the viewpoint of convenience for carrying and the convenience of the polymerization reaction operation. It is preferable to make it.
  • the filler since the filler is usually in a solid state, it is preferably contained in the polymerization initiator-containing kit component of the two kit components, while the polymerization accelerator is usually in a liquid state. Since it does not have reactivity with the (meth) acrylate monomer, it is preferably contained in the monomer-containing kit component of the two kit components.
  • the housing member for housing the kit component according to the bone cement composition kit may be any member that can store and transport the kit component, for example, a container made of glass, metal and plastic, such as paper or A packaging member made of plastic can be appropriately selected and used.
  • the bone cement composition kit of the present invention since the bone cement composition can be obtained by simply kneading the kit components, a hardened bone cement can be easily produced, Since the (meth) acrylate monomer and the polymerization initiator are separate kit components, the (meth) acrylate monomer is polymerized in a stored state or a transported state before application. Can be prevented.
  • the bone cement composition kit of the present invention is composed of two kit components, a monomer-containing kit component and a polymerization initiator-containing kit component, the total number of kit components is small, so that an excellent bone cement Convenience for carrying the composition kit and simplicity of the polymerization reaction operation are obtained.
  • the method for producing a hardened bone cement of the present invention comprises (meth) acrylate polymer large-diameter particles having an average particle diameter of 10 to 60 ⁇ m, preferably 20 to 60 ⁇ m, and an average particle diameter of 0.1 to 2.0 ⁇ m ( A step of kneading a (meth) acrylate monomer and a polymerization initiator in the presence of the (meth) acrylate polymer small-diameter particles to polymerize the (meth) acrylate monomer;
  • the small-diameter particles are 5 to 30% by mass, preferably 5 to 20% by mass, more preferably 10 to 20% with respect to the total amount of the (meth) acrylate-based polymer small-diameter particles and the (meth) acrylate-based polymer large-diameter particles.
  • the method for producing a hardened bone cement of the present invention uses the bone cement composition of the present invention as a material, and polymerizes a (meth) acrylate monomer that constitutes a substrate forming component according to the bone cement composition. It is for obtaining the hardening body formed by this.
  • the (meth) acrylate-based polymer small-diameter particles a part or all of them may be in the form of an aggregate having an average particle diameter of 30 to 50 ⁇ m. preferable.
  • the mixing of the (meth) acrylate monomer and the polymerization initiator and the polymerization of the (meth) acrylate monomer together with the (meth) acrylate polymer large particle and the (meth) acrylate polymer small particle are at least titanium dioxide. It is preferable to carry out in the presence of a filler containing particles.
  • a polymerization initiator for producing a cured bone cement of the present invention, first, (meth) acrylate polymer large-diameter particles, (meth) acrylate polymer small-diameter particles and a polymerization initiator, and optionally titanium dioxide.
  • a (meth) acrylate monomer is brought into contact with a polymerization initiator by adding a (meth) acrylate monomer into a container charged with fillers such as particles and kneading, thereby polymerizing the (meth) acrylate monomer. Start the reaction. Then, by allowing the kneaded product to stand, the polymerization reaction of the (meth) acrylate monomer proceeds.
  • a polymerization accelerator can be used as necessary.
  • the kneading conditions vary depending on the type and amount of each of the (meth) acrylate polymer large particle, the (meth) acrylate polymer small particle, the (meth) acrylate monomer and the polymerization initiator.
  • a degassing atmosphere is formed by using a sealed container that can be degassed in vacuum, and the kneading time is about 1 minute 30 seconds in this degassing atmosphere.
  • a process of leaving the kneaded material is passed. That is, when the dough time elapses, a handling operation for application to the application target site is performed when the viscosity becomes high to some extent, whereby a bone cement hardened body is formed at the application target site.
  • Specific handling operations include, for example, a technique in which a kneaded product having a certain degree of viscosity is manually placed on an application target site or injected using an injection tool.
  • Various tools and devices can be used as the injection tool, for example, a so-called cement gun provided with a syringe, a dispenser, a plunger, and a discharge port.
  • the bone cement hardened body thus obtained is, for example, a bone defect filling agent, or an adhesive for fixing a metal artificial joint such as an artificial hip joint to the surrounding bone, or an artificial joint fixing agent.
  • the bone cement composition applied to the application target site is cured at the application target site, thereby exhibiting its function.
  • a polymerization reaction of a (meth) acrylate monomer for forming a base component in the hardened bone cement to be formed is a (meth) acrylate polymer.
  • the viscosity of the (meth) acrylate-based polymer small-diameter particles is sufficient to perform good handling operations
  • the down time which is the time required to reach the state, is reduced to about 2.5 to 5 minutes, and by using (meth) acrylate-based polymer small particles in the form of aggregates, the time is reduced to about 2.5 to 4 minutes.
  • the time required for kneading can be about 1.5 minutes, the downtime can be within 5 minutes, and it takes from the start of kneading to hardening. Since the curing time is about 10 minutes and the time required for applying the kneaded material to the application target part by a normal handling operation is about 3 minutes, the work time consisting of the time from the lapse of the downtime to the curing is reduced. It can be secured sufficiently.
  • an artificial bone can be obtained as follows.
  • fillers and / or polymerization such as (meth) acrylate polymer large diameter particles, (meth) acrylate polymer small diameter particles, polymerization initiator and (meth) acrylate monomer, titanium dioxide particles added if necessary Molding by obtaining a kneaded material such as an accelerator, inserting this kneaded material into a container having a desired shape and having releasability after the downtime has elapsed, and allowing to stand and cure in that state.
  • the molded body can be obtained as an artificial bone so as to have a shape that matches the shape of the container.
  • the production conditions include titanium dioxide particles, (meth) acrylate-based polymer, (meth) acrylate-based monomer and polymerization initiator,
  • the kneading conditions are, for example, a kneading time of 1.15 minutes and a downtime of 2.5 to 5 minutes in a degassing atmosphere.
  • the standing conditions for example, the standing time is 24 hours or more in an environment of a temperature of 30 ° C.
  • grains performed in the following Examples and Comparative Examples, (meth)
  • the method for measuring the average particle diameter of the aggregate of acrylate polymer small-diameter particles is as follows.
  • the average particle diameter the median diameter measured by a laser diffraction / scattering type particle size distribution meter is measured, and as the laser diffraction / scattering type particle size distribution meter, a particle size distribution measuring device “Microtrac” (manufactured by Nikkiso Co., Ltd.) is used. It was. That is, powder particles whose average particle diameter is to be measured are added to 50 mL of a dispersion medium composed of an aqueous solution of Tween 20 (polyoxyethylene (20) sorbitan monolaurate, manufactured by Kanto Chemical Co., Ltd.) having a concentration of 0.2% by mass.
  • Tween 20 polyoxyethylene (20) sorbitan monolaurate, manufactured by Kanto Chemical Co., Ltd.
  • a suspension is prepared by stirring and mixing, and this suspension is introduced into the particle size distribution measuring device “Microtrac” (manufactured by Nikkiso Co., Ltd.) from the sample introduction port and subjected to ultrasonic wave for 3 minutes. The measurement was started after processing.
  • the method for measuring the median diameter of the titanium dioxide particles and the method for measuring the BET specific surface area, which were performed when producing the titanium dioxide particles the concentration of titanium dioxide The measuring method is as follows.
  • the median diameter is measured by a laser diffraction / scattering particle size distribution meter, and the particle size distribution measuring device “LA-950” (manufactured by Horiba, Ltd.) is used as the laser diffraction / scattering particle size distribution meter. It was. That is, a suspension is prepared by adding powder particles whose median diameter is to be measured to 50 mL of a dispersion medium composed of an aqueous sodium hexametaphosphate solution having a concentration of 0.2% by mass, and stirring and mixing the suspension. The liquid was introduced into the particle size distribution measuring apparatus “LA-950” (manufactured by Horiba, Ltd.) from the sample inlet and subjected to ultrasonic treatment for 3 minutes, and then the measurement was started.
  • the BET specific surface area is measured by a nitrogen adsorption method, and was performed using a BET specific surface area measuring device “MONOSORB” (manufactured by Yuasa Ionics Co., Ltd.).
  • This BET specific surface area measuring device “MONOSORB” (manufactured by Yuasa Ionics Co., Ltd.) performs measurement by the BET single point method.
  • the titanium dioxide concentration specifically, the titanium dioxide concentration of the orthotitanic acid slurry and the rutile rearrangement promoting seed slurry was measured by separating the slurry into a crucible and drying it, followed by firing at a temperature of 750 ° C. .
  • the obtained orthotitanic acid slurry is fed under conditions of a flow rate of 160 mL / min, and the dynomill treatment is performed by rotating a rotary blade provided inside the main body, thereby producing an orthotitanic acid slurry (hereinafter referred to as “the titanic acid slurry”). , Also referred to as “crushed titanic acid slurry”).
  • the titanium dioxide concentration in the pulverized titanic acid slurry was 10.39% by mass.
  • a rutile rearrangement promoting seed slurry having a titanium dioxide concentration of 19.98% by mass is compared with the mass ratio of titanium dioxide present in the pulverized titanic acid slurry ( Titanium dioxide mass in titanic acid / titanium dioxide mass in the rutile rearrangement promoting seed) was mixed at a ratio of 95/5, and pure water was added to this mixture, so that the titanium dioxide concentration was 5.0% by mass.
  • a mixed slurry was prepared by adjusting so as to be.
  • the obtained mixed slurry is stirred and mixed using a household mixer, and then coarse particles are removed by a 200-mesh sieve, whereby a slurry for spray drying treatment (hereinafter also referred to as “slurry for spray drying treatment”) is obtained. Obtained.
  • a spray dryer “MDL-050C” manufactured by Fujisaki Electric Co., Ltd.
  • the slurry for spray drying treatment is sent to this spray dryer by a roller pump, and the flow rate of the roller pump is 25 mL / min (pure water).
  • the spray-drying treatment was performed under the conditions of a set flow rate when the liquid was fed), an air supply temperature of 200 ° C., an exhaust temperature of 65 to 85 ° C., and an air amount of 80 L / min.
  • the dry granulated product obtained by this spray drying treatment is a powder recovery part consisting of a glass container and a bag filter provided in the spray dryer, and a medium having a large median diameter is placed in a glass container, and a median diameter is small.
  • the thing was collected in the bug filter.
  • the spray dryer what is collected in the glass container is referred to as a “cyclone product”, while what is collected in the bag filter is referred to as a “bug product”.
  • the titanium dioxide slurry obtained in the wet pulverization process was added with hydrochloric acid in an amount of 1 N concentration, and stirred for 3 hours at room temperature using a stirring motor to perform acid cleaning treatment. Thereafter, the supernatant was removed by decantation, and the residue was filtered and washed with pure water using a Buchner funnel, and the specific resistance of the filtrate was confirmed to be 10 k ⁇ ⁇ m or more.
  • titanium dioxide particles (a) having a median diameter of 2.7 ⁇ m and a BET specific surface area of 1.95 m 2 / g (hereinafter referred to as “titanium dioxide particles (a)”) Also called).
  • the obtained titanium dioxide particles (a) were confirmed to be rutile titanium dioxide particles from the results of powder X-ray diffraction using a powder X-ray diffractometer “RINT1200” (manufactured by Rigaku Corporation), From the result of observation with a scanning electron microscope “S-3200N” (manufactured by Hitachi, Ltd.), it was confirmed that the shape was spherical.
  • titanium dioxide particles having a median diameter of 3.1 ⁇ m and a BET specific surface area of 2.1 m 2 / g (hereinafter also referred to as “titanium dioxide particles (b)”). .)
  • the obtained titanium dioxide particles (b) were confirmed to be rutile titanium dioxide particles from the results of powder X-ray diffraction using a powder X-ray diffractometer “RINT1200” (manufactured by Rigaku Corporation), From the result of observation with a scanning electron microscope “S-3200N” (manufactured by Hitachi, Ltd.), it was confirmed that the shape was spherical.
  • titanium dioxide particles having a median diameter of 2.9 ⁇ m and a BET specific surface area of 2.5 m 2 / g (hereinafter also referred to as “titanium dioxide particles (c)”).
  • the obtained titanium dioxide particles (c) were confirmed to be rutile titanium dioxide particles from the results of powder X-ray diffraction using a powder X-ray diffractometer “RINT1200” (manufactured by Rigaku Corporation), From the result of observation with a scanning electron microscope “S-3200N” (manufactured by Hitachi, Ltd.), it was confirmed that the shape was spherical.
  • Example 1 Polymethacrylate powder (average particle size: 39.77 ⁇ m, weight average molecular weight: 167,000, particle shape: spherical; manufactured by Sekisui Plastics Co., Ltd.) as a (meth) acrylate polymer large particle is 44.885% by mass , Polymethyl methacrylate powder (average particle size: 0.5 ⁇ m, average molecular weight: 190,000, particle shape: spherical; manufactured by Sekisui Plastics Co., Ltd.) as a (meth) acrylate polymer small particle, 6.707% by mass, A mixed powder component was obtained by mixing 19.654% by mass of titanium dioxide particles (a) as a filler and 1.474% by mass of benzoyl peroxide (manufactured by Kawaguchi Pharmaceutical Co., Ltd.) as a polymerization initiator.
  • methyl methacrylate manufactured by Wako Pure Chemical Industries, Ltd. 27.024% by mass as a (meth) acrylate monomer
  • N, N-dimethyl-p-toluidine manufactured by Samsung Chemical Laboratories 0.256 as a polymerization accelerator
  • a mixed liquid component was obtained by adding and mixing mass%. Then, each of the obtained mixed powder component and mixed liquid component is individually accommodated in a container, whereby a polymerization initiator-containing kit component composed of the mixed powder component and a monomer-containing kit composed of the mixed liquid component
  • a bone cement composition kit (hereinafter also referred to as “bone cement composition kit (1)”) composed of the components was prepared.
  • the content ratio of the (meth) acrylate-based polymer large-diameter particles is 57.094% by mass with respect to the entire base material-forming component, and the (meth) acrylate-based polymer small-diameter particles
  • the content rate was 13.0 mass% with respect to the sum total of the said (meth) acrylate type polymer small diameter particle and (meth) acrylate type polymer large diameter particle.
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization initiator was 5.454 mass%
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization accelerator was 0.947 mass%.
  • the kneaded product after confirming the downtime is inserted into a polytetrafluoroethylene mold equipped with a thermocouple wire having an outer diameter of 0.5 mm, and the temperature of the kneaded product is measured every 5 seconds using the thermocouple wire.
  • the curing time was calculated based on the maximum temperature confirmed by doing this. The results are shown in Table 1.
  • Example 2 In Example 1, as the (meth) acrylate polymer large-diameter particles, polymethylmethacrylate powder having an average particle diameter of 33.93 ⁇ m, a weight average molecular weight of 141,000 and a spherical particle shape (Sekisui Plastics Co., Ltd.) Except that the amount of the (meth) acrylate polymer large-diameter particles used is 45.401% by mass, and the amount of the (meth) acrylate polymer small-diameter particles used is 6.191% by mass.
  • a bone cement composition kit (hereinafter also referred to as “bone cement composition kit (2)”) was prepared in the same manner as in Example 1.
  • the content ratio of the (meth) acrylate polymer large-diameter particles is 57.750% by mass with respect to the entire base material-forming component, and the (meth) acrylate polymer small-diameter particles
  • the content rate was 12.0 mass% with respect to the sum total of the said (meth) acrylate type polymer small diameter particle and (meth) acrylate type polymer large diameter particle.
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization initiator was 5.454 mass%
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization accelerator was 0.947 mass%.
  • Example 3 In Example 1, the same procedure as in Example 1 was conducted except that the (meth) acrylate-based polymer small-diameter particles were used as an aggregate (particle shape: spherical) having an average particle diameter of 40 ⁇ m using a spray dryer.
  • a bone cement composition kit (hereinafter also referred to as “bone cement composition kit (3)”) was prepared. And about the obtained bone cement composition kit (3), while confirming the downtime by the method similar to Example 1, the hardening time was computed. The results are shown in Table 1.
  • Example 4 In Example 2, (meth) acrylate-based polymer small-diameter particles were used in the same manner as in Example 2 except that they were used as aggregates (particle shape: spherical) having an average particle diameter of 40 ⁇ m using a spray dryer.
  • a bone cement composition kit (hereinafter also referred to as “bone cement composition kit (4)”) was prepared. And about the obtained bone cement composition kit (4), while confirming the downtime by the method similar to Example 1, the hardening time was computed. The results are shown in Table 1.
  • Example 5 polymethylmethacrylate powder having an average particle size of 45.58 ⁇ m, a weight average molecular weight of 141,000, and a spherical particle shape (Sekisui Plastics Co., Ltd.) Except that the amount of the (meth) acrylate polymer large-diameter particles used was 44.369% by mass and the amount of the (meth) acrylate polymer small-diameter particles used was 7.223% by mass.
  • a bone cement composition kit (hereinafter also referred to as “bone cement composition kit (5)”) was prepared in the same manner as in Example 1.
  • the content ratio of the (meth) acrylate polymer large-diameter particles is 56.438% by mass with respect to the entire base material-forming component, and the (meth) acrylate polymer small-diameter particles
  • the content rate was 14.0 mass% with respect to the sum total of the said (meth) acrylate type polymer small diameter particle and (meth) acrylate type polymer large diameter particle.
  • Example 6 In Example 5, (meth) acrylate-based polymer small-diameter particles were used in the same manner as in Example 5 except that they were used as an aggregate (particle shape: spherical) having an average particle diameter of 40 ⁇ m using a spray dryer.
  • a bone cement composition kit (hereinafter also referred to as “bone cement composition kit (6)”) was prepared. And about the obtained bone cement composition kit (6), while confirming the downtime by the method similar to Example 1, the hardening time was computed. The results are shown in Table 1.
  • Example 7 polymethylmethacrylate powder having a mean particle size of 31.11 ⁇ m, a weight-average molecular weight of 148,900, and a spherical particle shape (Sekisui Plastics Co., Ltd.)
  • the amount of the (meth) acrylate polymer large-diameter particles used is 30.59% by mass, and the amount of the (meth) acrylate-based polymer small-diameter particles is 5.305% by mass.
  • the acrylate polymer small-diameter particles were used as an aggregate (particle shape: spherical) having an average particle diameter of 40 ⁇ m using a spray dryer, and titanium dioxide particles (b) instead of titanium dioxide particles (a) were used as fillers.
  • Bone cement composition kit in the same manner as in Example 1 except that the amount of til methacrylate used was 23.575% by mass and the amount of N, N-dimethyl-p-toluidine used was 0.295% by mass. (Hereinafter also referred to as “bone cement composition kit (7)”).
  • the content ratio of the (meth) acrylate polymer large-diameter particles is 51.000% by mass with respect to the entire base material-forming component, and the (meth) acrylate polymer small-diameter particles are The content rate was 15.0 mass% with respect to the sum total of the said (meth) acrylate type polymer small diameter particle and (meth) acrylate type polymer large diameter particle.
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization initiator was 6.248 mass%
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization accelerator was 1.251 mass%.
  • Example 8 In Example 1, polymethylmethacrylate powder having an average particle diameter of 12.93 ⁇ m, a weight average molecular weight of 139,600 and a spherical particle shape (Sekisui Plastics Co., Ltd.) The amount of the (meth) acrylate polymer large-diameter particles used is 23.575 mass%, and the amount of the (meth) acrylate polymer small-diameter particles is 5.894 mass%. The acrylate polymer small-diameter particles were used as an aggregate (particle shape: spherical) having an average particle diameter of 40 ⁇ m using a spray dryer, and titanium dioxide particles (b) instead of titanium dioxide particles (a) were used as fillers.
  • the acrylate polymer small-diameter particles were used as an aggregate (particle shape: spherical) having an average particle diameter of 40 ⁇ m using a spray dryer, and titanium dioxide particles (b) instead of titanium dioxide particles (a) were used as fillers.
  • Bone cement composition kit in the same manner as in Example 1 except that the amount of til methacrylate used was 29.470% by mass and the amount of N, N-dimethyl-p-toluidine used was 0.295% by mass. (Hereinafter also referred to as “bone cement composition kit (8)”).
  • the content ratio of the (meth) acrylate polymer large-diameter particles is 39.999% by mass with respect to the entire base material-forming component, and the (meth) acrylate polymer small-diameter particles
  • the content ratio was 20.0 mass% with respect to the sum total of the said (meth) acrylate type
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization initiator was 5.000 mass%, and the ratio with respect to the (meth) acrylate type monomer of a polymerization accelerator was 1.000 mass%.
  • Example 9 In Example 1, titanium dioxide particles were not used, and polymethylmethacrylate having a mean particle size of 30.00 ⁇ m, a weight average molecular weight of 135,000 and a spherical particle shape as large (meth) acrylate polymer particles Using the powder (manufactured by Sekisui Plastics Co., Ltd.), the amount of the large (meth) acrylate polymer particles used is 63.425% by mass, and the amount of the (meth) acrylate polymer small particles used is 3.338%. %, And the amount of methyl methacrylate used was 31.419% by mass, and the amount of N, N-dimethyl-p-toluidine used was 0.344% by mass.
  • a composition kit (hereinafter also referred to as “bone cement composition kit (9)”) was prepared.
  • the content ratio of the (meth) acrylate polymer large-diameter particles is 64.599% by mass with respect to the entire base material-forming component, and the (meth) acrylate polymer small-diameter particles are The content rate was 5.0 mass% with respect to the sum total of the said (meth) acrylate type polymer small diameter particle and (meth) acrylate type polymer large diameter particle.
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization initiator was 4.691 mass%
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization accelerator was 1.095 mass%.
  • Example 10 In Example 9, the amount of the (meth) acrylate polymer large-diameter particles used was 60.087% by mass, and the amount of the (meth) acrylate polymer small-diameter particles used was 6.676% by mass. 9 was used to prepare a bone cement composition kit (hereinafter also referred to as “bone cement composition kit (10)”).
  • bone cement composition kit (10) a bone cement composition kit
  • the content ratio of the (meth) acrylate-based polymer large-diameter particles is 61.200% by mass with respect to the entire base material-forming component, and the (meth) acrylate-based polymer small-diameter particles
  • the content rate was 10.0 mass% with respect to the sum total of the said (meth) acrylate type polymer small diameter particle and (meth) acrylate type polymer large diameter particle.
  • the hardening time was computed. The results are shown in Table 1.
  • Example 11 In Example 9, the (meth) acrylate-based polymer small-diameter particles were used in the same manner as in Example 9 except that they were used as aggregates (particle shape: spherical) having an average particle diameter of 40 ⁇ m using a spray dryer.
  • a bone cement composition kit (hereinafter also referred to as “bone cement composition kit (11)”) was prepared. And about the obtained bone cement composition kit (11), while confirming the downtime by the method similar to Example 1, the hardening time was computed. The results are shown in Table 1.
  • Example 12 In Example 10, except that the (meth) acrylate-based polymer small-diameter particles were used as an aggregate having an average particle diameter of 40 ⁇ m using a spray dryer, the bone cement composition kit ( Hereinafter, “bone cement composition kit (12)” was also prepared. And about the obtained bone cement composition kit (12), while confirming the downtime by the method similar to Example 1, the hardening time was computed. The results are shown in Table 1.
  • Example 13 polymethylmethacrylate styrene copolymer powder having an average particle diameter of 40.46 ⁇ m, a weight average molecular weight of 154,700, and a spherical particle shape (large amount of (meth) acrylate polymer particles)
  • the amount of (meth) acrylate polymer large-diameter particles used is 43.867% by mass
  • the amount of (meth) acrylate polymer small-diameter particles used is 7.440% by mass
  • the titanium dioxide particles (c) are used in place of the titanium dioxide particles (a)
  • the amount used is 19.646% by mass
  • the amount of benzoyl peroxide used is 1.473% by mass
  • the amount of methyl methacrylate used is 27.
  • bone cement composition kit (13) To to bone cement composition kit (hereinafter also referred to as "bone cement composition kit (13)".) was prepared.
  • the content ratio of the (meth) acrylate-based polymer large-diameter particles is 55.820% by mass with respect to the entire base material-forming component, and the (meth) acrylate-based polymer small-diameter particles
  • the content rate was 14.5 mass% with respect to the sum total of the said (meth) acrylate type polymer small diameter particle and (meth) acrylate type polymer large diameter particle.
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization initiator was 5.400 mass%
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization accelerator was 1.081 mass%.
  • Example 14 In Example 13, the amount of large (meth) acrylate polymer particles used was 35.904% by mass, the amount of (meth) acrylate polymer small particle particles used was 6.336% by mass, and the filler was titanium dioxide particles (c ) Bone cement composition kit (hereinafter referred to as Example 13) except that 19.646 mass% and barium sulfate 9.823 mass% were used, and the amount of methyl methacrylate used was 26.523 mass%. , Also referred to as “bone cement composition kit (14)”.
  • the content ratio of the (meth) acrylate-based polymer large-diameter particles is 52.214% by mass with respect to the entire base material-forming component, and the (meth) acrylate-based polymer small-diameter particles are The content rate was 15.0 mass% with respect to the sum total of the said (meth) acrylate type polymer small diameter particle and (meth) acrylate type polymer large diameter particle.
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization initiator was 5.554 mass%
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization accelerator was 1.112 mass%.
  • Example 15 In Example 14, the amount of large (meth) acrylate polymer particles used was 32.181% by mass, the amount of (meth) acrylate polymer small particle particles used was 6.130% by mass, and the amount of barium sulfate used was 14. It is also referred to as a bone cement composition kit (hereinafter referred to as “bone cement composition kit (15)”) in the same manner as in Example 14 except that 735 mass% and the amount of methyl methacrylate used are 25.540 mass%. ) was produced.
  • bone cement composition kit (15) a bone cement composition kit in Example 14 except that 735 mass% and the amount of methyl methacrylate used are 25.540 mass%.
  • the content ratio of the (meth) acrylate-based polymer large-diameter particles is 50.400% by mass with respect to the entire base material-forming component, and the (meth) acrylate-based polymer small-diameter particles
  • the content rate was 16.0 mass% with respect to the sum total of the said (meth) acrylate type
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization initiator was 5.767 mass%, and the ratio with respect to the (meth) acrylate type monomer of a polymerization accelerator was 1.155 mass%.
  • Example 16 In Example 14, the usage amount of the (meth) acrylate polymer large-diameter particles was 28.536 mass%, the usage amount of the (meth) acrylate-based polymer small diameter particles was 5.846 mass%, and the usage amount of barium sulfate was 19. It is also referred to as a bone cement composition kit (hereinafter referred to as “bone cement composition kit (16)”) in the same manner as in Example 14 except that the amount used is 646 mass% and methyl methacrylate is 24.558 mass%. ) Was produced.
  • the content ratio of the (meth) acrylate polymer large-diameter particles is 48.415% by mass with respect to the entire base material-forming component, and the (meth) acrylate polymer small-diameter particles are The content rate was 17.0 mass% with respect to the sum total of the said (meth) acrylate type
  • the ratio with respect to the (meth) acrylate type monomer of a polymerization initiator was 5.998 mass%, and the ratio with respect to the (meth) acrylate type monomer of a polymerization accelerator was 1.201 mass%.
  • Example 17 In Example 14, a bone cement composition kit (hereinafter also referred to as “bone cement composition kit (17)”) was used in the same manner as in Example 14 except that zirconium oxide was used instead of barium sulfate. Produced. And about the obtained bone cement composition kit (17), while confirming the downtime by the method similar to Example 1, the hardening time was computed. The results are shown in Table 1.
  • Example 18 In Example 15, except that zirconium oxide was used instead of barium sulfate, a bone cement composition kit (hereinafter also referred to as “bone cement composition kit (18)”) was obtained in the same manner as in Example 15. Produced. And about the obtained bone cement composition kit (18), while confirming the downtime by the method similar to Example 1, the hardening time was computed. The results are shown in Table 1.
  • Example 19 In Example 16, a bone cement composition kit (hereinafter also referred to as “bone cement composition kit (19)”) was used in the same manner as in Example 16 except that zirconium oxide was used instead of barium sulfate. Produced. And about the obtained bone cement composition kit (19), while confirming the downtime by the method similar to Example 1, the hardening time was computed. The results are shown in Table 1.
  • Example 1 In Example 1, the amount of (meth) acrylate-based polymer large-diameter particles used was 51.582% by mass, and the (meth) acrylate-based polymer small-diameter particles were not used.
  • a cement composition kit (hereinafter also referred to as “comparison bone cement composition kit (1)”) was prepared. In this comparative bone cement composition kit (1), the content ratio of the (meth) acrylate polymer large-diameter particles was 65.625% by mass with respect to the entire base-material-forming component. And about the obtained comparative bone cement composition kit (1), while confirming the downtime by the method similar to Example 1, the hardening time was computed. The results are shown in Table 1.
  • Example 2 a bone cement composition kit (hereinafter referred to as “Example 1”) was used in the same manner as in Example 1 except that polymethyl methacrylate powder having an average particle size of 4.0 ⁇ m was used instead of the (meth) acrylate-based polymer small particle. , Also referred to as “Comparative Bone Cement Composition Kit (2)”). And about the obtained comparative bone cement composition kit (2), while confirming the down time by the method similar to Example 1, the hardening time was computed. The results are shown in Table 1.
  • Example 3 In Example 2, the amount of (meth) acrylate-based polymer large-diameter particles used was 51.582% by mass, and the (meth) acrylate-based polymer small-diameter particles were not used.
  • a cement composition kit (hereinafter also referred to as “comparison bone cement composition kit (3)”) was prepared. In this comparative bone cement composition kit (3), the content ratio of the (meth) acrylate polymer large-diameter particles was 65.625% by mass with respect to the entire base-material-forming component. And about the obtained comparative bone cement composition kit (3), while confirming the down time by the method similar to Example 1, the hardening time was computed. The results are shown in Table 1.
  • Example 2 a bone cement composition kit (hereinafter referred to as “Example 2”) was used in the same manner as in Example 2 except that polymethyl methacrylate powder having an average particle size of 4.0 ⁇ m was used instead of the (meth) acrylate-based polymer small particle. , Also referred to as “Comparative bone cement composition kit (4)”). And about the obtained comparative bone cement composition kit (4), while confirming the down time by the method similar to Example 1, the hardening time was computed. The results are shown in Table 1.
  • Example 7 the amount of the (meth) acrylate polymer large-diameter particles used was 35.364% by mass, and the bone was made in the same manner as in Example 7 except that the (meth) acrylate polymer small-diameter particles were not used.
  • a cement composition kit (hereinafter also referred to as “comparison bone cement composition kit (5)”) was prepared.
  • this comparative bone cement composition kit (5) the content ratio of the (meth) acrylate polymer large-diameter particles was 60.001% by mass with respect to the entire base-material-forming component.
  • the hardening time was computed. The results are shown in Table 1.
  • Example 8 the amount of (meth) acrylate polymer large-diameter particles used was 29.470% by mass, and (meth) acrylate polymer small-diameter particles were not used.
  • a cement composition kit (hereinafter also referred to as “comparison bone cement composition kit (6)”) was prepared.
  • this comparative bone cement composition kit (6) the content ratio of the (meth) acrylate-based polymer large-diameter particles was 50.000% by mass with respect to the entire base-material-forming component.
  • the hardening time was computed. The results are shown in Table 1.
  • PMMA large-diameter particles are polymethyl methacrylate powders used for the preparation of bone cement composition kits, and two types of polymethyl methacrylate powders having different particle diameters were used for the preparation of the composition kits. In the case of being used, those having a large particle diameter are shown, and the “content ratio of PMMA large-diameter particles” indicates a ratio with respect to the entire base-material-forming component in the composition. “MMA / Sty. Large-diameter particles” refers to polymethylmethacrylate styrene copolymer powder used for the preparation of the bone cement composition kit, and “MMA / Sty.
  • PMMA small-diameter particles are polymethyl methacrylate powders used in the production of bone cement composition kits, and two types of polymethyl methacrylate powders having different particle diameters are used in the production of the composition kits.
  • the “content ratio of the PMMA small particle” indicates a ratio to the total amount of the PMMA small particle and the (meth) acrylate polymer large particle. .
  • the bone cement compositions according to Examples 1 to 19 have a downtime in the range of 2.5 to 5 minutes.
  • the results of Example 3 and Example 1, Example 4 and Example 2, Example 6 and Example 5, Example 11 and Example 9, and Example 12 and Example 10 are compared.
  • the composition containing the (meth) acrylate-based polymer small-diameter particles as aggregates is compared with the composition containing the (meth) acrylate-based polymer small-diameter particles as primary particles, not as aggregates. It is clear that the downtime is even shorter.
  • the bone cement compositions according to Comparative Example 1, Comparative Example 3, Comparative Example 5 and Comparative Example 6 do not contain (meth) acrylate-based polymer small-diameter particles, and therefore have a downtime of 5 minutes or more.
  • the bone cement composition according to Comparative Example 2 and Comparative Example 4 is confirmed to be required and contains two types of (meth) acrylate polymer particles having different average particle diameters. Since the average particle diameter of the small-sized polymer particles is excessively 4 ⁇ m, it is clear that a downtime of 5 minutes or more is required.
  • the working time (specifically, the time from the elapse of the dow time to the hardening, based on the reduction of the dow time, It is apparent that the workability is expected to be improved with the extension of (the time from the start of kneading to curing) minus the “down time”.
  • compositions according to Examples 1 to 8 and Examples 13 to 19 it was confirmed that excellent bioactivity was obtained because the titanium dioxide particles were contained. It was done.
  • the bone cement hardened body obtained from the composition was immersed in a simulated body fluid for 14 days under the condition of the surface and the temperature of 36.5 ° C.
  • SEM electron microscope
  • the bone cement hardened bodies obtained from the compositions according to Examples 14 to 19 also contain only titanium dioxide particles as fillers.
  • the formation of hydroxyapatite (indicated by the symbol “HAp” in the figure) was confirmed on the surface after being immersed in the simulated body fluid, like the hardened bone cement obtained from the composition according to No. 13. It was.
  • FIG. 1 is an SEM photograph showing the surface of the hardened bone cement obtained from the composition according to Example 13 (before being immersed in the simulated body fluid)
  • FIG. 2 is a composition according to Example 13.
  • FIG. 3 is a SEM photograph showing the surface of the hardened bone cement obtained after immersing in a simulated body fluid
  • FIGS. 3 to 8 are bone cements obtained from the compositions according to Examples 14 to 19, respectively. It is a SEM photograph which shows the surface after being immersed in the pseudo body fluid of a hardening body.
  • the compositions according to Examples 14 to 19 contain zirconium oxide or barium sulfate, the X-ray contrast measurement results shown in FIGS. 9 and 10 were obtained. As is clear from the results, it was confirmed that excellent contrast was obtained, and that the contrast was enhanced as the amount of zirconium oxide or barium sulfate added was increased.
  • the hardened bone cement obtained from the composition according to Example 13 (TiO 2 : 19.646 mass%, BaSO 4 : 0 mass%), according to Example 14.
  • Hardened bone cement obtained from the composition (TiO 2 : 19.646 mass%, BaSO 4 : 9.823 mass%), the composition according to Example 15 (TiO 2 : 19.646 mass%, BaSO 4 : 14.735 mass%) of the bone cement cured body and the bone cement cured body obtained from the composition according to Example 16 (TiO 2 : 19.646 mass%, BaSO 4 : 19.646 mass%)
  • the photographs are shown, and the photographs are arranged so that the content ratio of barium sulfate increases from the top to the bottom.
  • Example 10 shows, in order from the top, the hardened bone cement obtained from the composition according to Example 13 (TiO 2 : 19.646% by mass, ZrO 2 : 0% by mass), the composition according to Example 17 ( Hardened bone cement obtained from TiO 2 : 19.646 mass%, ZrO 2 : 9.823 mass%), composition according to Example 18 (TiO 2 : 19.646 mass%, ZrO 2 : 14.735) 2 shows a photograph of the hardened bone cement obtained from the hardened bone cement obtained from the present invention and the composition according to Example 19 (TiO 2 : 19.646% by weight, ZrO 2 : 19.646% by weight). The photographs are arranged so that the content ratio of zirconium oxide increases from the top to the bottom.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 本発明は、良好なハンドリング作業を行うことのできる状態となるまでに要する時間であるダウタイムが短く、その結果、ハンドリング作業を開始するまでに要する時間が短時間となることによって高い作業効率を得ることのできる骨セメント組成物および骨セメント組成物を得るための骨セメント組成物キット並びに骨セメント硬化体の製造方法を提供することを目的とする。  本発明の骨セメント組成物は、平均粒子径が10~60μmの(メタ)アクリレート系ポリマー大径粒子と、平均粒子径が0.1~2.0μmの(メタ)アクリレート系ポリマー小径粒子と、(メタ)アクリレート系モノマーと、重合開始剤とを含有し、前記(メタ)アクリレート系ポリマー小径粒子の含有割合が、当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計量に対して5~30質量%であることを特徴とする。

Description

骨セメント組成物及び骨セメント組成物キット並びに骨セメント硬化体の形成方法
 本発明は、骨セメント組成物および骨セメント組成物キット並びに骨セメント硬化体の製造方法に関する。
 従来、骨セメント組成物は、骨の欠損部の補填剤、あるいは人工股関節などの金属製の人工関節を周囲の骨と固定する接着剤などとして世界中において広く使用されており、このような骨セメント組成物としては、ポリメチルメタクリレート(PMMA)系骨セメント組成物が最も汎用されている。
 PMMA系骨セメント組成物とは、一般的に、ポリメチルメタクリレートと、重合性単量体であるメチルメタクリレートモノマーと、重合開始剤とを含有し、メチルメタクリレートモノマーがポリメチルメタクリレートの存在下において重合することによって徐々に粘度が高くなって最終的に硬化体を形成するものである。
 近年、PMMA系骨セメント組成物としては、従来から用いられているPMMA系骨セメント組成物において、当該組成物が生体親和性を有するものの、生体活性能、すなわち骨に結合する骨結合性能を有するものではないことから、特に人工関節と周囲の骨とを固定する接着剤として用いた場合には、適用してから長期間が経過することにより、接着剤が周囲の骨から隔離してしまい、これに起因して人工関節と骨との間に緩みを生じてしまうという問題が生じているために、この問題を解決すべく、生体活性能を付与する目的から二酸化チタン粒子を添加してなる組成物が提案されている(例えば、特許文献1参照。)。
 このような骨セメント組成物は、通常、手術中などの適用する直前に混練することによってメチルメタクリレート系モノマーの重合反応を開始させ、その混練物を放置するなどして粘度がある程度高い状態となったところでハンドリング作業により適用対象部位に適用されるなどして用いられている。
 しかしながら、従来から用いられている骨セメント組成物においては、多くの場合、特に手術中には、前記のハンドリング作業中に、例えば手に装着したラテックス製の外科用手袋に付着するなどの弊害が生じてしまう、という問題がある。
 このような問題は、骨セメント組成物の混練物が十分な粘度を有する状態となる以前にハンドリング作業が開始されてしまっていることに起因するものであることから、「ダウタイム」と称される、良好なハンドリング作業を行うために必要とされる十分な粘度を有する状態となるために要する時間を短縮することが求められている。特に二酸化チタン粒子などのフィラーが添加されてなる場合においては、ダウタイムが長くなる傾向にあるために前述の問題が顕著であることから、ダウタイムを短縮することが強く求められている。
特開2007-54619号公報
 本発明は以上の事情に基づいてなされたものであって、その目的は、良好なハンドリング作業を行うことのできる状態となるまでに要する時間であるダウタイムが短く、その結果、ハンドリング作業を開始するまでに要する時間が短時間となることによって高い作業効率を得ることのできる骨セメント組成物および骨セメント組成物を得るための骨セメント組成物キット並びに骨セメント組成物が硬化してなる骨セメント硬化体の製造方法を提供することにある。
 本発明の骨セメント組成物は、平均粒子径が10~60μmの(メタ)アクリレート系ポリマー大径粒子と、平均粒子径が0.1~2.0μmの(メタ)アクリレート系ポリマー小径粒子と、(メタ)アクリレート系モノマーと、重合開始剤とを含有し、
 前記(メタ)アクリレート系ポリマー小径粒子の含有割合が、当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計量に対して5~30質量%であることを特徴とする。
 本発明の骨セメント組成物においては、フィラーが含有されていることことが好ましい。
 このような構成の本発明の骨セメント組成物においては、前記フィラーが、少なくとも二酸化チタン粒子を含むことが好ましい。
 また、前記二酸化チタン粒子は、レーザー回折/散乱式粒度分布計によって測定されるメジアン径が0.5~7. 0μmである球状のものであることが好ましい。
 さらに、前記フィラーが、硫酸バリウムおよび/または酸化ジルコニウムを含むことができる。
 本発明の骨セメント組成物においては、前記(メタ)アクリレート系ポリマー小径粒子の一部または全部が、平均粒子径30~50μmの凝集体の形態で含有されていることが好ましい。
 本発明の骨セメント組成物キットは、上記の骨セメント組成物を得るための骨セメント組成物キットであって、(メタ)アクリレート系ポリマー大径粒子、(メタ)アクリレート系ポリマー小径粒子および重合開始剤を含有する重合開始剤含有キット成分と、(メタ)アクリレート系モノマーを含有するモノマー含有キット成分とを含有することを特徴とする。
 本発明の骨セメント組成物キットにおいては、前記重合開始剤含有キット成分が、少なくとも二酸化チタン粒子を含むフィラーを含有することが好ましい。
 本発明の骨セメント組成物キットにおいては、前記(メタ)アクリレート系ポリマー小径粒子の一部または全部が、平均粒子径30~50μmの凝集体の形態で含有されていることが好ましい。
 本発明の骨セメント硬化体の製造方法は、平均粒子径が10~60μmの(メタ)アクリレート系ポリマー大径粒子と、平均粒子径が0.1~2.0μmの(メタ)アクリレート系ポリマー小径粒子との存在下において、(メタ)アクリレート系モノマーと重合開始剤とを混練し、当該(メタ)アクリレート系モノマーを重合させる工程を有し、
 前記(メタ)アクリレート系ポリマー小径粒子を、当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計量に対して5~30質量%で用いることを特徴とする。
 本発明の骨セメント硬化体の製造方法においては、(メタ)アクリレート系モノマーと重合開始剤との混練物を放置する過程を経ることによって(メタ)アクリレート系モノマーを重合させることが好ましい。
 本発明の骨セメント硬化体の製造方法においては、(メタ)アクリレート系モノマーと重合開始剤との混練が、(メタ)アクリレート系ポリマー大径粒子および(メタ)アクリレート系ポリマー小径粒子と共に、少なくとも二酸化チタン粒子を含むフィラーの存在下において行われることが好ましい。
 本発明の骨セメント硬化体の製造方法においては、前記(メタ)アクリレート系ポリマー小径粒子の一部または全部が、平均粒子径30~50μmの凝集体の形態で混練されることが好ましい。
 本発明の骨セメント組成物によれば、(メタ)アクリレート系ポリマー大径粒子と共に、当該大径粒子よりも小径の特定の平均粒子径を有する(メタ)アクリレート系ポリマー小径粒子が特定の割合で含有されていることにより、ハンドリング作業を行うために必要とされる十分な粘度を有する状態に至るまでに要する時間が短くなるため、良好なハンドリング作業を行うことのできる状態となるまでに要する時間であるダウタイムが短くなり、その結果、ハンドリング作業を開始するまでに要する時間が短時間となることから高い作業効率を得ることができる。このような効果は、特に、二酸化チタン粒子を含むフィラーが含有されている場合において顕著に発揮され、当該フィラーが添加されることによって長時間を要する傾向にあるダウタイムの短縮化を図ることができることから、作業効率を改善することができる。
 本発明の骨セメント組成物キットによれば、キット成分を単に混練処理することによって骨セメント組成物を得ることができることから、骨セメント組成物の硬化体を容易に製造することができ、しかも(メタ)アクリレート系モノマーと、重合開始剤とが個別のキット成分とされていることから、適用前の保管されている状態あるいは運搬されている状態などにおいて(メタ)アクリレート系モノマーが重合することを防止することができる。
 本発明の骨セメント硬化体の製造方法によれば、形成すべき骨セメント硬化体における基材成分を形成するための(メタ)アクリレート系モノマーの重合反応が、(メタ)アクリレート系ポリマー大径粒子と共に、(メタ)アクリレート系ポリマー小径粒子の存在下において行われることによって初期段階において速やかに進行し、良好なハンドリング作業を行うために必要とされる十分な粘度を有する状態となるために要する時間が短くなることから、良好なハンドリング作業を行うことのできる状態となるまでに要する時間であるダウタイムが短くなり、その結果、ハンドリング作業を開始するまでに要する時間が短時間となることから高い作業効率を得ることができる。
実施例13に係る組成物から得られた骨セメント硬化体の表面(疑似体液に浸漬する前)を示すSEM写真である。 実施例13に係る組成物から得られた骨セメント硬化体の疑似体液に浸漬後の表面を示すSEM写真である。 実施例14に係る組成物から得られた骨セメント硬化体の疑似体液に浸漬後の表面を示すSEM写真である。 実施例15に係る組成物から得られた骨セメント硬化体の疑似体液に浸漬後の表面を示すSEM写真である。 実施例16に係る組成物から得られた骨セメント硬化体の疑似体液に浸漬後の表面を示すSEM写真である。 実施例17に係る組成物から得られた骨セメント硬化体の疑似体液に浸漬後の表面を示すSEM写真である。 実施例18に係る組成物から得られた骨セメント硬化体の疑似体液に浸漬後の表面を示すSEM写真である。 実施例19に係る組成物から得られた骨セメント硬化体の疑似体液に浸漬後の表面を示すSEM写真である。 X線造影性の測定によって得られた実施例13~実施例16の各々に係る組成物から得られた骨セメント硬化体の写真であり、上から順に、実施例13に係る写真、実施例14に係る写真、実施例15に係る写真および実施例16に係る写真である。 X線造影性の測定によって得られた実施例13および実施例17~実施例19の各々に係る組成物から得られた骨セメント硬化体の写真であり、上から順に、実施例13に係る写真、実施例17に係る写真、実施例18に係る写真および実施例19に係る写真である。
 以下、本発明について詳細に説明する。
<骨セメント組成物>
 本発明の骨セメント組成物は、(メタ)アクリレート系モノマーと、重合開始剤と、平均粒子径が10~60μm、好ましくは20~60μmの(メタ)アクリレート系ポリマー大径粒子と共に、平均粒子径が0.1~2.0μmの(メタ)アクリレート系ポリマー小径粒子とを必須成分として含有し、(メタ)アクリレート系ポリマー小径粒子の含有割合が、当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計量に対して5~30質量%、好ましくは5~20質量%であるものである。
 この本発明の骨セメント組成物は、(メタ)アクリレート系モノマーおよび(メタ)アクリレート系ポリマー大径粒子と共に、(メタ)アクリレート系ポリマー小径粒子を基材形成用成分とするものであり、この基材形成用成分のうちの重合性単量体である(メタ)アクリレート系モノマーが重合することにより、徐々に粘度が高くなってペースト状となり、最終的には硬化され、硬化体を形成するものである。
 ここに、本発明の骨セメント組成物が硬化することによって得られる硬化体は、その基材成分が、(メタ)アクリレート系モノマーが重合することによって形成されるポリマーと、この(メタ)アクリレート系モノマーと共に基材形成用成分を構成する(メタ)アクリレート系ポリマー大径粒子および(メタ)アクリレート系ポリマー小径粒子とにより形成されてなるものである。
((メタ)アクリレート系ポリマー小径粒子)
 本発明の骨セメント組成物の必須成分である(メタ)アクリレート系ポリマー小径粒子は、骨セメント組成物が硬化する過程における、良好なハンドリング作業を行うことのできる状態、具体的には十分な粘度を有する状態となるまでに要する時間であるダウタイムを調整して短くするためのダウタイム調整剤として作用するものである。
 ここに、「ダウタイム」とは、アクリル系外科用骨セメントに係る国際規格であるISO規格による測定法「ISO5833 Annex B」において、混練を開始してからその混練物が手術用ラテックス手袋に付着しなくなるまでに要する時間と定義されている。
 この(メタ)アクリレート系ポリマー小径粒子は、平均粒子径が0.1μm以上で2.0μm以下であることが必要とされるが、好ましくは0.1~1.0μm、特に好ましくは0.1~0.7μmである。
 ここに、(メタ)アクリレート系ポリマー小径粒子の平均粒子径は、レーザー回折/散乱式粒度分布計によって測定されるメジアン径である。
 また、レーザー回折/散乱式粒度分布計としては、具体的に、例えば粒度分布測定装置「Microtrac」(日機装株式会社製)を用いることができる。
 (メタ)アクリレート系ポリマー小径粒子の平均粒子径が過大である場合には、ダウタイムを実用上十分に短くすることができない。
 また、(メタ)アクリレート系ポリマー小径粒子は、その平均粒子径を2.0μm以下とすることによってダウタイムを短くする作用が発現され、具体的には、ダウタイムを実用上好ましいとされる2.5~5分間の範囲とすることができるのだが、平均粒子径が0.1μm未満の粒子を製造することは容易ではない。
 (メタ)アクリレート系ポリマー小径粒子は、重合性単量体としての(メタ)アクリレート系モノマーが重合されてなるものであり、その具体例としては、例えば、(A)メチルメタクリレート(MMA)、エチルメタクリレート(EMA)、ブチルメタクリレートなどのアルキルメタクリレートモノマーの重合体である、ポリメチルメタクリレート(PMMA)、ポリエチルメタクリレート(PEMA)、ポリブチルメタクリレート(PBMA)などのポリアルキルメタクリレート、(B)メチルメタクリレートと共に、スチレン、エチルメタクリレートおよびメチルアクリレートからなる群から選択される少なくとも一種が共重合されてなる共重合体、(C)ビスフェノール-Aジグリシジルジメタクリレート(Bis-GMA)、2,2-ビス[4-(3-メタクリロキシ-2-ハイドロキシプロポキシ)フェニル]プロパン、2,2-ビス(4-メタクリロキシエトキシフェニル)プロパン(Bis-MEPP)、トリエチレングリコールジメタクリレート(TEGDMA)、ジエチレングリコールジメタクリレート(DEGDMA)、エチレングリコールジメタクリレート(EGDMA)などのジメタクリレート系モノマーの重合体などが挙げられる。
 本発明の骨セメント組成物を構成する(メタ)アクリレート系ポリマー小径粒子としては、共に基材形成用成分を構成する(メタ)アクリレート系ポリマー大径粒子と同一もしくは類似の材料よりなるものであることが好ましい。具体的には、(メタ)アクリレート系ポリマー大径粒子と(メタ)アクリレート系モノマーとの関係から、メチルメタクリレートを重合性単量体として用いてなるポリメチルメタクリレート(PMMA)あるいは共重合体であることが好ましく、特にポリメチルメタクリレート(PMMA)であることが好ましい。
 (メタ)アクリレート系ポリマー小径粒子としては、重量平均分子量が好ましくは100,000以上、更に好ましくは100,000~400,000、特に好ましくは150,000~400,000であるものを用いることが好ましい。
 (メタ)アクリレート系ポリマー小径粒子の重量平均分子量を100,000~400,000の範囲とすることによっては、ダウタイムの十分な短縮化を図ることができると共に、得られる硬化体を十分な機械的強度を有するものとすることができる。
 また、重量平均分子量が特に150,000~400,000であることが好ましいとされる理由は、(メタ)アクリレート系ポリマー小径粒子の重量平均分子量が150,000以下である場合には、ダウタイムを短くする作用が小さくなることから、十分なダウタイムの短縮化を図るためにはその含有割合を大きくすることが必要とされ、一方、重量平均分子量が400,000を超える場合には、ダウタイムを十分に短くすることができるのだが、得られる硬化体に十分な機械的強度が得られなくなるおそれがあるからである。
 また、(メタ)アクリレート系ポリマー小径粒子としては、その一次粒子形状が、球状であることが好ましい。
 (メタ)アクリレート系ポリマー小径粒子の形状を球状とすることにより、高い流動性が得られ、それにより、組成物中における均一な分散性が得られることとなる。
 ここに、(メタ)アクリレート系ポリマー小径粒子の粒子形状は、電子顕微鏡写真にて観察することによって確認することができる。
 このような構成を有する(メタ)アクリレート系ポリマー小径粒子は、小径で球状のポリマー粒子を容易に得ることができることから、例えば重合性単量体としての(メタ)アクリレート系モノマーを水系媒体中において重合反応させること、例えば乳化重合や懸濁重合などを利用し、必要に応じてこの重合反応によって得られたポリマー粒子を解砕する目的から、粉砕処理することによって製造することができ、具体的には、下記の公知の手法によって製造することができる。
 本発明の骨セメント組成物に用いられる(メタ)アクリレート系ポリマー小径粒子を製造するための最適な手法の具体例としては、例えば重合性単量体としての(メタ)アクリレート系モノマーを、重合開始剤として過硫酸カリウムとチオ硫酸ナトリウムよりなるレドックス触媒を用いると共に、重合促進剤として2価の銅イオン化合物を用い、かつ、重合温度70℃以上の条件によって重合反応させるソープフリー重合と称される手法が挙げられる。
 この手法によれば、得られる(メタ)アクリレート系ポリマーの平均粒子径を所望の範囲に簡便に調整することができる。
 そして、本発明の骨セメント組成物においては、(メタ)アクリレート系ポリマー小径粒子が一次粒子よりなるものであってもよいが、(メタ)アクリレート系ポリマー小径粒子の一部または全部が凝集体の形態で含有されていることが好ましい。
 (メタ)アクリレート系ポリマー小径粒子の凝集体は、平均粒子径が30~50μmであることが好ましく、より好ましくは30~45μm、特に好ましくは35~45μmである。
 また、(メタ)アクリレート系ポリマー小径粒子の凝集体の形状は、真球状、略球状などの球状であることが好ましい。
 凝集体の形状を球状とすることにより、高い流動性が得られ、それにより、組成物中における均一な分散性が得られることとなる。
 ここに、(メタ)アクリレート系ポリマー小径粒子の凝集体の形状は、電子顕微鏡写真にて観察することによって確認することができ、また、その平均粒子径は、電子顕微鏡(SEM)写真に基づいて測定されるメジアン径である。
 このように(メタ)アクリレート系ポリマー小径粒子が、その平均粒子径が30~50μmの範囲の特定の大きさを有する凝集体の形態で含有されることにより、その大きさが(メタ)アクリレート系ポリマー大径粒子と同等または近似することとなるため、組成物を混練した場合に均一性の高い状態を得ることができることから、ダウタイムを短くする作用が大きく発揮されることとなり、ダウタイムをより一層好ましいとされる範囲である2.5~4分間とすることができる、という効果が得られる。
 このような構成を有する(メタ)アクリレート系ポリマー小径粒子の凝集体は、(メタ)アクリレート系ポリマー小径粒子の分散液を得、その分散液を噴霧乾燥処理する手法によって製造することができる。
 具体的には、噴霧乾燥装置を用い、(メタ)アクリレート系ポリマー小径粒子の分散液を、噴霧乾燥装置のノズルから微細な霧状液滴として噴射して熱風中に噴出させて乾燥することにより、その粒子形状が球状の乾燥造粒体として得られる。
 噴霧乾燥装置としては、通常のスプレードライヤーなどの通常の噴霧乾燥機を用いることができ、また、その噴霧方式は、(メタ)アクリレート系ポリマー小径粒子の分散液の性状や噴霧乾燥機の処理能力などに応じて、例えばディスク式、圧力ノズル式、二流体ノズル式、四流体ノズル式などを適宜選択することができる。
 本発明の骨セメント組成物において、(メタ)アクリレート系ポリマー小径粒子の含有割合は、当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計量に対して、5質量%以上であって30質量%以下であることが必要とされ、好ましくは5~20質量%、より好ましくは10~20質量%、更に好ましくは10~15質量%である。
 (メタ)アクリレート系ポリマー小径粒子の含有割合が過小である場合には、ダウタイムを所望の範囲にまで短縮することができない。
 一方、(メタ)アクリレート系ポリマー小径粒子の含有割合が過大である場合には、ダウタイムが所望の範囲よりも短くなるために良好なハンドリング作業を行うことができなくなる。また、含有割合が過大であることに起因して組成物の粘度が高くなる、あるいは硬化温度の上昇を招くことからも、良好なハンドリング作業を行うことができなくなる。
 ここに、(メタ)アクリレート系ポリマー小径粒子の含有割合は、組成物全体に対しては、0.7~23.0質量%であることが好ましく、更に好ましくは1.5~15.0質量%である。また、基材形成用成分全体に対しては、1.5~24.0質量%であることが好ましく、更に好ましくは2.5~15.0質量%である。
((メタ)アクリレート系ポリマー大径粒子)
 本発明の骨セメント組成物の必須成分である(メタ)アクリレート系ポリマー大径粒子は、基材形成用成分を構成するものである。
 この(メタ)アクリレート系ポリマー大径粒子は、平均粒子径が10μm以上であって60μm以下であることが必要とされるが、好ましくは20~60μm、更に好ましくは30~50μm、特に好ましくは35~45μmである。
 ここに、(メタ)アクリレート系ポリマー大径粒子の平均粒子径は、レーザー回折/散乱式粒度分布計によって測定されるメジアン径である。
 また、レーザー回折/散乱式粒度分布計としては、具体的に、例えば粒度分布測定装置「Microtrac」(日機装株式会社製)を用いることができる。
 (メタ)アクリレート系ポリマー大径粒子の平均粒子径が過小である場合には、硬化時間が短くなることに伴って、硬化時間との関係から所望のダウタイムを得ることができなくなる。
 一方、(メタ)アクリレート系ポリマー大径粒子の平均粒子径が過大である場合には、所望のダウタイムを得るために(メタ)アクリレート系ポリマー小径粒子の含有割合を大きくすることが必要となり、この(メタ)アクリレート系ポリマー小径粒子の含有割合を大きくすることによっては硬化温度の上昇を招くことなどから、良好なハンドリング作業を行うことができなくなる。
 (メタ)アクリレート系ポリマー大径粒子は、(メタ)アクリレート系ポリマー小径粒子と同様に、重合性単量体としての(メタ)アクリレート系モノマーが重合されてなるものであり、その具体例としては、例えば(A)ポリアルキルメタクリレート、(B)メチルメタクリレートと共に、スチレン、エチルメタクリレートおよびメチルアクリレートからなる群から選択される少なくとも一種が共重合されてなる共重合体、(C)ジメタクリレート系モノマーの重合体などの(メタ)アクリレート系ポリマー小径粒子を構成する重合体として例示したものが挙げられる。
 (メタ)アクリレート系ポリマー大径粒子としては、共に基材形成用成分を構成する(メタ)アクリレート系モノマーと同質の重合性単量体が重合されてなるものであることが好ましく、具体的には、基材形成用成分を構成する(メタ)アクリレート系モノマーとの関係から、メチルメタクリレートを重合性単量体として用いてなるポリメチルメタクリレート(PMMA)あるいは共重合体であることが好ましく、特にポリメチルメタクリレート(PMMA)であることが好ましい。
 (メタ)アクリレート系ポリマー大径粒子としては、重量平均分子量が好ましくは100,000以上、更に好ましくは130,000~170,000であるものを用いることが好ましい。
 また、(メタ)アクリレート系ポリマー大径粒子は、通常、一次粒子よりなるものであり、その粒子形状が、球状であることが好ましい。
 (メタ)アクリレート系ポリマー大径粒子の形状を球状とすることにより、高い流動性が得られ、それにより、組成物中における均一な分散性が得られることとなる。
 ここに、(メタ)アクリレート系ポリマー大径粒子の粒子形状は、(メタ)アクリレート系ポリマー小径粒子の粒子形状と同様に電子顕微鏡写真にて観察することによって確認することができる。
 このような構成を有する(メタ)アクリレート系ポリマー大径粒子は、(メタ)アクリレート系ポリマー小径粒子と同様に、例えば重合性単量体としての(メタ)アクリレート系モノマーを水系媒体中において重合反応させること、具体例には、例えば乳化重合や懸濁重合などを利用し、必要に応じてこの重合反応によって得られたポリマー粒子を解砕処理することにより製造することができる。
 本発明の骨セメント組成物において、(メタ)アクリレート系ポリマー大径粒子の含有割合は、組成物全体に対して10~70質量%であることが好ましく、より好ましくは25~70質量%である。また、基材形成用成分全体に対しては、20~75質量%であることが好ましく、より好ましくは40~75質量%である。
((メタ)アクリレート系モノマー)
 本発明の骨セメント組成物の必須成分である(メタ)アクリレート系モノマーは、基材形成用成分を構成するものであり、この重合性単量体である(メタ)アクリレート系モノマーが重合することによって当該骨セメント組成物が硬化され、その結果、硬化体が得られることとなる。
 (メタ)アクリレート系モノマーの具体例としては、例えばアルキルメタクリレートモノマー、ジメタクリレート系モノマーなどと共に基材形成用成分を構成する(メタ)アクリレート系ポリマーを得るための重合性単量体として例示したものが挙げられる。
 (メタ)アクリレート系モノマーの好ましい具体例としては、メチルメタクリレート(MMA)が挙げられる。
 (メタ)アクリレート系モノマーの含有割合は、組成物全体に対して19~35質量%であることが好ましく、更に好ましくは24~35質量%である。また、基材形成用成分全体に対しては、20~70質量%であることが好ましく、更に好ましくは25~50質量%である。
(重合開始剤)
 本発明の骨セメント組成物の必須成分である重合開始剤としては、例えば過酸化ベンゾイル、過酸化tert-ブチル、過酸化ラウロイル、アゾビスイソブチロニトリルなどを用いることができる。
 これらのうちでは、(メタ)アクリレート系モノマーの重合反応が速やかに開始され、しかもその反応を持続させやすいことから、過酸化ベンゾイルを用いることが好ましい。
 重合開始剤の含有割合は、(メタ)アクリレート系モノマー100質量部に対して1~10質量部であることが好ましく、更に好ましくは2~9質量部である。
 重合開始剤の含有割合が過小である場合には、(メタ)アクリレート系モノマーの重合反応が進みにくくなるおそれがある。一方、重合開始剤の含有割合が過大である場合には、(メタ)アクリレート系モノマーが重合することによって形成される硬化体に重合開始剤が残留しやすくなる。
 また、本発明の骨セメント組成物には、必須成分である、(メタ)アクリレート系ポリマー小径粒子、(メタ)アクリレート系ポリマー大径粒子および(メタ)アクリレート系モノマーよりなる基材形成用成分、重合開始剤の他、最終的に得られる硬化体に使用用途に応じた機能を付与する目的から、フィラーが含有されていることが好ましく、また、(メタ)アクリレート系モノマーの重合反応をより一層速やかに進行させる目的から、重合開始剤と共に重合促進剤が含有されていることが好ましい。
(重合促進剤)
 重合促進剤としては、例えばN,N-ジメチル-p-トルイジン、2, 4, 6-トリス(ジメチルアミノメチル)フェノールなどを用いることができる。
 これらのうちでは、(メタ)アクリレート系モノマーの重合反応が速やかに進行されることから、N,N-ジメチル-p-トルイジンを用いることが好ましい。
 重合促進剤の含有割合は、(メタ)アクリレート系モノマー100質量部に対して0.4~5. 0質量部であることが好ましく、更に好ましくは0.5~2.0質量部である。
 重合促進剤の含有割合が過小である場合には、(メタ)アクリレート系モノマーの重合反応が進みにくくなるおそれがある。一方、重合促進剤の含有割合が過大である場合には、(メタ)アクリレート系モノマーが重合することによって形成される硬化体に重合促進剤が残留しやすくなる。
(フィラー)
 フィラーとしては、二酸化チタン、リン酸カルシウム(ハイドロキシアパタイト、リン酸三カルシウム)、硫酸バリウム、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)などの無機物よりなり、これらの無機物を単独または2種以上を適宜に選択して組み合わせてなるものを用いることができる。これらのうちでは、二酸化チタンよりなるものが好ましい。
 その理由は、二酸化チタンが、それ自体が体液環境下におけるアパタイト形成能を有するものであることから、この二酸化チタンよりなるフィラーが含有されることにより、最終的に得られる硬化体が高い生体活性能を有するものとなるためである。
 また、フィラーは、上述のように二酸化チタンよりなるものであることが好ましいが、二酸化チタンと共に、その他の無機物、具体的にはリン酸カルシウム(ハイドロキシアパタイト、リン酸三カルシウム)、硫酸バリウム、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)などを併用してなるものであってもよい。これらのうちでは、X線造影効果を有する酸化ジルコニウムや硫酸バリウムを併用してなるものが好ましい。
 フィラーの含有割合は、組成物全体に対して5質量%以上であることが好ましい。
 また、フィラーとして二酸化チタンと共にその他の無機物を組み合わせてなるものを用いる場合においては、それらの混合割合は適宜に設定することができるが、フィラーに含まれる二酸化チタンの含有割合が組成物全体に対して5~50質量%であることが好ましく、より好ましくは5~40質量%であり、更に好ましくは5~30質量%であり、特に好ましくは10~25質量%である。
 フィラーに含まれる二酸化チタンの含有割合が過小である場合には、十分な生体活性能が得られなくなるおそれがある。
 一方、フィラーに含まれる二酸化チタンの含有割合が過大である場合には、(メタ)アクリレート系モノマーが重合することによって形成される硬化体が物理的強度の小さいものとなるおそれがある。
 また、フィラーにX線造影効果を有する酸化ジルコニウムおよび/または硫酸バリウムが含まれる場合においては、その含有割合は、造影性の観点から、組成物全体に対して5質量%以上であることが好ましく、より好ましくは10質量%以上であり、更に好ましくは15質量%以上である。
 本発明の骨セメント組成物において、フィラーは少なくとも二酸化チタン粒子を含むものであることが好ましく、このフィラーを構成する二酸化チタン粒子は、レーザー回折/散乱式粒度分布計によって測定されるメジアン径が0.5~7. 0μmであることが好ましく、より好ましくは1.5~7.0μm、更に好ましくは2.0~7.0μm、特に好ましくは2.0~6.5μmである。
 ここに、レーザー回折/散乱式粒度分布計としては、具体的に、例えば粒度分布測定装置「LA-950」(株式会社堀場製作所製)を用いることができる。
 二酸化チタン粒子のメジアン径が過小である場合には、(メタ)アクリレート系モノマーが重合することによって形成される硬化体が物理的強度が小さいものとなるおそれがある。
 一方、二酸化チタン粒子のメジアン径が過大である場合には、(メタ)アクリレート系モノマーが重合することによって形成される硬化体の物理的強度が過剰に大きくなるため、この硬化体と、組成物の適用部位に係る骨との物理的強度の差が大きくなることに起因して骨折が生じやすくなるなどの弊害が生じるおそれがある。
 また、前記二酸化チタン粒子は、窒素吸着法によって測定されるBET比表面積が0.5~7.0m/gであることが好ましく、より好ましくは0.5~5.0m/g、更に好ましくは0.5~4.0m/g、特に好ましくは0.5~3.0m/gである。
 ここに、窒素吸着法によるBET比表面積の測定には、例えばBET比表面積測定装置「MONOSORB」(ユアサアイオニクス株式会社製)を用いることができる。
 二酸化チタン粒子のBET比表面積が過小である場合には、メジアン径が大きくなり、その結果、(メタ)アクリレート系モノマーが重合することによって形成される硬化体の物理的強度が過剰に大きくなるため、この硬化体と、組成物の適用部位に係る骨との物理的強度の差が大きくなることに起因して骨折が生じやすくなるなどの弊害が生じることとなる。
 一方、二酸化チタン粒子のBET比表面積が過大である場合には、メジアン径が小さくなりすぎたり、二酸化チタン粒子が凝集した状態、あるいは多孔質状態となることに起因して(メタ)アクリレート系モノマーが重合することによって形成される硬化体に実用上必要とされる物理的強度(例えば、曲げ強度)が得られなくなる。
 本発明の骨セメント組成物を構成する二酸化チタン粒子としては、メジアン径が1.5~7.0μmであってBET比表面積が0.5~5.0m/gであるものが好ましく、また、メジアン径が1.5~7.0μmであってBET比表面積が0.5~4.0m/gであるものが更に好ましく、メジアン径が2.0~7.0μmであってBET比表面積が0.5~4.0m/gであるものがまた更に好ましく、メジアン径が2.0~6.5μmであってBET比表面積が0.5~3.0m/gであるものが特に好ましい。
 二酸化チタン粒子としては、その粒子形状が、通常の工業的製法で得られる粒状もしくは不定形状の他、板状、薄片状、針状、棒状、繊維状および柱状などの公知の種々の形状のものを使用することもできるが、粒状の粒子形状を有するものであることが好ましく、粒状の形状の好ましい具体例としては、真球状、略球状などの球状が挙げられる。
 二酸化チタン粒子の形状を球状とすることにより、高い流動性が得られることに伴って組成物中における均一分散性、および良好な充填性が得られることになり、その結果、この組成物から形成される硬化体において均一性の高い状態で分散されることとなるため、この硬化体からの二酸化チタン粒子の脱離を抑制されるという効果が得られることが期待される。
 また、本発明の骨セメント組成物においては、当該組成物を構成する二酸化チタン粒子のすべてが同等の形状を有するものであることが好ましい。
 また、本発明の骨セメント組成物を構成する二酸化チタン粒子は、ルチル型、アナタース型およびブルッカイト型のいずれの結晶構造を有するものであってもよく、また非晶質(アモルファス)のものであってもよいが、より高いアパタイト形成能(生体活性能)を有するものであることから、ルチル型二酸化チタン粒子であることが好ましい。
 また、二酸化チタン粒子は、より一層高いアパタイト形成能 (生体活性能)が得られることから、(メタ)アクリレート系ポリマーとの親和性に弊害を伴わない範囲において、その粒子表面が親水性を有するものであることが好ましい。
 二酸化チタン粒子の粒子表面をより一層親水性を有するものとするための手法としては、例えば酸洗浄処理が挙げられる。
 更に、二酸化チタン粒子は、適用する生体内における安全性および人工関節に対する悪影響を防止する観点からは、不純物が少ないものであることが好ましく、具体的には、二酸化チタンの純度が99質量%以上であることが好ましく、更には99.5質量%以上であることが好ましいが、その一方、(メタ)アクリレート系ポリマーとの親和性の観点からは、組成物に係る生体活性能および物理的強度に弊害を伴わない範囲において、シランカップリング剤などの有機物、あるいはシリカやアルミナなどの無機物の少量が被覆処理されてなるものを用いることができる。
 このような構成を有する二酸化チタン粒子は、通常の手法によって製造することができるが、例えばチタン酸を原料として用い、この原料としてのチタン酸のスラリーを、必要に応じて湿式粉砕処理した後、噴霧乾燥処理することによって乾燥造粒体を得、この乾燥造粒体を焼成処理する工程を経ることによって二酸化チタン粒子を得る手法により製造することが最適である。
 この手法によれば、得られる二酸化チタン粒子のメジアン径などを所望の範囲に簡便に調整することができる。
 二酸化チタン粒子の原料としてのチタン酸としては、具体的にオルトチタン酸およびメタチタン酸を用いることができる。
 ここに、オルトチタン酸とは、四塩化チタンまたは硫酸チタニルなどのチタン化合物の水溶液を、必要に応じてシードの存在下にアルカリ中和することによって得られ、「水酸化チタン」とも称される、「Ti(OH)」または「TiO・2HO」の示性式によって表わされる化合物である。このオルトチタン酸は、無定形のものであることから、焼成処理において、低い加熱温度(焼成温度)によっても得られる二酸化チタン粒子がルチル型の結晶構造を有するものとなるように結晶転位がなされるため、原料として好ましく用いられる。
 メタチタン酸とは、硫酸チタニルなどのチタン化合物を水溶液中において、必要に応じてシードの存在下に熱加水分解することによって得られ、「TiO(OH)」または「TiO・HO」の示性式によって表わされる化合物であってアナタース型の結晶構造を有するものである。
 この原料としてのチタン酸を、例えば水などの溶媒に懸濁させることによってスラリーが調製される。
 次いで、得られたチタン酸スラリーが供される湿式粉砕処理、噴霧乾燥処理および焼成処理について、以下に詳細に説明する。
(1)湿式粉砕処理
 この湿式粉砕処理においては、原料としてのチタン酸のスラリーを粉砕処理することにより、当該スラリー中のチタン酸を粉砕し、この粉砕されたチタン酸が溶媒中に分散した状態の粉砕チタン酸分散液を得る。
 この湿式粉砕処理は、スラリー中のチタン酸を分散させることにより、後工程の噴霧乾燥処理および焼成処理を経ることによって得られる二酸化チタン粒子のメジアン径が小さくなるよう調整することができるものであることから、行うことが好ましい処理である。
 この湿式粉砕処理に係る粉砕方式としては、例えばコロイドミルなどにより、回転する円型の砥石の隙間にスラリーを流通させて摩擦力、せん断力を与えて粉砕する方式、あるいは例えばボールミル、ダイノミル、サンドグラインダーなどにより、撹拌機を挿入した円筒にスラリーを剛体ビーズ(例えば、硬質ガラス、セラミック等)の球状媒体とともに充填して混合し、高速撹拌、振動による物理的衝撃、せん断、摩擦などにより粉砕する方式などを用いることができる。また、加圧乳化機タイプの装置や高速撹拌装置などによる、その他の粉砕方式を用いることもできる。
 チタン酸スラリーや湿式粉砕処理によって得られる粉砕チタン酸分散液には、ルチル転位促進シードが混合されていることが好ましい。
 このようにルチル転位促進シードが混合されている場合においては、焼成処理中において、得られる二酸化チタン粒子をルチル型の結晶構造を有するものとするための結晶転位が生じやすくなる。
 ここに、「ルチル転位促進シード」とは、ルチル結晶構造を有する微小核晶であり、チタン酸のルチル転位を促進するものである。
 ルチル転位促進シードとしては、具体的に、例えば従来公知の硫酸法によってルチル型二酸化チタン白色顔料を製造する方法において、原料である硫酸チタニルを加水分解する際に添加するシードなどを用いることができる。
 また、ルチル転位促進シードの混合量は、適宜設定することができるが、ルチル転位を十分に生じさせることができることから、チタン酸スラリーや粉砕チタン酸分散液中に存在する二酸化チタンとの質量比(チタン酸中の二酸化チタン質量/ルチル転位促進シード中の二酸化チタン質量)が90/10~99/1の範囲となる量であることが好ましい。
 また、ルチル転位促進シードを混合する手法としては、例えば撹拌混合機、ミキサーなどの通常の混合装置を用いることができ、また、このルチル転位促進シードの混合は、湿式粉砕処理の前後、あるいは湿式粉砕処理を行う際、すなわち湿式粉砕処理と同時に行うことができる。
(2)噴霧乾燥処理
 この噴霧乾燥処理においては、噴霧乾燥装置を用い、チタン酸スラリー、あるいは必要に応じてなされた湿式粉砕処理において得られた粉砕チタン酸分散液を、噴霧乾燥装置のノズルから微細な霧状液滴として噴射して熱風中に噴出させて乾燥することにより、その粒子形状が球状の乾燥造粒体を得る。
 噴霧乾燥装置としては、通常のスプレードライヤーなどの通常の噴霧乾燥機を用いることができ、また、その噴霧方式は、チタン酸スラリーや粉砕チタン酸分散液の性状や噴霧乾燥機の処理能力などに応じて、例えばディスク式、圧力ノズル式、二流体ノズル式、四流体ノズル式などを適宜選択することができる。
 また、霧状液滴の乾燥条件(噴霧乾燥温度)は、給気温度が150~250℃であって、排気温度が60~120℃であることが好ましい。
 このような噴霧乾燥処理においては、例えばチタン酸スラリーや粉砕チタン酸分散液における二酸化チタン濃度を調整すること、噴霧乾燥機の噴霧方式としてディスク式を選択する場合には、ディスクの回転数を調整すること、また、噴霧乾燥機の噴霧方式として圧力ノズル式、二流体ノズル式および四流体ノズル式を選択する場合には、噴霧圧を調整することなどによって、噴霧される液滴の大きさを制御することにより、得られる乾燥造粒体のメジアン径およびBET比表面積を制御することができる。
 また、噴霧乾燥処理によっては、得られる乾燥造粒体を同等の球状の粒子形状を有するものとすることができる。
(3)焼成処理
 この焼成処理においては、噴霧乾燥処理において得られた乾燥造粒体を、当該噴霧乾燥処理に係る噴霧乾燥温度よりも高い温度条件(具体的には250℃以上)によって焼成処理することにより、二酸化チタンよりなる焼成粒子を得る。
 この焼成処理によれば、得られる焼成粒子のメジアン径およびBET比表面積と共に、当該焼成粒子の結晶構造や硬度などを調整することができる。
 焼成処理に係る焼成条件は、焼成温度が、500~1200℃であることが好ましく、更に好ましくは700~1000℃であり、特に好ましくは800~950℃である。
 焼成温度が500℃未満である場合には、得られる二酸化チタン粒子がルチル型の結晶構造を有するものとなるようになされる結晶転位が進行しにくくなるおそれがある。一方、焼成温度が1200℃を超える場合には、得られる二酸化チタン粒子の硬度が高くなることから、組成物の適用部位において、骨や人工関節に二酸化チタン粒子による摩耗が生じるおそれがある。
 また、焼成時間は、適宜に設定することができるが、具体的には、30分~10時間とすることにより、形成される焼成粒子に焼成による十分な効果、具体的には、ルチル体への相転位促進効果を得ることができる。
 また、焼成雰囲気は、特に限定されるものではないが、経済的観点から、大気などの酸素が存在する雰囲気であることが好ましい。
 更に、焼成処理は、焼成負荷を均一に付与する目的から、500~800℃の焼成温度によって第1の焼成処理を行った後、更に800~1200℃の焼成温度によって第2の焼成処理を行うものであってもよい。
 このようにして、湿式粉砕処理、噴霧乾燥処理および焼成処理を経ることによって形成された焼成粒子は、そのままの状態において本発明の骨セメント組成物の構成材料、すなわち本発明の骨セメント組成物を構成する二酸化チタン粒子(フィラー)として用いることができるが、必要に応じて、より一層高いアパタイト形成能 (生体活性能)を得る目的から、その粒子表面に対してより一層高い親水性を付与するために、焼成処理において得られた焼成粒子を酸洗浄処理することが好ましい。
(4)酸洗浄処理
 酸洗浄処理は、例えば焼成粒子のスラリーを調製し、このスラリーと酸とを混合し、室温あるいは加熱下において撹拌することによって行うことができ、この酸洗浄処理の後、固液分離処理、洗浄処理および乾燥処理、必要に応じて解砕処理を経ることによって二酸化チタン粒子を得ることができる。
 酸としては、例えば塩酸、硫酸、硝酸、フッ酸などの無機酸、酢酸、クエン酸、シュウ酸などの有機酸を用いることができ、また、スラリーと酸との混合液における酸濃度は、例えば0.01~10mol/Lである。
 酸洗浄処理を加熱下において行う場合は、スラリーと酸との混合液の温度が30~105℃となる条件で加熱することが好ましい。
 この酸洗浄処理は、必要に応じて二酸化チタン粒子の表面により一層高い親水性を付与するためになされる処理であり、前記焼成粒子の他に、それ以外の他の方法によって製造された二酸化チタン粒子に対しても適用することができる。
 また、二酸化チタン粒子の製造過程においては、このような酸洗浄処理の他、必要に応じて、焼成処理において得られた焼成粒子に含まれる凝集体を解砕する目的から、例えば遠心粉砕機などを用いて乾式粉砕処理、または例えばボールミル、ダイノミル、サンドグラインダーなどを用いて湿式粉砕処理を行うこと、所望のメジアン径を有するものを選別する目的から、例えば静置法などによって湿式分級処理を行うこと、あるいは、メジアン径および/またはBET比表面積の異なる二酸化チタン粒子を混合することなどの他の工程を経ることもできる。
 更に、本発明の骨セメント組成物には、フィラーおよび重合促進剤の他、例えば色素、抗生物質、骨成長因子、その他薬学的に許容しうる任意成分が含有されていてもよい。
 以上のような構成の本発明の骨セメント組成物は、例えば適用する直前に混練処理することによって(メタ)アクリレート系モノマーの重合反応を開始させ、その混練物を放置するなどして粘度がある程度高い状態となったところで適用対象部位に適用するためのハンドリング作業を行い、当該適用対象部位において硬化体を形成することによって適用される。
 而して、本発明の骨セメント組成物は、基材形成用成分として、特定の平均粒子径を有する(メタ)アクリレート系ポリマー小径粒子が特定の割合で含有されていることにより、ダウタイムを短くする作用が発現され、この作用により、良好なハンドリング作業を行うために必要とされる十分な粘度を有する状態に至るまでに要する時間としてのダウタイムを小さくすることができる、具体的には2.5~5分間とすることができる。
 従って、本発明の骨セメント組成物によれば、ダウタイムを短くすることができることから、ハンドリング作業を開始するまでに要する時間が短時間となることによって高い作業効率を得ることができる。
 また、本発明の骨セメント組成物においては、ダウタイムを短くすることができると共に、硬化時間が若干ではあるが遅延する傾向にあることから、ダウタイム経過後から硬化に至るまでの時間、すなわち作業時間が長くなることに伴う作業性の向上を図ることができる可能性がある。
 また、本発明の骨セメント組成物においては、少なくとも二酸化チタン粒子を含むフィラーが含有されることにより、当該二酸化チタン粒子自体の有する体液環境下におけるアパタイト形成能が発現されることから、優れた生体活性能が得られる。
 更に、フィラーを構成する二酸化チタン粒子を、特定の大きさを有するものとすることにより、使用用途に応じた良好な強度が発揮されることとなることから、高い物理的強度を得ることができる。
 そして、このように少なくとも二酸化チタン粒子を含むフィラーが含有されている場合においては、ダウタイムを短くすることができるという効果が顕著に発揮されることとなるため、当該フィラーが添加されることによって長時間を要する傾向にあるダウタイムの短縮化を図ることができることから、作業効率を改善することができる。
 本発明の骨セメント組成物は、ダウタイムを短くすることによって高い作業効率を得ることができるものであることから、特に手術中などのできるだけ短時間のうちに作業を行うことが好ましいとされる場面において、骨の欠損部の補填剤、あるいは人工股関節などの金属製の人工関節を周囲の骨と固定する接着剤、人工関節の固定剤として好適に用いることができ、その他、人工骨を形成するための人工骨形成材料などとしても用いることができる。また、少なくとも二酸化チタン粒子を含むフィラーが含有されてなるものについては、生体活性能が得られると共に、高い物理的強度が得られることとなるため、骨の欠損部の補填剤、人工関節を周囲の骨と固定する接着剤、人工関節の固定剤および人工骨形成材料などとしてより一層好適なものとなる。
 このような本発明の骨セメント組成物は、必須成分である、(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子と(メタ)アクリレート系モノマーよりなる基材形成用成分および重合開始剤、その他、必要に応じた成分を混合することによって製造することができるものであり、製造に係る簡便性などの観点から、例えば各構成成分を予め個別の収容部材に収容してキットとして保管しておき、必要に応じて調製することもできる。
<骨セメント組成物キット>
 本発明の骨セメント組成物キットは、本発明の骨セメント組成物を得るための骨セメント組成物キットである。
 この本発明の骨セメント組成物キットは、形成すべき本発明の骨セメント組成物の必須の構成成分である、(メタ)アクリレート系ポリマー小径粒子、(メタ)アクリレート系ポリマー大径粒子、(メタ)アクリレート系モノマーおよび重合開始剤のうちの少なくとも(メタ)アクリレート系モノマーを含有するモノマー含有キット成分と、少なくとも重合開始剤を含有する重合開始剤含有キット成分とを含有するものである。
 このような本発明の骨セメント組成物キットは、適用前において(メタ)アクリレート系モノマーが重合反応することを防止する観点から、(メタ)アクリレート系モノマーと、重合開始剤とが個別のキット成分とされていればよく、例えば形成すべき骨セメント組成物の構成成分の各々を個別のキット成分とすることもできるが、骨セメント組成物キットの持ち運びに係る便宜性および重合反応操作の簡便性の観点から、モノマー含有キット成分と、重合開始剤含有キット成分との2つのキット成分よりなるものであることが好ましい。
 モノマー含有キット成分および重合開始剤含有キット成分の2つのキット成分よりなる骨セメント組成物キットにおいては、形成すべき骨セメント組成物の必須の構成成分のうちの(メタ)アクリレート系ポリマー小径粒子、(メタ)アクリレート系ポリマー大径粒子および重合開始剤が、通常、固体状のものであり、また(メタ)アクリレート系モノマーが、通常、液体状のものであることから、モノマー含有キット成分には、(メタ)アクリレート系モノマーのみが含有され、重合開始剤含有キット成分には、重合開始剤と共に、(メタ)アクリレート系ポリマー小径粒子および(メタ)アクリレート系ポリマー大径粒子が含有されていることが好ましい。また、(メタ)アクリレート系ポリマー小径粒子は、その一部または全部が平均粒子径30~50μmの凝集体の形態で含有されていることがより好ましい。
 また、本発明の骨セメント組成物キットにおいては、得られる骨セメント組成物が、必須の構成成分、具体的には、(メタ)アクリレート系ポリマー小径粒子、(メタ)アクリレート系ポリマー大径粒子、(メタ)アクリレート系モノマーおよび重合開始剤と共に、少なくとも二酸化チタン粒子を含むフィラーおよび/または重合促進剤が含有されてなるものである場合には、これらのフィラーおよび/または重合促進剤を、各々、モノマー含有キット成分および重合開始剤含有キット成分とは異なる個別のキット成分とすることもできるが、持ち運びに係る便宜性および重合反応操作の簡便性の観点から、2つのキット成分のいずれかに含有させることが好ましい。
 具体的には、フィラーは、通常固体状態のものであることから、2つのキット成分のうちの重合開始剤含有キット成分に含有することが好ましく、一方、重合促進剤は、通常液体状態のものであり、(メタ)アクリレート系モノマーに対する反応性を有するものではないことから、2つのキット成分のうちのモノマー含有キット成分に含有することが好ましい。
 骨セメント組成物キットに係るキット成分を収容するための収容部材としては、キット成分を保管および運搬することのできるようなものであればよく、例えばガラス、金属およびプラスチックよりなる容器、例えば紙やプラスチックよりなる包装部材などを適宜に選択して用いることができる。
 このような本発明の骨セメント組成物キットによれば、キット成分を単に混練処理することによって骨セメント組成物を得ることができることから、骨セメント硬化体を容易に製造することができ、しかも(メタ)アクリレート系モノマーと、重合開始剤とが個別のキット成分とされていることから、適用前の保管されている状態あるいは運搬されている状態などにおいて、(メタ)アクリレート系モノマーが重合することを防止することができる。
 また、本発明の骨セメント組成物キットが、モノマー含有キット成分および重合開始剤含有キット成分の2つのキット成分よりなるものである場合には、キット成分の総数が少ないことから、優れた骨セメント組成物キットの持ち運びに係る便宜性および重合反応操作の簡便性が得られる。
<骨セメント硬化体の製造方法>
 本発明の骨セメント硬化体の製造方法は、平均粒子径が10~60μm、好ましくは20~60μmの(メタ)アクリレート系ポリマー大径粒子と、平均粒子径が0.1~2.0μmの(メタ)アクリレート系ポリマー小径粒子との存在下において、(メタ)アクリレート系モノマーと重合開始剤とを混練し、当該(メタ)アクリレート系モノマーを重合させる工程を有し、前記(メタ)アクリレート系ポリマー小径粒子を、当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計量に対して5~30質量%、好ましくは5~20質量%、より好ましくは10~20質量%、特に好ましくは10~15質量%で用いることを特徴とするものである。
 すなわち、本発明の骨セメント硬化体の製造方法は、本発明の骨セメント組成物を材料とし、当該骨セメント組成物に係る基材形成用成分を構成する、(メタ)アクリレート系モノマーを重合させることによって形成される硬化体を得るためのものである。
 このような本発明の骨セメント硬化体の製造方法においては、(メタ)アクリレート系ポリマー小径粒子として、その一部または全部が平均粒子径が30~50μmの凝集体の形態のものを用いることが好ましい。また、(メタ)アクリレート系モノマーと重合開始剤との混合および当該(メタ)アクリレート系モノマーの重合を、(メタ)アクリレート系ポリマー大径粒子および(メタ)アクリレート系ポリマー小径粒子と共に、少なくとも二酸化チタン粒子を含むフィラーの存在下において行うことが好ましい。
 具体的に、この本発明の骨セメント硬化体の製造方法によれば、先ず、(メタ)アクリレート系ポリマー大径粒子、(メタ)アクリレート系ポリマー小径粒子および重合開始剤、必要に応じて二酸化チタン粒子などのフィラーを仕込んだ容器内に、(メタ)アクリレート系モノマーを添加して混練することによって(メタ)アクリレート系モノマーを重合開始剤と接触させ、これにより、(メタ)アクリレート系モノマーの重合反応を開始する。そして、その混練物を放置することによって(メタ)アクリレート系モノマーの重合反応を進行させる。
 このような(メタ)アクリレート系モノマーの重合反応に係る反応系においては、必要に応じて重合促進剤を用いることもできる。
 ここに、混練条件は、(メタ)アクリレート系ポリマー大径粒子、(メタ)アクリレート系ポリマー小径粒子、(メタ)アクリレート系モノマーおよび重合開始剤の各々の種類や使用量などによっても異なるが、例えば真空脱気することのできる密閉容器などを用いることによって脱気雰囲気を形成し、この脱気雰囲気下において、混練時間が1分30秒間程度である。
 次いで、混練物を放置する過程を経る。すなわちダウタイムを経過することにより、粘度がある程度高い状態となったところで適用対象部位に適用するためのハンドリング作業を行うことにより、当該適用対象部位において骨セメント硬化体が形成されることとなる。
 具体的なハンドリング作業としては、例えば粘度がある程度高い状態となった混練物を適用対象部位に対して手作業によって配置したり、あるいは注入具を用いて注入したりする手法などが挙げられる。注入具としては、種々の道具および装置を用いることができ、例えばシリンジ、ディスペンサー、プランジャー、吐出口を備えた所謂セメントガンなどを用いることができる。
 ここに、このようにして得られた骨セメント硬化体は、例えば骨の欠損部の補填剤、あるいは人工股関節などの金属製の人工関節を周囲の骨と固定する接着剤、人工関節の固定剤などとして適用対象部位に適用された骨セメント組成物が、当該適用対象部位において硬化されることによってその機能を発揮しているものである。
 このような本発明の骨セメント硬化体の製造方法によれば、形成すべき骨セメント硬化体における基材成分を形成するための(メタ)アクリレート系モノマーの重合反応が、(メタ)アクリレート系ポリマー大径粒子と(メタ)アクリレート系ポリマー小径粒子の存在下において行われることにより、この(メタ)アクリレート系ポリマー小径粒子の作用によって良好なハンドリング作業を行うために必要とされる十分な粘度を有する状態となるために要する時間であるダウタイムを、2.5~5分間程度、(メタ)アクリレート系ポリマー小径粒子を凝集体の形態で用いることによっては2.5~4分間程度にまで短くすることができる。
 ここに、本発明の骨セメント硬化体の製造方法においては、混練に要する時間が1.5分間程度、ダウタイムを5分間以内とすることができると共に、混練を開始してから硬化するまでに要する硬化時間が10分間程度となり、通常のハンドリング作業によって混練物を適用対象部位に適用するまでに要する時間が3分間程度であることから、ダウタイム経過後から硬化に至るまでの時間よりなる作業時間を十分に確保することができる。
 また、本発明の骨セメント硬化体の製造方法によっては、下記のようにして人工骨を得ることもできる。
 すなわち、例えば(メタ)アクリレート系ポリマー大径粒子、(メタ)アクリレート系ポリマー小径粒子、重合開始剤および(メタ)アクリレート系モノマー、必要に応じて添加された二酸化チタン粒子などのフィラーおよび/または重合促進剤などの混練物を得、この混練物を、ダウタイムが経過した後、所望の形状を有し、離型性を有する容器内に挿入し、その状態で静置して硬化させることによって成形し、これにより、当該容器の形状に適合した形状を有するように成形体を、人工骨として得ることができる。
 このような人工骨としての骨セメント硬化体の製造方法においては、その製造条件は、二酸化チタン粒子、(メタ)アクリレート系ポリマー、(メタ)アクリレート系モノマーおよび重合開始剤の各々種類や使用量、形成すべき成形体の形状などによっても異なるが、混練条件としては、例えば脱気雰囲気下において、混練時間が1. 5分間であってダウタイムが2.5~5分間の範囲内であり、また、静置条件としては、例えば温度30℃の環境下において、静置時間が24時間以上である。
 以下、本発明の具体的な実施例について説明するが、本発明はこれらに限定されるものではない。
 また、以下の実施例および比較例において行った(メタ)アクリレート系ポリマー大径粒子の平均粒子径および(メタ)アクリレート系ポリマー小径粒子の平均粒子径(一次粒子径)の測定方法、(メタ)アクリレート系ポリマー小径粒子の凝集体の平均粒子径の測定方法は、以下の通りである。
((メタ)アクリレート系ポリマー大径粒子および小径粒子の平均粒子径の測定方法)
 平均粒子径としては、レーザー回折/散乱式粒度分布計によって測定されるメジアン径を測定し、レーザー回折/散乱式粒度分布計としては、粒度分布測定装置「Microtrac」(日機装株式会社製)を用いた。
 すなわち、平均粒子径を測定すべき粉体粒子を、濃度0.2質量%のTween 20(ポリオキシエチレン(20)ソルビタンモノラウレート、関東化学株式会社製)水溶液よりなる分散媒50mL中に添加して撹拌・混合することによって懸濁液を調製し、この懸濁液を、粒度分布測定装置「Microtrac」(日機装株式会社製)に対して試料投入口から投入し、3分間かけて超音波処理した後に測定を開始した。
((メタ)アクリレート系ポリマー小径粒子の凝集体の平均粒子径の測定方法)
 凝集体の平均粒子径としては、電子顕微鏡(SEM)写真に基づいて算出されるメジアン径を測定した。
 具体的には、電界放出型走査電子顕微鏡「S-4800型」(株式会社日立ハイテクノロジーズ製)を用い、加速電圧1. 5kV、表面無蒸着、対物200倍の倍率の条件にて測定を行った。
 また、以下の実施例および比較例に用いた二酸化チタン粒子の製造方法と共に、当該二酸化チタン粒子を製造するに際して行った二酸化チタン粒子のメジアン径の測定方法およびBET比表面積の測定方法、二酸化チタン濃度の測定方法は、以下の通りである。
(二酸化チタン粒子のメジアン径の測定方法)
 メジアン径は、レーザー回折/散乱式粒度分布計によって測定されるものであり、レーザー回折/散乱式粒度分布計として、粒度分布測定装置「LA-950」(株式会社堀場製作所製)を用いて行った。
 すなわち、メジアン径を測定すべき粉体粒子を、濃度0.2質量%のヘキサメタリン酸ナトリウム水溶液よりなる分散媒50mL中に添加して撹拌・混合することによって懸濁液を調製し、この懸濁液を、粒度分布測定装置「LA-950」(株式会社堀場製作所製)に対して試料投入口から投入し、3分間かけて超音波処理した後に測定を開始した。
(二酸化チタン粒子のBET比表面積の測定方法)
 BET比表面積は、窒素吸着法によって測定されるものであり、BET比表面積測定装置「MONOSORB」(ユアサアイオニクス株式会社製)を用いて行った。
 このBET比表面積測定装置「MONOSORB」(ユアサアイオニクス株式会社製)は、BET一点法によって測定を行うものである。
(二酸化チタン濃度の測定方法)
 二酸化チタン濃度、具体的には、オルトチタン酸スラリーおよびルチル転位促進シードスラリーに係る二酸化チタン濃度は、スラリーをルツボに分取して乾燥した後に温度750℃の条件で焼成処理することによって測定した。
〔二酸化チタン粒子の製造例1〕
(チタン酸スラリーの調製)
 四塩化チタン水溶液をアンモニア水によって中和した後、ろ過して水洗することによってウェットケーキ状態のオルトチタン酸を得た。その後、得られたウェットケーキ状態のオルトチタン酸と、純水とをミキサーに仕込み、十分撹拌混合することによってオルトチタン酸スラリーを得た。
(湿式粉砕過程)
 ダイノミル「DYNO-MILL」(株式会社シンマルエンタープライゼス製)を用い、このダイノミル本体の容積が約600mLの内部に、平均粒径0.6mmのチタニアビーズ(富山セラミックス株式会社製)480mLを充填すると共に、得られたオルトチタン酸スラリーを、流量160mL/分の条件で送液し、当該本体内部に設けられている回転羽根を回転することによってダイノミル処理を行うことにより、オルトチタン酸スラリー(以下、「粉砕処理済チタン酸スラリー」ともいう。)を得た。
 この粉砕処理済チタン酸スラリーにおける二酸化チタン濃度は10.39質量%であった。
(噴霧乾燥過程)
 先ず、湿式粉砕過程において得られた粉砕処理済チタン酸スラリーに、二酸化チタン濃度19. 98質量%のルチル転位促進シードスラリーを、粉砕処理済チタン酸スラリー中に存在する二酸化チタンとの質量比(チタン酸中の二酸化チタン質量/ルチル転位促進シード中の二酸化チタン質量)が95/5となる割合で混合し、この混合物に対して純水を添加することによって二酸化チタン濃度が5.0質量%となるように調整して混合スラリーを調製した。得られた混合スラリーを家庭用ミキサーを用いて撹拌混合した後、200メッシュの篩によって粗粒子を除去することにより、噴霧乾燥処理用スラリー(以下、「噴霧乾燥処理用スラリー」ともいう。)を得た。
 次いで、噴霧乾燥機「MDL-050C」(藤崎電機株式会社製)を用い、この噴霧乾燥機に対してローラーポンプによって噴霧乾燥処理用スラリーを送液し、ローラーポンプの流量25mL/分(純水を送液したときの設定流量)、給気温度200℃、排気温度65~85℃、空気量80L/分の条件により、噴霧乾燥処理を行った。この噴霧乾燥処理によって得られた乾燥造粒体を、噴霧乾燥機に設けられているガラス容器およびバグフィルターよりなる粉体回収部分において、メジアン径の大きいものをガラス容器内に、メジアン径の小さいものをバグフィルター内に回収した。
 ここに、噴霧乾燥機において、ガラス容器内に回収されたものは「サイクロン品」と称され、一方バグフィルター内に回収されたものは「バグ品」と称される。
(焼成過程)
 噴霧乾燥過程において得られた乾燥造粒体のうちのサイクロン品として回収したものを焼成ルツボに入れ、電気炉「SK-3035F」(株式会社モトヤマ製)を用いて、焼成温度850℃(昇温速度10℃/分)、焼成時間6時間の焼成条件によって焼成処理を行った後、自然冷却を行うことにより、焼成粒子を得た。
(湿式粉砕過程)
 先ず、焼成過程において得られた焼成粒子200g、平均粒径0.6mmのチタニアビーズ(富山セラミックス株式会社製)350mLおよび純水350mLをそれぞれ0.87L容量のポットミルに投入し、ポットミル回転台「ANZ-51S」(日陶科学株式会社製)を用いて6時間かけて回転処理を行うことにより、焼成粒子が粉砕されて分散されてなる二酸化チタンスラリーを得た。
 次いで、得られた二酸化チタンスラリーをガラス製ビーカーに入れた後、総液量が3Lになるよう純水を投入し、一晩にわたって自然沈降処理を行った。その後、上清を吸引除去し、残った残渣に適当量の純水を添加した後、超音波洗浄機を用いて分散処理を行うことにより、酸洗浄処理に供するための二酸化チタンスラリーを得た。
(酸洗浄過程)
 湿式粉砕過程において得られた二酸化チタンスラリーに、1規定濃度となる量の塩酸を添加し、室温下において撹拌モータを用いて3時間にわたって撹拌することによって酸洗浄処理を行った。その後、デカンテーションによって上澄みを除去し、残渣をブフナー漏斗を用いて純水によってろ過洗浄し、ろ液の比抵抗が10kΩ・m以上であることを確認した。その後、洗浄ケーキを回収し、恒温乾燥機を用いて温度110℃の条件で乾燥処理し、スクリーン径1.5mmのメッシュをセットした遠心粉砕機「ZM100」(株式会社日本精機製作所製)を用い、回転数14000rpmの条件によって乾式粉砕処理を行うことにより、メジアン径が2.7μmであってBET比表面積が1.95m/gである二酸化チタン粒子(以下、「二酸化チタン粒子(a)」ともいう。)を得た。
 得られた二酸化チタン粒子(a)は、粉末X線回折計「RINT1200」(株式会社リガク製)を用いた粉末X線回折の結果から、ルチル型二酸化チタン粒子であることが確認され、また、走査型電子顕微鏡「S-3200N」(株式会社日立製作所製)による観察の結果から、その形状が球状であることが確認された。
〔二酸化チタン粒子の製造例2〕
 二酸化チタン粒子の製造例1と同様の手法により、メジアン径が3.1μmであってBET比表面積が2.1m/gである二酸化チタン粒子(以下、「二酸化チタン粒子(b)」ともいう。)を得た。
 得られた二酸化チタン粒子(b)は、粉末X線回折計「RINT1200」(株式会社リガク製)を用いた粉末X線回折の結果から、ルチル型二酸化チタン粒子であることが確認され、また、走査型電子顕微鏡「S-3200N」(株式会社日立製作所製)による観察の結果から、その形状が球状であることが確認された。
〔二酸化チタン粒子の製造例3〕
 二酸化チタン粒子の製造例1と同様の手法により、メジアン径が2.9μmであってBET比表面積が2.5m/gである二酸化チタン粒子(以下、「二酸化チタン粒子(c)」ともいう。)を得た。
 得られた二酸化チタン粒子(c)は、粉末X線回折計「RINT1200」(株式会社リガク製)を用いた粉末X線回折の結果から、ルチル型二酸化チタン粒子であることが確認され、また、走査型電子顕微鏡「S-3200N」(株式会社日立製作所製)による観察の結果から、その形状が球状であることが確認された。
〔実施例1〕
 (メタ)アクリレート系ポリマー大径粒子としてポリメチルメタクリレート粉末(平均粒子径:39.77μm、重量平均分子量:167,000、粒子形状:球状;積水化成品工業株式会社製)44.885質量%と、(メタ)アクリレート系ポリマー小径粒子としてポリメチルメタクリレート粉末(平均粒子径:0.5μm、平均分子量:190,000、粒子形状:球状;積水化成品工業株式会社製)6.707質量%と、フィラーとして二酸化チタン粒子(a)19.654質量%と、重合開始剤として過酸化ベンゾイル(川口薬品株式会社製)1.474質量%とを混合することにより、混合粉体成分を得た。
 一方、(メタ)アクリレート系モノマーとしてのメチルメタクリレート(和光純薬株式会社製)27.024質量%に、重合促進剤としてN,N-ジメチル-p-トルイジン(三星化学研究所製)0.256質量%を添加して混合することにより、混合液体成分を得た。
 そして、得られた混合粉体成分および混合液体成分の各々を個別に容器内に収容することにより、当該混合粉体成分よりなる重合開始剤含有キット成分と、当該混合液体成分よりなるモノマー含有キット成分とにより構成されてなる骨セメント組成物キット(以下、「骨セメント組成物キット(1)」ともいう。)を作製した。
 この骨セメント組成物キット(1)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して57.094質量%であり、(メタ)アクリレート系ポリマー小径粒子の含有割合は当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計に対して13.0質量%であった。
 また、重合開始剤の(メタ)アクリレート系モノマーに対する割合は、5.454質量%であり、重合促進剤の(メタ)アクリレート系モノマーに対する割合は、0.947質量%であった。
 次いで、ポリテトラフルオロエチレン製の混練容器に、骨セメント組成物キット(1)のうちの重合開始剤含有キット成分を入れた後、当該骨セメント組成物キット(1)のモノマー含有キット成分を投入することによって骨セメント組成物を得た。
 この骨セメント組成物について、ISO5833に基づく測定法に従い、30秒間にわたって混練した後、更に脱気雰囲気下において1分間かけて混練し、その後、パウダーフリーのラテックス製の外科用手袋を装着した手によって混練物をハンドリングし、この外科用手袋に付着が生じることのないような状態となるために要する時間を測定することによってダウタイムを確認した。結果を表1に示す。
 また、ダウタイムを確認した後の混練物を、外径0.5mmの熱電対ワイヤーを備えたポリテトラフルオロエチレン製の型に挿入し、当該熱電対ワイヤーによって5秒毎に混練物の温度を測定することによって確認された最高温度に基づいて硬化時間を算出した。結果を表1に示す。
〔実施例2〕
 実施例1において、(メタ)アクリレート系ポリマー大径粒子として、平均粒子径が33.93μmで重量平均分子量が141,000であって粒子形状が球状のポリメチルメタクリレート粉末(積水化成品工業株式会社製)を用い、この(メタ)アクリレート系ポリマー大径粒子の使用量を45.401質量%、(メタ)アクリレート系ポリマー小径粒子の使用量を6.191質量%としたこと以外は、当該実施例1と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(2)」ともいう。)を作製した。
 この骨セメント組成物キット(2)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して57.750質量%であり、(メタ)アクリレート系ポリマー小径粒子の含有割合は当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計に対して12. 0質量%であった。
 また、重合開始剤の(メタ)アクリレート系モノマーに対する割合は、5.454質量%であり、重合促進剤の(メタ)アクリレート系モノマーに対する割合は、0.947質量%であった。
 そして、得られた骨セメント組成物キット(2)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例3〕
 実施例1において、(メタ)アクリレート系ポリマー小径粒子を、噴霧乾燥機を用いて平均粒子径40μmの凝集体(粒子形状:球状)としてから用いたこと以外は、当該実施例1と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(3)」ともいう。)を作製した。
 そして、得られた骨セメント組成物キット(3)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例4〕
 実施例2において、(メタ)アクリレート系ポリマー小径粒子を、噴霧乾燥機を用いて平均粒子径40μmの凝集体(粒子形状:球状)としてから用いたこと以外は、当該実施例2と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(4)」ともいう。)を作製した。
 そして、得られた骨セメント組成物キット(4)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例5〕
 実施例1において、(メタ)アクリレート系ポリマー大径粒子として、平均粒子径が45.58μmで重量平均分子量が141,000であって粒子形状が球状のポリメチルメタクリレート粉末(積水化成品工業株式会社製)を用い、この(メタ)アクリレート系ポリマー大径粒子の使用量を44.369質量%、(メタ)アクリレート系ポリマー小径粒子の使用量を7.223質量%としたこと以外は、当該実施例1と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(5)」ともいう。)を作製した。
 この骨セメント組成物キット(5)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して56.438質量%であり、(メタ)アクリレート系ポリマー小径粒子の含有割合は当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計に対して14. 0質量%であった。
 そして、得られた骨セメント組成物キット(5)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例6〕
 実施例5において、(メタ)アクリレート系ポリマー小径粒子を、噴霧乾燥機を用いて平均粒子径40μmの凝集体(粒子形状:球状)としてから用いたこと以外は、当該実施例5と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(6)」ともいう。)を作製した。
 そして、得られた骨セメント組成物キット(6)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例7〕
 実施例1において、(メタ)アクリレート系ポリマー大径粒子として、平均粒子径が31.11μmで重量平均分子量が148,900であって粒子形状が球状のポリメチルメタクリレート粉末(積水化成品工業株式会社製)を用い、この(メタ)アクリレート系ポリマー大径粒子の使用量を30.059質量%とし、また(メタ)アクリレート系ポリマー小径粒子の使用量を5.305質量%とし、当該(メタ)アクリレート系ポリマー小径粒子を、噴霧乾燥機を用いて平均粒子径40μmの凝集体(粒子形状:球状)としてから用いたこと、およびフィラーとして、二酸化チタン粒子(a)に代えて二酸化チタン粒子(b)を用い、その使用量を39.293質量%とし、過酸化ベンゾイルの使用量を1.473質量%としたこと、かつメチルメタクリレートの使用量を23.575質量%、およびN,N-ジメチル-p-トルイジンの使用量を0.295質量%としたこと以外は、当該実施例1と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(7)」ともいう。)を作製した。
 この骨セメント組成物キット(7)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して51.000質量%であり、(メタ)アクリレート系ポリマー小径粒子の含有割合は当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計に対して15. 0質量%であった。
 また、重合開始剤の(メタ)アクリレート系モノマーに対する割合は、6.248質量%であり、重合促進剤の(メタ)アクリレート系モノマーに対する割合は、1.251質量%であった。
 そして、得られた骨セメント組成物キット(7)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例8〕
 実施例1において、(メタ)アクリレート系ポリマー大径粒子として、平均粒子径が12.93μmで重量平均分子量が139,600であって粒子形状が球状のポリメチルメタクリレート粉末(積水化成品工業株式会社製)を用い、この(メタ)アクリレート系ポリマー大径粒子の使用量を23.575質量%とし、また(メタ)アクリレート系ポリマー小径粒子の使用量を5.894質量%とし、当該(メタ)アクリレート系ポリマー小径粒子を、噴霧乾燥機を用いて平均粒子径40μmの凝集体(粒子形状:球状)としてから用いたこと、およびフィラーとして、二酸化チタン粒子(a)に代えて二酸化チタン粒子(b)を用い、その使用量を39.293質量%とし、過酸化ベンゾイルの使用量を1.473質量%としたこと、かつメチルメタクリレートの使用量を29.470質量%、およびN,N-ジメチル-p-トルイジンの使用量を0.295質量%としたこと以外は、当該実施例1と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(8)」ともいう。)を作製した。
 この骨セメント組成物キット(8)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して39.999質量%であり、(メタ)アクリレート系ポリマー小径粒子の含有割合は当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計に対して20. 0質量%であった。
 また、重合開始剤の(メタ)アクリレート系モノマーに対する割合は、5.000質量%であり、重合促進剤の(メタ)アクリレート系モノマーに対する割合は、1.000質量%であった。
 そして、得られた骨セメント組成物キット(8)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例9〕
 実施例1において、二酸化チタン粒子を用いず、また(メタ)アクリレート系ポリマー大径粒子として、平均粒子径が30.00μmで重量平均分子量が135,000であって粒子形状が球状のポリメチルメタクリレート粉末(積水化成品工業株式会社製)を用い、この(メタ)アクリレート系ポリマー大径粒子の使用量を63.425質量%とし、(メタ)アクリレート系ポリマー小径粒子の使用量を3.338質量%、かつメチルメタクリレートの使用量を31.419質量%、およびN,N-ジメチル-p-トルイジンの使用量を0.344質量%としたこと以外は、当該実施例1と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(9)」ともいう。)を作製した。
 この骨セメント組成物キット(9)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して64.599質量%であり、(メタ)アクリレート系ポリマー小径粒子の含有割合は当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計に対して5. 0質量%であった。
 また、重合開始剤の(メタ)アクリレート系モノマーに対する割合は、4.691質量%であり、重合促進剤の(メタ)アクリレート系モノマーに対する割合は1.095質量%であった。
 そして、得られた骨セメント組成物キット(9)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例10〕
 実施例9において、(メタ)アクリレート系ポリマー大径粒子の使用量を60.087質量%、(メタ)アクリレート系ポリマー小径粒子の使用量を6.676質量%としたこと以外は、当該実施例9と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(10)」ともいう。)を作製した。
 この骨セメント組成物キット(10)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して61.200質量%であり、(メタ)アクリレート系ポリマー小径粒子の含有割合は当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計に対して10.0質量%であった。
 そして、得られた骨セメント組成物キット(10)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例11〕
 実施例9において、(メタ)アクリレート系ポリマー小径粒子を、噴霧乾燥機を用いて平均粒子径40μmの凝集体(粒子形状:球状)としてから用いたこと以外は、当該実施例9と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(11)」ともいう。)を作製した。
 そして、得られた骨セメント組成物キット(11)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例12〕
 実施例10において、(メタ)アクリレート系ポリマー小径粒子を、噴霧乾燥機を用いて平均粒子径40μmの凝集体としてから用いたこと以外は、当該実施例10と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(12)」ともいう。)を作製した。
 そして、得られた骨セメント組成物キット(12)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例13〕
 実施例3において、(メタ)アクリレート系ポリマー大径粒子として、平均粒子径が40.46μmで重量平均分子量が154,700であって粒子形状が球状のポリメチルメタクリレートスチレン共重合体粉末(積水化成品工業株式会社製)を用い、この(メタ)アクリレート系ポリマー大径粒子の使用量を43.867質量%、(メタ)アクリレート系ポリマー小径粒子の使用量を7.440質量%、フィラーとして、二酸化チタン粒子(a)に代えて二酸化チタン粒子(c)を用い、その使用量を19.646質量%とし、過酸化ベンゾイルの使用量を1.473質量%、メチルメタクリレートの使用量を27.279質量%とし、N,N-ジメチル-p-トルイジンの使用量を0.295質量%としたこと以外は、当該実施例3と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(13)」ともいう。)を作製した。
 この骨セメント組成物キット(13)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して55.820質量%であり、(メタ)アクリレート系ポリマー小径粒子の含有割合は当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計に対して14.5質量%であった。
 また、重合開始剤の(メタ)アクリレート系モノマーに対する割合は、5.400質量%であり、重合促進剤の(メタ)アクリレート系モノマーに対する割合は1.081質量%であった。
 そして、得られた骨セメント組成物キット(13)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例14〕
 実施例13において、(メタ)アクリレート系ポリマー大径粒子の使用量を35.904質量%、(メタ)アクリレート系ポリマー小径粒子の使用量を6.336質量%、フィラーとして、二酸化チタン粒子(c)19.646質量%と硫酸バリウム9.823質量%とを用い、メチルメタクリレートの使用量を26.523質量%としたこと以外は、当該実施例13と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(14)」ともいう。)を作製した。
 この骨セメント組成物キット(14)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して52.214質量%であり、(メタ)アクリレート系ポリマー小径粒子の含有割合は当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計に対して15.0質量%であった。
 また、重合開始剤の(メタ)アクリレート系モノマーに対する割合は、5.554質量%であり、重合促進剤の(メタ)アクリレート系モノマーに対する割合は1.112質量%であった。
 そして、得られた骨セメント組成物キット(14)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例15〕
 実施例14において、(メタ)アクリレート系ポリマー大径粒子の使用量を32.181質量%、(メタ)アクリレート系ポリマー小径粒子の使用量を6.130質量%、硫酸バリウムの使用量を14.735質量%、メチルメタクリレートの使用量を25.540質量%としたこと以外は、当該実施例14と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(15)」ともいう。)を作製した。
 この骨セメント組成物キット(15)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して50.400質量%であり、(メタ)アクリレート系ポリマー小径粒子の含有割合は当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計に対して16.0質量%であった。
 また、重合開始剤の(メタ)アクリレート系モノマーに対する割合は、5.767質量%であり、重合促進剤の(メタ)アクリレート系モノマーに対する割合は1.155質量%であった。
 そして、得られた骨セメント組成物キット(15)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例16〕
 実施例14において、(メタ)アクリレート系ポリマー大径粒子の使用量を28.536質量%、(メタ)アクリレート系ポリマー小径粒子の使用量を5.846質量%、硫酸バリウムの使用量を19.646質量%、メチルメタクリレートの使用量を24.558質量%としたこと以外は、当該実施例14と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(16)」ともいう。)を作製した。
 この骨セメント組成物キット(16)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して48.415質量%であり、(メタ)アクリレート系ポリマー小径粒子の含有割合は当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計に対して17.0質量%であった。
 また、重合開始剤の(メタ)アクリレート系モノマーに対する割合は、5.998質量%であり、重合促進剤の(メタ)アクリレート系モノマーに対する割合は1.201質量%であった。
 そして、得られた骨セメント組成物キット(16)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例17〕
 実施例14において、硫酸バリウムに代えて酸化ジルコニウムを用いたこと以外は、当該実施例14と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(17)」ともいう。)を作製した。
 そして、得られた骨セメント組成物キット(17)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例18〕
 実施例15において、硫酸バリウムに代えて酸化ジルコニウムを用いたこと以外は、当該実施例15と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(18)」ともいう。)を作製した。
 そして、得られた骨セメント組成物キット(18)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔実施例19〕
 実施例16において、硫酸バリウムに代えて酸化ジルコニウムを用いたこと以外は、当該実施例16と同様にして骨セメント組成物キット(以下、「骨セメント組成物キット(19)」ともいう。)を作製した。
 そして、得られた骨セメント組成物キット(19)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔比較例1〕
 実施例1において、(メタ)アクリレート系ポリマー大径粒子の使用量を51.592質量%とし、(メタ)アクリレート系ポリマー小径粒子を用いなかったこと以外は、当該実施例1と同様にして骨セメント組成物キット(以下、「比較用骨セメント組成物キット(1)」ともいう。)を作製した。
 この比較用骨セメント組成物キット(1)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して65.625質量%であった。
 そして、得られた比較用骨セメント組成物キット(1)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔比較例2〕
 実施例1において、(メタ)アクリレート系ポリマー小径粒子に代えて平均粒子径が4.0μmのポリメチルメタクリレート粉末を用いたこと以外は、当該実施例1と同様にして骨セメント組成物キット(以下、「比較用骨セメント組成物キット(2)」ともいう。)を作製した。
 そして、得られた比較用骨セメント組成物キット(2)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔比較例3〕
 実施例2において、(メタ)アクリレート系ポリマー大径粒子の使用量を51.592質量%とし、(メタ)アクリレート系ポリマー小径粒子を用いなかったこと以外は、当該実施例2と同様にして骨セメント組成物キット(以下、「比較用骨セメント組成物キット(3)」ともいう。)を作製した。
 この比較用骨セメント組成物キット(3)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して65.625質量%であった。
 そして、得られた比較用骨セメント組成物キット(3)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔比較例4〕
 実施例2において、(メタ)アクリレート系ポリマー小径粒子に代えて平均粒子径が4.0μmのポリメチルメタクリレート粉末を用いたこと以外は、当該実施例2と同様にして骨セメント組成物キット(以下、「比較用骨セメント組成物キット(4)」ともいう。)を作製した。
 そして、得られた比較用骨セメント組成物キット(4)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔比較例5〕
 実施例7において、(メタ)アクリレート系ポリマー大径粒子の使用量を35.364質量%とし、(メタ)アクリレート系ポリマー小径粒子を用いなかったこと以外は、当該実施例7と同様にして骨セメント組成物キット(以下、「比較用骨セメント組成物キット(5)」ともいう。)を作製した。
 この比較用骨セメント組成物キット(5)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して60.001質量%であった。
 そして、得られた比較用骨セメント組成物キット(5)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
〔比較例6〕
 実施例8において、(メタ)アクリレート系ポリマー大径粒子の使用量を29.470質量%とし、(メタ)アクリレート系ポリマー小径粒子を用いなかったこと以外は、当該実施例8と同様にして骨セメント組成物キット(以下、「比較用骨セメント組成物キット(6)」ともいう。)を作製した。
 この比較用骨セメント組成物キット(6)において、(メタ)アクリレート系ポリマー大径粒子の含有割合は基材形成用成分全体に対して50.000質量%であった。
 そして、得られた比較用骨セメント組成物キット(6)について、実施例1と同様の手法によってダウタイムを確認すると共に、硬化時間を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、「PMMA大径粒子」とは、骨セメント組成物キットの作製に用いたポリメチルメタクリレート粉末であって、その組成物キットの作製に粒子径の異なる2種類のポリメチルメタクリレート粉末が用いられている場合においては、それらのうちの粒子径の大きいものを示し、「PMMA大径粒子の含有割合」とは、組成物における基材形成用成分全体に対する割合を示す。また、「MMA/Sty.大径粒子」とは、骨セメント組成物キットの作製に用いた、ポリメチルメタクリレートスチレン共重合体粉末を示し、「MMA/Sty.大径粒子の含有割合」とは、組成物における基材形成用成分全体に対する割合を示す。また、「PMMA小径粒子」とは、骨セメント組成物キットの作製に用いたポリメチルメタクリレート粉末であって、その組成物キットの作製に粒子径の異なる2種類のポリメチルメタクリレート粉末が用いられている場合においては、それらのうちの粒子径の小さいものを示し、「PMMA小径粒子の含有割合」とは、当該PMMA小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計量に対する割合を示す。
 以上の結果から、実施例1~実施例19に係る骨セメント組成物によれば、ダウタイムが2.5~5分間の範囲となることが明らかである。
 また、特に、実施例3と実施例1、実施例4と実施例2、実施例6と実施例5、実施例11と実施例9、および実施例12と実施例10の各々の結果を比較することにより、(メタ)アクリレート系ポリマー小径粒子が凝集体として含有されている組成物は、(メタ)アクリレート系ポリマー小径粒子が凝集体としてではなく一次粒子として含有されている組成物に比して更にダウタイムが短くなることが明らかである。
 一方、比較例1、比較例3、比較例5および比較例6に係る骨セメント組成物は、(メタ)アクリレート系ポリマー小径粒子が含有されていないものであることから、5分間以上のダウタイムが必要とされることが確認され、また、比較例2および比較例4に係る骨セメント組成物は、平均粒子径の異なる2種類の(メタ)アクリレート系ポリマー粒子が含有されてなるものであるが、小径のポリマー粒子の平均粒子径が4μmと過大であることから、5分間以上のダウタイムが必要とされることが明らかである。
 更に、実施例1~実施例19に係る骨セメント組成物においては、ダウタイムの短縮化に基づいて作業時間(具体的には、ダウタイム経過後から硬化に至るまでの時間であって、「硬化時間(混練開始から硬化に至るまでの時間)」から「ダウタイム」を差し引いた時間をいう。)の延長に伴う作業性の向上が見込まれることが明らかである。
 また、実施例1~実施例8および実施例13~実施例19に係る組成物によれば、二酸化チタン粒子が含有されてなるものであることから、優れた生体活性能が得られることが確認された。特に実施例14~実施例19に係る組成物においては、組成物から得られた骨セメント硬化体について、その表面、および温度36.5℃の条件下において14日間にわたって疑似体液に浸漬した後の表面を電子顕微鏡(SEM)によって観察したところ、フィラーとして二酸化チタン粒子と共に酸化ジルコニウムまたは硫酸バリウムが含有された場合であっても、この酸化ジルコニウムや硫酸バリウムの添加が二酸化チタン粒子に由来の生体活性能の発現に弊害を及ぼさないことが確認された。具体的には、図1~図8に示すように、実施例14~実施例19に係る組成物から得られた骨セメント硬化体においても、フィラーとして二酸化チタン粒子のみが含有されてなる実施例13に係る組成物から得られた骨セメント硬化体のように、疑似体液に浸漬した後の表面に、ハイドロキシアパタイト(図においては、「HAp」の符号を付して示す)の形成が確認された。
 ここに、図1は、実施例13に係る組成物から得られた骨セメント硬化体の表面(疑似体液に浸漬する前)を示すSEM写真であり、図2は、実施例13に係る組成物から得られた骨セメント硬化体の疑似体液に浸漬後の表面を示すSEM写真であり、また図3~図8は、各々、実施例14~実施例19に係る組成物から得られた骨セメント硬化体の疑似体液に浸漬後の表面を示すSEM写真である。
 更に実施例14~実施例19に係る組成物によれば、酸化ジルコニウムまたは硫酸バリウムが含有されてなるものであることから、下記のX線造影性の測定によって得られた図9および図10の結果から明らかなように、優れた造影性が得られ、その造影性が酸化ジルコニウムあるいは硫酸バリウムの添加量が大きくなるに従って高くなることが確認された。
 ここに、図9においては、上から順に、実施例13に係る組成物(TiO:19.646質量%,BaSO:0質量%)から得られた骨セメント硬化体、実施例14に係る組成物(TiO:19.646質量%,BaSO:9.823質量%)から得られた骨セメント硬化体、実施例15に係る組成物(TiO:19.646質量%,BaSO:14.735質量%)から得られた骨セメント硬化体および実施例16に係る組成物(TiO:19.646質量%,BaSO:19.646質量%)から得られた骨セメント硬化体の写真を示し、各写真を上から下に向かうに従って硫酸バリウムの含有割合が大きくなるように並べたものである。また図10は、上から順に、実施例13に係る組成物(TiO:19.646質量%,ZrO:0質量%)から得られた骨セメント硬化体、実施例17に係る組成物(TiO:19.646質量%,ZrO:9.823質量%)から得られた骨セメント硬化体、実施例18に係る組成物(TiO:19.646質量%,ZrO:14.735質量%)から得られた骨セメント硬化体および実施例19に係る組成物(TiO:19.646質量%,ZrO:19.646質量%)から得られた骨セメント硬化体の写真を示し、各写真を上から下に向かうに従って酸化ジルコニウムの含有割合が大きくなるように並べたものである。
〔X線造影性の測定〕
 骨セメント組成物から得られた骨セメント硬化体について、直径15mm、厚さ5mmの試験片を用意し、この骨セメント硬化体の試験片について、「小動物専用X線撮影装置VPX-40B」(東芝医療用品株式会社製)を用い、管電圧42kVおよび撮影電流時間積1.60mAsの条件にて、フィルムとして「メディカルフィルムSRD」(コニカミノルタ株式会社製)を用いて撮影を行った。その後、フィルムを「自動現像機AP500」(ダイトー株式会社製)を用いて現像することによって得られた写真に基づいてその造影性を確認した。

Claims (13)

  1.  平均粒子径が10~60μmの(メタ)アクリレート系ポリマー大径粒子と、平均粒子径が0.1~2.0μmの(メタ)アクリレート系ポリマー小径粒子と、(メタ)アクリレート系モノマーと、重合開始剤とを含有し、
     前記(メタ)アクリレート系ポリマー小径粒子の含有割合が、当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計量に対して5~30質量%であることを特徴とする骨セメント組成物。
  2.  フィラーが含有されていることを特徴とする請求項1に記載の骨セメント組成物。
  3.  前記フィラーが、少なくとも二酸化チタン粒子を含むことを特徴とする請求項2に記載の骨セメント組成物。
  4.  前記二酸化チタン粒子が、レーザー回折/散乱式粒度分布計によって測定されるメジアン径が0.5~7. 0μmである球状のものであることを特徴とする請求項3に記載の骨セメント組成物。
  5.  前記フィラーが、硫酸バリウムおよび/または酸化ジルコニウムを含むことを特徴とする請求項2~請求項4のいずれかに記載の骨セメント組成物。
  6.  前記(メタ)アクリレート系ポリマー小径粒子の一部または全部が、平均粒子径30~50μmの凝集体の形態で含有されていることを特徴とする請求項1~請求項5のいずれかに記載の骨セメント組成物。
  7.  請求項1に記載の骨セメント組成物を得るための骨セメント組成物キットであって、(メタ)アクリレート系ポリマー大径粒子、(メタ)アクリレート系ポリマー小径粒子および重合開始剤を含有する重合開始剤含有キット成分と、(メタ)アクリレート系モノマーを含有するモノマー含有キット成分とを含有することを特徴とする骨セメント組成物キット。
  8.  前記重合開始剤含有キット成分が、少なくとも二酸化チタン粒子を含むフィラーを含有することを特徴とする請求項7に記載の骨セメント組成物キット。
  9.  前記(メタ)アクリレート系ポリマー小径粒子の一部または全部が、平均粒子径30~50μmの凝集体の形態で含有されていることを特徴とする請求項7または請求項8に記載の骨セメント組成物キット。
  10.  平均粒子径が10~60μmの(メタ)アクリレート系ポリマー大径粒子と、平均粒子径が0.1~2.0μmの(メタ)アクリレート系ポリマー小径粒子との存在下において、(メタ)アクリレート系モノマーと重合開始剤とを混練し、当該(メタ)アクリレート系モノマーを重合させる工程を有し、
     前記(メタ)アクリレート系ポリマー小径粒子を、当該(メタ)アクリレート系ポリマー小径粒子と(メタ)アクリレート系ポリマー大径粒子との合計量に対して5~30質量%で用いることを特徴とする骨セメント硬化体の製造方法。
  11.  (メタ)アクリレート系モノマーと重合開始剤との混練物を放置する過程を経ることによって(メタ)アクリレート系モノマーを重合させることを特徴とする請求項10に記載の骨セメント硬化体の製造方法。
  12.  (メタ)アクリレート系モノマーと重合開始剤との混練が、(メタ)アクリレート系ポリマー大径粒子および(メタ)アクリレート系ポリマー小径粒子と共に、少なくとも二酸化チタン粒子を含むフィラーの存在下において行われることを特徴とする請求項10または請求項11に記載の骨セメント硬化体の製造方法。
  13.  前記(メタ)アクリレート系ポリマー小径粒子の一部または全部が、平均粒子径30~50μmの凝集体の形態で混練されることを特徴とする請求項10~請求項12のいずれかに記載の骨セメント硬化体の製造方法。
PCT/JP2010/052703 2009-02-25 2010-02-23 骨セメント組成物及び骨セメント組成物キット並びに骨セメント硬化体の形成方法 WO2010098305A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
NO10746186A NO2402041T3 (ja) 2009-02-25 2010-02-23
EP10746186.5A EP2402041B1 (en) 2009-02-25 2010-02-23 Bone cement composition, bone cement composition kit, and method for forming bone cement cured body
CN201080009452.6A CN102333553B (zh) 2009-02-25 2010-02-23 骨水泥组合物和骨水泥组合物试剂盒以及骨水泥固化体的形成方法
ES10746186.5T ES2655887T3 (es) 2009-02-25 2010-02-23 Composición de cemento óseo, kit de composición de cemento óseo y método de formación de un cuerpo endurecido con cemento óseo
CA2752411A CA2752411C (en) 2009-02-25 2010-02-23 Bone cement composition, bone cement composition kit and forming method of bone cement hardened material
JP2011501593A JP5602127B2 (ja) 2009-02-25 2010-02-23 骨セメント組成物及び骨セメント組成物キット並びに骨セメント硬化体の形成方法
DK10746186.5T DK2402041T3 (da) 2009-02-25 2010-02-23 Knoglecementsammensætning, knoglecementsammensætningskit og fremgangsmåde til dannelse af knoglecementhærdet krop
US13/203,221 US8609746B2 (en) 2009-02-25 2010-02-23 Bone cement composition, bone cement composition kit and forming method of bone cement hardened material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009041977 2009-02-25
JP2009-041977 2009-02-25
JP2009142131 2009-06-15
JP2009-142131 2009-06-15

Publications (1)

Publication Number Publication Date
WO2010098305A1 true WO2010098305A1 (ja) 2010-09-02

Family

ID=42665512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052703 WO2010098305A1 (ja) 2009-02-25 2010-02-23 骨セメント組成物及び骨セメント組成物キット並びに骨セメント硬化体の形成方法

Country Status (13)

Country Link
US (1) US8609746B2 (ja)
EP (1) EP2402041B1 (ja)
JP (1) JP5602127B2 (ja)
KR (1) KR101649002B1 (ja)
CN (1) CN102333553B (ja)
CA (1) CA2752411C (ja)
DK (1) DK2402041T3 (ja)
ES (1) ES2655887T3 (ja)
HU (1) HUE038026T2 (ja)
NO (1) NO2402041T3 (ja)
PT (1) PT2402041T (ja)
TW (1) TWI444208B (ja)
WO (1) WO2010098305A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102908662A (zh) * 2011-07-27 2013-02-06 赫罗伊斯医疗有限责任公司 生产骨水泥的试剂盒和方法
JP2013521065A (ja) * 2010-03-05 2013-06-10 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング 骨造成のための骨セメント系
CN103251977A (zh) * 2011-12-20 2013-08-21 赫罗伊斯医疗有限责任公司 糊状的骨水泥
WO2013129292A1 (ja) * 2012-02-29 2013-09-06 石原産業株式会社 骨セメント組成物
JP2015517004A (ja) * 2012-03-30 2015-06-18 ルーサイト インターナショナル ユーケー リミテッド 硬化性二液型アクリル組成物
JP2016531602A (ja) * 2013-09-30 2016-10-13 ルーサイト インターナショナル スペシャリティ ポリマーズ アンド レジンズ リミテッドLucite International Speciality Polymers And Resins Limited 硬化性マルチパートアクリル組成物
WO2018181821A1 (ja) * 2017-03-31 2018-10-04 三井化学株式会社 硬組織補修用組成物及び硬組織補修用キット
US20200289378A1 (en) * 2019-03-11 2020-09-17 University Of Utah Research Foundation Quick set cements for dental pulp capping and related methods of use
RU2745305C1 (ru) * 2017-03-31 2021-03-23 Митсуи Кемикалс, Инк. Композиция для восстановления твердых тканей и набор для восстановления твердых тканей
RU2772937C2 (ru) * 2018-03-20 2022-05-27 Митсуи Кемикалс, Инк. Композиция для восстановления твердых тканей и набор для восстановления твердых тканей

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8540723B2 (en) 2009-04-14 2013-09-24 Dfine, Inc. Medical system and method of use
US8777479B2 (en) 2008-10-13 2014-07-15 Dfine, Inc. System for use in bone cement preparation and delivery
US9161798B2 (en) 2008-02-01 2015-10-20 Dfine, Inc. Bone treatment systems and methods
US9445854B2 (en) 2008-02-01 2016-09-20 Dfine, Inc. Bone treatment systems and methods
ES2483996T3 (es) 2008-02-28 2014-08-08 Dfine, Inc. Sistemas y métodos de tratamiento de los huesos
US9180416B2 (en) 2008-04-21 2015-11-10 Dfine, Inc. System for use in bone cement preparation and delivery
HUE029610T2 (en) 2009-02-25 2017-03-28 Univ Kyoto Bone cement preparation, process preparation and kit for producing the same
DE102012014418A1 (de) * 2012-07-20 2014-01-23 Heraeus Medical Gmbh Pastenförmiger Knochenzement
CN102863166B (zh) * 2012-09-26 2013-10-16 中国科学院宁波材料技术与工程研究所 一种含有表面改性纳米硫酸钡骨水泥的合成方法
DE102013106018A1 (de) * 2013-06-10 2014-12-24 Heraeus Kulzer Gmbh Formteile aus PMMA - Pulver als einfache Dosierhilfe bei der Herstellung von Dentalprothesen
WO2015130079A1 (ko) * 2014-02-25 2015-09-03 주식회사 마루치 단일 페이스트형 치과용 수경성 충전재 조성물
KR101615622B1 (ko) 2014-02-25 2016-04-26 주식회사 마루치 단일 페이스트형 치과용 수경성 충전재 조성물
DE102016222158A1 (de) * 2016-11-11 2018-05-17 Heraeus Medical Gmbh Verfahren zur Herstellung eines Polymethylmethacrylat-Knochenzements, Knochenzement-Kit zur Verwendung in einem solchen Verfahren und ein durch ein solches Verfahren herstellbarer Knochenzement
CN106620841B (zh) * 2016-12-22 2019-09-03 宁波华科润生物科技有限公司 低温可注射丙烯酸树脂骨水泥及其制备方法
CN108187146A (zh) 2018-01-04 2018-06-22 山东冠龙医疗用品有限公司 骨水泥组合物及其套组
CN108096629B (zh) * 2018-01-29 2021-08-06 奥精医疗科技股份有限公司 一种聚甲基丙烯酸甲酯骨粘固剂及其制备方法
US20210023260A1 (en) * 2018-03-20 2021-01-28 Mitsui Chemicals, Inc. Composition for hard tissue repair and kit for hard tissue repair
CN113476651A (zh) * 2021-07-12 2021-10-08 南通美韦德生命科学有限公司 一种骨固定用抗菌树脂

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245821A (ja) * 1999-03-02 2000-09-12 Nippon Electric Glass Co Ltd 生体活性セメント組成物
JP2000254220A (ja) * 1999-03-08 2000-09-19 Nippon Electric Glass Co Ltd 生体活性セメント組成物
JP2001503290A (ja) * 1996-08-22 2001-03-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 活性化合物を含有する骨用セメントの製造方法
JP2004201869A (ja) * 2002-12-25 2004-07-22 Japan Science & Technology Agency 生体活性骨セメント
WO2006123589A1 (ja) * 2005-05-16 2006-11-23 Tokyo Medical And Dental University 医療用材料
JP2007054619A (ja) 2005-07-29 2007-03-08 Japan Science & Technology Agency 生体活性骨セメント組成物及びその製造方法、並びにそれを製造するためのキット
US20070213425A1 (en) * 2006-03-08 2007-09-13 Howmedica Osteonics Corp. Modified bone cement

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3421157A1 (de) * 1984-06-07 1985-12-12 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Verbundwerkstoff auf kunststoffbasis fuer prothetische zwecke
DE68904665T2 (de) * 1988-03-17 1993-09-02 Kuraray Co Haertbare harzzusammensetzung.
JP2000086419A (ja) 1998-09-09 2000-03-28 Nippon Electric Glass Co Ltd 生体活性セメント組成物
JP2001245821A (ja) * 2000-03-03 2001-09-11 Inax Corp ポータブル便器及び排泄処理装置
DE10129845C2 (de) * 2001-06-15 2003-08-21 Bam Bundesanstalt Matforschung Verfahren zur Herstellung eines temporären Adhäsivs für Metall-Metall- und Metall-Keramik-Bindungen und Adhäsiv-Kit
EP1761790A2 (en) 2004-06-29 2007-03-14 Symbol Technologies, Inc. Systems and methods for testing radio frequency identification tags
DE102004045214B4 (de) 2004-09-17 2010-01-28 Kettenbach Gmbh & Co. Kg Zweikomponenten-Dentalabformmaterial auf Basis von hydroxylfunktionellen Polyethern und Alkoxysilanen und/oder Kieselsäureestern
JP2007054369A (ja) 2005-08-25 2007-03-08 Olympus Biomaterial Corp 骨セメント、骨セメントキット、メタクリレート系ポリマー材料およびメタクリレート系モノマー材料
US7651701B2 (en) 2005-08-29 2010-01-26 Sanatis Gmbh Bone cement composition and method of making the same
US9072808B2 (en) * 2006-07-17 2015-07-07 Syracuse University Multi-solution bone cements and methods of making the same
WO2008032322A2 (en) * 2006-09-14 2008-03-20 Depuy Spine, Inc. Bone cement and methods of use thereof
HUE029610T2 (en) 2009-02-25 2017-03-28 Univ Kyoto Bone cement preparation, process preparation and kit for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503290A (ja) * 1996-08-22 2001-03-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 活性化合物を含有する骨用セメントの製造方法
JP2000245821A (ja) * 1999-03-02 2000-09-12 Nippon Electric Glass Co Ltd 生体活性セメント組成物
JP2000254220A (ja) * 1999-03-08 2000-09-19 Nippon Electric Glass Co Ltd 生体活性セメント組成物
JP2004201869A (ja) * 2002-12-25 2004-07-22 Japan Science & Technology Agency 生体活性骨セメント
WO2006123589A1 (ja) * 2005-05-16 2006-11-23 Tokyo Medical And Dental University 医療用材料
JP2007054619A (ja) 2005-07-29 2007-03-08 Japan Science & Technology Agency 生体活性骨セメント組成物及びその製造方法、並びにそれを製造するためのキット
US20070213425A1 (en) * 2006-03-08 2007-09-13 Howmedica Osteonics Corp. Modified bone cement

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IMAI YOHJI ET AL.: "Characterization of powder components of commercial bone cements", DENTAL MATERIALS JOURNAL, vol. 20, no. 4, 2001, pages 345 - 352, XP055094197 *
RODRIGUES D.C. ET AL.: "Pseudoplasticity and setting properties of two-solution bone cement containing poly(methyl methacrylate) microspheres and nanospheres for kyphoplasty and vertebroplasty", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, vol. 91B, no. 1, April 2009 (2009-04-01), pages 248 - 256, XP055093906 *
See also references of EP2402041A4

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521065A (ja) * 2010-03-05 2013-06-10 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング 骨造成のための骨セメント系
US8865777B2 (en) 2011-07-27 2014-10-21 Heraeus Medical Gmbh Kit and method for producing bone cement
CN102908662A (zh) * 2011-07-27 2013-02-06 赫罗伊斯医疗有限责任公司 生产骨水泥的试剂盒和方法
CN103251977A (zh) * 2011-12-20 2013-08-21 赫罗伊斯医疗有限责任公司 糊状的骨水泥
WO2013129292A1 (ja) * 2012-02-29 2013-09-06 石原産業株式会社 骨セメント組成物
JPWO2013129292A1 (ja) * 2012-02-29 2015-07-30 石原産業株式会社 骨セメント組成物
TWI572376B (zh) * 2012-02-29 2017-03-01 Ishihara Sangyo Kaisha A bone cement composition, a bone cement composition kit using the same, a method for producing a bone cement composition, and a cement composition for hardening
US9713654B2 (en) 2012-02-29 2017-07-25 Ishihara Sangyo Kaisha, Ltd. Bone cement composition
JP2015517004A (ja) * 2012-03-30 2015-06-18 ルーサイト インターナショナル ユーケー リミテッド 硬化性二液型アクリル組成物
US10155066B2 (en) 2013-09-30 2018-12-18 Lucite International Specialty Polymers & Resins Limited Hardenable multi-part acrylic composition
JP2016531602A (ja) * 2013-09-30 2016-10-13 ルーサイト インターナショナル スペシャリティ ポリマーズ アンド レジンズ リミテッドLucite International Speciality Polymers And Resins Limited 硬化性マルチパートアクリル組成物
KR20190122869A (ko) * 2017-03-31 2019-10-30 미쓰이 가가쿠 가부시키가이샤 경조직 보수용 조성물 및 경조직 보수용 키트
WO2018181821A1 (ja) * 2017-03-31 2018-10-04 三井化学株式会社 硬組織補修用組成物及び硬組織補修用キット
JPWO2018181821A1 (ja) * 2017-03-31 2020-02-06 三井化学株式会社 硬組織補修用組成物及び硬組織補修用キット
AU2018242783B2 (en) * 2017-03-31 2021-01-07 Mitsui Chemicals, Inc. Hard tissue repair composition and hard tissue repair kit
RU2745305C1 (ru) * 2017-03-31 2021-03-23 Митсуи Кемикалс, Инк. Композиция для восстановления твердых тканей и набор для восстановления твердых тканей
RU2760390C2 (ru) * 2017-03-31 2021-11-24 Митсуи Кемикалс, Инк. Композиция для восстановления твердых тканей и набор для восстановления твердых тканей
JP7021836B2 (ja) 2017-03-31 2022-02-17 三井化学株式会社 硬組織補修用組成物及び硬組織補修用キット
US11311642B2 (en) 2017-03-31 2022-04-26 Mitsui Chemicals, Inc. Composition for hard tissue repair and kit for hard tissue repair
KR102394502B1 (ko) 2017-03-31 2022-05-03 미쓰이 가가쿠 가부시키가이샤 경조직 보수용 조성물 및 경조직 보수용 키트
US11883555B2 (en) 2017-03-31 2024-01-30 Mitsui Chemicals, Inc. Composition for hard tissue repair and kit for hard tissue repair
RU2772937C2 (ru) * 2018-03-20 2022-05-27 Митсуи Кемикалс, Инк. Композиция для восстановления твердых тканей и набор для восстановления твердых тканей
US20200289378A1 (en) * 2019-03-11 2020-09-17 University Of Utah Research Foundation Quick set cements for dental pulp capping and related methods of use
US11752072B2 (en) * 2019-03-11 2023-09-12 University Of Utah Research Foundation Quick set cements for dental pulp capping and related methods of use

Also Published As

Publication number Publication date
US20120035296A1 (en) 2012-02-09
JPWO2010098305A1 (ja) 2012-08-30
ES2655887T3 (es) 2018-02-22
EP2402041A4 (en) 2014-04-02
KR20110135944A (ko) 2011-12-20
CN102333553B (zh) 2014-06-04
TWI444208B (zh) 2014-07-11
EP2402041A1 (en) 2012-01-04
EP2402041B1 (en) 2017-10-18
CA2752411A1 (en) 2010-09-02
TW201100129A (en) 2011-01-01
JP5602127B2 (ja) 2014-10-08
DK2402041T3 (da) 2018-01-29
PT2402041T (pt) 2018-01-12
NO2402041T3 (ja) 2018-03-17
KR101649002B1 (ko) 2016-08-17
CA2752411C (en) 2016-08-16
HUE038026T2 (hu) 2018-09-28
CN102333553A (zh) 2012-01-25
US8609746B2 (en) 2013-12-17

Similar Documents

Publication Publication Date Title
JP5602127B2 (ja) 骨セメント組成物及び骨セメント組成物キット並びに骨セメント硬化体の形成方法
JP5602126B2 (ja) 骨セメント組成物及びその製造方法、並びにそれを製造するためのキット
JP4842269B2 (ja) 酸反応性歯科用フィラー、組成物、および方法
JP5973548B2 (ja) 骨セメント組成物
JP6076947B2 (ja) 硬化性二部型アクリル系組成物及びその生成方法
WO2013039169A1 (ja) 有機無機複合フィラー、及びその製造方法
JP6093213B2 (ja) 無機凝集粒子、有機無機複合フィラー、及びそれらの製造方法
CA2453887A1 (en) Bone cement having improved mechanical properties, and process for the preparation thereof
JP7350248B2 (ja) 有機無機複合フィラーの製造方法、および歯科用硬化性組成物の製造方法
JP6979403B2 (ja) グラスアイオノマーセメントを製造するための部品のキット、その製造方法及び使用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009452.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746186

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3362/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2752411

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011501593

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010746186

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010746186

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117022054

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13203221

Country of ref document: US