WO2010098036A1 - 発光装置および光学素子 - Google Patents

発光装置および光学素子 Download PDF

Info

Publication number
WO2010098036A1
WO2010098036A1 PCT/JP2010/000948 JP2010000948W WO2010098036A1 WO 2010098036 A1 WO2010098036 A1 WO 2010098036A1 JP 2010000948 W JP2010000948 W JP 2010000948W WO 2010098036 A1 WO2010098036 A1 WO 2010098036A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
scattering
emitting device
led
Prior art date
Application number
PCT/JP2010/000948
Other languages
English (en)
French (fr)
Inventor
望月恵一
Original Assignee
日東光学株式会社
小池康博
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東光学株式会社, 小池康博 filed Critical 日東光学株式会社
Priority to US13/202,806 priority Critical patent/US8727591B2/en
Publication of WO2010098036A1 publication Critical patent/WO2010098036A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/0282Using a single or a few point light sources, e.g. a laser diode
    • H04N1/02835Using a single or a few point light sources, e.g. a laser diode in combination with a light guide, e.g. optical fibre, glass plate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02885Means for compensating spatially uneven illumination, e.g. an aperture arrangement
    • H04N1/0289Light diffusing elements, e.g. plates or filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0081Image reader

Definitions

  • the present invention relates to a light emitting device and an optical element.
  • LEDs Light Emitting Diodes
  • the scanning illuminator has an optical element that defines an entrance surface and opposing back and exit surfaces.
  • the exit surface is substantially perpendicular to the entrance surface
  • the back surface includes a reflective element including a plurality of prisms that redirect light received from the entrance surface toward the front surface.
  • the illuminator then has a particulate material disposed between the reflective element and the front surface to diffuse the incident light.
  • the illuminator has at least one LED light source disposed adjacent to the incident surface (see Patent Document 2).
  • the lighting device described in Patent Document 1 requires many LEDs.
  • the brightness of the light-irradiated portion of each LED is different from that of the light-irradiated portion, and a member that strongly scatters the emitted light is required for use as illumination for scanning. Therefore, it is difficult to make the emitted light brighter than using many LEDs.
  • the illuminator described in Patent Document 2 tends to deteriorate the light efficiency due to the light penetrating the reflecting element, and tends to cause a strong and weak distribution in the emitted light.
  • an object of the present invention is to provide a light emitting device and an optical element that can increase the efficiency of light and reduce manufacturing difficulties while suppressing the occurrence of strong and weak distribution in the emitted light.
  • a light-emitting device of the present invention changes the direction of light incident from a longitudinal end of a light guide unit, a light source that makes light incident on the light guide unit, a light source that enters the light guide unit.
  • a light emitting device that emits light whose direction has been changed from an emission surface disposed so as to face the prism portion, and the light guide portion has a longitudinal end portion directed from the light source toward the light guide portion.
  • the light source is made to approach the parallel light by shifting from the central axis of the light guide part to the side approaching the prism part or the side away from the prism part.
  • the light is directed to the exit surface of the light guide section or the prism section.
  • the light source is disposed to be inclined with respect to the central axis of the light guide.
  • the parallel light forming body is a convex lens whose side facing the light source is swollen.
  • a reflection member that reflects light that is not directly incident on the light guide unit from the light source to enter the light guide unit is provided around the light source.
  • a light scattering light guide containing light scattering particles for multiply scattering the emitted light is provided on the exit surface side of the light guide that emits light.
  • the prism portion so as to be parallel to the exit surface.
  • an optical element of the present invention has a rod-shaped light guide part and a prism part that changes the direction of light incident from the end in the longitudinal direction of the light guide part, and faces the prism part.
  • the optical element that emits the light whose direction is changed from the emission surface arranged so as to make the light emitted from the light source toward the light guide unit closer to the parallel light at the longitudinal end of the light guide unit.
  • a light scattering light guide containing light scattering particles for multiply scattering emitted light is provided on the exit surface side.
  • the light-scattering light guide portion is formed in a rod shape, and the surface opposite to the surface facing the light guide portion has a convex curved shape in which the central portion in the short direction swells.
  • the light guide part and the light scattering light guide part may be integrated.
  • the light guide unit contains light scattering particles that scatter multiple incident light.
  • the light scattering particles are preferably translucent silicone particles having a particle size of 2 ⁇ m to 9 ⁇ m.
  • the light scattering particles contained in the light guide unit are 0 when turbidity, which is a scattering parameter corresponding to the scattering coefficient of the light guide unit, is ⁇ , and the length in the central axis direction of the light guide unit is L. It is preferable to be within the range of ⁇ L / (2 ⁇ ⁇ ) ⁇ 30.
  • the light scattering particles contained in the light scattering light guide unit are turbidity, which is a scattering parameter corresponding to the scattering coefficient of the light scattering light guide unit, ⁇ , and the light scattering light guide unit in the direction orthogonal to the exit surface.
  • T the maximum thickness
  • the present invention it is possible to provide a light emitting device and an optical element that can increase light efficiency and reduce manufacturing difficulties while suppressing the occurrence of intensity distribution in emitted light.
  • the figure which shows the incident / exit condition of the light when the LED of the light emitting device according to the embodiment of the present invention is lit, is emitted from both ends of the LED when the LED is shifted to the prism portion side and is arranged tilted
  • the figure which shows the incident / exit condition of light when the LED of the light emitting device of the first modification of the light emitting device according to the embodiment of the present invention is turned on is arranged without shifting the LED to the prism portion side and tilting
  • the figure which shows the incident / exit condition of light when the LED of the light emitting device of the first modification of the light emitting device according to the embodiment of the present invention is turned on is arranged without shifting the LED to the prism portion side and tilting
  • the figure which shows the incident / exit condition of the light when the LED of the light emitting device of the second modification of the light emitting device according to the embodiment of the present invention is turned on is arranged without shifting the LED to the emitting surface side and tilting
  • the figure which shows the incident / exit condition of the light when the LED of the light emitting device of the second modification of the light emitting device according to the embodiment of the present invention is turned on is arranged without shifting the LED to the emitting surface side and tilting
  • the figure which shows the light emission state of the 2nd modification of the light-emitting device which concerns on embodiment of this invention is a figure which shows distance from the center part of a light guide part on a horizontal axis, and shows the distribution of the brightness (light quantity) of a light guide part It is.
  • the figure which shows the light emission state of the light-emitting device of the 3rd modification of the light-emitting device which concerns on embodiment of this invention takes the distance from the center part of a light guide part on a horizontal axis, and distributes the brightness (light quantity) of a light guide part
  • FIG. The figure which shows the condition of the light incident / exit when turning on LED of the light-emitting device of the 3rd modification of the light-emitting device which concerns on embodiment of this invention, and LED of the case at the time of arrange
  • positioning LED without shifting and tilting It is a schematic diagram which shows the optical path of the light which the light radiate
  • FIG. 1 is a front view showing a configuration of a light guide 1 which is an optical element according to an embodiment of the present invention
  • FIG. 2 is a side view thereof.
  • the light guide 1 has a rod shape whose outer shape is close to a long rectangular column.
  • the light guide 1 is formed on the lower surface of the light guide 2, the light guide 2, the incident lenses 3 provided at both ends in the longitudinal direction of the light guide 2, and the light guide 2 shown in FIGS. 1 and 2. It has the prism part 4 used as a part, and the light-scattering light guide part 5 arrange
  • the light guide 2 is a resin molded body made of transparent polymethyl methacrylate (hereinafter abbreviated as “PMMA”), and has a quadrangular prism shape.
  • the incident lens 3 is also a convex lens made of PMMA and having a hyperbolic cross section. The light guide 2 and the incident lens 3 are integrally formed.
  • the incident lens 3 serving as the parallel light forming body is a convex lens that swells on the side away from the light guide portion 2, that is, on the outside.
  • the detailed configuration of the prism unit 4 is not shown, and the detailed description of the prism unit 4 will be described later.
  • the light scattering light guide 5 is a PMMA resin molded body containing spherical and translucent silicone particles (not shown) having a particle diameter of 2 ⁇ m to 9 ⁇ m as light scattering particles.
  • the length direction dimension L2 and the length direction dimension W2 of the light-scattering light guide 5 are the same as the length direction dimension L1 and the length direction dimension W1 of the light guide 2, respectively.
  • the dimension H2 is smaller than the dimension H1 of the light guide 2 in the thickness direction.
  • the upper surface of the light scattering light guide 5 swells from both ends in the short direction toward the center.
  • the shape of this bulge is the shape of a part of the side surface of the cylinder. That is, the surface is a part of a spherical surface.
  • the light guide part 2 and the light-scattering light guide part 5 are integrated by 2 material shaping
  • the light-scattering particles contained in the light-scattering light-guiding unit 5 have a turbidity that is a scattering parameter corresponding to the scattering coefficient of the light-scattering light-guiding unit 5 as ⁇ (unit: cm), and will be described later.
  • unit: cm
  • the maximum thickness (H2) of the light-scattering light guide 5 in the direction orthogonal to T is T (unit: cm)
  • the range is 1 ⁇ T / ⁇ ⁇ 10.
  • This silicone particle is a light guide provided with a volumetric uniform scattering ability, and includes a large number of spherical particles as scattering fine particles. When light enters the light scattering light guide 5, the light is scattered by the scattering fine particles.
  • Mie scattering theory is the solution of Maxwell's electromagnetic equation for the case where spherical particles (scattering fine particles) having a refractive index different from that of the medium exist in a medium (matrix) having a uniform refractive index. .
  • the intensity distribution I ( ⁇ , ⁇ ) depending on the angle of the scattered light scattered by the scattering fine particles corresponding to the light scattering particles is expressed by the following equation (1).
  • is a size parameter indicating the optical size of the scattering fine particles, and is an amount corresponding to the radius r of the spherical particles (scattering fine particles) normalized by the wavelength ⁇ of light in the matrix.
  • i 1 and i 2 in the formula (1) are represented by the formula (4).
  • a and b with the subscript ⁇ in the expressions (2) to (4) are expressed by the expression (5).
  • P (cos ⁇ ) with superscript 1 and subscript ⁇ is Legendre's polynomial
  • a and b with subscript ⁇ are first-order and second-order Recati-Bessel functions ⁇ * , ⁇ * (where “*” Means the subscript ⁇ ) and its derivative.
  • m is the relative refractive index of the scattering fine particles based on the matrix
  • m nscatter / nmattrix.
  • FIG. 3 is a graph showing the intensity distribution I ( ⁇ , ⁇ ) by a single true spherical particle based on the above equations (1) to (5).
  • FIG. 3 shows an angular distribution I ( ⁇ , ⁇ ) of scattered light intensity when there is a true spherical particle as a scattering fine particle at the position of the origin G and incident light is incident from below.
  • the distance from the origin G to each of the curves S1 to S3 is the scattered light intensity in each scattering angle direction.
  • Curve S1 shows the scattered light intensity when ⁇ is 1.7
  • curve S2 shows the scattered light intensity when ⁇ is 11.5
  • curve S3 shows the scattered light intensity when ⁇ is 69.2. Yes.
  • the scattered light intensity is shown on a logarithmic scale. For this reason, the portion that appears as a slight difference in intensity in FIG. 3 is actually a very large difference.
  • the larger the size parameter ⁇ (the larger the particle size of the true spherical particle when considered at a certain wavelength ⁇ ), the higher the directivity with respect to the upper side (front of the irradiation direction). It can be seen that light is highly scattered. Actually, the angle distribution I ( ⁇ , ⁇ ) of the scattered light intensity is controlled by using the radius r of the scatterer and the relative refractive index m of the medium and the scattered fine particles as parameters if the incident light wavelength ⁇ is fixed. can do.
  • the light scattering light guide 5 has a large forward scattering.
  • I ( ⁇ ) in the equation (6) is the scattering intensity of the true spherical particle having the size parameter ⁇ represented by the equation (1). Assuming that light of intensity Io enters the light scattering light guide and passes through the distance y, the intensity of the light attenuates to I due to scattering, and these relationships are expressed by the following equation (7).
  • ⁇ in the equation (7) is called turbidity and corresponds to the scattering coefficient of the medium, and is proportional to the number N of particles as in the following equation (8).
  • ⁇ s is a scattering cross section.
  • the degree of multiple scattering in the light scattering light guide can be controlled by changing the turbidity ⁇ .
  • FIG. 4 is a schematic diagram showing a side surface shape of the prism portion 4 existing about half the length from the longitudinal end portion of the light guide portion 2.
  • Trapezoidal convex portions 10, 11, and 12 are formed on the surface facing the emission surface 6 that is the upper surface of the light guide portion 2, that is, on the lower surface of the light guide portion 2.
  • sawtooth-shaped concave portions 13 and 14 are formed by adjacent convex portions 10, 11, and 12. The apex of the sawtooth is the most recessed portion of the recesses 13 and 14.
  • the convex portion 10, 11, 12 and the concave portion 13, 14 constitute the prism portion 4.
  • the shape of the prism portion 4 is symmetrical with respect to the center in the longitudinal direction of the light guide portion 2 and is symmetrical with respect to the center in the short direction.
  • the pitch P1 between the vertices of the concave portion 14 at the center of the light guide 2 is set larger than the pitch P2 between the vertices of the concave 13 at both ends of the light guide 2.
  • the convex portions 10, 11, 12 and the concave portions 13, 14 are formed at the same time when the light guide portion 2 and the incident lens 3 are integrally formed by a mold.
  • FIG. 5 is a longitudinal sectional view of a light emitting device 20 using the light guide 1.
  • an LED 21 as a light source and a mirror member 22 as a reflecting member are fixedly arranged.
  • the LED 21 is of a chip type.
  • the LED 21 is disposed closer to the prism portion 4 than the optical axis M1 of the incident lens 3 (lower side in FIG. 5). That is, the LED 21 is shifted downward with respect to the optical axis M1. As a result of this shift, the arrangement position of the LED 21 is an intermediate position between the optical axis M1 and the prism portion 4.
  • the optical axis M ⁇ b> 1 of the incident lens 3 is a line that is parallel to the prism portion 4, is also parallel to the exit surface 6, and passes through the center of the incident lens 3.
  • the LED 21 is disposed so as to be inclined by 45 ° with respect to the optical axis M1 so as to irradiate the incident lens 3 with light from the lower side to the oblique upper side in FIG. That is, the surface of the LED 21 is not perpendicular to the optical axis M1, but is tilted and tilted. As a result, the LED 21 is shifted to the prism portion 4 side with respect to the optical axis M1, and is tilted so as to face the emission surface 6 side.
  • Each mirror surface member 22 has a cup shape in which the longitudinal section in FIG. 5 draws a parabolic curve.
  • This parabola is the same when cut by any cross section including the optical axis M1.
  • the focal position of the parabola is set to be on the optical axis M1.
  • the inner surface of the cup-shaped mirror member 22 is mirror-finished so that the light from the LED 21 can be reflected.
  • the opening end portion of the cup-shaped mirror surface member 22 covers the end portion of the light guide 1, and the LED 21 is glazed so that the light from the LED 21 does not leak between the mirror surface member 22 and the light guide body 1. For this reason, most of the light from the LEDs 21 placed at both ends of the light guide 1 is incident on the light guide 1.
  • FIG. 6 shows an optical path of light emitted from both ends of the LED 21 (only the left end side is shown in the figure) when light is directly incident on the incident lens 3 from the LED 21.
  • FIG. 7 shows a case where light from the LED 21 is reflected by the mirror member 22 and is incident on the incident lens 3 and light emitted from both ends of the LED 21 (only the left end is shown in the figure). The optical path is shown.
  • An optical path indicated by a fine dotted line with an arrow is an optical path of light emitted from the lower end side of the LED 21 in FIGS. 6 and 7.
  • the light emitted from the center of the LED 21 is an intermediate optical path between them, but the illustration is omitted.
  • the optical path shown with the rough dotted line with an arrow is an optical path of the light emitted from the upper end side of LED21 in FIG. 6 and FIG.
  • the light guide unit 2 and the light scattering light guide unit 5 are separated from each other. (The same applies to FIGS. 9, 10, 11, 12, 13, and 14).
  • the LED 21 is disposed so that the center of the LED 21 is slightly below the focal position F that is the focal position of the incident lens 3 and the parabolic focus position of the mirror member 22. However, in FIG. 6 and FIG. 7, for the sake of easy understanding, the center of the LED 21 is shown at a position considerably away from both focal positions F.
  • the light emitted from the LED 21 is divergent light, but after entering the incident lens 3, it approaches parallel light by the action of the convex lens. And the light which directly injects into the incident lens 3 from LED21 is once irradiated to the output surface 6 (it becomes an upper side surface) of the light guide part 2 in FIG.
  • the light is totally reflected by the emission surface 6 and is changed in direction mainly by the prism portion 4 at the center of the light guide portion 2. Then, the light whose direction has been changed passes through the emission surface 6 in a substantially vertical direction, and further passes through the light scattering light guide 5 while being scattered, and is emitted.
  • the light shown in FIG. 6 is emitted mainly from the center of the light guide 2.
  • the emitted light from the center of the light guide is weakened and the intensity distribution of the emitted light tends to be large.
  • the emitted light from the center part is apt to be obtained. Becomes stronger and the strength distribution becomes gentler.
  • the light from the LED 21 reflected by the mirror member 22 and incident on the incident lens 3 may be light that takes the same optical path as shown in FIG. However, as shown in FIG. 7, a part of the light passes through the incident lens 3 from the mirror surface member 22 and is directly irradiated to the prism unit 4 without undergoing total reflection on the emission surface 6, and is redirected to change the emission surface. 6 passes through in a substantially vertical direction, and further passes through the light-scattering light guide 5 while being scattered. The light shown in FIG. 7 is emitted mainly from both end portions of the light guide unit 2.
  • FIG. 8 is a diagram showing the distribution of brightness (light quantity) of the light guide unit 2 as a simulation result, with the distance from the center of the light guide unit 2 being taken on the horizontal axis.
  • the simulation condition is that the light emitting surface of the LED 21 is 1 mm square, the brightness is 150 lumens / piece, the spread angle is 160 °, and the surface of the light scattering light guide 5 opposite to the surface facing the exit surface 6. This is a condition for displaying the brightness at a position 10 mm away from the tip of the head (the same is true for those shown in FIGS. 12, 15, 18, 19, and 20).
  • the amount of light emitted from the central portion is smaller than that from both end portions of the light guide portion 2. This is because the guidance toward the center side is made larger as shown in FIG. 6, but there is also light that takes an optical path as shown in FIG. 7, and this optical path is short and its intensity increases.
  • the amount of light emitted from the center is smaller than that at both ends, but the degree of the reduction is smaller than when the LED 21 is arranged on the optical axis M1 and is not tilted. The degree is small. That is, the intensity of light at the center is closer to the intensity of light at both ends.
  • FIG. 9 shows optical paths inside and outside the light scattering light guide 5 shown in FIG.
  • the scattering gradually proceeds and is emitted from the upper surface of the convex lens-shaped light scattering light guide unit 5. Refracts toward the center of the light scattering light guide 5 in the short direction. Then, it becomes scattered light and becomes an optical path K2 in which the irradiation area gradually increases. Since the other optical paths go through the same process, a linear illumination range having a predetermined width is formed at a position away from the upper surface of the light scattering light guide 5 by a predetermined distance.
  • the light emitting device 20 and the light guide 1 have an incident lens 3 that makes incident light close to parallel light, and the light close to the parallel light is totally reflected by the emission surface 6 or directly near the center.
  • the light is supplied to a certain prism unit 4 and reflected or totally reflected to be emitted.
  • incident light is incident from the lower side of the optical axis M1 of the incident lens 3 toward the oblique upper side, so that it is totally reflected by the exit surface 6 and reflected or totally reflected from the prism portion 4 near the center. The amount of light that can be increased.
  • the amount of light emitted from the central portion 1 of the light guide 1 is increased, and it is possible to suppress the generation of a strong and weak distribution in the emitted light.
  • the light reflected by the same sawtooth goes to the emission surface 6 side with a certain width. For this reason, it is possible to prevent a portion having a small amount of reflected light from occurring between the light reflected by the adjacent saw teeth, thereby causing a strong and weak stripe distribution in the emitted light.
  • the light emitting device 20 employs a configuration in which light is incident from the lower side of the optical axis M1 of the incident lens 3 toward the oblique upper side.
  • the mirror member 22 reflects light that is not directly incident on the incident lens 3 or the light guide 2 out of the light of the LED 21, and causes the reflected light to enter the incident lens 3 or the light guide 2. ing. Therefore, most of the light emitted from the LED 21 can be incident on the light guide 1.
  • the light emitting device 20 and the light guide 1 contain light scattering particles that the light scattering light guide 5 causes multiple scattering of light. Since this light scattering light guide 5 causes light scattering with large forward scattering, it is difficult to reduce the light emission efficiency.
  • the light guide 2 or the incident lens 3 is made of a transparent body or contains a light scattering light guide 5 for increasing the turbidity ⁇ . Therefore, almost no light is scattered at the stage before emission from the emission surface 6, and most of the light is scattered when the light is emitted from the light scattering light guide 5. For this reason, even when the above-described stripe distribution of the intensity of light is slightly generated when the light exits from the light exit surface 6, the light efficiency is greatly reduced by the multiple scattering of the light by the light scattering light guide 5. In addition, the stripe distribution of light intensity can be suppressed.
  • the light-scattering particles contained in the light-scattering light-guiding unit 5 have a turbidity that is a scattering parameter corresponding to the scattering coefficient of the light-scattering light-guiding unit 5 as ⁇ (unit: cm), and will be described later.
  • the maximum thickness (H2) of the light-scattering light guide 5 in the direction orthogonal to T is T (unit: cm)
  • the range is 1 ⁇ T / ⁇ ⁇ 10.
  • the value of T / ⁇ exceeds 1, the above-described stripe distribution can be further suppressed.
  • the value of T / ⁇ is less than 10, excessive multiple scattering of light is suppressed, and it becomes easy to form a linear illumination range having a predetermined width as shown in FIG.
  • the light emitting device 20 has a smaller amount of light emitted from the central portion than the both end portions of the light guide portion 2. Then, the emitted light is collected at a position away from the light scattering light guide 5 by a predetermined distance to be in a linear illumination state. For this reason, the light emitting device 20 has an image reading object installed at the predetermined distance, and the light reflected from the object is predetermined in the direction orthogonal to the longitudinal direction of the light guide unit 2 from the center of the light guide unit 2. It is suitable as a light source for a scanner that forms an image with an image sensor arranged at a distance.
  • the image sensor of the scanner moves in the longitudinal direction of the light guide unit 2 in the longitudinal direction, and the image sensor faces the center and both ends of the light guide unit 2. It is also suitable as a light source for a scanner that captures light reflected from the object.
  • both ends of the light guide 2 are light in a range with a large angle of view exceeding the range in which the image sensor moves according to the cosine fourth law, that is, light that is wasted without being imaged by the image sensor. This is because the amount of light tends to be insufficient, and when viewed from the image pickup device, both the end portions and the center portion of the light guide section 2 have substantially uniform light amounts.
  • the imaging element is linear in parallel to the light guide unit 2, the amount of incident light at both ends of the imaging element tends to decrease, but the amount of light at both ends as in the light emitting device 20. If there are many, such an evil will disappear.
  • both ends of the light guide 2 can be strongly illuminated, and if the LED 21 is shifted to the prism 4 side, the center of the light guide 2 can be strongly illuminated, but both ends It does not go to the strength of the department. Moreover, if the light which strikes the mirror surface member 22 by tilting the LED 21 is increased, the vicinity of both end portions of the light guide portion 2 can be strongly illuminated. These points are described below from another angle.
  • the vertical position (degree of shift) and / or tilt (degree of tilt) of the LED 21 shown in FIG. 5 is adjusted.
  • Increasing the amount of light emitted from the LED 21 obliquely upward from the lower side when entering the light guide unit 2 or the amount of light directed obliquely downward from the upper side is increased at both ends of the light guide unit 2.
  • More light is applied to the prism unit 4.
  • the amount of light emitted from both ends of the light guide portion 2 is much greater than the central portion, and the light at the ends becomes very strong.
  • the amount of light traveling from the upper side to the obliquely lower side or from the lower side to the obliquely upper side when entering the light guide unit 2 is reduced, and the light traveling toward the center of the light guide unit 2.
  • Increasing the amount of light increases the amount of light applied to the prism portion 4 at the center of the light guide portion 2.
  • the amount of light emitted from the central portion of the light guide 2 is increased.
  • the intensity of light at both ends is stronger than that at the center. That is, the intensity is more constant in the longitudinal direction, but the light in the center is weaker.
  • the light emitting device 20 and the light guide 1 are formed by integrating the light guide part 2 and the light scattering light guide part 5 by two-material molding. Therefore, both can be handled as a unit, and the handleability is excellent.
  • one LED 21 and one incident lens 3 are arranged at both ends of the light guide 2. Therefore, only two small amounts of LEDs 21 are used as a light source, and there are advantages such as cost reduction such as reduction in the number of members and power consumption.
  • the light emitting device 20 and the light guide 1 receive light from both ends in the longitudinal direction of the light guide 2, and the prism portion 4 has a plurality of sawtooth cross sections. The pitch P1 between the vertices of the sawtooth at the center is longer than the pitch P2 between the vertices of the sawtooth at the center.
  • FIG. 10 and FIG. 11 are schematic diagrams showing the light incident / exit status when the LED 21 of the light emitting device 20A of the first modification of the light emitting device 20 is turned on.
  • the light emitting device 20A has the same configuration as the light emitting device 20 except that the light emitting surface is the lower side in FIG. 10 perpendicular to the axis of the light guide unit 2, that is, the optical axis M1, without tilting the LED 21.
  • the reference numerals assigned to the respective constituent elements are the same as the reference numerals assigned to the respective constituent members of the light emitting member 20.
  • FIG. 10 shows an optical path emitted from both ends of the LED 21 when light is directly incident on the incident lens 3 from the LED 21.
  • FIG. 10 shows an optical path emitted from both ends of the LED 21 when light is directly incident on the incident lens 3 from the LED 21.
  • FIG. 11 shows an optical path emitted from both ends of the LED 21 when the light from the LED 21 is reflected by the mirror member 22 and is incident on the incident lens 3.
  • An optical path indicated by a fine dotted line with an arrow is an optical path of light emitted from the lower end side region of the LED 21 in FIGS. 10 and 11.
  • the optical path shown with the rough dotted line with an arrow is an optical path of the light emitted from the upper end side area
  • the light emitted from the LED 21 is divergent light, but the light emitted from the incident lens 3 is approaching parallel light.
  • the LED 21 is arranged shifted to a position below the optical axis M1 of the incident lens 3, a light emitting surface is formed when light enters the incident lens 3 having a hyperbolic shape as shown in FIG. A lot of light emitted in the vertical direction is refracted upward. Then, the light is totally reflected by the light exit surface 6 of the light guide unit 2 and redirected mainly by the prism unit 4 at the center of the light guide unit 2, passes through the light exit surface 6 in a substantially vertical direction, and further guides light scattering. The light passes through the part 5 and is emitted. In the light shown in FIG.
  • light emitted from the upper end side region of the LED 21 is mainly directed toward the central portion side of the light guide portion 2, reflected by the prism portion 4, and emitted from the central portion side of the light guide portion 2.
  • the light emitted from the side region is emitted slightly from both ends rather than the central portion of the light guide portion 2.
  • the light that is reflected by the mirror member 22 shown in FIG. 11 and is incident on the incident lens 3 is light at both ends of the light emitted from the LED 21 at a very wide angle. Since the LED 21 has light directivity in the forward direction, the amount of light at this amount end is small. In this way, the light directed upward from the wide-angle side light does not undergo total reflection at the exit surface 6 but is reflected by the mirror member 22 and passes through the incident lens 3 as it is and is directly irradiated onto the prism unit 4. The direction is changed, and the light passes through the emission surface 6 in a substantially vertical direction, and further passes through the light scattering light guide 5 and is emitted.
  • the light directed downward is reflected by the mirror member 22, passes through the incident lens 3, is reflected by the exit surface 6, travels toward the prism unit 4, and is reflected by the prism unit 4 toward the exit surface 6.
  • the light shown in FIG. 11 is emitted mainly from both end portions of the light guide unit 2.
  • FIG. 12 is a diagram showing a light emission state of the light emitting device 20A, and is a diagram showing a distribution of brightness (light quantity) of the light guide 2 with the distance from the center of the light guide 2 as the horizontal axis.
  • the light emission state of the light emitting device 20A is such that the amount of light reflected by the prism portion 4 is increased as compared with the light emitting device 20A in which the surface of the LED 21 is perpendicular to the optical axis M1 and the center of the LED 21 is disposed at both focal positions F. Further, the light intensity at both ends is slightly weakened, and the difference in light intensity between both ends and the center is reduced.
  • the light emitted from the light emitting device 20 ⁇ / b> A has a smaller amount of light emitted from the central portion than the both ends of the light guide unit 2, as in the light emitting device 20.
  • the amount of light emitted from both ends of the light guide 2 is slightly smaller than that of the light emitting device 20 as described above.
  • FIG. 13 and FIG. 14 are schematic diagrams showing the light incident / exit status when the LED 21 of the light emitting device 20B of the second modification of the light emitting device 20 is turned on.
  • the light emitting device 20B has the light emitting surface in the direction perpendicular to the axis of the light guide unit 2, that is, the optical axis M1, without tilting the LED 21, and the LED 21 is positioned above the optical axis M1 of the incident lens 3. Shift arranged. As a result of this shift, the arrangement position of the LED 21 is an intermediate position between the optical axis M 1 and the emission surface 6.
  • the pitch P3 between the vertices of the concave portion 14A in the central portion of the light guide portion 2A is larger than the pitch P4 between the vertices of the concave portions 13A at both ends of the light guide portion 2A.
  • the prism angles in the range of the pitch P3 between the vertices are each 30 °, and the prism angles in the range of the pitch P4 between the vertices are each 40 °. Except for these points, the configuration is the same as that of the light emitting device 20, and therefore, the reference numerals assigned to the respective constituent elements are the same as the reference numerals assigned to the respective constituent members of the light emitting member 20.
  • FIG. 13 shows a light path emitted from both ends of the LED 21 when light is directly incident on the incident lens 3 from the LED 21.
  • FIG. 14 shows an optical path emitted from both ends of the LED 21 when the light from the LED 21 is reflected by the mirror member 22 and is incident on the incident lens 3.
  • An optical path indicated by a fine dotted line with an arrow is an optical path of light emitted from the lower end side region of the LED 21 in FIGS. 13 and 14.
  • the optical path shown with the rough dotted line with an arrow is an optical path of the light emitted from the upper end side area
  • the light emitted from the LED 21 is divergent light, but the light emitted from the incident lens 3 is approaching parallel light. Further, since the LED 21 is arranged shifted to a position above the optical axis M1 of the incident lens 3, as shown in FIG. 13, when the light is incident on the incident lens 3 having a hyperbolic shape, the LED 21 is placed on the light emitting surface. On the other hand, a lot of light emitted in the vertical direction is refracted downward. Then, the direction is changed by the prism portions 4 at the center portion and both end portions of the light guide portion 2, passes through the emission surface 6 in a substantially vertical direction, and further passes through the light scattering light guide portion 5 to be emitted. In the light shown in FIG.
  • the light that is reflected by the mirror member 22 shown in FIG. 14 and is incident on the incident lens 3 is light emitted from the LED 21 to the very wide angle side.
  • the light directed downward is reflected by the prism portion 4 ⁇ / b> A through total reflection at the exit surface 6 and passes through the exit surface 6.
  • the light directed upward is reflected by the mirror member 22 without undergoing total reflection at the exit surface 6, passes through the incident lens 3 as it is, and is directly irradiated to the prism portion 4 ⁇ / b> A. Pass vertically. Any light is further emitted through the light scattering light guide 5.
  • the light shown in FIG. 14 is emitted mainly from both ends A of the light guide 2. Note that, by making the pitch P3 larger than the pitch P4, the shape of the both end portions of the light guide portion 2A that is mainly emitted does not become complicated, so that the dimensional accuracy at the time of molding or the like is increased.
  • FIG. 15 is a diagram showing a light emission state of the light emitting device 20B, and is a diagram showing a distribution of brightness (light quantity) of the light guide 2 with the distance from the center of the light guide 2 as the horizontal axis.
  • the light emitting state of the light emitting device 20B is substantially the same as the light emitting state of the light emitting devices 20 and 20A in that both end portions are bright and the central portion is dark.
  • the amount of light emitted from both ends of the light guide 2A is larger than that of the light emitting devices 20 and 20A.
  • a large amount of light emitted from both ends is emitted from a position slightly away from the LED 21 as compared with the light emitting devices 20 and 20A.
  • FIG. 16 is a diagram showing a light emitting state of a light emitting device 20C (not shown) of the third modification of the light emitting device 20, and the brightness of the light guide unit 2 is plotted with the distance from the center of the light guide unit 2 as the horizontal axis. It is a figure which shows distribution of (light quantity).
  • the light emitting device 20C has a light emitting surface in a direction perpendicular to the axis of the light guide unit 2, that is, the optical axis M1, and the LED 21 is shifted to a position above the optical axis M1 of the incident lens 3. .
  • the arrangement position of the LED 21 is an intermediate position between the optical axis M 1 and the emission surface 6.
  • the LED 21 is inclined 45 ° toward the prism portion 4A (downward). Furthermore, the light-emitting device 20C uses the light guide portion 2A having the prism portion 4A as in the light-emitting device 20B.
  • the configuration of the light emitting device 20C is the same as that of the light emitting device 20 except for these points.
  • the light emitting state of the light emitting device 20C is substantially the same as the light emitting state of the light emitting devices 20, 20A, 20B in that both ends are dark and the center is dark.
  • the amount of light emitted from both ends of the light guide 2A is equivalent to that of the light emitting device 20B. A lot of light emitted from both ends is emitted from substantially the same position as the light emitting device 20B.
  • FIG. 17 and FIG. 18 are schematic diagrams showing the state of light entering and exiting when the LED 21 of the light emitting device 20D of the comparative example is turned on.
  • the light emitting device 20D has a light emitting surface in a direction perpendicular to the axis of the light guide unit 2, that is, the optical axis M1, without tilting the LED 21, and the center of the LED 21 is disposed at the both focal positions F. Except for these points, the configuration is the same as that of the light emitting device 20, and therefore, the reference numerals assigned to the respective constituent elements are the same as the reference numerals assigned to the respective constituent members of the light emitting member 20.
  • FIG. 17 shows a light path emitted from both ends of the LED 21 when light is directly incident on the incident lens 3 from the LED 21.
  • FIG. 18 shows an optical path emitted from both ends of the LED 21 when the light from the LED 21 is reflected by the mirror surface member 22 and is incident on the incident lens 3.
  • An optical path indicated by a fine dotted line with an arrow is an optical path of light emitted from the lower end side region of the LED 21 in FIGS. 17 and 18.
  • the optical path shown with the rough dotted line with an arrow is an optical path of the light emitted from the upper end side area
  • the light emitted from the LED 21 is divergent light, but the light emitted from the incident lens 3 is approaching parallel light. Since the center of the LED 21 is disposed at the focal position of the incident lens 3, that is, both focal positions F, the lower end side of the LED 21 when light enters the incident lens 3 having a hyperbolic shape as shown in FIG. A lot of light emitted from the region is refracted upward. Then, the light is totally reflected by the light exit surface 6 of the light guide 2 and is changed in direction mainly by the prism portion 4 at the center of the light guide 2, passes through the light exit surface 6 in a substantially vertical direction, and further the light scattering light guide 5. It passes through and is emitted.
  • the light emitted from the upper end side region of the LED 21 is refracted downward. Then, the light is redirected to a slightly acute angle by the prisms 4 at both ends of the light guide 2, passes through the exit surface 6, and further passes through the light scattering light guide 5 and exits. Further, the light emitted from the LED 21 at a relatively wide angle does not irradiate the prism unit 4 and travels straight through the light guide unit 2 in the longitudinal direction. A part of the light traveling straight is reflected by the mirror member 22 on the opposite side, enters the light guide unit 2 again, and finally passes through the light scattering light guide unit 5 and is emitted. In the light shown in FIG.
  • the light that is reflected by the mirror member 22 shown in FIG. 18 and enters the incident lens 3 is light that is emitted from the LED 21 to the very wide angle side.
  • the light shown in FIG. 18 is emitted mainly from both end portions of the light guide unit 2.
  • FIG. 19 is a diagram showing the light emission state of the light emitting device 20D, and is a diagram showing the distribution of the brightness (light quantity) of the light guide 2 with the distance from the center of the light guide 2 as the horizontal axis.
  • the light emitting state of the light emitting device 20D is substantially the same as the light emitting state of the light emitting devices 20, 20A, 20B, and 20C in that the amount of light emitted from the central portion is smaller than both ends of the light guide unit 2. .
  • the difference between the amount of light emitted from both ends of the light guide 2 and the amount of light emitted from the center of the light guide 2 is larger than that of the light emitting devices 20 and 20A, and the light emitting device 20B. , Less than that of 20C.
  • a large amount of fluctuations in the light emission amount in the central portion occur in small increments.
  • FIG. 20 shows the light emission state of the light emitting device in which the arrangement of the LEDs 21 is the same as that of the light emitting device 20D and the incident lens 3 is omitted.
  • the incident lens 3 may be eliminated.
  • one or both of shift and tilt may be employed.
  • optical element (light guide 1) and the light emitting devices 20, 20A, 20B, and 20C in the embodiment of the present invention have been described above, but various modifications can be made without departing from the gist of the present invention.
  • the light-emitting devices 20, 20A, 20B, and 20C include rod-shaped light guides 2 and 2A, LEDs 21 that make light incident on the light guides 2 and 2A, and light guides 2 and 2A.
  • a light emitting device that includes prism portions 4 and 4A that change the direction of light incident from the end in the longitudinal direction, and that emits the light whose direction has been changed from the emission surface 6 disposed so as to face the prism portions 4 and 4A.
  • light beams emitted from the LED 21 toward the light guide sections 2 and 2A are made parallel light beams at the longitudinal ends of the light guide sections 2 and 2A.
  • the incident lens 3 is formed, and the LED 21 shifts light from the central axis of the light guides 2 and 2A toward the side closer to the prisms 4 and 4A or away from the prisms 4 and 4A, thereby approaching the parallel light.
  • the light exit surface of the light guides 2 and 2A Or it is configured to face the prism unit 4, 4A.
  • the prism parts 4 and 4A are arrange
  • the prism portions 4 and 4 ⁇ / b> A may not be parallel to the emission surface 6, but may be inclined so as to approach the emission surface 6 as the distance from the LED 21 increases.
  • a member that reflects light such as a mirror or a white surface, may be used instead of the prism portions 4 and 4A.
  • the prism portions 4 and 4A and / or the emission surface 6 can be formed in a curved surface shape or the like instead of a planar shape.
  • the emission surface 6 can have a cylindrical side surface shape similar to the upper surface of the light scattering light guide 5.
  • the light guides 2 and 2A are made of PMMA, but other acrylic ester or methacrylic ester polymer, which is an acrylic resin that is a highly transparent amorphous synthetic resin, Other light-transmitting resins such as polystyrene and polycarbonate, and those made of glass can be used.
  • the incident lens 3 used as a convex lens is used as a parallel light formation body
  • LED21 when LED21 is arrange
  • the concave reflecting mirror may be a parallel light forming body.
  • the light emitting devices 20, 20 ⁇ / b> A, 20 ⁇ / b> B, and 20 ⁇ / b> C reflect the light that is not directly incident from the LED 21 to the incident lens 3 around the LED 21 and causes the mirror member 22 to enter the incident lens 3. It has.
  • the mirror member 22 is not an essential component and can be omitted.
  • the light emitting devices 20, 20 ⁇ / b> A, 20 ⁇ / b> B, and 20 ⁇ / b> C preferably include a mirror surface member 22.
  • the mirror member 22 needs to have a cup shape in which the longitudinal section in FIG. 5 draws a parabolic curve.
  • other shapes such as a spherical shape may be used.
  • the reflecting member may have a surface that reflects light such as a white surface instead of a mirror surface like the mirror member 22.
  • the incident lens 3 as a parallel light forming body used in the light emitting devices 20, 20A, 20B, and 20C according to the embodiment of the present invention is an incident lens 3 whose side facing the LED 21 is swollen.
  • the LEDs 21 used in the light emitting devices 20 and 20A are shifted from the optical axis M1 of the incident lens 3 to the side closer to the prism portions 4 and 4A.
  • the LED 21 may be shifted from the prism parts 4 and 4A around the optical axis M1 of the incident lens 3 as a center.
  • the incident lens 3 is not an essential component and can be omitted.
  • the parallel light forming body replacing the incident lens 3 is, for example, a concave mirror as described above.
  • the concave mirror can reflect the diverging light emitted from the LED 21 and make the reflected light close to parallel light. Further, even when a convex lens is used as the parallel light forming body, the convex lens does not need to have a hyperbolic cross section like the incident lens 3.
  • LED21 used for light-emitting device 20,20A, 20B, 20C which concerns on embodiment of this invention seems that the surface of the emitted light inclines with respect to the optical axis M1 which is a central axis of the light guide parts 2 and 2A. Is arranged. However, since the arrangement of the LEDs 21 is not an essential component, it is not necessarily adopted. Moreover, even if it is a case where it employ
  • the optical element (light guide 1) and the light emitting devices 20, 20A, 20B, and 20C according to the embodiment of the present invention are provided with the light guide unit 2 and 2A on the light exit surface 6 side that serve as light exit surfaces.
  • a light scattering light guide 5 containing light scattering particles for multiple scattering of emitted light is not an essential component and can be omitted.
  • the light scattering particles are spherical and translucent silicone particles having a particle diameter of 2 ⁇ m to 9 ⁇ m.
  • various particles can be used regardless of the material, shape, particle diameter, and the like as long as the light in the light transmissive member 1 is subjected to multiple scattering.
  • spherical and translucent silicone particles having a particle diameter of 2 ⁇ m to 9 ⁇ m, more preferably 5 ⁇ m to 9 ⁇ m, should be used. Is preferred.
  • the light scattering particles can be omitted because they are not essential components. Further, the light scattering particles can be included not only in the light scattering light guide 5 but also in the light guides 2 and 2A, and not included in the light scattering light guide 5 but only in the light guides 2 and 2A. Can be included.
  • the light scattering particles contained in the light guides 2 and 2A have turbidity, which is a scattering parameter corresponding to the scattering coefficient of the light guides 2 and 2A, as ⁇ , and are in the direction of the central axis of the light guides 2 and 2A.
  • L a scattering parameter corresponding to the scattering coefficient of the light guides 2 and 2A, as ⁇
  • a scattering parameter corresponding to the scattering coefficient of the light guides 2 and 2A
  • the light scattering particles contained in the light guides 2 and 2A have turbidity, which is a scattering parameter corresponding to the scattering coefficient of the light guides 2 and 2A, as ⁇ , and are in the direction of the central axis of the light guides 2 and 2A.
  • the light scattering particles contained in the light scattering light guide 5 have a turbidity that is a scattering parameter corresponding to the scattering coefficient of the light scattering light guide 5, and ⁇ is a light scattering guide in a direction orthogonal to the exit surface 6.
  • T the maximum thickness of the optical part 5
  • the range is 1 ⁇ T / ⁇ ⁇ 10.
  • the mean free path of the light incident on the light guides 2 and 2A or the light scattering light guide 5 is t
  • the mean free path is preferably in the range of 1/4 t to 1/2 t.
  • one LED 21 and one incident lens 3 are disposed at both ends of the light guides 2 and 2A, respectively.
  • the amount of light emitted from the center portion is smaller than that from both end portions.
  • the amount of emitted light at the center is greatly increased compared to the case where the LEDs 21 are simply arranged.
  • the light amount distribution having a gentle concave shape by increasing the light amount in the central portion is not essential and need not be adopted.
  • such a light quantity distribution is preferable for a scanner.
  • two or more LEDs 21 and / or incident lenses 3 may be arranged at both ends or one end of the light guides 2 and 2A.
  • An optical element (light guide 1) includes rod-shaped light guides 2 and 2A and a prism that changes the direction of light incident from the ends in the longitudinal direction of the light guides 2 and 2A.
  • the optical element that has the portions 4 and 4A and emits the light whose direction is changed from the emission surface 6 disposed so as to face the prism portions 4 and 4A
  • the end portions in the longitudinal direction of the light guide portions 2 and 2A Is formed with an incident lens 3 that brings light emitted from the LED 21 toward the light guides 2 and 2A close to parallel light.
  • the prism parts 4 and 4A are arranged so as to be parallel to the emission surface 6, this is not necessary.
  • the light guide parts 2 and 2A are made into a rod shape, they can be formed into a flat and rectangular parallelepiped shape instead of a rod shape, or a bent rod shape even in the case of a rod shape.
  • the shape of the incident lens 3 is devised and incident. This can be achieved by refracting light toward the exit surface 6 or the prism portions 4 and 4A.
  • the light scattering light guide 5 used in the optical element (light guide 1) and the light emitting devices 20, 20A, 20B, and 20C according to the embodiment of the present invention has a rod shape, and the light guides 2 and 2A
  • the surface opposite to the facing surface has a convex curved shape in which the central portion in the short direction swells.
  • the light-scattering light guide 5 may have another shape such as a plate shape that is long in the light emission direction instead of a rod shape.
  • the light scattering light guide 5 has a surface opposite to the surface facing the light guides 2 and 2A having another shape such as a concave curved surface shape or a planar shape in which the central portion in the short direction is recessed. Also good.
  • the concave shape is adopted, the emitted light becomes divergent light, and the light emitting devices 20, 20A, 20B, and 20C are suitable for lighting devices that illuminate a wide angle.
  • the light guides 2 and 2A and the light scattering light guide 5 used in the optical element (light guide 1) and the light emitting devices 20, 20A, 20B, and 20C according to the embodiment of the present invention are integrated. Yes.
  • the light guides 2 and 2A and the light scattering light guide 5 may be separate members. In that case, the illumination pattern can be changed in accordance with the use of the illumination devices 20, 20A, 20B, and 20C.
  • the light incident on the optical element (light guide 1) and the light guides 2 and 2A used in the light emitting devices 20, 20A, 20B, and 20C according to the embodiment of the present invention is subjected to multiple scattering as described above. It is good also as containing the light-scattering particle to make.
  • the incident lens 3 may also contain light scattering particles.
  • the light guide parts 2 and 2A and the light-scattering light guide part 5 are made into the integral molding of the same member instead of 2 material shaping
  • it may become difficult to produce strong and weak stripe distribution in emitted light.
  • one LED 21 (light source) and one incident lens 3 are arranged at both ends of the light guide unit 2 used in the optical element (light guide 1) and the light emitting devices 20 and 20A according to the embodiment of the present invention.
  • the pitches (P1, P2) between the vertices of the saw teeth are long.
  • the LED 21 (light source) and / or the incident lens 3 may be disposed not at both ends of the light guide 2 but at one end.
  • two or more LEDs 21 (light sources) and / or incident lenses 3 may be arranged at both ends or one end of the light guide 2.
  • the pitch between the vertices of the saw blades can be set as appropriate depending on the purpose and application. For example, the pitches between the vertices of all the saw blades are made equal to each other, or the pitch between the vertices of the respective saw blades is larger at the center portion than the both end portions of the light guide portion 2A as in the light guide portion 1A and the light emitting devices 20B and 20C.
  • P3, P4) can be set longer, and the pitch between the vertices of the sawtooth can be set gradually shorter toward one end of the light guides 2 and 2A.
  • the LED 21 used in the light emitting devices 20 and 20A according to the embodiment of the present invention is shifted and arranged at an intermediate position between the central axis (optical axis M1) of the light guides 2 and 2A and the prism unit 4.
  • LED21 used for the light-emitting device 20 is with respect to the central axis (optical axis M1) of the light guide parts 2 and 2A so that light may be irradiated with respect to the incident lens 3 toward the diagonally upper side from the lower side of FIG. And tilted by 45 ° (tilt amount).
  • LED21 used for light-emitting device 20B, 20C which concerns on embodiment of this invention is arrange
  • the LEDs 21 used in the light emitting devices 20B and 20C are tilted at an angle of 45 ° (tilt amount) with respect to the central axis (optical axis M1) of the light guide portions 2 and 2A toward the prism portion 4A. These shift positions and tilt amounts can be changed as appropriate.
  • the shift position is a prism extending from the central axis (optical axis M1) of the light guides 2 and 2A and extending from the central axis (optical axis M1) of the light guides 2 and 2A. It can be appropriately set on a line orthogonal to the portions 4 and 4A. Further, the tilt amount is 5 ° to 85 so that the light emitting surface of the LED 21 is directed to the central axis (optical axis M1) of the light guides 2 and 2A from a state where the light is not tilted at all, such as the light emitting devices 20A and 20B. It can be set as appropriate within the range of °.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Planar Illumination Modules (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

 光の効率を上げ、かつ出射光に強弱の分布が生じるのを抑制しながら製造上の困難を軽減できる発光装置および光学素子を提供する。 発光装置20は、棒状の導光部2と、導光部2に光を入射するLED21と、導光部2の長尺方向端部から入射された光を方向転換させるプリズム部4とを備え、プリズム部4と対向するように配置された出射面6から方向転換された光を出射する発光装置20において、導光部2の長尺方向端部には、LED21から導光部2に向けて出射された光を平行光に近づける平行光形成体としての入射レンズ3を形成し、LED21は、導光部2の中心軸からプリズム部4に近づく側またはプリズム部4から離れる側にシフトさせることにより、その平行光に近づいた光を導光部2の出射面6またはプリズム部4に向くように構成している。

Description

発光装置および光学素子
 本発明は、発光装置および光学素子に関する。
 LED(Light Emitting Diode)を光源に用いた照明装置としては、以下のものが提案されている。所定間隔で基板に直列配置された複数個のLEDと、この複数個のLEDの直列方向とは直交する側面の下部を除く部位が平板状に形成された反射面で他方の側面をLEDからの光の反射と混合が可能な混合反射面でそれぞれのLEDを覆うように形成された、基板に取付けられた複数個の反射鏡とで構成される照明装置である(特許文献1参照)。
 また、LEDを光源とする別の照明器として、以下のスキャニング用の照明器が提案されている。そのスキャニング用の照明器は、入射面および対向する後面と出射面を画成する光学要素を有する。そして、照明器は、出射面が入射面に略垂直であり、後面は、入射面から受け取った光を前面の方に向け直す複数のプリズムからなる反射要素を有する。そして、照明器は、入射する光を拡散させるため、反射要素と前面との間に粒子材料が配設される。そして、照明器は、入射面に隣接して配置される少なくとも一つのLED光源を有している(特許文献2参照)。
特開2008-198458号公報 特開2008-236747号公報
 しかしながら、特許文献1に記載されている照明装置は、多くのLEDを必要とする。また、個々のLEDの光照射部分とそうでない部分の明るさが違い過ぎ、スキャニング用の照明として用いるためには、出射光を強く散乱させる部材を必要とする。そのため、多くのLEDを用いる割に出射光は明るくなリ難い。また、特許文献2に記載されている照明器は、反射要素を突き抜ける光のため光の効率が悪くなりがちで、かつ出射光に強弱の分布が生じやすい。このような光の効率の悪化や出射光に強弱の分布が生じるのを抑制するには、反射要素としての複数のプリズムを非常に密に配置させることが有効である。しかし、複数のプリズムを非常に密に配置させることは、照明器の製造上困難を伴う。
 そこで、本発明の目的は、光の効率を上げ、かつ出射光に強弱の分布が生じるのを抑制しながら製造上の困難を軽減できる発光装置および光学素子を提供することである。
 上記目的を達成するため、本発明の発光装置は、棒状の導光部と、導光部に光を入射する光源と、導光部の長尺方向端部から入射された光を方向転換させるプリズム部とを備え、プリズム部と対向するように配置された出射面から方向転換された光を出射する発光装置において、導光部の長尺方向端部には、光源から導光部に向けて出射された光を平行光に近づける平行光形成体を形成し、光源は、導光部の中心軸からプリズム部に近づく側またはプリズム部から離れる側にシフトさせることにより、その平行光に近づいた光を導光部の出射面またはプリズム部に向くように構成している。
 ここで、光源は、導光部の中心軸に対して傾けて配置されていることが好ましい。
 また、平行光形成体は、光源に向く側が膨らんでいる凸レンズとされていることが好ましい。
 また、光源の周囲には、光源から導光部へと直接入射されない光を反射して導光部へと入射させる反射部材を備えることが好ましい。
 また、導光部の光を出射する出射面側には、出射した光を多重散乱させる光散乱粒子を含有する光散乱導光部が設けられていることが好ましい。
 また、プリズム部を出射面と平行になるように配置することが好ましい。
 上記目的を達成するため、本発明の光学素子は、棒状の導光部と、導光部の長尺方向端部から入射された光を方向転換させるプリズム部とを有し、プリズム部と対向するように配置された出射面から方向転換された光を出射する光学素子において、導光部の長尺方向端部には、光源から導光部に向けて出射された光を平行光に近づける平行光形成体を形成している。
 ここで、出射面側には、出射した光を多重散乱させる光散乱粒子を含有する光散乱導光部が設けられていることが好ましい。
 また、光散乱導光部は、棒状とされ、導光部と対向する面とは反対側の面は、その短尺方向の中央部が膨らむ凸曲面形状とされていることが好ましい。
 また、導光部と光散乱導光部は、一体とされていることとしても良い。
 また、導光部は、入射した光を多重散乱させる光散乱粒子を含有していることが好ましい。
 また、光散乱粒子は、その粒径が2μmから9μmの透光性のシリコーン粒子であることが好ましい。
 また、導光部に含有される光散乱粒子は、導光部の散乱係数に相当する散乱パラメータである濁度をτとし、導光部の中心軸方向の長さをLとしたとき、0<L/(2×τ)<30の範囲内とされることが好ましい。
 また、光散乱導光部に含有される光散乱粒子は、光散乱導光部の散乱係数に相当する散乱パラメータである濁度をτとし、出射面と直交する方向の光散乱導光部の最大厚みをTとしたとき、1<T/τ<10の範囲内とされることが好ましい。
 本発明では、光の効率を上げることができ、かつ出射光に強弱の分布が生じるのを抑制しながら製造上の困難を軽減できる発光装置および光学素子を提供することができる。
本発明の実施の形態に係る光学素子である導光体の構成を示す正面図である。 図1に示す導光体の正面図である。 図1に示す導光体を構成する光散乱導光部中のシリコーン粒子の散乱原理を示す図で、単一真球粒子による散乱光強度の角度分布(Α、Θ)を示すグラフである。 本発明の実施の形態に係る導光部のプリズム部の側面形状を示す概要図である。 本発明の実施の形態に係る発光装置の縦断面図である。 本発明の実施の形態に係る発光装置のLEDを点灯させたときの光の入出射の状況を示す図でLEDをプリズム部側にシフトさせ、かつチルトさせて配置した場合のLEDの両端から出射した光が入射レンズに直接入射する光の光路を示す概要図ある。 本発明の実施の形態に係る発光装置のLEDを点灯させたときの光の入出射の状況を示す図でLEDをプリズム部側にシフトさせ、かつチルトさせて配置した場合のLEDの両端から出射した光が鏡面部材で反射し入射レンズに入射する光の光路を示す概要図である。 本発明の実施の形態に係る発光装置の発光状態を示す図で導光部の中央部からの距離を横軸にとり、導光部の明るさ(光量)の分布を示す図である。 図2に示した光散乱導光部を通過するの光路を示す図である。 本発明の実施の形態に係る発光装置の第1変形例の発光装置のLEDを点灯させたときの光の入出射の状況を示す図でLEDをプリズム部側にシフトさせ、かつチルトさせないで配置した場合のLEDの両端から出射した光が入射レンズに直接入射する光の光路を示す概要図である。 本発明の実施の形態に係る発光装置の第1変形例の発光装置のLEDを点灯させたときの光の入出射の状況を示す図でLEDをプリズム部側にシフトさせ、かつチルトさせないで配置した場合のLEDの両端から出射した光が鏡面部材で反射し入射レンズに入射する光の光路を示す概要図である。 本発明の実施の形態に係る発光装置の第1変形例の発光状態を示す図で導光部の中央部からの距離を横軸にとり、導光部の明るさ(光量)の分布を示す図である。 本発明の実施の形態に係る発光装置の第2変形例の発光装置のLEDを点灯させたときの光の入出射の状況を示す図でLEDを出射面側にシフトさせ、かつチルトさせないで配置した場合のLEDの両端から出射した光が入射レンズに直接入射する光の光路を示す概要図である。 本発明の実施の形態に係る発光装置の第2変形例の発光装置のLEDを点灯させたときの光の入出射の状況を示す図でLEDを出射面側にシフトさせ、かつチルトさせないで配置した場合のLEDの両端から出射した光が鏡面部材で反射し入射レンズに入射する光の光路を示す概要図である。 本発明の実施の形態に係る発光装置の第2変形例の発光状態を示す図で導光部の中央部からの距離を横軸にとり、導光部の明るさ(光量)の分布を示す図である。 本発明の実施の形態に係る発光装置の第3変形例の発光装置の発光状態を示す図で導光部の中央部からの距離を横軸にとり、導光部の明るさ(光量)の分布を示す図である。 本発明の実施の形態に係る発光装置の第3変形例の発光装置のLEDを点灯させたときの光の入出射の状況を示す図でLEDをシフトもチルトもさせないで配置した場合のLEDの両端から出射した光が入射レンズに直接入射する光の光路を示す概要図である。 本発明の実施の形態に係る発光装置の第3変形例の発光装置のLEDを点灯させたときの光の入出射の状況を示す図でLEDをシフトもチルトもさせないで配置した場合のLEDの両端から出射した光が鏡面部材で反射し入射レンズに入射する光の光路を示す概要図である。 発光装置の比較例の発光状態を示す図で導光部の中央部からの距離を横軸にとり、導光部の明るさ(光量)の分布を示す図である。 入射レンズを無くした発光装置の発光状態を示す図で導光部の中央部からの距離を横軸にとり、導光部の明るさ(光量)の分布を示す図である。
 以下、本発明の実施の形態に係る光学素子および発光装置の構成、ならびにそれらの作用について、図面を参照しながら説明する。
(光学素子の構成)
 図1は、本発明の実施の形態に係る光学素子である導光体1の構成を示す正面図、図2は、その側面図である。
 図1および図2に示すように、導光体1は、外形が長尺の四角柱に近い棒状である。導光体1は、導光部2と、導光部2の長尺方向両端に設けられる入射レンズ3と、図1および図2に示す導光部2の下面に形成され導光部2の一部となるプリズム部4と、導光部2の上面に配置される光散乱導光部5と、を有している。
 導光部2は、透明のポリメチルメタクリレート(以下、「PMMA」と略記する。)からなる樹脂成形体であり、四角柱形状をなしている。入射レンズ3もPMMAからなり、断面が双曲線形状となる凸レンズである。なお、導光部2と入射レンズ3とは、一体成形されている。
 平行光形成体となる入射レンズ3は、上述したように、導光部2から離れる側、すなわち外側が膨らんでいる凸レンズとなっている。図1および図2では、プリズム部4の詳細な形態の図示は省略し、プリズム部4の詳細な説明は後述する。
 光散乱導光部5は、光散乱粒子として粒子径が2μmから9μmの球状かつ透光性のシリコーン粒子(図示省略)が含有されているPMMA樹脂成形体である。光散乱導光部5の長さ方向の寸法L2および短尺方向の寸法W2は、導光部2の長尺方向の寸法L1および短尺方向の寸法W1とそれぞれ同一の寸法であるが、厚み方向の寸法H2は導光部2の厚み方向の寸法H1よりも小さい。図2に示すように、光散乱導光部5の上面は、短尺方向の両端部から中央部に向かって膨らんでいる。この膨らみの形状は、円柱の側面の一部の形状である。すなわち、表面は球面の一部とされている。なお、導光部2と光散乱導光部5は2材成形によって一体化されている。
 ここで、光散乱導光部5に含有される光散乱粒子は、光散乱導光部5の散乱係数に相当する散乱パラメータである濁度をτ(単位はcm)とし、後述する出射面6と直交する方向の光散乱導光部5の最大厚み(H2)をT(単位はcm)としたとき、1<T/τ<10の範囲内とされている。
 以下、光散乱導光部5のシリコーン粒子について説明する。このシリコーン粒子は、体積的に一様な散乱能が与えられた導光体であり、散乱微粒子としての球形粒子を多数含んでいる。光散乱導光部5の内部に光が入射すると、その光は散乱微粒子によって散乱することになる。
 ここで、シリコーン粒子の理論的な基礎を与えるMie散乱理論について説明する。Mie散乱理論は、一様な屈折率を有する媒体(マトリックス)中に該媒体と異なる屈折率を有する球形粒子(散乱微粒子)が存在するケースについてマックスウェルの電磁方程式の解を求めたものである。光散乱粒子に相当する散乱微粒子によって散乱した散乱光の角度に依存した強度分布I(Α、Θ)は下記(1)式で表される。Αは、散乱微粒子の光学的大きさを示すサイズパラメータであり、マトリックス中での光の波長λで規格化された球形粒子(散乱微粒子)の半径rに相当する量である。角度Θは散乱角で、入射光の進行方向と同一方向をΘ=180°にとる。
 また、(1)式中のi、iは(4)式で表される。そして、(2)~(4)式中の下添字ν付のaおよびbは(5)式で表される。上添字1および下添字νを付したP(cosΘ)は、Legendreの多項式、下添字ν付のa、bは1次、2次のRecatti-Bessel関数Ψ、ζ(ただし、「*」は下添字νを意味する。)とその導関数とからなる。mはマトリックスを基準にした散乱微粒子の相対屈折率で、m=nscatter/nmatrixである。
Figure JPOXMLDOC01-appb-M000001
 図3は、上記(1)~(5)式に基づいて、単一真球粒子による強度分布I(Α、Θ)を示すグラフである。この図3では、原点Gの位置に散乱微粒子としての真球粒子があり、下方から入射光が入射した場合の散乱光強度の角度分布I(Α、Θ)を示している。そして、原点Gから各曲線S1~S3までの距離が、それぞれの散乱角方向の散乱光強度である。曲線S1はΑが1.7であるときの散乱光強度、曲線S2はΑが11.5であるときの散乱光強度、曲線S3はΑが69.2であるときの散乱光強度を示している。なお、図3においては、散乱光強度を対数目盛で示している。このため、図3では僅かな強度差として見える部分が、実際には非常に大きな差となる。
 この図3に示すように、サイズパラメータΑが大きくなればなるほど(ある波長λで考えた場合は真球粒子の粒径が大きくなればなるほど)、上方(照射方向の前方)に対して指向性高く光が散乱されていることがわかる。また、実際のところ、散乱光強度の角度分布I(Α、Θ)は、入射光波長λを固定すれば、散乱子の半径rと、媒体および散乱微粒子の相対屈折率mとをパラメータとして制御することができる。なお、光散乱導光部5は、前方散乱が大きいものである。
 このような、単一真球粒子がN個含まれる光散乱導光体に光を入射させると、光は真球粒子により散乱される。散乱光は光散乱導光体中を進み、他の真球粒子により再度散乱される。ある程度以上の体積濃度で粒子を添加した場合には、このような散乱が逐次的に複数回行われた後、光が光散乱導光体から出射する。このような散乱光がさらに散乱されるような現象を多重散乱現象と呼ぶ。このような多重散乱においては、透明ポリマーでの光線追跡法による解析は容易ではない。しかし、モンテカルロ法により光の挙動を追跡し、その特性を解析することはできる。それによると、入射光が無偏光の場合、散乱角の累積分布関数F(Θ)は下記の(6)式で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで(6)式中のI(Θ)は、(1)式で表されるサイズパラメータΑの真球粒子の散乱強度である。強度Iの光が光散乱導光体に入射し、距離yを透過した後、光の強度が散乱によりIに減衰したとすると、これらの関係は下記の(7)式で表される。
Figure JPOXMLDOC01-appb-M000003
 この(7)式中のτは濁度と呼ばれ、媒体の散乱係数に相当するものであり、下記の(8)式のように粒子数Nに比例する。なお、(8)式中、σは散乱断面積である。
Figure JPOXMLDOC01-appb-M000004
 (7)式から長さLの光散乱導光体を散乱せずに透過する確率P(L)は下記の(9)式で表される。
Figure JPOXMLDOC01-appb-M000005
 反対に光路長Lまでに散乱される確率P(L)は下記の(10)式で表される。
Figure JPOXMLDOC01-appb-M000006
 これらの式からわかるように、濁度τを変えることにより、光散乱導光体内での多重散乱の度合いを制御することができる。
 以上の関係式により、散乱微粒子のサイズパラメータΑと濁度τとの少なくとも1つをパラメータとして、光散乱導光体内での多重散乱を制御可能であり、出射面における出射光強度と散乱角も適正に設定可能である。
 図4は、導光部2の長尺方向端部から約半分の長さに存在するプリズム部4の側面形状を示す概要図である。導光部2の上面となる出射面6と対向する面、すなわち導光部2の下面に、台形状の凸部10,11,12が形成されている。また、隣接する凸部10,11,12によって鋸歯状の凹部13,14が形成されている。この鋸歯の頂点は、凹部13,14の最も凹んだ部分である。凸部10,11,12および凹部13,14によってプリズム部4が構成されている。長尺の導光部2の両端部の凹部13の凹み角すなわちプリズム角θ1(30°)は大きくされ、長尺の導光部2の中央部の凹部14のプリズム角θ2(40°)は、θ1よりも小さくされている。このプリズム部4の形状は導光部2の長尺方向でその中心に対して左右対称とされ、また短尺方向でもその中心に対して対称とされている。また、導光部2の中央部の凹部14の頂点間ピッチP1は、導光部2の両端部の凹部13の頂点間ピッチP2よりも大きくされている。なお、凸部10,11,12および凹部13,14は、導光部2および入射レンズ3の金型による一体成形の際に同時に形成される。
(発光装置の構成)
 図5は、導光体1を用いた発光装置20の縦断面図である。導光体1の両端には、光源としてのLED21および反射部材となる鏡面部材22が各1個固定配置されている。LED21は、チップ型のものである。LED21は、入射レンズ3の光軸M1よりもプリズム部4に近い側(図5の下側)に配置されている。すなわち、LED21は、光軸M1に対して下側にシフトされている。このシフトの結果LED21の配置位置は、光軸M1とプリズム部4との中間位置とされている。ここで、入射レンズ3の光軸M1とは、プリズム部4と平行となり、出射面6とも平行となり、かつ入射レンズ3の中心を通る線である。また、LED21は、図5の下側から斜め上側に向かって入射レンズ3に対して光を照射するように光軸M1に対して45°傾けて配置されている。すなわち、光軸M1に対してLED21の面は垂直ではなく傾くこととなり、チルトすることとなる。この結果、LED21は、光軸M1に対してプリズム部4側にシフトし、出射面6側に向くようにチルトしていることとなる。
 各鏡面部材22は、図5における縦断面が放物線状の曲線を描くカップ状の形状をしている。この放物線は、光軸M1を含むどの断面で切った場合も同一となる。また、放物線の焦点位置は、光軸M1上となるように設定されている。カップ状の鏡面部材22の内側面にはLED21の光を反射できるように鏡面加工が施されている。また、カップ状の鏡面部材22の開口端部は、導光体1の端部を覆い、LED21の光が鏡面部材22と導光体1の間から漏れないように目張りがされている。このため、導光体1の両端に置かれたLED21の光の殆どは、導光体1へ入射することとなる。
(LED21を点灯させたときの発光装置20の光の入出射の状況)
 図6および図7は、 LED21を点灯させたときの発光装置20の光の入出射の状況を示す概要図である。図6には、LED21から直接入射レンズ3へと光が入射される場合であってLED21の両端(図では左端側のみ表示)から出射される光の光路を示している。また、図7には、LED21からの光が鏡面部材22に反射して入射レンズ3へと光が入射される場合であってLED21の両端(図では左端側のみ表示)から出射される光の光路を示している。矢印付きの細かい点線で示す光路は、図6および図7におけるLED21の下端側から発せられる光の光路である。ここでLED21の中心から発せられる光は、両者の中間の光路となるが、図示を省略している。また、矢印付きの粗い点線で示す光路は、図6および図7におけるLED21の上端側から発せられる光の光路である。なお、後述する導光部2の上側面となる出射面6における光の反射の様子を明確に示すため、図6、図7では、導光部2と光散乱導光部5とを離隔して図示している(図9、図10、図11、図12、図13および図14も同様)。
 LED21は、入射レンズ3の焦点位置でありかつ鏡面部材22の放物線の焦点位置である両焦点位置Fからわずかに下方に、LED21の中心がくるように配置される。ただし図6,図7では分かり易くするため両焦点位置Fからかなり離れた位置にLED21の中心がくるように示している。LED21から発せられる光は、発散光であるが、入射レンズ3に入射した後は凸レンズの作用により平行光に近づいている。そして、LED21から直接入射レンズ3に入射する光は、一旦図6における導光部2の出射面6(上側面となる)に照射される。そして、その出射面6で全反射して主に導光部2の中央部のプリズム部4にて方向転換される。そして、方向転換された光は、出射面6を略垂直方向に通過し、さらに光散乱導光部5を散乱しながら通過して出射される。図6に示す光は、主に導光部2の中央部から出射されることとなる。この結果、一般的には、導光体の中央からの出射光が弱くなり、出射光の強弱分布が大きくなりがちであるが、この実施形態の導光体1では、中央部分からの出射光が強くなり強弱分布がなだらかとなる。
 LED21からの光が鏡面部材22に反射して入射レンズ3へと入射される光は、出射面6での全反射を経て図6に示す光路と同様の光路をとる光もある。しかし、図7に示すように一部の光は、出射面6での全反射を経ずに、鏡面部材22から入射レンズ3を通過し直接プリズム部4に照射され、方向転換されて出射面6を略垂直方向に通過し、さらに光散乱導光部5を散乱しながら通過して出射される。図7に示す光は、主に導光部2の両端部から出射される。
 図8は、導光部2の中央部からの距離を横軸にとり、導光部2の明るさ(光量)の分布をシミュレーション結果として示す図である。シミュレーションの条件は、LED21の発光面を1mm角とし、その明るさが150lumen/個で、広がり角160°とし、光散乱導光部5のうち出射面6と対向する面とは反対側の面の先端から10mm離れた位置の明るさを表示する条件である(図12、図15、図18、図19、図20に示すものについても同条件である)。図2に示す光散乱導光部5の上面は、光散乱導光部5の短尺方向の両端部から中央部に向かって膨らんでいるため、凸レンズの役割をする。そのため、光散乱導光部5から出射される光は、光散乱導光部5から所定距離離れた位置に集まりその位置に用紙(たとえばスキャナ用の紙)を置いた場合、その用紙には光軸M1と平行な線状の照明状態が映し出される。また、光散乱導光部5には光散乱粒子が含まれているため、出射光は若干散乱されている。このため、線状の照明状態は、線状の各部分で途切れることなく一直線となる。さらに、図8に示すように、出射光は、導光部2の両端部よりも中央部の方が出射する光の光量が少ない。これは、図6に示すように中央側への誘導をより大きくしているが、図7に示すような光路をとる光も存在し、かつこの光路は短くその強度が大きくなるためである。この実施の形態のものは、中央部の出射光量が両端部よりも小さくなっているが、その小さくなっている程度はLED21を光軸M1上に配置しかつチルトをさせない場合に比べ小ささの程度は少ない。すなわち、中央部の光の強さは両端部の光の強度により近づいている。
 図9には、図2に示した光散乱導光部5内外の光路を示している。導光部2から導光された光の光路K1は、光散乱導光部5に進入していくと、徐々に散乱が進み、凸レンズ状の光散乱導光部5の上面から出射する際には光散乱導光部5の短尺方向の中央側に屈折する。そして散乱光となって徐々に照射面積が大きくなる光路K2となる。他の光路も同様の過程を経るため、光散乱導光部5の上面から所定距離離れた位置に所定の幅を有する線状の照明範囲が形成される。
(本発明の実施の形態によって得られる主な効果)
 発光装置20および導光体1は、入射する光を平行光に近づける入射レンズ3を有しており、かつその平行光に近づけた光を出射面6で全反射させまたは直接、中央部付近にあるプリズム部4にもたらし、反射または全反射させ出射させている。その際入射光を入射レンズ3の光軸M1の下側から斜め上側に向かって入射させることにより、出射面6で全反射され、中央部付近にあるプリズム部4から反射または全反射され出射される光量を増やすことができる。そのため、従来に比べ、導光体1の中央部1から出射する光量が増し、出射光に強弱の大きな分布が生じるのを抑制できる。また、完全な平行光ではなく、平行光に近づけた光であるため、同じ鋸歯で反射される光は、ある幅を持って出射面6側に向かう。このため、隣接する鋸歯で反射される光の間に、反射光量が少ない部分が生じ、出射光に強弱の縞状分布が生じてしまうのを防ぐことができる。仮にLED21から出射される発散光がそのまま導光部2に入射すると、導光体1の端部に出射量の多い部分が生じ、出射光に強弱の大きな分布が生じがちとなる。また、プリズム部4を通過する光が生じ、それが強弱の大きな分布の原因にもなる。プリズム部4を通過する光を防ぐためにはプリズム部4を非常に密に配置しかつプリズム部を出射面6に対し斜めに形成する必要がある。発光装置20は、入射レンズ3の光軸M1の下側から斜め上側に向かって光を入射させる構成を採用している。そのため、プリズム部4を出射面6に対し平行とすることができ、従来構造の出射面6に対し斜めとする構造をとる必要がなくなるため、製造上の困難さ、水平配置が困難となるという組み込み上の困難さを回避することができる。
 また、発光装置20は、鏡面部材22がLED21の光のうち直接入射レンズ3または導光部2に入射されない光を反射し、その反射光を入射レンズ3または導光部2に入射させるようにしている。そのため、LED21から出射される光の殆どを導光体1に入射させることができる。
 また、発光装置20および導光体1は、光散乱導光部5が光を多重散乱させる光散乱粒子を含有している。この光散乱導光部5は、前方散乱の大きな光散乱をさせるものであるため、光の出射効率を落とし難い。また、導光部2または入射レンズ3は透明体からなるか、その濁度τを非常に大きくするための光散乱導光体5を含有している。そのため、出射面6からの出射の前段階では光はほとんど散乱せず、光散乱導光部5から光が出射されるときの散乱が殆どとなる。そのため、光の出射面6からの出射の際に、上述した光の強弱の縞状分布が若干生じていたとしても、光散乱導光部5による光の多重散乱で光の効率をそれほど落とすことなく光の強弱の縞状分布を抑制できる。
 ここで、光散乱導光部5に含有される光散乱粒子は、光散乱導光部5の散乱係数に相当する散乱パラメータである濁度をτ(単位はcm)とし、後述する出射面6と直交する方向の光散乱導光部5の最大厚み(H2)をT(単位はcm)としたとき、1<T/τ<10の範囲内とされている。T/τの値が1を上回ることで、上述の縞状分布をより抑制できる。また、T/τの値が10未満となることで、光の過剰な多重散乱を抑制し、図9に示すように、所定の幅を有する線状の照明範囲を形成しやすくなる。
 また、発光装置20は、導光部2の両端部よりも中央部の方が出射する光の光量が少ない。そして、出射される光は、光散乱導光部5から所定距離離れた位置に集光し、線状の照明状態となる。そのため、発光装置20は、その所定距離に画像読み取り対象物が設置され、その対象物から反射される光を導光部2の中央部から導光部2の長尺方向と直交する方向に所定距離離れた位置に配置される撮像素子によって結像させるスキャナ用光源として適している。その理由は、導光部2の両端部は中央部よりもその撮像素子から離れているため光路長が長いだけではなく、導光部2から画角の大きい斜め方向の照射方向となるため、コサイン4乗則により光が撮像素子に届き難く、撮像素子から見た場合、両端部の光量が多いと、導光部2の両端部も中央部も略均一の光量となるためである。
 また、発光装置20は、スキャナの撮像素子が導光部2の長尺方向にその長尺方向長さの範囲で動き、撮像素子が導光部2の中央部および両端部と対向しつつ上述の対象物から反射される光を撮影するスキャナ用光源としても適している。その理由は、導光部2の両端部は、コサイン4乗則により撮像素子が動く範囲を超える画角の大きい範囲の光、すなわり撮像素子によって結像されずに無駄に照射される光を含んでいるため光量不足となりがちであり、撮像素子から見た場合、導光部2の両端部も中央部も略均一の光量となるためである。また、撮像素子が導光部2に対して平行となる直線状のものである場合も、撮像素子の両端の入射光量が少なくなりがちであるが、この発光装置20のように両端部の光量が多いとそのような弊害は無くなる。
 LED21を出射面6側にシフトさせると導光部2の両端部を強く光らせることができ、LED21をプリズム部4側にシフトさせると、導光部2の中央部を強く光らせることができるが両端部の強さまでにはいかない。また、LED21をチルトさせることで鏡面部材22に当たる光を多くすると、導光部2の両端部付近を強く光らせることができる。これらの点を別の角度から以下に述べる。
 導光部2の両端部と中央部が出射する光の光量を調整するには、図5に示すLED21の上下位置(シフトの程度)および/または傾き(チルトの程度)を調整する。LED21から出射する光のうち導光部2に入射する際の下側から斜め上側に向かう光の量、または上側から斜め下側に向かう光の量を大きくすると、導光部2の両端部のプリズム部4に照射される光が多くなる。その結果、導光部2の両端部が中央部よりも出射する光の光量が非常に多くなり、端部の光が非常に強くなる。逆に、LED21から出射する光のうち導光部2に入射する際の上側から斜め下側、または下側から斜め上側に向かう各光の量を小さくし、導光部2の中央へ向かう光の量を多くすると、導光部2の中央部のプリズム部4に照射される光が多くなる。その結果、導光部2の中央部が出射する光の光量が多くなる。ただし、この場合であっても光の光路長やLED21が面光源であることを考慮すると、両端部の光の強さの方が中央部よりも強くなる。すなわち長尺方向に関してより強度が一定するが、やはり中央部の方が弱い光となる。
 また、発光装置20および導光体1は、導光部2と光散乱導光部5が2材成形によって一体とされている。そのため、両者を一体として取り扱うことができ取り扱い性に優れるものとなる。
 また、発光装置20は、導光部2の両端部にLED21と入射レンズ3が各1つ配置されている。そのため、僅か2つの少量のLED21を光源としており、部材数低減および消費電力低減等のコスト面等の利点がある。そして、発光装置20および導光体1は、導光部2の長尺方向の両端部から光が入射され、プリズム部4は、断面が複数の鋸歯状に形成され、導光部2の両端部の鋸歯の頂点間ピッチP2よりも中央部の鋸歯の頂点間ピッチP1の方が長く配置されている。これは、LED21から離れている導光部2の中央部では、プリズム部4への光の入射角が小さく、P1の値を大きくしても、照射される光を略確実に方向転換できるためである。そのため、導光部2の中央部については、形状が複雑とならないため、金型成型等の際の寸法精度が高まる。
(第1変形例)
 図10および図11は、発光装置20の第1変形例の発光装置20AのLED21を点灯させたときの光の入出射の状況を示す概要図である。なお、発光装置20Aは、LED21を傾けずに導光部2の軸、すなわち光軸M1に対して垂直の図10において下側方向を発光面としている以外は発光装置20と構成は変わらないため、各構成要素に付した符号は、発光部材20の各構成部材に付した符号と同一にして説明する。図10には、LED21から直接入射レンズ3へと光が入射される場合であってLED21の両端から出射される光路を示している。また、図11には、LED21からの光が鏡面部材22に反射して入射レンズ3へと光が入射される場合であってLED21の両端から出射される光路を示している。矢印付きの細かい点線で示す光路は、図10および図11におけるLED21の下端側領域から発せられる光の光路である。また、矢印付きの粗い点線で示す光路は、図10および図11におけるLED21の上端側領域から発せられる光の光路である。
 LED21から発せられる光は、発散光であるが、入射レンズ3から出射する光は平行光に近づいている。しかも、LED21は、入射レンズ3の光軸M1よりも下側の位置にシフトされて配置されているため、図10に示すように双曲線形状をなす入射レンズ3に光が入射する際に発光面に対して垂直方向に発せられる多くの光が上側へ屈折している。そして導光部2の出射面6で全反射し主に導光部2の中央部のプリズム部4にて方向転換され、出射面6に対して略垂直方向に通過し、さらに光散乱導光部5を通過して出射される。図10に示す光は、LED21の上端側領域から発せられる光が主として導光部2の中央部側へ向き、プリズム部4で反射され導光部2の中央部側から出射され、LED21の下端側領域から発せられる光が主として導光部2の中央部よりも若干両端寄りから出射される。
 また、図11に示す鏡面部材22に反射して入射レンズ3へと光が入射される光は、LED21から非常に広角に出射された光のうち両端側の光である。LED21は前方方向に光の指向性を有しているため、この量端の光の光量は少ない。このように、広角側の光のうち、上側に向いた光は、出射面6での全反射を経ずに、鏡面部材22で反射しそのまま入射レンズ3を通過し直接プリズム部4に照射され、方向転換されて出射面6を略垂直方向に通過し、さらに光散乱導光部5を通過して出射される。一方、下側に向いた光は、鏡面部材22で反射し、入射レンズ3を通過し出射面6で反射しプリズム部4へ向かいプリズム部4で出射面6側に反射する。図11に示す光は、主に導光部2の両端部から出射される。
 図12は、発光装置20Aの発光状態を示す図で、導光部2の中央部からの距離を横軸にとり、導光部2の明るさ(光量)の分布を示す図である。発光装置20Aの発光状態は、LED21の面を光軸M1に対して垂直となるようにし、かつLED21の中心を両焦点位置Fに配置したものに比べプリズム部4で反射する光量が増加し、また両端部の光の強さが若干弱くなり、両端部と中央部の光の強さの差が小さくなる。すなわち、LED21の中心を光軸M1と重なる位置に配置すると平行光は他の端部から抜け出てしまい、光効率が落ち、出射面6から出射される光量の合計は小さいものとなる。発光装置20Aの出射光は、発光装置20と同様に導光部2の両端部よりも中央部の方が出射する光の光量が少ない。ただし、導光部2の両端部から出射される光の光量は、上述したように若干発光装置20のそれよりも少ない。
(第2変形例)
 図13および図14は、発光装置20の第2変形例の発光装置20BのLED21を点灯させたときの光の入出射の状況を示す概要図である。なお、発光装置20Bは、LED21を傾けずに導光部2の軸すなわち光軸M1に対して垂直の方向を発光面とし、かつLED21は、入射レンズ3の光軸M1よりも上側の位置にシフト配置されている。このシフトの結果LED21の配置位置は、光軸M1と出射面6との中間位置とされている。また、導光部2Aのプリズム部4Aでは、導光部2Aの中央部の凹部14Aの頂点間ピッチP3は、導光部2Aの両端部の凹部13Aの頂点間ピッチP4よりも大きくされている。頂点間ピッチP3の範囲のプリズム角は各々30°であり、頂点間ピッチP4の範囲のプリズム角は各々40°である。これらの点以外は発光装置20と構成は変わらないため、各構成要素に付した符号は、発光部材20の各構成部材に付した符号と同一にして説明する。
 図13には、LED21から直接入射レンズ3へと光が入射される場合であってLED21の両端から出射される光路を示している。また、図14には、LED21からの光が鏡面部材22に反射して入射レンズ3へと光が入射される場合であってLED21の両端から出射される光路を示している。矢印付きの細かい点線で示す光路は、図13および図14におけるLED21の下端側領域から発せられる光の光路である。また、矢印付きの粗い点線で示す光路は、図13および図14におけるLED21の上端側領域から発せられる光の光路である。
 LED21から発せられる光は、発散光であるが、入射レンズ3から出射する光は平行光に近づいている。また、LED21は、入射レンズ3の光軸M1よりも上側の位置にシフトされて配置されているため、図13に示すように双曲線形状をなす入射レンズ3に光が入射する際に発光面に対して垂直方向に発せられる多くの光が下側へ屈折している。そして導光部2の中央部および両端部のプリズム部4にて方向転換され、出射面6を略垂直方向に通過し、さらに光散乱導光部5を通過して出射される。図13に示す光は、LED21の上端側領域から発せられる光が主として導光部2の両端部から出射され、LED21の下端側領域から発せられる光が主として導光部2の中央部側へ向き、プリズム部4で反射され導光部2の中央部側から出射される。
 また、図14に示す鏡面部材22に反射して入射レンズ3へと光が入射される光は、LED21から非常に広角側に出射された光である。この光のうち下側に向いた光は、出射面6での全反射を経てプリズム部4Aで反射され出射面6を通過していく。一方、上側に向いた光は出射面6での全反射を経ずに、鏡面部材22で反射しそのまま入射レンズ3を通過し直接プリズム部4Aに照射され、方向転換されて出射面6を略垂直方向に通過する。いずれの光も、さらに光散乱導光部5を通過して出射される。図14に示す光は、主に導光部2のA両端部から出射される。なお、ピッチP3をピッチP4よりも大きくすることによって、主として出射される導光部2Aの両端部については、形状が複雑とならないため、金型成型等の際の寸法精度が高まる。
 図15は、発光装置20Bの発光状態を示す図で、導光部2の中央部からの距離を横軸にとり、導光部2の明るさ(光量)の分布を示す図である。発光装置20Bの発光状態は、両端部が明るく中央部が暗いという点では、発光装置20,20Aの発光状態と略同じである。ただし、導光部2Aの両端部から出射される光の光量は、発光装置20,20Aのそれよりも多い。その両端部から多く出射される光は、発光装置20,20Aに比べてLED21から若干離れた位置から出射されている。
(第3変形例)
 図16は、発光装置20の第3変形例の発光装置20C(図示省略)の発光状態を示す図で、導光部2の中央部からの距離を横軸にとり、導光部2の明るさ(光量)の分布を示す図である。なお、発光装置20Cは、導光部2の軸すなわち光軸M1に対して垂直の方向を発光面とし、かつLED21は、入射レンズ3の光軸M1よりも上側の位置にシフト配置されている。このシフトの結果LED21の配置位置は、光軸M1と出射面6との中間位置とされている。そして、LED21をプリズム部4Aの方向(下方)に向けて45°傾けている。さらに、発光装置20Cは、発光装置20Bと同様にプリズム部4Aを有する導光部2Aを用いている。発光装置20Cは、これらの点以外は発光装置20と構成は変わらない。発光装置20Cの発光状態は、両端部が明るく中央部が暗いという点では、発光装置20,20A,20Bの発光状態と略同じである。そして、導光部2Aの両端部から出射される光の光量は、発光装置20Bと同等である。その両端部から多く出射される光は、発光装置20Bと略同じ位置から出射されている。
(比較例)
 図17および図18は、比較例の発光装置20DのLED21を点灯させたときの光の入出射の状況を示す概要図である。なお、発光装置20Dは、LED21を傾けずに導光部2の軸すなわち光軸M1に対して垂直の方向を発光面とし、かつLED21の中心が両焦点位置Fに配置されている。これらの点以外は発光装置20と構成は変わらないため、各構成要素に付した符号は、発光部材20の各構成部材に付した符号と同一にして説明する。図17には、LED21から直接入射レンズ3へと光が入射される場合であってLED21の両端から出射される光路を示している。また、図18には、LED21からの光が鏡面部材22に反射して入射レンズ3へと光が入射される場合であってLED21の両端から出射される光路を示している。矢印付きの細かい点線で示す光路は、図17および図18におけるLED21の下端側領域から発せられる光の光路である。また、矢印付きの粗い点線で示す光路は、図17および図18におけるLED21の上端側領域から発せられる光の光路である。
 LED21から発せられる光は、発散光であるが、入射レンズ3から出射する光は平行光に近づいている。また、LED21の中心は、入射レンズ3の焦点位置、すなわち両焦点位置Fに配置されているため、図17に示すように双曲線形状をなす入射レンズ3に光が入射する際にLED21の下端側領域から発せられる多くの光が上側へ屈折している。そして導光部2の出射面6で全反射し主に導光部2の中央部のプリズム部4にて方向転換され、出射面6を略垂直方向に通過し、さらに光散乱導光部5を通過して出射される。また、LED21の上端側領域から発せられる多くの光が下側へ屈折している。そして導光部2の両端部のプリズム部4にて若干鋭角に方向転換され、出射面6を通過し、さらに光散乱導光部5を通過して出射される。また、LED21から比較的広角に発せられる光は、プリズム部4へは照射されず、導光部2を長尺方向に直進する。その直進する光は、その一部が逆側の鏡面部材22で反射され、導光部2に再度入射し、最終的に光散乱導光部5を通過して出射される。図17に示す光は、LED21の上端側領域から発せられる光は主として導光部2の両端部から出射され、LED21の下端側領域から発せられる光は主として導光部2の中央部から出射される。なお、LED21の中心からの出射光が平行光となるため一方の端部から他方の端部へ向かう光が多くなることとなる。このため、発光装置20Dは、発光装置20,20A,20B,20Cに比べ光の利用効率が落ちることとなる。
 また、図18に示す鏡面部材22に反射して入射レンズ3へと光が入射される光は、LED21から非常に広角側に出射される光である。この光は、鏡面部材22での反射後、図17に示す光路と略同様の光路をとる。図18に示す光は、主に導光部2の両端部から出射される。
 図19は、発光装置20Dの発光状態を示す図で、導光部2の中央部からの距離を横軸にとり、導光部2の明るさ(光量)の分布を示す図である。発光装置20Dの発光状態は、導光部2の両端部よりも中央部の方が出射する光の光量が少ないという点では、発光装置20,20A,20B,20Cの発光状態と略同じである。ただし、導光部2の両端部から出射される光の光量、と導光部2の中央部から出射される光の光量との差は、発光装置20,20Aに比べて大きく、発光装置20B,20Cのそれよりも少ない。また、発光装置20Dは、中央部における発光量の変動が小刻みに多数生じている。
 なお、図20にLED21の配置を発光装置20Dと同じとして、入射レンズ3を無くした発光装置の発光状態を示す。図20に示すように入射レンズ3が無い場合、中央部が極端に暗くなる。また、両端部と中央部の差も非常に大きくなる。しかし、このような発光状態の要求がある場合には、入射レンズ3を無くしたものとしても良い。また、入射レンズを無くす代わりにシフトとチルトの一方または両者を採用するようにしても良い。
(他の形態)
 以上、本発明の実施の形態における光学素子(導光体1)および発光装置20,20A,20B,20Cについて説明したが、本発明の要旨を逸脱しない限り種々変更実施可能である。 
 本発明の実施の形態に係る発光装置20,20A,20B,20Cは、棒状の導光部2,2Aと、導光部2,2Aに光を入射するLED21と、導光部2,2Aの長尺方向端部から入射された光を方向転換させるプリズム部4,4Aとを備え、プリズム部4,4Aと対向するように配置された出射面6から方向転換された光を出射する発光装置20,20A,20B,20Cにおいて、導光部2,2Aの長尺方向端部には、LED21から導光部2,2Aに向けて出射された光を平行光に近づける平行光形成体としての入射レンズ3を形成し、LED21は、導光部2,2Aの中心軸からプリズム部4,4Aに近づく側またはプリズム部4,4Aから離れる側にシフトさせることにより、その平行光に近づいた光を導光部2,2Aの出射面6またはプリズム部4,4Aに向くように構成している。ここで、プリズム部4,4Aは、出射面6と平行になるように配置しているが、その必要性は必ずしも無い。たとえば、プリズム部4,4Aは、出射面6と平行でなく、LED21から離れるに従い出射面6に近づくような傾きをもったものにしても良い。また、光を方向転換するためには、プリズム部4,4Aではなく、ミラー、白色面等、光を反射する部材を用いても良い。
 また、プリズム部4,4Aおよび/または出射面6は、平面状ではなく、曲面状等とすることができる。たとえば、出射面6は、光散乱導光部5の上面と同様の円柱側面形状等とすることができる。さらに、導光部2,2Aには、PMMA製のものを用いているが、その他のアクリル酸エステルあるいはメタクリル酸エステルの重合体で、透明性の高い非晶質の合成樹脂であるアクリル樹脂、ポリスチレン、ポリカーボネート等の他の透光性樹脂やガラス等を材質としたものを用いることができる。また、平行光形成体としては、凸レンズとなる入射レンズ3を使用しているが、LED21を導光体1とは逆方向に向けて配置した場合、鏡面部材22が平行光形成体となる。このように凹面反射鏡を平行光形成体としても良い。
 また、本発明の実施の形態に係る発光装置20,20A,20B,20Cは、LED21の周囲にLED21から入射レンズ3へと直接入射されない光を反射して入射レンズ3へと入射させる鏡面部材22を備えている。しかし、鏡面部材22は、必須の構成要素ではないため省略することができる。ただし、LED21から出射される光を有効活用する観点からは、発光装置20,20A,20B,20Cは、鏡面部材22を備えていることが好ましい。また、発光装置20,20A,20B,20Cが鏡面部材22を備える場合であっても、鏡面部材22は、図5における縦断面が放物線状の曲線を描くカップ状の形状をしている必要はなく、球面形状等の他の形状をしていても良い。さらに、反射部材は、鏡面部材22のように鏡面ではなく、白色面等、光を反射する面を有するものであっても良い。
 また、本発明の実施の形態に係る発光装置20,20A,20B,20Cに用いられる平行光形成体としての入射レンズ3は、LED21に向く側が膨らんでいる入射レンズ3とされている。そして、発光装置20,20Aに用いられるLED21は、入射レンズ3の光軸M1からプリズム部4,4Aに近づく側にシフトされて配置されている。しかし、LED21は、入射レンズ3の光軸M1を中心としてプリズム部4,4Aから離れる側にシフトされて配置されていても良い。さらに、入射レンズ3は、必須の構成要素ではないため省略することができる。入射レンズ3に代わる平行光形成体は、たとえば上述したように凹面鏡等である。凹面鏡は、LED21から発せられる発散光を反射し、その反射光を平行光に近づけることができる。さらに、平行光形成体として凸レンズを用いる場合であっても、その凸レンズは入射レンズ3のように断面が双曲線形状をしている必要は無い。
 また、本発明の実施の形態に係る発光装置20,20A,20B,20Cに用いられるLED21は、導光部2,2Aの中心軸である光軸M1に対してその出射光の面が傾くように配置されている。しかし、このようなLED21の配置の仕方は必須の構成要素ではないため必ずしも採用する必要はない。また、採用する場合であっても、LED21の位置、その傾きの角度等の諸条件は適宜設定できる。
 また、本発明の実施の形態に係る光学素子(導光体1)および発光装置20,20A,20B,20Cが備える、光を出射する出射面となる導光部2,2Aの出射面6側には、出射した光を多重散乱させる光散乱粒子を含有する光散乱導光部5が設けられている。しかし、光散乱導光部5は、必須の構成要素ではないため省略することができる。また、光散乱導光部5を採用する場合には、光散乱導光部5に含有される光散乱粒子の材質、形状、粒径等の諸条件は適宜設定できる。たとえば、光散乱粒子は、その粒子径が2μmから9μmの球状かつ透光性のシリコーン粒子としている。しかし、光散乱粒子は、透光部材1内の光を多重散乱するものであれば、その材質、形状、粒子径等を問わず、種々のものを用いることができる。ただし、光散乱導光部5が入射光の前方散乱を適切な範囲で大きくするためには、粒子径が2μmから9μm、より好ましくは5μmから9μmの球状かつ透光性のシリコーン粒子を用いることが好ましい。
 また、光散乱粒子は、必須の構成要素ではないため省略することができる。また、光散乱粒子は、光散乱導光部5ではなく導光部2,2Aにも含ませることができるし、光散乱導光部5には含ませないで導光部2,2Aのみに含ませることができる。
 また、導光部2,2Aに含有される光散乱粒子は、導光部2,2Aの散乱係数に相当する散乱パラメータである濁度をτとし、導光部2,2Aの中心軸方向の長さをLとしたとき、0<L/(2×τ)<30の範囲内とされることが好ましい。L/(2×τ)を0を超える値にすることにより、光散乱粒子を導光部2,2Aに含ませることができ、導光部2,2A内を透過する光を多重散乱させて、上述した光の強弱の縞状分布を適切に抑制できる。また、L/(2×τ)を30未満の値にすることにより、光の後方散乱を抑えて線状の照明状態を維持することができる。
 また、光散乱導光部5に含有される光散乱粒子は、光散乱導光部5の散乱係数に相当する散乱パラメータである濁度をτとし、出射面6と直交する方向の光散乱導光部5の最大厚みをTとしたとき、1<T/τ<10の範囲内としている。しかし、このような限定は必須の事項ではないため、そのような限定をする必要はない。ただし、
 また、入射光の前方散乱を適切なものとするためには、導光部2,2Aまたは光散乱導光部5の内部へ入射した光の平均自由行程の調整も重要である。平均自由行程は、たとえば光散乱導光部5の中心の厚み(最大厚み)をtとすると、1/4tから1/2tの範囲とすることが好ましい。平均自由行程を1/4t以上とすることで、後方散乱を大きくし過ぎずに、入射光に対する出射光の効率の低下を抑えることができる。平均自由行程を1/2t以下とすることで、前方散乱を大きくし過ぎずに、上述した光の強弱の縞状分布を適切に抑制できる。このことは、光散乱粒子として粒子径が2μmから9μmまたは5μmから9μmの球状かつ透光性のシリコーン粒子を用いた場合に特にあてはまる。
 また、本発明の実施の形態に係る発光装置20,20A,20B,20Cは、導光部2,2Aの両端部にLED21と入射レンズ3が各1つ配置され、導光部2,2Aの両端部よりも中央部の方が出射する光の光量が少ない。しかし、単にLED21を配置したものに比べ中央部の出射光量は大きく増加している。このように中央部の光量を増してなだらかな凹部状にした光量分布は必須ではないため採用する必要は無い。ただし、このような光量分布はスキャナ用には好ましいものとなる。また、導光部2,2Aの両端ではなく一端にLED21および/または入射レンズ3を配置することとしても良い。さらに、LED21および/または入射レンズ3は、導光部2,2Aの両端部または一端に2つ以上配置されていても良い。
 本発明の実施の形態に係る光学素子(導光体1)は、棒状の導光部2,2Aと、導光部2,2Aの長尺方向端部から入射された光を方向転換させるプリズム部4,4Aとを有し、プリズム部4,4Aと対向するように配置された出射面6から方向転換された光を出射する光学素子において、導光部2,2Aの長尺方向端部には、LED21から導光部2,2Aに向けて出射された光を平行光に近づける入射レンズ3を形成している。ここで、プリズム部4,4Aは、出射面6と平行になるように配置しているが、その必要は無い。また、導光部2,2Aは、棒状とされているが、棒状ではなく平板状かつ直方体状としたり、棒状の場合でも曲がった棒状としたりすることができる。また、平行光に近づいた光を出射面6またはプリズム部4,4Aに向くように構成するには、光源の配置や向きを考慮する他、入射レンズ3の形状を工夫し、入射してくる光を出射面6側またはプリズム部4,4A側に屈折するようにすることで、達成できる。
 また、本発明の実施の形態に係る光学素子(導光体1)および発光装置20,20A,20B,20Cに用いられる光散乱導光部5は、棒状とされ、導光部2,2Aと対向する面とは反対側の面は、その短尺方向の中央部が膨らむ凸曲面形状とされている。しかし、光散乱導光部5は、棒状でなく光の出射方向に長い板状等、他の形状であっても良い。また、光散乱導光部5は、導光部2,2Aと対向する面とは反対側の面がその短尺方向の中央部が凹む凹曲面形状または平面形状等の他の形状とされていても良い。その凹面形状を採用した場合には、出射光が発散光となり、発光装置20,20A,20B,20Cは、広い角度を照らす照明装置等に適するものとなる。
 また、本発明の実施の形態に係る光学素子(導光体1)および発光装置20,20A,20B,20Cに用いられる導光部2,2Aと光散乱導光部5は、一体とされている。しかし、導光部2,2Aと光散乱導光部5は、別部材としても良い。その場合は、照明装置20,20A,20B,20Cの用途等に合わせて照明パターンを変更することができる。
 また、本発明の実施の形態に係る光学素子(導光体1)および発光装置20,20A,20B,20Cに用いられる導光部2,2Aには、上述したように入射した光を多重散乱させる光散乱粒子を含有していることとしても良い。また、入射レンズ3にも光散乱粒子が含有されることとしても良い。このようにすることで、導光部2,2Aと光散乱導光部5を2材成形ではなく同一部材の一体成形とし、導光体1の製造工程数を低減できる。また、このようにすることで、より出射光に強弱の縞状分布が生じ難くなる場合がある。この場合、光散乱導光部5のみに光散乱粒子を含有する場合の含有濃度よりも含有濃度を低く設定することが好ましい。その理由は、導光部2,2Aに入射し平行光となっている状態を維持するためである。
 また、本発明の実施の形態に係る光学素子(導光体1)および発光装置20,20Aに用いられる導光部2の両端部にLED21(光源)と入射レンズ3が各1つ配置され、導光部2の長尺方向の両端部から光が入射され、プリズム部4,4Aは、断面が複数の鋸歯状に形成され、導光部2の両端部よりも中央部の方が各々の鋸歯の頂点間ピッチ(P1,P2)が長く配置されている。しかし、導光部2の両端ではなく一端にLED21(光源)および/または入射レンズ3を配置することとしても良い。さらに、LED21(光源)および/または入射レンズ3は、導光部2の両端部または一端に2つ以上配置されていても良い。また、鋸歯の頂点間ピッチは、目的、用途等によって適宜設定可能である。たとえば、全ての鋸歯の頂点間ピッチを等しくする、または導光部1A,発光装置20B,20Cのように、導光部2Aの両端部よりも中央部の方が各々の鋸歯の頂点間ピッチ(P3,P4)を長く設定する、さらには、導光部2,2Aの一端方向に向かって鋸歯の頂点間ピッチを徐々に短く設定することができる。
 また、本発明の実施の形態に係る発光装置20,20Aに用いられるLED21は、導光部2,2Aの中心軸(光軸M1)とプリズム部4との中間位置にシフト配置されている。そして、発光装置20に用いられるLED21は、図5の下側から斜め上側に向かって入射レンズ3に対して光を照射するように導光部2,2Aの中心軸(光軸M1)に対して45°(チルト量)傾けてチルト配置されている。また、本発明の実施の形態に係る発光装置20B,20Cに用いられるLED21は、導光部2,2Aの中心軸(光軸M1)と出射面6との中間位置に配置されている。発光装置20B,20Cに用いられるLED21は、プリズム部4Aの方向に向けて導光部2,2Aの中心軸(光軸M1)に対して45°(チルト量)傾けてチルト配置されている。これらのシフト位置およびチルト量は、適宜変更できる。たとえば、シフト位置は、導光部2,2Aの中心軸(光軸M1)から伸びて出射面6と直交する線上、または
導光部2,2Aの中心軸(光軸M1)から伸びてプリズム部4,4Aと直交する線上で適宜設定できる。また、チルト量は、たとえば発光装置20A、20Bのように全くチルトしていない状態から、LED21の発光面が導光部2,2Aの中心軸(光軸M1)に向かうように5°~85°の範囲で適宜設定できる。
 1 導光体(光学素子)
 2,2A 導光部
 3 入射レンズ(平行光形成体)
 4,4A プリズム部
 5 光散乱導光部
 6 出射面(上側面)
20,20A,20B,20C 発光装置
21 LED(光源)
22 鏡面部材(反射部材)
P1,P2 鋸歯の頂点間ピッチ
 τ 濁度
 L 導光部の中心軸方向の長さ
 T 出射面と直交する方向の光散乱導光部の最大厚み

Claims (14)

  1.  棒状の導光部と、上記導光部に光を入射する光源と、上記導光部の長尺方向端部から入射された光を方向転換させるプリズム部とを備え、上記プリズム部と対向するように配置された出射面から上記方向転換された光を出射する発光装置において、
     上記導光部の長尺方向端部には、上記光源から上記導光部に向けて出射された光を平行光に近づける平行光形成体を形成し、上記光源は、上記導光部の中心軸から上記プリズム部に近づく側または上記プリズム部から離れる側にシフトさせることにより、その平行光に近づいた光を上記導光部の上記出射面または上記プリズム部に向くように構成したことを特徴とする発光装置。
  2.  請求項1記載の発光装置において、前記光源は、前記導光部の中心軸に対して傾けて配置されていることを特徴とする発光装置。
  3.  請求項1または2記載の発光装置において、前記平行光形成体は、前記光源に向く側が膨らんでいる凸レンズとされていることを特徴とする発光装置。
  4.  請求項1から3のいずれか1項に記載の発光装置において、前記光源の周囲には、前記光源から前記導光部へと直接入射されない光を反射して前記導光部へと入射させる反射部材を備えることを特徴とする発光装置。
  5.  請求項1から4のいずれか1項に記載の発光装置において、前記導光部の光を出射する前記出射面側には、前記出射した光を多重散乱させる光散乱粒子を含有する光散乱導光部が設けられていることを特徴とする発光装置。
  6.  請求項1から5のいずれか1項に記載の発光装置において、前記プリズム部を前記出射面と平行になるように配置することを特徴とする発光装置。
  7.  棒状の導光部と、上記導光部の長尺方向端部から入射された光を方向転換させるプリズム部とを有し、上記プリズム部と対向するように配置された出射面から上記方向転換された光を出射する光学素子において、
     上記導光部の長尺方向端部には、光源から上記導光部に向けて出射された光を平行光に近づける平行光形成体を形成したことを特徴とする光学素子。
  8.  請求項7記載の光学素子において、前記出射面側には、前記出射した光を多重散乱させる光散乱粒子を含有する光散乱導光部が設けられていることを特徴とする光学素子。
  9.  請求項8記載の光学素子において、前記光散乱導光部は、棒状とされ、前記導光部と対向する面とは反対側の面は、その短尺方向の中央部が膨らむ凸曲面形状とされていることを特徴とする光学素子。
  10.  請求項8または9記載の光学素子において、前記導光部と前記光散乱導光部は、一体とされていることを特徴とする光学素子。
  11.  請求項7から10のいずれか1項に記載の光学素子において、前記導光部は、前記入射した光を多重散乱させる光散乱粒子を含有していることを特徴とする光学素子。
  12.  請求項8または11記載の光学素子において、
     前記光散乱粒子は、その粒径が2μmから9μmの透光性のシリコーン粒子であることを特徴とする光学素子。
  13.  請求項8,11または12記載の光学素子において、
     前記導光部に含有される前記光散乱粒子は、前記導光部の散乱係数に相当する散乱パラメータである濁度をτとし、前記導光部の中心軸方向の長さをLとしたとき、
     0<L/(2×τ)<30の範囲内とされることを特徴とする光学素子。
  14.  請求項8,11または12記載の光学素子において、
     前記光散乱導光部に含有される前記光散乱粒子は、前記光散乱導光部の散乱係数に相当する散乱パラメータである濁度をτとし、前記出射面と直交する方向の前記光散乱導光部の最大厚みをTとしたとき、
     1<T/τ<10の範囲内とされることを特徴とする光学素子。
PCT/JP2010/000948 2009-02-24 2010-02-16 発光装置および光学素子 WO2010098036A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/202,806 US8727591B2 (en) 2009-02-24 2010-02-16 Light emitting device and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-041168 2009-02-24
JP2009041168A JP5336880B2 (ja) 2009-02-24 2009-02-24 発光装置

Publications (1)

Publication Number Publication Date
WO2010098036A1 true WO2010098036A1 (ja) 2010-09-02

Family

ID=42665253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000948 WO2010098036A1 (ja) 2009-02-24 2010-02-16 発光装置および光学素子

Country Status (3)

Country Link
US (1) US8727591B2 (ja)
JP (1) JP5336880B2 (ja)
WO (1) WO2010098036A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072735A (ja) * 2014-09-29 2016-05-09 三菱電機株式会社 照明ユニット、画像読取装置及び画像読取方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8646953B2 (en) * 2011-01-11 2014-02-11 Nittoh Kogaku K.K. Light guiding body and light emitting device
JP5791527B2 (ja) * 2012-01-16 2015-10-07 京セラドキュメントソリューションズ株式会社 光照射装置、画像読取装置、画像形成装置
JP2013201746A (ja) * 2012-02-24 2013-10-03 Ricoh Co Ltd 光照射光学系、画像読取装置及び画像形成装置
KR101351254B1 (ko) * 2012-05-11 2014-01-16 희성전자 주식회사 발광다이오드 바 및 이를 이용한 측면형 백라이트 장치
JP5818747B2 (ja) * 2012-06-25 2015-11-18 京セラドキュメントソリューションズ株式会社 画像読取装置及びこれを備えた画像形成装置
WO2014189822A1 (en) * 2013-05-24 2014-11-27 3M Innovative Properties Company Lightguides
CN103343925B (zh) * 2013-07-19 2015-08-26 深圳市华星光电技术有限公司 显示装置及其制造方法
JP5907935B2 (ja) * 2013-09-03 2016-04-26 キヤノン・コンポーネンツ株式会社 照明装置、イメージセンサユニット、画像読取装置および画像形成装置
US10023325B2 (en) * 2013-12-04 2018-07-17 The Boeing Company Methods and assembly for illuminating a surface of an aircraft passenger cabin
US20150204490A1 (en) * 2014-01-18 2015-07-23 Nthdegree Technologies Worldwide Inc. Printed led layer with diffusing dielectric and conductor layers
US10441156B2 (en) * 2014-09-10 2019-10-15 Medical Instrument Development Laboratories, Inc. Application of highly scattering materials to surgical illumination
JP6391387B2 (ja) * 2014-09-24 2018-09-19 キヤノン株式会社 導光ユニット及びそれを用いた照明装置、画像読取装置
US9470831B2 (en) * 2014-11-20 2016-10-18 Xerox Corporation Light pipe LED illuminator for illuminating an image bearing surface
KR20180001925A (ko) * 2016-06-28 2018-01-05 현대자동차주식회사 면 조명 모듈 및 이를 이용한 차량용 면 조명 광원 유닛
JP7165875B2 (ja) * 2018-05-25 2022-11-07 パナソニックIpマネジメント株式会社 照明用導光板及び照明装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251502A (ja) * 1987-11-17 1989-10-06 Mitsubishi Cable Ind Ltd 発光ダイオード照明具
JPH10177807A (ja) * 1996-12-19 1998-06-30 Tec Corp 面発光装置
JP2003161839A (ja) * 2001-11-28 2003-06-06 Alps Electric Co Ltd 導光体、面発光体および液晶表示装置
JP2003344852A (ja) * 2002-05-22 2003-12-03 Kenwood Corp 液晶表示装置
WO2004055429A1 (ja) * 2002-12-18 2004-07-01 Sharp Kabushiki Kaisha 導光板およびそれを備えた照明装置、平面光源装置ならびに表示装置
JP2004227956A (ja) * 2003-01-23 2004-08-12 Fujitsu Kasei Kk 面照明装置と液晶表示装置
JP2006294343A (ja) * 2005-04-07 2006-10-26 Mitsubishi Rayon Co Ltd Led面状光源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4074977B2 (ja) * 2001-02-02 2008-04-16 ミネベア株式会社 面状照明装置
FR2873243A1 (fr) 2004-07-13 2006-01-20 St Microelectronics Sa Circuit d'alimentation adaptable
KR20060079710A (ko) 2005-01-03 2006-07-06 삼성전자주식회사 셀 간격 측정 방법, 이를 포함하는 액정 표시 장치의 제조방법, 이를 위한 셀 간격 측정 장치 및 이를 포함하는인라인 시스템
JP4463246B2 (ja) * 2006-07-26 2010-05-19 株式会社フジクラ 線状照明装置用の導光体
JP4519148B2 (ja) 2007-02-13 2010-08-04 昭和電工株式会社 照明装置
US7864381B2 (en) 2007-03-20 2011-01-04 Xerox Corporation Document illuminator with LED-driven phosphor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251502A (ja) * 1987-11-17 1989-10-06 Mitsubishi Cable Ind Ltd 発光ダイオード照明具
JPH10177807A (ja) * 1996-12-19 1998-06-30 Tec Corp 面発光装置
JP2003161839A (ja) * 2001-11-28 2003-06-06 Alps Electric Co Ltd 導光体、面発光体および液晶表示装置
JP2003344852A (ja) * 2002-05-22 2003-12-03 Kenwood Corp 液晶表示装置
WO2004055429A1 (ja) * 2002-12-18 2004-07-01 Sharp Kabushiki Kaisha 導光板およびそれを備えた照明装置、平面光源装置ならびに表示装置
JP2004227956A (ja) * 2003-01-23 2004-08-12 Fujitsu Kasei Kk 面照明装置と液晶表示装置
JP2006294343A (ja) * 2005-04-07 2006-10-26 Mitsubishi Rayon Co Ltd Led面状光源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072735A (ja) * 2014-09-29 2016-05-09 三菱電機株式会社 照明ユニット、画像読取装置及び画像読取方法

Also Published As

Publication number Publication date
US20110299295A1 (en) 2011-12-08
JP2010198851A (ja) 2010-09-09
US8727591B2 (en) 2014-05-20
JP5336880B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5336880B2 (ja) 発光装置
KR100977336B1 (ko) 발광 장치 및 이를 구비하는 조명 장치
KR101565609B1 (ko) 균일한 시준된 광을 생성하기 위한 컴팩트한 광학 시스템 및 렌즈
KR101392519B1 (ko) 광원 장치
US7431492B2 (en) Light control member, surface light source device and display
WO2010058554A1 (ja) 光学素子および発光装置
JP5306799B2 (ja) 光学素子および発光装置
JP5144904B2 (ja) ドキュメント照射装置
WO2010044190A1 (ja) 光学素子および発光装置
US20120328242A1 (en) Optical system for coupling light from point light sources into a flat light guide
JP5543157B2 (ja) 光学素子および発光装置
JP6207384B2 (ja) 照明装置及び光学部材
JP2004319482A (ja) 光偏向部材を備える導光板及び側面発光型バックライト装置
JP2012003845A (ja) 発光装置
JP2011232512A (ja) レンズ部材及び光学ユニット
TW201122370A (en) LED linear light source and reading device.
JPWO2006049206A1 (ja) 照明装置、およびこれを用いた画像読み取り装置
TWI528100B (zh) 原稿照明裝置、密著型影像感測器模組及圖像讀取裝置
JP2010507191A (ja) 照明装置
JP5363884B2 (ja) 発光装置および光学素子
JP5332039B2 (ja) 光照射装置
JP5336879B2 (ja) 光学素子および発光装置ならびに道路灯
US20120140522A1 (en) Reflecting structure, light-scattering member, light-guiding plate and lighting device
JP2000138796A (ja) 原稿照明装置
JP5401331B2 (ja) 光学素子および発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13202806

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10745923

Country of ref document: EP

Kind code of ref document: A1