WO2006123589A1 - 医療用材料 - Google Patents

医療用材料 Download PDF

Info

Publication number
WO2006123589A1
WO2006123589A1 PCT/JP2006/309592 JP2006309592W WO2006123589A1 WO 2006123589 A1 WO2006123589 A1 WO 2006123589A1 JP 2006309592 W JP2006309592 W JP 2006309592W WO 2006123589 A1 WO2006123589 A1 WO 2006123589A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
medical material
material according
component
group
Prior art date
Application number
PCT/JP2006/309592
Other languages
English (en)
French (fr)
Inventor
Kazuo Takakuda
Yoshinori Kadoma
Original Assignee
Tokyo Medical And Dental University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Medical And Dental University filed Critical Tokyo Medical And Dental University
Priority to JP2007516269A priority Critical patent/JP5167538B2/ja
Publication of WO2006123589A1 publication Critical patent/WO2006123589A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention relates to a medical material. Specifically, the present invention relates to bone cement used for fixing artificial joints, and dental prostheses such as dentures.
  • Bone cement is widely used for fixation of artificial joints, such as when artificial joints are attached to the ends of bones.
  • Bone cements are known to be composed of a liquid component containing methyl methacrylate (MMA) as the main component and a powder component containing methyl methacrylate homopolymer or copolymer as the main component.
  • MMA methyl methacrylate
  • This bone cement is used to fix artificial joints by mixing liquid components and powder components and polymerizing and curing them at room temperature with a peracid-benzoyl and amin-based (N, N dimethyl-toluidine) catalyst. It is.
  • the bone cement as described above has the following problems.
  • the inserted admixture sometimes generated heat rapidly as the curing progressed.
  • the mixture rapidly changes from mud to bowl, rubber, and solid, so that the artificial joint can be fixed within the time when the mixture has an appropriate viscosity.
  • the operation could not be performed.
  • complicated operations, such as cooling a liquid component were required so that a mixture may be hold
  • the smell when inserting bone cement was strong.
  • methyl methacrylate is toxic, there is a problem that care must be taken when using it.
  • Patent Document 1 is composed of a liquid component containing ethyl metatalarate as a main component and a powder component containing ethyl metatalylate Z-methyl metatalylate copolymer as a main component.
  • a bone cement composition is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-236729
  • the above-mentioned bone cement composition still has the above-mentioned problems, and is not useful for actually handling in the medical field.
  • an object of the present invention is to provide a bone cement material that requires a complicated operation and can be used safely and a medical material used as a dental prosthesis such as a denture in view of the above-described conventional situation.
  • the medical material of the present invention has the general formula:
  • the formula represents a hydrogen group or a methyl group, in which the formula represents an aliphatic group having a carbon number of to, and a general formula: (wherein the hydrogen group or methyl
  • the liquid component has the general formula: C 2 O (wherein the hydrogen group
  • a compound represented by the formula which represents an aliphatic group having a carbon number of ⁇ in the formula
  • the aliphatic group here includes a chain or cyclic saturated or unsaturated aliphatic hydrocarbon group.
  • the present invention is characterized in that in the medical material described above, the compound is a chain compound. Further, in the medical material according to the claims, the compound is characterized in that the compound is methacrylic acid-ethylhexyl.
  • a substance useful in actual use with low toxicity is selected as the compound that is the main component of the liquid component.
  • the compound and the compound are the same.
  • an optimum substance is selected as the compound from the viewpoint of the solubility of the powder component in the liquid component.
  • the medical material according to any one of the above is a shall be used as a bone cement
  • the number of carbon atoms in the aliphatic group R 6 of compound C is a 6-15
  • the aliphatic group R 6 of the compound C the optimum one is selected, when used as hard of medical Ryoyo material such as bone cement.
  • the compound C is a cyclic compound. Further, the present invention is characterized in that the medical material described in any one of the above is compound C cyclohexyl acrylate.
  • an optimum compound C is selected when used as a hard medical material such as bone cement.
  • the copolymer that also has compound B and compound C contains compound C in a proportion of 20 to 95 wt%. .
  • the optimum mixing ratio of Compound B and Compound C is selected from the viewpoint of the solubility of the powder component in the liquid component and the mechanical strength of the cured medical material.
  • the present invention is characterized in that in the medical material described above, the weight ratio of the powder component to the liquid component is 1 to 5: 1.
  • the mixing ratio of the powder component and the liquid component is selected from the viewpoint of the solubility of the powder component in the liquid component and the mechanical strength of the cured medical material.
  • the medical material described above is characterized in that the addition amount of the cross-linking agent is 0.05-0.75 in terms of weight ratio to the liquid component. To do.
  • the viewpoint of the mechanical strength of the cured medical material is selected.
  • the optimum addition amount of the crosslinking agent is selected.
  • any of the above medical materials is a dental prosthesis such as a denture.
  • the aliphatic group R 6 of the compound C has 1 to 4 carbon atoms.
  • the medical material according to any one of the above, wherein the compound is the compound C methyl methacrylate.
  • an appropriate compound C is selected as a medical material used as a dental prosthesis such as a denture.
  • Medical materials used as materials for dental prostheses such as rich soft dentures can be obtained.
  • FIG. 1 is a diagram showing the results of subjecting the test pieces obtained in Examples 14 to 16 and Comparative Example 1 to a tensile test.
  • the medical material of the present invention will be described based on the embodiment (1).
  • the present inventors have found a powder component that is soluble in a liquid component even when a substance having a relatively large number of carbon atoms such as 2-ethylhexyl methacrylate is used as the liquid component.
  • the present invention has been completed by obtaining the knowledge that a cured product obtained by mixing a liquid component and a powder component is excellent in safety, curing time, curing temperature, mechanical strength and the like.
  • the medical material according to Embodiment (1) is used as a material for bone cement, and includes a liquid component and a powder component that can be dissolved in the liquid component.
  • the liquid component has the general formula: CH C iR ⁇ C
  • a compound A represented by OOR 2 is contained as a main component.
  • Compound A is methacrylic acid ester or acrylic acid ester, and R 1 in the formula represents a hydrogen group or a methyl group. From the viewpoint of stability in the body when used as bone cement, it is preferable to use methacrylic acid ester.
  • R 2 represents an aliphatic group having 8 to 14 carbon atoms, and includes a linear or cyclic saturated or unsaturated aliphatic hydrocarbon group. When the number of carbon atoms is small, care must be taken from the viewpoint of safety when actually using medical materials. Ma In addition, when the number of carbon atoms is large, sufficient strength as bone cement may not be obtained. Further, as the compound A, it is preferable to use a chain compound as a compound useful as a compound A which is a main component of the liquid component and has low toxicity.
  • Substances used as Compound A are specifically 2-ethylhexyl methacrylate, isodecyl methacrylate, n-lauryl methacrylate, tridecyl methacrylate, isooctyl acrylate, 2-ethylhexyl acrylate, acrylic acid Isomyristyl and the like are preferably used, and 2-ethylhexyl methacrylate is particularly preferably used from the viewpoint of toxicity and solubility of the powder component described later.
  • the following polymerization accelerators and polymerization inhibitors, and trace components may be included.
  • the liquid component is usually added with a polymerization accelerator for promoting the decomposition of peroxybenzoyl to generate radicals and a polymerization inhibitor for ensuring storage stability.
  • a polymerization accelerator for promoting the decomposition of peroxybenzoyl to generate radicals and a polymerization inhibitor for ensuring storage stability.
  • the polymerization accelerator N, N-dimethyl-p-toluidine, diethanol-p-toluidine, and other aromatic tertiary amines are used.
  • the amount added is preferably 1 to 2% by weight, with 0.5 to 3% by weight being preferred because the curing time shortens and the heat generation temperature rises as the amount added is increased.
  • a polymerization inhibitor typically 50 to: LOOppm of hydroquinone or monomethoxyphenol is added.
  • the powder component has the general formula: CH C (
  • R 3 represents a hydrogen group or a methyl group, wherein R 4 represents an aliphatic group
  • R 5 represents a hydrogen group or a methyl group.
  • R 6 represents an aliphatic group) and contains a copolymer containing as a main component a compound C represented by the following formula:
  • compound B those having an aliphatic group R 4 having 8 to 14 carbon atoms as in the case of the compound A are preferably used.
  • 2-ethylhexyl methacrylate, isodecyl methacrylate, n-methacrylate —Lauryl, tridecyl methacrylate, isooctyl acrylate, 2-ethyl hexyl acrylate, isomyristyl acrylate, etc. are preferably used, and 2-ethyl hexyl methacrylate is particularly preferable from the viewpoint of solubility in the liquid components described above.
  • Compound B is the same compound as Compound A in order to improve solubility in liquid components. U, especially preferred to use things.
  • an aliphatic group R 6 having 6 to 15 carbon atoms is preferably used.
  • the number of carbon atoms is small, sufficient mechanical strength as bone cement may not be obtained.
  • the solubility of the copolymer in the liquid component may decrease.
  • the compound C specifically, cyclohexyl methacrylate, isoborn methacrylate, or isoborn acrylate is used.
  • a copolymer preferably used as compound B and compound C a copolymer of 2-ethylhexyl methacrylate and cyclohexyl methacrylate, isoborn methacrylate and methacrylic acid 2 is used.
  • Examples include a copolymer of —ethylhexyl and a copolymer of isobutylhexyl methacrylate.
  • the copolymer in addition to the above-mentioned copolymer B and compound C, a copolymer containing a small amount of another organic compound as a constituent component of the copolymer is used. Also good. In this case, the mixing ratio of other organic compounds is usually 20 wt% or less, preferably 10 wt% or less. Furthermore, a mixture of two or more kinds of copolymers can be used as a powder component.
  • the mixing ratio of compound B and compound C is usually 5Z95 to 80Z20 by weight ratio (compound BZ compound C), preferably 5Z95 to 45Z55. is there
  • this copolymer is preferably a spherical powder having an average particle diameter of 1 to: LOO ⁇ m, and a spherical powder having a diameter of 20 to 70 ⁇ m is particularly preferable.
  • the weight average molecular weight is preferably 5 ⁇ 10 4 to 1 ⁇ 10 6 , and particularly preferably 1 ⁇ 10 5 to 5 ⁇ 10 5 .
  • the characteristics of these powder components have a great influence on the operation surplus time, curing time, and heat generation temperature.
  • the powder component usually contains 0.8 to 3% by weight of peroxybenzoyl.
  • the mixing ratio (powder-liquid ratio) of the powder component and the liquid component is 1 to 5 in terms of weight ratio.
  • 2-4: 1 is particularly preferred.
  • the powder / liquid ratio is small In some cases, sufficient mechanical strength cannot be obtained. In addition, when the powder-liquid ratio is large, the powder component may not be dissolved in the liquid component! /.
  • crosslinking agent in addition to the liquid component and the powder component.
  • a crosslinking agent general formula: (CH C (R 7 ) COO) R 8 (wherein n is 2-4)
  • R 7 represents a hydrogen group or a methyl group
  • R 8 represents an aliphatic group having a carbon number of from 10 to 10).
  • Specific examples of the crosslinking agent for Compound D include trimethylolpropane trimethacrylate (TMP), ethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butanediol dimethacrylate.
  • TMP trimethylolpropane trimethacrylate
  • the amount of the crosslinking agent added is 0.05 to 0.55 in terms of weight ratio with respect to the liquid component, and 0.05 to 25.25 is particularly preferable.
  • the addition amount of the crosslinking agent is small, the addition effect of the crosslinking agent does not appear and the mechanical strength of the bone cement may not be improved.
  • a cross-linking agent is added to the liquid component and then mixed with the powder component, or after the liquid component and the powder component are mixed, the cross-linking agent is added. Furthermore, the method of mixing etc. is mentioned. In particular, a method in which a liquid component and a powder component are mixed and then a crosslinking agent is added and further mixed is preferably used to obtain a uniform hardened bone cement.
  • the medical material of the above embodiment (1) a compound having low toxicity is used as the liquid component, and a medical material having high mechanical strength when cured is obtained. Therefore, the medical material according to Embodiment (1) can be used as a bone cement material that can be used safely without requiring a complicated operation and has sufficient mechanical strength.
  • the medical material of the present invention will be described based on the embodiment (2).
  • the medical material according to the embodiment (2) is mainly used as a dental prosthesis such as a denture.
  • the liquid component conforms to the embodiment (1).
  • the powder component has the general formula: CH C (R 3 ) C
  • Compound B represented by OOR 4 (wherein R 3 represents a hydrogen group or a methyl group, and R 4 represents an aliphatic group), and a general formula: CH C (R 5 ) COOR 6 (wherein R 5 represents a hydrogen group or a methyl group
  • R 6 represents an aliphatic group).
  • the aliphatic group R 6 in the formula preferably has 1 to 4 carbon atoms.
  • the mechanical strength may be small and insufficient for use as a dental prosthesis such as a denture.
  • a copolymer in addition to the copolymer composed of the compound B and the compound C as described above, a copolymer containing a small amount of another organic compound as a constituent component of the copolymer may be used.
  • the mixing ratio of other organic compounds is 20 wt% or less, and particularly preferably 10 wt% or less.
  • a mixture of two or more types of copolymers can be used as a powder component.
  • the mixing ratio of compound B and compound C is usually 5Z95 to 80Z20 in weight ratio (compound BZ compound C). Preferably it is 5Z95-40Z60.
  • this copolymer is preferably a spherical powder having an average particle size of 1 to: LOO ⁇ m, and a spherical powder having a diameter of 20 to 70 ⁇ m is particularly preferable.
  • the weight average molecular weight is preferably 5 ⁇ 10 4 to 1 ⁇ 10 6 , and particularly preferably 1 ⁇ 10 5 to 5 ⁇ 10 5 .
  • the characteristics of these powder components have a great influence on the operation surplus time, curing time, and heat generation temperature.
  • the mixing ratio (powder-liquid ratio) of the liquid component and the powder component is 1 to 5 in terms of weight ratio.
  • 2-4: 1 is particularly preferred. If the powder-liquid ratio is small, sufficient hardness may not be obtained. In addition, when the powder-liquid ratio is large, the powder component may not be dissolved in the liquid component.
  • the medical material of the above embodiment (2) a compound having low toxicity is used as the liquid component, and a medical material rich in flexibility when cured is obtained. For this reason, the medical material according to the embodiment (2) can be used safely without the need for complicated operations. It can be used as a material for dental prostheses.
  • Example 1 First, in a glass container, 2-wt-hexyl methacrylate (EHMA) containing 2 wt% peroxybenzoyl is 10 wt% -cyclohexyl methacrylate (CHMA) 90 wt%.
  • the powder component consisting of the copolymer was weighed.
  • the liquid component with 2-wt-ylhexyl methacrylate (EHMA) force containing lwt% N, N-dimethyl-p-toluidine has a weight ratio (powder-liquid ratio) of the powder component to the liquid component of 2: 1. It was added to become. And it mixed until the powder component and the liquid component became uniform, and the mixture was obtained. Subsequently, the curing time, heat generation time, compressive strength, and the like of the obtained mixture were measured. Each measurement was performed by the following method.
  • the exothermic temperature and curing time of the admixture were measured by a temperature measurement test.
  • the exothermic temperature was measured by placing the mixture in a polyethylene container and measuring the temperature change of the mixture with a thermocouple (C15 THERMOCOUPLE, Anritsu Keiki Co., Ltd.) installed in the center of the container. Then, after the start of mixing, the curing time until the mixture was cured and the exothermic temperature at that time were measured.
  • the curing time is the time when the temperature of the mixture shows a peak, and the exothermic temperature is the maximum value of the temperature of the mixture.
  • the room temperature during the measurement was set to 23 ⁇ 1 ° C.
  • the compression strength, elastic modulus, and strain of the cured admixture were measured by a compression test.
  • the test piece used for the compression test was a cylindrical shape having a diameter of 6 mm and a height of 12 mm, and was obtained by pouring the mixture into the test piece mold and clamping the test piece mold until the test piece was cured.
  • the cured test piece was allowed to stand for one day and then subjected to the compression test.
  • the compression test was performed using a material tester (INSTRON MODEL 1185, Instron), and the feed rate of the material tester was 20 mmZmin.
  • Example 2 methacrylic acid 2-containing 2 wt% benzoyl peroxide as a powder component
  • EHMA ethyl hexyl
  • CHMA cyclohexyl methacrylate
  • Example 3 a copolymer of 2-wt-hexyl methacrylate (EHMA) 30 wt-% cyclohexyl methacrylate (CHMA) 70 wt-% containing 2 wt-% benzoyl peroxide as a powder component was used. The procedure was the same as in (Example 1) except that.
  • EHMA 2-wt-hexyl methacrylate
  • CHMA cyclohexyl methacrylate
  • Example 1 it was apparent that the powder component was dissolved in the liquid component and the mixture was cured. As a result of subjecting the cured mixture obtained in (Examples 1 to 3) to a compression test, it was found to have compression strength, elastic modulus, and strain as shown in Table 1. As a result, it was found that 2-ethylhexyl methacrylate can be used as a liquid component of bone cement. It was also found that a copolymer of 2-ethylhexyl methacrylate (EHMA) -cyclohexyl methacrylate (CHMA) can be used as an appropriate powder component that dissolves in 2-ethylhexyl methacrylate.
  • EHMA 2-ethylhexyl methacrylate
  • CHMA cyclohexyl methacrylate
  • TMP trimethylolpropane trimethacrylate
  • Example 5 was carried out in the same manner as (Example 1) except that TMP was added after mixing the liquid component and the powder component.
  • the amount of added TMP was 0.67 in terms of the weight ratio to the amount of liquid component.
  • the hardened bone cement obtained in (Example 4) and (Example 5) is compared, the hardened bone cement obtained in (Example 5) is more uniformly dispersed. I was strong. In other words, it was found that bone cement could be uniformly hardened by adding TMP after mixing the liquid and powder components. This is because, when a liquid component having EHMA and TMP and a powder component are mixed, the powder component strength is different depending on whether HMA or TMP is dissolved first, and the sample after curing is different. This is presumed to occur.
  • Example 6 the amount of TMP added was set to 0.18 in weight ratio to the amount of liquid component. Except that, the same procedure as in (Example 1) was performed.
  • Example 7 was carried out in the same manner as (Example 2), except that the amount of TMP added was set to 0.18 by weight with respect to the amount of the liquid component.
  • Example 8 was carried out in the same manner as (Example 3), except that the amount of TMP added was 0.18 in terms of the weight ratio to the amount of the liquid component.
  • Example 9 was carried out in the same manner as (Example 2), except that the amount of TMP added was 0.11 in terms of the weight ratio to the amount of the liquid component.
  • Example 10 was carried out in the same manner as (Example 2), except that the amount of TMP added was 0.25 by weight with respect to the amount of the liquid component.
  • Table 3 shows the results of subjecting the test pieces obtained by curing the mixture obtained in (Examples 6 to 10) to a compression test. As shown in Table 3, it can be seen that compression strength and elastic modulus are improved by adding TMP as a crosslinking agent.
  • Example 10 It can be seen that an excellent bone cement with high compressive strength was obtained in (Example 10). In Example 7, it can be seen that a superior bone cement having a high elastic modulus and strain was obtained.
  • Example 11 was performed in the same manner as (Example 6) except that the powder / liquid ratio was 7: 2 by weight.
  • Example 12 was carried out in the same manner as (Example 7) except that the powder-liquid ratio was 7: 2 in terms of weight ratio.
  • Example 13 was carried out in the same manner as (Example 8), except that the powder-liquid ratio was 7: 2 in terms of weight ratio.
  • Table 5 shows the result of subjecting the mixture obtained in (Examples 11 to 13) to a cured compression test. As shown in Table 5, it can be seen that the compressive strength and elastic modulus are improved by increasing the proportion of the powder component by changing the powder-liquid ratio.
  • a glass container also has a copolymer strength of 50 wt% of 2-ethylhexyl methacrylate (EHMA) containing 50 wt% of methyl methacrylate (MMA) containing 2 wt% of peroxybenzoyl.
  • EHMA 2-ethylhexyl methacrylate
  • MMA methyl methacrylate
  • peroxybenzoyl a copolymer strength of 50 wt% of 2-ethylhexyl methacrylate (EHMA) containing 50 wt% of methyl methacrylate (MMA) containing 2 wt% of peroxybenzoyl.
  • the powder component was weighed out.
  • the liquid component composed of 2-ethyl hexyl methacrylate (EHMA) containing lwt% N, N dimethyl-p-toluidine has a weight ratio (powder-liquid ratio) of powder component to liquid component of 2: 1.
  • the specimen used for the tensile test was 5 mm wide, 20 mm long, and 1 mm thick. It was obtained by pouring the mixture into the specimen and clamping the specimen until the specimen was cured. The tensile test was performed after leaving the cured specimen to stand for one day. The tensile test was performed using a material testing machine (INSTRON MODEL 1185, Instron).
  • Example 15 as a powder component, a copolymer of 2 wt% peroxybenzoyl, 2 ethylhexyl methacrylate (EHMA) 80 wt%, methyl methacrylate (MMA) 20 wt% 33 wt%
  • EHMA ethylhexyl methacrylate
  • MMA methyl methacrylate
  • Example 16 a co-polymerization of 2-ethylhexyl methacrylate (EHMA) 80 wt%-methyl methacrylate (MMA) 20 wt% containing 2 wt% benzoyl peroxide as a powder component.
  • EHMA 2-ethylhexyl methacrylate
  • MMA wt%-methyl methacrylate
  • coalescence was used.
  • FIG. 1 shows the results of subjecting the test pieces obtained in (Examples 14 to 16) and (Comparative Example 1) to a tensile test.
  • the hardness can be varied widely only by changing the ratio of 2-ethylhexyl methacrylate and methyl methacrylate in the copolymer. It can be seen that the higher the mixing ratio of methyl methacrylate, the closer to the hardness of PMMA, and the lower the mixing ratio of methyl methacrylate, the more flexible and the same level of flexibility as rubber. Those with high flexibility can be used as dental prostheses such as soft dentures.
  • the medical material of the present invention can be used as a material for dental prosthesis such as bone cement and denture used for fixing artificial joints.

Abstract

 煩雑な操作が必要なく、かつ安全に使用できる骨セメント材料や、義歯などの歯科補綴物として用いられる医療用材料を提供することを課題とする。一般式:CH2C(R1)COOR2(式中R1は水素基又はメチル基を表し、式中R2は炭素数が8~14の脂肪族基を表す)で表される化合物Aを主成分として含む液体成分と、一般式:CH2C(R3)COOR4(式中R3は水素基又はメチル基を表し、式中R4は脂肪族基を表す)で表される化合物B、及び一般式:CH2C(R5)COOR6(式中R5は水素基又はメチル基を表し、式中R6は脂肪族基を表す)で表される化合物Cを構成成分として含む共重合体を主成分として含む粉末成分と、からなる医療用材料である。

Description

明 細 書
医療用材料
技術分野
[0001] 本発明は、医療用材料に関する。具体的には、人工関節の固定などに用いられる 骨セメントや、義歯等の歯科補綴物に関する。
背景技術
[0002] 骨セメントは、人工関節を骨の端部に装着する場合のように人工関節の固定に広く 用いられている。骨セメントとしては、メタクリル酸メチル(MMA: methyl methacrylate) を主成分として含む液体成分と、メタクリル酸メチルの単独重合体もしくは共重合体 を主成分として含む粉末成分とから構成されるものが知られて 、る。この骨セメントは 、液体成分と粉末成分とを混合し、過酸ィ匕べンゾィルとァミン系(N, N ジメチル一 p トルイジン)触媒で常温重合、硬化させることで人工関節を固定するためのもので ある。
[0003] し力しながら、上述のような骨セメントは次に示すような問題があった。まず、挿入さ れた混和物が硬化の進行に伴って急激に発熱することがあった。また、液体成分と 粉末成分とを混合すると、混和物は泥状から餅状、ゴム状、固体状へと急激に変化 するため、混和物が適度な粘度を有する時間内に、人工関節の固定操作を行うこと ができないという問題点があった。このため、混和物が適度な粘度に保持されるよう に、液体成分を冷却するなどの煩雑な操作が必要であった。また、揮発性が高いた め、骨セメントの挿入時の臭いが強いという問題点があった。さらには、メタクリル酸メ チルは毒性があるため、使用に際して注意が必要であるという問題点があった。
[0004] そこで、(特許文献 1)には、ェチルメタタリレートを主成分として含む液体成分とェ チルメタタリレート Zメチルメタタリレート共重合体を主成分として含む粉末成分とから なる、骨セメント組成物が開示されている。
[0005] 特許文献 1:特開 2004— 236729号公報
発明の開示
発明が解決しょうとする課題 し力しながら、上述のような骨セメント組成物は、上述のような問題点がなお残され ており、実際に医療現場で取り扱うには有用ではなかった。
そこで、本発明は、上記従来の状況に鑑み、煩雑な操作が必要なぐかつ安全に 使用できる骨セメント材料や、義歯などの歯科補綴物として用いられる医療用材料を 提供することを課題とする。
課題を解決するための手段
上記課題を解決するため、本発明の医療用材料は、一般式:
2
式中 は水素基又はメチル基を表し、式中 は炭素数が 〜 の脂肪族基を表す )で表される化合物 を主成分として含む液体成分と、一般式:
2
式中 は水素基又はメチル基を表し、式中 は炭素数が 〜 の脂肪族基を表す )で表される化合物 、及び一般式: (式中 は水素基又はメチ
2
ル基を表し、式中 は脂肪族基を表す)で表される化合物 を構成成分として含む 共重合体を主成分として含む粉末成分と、からなる医療用材料であることを特徴とす る。
上記構成によれば、液体成分は、一般式: C O (式中 は水素基
2
又はメチル基を表し、式中 は炭素数が 〜 の脂肪族基を表す)で表される化合 物 を主成分として含むので、使用した際に体内への浸透が小さぐ体内へ与える影 響が小さい。なお、ここでいう脂肪族基は、鎖状又は環状の飽和もしくは不飽和の脂 肪族炭化水素基を含む。
また、本発明では、上記記載の医療用材料において、化合物 が鎖式ィ匕合物であ ることを特徴とする。また、請求の範囲 記載の医療用材料において、化合物 がメタ クリル酸 -ェチルへキシルであることを特徴とする。
上記構成によれば、液体成分の主成分である化合物 として、毒性が低ぐ実際の 使用の際に有用な物質が選択される。
また、本発明では、上記のいずれか記載の医療用材料において、化合物 と化合 物 とが同一であることを特徴とする。
上記構成によれば、化合物 として、液体成分への粉末成分の溶解性の観点から 最適な物質が選択される。 [0014] また、本発明では、上記のいずれか記載の医療用材料が骨セメントとして用いられ るものであって、化合物 Cの脂肪族基 R6の炭素数が 6〜 15であることを特徴とする。
[0015] 上記構成によれば、化合物 Cの脂肪族基 R6として、骨セメントのような硬質性の医 療用材料として使用する際に最適なものが選ばれる。
[0016] また、本発明では、上記のいずれか記載の医療用材料において、化合物 Cが環式 化合物であることを特徴とする。また、本発明では、上記のいずれか記載の医療用材 料にぉ 、て、化合物 Cカ^タクリル酸シクロへキシルであることを特徴とする。
[0017] 上記構成によれば、化合物 Cとして、骨セメントのような硬質性の医療用材料として 使用する際に最適なものが選ばれる。
[0018] また、本発明では、上記のいずれか記載の医療用材料において、化合物 B及びィ匕 合物 C力もなる共重合体は化合物 Cを 20〜95wt%の割合で含むことを特徴とする。
[0019] 上記構成によれば、液体成分への粉末成分の溶解性、及び硬化した医療用材料 の機械的強度の観点から化合物 Bと化合物 Cの最適な混合比が選択される。
[0020] また、本発明では、上記の 、ずれか記載の医療用材料にお!、て、粉末成分と液体 成分との重量比が 1〜5: 1であることを特徴とする。
[0021] 上記構成によれば、液体成分への粉末成分の溶解性、及び硬化した医療用材料 の機械的強度の観点から粉末成分と液体成分の混合比が選択される。
[0022] また、本発明では、上記のいずれか記載の医療用材料において、架橋剤として一 般式:(CH C (R7) COO) R8 (式中 nは 2〜4の整数を表し、式中 R7は水素基又はメ
2 n
チル基を表し、式中 R8は炭素数が!!〜 10の脂肪族基を表す)で表される化合物 Dが 添加されたことを特徴とする。
[0023] 上記構成によれば、粉末成分と液体成分に加えて架橋剤が添加されるので医療用 材料の硬化が促進されるとともに硬化後の機械的強度が向上する。
[0024] また、本発明では、上記記載の医療用材料にお!ヽて、架橋剤の添加量が、液体成 分に対し重量比にして 0. 05-0. 75であることを特徴とする。
[0025] 上記構成によれば、硬化した医療用材料の機械的強度の観点力 架橋剤の最適 な添加量が選択される。
[0026] さらに、本発明では、上記のいずれか記載の医療用材料が義歯などの歯科補綴物 として用いられるものであって、化合物 Cの脂肪族基 R6の炭素数が 1〜4であることを 特徴とする。また、本発明では、上記のいずれか記載の医療用材料において、化合 物 Cカ^タクリル酸メチルであることを特徴とする医療用材料。
[0027] 上記構成によれば、義歯などの歯科補綴物として用いられる医療用材料として、適 当な化合物 Cが選択される。
発明の効果
[0028] 本発明の医療用材料によれば、煩雑な操作が必要なく安全に使用できかつ十分な 機械的強度を有する骨セメント材料や、煩雑な操作が必要なく安全に使用できかつ 柔軟性に富む軟質義歯などの歯科補綴物の材料等として用いられる医療用材料が 得られる。
図面の簡単な説明
[0029] [図 1]実施例 14〜16、及び比較例 1で得られた試験片を引張試験にかけた結果を示 す図である。
発明を実施するための最良の形態
[0030] まず、本発明の医療用材料を実施の形態(1)に基づいて説明する。本発明者らは 、メタクリル酸 2—ェチルへキシルのような炭素数が比較的多い物質を液体成分とし て用いた場合にも、該液体成分に可溶となる粉体成分を見出し、さらには液体成分と 粉体成分とを混合して得られた硬化物が安全性、硬化時間、硬化温度、機械的強度 等に優れるという知見を得て、本発明を完成するに至った。実施の形態(1)に係る医 療用材料は、骨セメントの材料として用いられるものであって、液体成分と、液体成分 に溶解可能な粉末成分とからなる。
[0031] 実施の形態(1)に係る医療用材料において、液体成分は、一般式: CH C iR^ C
2
OOR2で表される化合物 Aを主成分として含む。なお、化合物 Aはメタクリル酸エステ ル又はアクリル酸エステルであり、式中 R1は水素基又はメチル基を表す。骨セメントと して用いた場合の体内における安定性の観点からは、メタクリル酸エステルを用いる ことが好ましい。また、式中 R2は炭素数が 8〜14の脂肪族基を表し、鎖状又は環状 の飽和もしくは不飽和の脂肪族炭化水素基を含む。炭素数が少ない場合には、医療 用材料を実際に使用する際に安全性の観点から取り扱いに注意する必要がある。ま た、炭素数が多い場合には、骨セメントとして十分な強度を得ることができない場合 がある。また、化合物 Aとしては、液体成分の主成分である化合物 Aとして、毒性が低 ぐ実際の使用の際に有用な物質として、鎖式ィ匕合物を用いることが好ましい。
化合物 Aとして用いられる物質は、具体的には、メタクリル酸 2—ェチルへキシル、 メタクリル酸イソデシル、メタクリル酸 n—ラウリル、メタクリル酸トリデシル、アクリル酸ィ ソォクチル、アクリル酸 2—ェチルへキシル、アクリル酸イソミリスチル等が好ましく用 V、られ、毒性や後述する粉体成分の溶解性の観点からメタクリル酸 2—ェチルへキシ ルが特に好ましく用いられる。
[0032] また、メタクリル酸エステル又はアクリル酸エステル以外には以下の重合促進剤お よび重合禁止剤、ならびに微量成分 (例えば、色素)などを含んでもよい。液体成分 には、通常、過酸ィ匕ベンゾィルの分解を促進してラジカルを発生させる重合促進剤 および保存安定性を確保するための重合禁止剤が添加される。重合促進剤としては 、 N, N—ジメチルー p—トルイジン、ジエタノール—p—トルイジン、その他の芳香族 第三級ァミンなどが用いられる。添加量としては、添加量が多くなるに従って硬化時 間は短縮し、発熱温度は上昇するため、 0.5〜3重量%が好ましぐ 1〜2重量%が特 に好ましい。重合禁止剤としては、代表的には 50〜: LOOppmのハイドロキノンや 一 メトキシフエノールが添カ卩される。
[0033] 次に、実施の形態(1)に係る医療用材料において、粉末成分は、一般式: CH C (
2
R3) COOR4 (式中 R3は水素基又はメチル基を表し、式中 R4は脂肪族基を表す)で表 される化合物 B、及び一般式: CH C (R5) COOR6 (式中 R5は水素基又はメチル基を
2
表し、式中 R6は脂肪族基を表す)で表される化合物 Cを構成成分として含む共重合 体を主成分として含む。
化合物 Bとしては、化合物 Aと同様に脂肪族基 R4の炭素数が 8〜14のものが好適 に用いられ、具体的には、メタクリル酸 2—ェチルへキシル、メタクリル酸イソデシル、 メタクリル酸 n—ラウリル、メタクリル酸トリデシル、アクリル酸イソオタチル、アクリル酸 2 —ェチルへキシル、アクリル酸イソミリスチル等が好ましく用いられ、前述した液体成 分への溶解性の観点からメタクリル酸 2—ェチルへキシルが特に好ましく用いられる 。そして、化合物 Bは、液体成分への溶解性を向上させるため化合物 Aと同一の化合 物を用いることが特に好ま U、。
化合物 Cとしては、脂肪族基 R6の炭素数が 6〜15のものが好適に用いられる。炭 素数が少な 、場合には、骨セメントとして十分な機械的強度が得られな 、場合がある 。また、炭素数が多い場合には、共重合体の液体成分への溶解性が低下する場合 がある。また、硬化して得られる骨セメントの機械的強度を向上させるため化合物じに は環式ィ匕合物を用いることが好ましい。化合物 Cとしては、具体的には、メタクリル酸 シクロへキシル、メタクリル酸イソボル-ル、アクリル酸イソボル-ルが用いられる。そ して、化合物 Bと化合物 C力 なる共重合体として好ましく用いられるものとして、メタ クリル酸 2—ェチルへキシルとメタクリル酸シクロへキシルとの共重合体、メタクリル酸 イソボル-ル及びメタクリル酸 2—ェチルへキシルの共重合体やアクリル酸イソボル- ルーメタクリル酸 2—ェチルへキシルの共重合体が挙げられる。
また、共重合体としては、上記のような化合物 B及びィ匕合物 C力 なる共重合体以 外にも、他の有機化合物を共重合体の構成成分として少量含む共重合体を用いて もよい。この場合、他の有機化合物の混合割合は通常 20wt%以下であり、 10wt% 以下であることが好ましい。さらには、二種以上の共重合体を混合したものを粉末成 分として用いることも可能である。
[0034] 上記の共重合体にお!、て、化合物 B及びィ匕合物 Cの混合割合は、通常、重量比( 化合物 BZ化合物 C)で 5Z95〜80Z20であり、好ましくは 5Z95〜45Z55である
[0035] また、この共重合体は、平均粒径 1〜: LOO μ mの球状の粉末が好ましぐ 20〜70 μ mの球状の粉末が特に好ましい。また、その重量平均分子量は、好ましくは 5 X 10 4〜1 X 106であり、特に好ましくは 1 X 105〜5 X 105である。これら粉末成分の特性 は、操作余裕時間、硬化時間、および発熱温度に大きな影響を及ぼす。
[0036] さらに、粉末成分は、通常、過酸ィ匕ベンゾィルを 0.8〜3重量%含有する。含有率 が高いほど操作余裕時間、硬化時間は短縮し、発熱温度は上昇する傾向にあるた め 1〜2.5重量%がより好ましい。
[0037] また、上記の粉末成分と液体成分の混合比(粉液比)としては、重量比にして 1〜5
: 1であることが好ましぐ 2〜4 : 1であることが特に好ましい。粉液比が小さい場合に は、十分な機械的強度が得られない場合がある。また、粉液比が大きい場合には、 粉末成分が液体成分に溶解できな!/、場合がある。
[0038] また、本発明では、上記液体成分及び粉末成分に加えてさらに架橋剤を添加する ことが好ましい。架橋剤としては、一般式:(CH C (R7) COO) R8 (式中 nは 2〜4の
2 n
整数を表し、式中 R7は水素基又はメチル基を表し、式中 R8は炭素数力 ¾〜10の脂 肪族基を表す)で表される化合物 Dが用いられる。化合物 Dの架橋剤としては、具体 的には、トリメタクリル酸トリメチロールプロパン (TMP)、ジメタクリル酸エチレングリコ ール、ジメタクリル酸 1, 3—ブチレングリコール、ジメタクリル酸 1, 4-ブタンジオール 、ジメタクリル酸 1, 6-へキサンジオール、ジメタクリル酸ネオペンチルグリコール、ジメ タクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、ジアクリル酸ト リエチレングリコール、ジアクリル酸 1, 6—へキサンジオール、ジアクリル酸ネオペン チルダリコール、トリアクリル酸トリメチロールプロパン、トリアクリル酸ペンタエリスリトー ル、テトラアクリル酸ペンタエリスリトール、テトラアクリル酸テトラメチロールメタンが好 ましく用いられ、トリメタクリル酸トリメチロールプロパン (TMP)が特に好ましく用いら れる。また、架橋剤の添加量が、液体成分に対し重量比にして 0. 05-0. 75である ことが好ましぐ 0. 05-0. 25が特に好ましい。架橋剤の添加量が少ない場合には、 架橋剤の添加効果が現れず骨セメントの機械的強度が向上しない場合がある。
[0039] 架橋剤の添加方法としては、まず液体成分中に架橋剤を添加して、その後粉末成 分と混合させる方法や、液体成分と粉末成分を混合させた後に架橋剤を添加してさ らに混合させる方法等が挙げられる。特に、液体成分と粉末成分を混合させた後に 架橋剤を添加してさらに混合させる方法は、均一な骨セメントの硬化物を得るのに好 ましく用いられる。
[0040] 上記実施の形態(1)に係る医療用材料によれば、液体成分として毒性が低い化合 物が用いられ、かつ硬化させた際に機械的強度の高い医療用材料が得られる。この ため、実施の形態(1)に係る医療用材料は、煩雑な操作が必要なく安全に使用でき かつ十分な機械的強度を有する骨セメント材料として使用することができる。
[0041] 続いて、実施の形態(2)に基づいて、本発明の医療用材料を説明する。実施の形 態(2)に係る医療用材料は、義歯などの歯科補綴物として主に用いられるものであつ て、液体成分と、液体成分に溶解可能な粉末成分とからなる。
[0042] 実施の形態(2)に係る医療用材料にぉ 、て、液体成分は、実施の形態(1)に準ず る。
[0043] 実施の形態(2)に係る医療用材料において、粉末成分は、一般式: CH C (R3) C
2
OOR4 (式中 R3は水素基又はメチル基を表し、式中 R4は脂肪族基を表す)で表され る化合物 B、及び一般式: CH C (R5) COOR6 (式中 R5は水素基又はメチル基を表し
2
、式中 R6は脂肪族基を表す)で表される化合物 Cからなる共重合体を主成分として含 む。そして、式中の脂肪族基 R6の炭素数は 1〜4が好適に用いられる。脂肪族基 R6 の炭素数が多 、場合には、機械的強度が義歯などの歯科補綴物として用いるには 小さく不十分となる場合がある。また、共重合体としては、上記のような化合物 B及び 化合物 Cからなる共重合体以外にも、他の有機化合物を共重合体の構成成分として 少量含む共重合体を用いてもよい。この場合、他の有機化合物の混合割合は 20wt %以下であり、 10wt%以下であることが特に好ましい。さらには、二種以上の共重合 体を混合したものを粉末成分として用いることも可能である。
[0044] また、上記の共重合体にお!、て、化合物 B及びィ匕合物 Cの混合割合は、通常、重 量比(ィ匕合物 BZ化合物 C)で 5Z95〜80Z20であり、好ましくは 5Z95〜40Z60 である。
[0045] また、この共重合体は、平均粒径 1〜: LOO μ mの球状の粉末が好ましぐ 20〜70 μ mの球状の粉末が特に好ましい。また、その重量平均分子量は、好ましくは 5 X 10 4〜1 X 106であり、特に好ましくは 1 X 105〜5 X 105である。これら粉末成分の特性 は、操作余裕時間、硬化時間、および発熱温度に大きな影響を及ぼす。
[0046] また、上記の液体成分と粉末成分の混合比(粉液比)としては、重量比にして 1〜5
: 1であることが好ましぐ 2〜4 : 1であることが特に好ましい。粉液比が小さい場合に は、十分な硬度が得られない場合がある。また、粉液比が大きい場合には、粉末成 分が液体成分に溶解できな 、場合がある。
[0047] 上記実施の形態(2)の医療用材料によれば、液体成分として毒性が低い化合物が 用いられ、かつ硬化させた際に柔軟性に富んだ医療用材料が得られる。このため、 実施の形態 (2)に係る医療用材料は、煩雑な操作が必要なく安全に使用でき、義歯 などの歯科補綴物の材料として使用することができる。
実施例
[0048] 次に本発明の医療用材料にっ 、て実施例、比較例、及び参考例に基づ!/、て具体 的に説明する。
[0049] (実施例 1〜3)
(実施例 1)では、まず、ガラス製の容器に、 2wt%の過酸ィ匕ベンゾィルを含むメタク リル酸 2 -ェチルへキシル(EHMA) 10wt%—メタクリル酸シクロへキシル (CHMA ) 90wt%の共重合体からなる粉末成分を量り取った。そして、 lwt%の N, N—ジメ チルー p—トルイジンを含むメタクリル酸 2—ェチルへキシル(EHMA)力 なる液体 成分を粉末成分と液体成分との重量比 (粉液比)が 2: 1となるように加えた。そして、 粉末成分と液体成分とが均一になるまで混合し、混和物を得た。続いて、得られた混 和物の硬化時間、発熱時間、圧縮強さ等の測定を行った。各測定は以下に示すよう な方法で行った。
[0050] (温度測定試験)
温度測定試験により混和物の発熱温度及び硬化時間の測定を行った。発熱温度 の測定は、ポリエチレン製の容器に混和物を入れて、容器の中心部に設けられた熱 電対 (C15 THERMOCOUPLE,安立計器株式会社)により混和物の温度変化を測定 した。そして、混和開始後、混和物が硬化するまでの硬化時間とそのときの発熱温度 を測定した。なお、硬化時間は混和物の温度がピークを示す時間であり、発熱温度 は混和物の温度の最大値である。測定中の室温は、 23± 1°Cに設定した。
[0051] (圧縮試験)
圧縮試験により、硬化させた混和物の圧縮強さ、弾性係数、及びひずみの測定を 行った。圧縮試験に用いた試験片は、直径 6mm、高さ 12mmの円柱形のものであり 、試験片型に混和物を流し込み、試験片が硬化するまで試験片型をクランプすること で得た。圧縮試験は硬化した試験片を一日静置した後に圧縮試験を行った。圧縮試 験には、材料試験機(INSTRON MODEL 1185, Instron社)を用いて行い、材料試験 機の送り速度は 20mmZminとした。
[0052] (実施例 2)では、粉末成分として 2wt%の過酸化ベンゾィルを含むメタクリル酸 2— ェチルへキシル (EHMA) 20wt%—メタクリル酸シクロへキシル(CHMA) 80wt% の共重合体を用いた以外は (実施例 1)と同様に行った。
[0053] (実施例 3)では、粉末成分として 2wt%の過酸化ベンゾィルを含むメタクリル酸 2— ェチルへキシル(EHMA) 30wt%—メタクリル酸シクロへキシル(CHMA) 70wt% の共重合体を用いた以外は (実施例 1)と同様に行った。
[0054] (実施例 1〜3)では、粉末成分が液体成分に溶解し、混和物が硬化することが明ら 力となった。そして、(実施例 1〜3)で得られた混和物を硬化させたものを圧縮試験 にかけた結果、表 1に示すような圧縮強さ、弾性係数、及びひずみを有することがわ かった。これにより、メタクリル酸 2—ェチルへキシルを骨セメントの液体成分として用 いることができることがわかった。また、メタクリル酸 2—ェチルへキシル (EHMA)—メ タクリル酸シクロへキシル (CHMA)の共重合体がメタクリル酸 2—ェチルへキシルに 溶解する適当な粉末成分として用いられることがわ力 た。
[0055] [表 1]
Figure imgf000012_0001
[0056] (参考例 1〜4)
続いて、(参考例 1)として、(実施例 1〜3)において本発明の医療用材料の液体成 分として用いたメタクリル酸 2—ェチルへキシルを試験し、ラット骨髄内に投与した場 合の LD50値を算出した。
[0057] また、(参考例 2)として、メタクリル酸メチルを試験し、ラット骨髄内に投与した場合 の LD50値を算出した。
[0058] また、(参考例 3)として、メタクリル酸ェチルを試験し、ラット骨髄内に投与した場合 の LD50値を算出した。
[0059] また、(参考例 4)として、メタクリル酸ブチルを試験し、ラット骨髄内に投与した場合 の LD50値を算出した。 [0060] 表 2は、参考例 1〜4において算出した LD50値を示したもので、実施例 1〜3にお いて用いたメタクリル酸 2—ェチルへキシルの数値が大きいことがわかる。一方、炭素 数の小さ!/、参考例 2〜4にお!/、ては数値が小さ 、ことがわ力る。
[0061] [表 2]
Figure imgf000013_0001
[0062] (実施例 4及び 5)
(実施例 4)では、架橋剤としてトリメタクリル酸トリメチロールプロパン (TMP :trimeth ylolpropane trimethacrylate)を液体成分に添加した以外は(実施例 1)と同様に行な つた。なお、 TMPの添加は、液体成分に TMPを加えることで行った。そして、 TMP が添加された液体成分を粉末成分と混合した。また、添加 TMPの量は、液体成分の 量〖こ対し重量 it〖こして 0. 67とした。
[0063] (実施例 5)では、液体成分及び粉末成分を混合した後に TMPを添加した以外は( 実施例 1)と同様に行なった。また、添加 TMPの量は、液体成分の量に対し重量比 にして 0. 67とした。
[0064] (実施例 4)及び (実施例 5)で得られた骨セメントの硬化物を比較すると、(実施例 5 )で得られた骨セメントの硬化物の方が均一に分散されていることがわ力つた。すなわ ち、 TMPの添加を液体成分及び粉末成分を混合した後に行うことで骨セメントを均 一に硬化できることが分力ゝつた。このことは、 EHMAと TMPとを有する液体成分と粉 末成分とを混合した場合には、粉末成分力 ¾HMAと TMPのどちらカゝら先に溶解さ れるかによって硬化した後の試料に異なりが生じてしまうためと推察される。
[0065] (実施例 6〜: L0)
(実施例 6)では、 TMPの添加量を、液体成分の量に対し重量比にして 0. 18とした 以外は(実施例 1)と同様に行った。
[0066] (実施例 7)では、 TMPの添加量を、液体成分の量に対し重量比にして 0. 18とした 以外は(実施例 2)と同様に行った。
[0067] (実施例 8)では、 TMPの添加量を、液体成分の量に対し重量比にして 0. 18とした 以外は(実施例 3)と同様に行った。
[0068] (実施例 9)では、 TMPの添加量を、液体成分の量に対し重量比にして 0. 11とした 以外は(実施例 2)と同様に行った。
[0069] (実施例 10)では、 TMPの添加量を、液体成分の量に対し重量比にして 0. 25とし た以外は (実施例 2)と同様に行った。
[0070] 表 3に(実施例 6〜: 10)で得られた混和物を硬化させた試験片を圧縮試験にかけた 結果を示す。表 3に示すように、架橋剤として TMPを加えることにより圧縮強さ及び 弾性係数が向上することがわかる。
[0071] [表 3]
Figure imgf000014_0001
[0072] また、(実施例 6〜8)の結果からは、メタクリル酸 2—ェチルへキシルとメタクリル酸 シクロへキシルとの比が異なる各共重合体を粉末成分として用いた場合にも、圧縮 強さ及び弾性係数が向上することがわ力る。
[0073] さらに、 TMPの添加量を変化させた (実施例 7、及び実施例 9、 10)の結果からは.
(実施例 10)において圧縮強さが高ぐ優れた骨セメントが得られたことがわかる。 また、(実施例 7)においては、弾性係数及びひずみが高くより優れた骨セメントが 得られたことわかる。
[0074] 次に、表 4に(実施例 7、及び実施例 9、 10)で得られた混和物を温度測定試験に かけた結果を示す。表 4に示すように、架橋剤として TMPを加えることにより、発熱温 度が高くなり、硬化時間が短くなることがわかる。また、 TMPの添加量を増やすことで 硬化時間が短くなる。
[表 4]
Figure imgf000015_0001
[0076] (実施例 11〜13)
(実施例 11)では、粉液比を重量比にして 7: 2とした以外は(実施例 6)と同様に行 つた o
[0077] (実施例 12)では、粉液比を重量比にして 7 : 2とした以外は(実施例 7)と同様に行 つた o
[0078] (実施例 13)では、粉液比を重量比にして 7 : 2とした以外は(実施例 8)と同様に行 つた o
[0079] 表 5に(実施例 11〜 13)で得られた混和物を硬化させたものを圧縮試験にかけた 結果を示す。表 5に示すように、粉液比を変えて粉末成分の割合を多くすることで、 圧縮強さおよび弾性係数が向上することがわかる。
[0080] [表 5]
圧縮強さ [M P a ] 弾性係数 [M P a ] ひずみ [一] 実施例 2 11. 5 439 0. 048
実施例 6 38. 4 751 0. 083
実施例 7 34. 3 871 0. 067
実施例 8 30. 4 825 0. 053
実施例 1 1 43. 2 1177 0. 062
実施例 1 2 45. 8 1244 0. 067
実施例 1 3 48. 2 1219 0. 062
[0081] (実施例 14〜16、及び比較例 1)
(実施例 14)ではまず、ガラス製の容器に、 2wt%の過酸ィ匕ベンゾィルを含むメタク リル酸 2 ェチルへキシル(EHMA) 50wt%ーメタクリル酸メチル(MMA) 50wt% の共重合体力もなる粉末成分を量り取った。そして、 lwt%の N, N ジメチル— p— トルイジンを含むメタクリル酸 2—ェチルへキシル (EHMA)からなる液体成分を粉末 成分と液体成分との重量比 (粉液比)が 2 : 1となるように加えた。そして、粉末成分と 液体成分とが均一になるまで混合し、混和物を得た。続いて、得られた混和物を硬化 させた試験片を用いて引張試験を行った。引張試験は以下に示すような方法で行つ た。
[0082] (引張試験)
引張試験に用いた試験片は、幅 5mm、長さ 20mm、厚み lmmのものであり、試験 片型に混和物を流し込み、試験片が硬化するまで試験片型をクランプすることで得 た。引張試験は硬化した試験片を一日静置した後に行った。なお、引張試験は、材 料試験機(INSTRON MODEL 1185, Instron社)を用いて行った。
[0083] (実施例 15)では、粉末成分として、過酸ィ匕ベンゾィル 2wt%、メタクリル酸 2 ェチ ルへキシル (EHMA) 80wt%ーメタクリル酸メチル(MMA) 20wt%の共重合体 33 wt%、及びメタクリル酸 2 ェチルへキシル (EHMA) 50wt%—メタクリル酸メチル( MMA) 50wt%の共重合体 65wt%を用いた以外は(実施例 14)と同様に行った。
[0084] (実施例 16)では、粉末成分として 2wt%の過酸化ベンゾィルを含むメタクリル酸 2 ェチルへキシル (EHMA) 80wt%ーメタクリル酸メチル(MMA) 20wt%の共重 合体を用いた以外は (実施例 14)と同様に行った。
[0085] (比較例 1)
(比較例 1)では、液体成分として lwt%の N, N—ジメチルー p—トルイジンを含む メタクリル酸メチルを用い、粉末成分として 2wt%の過酸ィ匕ベンゾィルを含むメタタリ ル酸メチル (MMA)の重合体を用いた以外は(実施例 14)と同様に行 ヽ、骨セメント として一般的に用いられる PMMAを得た。
[0086] 図 1は、(実施例 14〜16)及び (比較例 1)で得られた試験片を引張試験にかけた 結果を示したものである。図 1に示すように、共重合体のメタクリル酸 2—ェチルへキ シルとメタクリル酸メチルとの比率を変化させるのみで、硬さを幅広く変化させることが できることがわかる。メタクリル酸メチルの混合割合が多いほど PMMAの硬さに近づ き、メタクリル酸メチルの混合割合が小さいほど柔軟になり、ゴム等と同程度の柔軟性 が得られることがわかる。柔軟性に富むものは、軟質義歯などの歯科補綴物として用 いることがでさる。
[0087] 本発明の医療用材料は、人工関節の固定などに用いられる骨セメントや、義歯等 の歯科補綴物の材料として用いることができる。

Claims

請求の範囲
[1] 一般式: CH C O^ COOR2 (式中 R1は水素基又はメチル基を表し、式中 R2は炭
2
素数が 8〜14の脂肪族基を表す)で表される化合物 Aを主成分として含む液体成分 と、
一般式: CH C (R3) COOR4 (式中 R3は水素基又はメチル基を表し、式中 R4は炭
2
素数が 8〜14の脂肪族基を表す)で表される化合物 B、及び一般式: CH C (R5) CO
2
OR6 (式中 R5は水素基又はメチル基を表し、式中 R6は脂肪族基を表す)で表される 化合物 Cを構成成分として含む共重合体を主成分として含む粉末成分と、
からなる医療用材料。
[2] 請求の範囲 1記載の医療用材料において、化合物 Aが鎖式ィ匕合物であることを特 徴とする医療用材料。
[3] 請求の範囲 2記載の医療用材料において、化合物 Aがメタクリル酸 2—ェチルへキ シルであることを特徴とする医療用材料。
[4] 請求の範囲 1〜3のいずれか記載の医療用材料において、化合物 Aと化合物 Bと が同一であることを特徴とする医療用材料。
[5] 請求の範囲 1〜3のいずれか記載の医療用材料が骨セメントの材料として用いられ るものであって、化合物 Cの脂肪族基 R6の炭素数が 6〜15であることを特徴とする医 療用材料。
[6] 請求の範囲 4記載の医療用材料が骨セメントの材料として用いられるものであって 、化合物 Cの脂肪族基 R6の炭素数が 6〜15であることを特徴とする医療用材料。
[7] 請求の範囲 5記載の医療用材料において、化合物 Cが環式ィ匕合物であることを特 徴とする医療用材料。
[8] 請求の範囲 6記載の医療用材料において、化合物 Cが環式ィ匕合物であることを特 徴とする医療用材料。
[9] 請求の範囲 7記載の医療用材料において、化合物 Cカ タクリル酸シクロへキシル であることを特徴とする医療用材料。
[10] 請求の範囲 8記載の医療用材料において、化合物 Cカ タクリル酸シクロへキシル であることを特徴とする医療用材料。
[11] 請求の範囲 4記載の医療用材料において、化合物 B及びィ匕合物 C力 なる共重合 体は化合物 Cを 20〜95wt%の割合で含むことを特徴とする医療用材料。
[12] 請求の範囲 4記載の医療用材料において、粉末成分と液体成分との重量比が 1〜 5: 1であることを特徴とする医療用材料。
[13] 請求の範囲 4記載の医療用材料において、架橋剤として一般式: (CH C (R7) CO
2
O) R8 (式中 nは 2〜4の整数を表し、式中 R7は水素基又はメチル基を表し、式中 R8 は炭素数が!!〜 10の脂肪族基を表す)で表される化合物 Dが添加されたことを特徴 とする医療用材料。
[14] 請求の範囲 13記載の医療用材料において、架橋剤の添加量が、液体成分に対し 重量比にして 0. 05-0. 75であることを特徴とする医療用材料。
[15] 請求の範囲 1又は 2記載の医療用材料が軟質義歯などの歯科補綴物として用いら れるものであって、化合物 Cの脂肪族基 R6の炭素数が 1〜4であることを特徴とする 医療用材料。
[16] 請求の範囲 15記載の医療用材料において、化合物 Cカ タクリル酸メチルであるこ とを特徴とする医療用材料。
PCT/JP2006/309592 2005-05-16 2006-05-12 医療用材料 WO2006123589A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007516269A JP5167538B2 (ja) 2005-05-16 2006-05-12 骨セメントおよび歯科補綴物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005143295 2005-05-16
JP2005-143295 2005-05-16

Publications (1)

Publication Number Publication Date
WO2006123589A1 true WO2006123589A1 (ja) 2006-11-23

Family

ID=37431165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309592 WO2006123589A1 (ja) 2005-05-16 2006-05-12 医療用材料

Country Status (2)

Country Link
JP (1) JP5167538B2 (ja)
WO (1) WO2006123589A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098305A1 (ja) * 2009-02-25 2010-09-02 国立大学法人京都大学 骨セメント組成物及び骨セメント組成物キット並びに骨セメント硬化体の形成方法
US8658713B2 (en) 2009-02-25 2014-02-25 Kyoto University Bone cement composition and production method thereof, and kit for producing the same
JP2015517004A (ja) * 2012-03-30 2015-06-18 ルーサイト インターナショナル ユーケー リミテッド 硬化性二液型アクリル組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003193A1 (en) * 1988-09-26 1990-04-05 Wolff & Kaaber A/S Bone cement
WO1990009198A1 (en) * 1989-02-16 1990-08-23 National Research Development Corporation Cement compositions
WO2000047214A1 (en) * 1999-02-09 2000-08-17 Sloan-Kettering Institute For Cancer Research Anti-resorptive bone cements and allogeneic, autografic, and xenografic bone grafts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003193A1 (en) * 1988-09-26 1990-04-05 Wolff & Kaaber A/S Bone cement
WO1990009198A1 (en) * 1989-02-16 1990-08-23 National Research Development Corporation Cement compositions
WO2000047214A1 (en) * 1999-02-09 2000-08-17 Sloan-Kettering Institute For Cancer Research Anti-resorptive bone cements and allogeneic, autografic, and xenografic bone grafts

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098305A1 (ja) * 2009-02-25 2010-09-02 国立大学法人京都大学 骨セメント組成物及び骨セメント組成物キット並びに骨セメント硬化体の形成方法
CN102333553A (zh) * 2009-02-25 2012-01-25 国立大学法人京都大学 骨水泥组合物和骨水泥组合物试剂盒以及骨水泥固化体的形成方法
US8609746B2 (en) 2009-02-25 2013-12-17 Kyoto University Bone cement composition, bone cement composition kit and forming method of bone cement hardened material
US8658713B2 (en) 2009-02-25 2014-02-25 Kyoto University Bone cement composition and production method thereof, and kit for producing the same
JP5602127B2 (ja) * 2009-02-25 2014-10-08 国立大学法人京都大学 骨セメント組成物及び骨セメント組成物キット並びに骨セメント硬化体の形成方法
JP2015517004A (ja) * 2012-03-30 2015-06-18 ルーサイト インターナショナル ユーケー リミテッド 硬化性二液型アクリル組成物

Also Published As

Publication number Publication date
JP5167538B2 (ja) 2013-03-21
JPWO2006123589A1 (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
Emmer Jr et al. Bond strength of permanent soft denture liners bonded to the denture base
EP2763707B1 (en) Polymeric adhesive for anchoring compliant materials to another surface
US5814681A (en) Restorative composition for hard tissue and dispensing apparatus therefor
DE102007052116B4 (de) Einkomponenten-Knochenzementpasten, deren Verwendung und Verfahren zu deren Aushärtung
JP2009500097A (ja) 骨セメント組成物
JP2009521573A (ja) 弾性メタクリレート系組成物
ATE288286T1 (de) Knochenzement und verfahren zu dessen herstellung
US20040157954A1 (en) Bone cement composition
JP2016127935A (ja) ポリメチルメタクリレート骨セメント
EP2198893A3 (de) Sporozide Zusammensetzungen und deren Verwendung
WO2009131829A2 (en) Bone cement composition and method
WO2010000384A2 (de) Pmma-paste
EP0085944B1 (de) Chirurgische Bindemittelsysteme zum Verkleben von körpereigenem Hartgewebe gewünschtenfalls mit Kunststoff und/oder Metall
DE102011108574A1 (de) Kit und Verfahren zur Herstellung von Knochenzement
WO2006123589A1 (ja) 医療用材料
Arrais et al. Effect of curing mode on microtensile bond strength to dentin of two dual-cured adhesive systems in combination with resin luting cements for indirect restorations
JP2016535115A (ja) 硬化性マルチパートアクリル組成物
JPH08169806A (ja) 歯科用接着性組成物
JP3340002B2 (ja) 硬組織補修用組成物およびその供給装置
Artola et al. A radiopaque polymeric matrix for acrylic bone cements
Nien et al. Studies of the mechanical and thermal properties of cross‐linked poly (methylmethacrylate‐acrylic acid‐allylmethacrylate)‐modified bone cement
KR20160028731A (ko) 경조직용 생체 접착제 제조용 조성물 및 경조직용 생체 접착제 제조용 키트
Keh et al. Improving a self-curing dental resin by eliminating oxygen, hydroquinone and water from its curing process
May-Pat et al. Essential work of fracture: An approach to study the fracture behavior of acrylic bone cements modified with comonomers containing amine groups
JPH09249514A (ja) 歯科用レジン強化型セメント用前処理剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007516269

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732573

Country of ref document: EP

Kind code of ref document: A1