WO2010058554A1 - 光学素子および発光装置 - Google Patents

光学素子および発光装置 Download PDF

Info

Publication number
WO2010058554A1
WO2010058554A1 PCT/JP2009/006157 JP2009006157W WO2010058554A1 WO 2010058554 A1 WO2010058554 A1 WO 2010058554A1 JP 2009006157 W JP2009006157 W JP 2009006157W WO 2010058554 A1 WO2010058554 A1 WO 2010058554A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
incident
prism
guided
Prior art date
Application number
PCT/JP2009/006157
Other languages
English (en)
French (fr)
Inventor
篠原克徳
Original Assignee
日東光学株式会社
小池康博
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東光学株式会社, 小池康博 filed Critical 日東光学株式会社
Priority to US13/129,284 priority Critical patent/US8616746B2/en
Publication of WO2010058554A1 publication Critical patent/WO2010058554A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0018Redirecting means on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • G02B6/0021Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses

Definitions

  • the present invention relates to an optical element and a light emitting device.
  • LED lighting devices have been put to practical use as an alternative to incandescent bulbs and fluorescent lamps due to the high power and high efficiency of LEDs (Light Emitting Diodes).
  • LEDs Light Emitting Diodes
  • LEDs are smaller in size and have a higher luminous flux density.
  • incandescent bulbs and fluorescent lamps emit light in all directions, whereas LEDs have a feature that the directivity of light rays is narrow.
  • power LEDs of 3W and 10W have been put into practical use.
  • the light guide plate has an incident portion that guides light from the LED, a front surface portion that emits the light, a back surface portion that is located on the opposite side of the front surface portion, and a side surface portion that connects the front surface portion and the back surface portion.
  • the incident portion is provided on the inner side of the side surface portion, and the optical element (prism) having an inclined surface corresponding to the light bundle from the LED is continuously provided on the surface portion at a position corresponding to the luminance distribution or light energy distribution of the light source. It is done.
  • the prism has a density distribution that increases functionally in proportion to the distance from the LED. (See Patent Document 1).
  • the pitch and distribution of the prisms are made finer in the light guide portion where the distance from the LED is long and the luminance tends to be low. By doing so, the same brightness and energy can be emitted to the emission surface side, and the product of the emitted light quantity and the emission angle can be emitted equally at any position of the light guide plate.
  • the flat illumination device described in Patent Document 1 has strong light directivity and a wide light irradiation range. Therefore, the flat illumination device described in Patent Literature 1 is suitable for backlighting of liquid crystal displays of mobile devices such as mobile phones, electronic notebooks, and portable personal computers.
  • the flat illumination device described in Patent Document 1 is used for other purposes such as illumination, it is necessary to increase the output area of the output light of the light guide unit in order to widen the light irradiation range. This increases the size and cost of the equipment.
  • an object of the present invention is to provide an optical element and a light-emitting device that can widen the light irradiation range even when the emission area is small, and can reduce the size of the device.
  • the optical element of the present invention includes a plate-shaped light guide part through which light is guided, and the light guide part has a cross-sectional shape for redirecting the light guided to one surface thereof.
  • the prism portion has a plurality of saw teeth, and the prism portion reflects the saw blades at a position separated from the incident angle where the parallel light guided to the light guide portion enters the reflecting surface of the incident side saw blade. The incident angle incident on the surface is increased.
  • the optical element of the present invention includes a plate-like light guide part through which light is guided, and the light guide part has a cross-section that changes the direction of the light guided to one surface thereof.
  • the prism portion has a plurality of sawtooth shapes, and the prism portion has a sawtooth projection angle at a distance away from the sawtooth projection angle on the incident side of light guided to the light guide portion. ing.
  • the incident angle at which light is incident on the reflective surface of the saw blade or the projection angle of the saw blade is gradually increased from the incident side toward the separation position.
  • a reflection portion that reflects light guided to the light guide portion to the same side as the side on which the prism portion changes the direction is provided on the end portion side separated from the incident side of the light guide portion of the prism portion. It is preferable.
  • the saw blades are provided concentrically, the incident-side prism portion is a prism portion on the side close to the center of the concentric circle, and the separated prism portion is a prism portion on the side away from the center of the concentric circle. preferable.
  • the light guide part is a translucent resin
  • the light guide part preferably contains light scattering particles
  • the light scattering particles are preferably translucent silicone particles having a particle diameter of 1 to 10 ⁇ m.
  • a light-emitting device of the present invention includes a plate-shaped light guide part that guides light and a light-emitting member that emits light, and the light guide part is guided to one surface thereof.
  • the light-emitting device of the present invention includes a plate-shaped light guide unit that guides light and a light-emitting member that emits light, and the light guide unit guides light to one surface thereof.
  • the prism portion has a sawtooth cross-section that changes the direction of the emitted light, and the prism portion has a sawtooth projection angle at a distance from the light emitting member larger than a sawtooth projection angle on the light emitting member side.
  • the incident angle at which light enters the reflective surface of the saw blade or the projection angle of the saw blade is gradually increased from the light emitting member side toward the separation position.
  • the present invention it is possible to provide an optical element and a light-emitting device that can widen the light irradiation range even if the emission area is small, and can reduce the size of the device.
  • FIG. 2 is a cross-sectional view taken along the line AA of the plan view of FIG. It is an enlarged view which shows the detail of the part of the reflective surface of the translucent member in sectional drawing of FIG. It is a graph which shows angle distribution ( ⁇ , ⁇ ) of scattered light intensity by a single true spherical particle.
  • ⁇ , ⁇ angle distribution
  • the light-emitting device which concerns on embodiment of this invention WHEREIN:
  • FIG. It is a figure which shows distribution of the brightness in the 1st modification of the light-emitting device which concerns on embodiment of this invention. It is a figure which shows distribution of the brightness in the light-emitting device which concerns on embodiment of this invention. It is a figure which shows distribution of the brightness in the 2nd modification of the light-emitting device which concerns on embodiment of this invention. It is a figure which shows distribution of the brightness in the 3rd modification of the light-emitting device which concerns on embodiment of this invention.
  • FIG. 1 is a plan view showing a configuration of a translucent member 1 that is an optical element according to an embodiment of the present invention
  • FIG. 2 is a front view thereof
  • FIG. 3 is a bottom view thereof.
  • the translucent member 1 has a circular outer shape and contains transparent and transparent silicone particles (not shown) having a particle diameter of several ⁇ m as light scattering particles.
  • the translucent member 1 includes a planar circular first light guide 2 (a part of the light guide) disposed at the center and a donut-shaped second light guide 3 (guide) disposed around the first light guide 2. Part of the light part).
  • the first light guide unit 2 includes an incident unit 11 (see FIGS. 3 and 4) that makes light incident on the first light guide unit 2 and an incident unit 11 that reflects the light incident on the incident unit 11. And a reflecting surface 12 disposed on the opposite surface.
  • the center of the reflecting surface 12 is a center point 13, which is the center of the translucent member 1, the center of the first light guide 2, and the center of the second light guide 3. It becomes.
  • the translucent member 1 guides light incident on the incident portion 11 to the reflection surface 12 and guides light reflected by the reflection surface 12 to the second light guide portion 3.
  • the first light guide portion 2 and the second light guide portion 3 are integrated by two-material molding, and the translucent member 1 is formed as a completely complete component.
  • the upper side in FIG. 2 is referred to as the upper surface of the translucent member 1
  • the lower side is referred to as the lower surface of the translucent member 1.
  • the outer radius (R1) of the first light guide 2 shown in FIG. 1 is 11 mm, and the outer radius (R2) of the second light guide 3 is 80 mm. Accordingly, among the translucent member 1, the area where the first light guide portion 2 is occupied, obtained in ( ⁇ R1 2 / ⁇ R2 2), is about 1.89%.
  • the upper surface of the second light guide portion 3 of the translucent member 1 is a flat surface, and the lower surface of the second light guide portion 3 extends from the end portion 5 of the translucent member 1 to the translucent member 1.
  • the thickness gradually increases toward the first light guide portion 2 which is the center of the light guide.
  • the reflection part 16 which totally reflects the light guide
  • the reflecting portion 16 is disposed concentrically around the center point 13.
  • the 1st light guide part 2 has the cylindrical LED holding
  • the circular first light guide 2 is disposed at the center of the translucent member 1, and the ring-shaped LED holding portion 17 is disposed on the lower surface side of the first light guide 2. ing. Further, the ring-shaped reflecting portion 16 is formed so as to have the same shape at each point along the entire circumference on the lower surface side of the end portion 15 of the second light guide portion 3.
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG.
  • the LED holding part 17 has a cylindrical shape protruding to the lower surface side.
  • the LED holding unit 17 forms a part of the first light guide unit 2, but is disposed on the lower surface side of the second light guide unit 3 and formed as a part of the second light guide unit 3. May be.
  • the inner peripheral surface 17 a of the LED holding portion 17 extends to the lower surface side perpendicular to the plane of the incident portion 11.
  • the inner peripheral surface 17 a of the LED holding portion 17 extends to the lower surface side perpendicular to the plane of the incident portion 11.
  • the outer peripheral surface 17b of the LED holding portion 17 is formed to have an acute angle ⁇ with respect to the inner peripheral surface 17a.
  • the incident light is reflected and guided to the first light guide unit 2 or the second light guide unit 3.
  • FIG. 5 is an enlarged view showing the details of the peripheral portion of the reflecting surface 12 of the translucent member 1 in the cross-sectional view of FIG. A portion of the reflecting surface 12 that is recessed downward is a center point 13.
  • the light transmissive member 1 shown in FIG. 5 contains light scattering particles 21.
  • the light scattering particles 21 are silicone particles having a particle diameter of 1 to 10 ⁇ m, and are contained in the first light guide 2 at a higher density than the second light guide 3. Specifically, the content of the light scattering particles 21 in the first light guide 2 is 0.1% by weight, and the content of the light scattering particles 21 in the second light guide 3 is 0.06% by weight. It is.
  • the light scattering particles 21 contained in the first light guide 2 have a product of ⁇ and T of 0.1 or more, where ⁇ is the scattering parameter and T is the thickness of the first light guide 2. The range is 50 or less.
  • the LED holding unit 17 also contains the light scattering particles 21, and the content thereof is the same as that of the first light guide unit 2.
  • the LED holding unit 17 may not contain the light scattering particles 21 or may have the same content as the second light guide unit 3.
  • the light scattering particles 21 are dispersedly arranged.
  • the light scattering particle 21 is a light guide having a volumetric uniform scattering ability, and includes a large number of spherical particles as scattering fine particles. When light enters the first light guide 2 or the second light guide 3, the light is scattered by the scattering particles.
  • Mie diffusion theory is the solution of Maxwell's electromagnetic equation for the case where spherical particles (scattering fine particles) having a refractive index different from that of the medium exist in a medium (matrix) having a uniform refractive index. .
  • the intensity distribution I ( ⁇ , ⁇ ) depending on the angle of scattered light scattered by the scattering fine particles corresponding to the light scattering particles 21 is expressed by the following equation (1).
  • is a size parameter indicating the optical size of the scattering fine particles, and is an amount corresponding to the radius r of the spherical particles (scattering fine particles) normalized by the wavelength ⁇ of light in the matrix.
  • i 1 and i 2 in the formula (1) are represented by the formula (4).
  • a and b with the subscript ⁇ in the expressions (2) to (4) are expressed by the expression (5).
  • P (cos ⁇ ) with superscript 1 and subscript ⁇ is Legendre's polynomial
  • a and b with subscript ⁇ are first-order and second-order Recati-Bessel functions ⁇ * , ⁇ * (where “*” Means the subscript ⁇ ) and its derivative.
  • m is the relative refractive index of the scattering fine particles based on the matrix
  • m nscatter / nmattrix.
  • FIG. 6 is a graph showing the intensity distribution I ( ⁇ , ⁇ ) by a single true spherical particle based on the above equations (1) to (5).
  • FIG. 6 shows an angular distribution I ( ⁇ , ⁇ ) of scattered light intensity when there is a true spherical particle as a scattering fine particle at the position of the origin G and incident light is incident from below.
  • the distance from the origin G to each of the curves S1 to S3 is the scattered light intensity in each scattering angle direction.
  • Curve S1 shows the scattered light intensity when ⁇ is 1.7
  • curve S2 shows the scattered light intensity when ⁇ is 11.5
  • curve S3 shows the scattered light intensity when ⁇ is 69.2. Yes.
  • the scattered light intensity is shown on a logarithmic scale. For this reason, the portion that appears as a slight difference in intensity in FIG. 6 is actually a very large difference.
  • the larger the size parameter ⁇ is (the larger the particle size of the true spherical particle is when considered at a certain wavelength ⁇ ), the higher the directivity with respect to the upper side (front of the irradiation direction). It can be seen that light is highly scattered. Actually, the angle distribution I ( ⁇ , ⁇ ) of the scattered light intensity is controlled by using the radius r of the scatterer and the relative refractive index m of the medium and the scattered fine particles as parameters if the incident light wavelength ⁇ is fixed. can do.
  • I ( ⁇ ) in the equation (6) is the scattering intensity of the true spherical particle having the size parameter ⁇ represented by the equation (1). Assuming that light having an intensity Io is incident on the light-scattering light guide and transmitted through the distance y, the intensity of the light is attenuated to I due to scattering, and these relationships are expressed by the following equation (7).
  • is called turbidity (synonymous with the above-mentioned scattering parameter), corresponds to the scattering coefficient of the medium, and is proportional to the number N of particles as in the following equation (8).
  • ⁇ s is a scattering cross section.
  • the degree of multiple scattering in the light scattering light guide can be controlled by changing the turbidity ⁇ .
  • FIG. 7 is an enlarged schematic view mainly showing a portion of the second light guide portion 3 of the translucent member 1 in the cross-sectional view of FIG.
  • the second light guide section 3 includes a prism section 22 having a sawtooth cross section on a concentric circle centered on the center point 13 on the lower surface thereof.
  • the prism portion 22 is formed with a total of 225 saw teeth 23 in this embodiment. In FIG. 7, only 25 saw teeth 23 in total are shown for simplification.
  • the prism unit 22 changes the direction of the light guided to the lower surface side of the second light guide unit 3 to the upper surface side.
  • the projection angle ⁇ of the saw tooth 23 closer to the center point 13 is smaller than the projection angle ⁇ of the saw tooth 23 far from the center point 13.
  • the protrusion angle ⁇ of the saw blade 23 will be specifically described.
  • the projection angle ⁇ of the 25 saw teeth 23 present in the width of 5 mm closest to the center point 13 is 50 °.
  • the projection angle ⁇ of the 25 saw teeth 23 having a width of 5 mm on the side closer to the center point 13 is 55 °.
  • the projection angle ⁇ of the 25 saw teeth 23 existing in a width of 5 mm on the side closer to the center point 13 is 60 °.
  • the projection angle ⁇ of the 25 saw teeth 23 existing in a width of 5 mm on the side closer to the center point 13 is 65 °.
  • the projection angle ⁇ of the 50 saw teeth 23 present in a width of 10 mm on the side closer to the center point 13 is 70 °.
  • the projection angle ⁇ of the 75 saw teeth 23 present in the width of 15 mm farthest from the center point 13 is 75 °.
  • the prism portion 22 is divided into five groups of saw teeth 23, and the projection angle ⁇ and the incident angle ⁇ are gradually increased from the center point 13 toward the end portion 15 for each group. That is, the prism portion 22 is separated from the incident angle ⁇ where the parallel light guided to the second light guide portion 3 is incident on the reflecting surface 24 of the sawtooth 23 on the incident side (center portion 13 side). The incident angle ⁇ incident on the reflecting surface 24 of the sawtooth 23 at the position (on the end 15 side) is increased. Further, in the prism portion 22, the projection angle ⁇ of the sawtooth 23 at a remote position is larger than the projection angle ⁇ of the sawtooth 23 on the incident side of the light guided to the second light guide portion 3. .
  • each individual saw tooth 23 may be gradually increased toward the outer periphery.
  • interval H of the adjacent sawtooth 23 is 0.2 mm.
  • the sawtooth 23 has a point-symmetric arrangement with the center point 13 as a symmetry point.
  • the crossing angle ⁇ formed by the line L connecting the projection tops of the sawtooth 23 in the radial direction and the upper surface of the second light guide 3 is 6.5 °.
  • the angle ⁇ between the surface on the center point 13 side of each saw tooth 23 and the line L is 90 °, but the angle ⁇ may be larger than 90 °. By doing so, it becomes easy to remove the translucent member 1 from the mold when the translucent member 1 is molded with a mold.
  • a reflecting portion 16 is installed on the lower surface on the end 15 side adjacent to the sawtooth 23 farthest from the center point 13.
  • An angle ⁇ 1 formed by the surface of the reflecting portion 16 and the upper surface of the second light guide portion 3 is 30 °.
  • FIG. 8 is a diagram showing a configuration of a light emitting device 40 according to the embodiment of the present invention, in which a chip-shaped LED 30 that is a light emitting member is attached to the translucent member 1 shown in FIG.
  • the LED 30 is disposed in a portion surrounded by the incident portion 11 and the LED holding portion 17 of the translucent member 1.
  • the lower end portion 31 of the LED 30 has a disc shape, and the outer peripheral surface 32 thereof faces the inner peripheral surface 17 a of the LED holding portion 17.
  • the outer peripheral surface 32 of the lower end 31 and the inner peripheral surface 17a of the LED holding unit 17 are fixed by a fixing member (not shown).
  • the LED 30 is fixed to the LED holding part 17 by the fixing.
  • the LED 30 is arranged at a position corresponding to the center point 13.
  • Light traveling from a medium having a high refractive index (PMMA) to a medium having low refractive index (air) has an incident angle ⁇ 2 with respect to the boundary surface (reflective surface 12) having a total reflection critical angle (41.84 °) or more.
  • the reflection surface 12 is irradiated at an angle, the reflection surface 12 is totally transmitted without passing through the boundary surface.
  • the incident angle ⁇ ⁇ b> 2 is an angle formed by the normal line and the incident light at the point where the incident light strikes the reflecting surface 12.
  • the reflection surface 12 is formed so as to satisfy the condition for this total reflection, and the light after reflection is parallel to the upper surface of the second light guide 3. For this reason, most of the light from the LED 30 is totally reflected by the reflecting surface 12, becomes parallel light, and is guided to the second light guide unit 3.
  • a curve F (x) connecting these two points is a parabolic curve that is a kind of aspherical surface, and a differential F ′ (x) thereof is “tan (90 ⁇ t / 2)”.
  • the light transmissive member 1 contains light scattering particles 21. Therefore, light is scattered in the process until the light incident on the first light guide unit 2 from the LED 30 reaches the reflection surface 12 and in the process of being guided from the reflection surface 12 to the second light guide unit 3. .
  • the light-scattering particles 21 cause multiple scattering without attenuating most of the light in the translucent member 1. Therefore, a part of the incident light passes through the reflecting surface 12 of the first light guide unit 2 and is emitted to the upper surface side.
  • the size of the light scattering particles 21 is increased based on the above-described Mie scattering theory, so that the ratio of light scattering in the traveling direction of the incident light is increased. Is almost the same. That is, most of the light incident on the incident portion 11 travels from the first light guide portion 2 to the second light guide portion 3 as substantially parallel light along the broken line with arrows shown in FIG. .
  • the light scattering particle 21 generates a part of the light emitted from the LED 30 through the reflecting surface 12 and emitted to the outside. That is, a part of the light emitted from the LED 30 is emitted from the first light guide unit 2 to the upper surface side.
  • the light irradiated to the prism unit 22 is redirected to the upper surface side of the second light guide unit 3.
  • the emission angle ⁇ ⁇ b> 3 is smaller toward the outer peripheral side of the translucent member 1. That is, when the translucent member 1 is viewed as a light source, the light source does not have directivity and becomes a light source that illuminates a wide-angle range (see FIG. 7). Since a part of the light traveling through the second light guide 3 is scattered by the light scattering particles 21, a part of the light irradiated to the prism part 22 is transmitted through the saw blade 23 that collides first.
  • the light whose direction has been changed in this way increases as the projection angle ⁇ of the sawtooth 23 moves from the LED 30 side of the second light guide 3 toward the end 15 of the second light guide 3 as described above.
  • the light is emitted from the upper surface of the second light guide 3 so that the emission angle ⁇ 3 decreases as the distance from the LED 30 increases.
  • the light guided to the reflection unit 16 is reflected by the reflection unit 16 and guided to the upper surface side of the second light guide unit 3 and is emitted from the upper surface.
  • the LED 30 has strong light directivity, strong light in the direction of the central point 13, and weak light in a direction away from the central point 13. Therefore, in FIG. 7, the amount of light guided from the lower region (region near the center point 13) and the middle region (region slightly away from the center point 13) of the reflecting surface 12 is large, and the upper region of the reflecting surface 12 The amount of light guided from the region decreases toward the (region close to the second light guide unit 3).
  • the prism unit 22 that mainly redirects the light guided to the lower region and the middle region of the reflecting surface 12 redirects most of the light emitted by the LED 30, and the remaining light is reflected by the reflecting unit 16. Turn around. As a result, most of the light traveling through the second light guide 3 is emitted from the upper surface side.
  • the second light guide 3 also contains light scattering particles 21. Therefore, the light that enters the second light guide unit 3 from the reflection surface 12 and travels is transmitted in the course of the process, and the light is irradiated from the prism unit 22 to the upper side of the second light guide unit 3. Scattering complicated.
  • the light scattering particles 21 cause multiple scattering that causes most of the light in the second light guide 3 to be scattered in the same direction as the incident direction. Therefore, a lot of light has a uniform traveling direction, and the light is irradiated along the broken line shown in FIG. However, a part of the scattered light takes a path different from the path of the broken line in FIG.
  • the second light guide 3 contains the light scattering particles 21 at a high density, the light irradiation from the upper surface of the translucent member 1 is blurred unlike the light of the LED or the bare light bulb. It becomes a feeling of irradiation state. Moreover, since the light of the light source close
  • the translucent member 1 and the light emitting device 40 include the first light guide unit 2 including the reflective surface 12. Therefore, most of the light incident on the incident portion 11 travels from the first light guide portion 2 to the second light guide portion 3 as substantially parallel light along the broken line with arrows shown in FIG. While scattering moderately in other directions. Therefore, it is possible to provide the translucent member 1 and the light emitting device 40 that are suitable for surface light emission while suppressing the occurrence of glare and dark parts.
  • the translucent member 1 and the light emitting device 40 totally reflect most of the light emitted linearly to the upper part of the LED 30 without passing as it is, and do not block the central light with the reflecting mirror. Moreover, a part of strong light from the LED 30 is scattered and passed through the reflecting surface 12, and the reflecting surface 12 also becomes a part of the light source. Further, the second light guide 3 emits most of the incident light to the same surface as the light passing through the reflecting surface 12. Therefore, the translucent member 1 and the light emitting device 40 are suitable for surface light emission and can suppress the occurrence of a portion that is extremely dazzling. Furthermore, since the translucent member 1 and the light emitting device 40 can emit most of the incident light to the upper surface side, the light efficiency is improved.
  • a part of the light incident on the first light guide unit 2 passes through the reflecting surface 12 and becomes a surface light source from the first light guide unit 2, and the remaining light becomes substantially parallel light as the second light. Since the light enters the light guide 3 and then exits from the upper surface side of the second light guide 3 and becomes a surface light source from the second light guide 3, the irradiation loss of the light emitting device 40 can be suppressed. Further, even if the light incident on the second light guide 3 is irradiated on the upper surface of the second light guide 3 without being substantially parallel light, the light is not diffused because it is totally reflected there. Further, the irradiation loss of the light emitting device 40 can be suppressed.
  • the irradiation loss of the light emitting device 40 is further suppressed. it can.
  • grains 21 is made higher in the direction of the 1st light guide part 2 than the 2nd light guide part 3, the light which injected into the 1st light guide part 2 is a reflective surface. 12, the light irradiation distribution of the entire translucent member 1 can be made substantially uniform. Since the degree of multiple scattering can be controlled by the scattering parameter ⁇ , it can be appropriately adjusted so that the brightness of the light passing through the reflecting surface 12 and the light emitted from the upper surface of the second light guide 3 is constant. . 10, 11, 12, and 13, the content ratio of the light scattering particles 21 of the second light guide 3 is constant (0.06 wt%), and the light scattering of the first light guide 2 is performed.
  • the brightness distribution of the light emitting device 40 when the content rate of the particles 21 is changed is shown.
  • the method of changing the content ratio of the light scattering particles 21 in the first light guide section 2 and the second light guide section 3 is the same as that of the first light guide section 2 and the second content ratio.
  • the light guide 3 is formed in advance, and both are formed and integrated.
  • FIG. 10 shows the brightness distribution of the light-emitting device 40 (the light-emitting device 40 of the first modified example) in which the light-scattering particles 21 are not contained in the first light guide unit 2 (content rate 0%).
  • the second light guide 3 is brighter than the first light guide 2.
  • the brightness can also be confirmed from the first light guide 2 because the LED 30 that is a light source is not a point light source, and there is light that does not totally reflect and passes through the reflecting surface 12.
  • 10, 11, 12, and 13 are distances from the center point 13 when the position of the center point 13 is “0”.
  • the first light guide 2 has a diameter of 22 mm
  • the second light guide 3 has a diameter of 160 mm.
  • FIG. 11 shows that the content of the light scattering particles 21 in the first light guide 2 is 0.03% by weight and the content of the light scattering particles 21 in the second light guide 3 (0.06 wt%). Also, the brightness distribution of the light emitting device 40 (the light emitting device 40 of the second modified example) when it is reduced to 1/2 is shown. It can be seen that the second light guide 3 is slightly brighter than the first light guide 2. This is because the light passing through the reflecting surface 12 increases as a result of scattering by the light scattering particles 21, so that the brightness of the first light guide unit 2 increases, and as a result, the light entering the second light guide unit 3. This is because of the decrease.
  • FIG. 12 shows that the content of the light scattering particles 21 in the first light guide 2 is 0.1 wt% and the content of the light scattering particles 21 in the second light guide 3 (0.06 wt%). Also, the brightness distribution of the light emitting device 40 when the number is slightly increased is shown. This is the light emitting device 40 according to the above-described embodiment. It turns out that the brightness of the 1st light guide part 2 and the 2nd light guide part 3 is substantially equalized. This is because the light scattering particles 21 of the first light guide 2 are further increased, so that the light passing through the reflecting surface 12 is further increased, while the light entering the second light guide 3 is further decreased. It is.
  • FIG. 13 shows that the content of the light scattering particles 21 in the first light guide 2 is 0.3 wt% and the content of the light scattering particles 21 in the second light guide 3 (0.06 wt%).
  • the brightness distribution of the light-emitting device 40 (the light-emitting device 40 of the third modified example) when the number is increased five times is shown. It can be seen that the brightness of the first light guide 2 is higher than that of the second light guide 3.
  • FIG. 14 shows the relationship between the light diffusion angle and the light transmittance when the concentration of the light scattering particles 21 having a particle size of 7.3 ⁇ m is changed in a PMMA plate having a thickness of 10 mm.
  • the diffusion angle is an angle in which the angle at which the scattered and spread light becomes a half value of the central illuminance is expressed in full-width display.
  • the content of the light scattering particles 21 is 0.06% by weight, the light scattering particles 21 hardly diffuse and the transmittance is about 98%.
  • the brightness and emission direction of the translucent member 1 can be variously set.
  • the light scattering particle 21 has a scattering parameter ⁇ (1 / ⁇ is the mean free path and its unit is cm), and the thickness of the first light guide 2 is T (unit is cm). Is within the range of 0.1 to 50. If the product of ⁇ and T is less than 0.1, the mean free path of the light becomes long, and the amount of light scattered within the distance of the plate thickness T is reduced. It becomes impossible to emit a light beam to the outside. On the other hand, if the product of ⁇ and T exceeds 50, the mean free path of the light beam is shortened, the amount of light that is multiple-scattered within the distance of the plate thickness T increases, and the backscattering increases as shown in FIG. The light transmittance to the front is lowered. That is, the light quantity efficiency of entering the incident portion 11 and causing the light to travel from the first light guide portion 2 to the second light guide portion 3 along the broken line with an arrow in FIG.
  • the projection angle ⁇ of the saw blade 23 on the side close to the center point 13 is smaller than the projection angle ⁇ of the saw blade 23 on the side far from the center point 13. Therefore, on the side far from the center point 13, light can be irradiated in a direction away from the LED 30, and light can be irradiated at a wide angle. Therefore, the light emitting device 40 is suitable for use as a lighting device that can illuminate a wide range. Moreover, the light emitting device 40 can be thinned by irradiating light at a wide angle. Also, by irradiating light at a wide angle, when a large number of light emitting devices 40 are modularized and arranged in a large number, the number of modules can be reduced, and cost can be reduced.
  • the illumination device 40 can irradiate light at a wide angle because in FIG. 10, FIG. 11, FIG. 12, and FIG. 13, the position away from the translucent member 1 is also bright. it is obvious.
  • the projection angle ⁇ can be changed as appropriate, the light emission method can be changed depending on the application of the light emitting device 40 or the like.
  • the light emission method can be wide-angle irradiation as described above, or narrow-angle irradiation like downlight.
  • the projection angle ⁇ is It is preferable to set between 45 ° and 75 °.
  • the reflection part 16 which reflects the light guided to the upper surface side is formed in the lower part of the end part 15 at a position away from the LED 30 in the second light guide part 3, the prism part 22 is formed. Even when there is enough light that cannot be redirected, the light can be redirected to the upper surface side.
  • the optical element (translucent member 1) and the light emitting device 40 according to the embodiment of the present invention are plate-shaped light guides (first light guide unit 2 and second light guide unit 3) through which light is guided.
  • the second light guide unit 3 includes a prism unit 22 having a plurality of saw teeth 23 having a cross-sectional shape that changes the direction of the light guided to one surface of the second light guide unit 3.
  • the incident angle ⁇ at which the parallel light guided to the light guide 3 is incident on the reflecting surface 24 of the saw blade 23 at a distance from the incident angle ⁇ is greater than the incident angle ⁇ incident on the reflecting surface 24 of the incident-side saw tooth.
  • the light guided to the second light guide 3 is not limited to parallel light.
  • the prism portion 22 may be disposed at the boundary between the first light guide portion 2 and the second light guide portion 3 or at a part of the first light guide portion 2. Further, only the second light guide 3 may be used as the plate-shaped light guide.
  • the optical element (translucent member 1) includes plate-like light guides (first light guide 2 and second light guide 3) through which light is guided.
  • the second light guide section 3 includes a prism section 22 having a plurality of saw teeth 23 having a cross-sectional shape for changing the direction of light guided to one surface of the second light guide section 3.
  • the prism section 22 is a second light guide section.
  • the projection angle ⁇ of the sawtooth 23 at a remote position away from the projection angle ⁇ of the sawtooth 23 on the incident side of the light guided to the portion 3 is made larger.
  • the prism part 22 may be arranged at the boundary between the first light guide part 2 and the second light guide part 3 or at a part of the first light guide part 2.
  • the incident angle ⁇ at which light is incident on the reflecting surface 24 of the saw blade 23 or the projection angle ⁇ of the saw blade 23 is gradually increased from the incident side toward the separation position.
  • a part of the sawtooth 23 in which the incident angle ⁇ closer to the incident side than the separation position or the projection angle ⁇ of the sawtooth 23 becomes larger may be mixed.
  • “gradually larger” means that the incident angle ⁇ or the projection angle ⁇ of each saw tooth 23 is not the case where it is gradually increased between groups as in the above-described embodiment, or not between groups. It includes both cases where the difference is made gradually larger.
  • it can be set to 2 groups, 4 groups, or 7 groups.
  • the light guided to the light guide part is reflected to the same side as the side on which the prism part 22 changes direction on the end 15 side away from the incident side of the second light guide part 3 of the prism part 22.
  • the reflecting part 16 to be provided is provided.
  • the reflecting portion 16 is not an essential component and may be omitted.
  • the prism portion 22 may be extended to the end portion 15.
  • the sawtooth 23 is provided concentrically, the incident-side prism portion 22 is the prism portion 22 on the side close to the center of the concentric circle, and the prism portion 22 on the side away from the center of the concentric circle 22 is preferable.
  • the second light guide section 3 may have a polygonal shape such as a triangular shape or a quadrangular shape, or an elliptical shape.
  • the planar shape of the first light guide unit 2 may be a polygonal shape or an elliptical shape.
  • the prism portion 22 may have a shape in which polygons having a common center are arranged at intervals.
  • the light guides are translucent resins, the light guide contains light scattering particles 21, and the light scattering particles 21 Translucent silicone particles having a particle diameter of 1 to 10 ⁇ m are preferable. However, the light scattering part 21 may not be included in the light guide part.
  • the optical element (translucent member 1) includes an incident portion 11 that receives light, a first light guide portion 2 that guides light incident on the incident portion 11 to a reflecting surface 12, and A reflection surface 12 that is provided on the opposite side to the light incident side of one light guide portion 2 and totally reflects light that takes a linear locus among incident light; and a second light guide that guides the reflected light.
  • the first light guide unit 2 includes light scattering particles 21 that multiplex-scatter light and generate light that passes through the reflection surface 12 and exits to the outside.
  • the second light guide unit 3 emits part or all of the incident light to the same surface side as the light passing through the reflecting surface 12. However, the light scattering particles 21 may also be included in the second light guide 3.
  • the incident part 11 is formed by the lower surface side of the 1st light guide part 2, and the LED holding
  • the light emitted from the second light guide 3 is emitted to the same side as the light passing through the reflecting surface 12, but part or all of the light is emitted from the lower surface side of the second light guide 3. You may make it radiate
  • the optical element (translucent member 1) includes a second sawtooth-shaped prism portion 22 that changes the direction of the guided light in the same direction as the reflecting surface 12 side.
  • the light guide 3 is provided on the side opposite to the reflecting surface 12 side.
  • the prism portion 22 may be provided on the upper surface side of the second light guide portion 3. Further, the prism portion 22 may be a straight line such as a straight line L or a curved line shape instead of a sawtooth shape.
  • the second light guide 3 contains the light scattering particles 21, and the content ratio of the light scattering particles 21 is the second guide.
  • the first light guide portion 2 is made higher than the light portion 3.
  • the content ratio of the light-scattering particles 21 may be lower than that of the second light guide section 3 or may be equal.
  • the second light guide 3 may not contain the light scattering particles 21.
  • the light scattering particle 21 in the optical element (translucent member 1) has a product of ⁇ and T, where ⁇ is the scattering parameter and T is the thickness of the first light guide.
  • the range is from 0.1 to 50.
  • the product of ⁇ and T may be in other ranges, for example, 0.01, 0.05, 60, 70, 80, etc.
  • the light emitting device 40 includes a light emitting member (LED 30) that makes light incident on the incident portion 11, and the first light guide portion 2 scatters light and passes through the reflecting surface 12.
  • LED 30 light emitting member
  • Light scattering particles 21 that generate light emitted to the outside are contained, and the second light guide 3 emits a part or all of the incident light to the same surface side as the light passing through the reflecting surface 12.
  • the light scattering particles 21 may also be included in the second light guide 3.
  • a light emitting member it is good also as a reflecting member which reflects the light of the light guide which guides the light of a light source instead of the light source which injects light into the incident part 11 directly.
  • the second light guide 3 is plate-shaped, and the planar first circular light guide 3 is centered on the plate-shaped second light guide 3.
  • a light guide 2 is disposed.
  • the second light guide section 3 may have a polygonal shape such as a triangular shape or a quadrangular shape, or an elliptical shape.
  • the planar shape of the first light guide unit 2 may be a polygonal shape or an elliptical shape.
  • the light transmissive member 1 is a light transmissive resin
  • the light scattering particles 21 are light transmissive silicone particles having a particle diameter of 1 to 10 ⁇ m.
  • the light scattering particles 21 are also contained in the second light guide.
  • various particles can be used regardless of the material, shape, particle diameter, and the like as long as the light in the translucent member 1 is subjected to multiple scattering.
  • the light scattering particle 21 has a particle diameter of 1 to 10 ⁇ m in order to scatter light in other directions while keeping the light along the light traveling path (broken line with arrows) shown in FIG. It is preferable to use translucent silicone particles.
  • the particle size of the silicone particles by setting the particle size of the silicone particles to 1 ⁇ m or more, it is possible to suppress the spread of the angle distribution and reduce the backscattering component. As a result, the light intensity to the front is reduced and the amount of light guided to the second light guide 3 can be prevented from excessively decreasing, and the light is transmitted through the reflecting surface 12 of the first light guide 2. It becomes easy to suppress an excessive increase in the amount of light.
  • the particle size of the silicone particles to 10 ⁇ m or less, it is possible to suppress the angle distribution from becoming too narrow, and it is possible to secure a sufficient amount of light that passes through the reflecting surface 12 of the first light guide unit 2.
  • the thing made from PMMA is used for the translucent member 1, it is a polymer of other acrylic ester or methacrylic ester, and is a highly transparent amorphous synthetic resin, such as acrylic resin, polystyrene, Other translucent resins such as polycarbonate, and those made of glass or the like can be used.
  • the 1st light guide part 2 and the 2nd light guide part 3 are integrated by 2 material shaping
  • the incident part 11 is a part of the first light guide part 2 and has a planar shape
  • the incident part 11 may have a convex shape, a curved surface shape, an aspherical shape, or the like. In the case of a spherical or aspherical shape, the curvature can be changed as appropriate. Further, the incident portion 11 may be provided separately from the first light guide portion 2.
  • the light emitting member is not limited to the LED 30, and other light emitting members such as organic electroluminescence (Organic Electro-Luminescence, OEL), inorganic electroluminescence (Inorganic Electro-Luminescence, IEL, inorganic EL), laser light, etc. Can be used. Furthermore, although a chip-type LED 30 is used, an LED with a lens can be used.
  • the translucent member 1 has a circular outer shape, and has a circular reflecting surface 12 formed in a circular shape at the center thereof, and an annular second guide for guiding light around the reflecting surface 12.
  • the external shape of the translucent member 1, the planar shape of the reflective surface 12, the shape of the 2nd light guide part 3, etc. can be changed.
  • the outer shape of the translucent member 1 can be a square shape or the like by making the shape of the second light guide portion 3 a square shape.
  • the advantage of making the outer shape of the translucent member 1 rectangular is that the light emitting surfaces of the plurality of light emitting devices 40 can be arranged without gaps. It is easy to emit light uniformly.
  • the reflecting surface 12 of the translucent member 1 is a curved surface in which the differential of the relational function of the cross-sectional shape portion is given by “tan (90 ⁇ t / 2)”.
  • the cross-sectional shape may be a curve or the like given under other conditions.
  • the reflecting surface 12 may not have a cross-sectional curved surface such as an aspherical surface, but may have a square cross-sectional shape formed by connecting straight lines. In other words, the reflected angular light may not be formed in the second light guide unit 3 as an optical path as substantially parallel light.
  • the second light guide portion 3 of the translucent member 1 includes a prism portion 22 including 225 saw teeth 23 arranged concentrically on the lower surface in FIG.
  • the projection angle ⁇ on the side close to the center point 13 is smaller than the projection angle ⁇ on the side far from the center point 13.
  • the arrangement position, shape, number, and projection angle ⁇ of the prism portion 22 can be changed. For example, after providing the saw-tooth 23 on the concentric circle centering on the arrangement position of LED30, the edge part 15 of the 2nd light guide part 3 can be cut off, and the external shape of the translucent member 1 can be made into square shape.
  • the prism portion 22 is formed by arranging the saw blades 23 on the concentric circle with the center point 13 as the center, the saw blades 23 may be formed on a straight line.
  • the sawtooth 23 may be formed on a square line along the quadrangular shape.
  • the reflection unit 16 totally reflects the guided light.
  • the reflection part 16 may be printed with white ink or may have a mirror-like shape by a mirror coating such as aluminum or silver.
  • the reflecting portion 16 is configured to totally reflect the guided light because it does not require time and effort such as a printing process in manufacturing.
  • the arrangement interval H between the adjacent saw teeth 23 is 0.2 mm.
  • the arrangement interval H can be changed to 0.1 mm, 0.3 mm, or the like.
  • the arrangement interval H is not constant, and may be different in one translucent member 1.
  • the sawtooth 23 is provided concentrically, the prism portion 22 on one end side is the prism portion 22 on the side close to the center of the concentric circle, and the prism portion 22 on the side where the prism portion 22 on the other end side is away from the center of the concentric circle. Part 22.
  • the arrangement position, shape, and the like of the prism portion 22 can be changed. For example, like the saw tooth 23a of the translucent member 1a which is the 1st modification of the translucent member 1 of FIG.
  • FIG. 16 and 17 are diagrams illustrating an example of a usage state when the light-emitting device 40 using the translucent member 1a illustrated in FIG. 15 is used as a street light.
  • One end of the support column 50 is attached to the emission surface side of the light emitting device 40, the other end of the support column 50 is embedded in the ground, and the light emitting device 40 irradiates the irradiation range W1 from the top to the ground. This irradiation range W1 extends radially along the road 51 radially from the light emitting device 40.
  • the irradiation range W2 of the light emitting device 40 in the width direction of the road 51 extends radially so as to completely cover the width Y of the road 51.
  • the road 51 is wide and the side away from the road 51 is narrow.
  • the projection angle ⁇ of the saw tooth 23a arranged on the light transmitting member 1a in FIG. 15 is changed depending on the position. That is, the projection angle ⁇ of the upper sawtooth 23a1 in FIG. 15 is made smaller than the projection angle ⁇ of the lower sawtooth 23a2.
  • the irradiation range can be arbitrarily controlled such as widening the irradiation range on the road side.
  • the support column 50 is attached so as to cover a portion corresponding to the first light guide unit 2 in the emission surface of the light emitting device 40.
  • a portion that becomes a relatively dark portion corresponding to the first light guide portion 2 is hidden by the support 50.
  • the illumination state can be made uniform.
  • a translucent member that irradiates a range in which a certain direction is a left-right equal range and a direction orthogonal to the certain direction is a left-right non-uniform range is a quadrangle as shown in FIG.
  • a circular translucent member 1 as shown in FIG. 1 may be used.
  • the sawtooth 23 is provided on a concentric circle centering on the position where the LED 30 is disposed, and the end 15 of the second light guide 3 is cut off.
  • the bottom view of the translucent member 1b which made the external shape of the translucent member 1 square shape (square) is shown.
  • Members having the same shape and function as those of the translucent member 1 are denoted by the same reference numerals as those in FIG.
  • Four reflecting portions 16b corresponding to the reflecting portions 16 of the translucent member 1 are formed in an elliptical arc shape so as to connect the adjacent end portions 16 along the respective end portions 15a and swell toward the central portion 13 side.
  • FIG. 19 is a side view of the translucent member 1b viewed from the block arrow B side in FIG.
  • FIG. 20 is a side view of the translucent member 1b viewed from the block arrow C side in FIG. 19 and 20 also, members having the same shape and function as those of the translucent member 1 are denoted by the same reference numerals as those in FIG.
  • the angle formed by the surface of the reflecting portion 16b and the upper surface of the second light guide portion 3 is 30 °, similar to ⁇ 1. As shown in FIG. 20, the reflection part 16b does not exist in the part of the edge part 15b.
  • FIG. 21 shows a schematic cross-sectional view of a signboard 60 that uses three light-emitting devices 42 as light sources, which is a second modification of the light-emitting device 40 using the translucent member 1b. Characters and images are drawn on the front face 61b of the signboard 60, and a poster is pasted. Each light emitting device 42 can irradiate at a wide angle and irradiates the range of W3. That is, as shown in FIG. 21, the irradiation is performed so that a part (end part) of the irradiation range of the adjacent light emitting device 42 is overlapped. Therefore, the signboard 60 is observed as if the entire signboard 60 emits light in the irradiation direction.
  • the signboard 60 can drastically reduce the number of light sources as compared with the case where a conventional array of individual LEDs is used as the light source of the signboard. Therefore, the signboard 60 has effects such as reduction in power consumption and reduction in the number of constituent members.
  • three light emitting devices 42 are arranged at the top and bottom. However, a total of nine light emitting devices 42 in the vertical and horizontal directions are arranged to form a signboard 60 having a square surface 61. Or, a total of 15 horizontal signs 60 of 3 ⁇ 5 may be used. Appropriate numbers can be adopted for the vertical and horizontal numbers.

Abstract

 出射面積が小さくても光照射範囲を広くでき、装置の小型化が可能となる光学素子および発光装置を提供する。  発光装置は、光が導光される板状の導光部(第1の導光部2および第2の導光部3)と、光を発する発光部材(LED30)とを備え、第2の導光部3はその一方の面に導光された光を方向転換させる断面鋸歯状のプリズム部22を有し、プリズム部22は、第2の導光部3に導光される平行光がLED30側の鋸歯23の反射面に入射する入射角δよりもLED30 から離れた離隔位置の鋸歯23の反射面24に入射する入射角δが大きくされている。また、プリズム部22は、LED30側の鋸歯23の突起角度θよりもLED30から離れた離隔位置の鋸歯23の突起角度θが大きくされている。

Description

光学素子および発光装置
 本発明は、光学素子および発光装置に関する。
 近年、LED(Light Emitting Diode)のハイパワー化、高効率化により、白熱電球および蛍光灯の代替えとして、LED照明装置が実用化されてきている。白熱電球または蛍光灯に比べて、LEDは大きさが小さく、光束密度が高い。また、白熱電球および蛍光灯が全方位に発光するのに対して、LEDは光線の指向性が狭いという特徴を有する。また、最近では、3Wさらに10WというパワーLEDも実用化されている。
 このようなLEDを光源とする平面照明装置として、以下のものが提案されている。導光板は、LEDからの光を導く入射部と、該光を出射する表面部と、表面部の反対側に位置する裏面部と、表面部と裏面部とを接続する側面部とを有し、入射部を側面部よりも内側に設け、表面部には光源の輝度分布または光エネルギ分布に対応した位置に連続にLEDからの光線束に対応した傾斜面を有する光学素子(プリズム)が設けられる。このプリズムは、LEDからの距離に比例して関数的に増加する密度分布を有する。(特許文献1参照)。
 特許文献1に記載されている平面照明装置は、たとえば、LEDからの距離が遠く、輝度が低くなりやすい導光部の部分では、プリズムのピッチおよび分布が細かくなるようにしている。そうすることによって、出射面側に同等な輝度やエネルギを出射し、導光板のあらゆる位置でも出射光量と出射角度との積を等しく出射できる。
特開2007-234617号公報
 しかしながら、特許文献1に記載されている平面照明装置は、光の指向性が強く光照射範囲が広くない。そのため、特許文献1に記載されている平面照明装置は、たとえば携帯電話、電子手帳、携帯用パーソナルコンピュータ等のモバイル機器の液晶ディスプレイのバックライティングに好適である。しかし、特許文献1に記載されている平面照明装置は、照明用等の他の用途に用いる場合には、光照射範囲を広くするため上述の導光部の出力光の出射面積を大きくする必要があり、装置の大型化や高価格化をもたらす。
 そこで、本発明の目的は、出射面積が小さくても光照射範囲を広くでき、装置の小型化が可能となる光学素子および発光装置を提供することである。
 上記目的を達成するため、本発明の光学素子は、光が導光される板状の導光部を備え、導光部はその一方の面に導光された光を方向転換させる断面形状が複数の鋸歯からなるプリズム部を有し、プリズム部は、導光部に導光される平行光が入射側の鋸歯の反射面に入射する入射角よりもそこから離れた離隔位置の鋸歯の反射面に入射する入射角が大きくされている。
 また、上記目的を達成するため、本発明の光学素子は、光が導光される板状の導光部を備え、導光部はその一方の面に導光された光を方向転換させる断面形状が複数の鋸歯からなるプリズム部を有し、プリズム部は、導光部に導光される光の入射側の鋸歯の突起角度よりもそこから離れた離隔位置の鋸歯の突起角度が大きくされている。
 ここで、鋸歯の反射面に光が入射する入射角または、鋸歯の突起角度は、入射側から離隔位置へ向かって徐々に大きくされていることが好ましい。
 また、プリズム部の導光部の入射側から離隔した端部側には、導光部に導光された光をプリズム部が方向転換させる側と同じ側へと反射させる反射部を備えていることが好ましい。
 また、鋸歯は、同心円状に設けられ、入射側のプリズム部が同心円の中心に近い側のプリズム部であり、離隔位置のプリズム部が同心円の中心から離れている側のプリズム部であることが好ましい。
 また、導光部は透光性樹脂であり、導光部には光散乱粒子が含有され、光散乱粒子は、その粒径が1~10μmの透光性のシリコーン粒子であることが好ましい。
 上記目的を達成するため、本発明の発光装置は、光が導光される板状の導光部と、光を発する発光部材とを備え、導光部はその一方の面に導光された光を方向転換させる断面鋸歯状のプリズム部を有し、プリズム部は、導光部に導光される平行光が発光部材側の鋸歯の反射面に入射する入射角よりも発光部材から離れた離隔位置の鋸歯の反射面に入射する入射角が大きくされている。
 また、上記目的を達成するため、本発明の発光装置は、光が導光される板状の導光部と、光を発する発光部材とを備え、導光部はその一方の面に導光された光を方向転換させる断面鋸歯状のプリズム部を有し、プリズム部は、発光部材側の鋸歯の突起角度よりも発光部材から離れた離隔位置の鋸歯の突起角度が大きくされている。
 ここで、鋸歯の反射面に光が入射する入射角または鋸歯の突起角度は、発光部材側から離隔位置へ向かって徐々に大きくされている。
 本発明では、出射面積が小さくても光照射範囲を広くでき、装置の小型化が可能となる光学素子および発光装置を提供することができる。
本発明の実施の形態に係る光学素子である透光部材の構成を示す平面図である。 図1に示す透光部材の正面図である。 図1に示す透光部材の底面図である。 図1の平面図のA-A断面図である。 図4の断面図における透光部材の反射面の部分の詳細を示す拡大図である。 単一真球粒子による散乱光強度の角度分布(Α、Θ)を示すグラフである。 図4の断面図における透光部材の第2の導光部の主要部分を示す拡大概要図である。 本発明の実施の形態に係る発光装置の構成を示す図である。 本発明の実施の形態に係る発光装置において、LEDから発せられた光が入射して透光部材内に入り、反射面で反射して第2の導光部へと導光される経路を示す図である。 本発明の実施の形態に係る発光装置の第1変形例における明るさの分布を示す図である。 本発明の実施の形態に係る発光装置における明るさの分布を示す図である。 本発明の実施の形態に係る発光装置の第2変形例における明るさの分布を示す図である。 本発明の実施の形態に係る発光装置の第3変形例における明るさの分布を示す図である。 本発明の実施の形態に係る発光装置に用いた光散乱粒子を板厚が10mmのアクリル樹脂板に含有させる濃度を変化させた場合の光の拡散角と光の透過率の関係を示す図である。 本発明の実施の形態に係る透光部材の第1変形例を示す平面図である。 図15に示す透光部材を使用した発光装置を街路灯として用いた場合の使用状態の一例を示す図で道路側から見た図である。 図15に示す透光部材を使用した発光装置を街路灯として用いた場合の使用状態の一例を示す図で道路の進行方向から見た図である。 本発明の実施の形態に係る透光部材の第2変形例を示す平面図である。 図18のブロック矢印B側から見た第2変形例の透光部材の側面図である。 図18のブロック矢印B側から見た第2変形例の透光部材の側面図である。 第2変形例の透光部材を用いた発光装置を光源として用いた看板の断面概略図である。
 以下、本発明の実施の形態に係る光学素子および発光装置の構成、ならびにそれらの作用について、図面を参照しながら説明する。
(光学素子の構成)
 図1は、本発明の実施の形態に係る光学素子である透光部材1の構成を示す平面図、図2は、その正面図および図3はその底面図である。
 図1から図3に示すように、透光部材1は、外形が円形であって、光散乱粒子として粒子径が数μmの球状かつ透光性のシリコーン粒子(図示省略)が含有された透明のポリメチルメタクリレート(以下、「PMMA」と略記する。)樹脂成形体である。透光部材1は、中央に配置される平面円形状の第1の導光部2(導光部の一部)と、その周りに配置されるドーナツ状の第2の導光部3(導光部の一部)とを有する。第1の導光部2は、その第1の導光部2に光を入射する入射部11(図3,図4参照)と、入射部11へ入射した光を反射する入射部11とは反対側の面に配置される反射面12とを有している。
 この反射面12の中央は、中心点13となり、その中心点13は、透光部材1の中心であり、第1の導光部2の中心であり、かつ第2の導光部3の中心となる。この透光部材1は、入射部11に入射した光を反射面12に導き反射面12によって反射した光を第2の導光部3に導いている。第1の導光部2と第2の導光部3とは、2材成形によって一体化され、透光部材1は見た目上、完全な1部品として形成されている。なお、以下では、図2の上側を透光部材1の上面といい、下側を透光部材1の下面という。
 図1に示す第1の導光部2の外形の半径(R1)は11mmであり、第2の導光部3の外形の半径(R2)は80mmである。したがって、透光部材1のうち、第1の導光部2が占める面積は、(πR1/ πR2)で求められ、約1.89%である。
 図2に示すように、透光部材1の第2の導光部3の上面が平面であり、また第2の導光部3の下面が透光部材1の端部5から透光部材1の中心である第1の導光部2に向かって徐々に厚みを増す形状となっている。そして、透光部材1の端部15側の下端面には第2の導光部3に導光された光を上面側に全反射する反射部16がリング状に形成されている。この反射部16は、中心点13を中心として同心円状に設置されている。また、第1の導光部2は、その下面側に円筒状のLED保持部17を有している。
 図3に示すように、透光部材1の中央部に円形の第1の導光部2が配置され、その第1の導光部2の下面側にリング状のLED保持部17が配置されている。また、第2の導光部3の端部15の下面側の全周に沿ってリング状の反射部16が各点において同一形状となるように形成されている。
 図4は、図1のA-A断面図である。LED保持部17は、下面側に突出した円筒状の形状をしている。LED保持部17は、第1の導光部2の一部を形成しているが、第2の導光部3の下面側に配置し、第2の導光部3の一部として形成しても良い。LED保持部17の内周面17aは、入射部11の平面に対し垂直に下面側に延びている。一方、LED保持部17の内周面17aは、入射部11の平面に対し垂直に下面側に延びている。一方、LED保持部17の外周面17bは、内周面17aに対し、鋭角の角度αを持つように形成される。これは、後述する光源からの光がこのLED保持部17に入射した場合、その入射光を反射させ第1の導光部2や第2の導光部3に導くようにする。
 図5は、図4の断面図における透光部材1の反射面12の周辺部分の詳細を示す拡大図である。反射面12のうち、最も下側へ凹んだ部分は、中心点13となっている。また、図5に示す透光部材1には、光散乱粒子21が含有されている。この光散乱粒子21は、1~10μmの粒径のシリコーン粒子となっており、第2の導光部3よりも第1の導光部2に高密度に含有されている。具体的には、第1の導光部2の光散乱粒子21の含有率は0.1重量%であり、第2の導光部3の光散乱粒子21の含有率は0.06重量%である。なお、第1の導光部2に含有されている光散乱粒子21は、散乱パラメータをτ、第1の導光部2の厚みをTとしたとき、τとTの積が0.1以上50以下の範囲内とされている。
 なお、この実施の形態では、LED保持部17にも光散乱粒子21が入っており、その含有量は第1の導光部2と同じとなっている。しかし、LED保持部17には、光散乱粒子21を入れないようにしたり第2の導光部3と同じ含有率としてもよい。また、図5では光散乱粒子21は分散配置されている。
 以下、光散乱粒子21について説明する。この光散乱粒子21は、体積的に一様な散乱能が与えられた導光体であり、散乱微粒子としての球形粒子を多数含んでいる。第1の導光部2または第2の導光部3の内部に光が入射すると、その光は散乱微粒子によって散乱することになる。
 ここで、光散乱粒子21の理論的な基礎を与えるMie散乱理論について説明する。Mie拡散理論は、一様な屈折率を有する媒体(マトリックス)中に該媒体と異なる屈折率を有する球形粒子(散乱微粒子)が存在するケースについてマックスウェルの電磁方程式の解を求めたものである。光散乱粒子21に相当する散乱微粒子によって散乱した散乱光の角度に依存した強度分布I(Α、Θ)は下記(1)式で表される。Αは、散乱微粒子の光学的大きさを示すサイズパラメータであり、マトリックス中での光の波長λで規格化された球形粒子(散乱微粒子)の半径rに相当する量である。角度Θは散乱角で、入射光の進行方向と同一方向をΘ=180°にとる。
 また、(1)式中のi、iは(4)式で表される。そして、(2)~(4)式中の下添字ν付のaおよびbは(5)式で表される。上添字1および下添字νを付したP(cosΘ)は、Legendreの多項式、下添字ν付のa、bは1次、2次のRecatti-Bessel関数Ψ、ζ(ただし、「*」は下添字νを意味する。)とその導関数とからなる。mはマトリックスを基準にした散乱微粒子の相対屈折率で、m=nscatter/nmatrixである。
Figure JPOXMLDOC01-appb-M000001
 図6は、上記(1)~(5)式に基づいて、単一真球粒子による強度分布I(Α、Θ)を示すグラフである。この図6では、原点Gの位置に散乱微粒子としての真球粒子があり、下方から入射光が入射した場合の散乱光強度の角度分布I(Α、Θ)を示している。そして、原点Gから各曲線S1~S3までの距離が、それぞれの散乱角方向の散乱光強度である。曲線S1はΑが1.7であるときの散乱光強度、曲線S2はΑが11.5であるときの散乱光強度、曲線S3はΑが69.2であるときの散乱光強度を示している。なお、図6においては、散乱光強度を対数目盛で示している。このため、図6では僅かな強度差として見える部分が、実際には非常に大きな差となる。
 この図6に示すように、サイズパラメータΑが大きくなればなるほど(ある波長λで考えた場合は真球粒子の粒径が大きくなればなるほど)、上方(照射方向の前方)に対して指向性高く光が散乱されていることがわかる。また、実際のところ、散乱光強度の角度分布I(Α、Θ)は、入射光波長λを固定すれば、散乱子の半径rと、媒体および散乱微粒子の相対屈折率mとをパラメータとして制御することができる。
 このような、単一真球粒子がN個含まれる光散乱導光体に光を入射させると、光は真球粒子により散乱される。散乱光は光散乱導光体中を進み、他の真球粒子により再度散乱される。ある程度以上の体積濃度で粒子を添加した場合には、このような散乱が逐次的に複数回行われた後、光が光散乱導光体から出射する。このような散乱光がさらに散乱されるような現象を多重散乱現象と呼ぶ。このような多重散乱においては、透明ポリマーでの光線追跡法による解析は容易ではない。しかし、モンテカルロ法により光の挙動を追跡し、その特性を解析することはできる。それによると、入射光が無偏光の場合、散乱角の累積分布関数F(Θ)は下記の(6)式で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで(6)式中のI(Θ)は、(1)式で表されるサイズパラメータΑの真球粒子の散乱強度である。強度Ioの光が光散乱導光体に入射し、距離yを透過した後、光の強度が散乱によりIに減衰したとすると、これらの関係は下記の(7)式で表される。
Figure JPOXMLDOC01-appb-M000003
 この(7)式中のτは濁度と呼ばれ(上述の散乱パラメータと同義)、媒体の散乱係数に相当するものであり、下記の(8)式のように粒子数Nに比例する。なお、(8)式中、σは散乱断面積である。
Figure JPOXMLDOC01-appb-M000004
 (7)式から長さLの光散乱導光体を散乱せずに透過する確率P(L)は下記の(9)式で表される。
Figure JPOXMLDOC01-appb-M000005
 反対に光路長Lまでに散乱される確率P(L)は下記の(10)式で表される。
Figure JPOXMLDOC01-appb-M000006
 これらの式からわかるように、濁度τを変えることにより、光散乱導光体内での多重散乱の度合いを制御することができる。
 以上の関係式により、散乱微粒子のサイズパラメータΑと濁度τとの少なくとも1つをパラメータとして、光散乱導光体内での多重散乱を制御可能であり、出射面における出射光強度と散乱角も適正に設定可能である。
 図7は、図4の断面図における透光部材1の第2の導光部3の部分を主に示す拡大概要図である。第2の導光部3はその下面に、中心点13を中心とする同心円上に断面鋸歯状のプリズム部22を備えている。このプリズム部22は、この実施の形態では合計225個の鋸歯23が形成されている。なお、図7では簡易化のため合計25個のみの鋸歯23が示されている。プリズム部22は、第2の導光部3の下面側へと導光された光を上面側へと方向転換する。中心点13から近い側の鋸歯23の突起角度θは、中心点13から遠い側の鋸歯23の突起角度θよりも小さくなっている。
 鋸歯23の突起角度θを具体的に説明する。中心点13から最も近い側の5mmの幅に存在する25個の鋸歯23の突起角度θは、50°である。次に中心点13から近い側の5mmの幅に存在する25個の鋸歯23の突起角度θは、55°である。次に中心点13から近い側の5mmの幅に存在する25個の鋸歯23の突起角度θは、60°である。次に中心点13から近い側の5mmの幅に存在する25個の鋸歯23の突起角度θは、65°である。次に中心点13から近い側の10mmの幅に存在する50個の鋸歯23の突起角度θは、70°である。中心点13から最も遠い側の15mmの幅に存在する75個の鋸歯23の突起角度θは、75°である。
 このようにプリズム部22を5つのグループの鋸歯23に分けて、そのグループ毎に中心点13から端部15に向かうに従って徐々に突起角度θと入射角δを大きくしている。すなわち、プリズム部22は、第2の導光部3に導光される平行光が入射側(中心部13側)の鋸歯23の反射面24に入射する入射角δよりもそこから離れた離隔位置(端部15側)の鋸歯23の反射面24に入射する入射角δが大きくされている。また、プリズム部22は、第2の導光部3に導光される光の入射側の鋸歯23の突起角度θよりもそこから離れた離隔位置の鋸歯23の突起角度θが大きくされている。なお、各個別の鋸歯23の突起角度θは、外周に行くほど徐々に大きくしてもよい。なお、隣接する鋸歯23の配置間隔Hは0.2mmである。また、鋸歯23は、中心点13を対称点とした点対称配置となっている。
 また、図7において、鋸歯23の突起頂部を径方向に結ぶ線Lと第2の導光部3上面とがなす交差角βは6.5°とされている。各鋸歯23の中心点13側の面と線Lとの角度γは、90°とされているが、角度γを90°より大きい角度としてもよい。そうすることによって、透光部材1を金型で成形する際に透光部材1を金型から取り外し易くなる。なお、中心点13から最も遠い側の鋸歯23に隣接した端部15側の下面には、反射部16が設置されている。この反射部16の面と第2の導光部3の上面とがなす角θ1は、30°とされている。
(発光装置の構成)
 図8は、図4に示す透光部材1に、発光部材であるチップ形のLED30を装着し本発明の実施の形態に係る発光装置40の構成を示す図である。透光部材1の入射部11とLED保持部17で囲まれた部分にはLED30が配置されている。LED30の下端部31は円盤状の形状をしており、その外周面32がLED保持部17の内周面17aと対向している。下端部31の外周面32とLED保持部17の内周面17aとは、図示を省略する固定部材によって固定されている。その固定によって、LED30がLED保持部17に固定されている。なお、LED30は、中心点13と対応する位置に配置される。 
(反射面12における光の反射の状況)
 図9には、LED30から発せられた光が入射部11に入射し透光部材1内に入り、反射面12で反射して第2の導光部3へと導光される経路を破線で示している。LED30から発せられた光が、入射部11から第1の導光部2へ入るとき、光は中心点13側へ若干屈折し、その後、反射面12に到達する。反射面12では、透光部材1の材質であるPMMAと空気との境界面が形成されている。光の屈折率の高い媒質(PMMA)から低い媒質(空気)へと向かう光は、その境界面(反射面12)に対しての入射角θ2が全反射臨界角(41.84°)以上の角度で反射面12に照射されると、その境界面を透過せず全反射する。ここで、入射角θ2は、反射面12に入射光が突き当たる点における法線と入射光がなす角となる。反射面12は、この全反射をする条件を満たすようにし、かつ反射後の光が第2の導光部3の上面に対し平行となるように形成されている。このため、LED30からの光の殆どは反射面12で全反射し、平行光となり第2の導光部3へと導光される。
 なお、図9に示す反射面12の断面曲線の中心点13の部分は、光源となるLED30から真っ直ぐ上に行く光に対し、入射角と反射角の合計が90°となる面を有している。すなわち、中心点13部分の入射角θ2は45°とされており(入射角と反射角の合計である「θt1=90°」)、反射面12に対する反射点における接線は、第2の導光部3の上面に対し45°で交差するものとなる。また、反射面12の曲線が第2の導光部3の上面である平面とつながる部分の入射角と反射角の合計であるθt2は、「θt2=90°+θc」である(ここで、θcは全反射臨界角で、41.84°となる)。この両点を結ぶ曲線F(x)は非球面の一種となる放物線曲線であり、その微分F’(x)は、「tan(90-θt / 2)」である。
 また、透光部材1には、光散乱粒子21が含有されている。そのため、LED30から第1の導光部2へ入射した光が反射面12まで到達するまでの過程、および反射面12から第2の導光部3へと導光される過程で光が散乱する。しかし、光散乱粒子21は、透光部材1内の光の大部分を減衰させることなく多重散乱させるものである。そのため、入射光の一部は第1の導光部2の反射面12を通過し上面側に出射する。しかし、光散乱粒子21の大きさを上述したMie散乱理論に基づいて入射光の進行方向へ光が散乱する割合を大きくするものとしているため、光の多くは光散乱粒子21が無い場合の経路と略同じとなる。すなわち、入射部11に入射した光の多くは第1の導光部2から図9に示す矢示付き破線に沿って略平行光として第2の導光部3へと光が進行していく。
 ここで、光散乱粒子21は、上述したようにLED30から照射された光の一部を反射面12を通過させ外部に出射する光を発生させる。すなわち、LED30から照射された光の一部は、第1の導光部2から上面側に出射する。
(第2の導光部3における光の屈折および反射の状況)
 上述のように第2の導光部3へと導光された光は、プリズム部22及び反射部16によって、第2の導光部3の上面側へと方向転換される。プリズム部22の鋸歯23の頂点を結ぶ直線L(図7参照)は、第2の導光部3へと導光された光の光路と交差角βを有するように形成されている。そのため、導光された平行光はプリズム部22に照射される。
 プリズム部22に照射された光は、第2の導光部3の上面側へと方向転換される。その方向転換の方向は、突起角度θが透光部材1の外周側ほど大きくなっているため、透光部材1の外周側ほど出射角θ3が小さくなる。すなわち、透光部材1を光源として見た場合、光源が指向性を持たず、広角範囲を照らす光源となる(図7参照)。第2の導光部3を進行する光は光散乱粒子21で一部が散乱されるため、プリズム部22に照射された光の一部は、最初に衝突する鋸歯23を透過してしまうこともあるが、その透過した光の多くは隣接する鋸歯23に照射され、その鋸歯23によって第2の導光部3の上面側へと方向転換される。なお、図7に示す矢示付き破線は、光散乱粒子21が存在しない場合または光が光散乱粒子21に衝突しなかった場合に方向転換される光の経路を示している。
 このように方向転換された光は、鋸歯23の突起角度θが上述のように第2の導光部3のうちLED30側から第2の導光部3の端部15に向かうに従って大きくなっていることに起因して、上述したようにLED30から離れるに従って出射角θ3が小さくなるように第2の導光部3の上面から出射する。
 また、反射部16に導光された光は、その反射部16によって反射され第2の導光部3の上面側に導光され、上面から出射する。LED30は光の指向性が強く、中心点13方向の光が強く、中心点13から離れる方向の光は弱くなる。そのため、図7において反射面12の下部領域(中心点13の近くの領域)や中部領域(中心点13から少し離れた領域)から導光される光の光量が多く、反射面12の上部領域(第2の導光部3に近い領域)に向かうに従ってその領域から導光される光の光量が少なくなる。このことから、反射面12の下部領域や中部領域に導光された光を主に方向転換するプリズム部22は、LED30が照射する光の殆どを方向転換し、残りの光は反射部16が方向転換する。これによって第2の導光部3を進行する光の殆どを上面側から出射させる。
 ここで、第2の導光部3にも光散乱粒子21が含有されている。そのため、反射面12から第2の導光部3へ入射し進行する光は、その進行過程で、またプリズム部22から第2の導光部3の上側へと光照射される過程で光が複雑に散乱する。しかし、光散乱粒子21は、第2の導光部3内の光の多くを入射方向と同一方向へ散乱させる多重散乱させるものである。そのため、多くの光はその進行方向が整ったものとなり、図7に示す破線に沿って光が照射されていく。しかし、散乱光の一部は、図7による破線の経路と異なる経路をとり、上面から出射される。すなわち、 第2の導光部3には高密度に光散乱粒子21が含有されているため、透光部材1の上面からの光の照射はLEDや裸電球の光等とは異なり、ぼやけた感じの照射状態となる。また、LED30という点光源に近い光源の光が第1の導光部2と第2の導光部3によって面光源に変換されるため、単位面積当たりの照射光量は少なくなる。
(本発明の実施の形態によって得られる主な効果)
 透光部材1および発光装置40は、反射面12を備えた第1の導光部2を有している。そのため、入射部11に入射した光の多くは第1の導光部2から図9に示す矢示付き破線に沿って略平行光として第2の導光部3へと光が進行していきつつも適度に他の方向へと光を散乱させる。そのため、グレアおよび暗部の発生を抑制して面発光に適する透光部材1および発光装置40を提供できる。
 すなわち以下のことが言える。透光部材1および発光装置40は、LED30の上部へ直線的に出射する光の殆どをそのまま通過させずに全反射させ、また、反射鏡で中心の光を遮ることがない。また、LED30からの強い光の一部を散乱させ反射面12を通過させており、反射面12も光源の一部となる。また、第2の導光部3は、入射してきた光の多くを反射面12を通過する光と同一面側に出射する。そのため、透光部材1および発光装置40は、面発光に適していると共に極端に眩しくなる部分の発生を抑制できる。さらには、透光部材1および発光装置40は、入射してきた光の殆どを上面側に出射させることが可能であるため、光効率が良いものとなる。
 また、第1の導光部2に入射した光は、一部は反射面12を通過し第1の導光部2からの面光源となり、残りの光は略平行光となって第2の導光部3に入射し、その後第2の導光部3の上面側から出射し、第2の導光部3からの面光源となるため、発光装置40の照射ロスを抑制できる。また、仮に略平行光とならずに第2の導光部3に入射された光が第2の導光部3の上面に照射されても、そこで全反射するため、光は拡散せず、より発光装置40の照射ロスを抑制できる。さらに、第2の導光部3の上面で全反射した光は、その後、プリズム部22にて発光装置40の設計意図にそった方向に反射されるため、より発光装置40の照射ロスを抑制できる。
 また、光散乱粒子21の含有率は、第2の導光部3よりも第1の導光部2の方を高くしているため、第1の導光部2に入射した光が反射面12を透過し易くなり、透光部材1全体の光照射分布を略均一にできる。多重散乱の程度は、散乱パラメータτにより制御できるため、反射面12を通過する光と第2の導光部3の上面から出射する光の輝度が一定になるように適度に調整することができる。図10、図11、図12、図13には、第2の導光部3の光散乱粒子21の含有率を一定(0.06重量%)にし、第1の導光部2の光散乱粒子21の含有率を変更した場合の発光装置40の明るさの分布を示している。第1の導光部2と第2の導光部3の光散乱粒子21の含有率を変更する方法は、予め光散乱粒子21の含有率の異なる第1の導光部2と第2の導光部3を成形しておき、両者を2材成形し一体化するものである。
 図10には、第1の導光部2に光散乱粒子21を含有させない(含有率0%)発光装置40(第1変形例の発光装置40)の明るさの分布を示している。図1に示すように、第1の導光部2よりも第2の導光部3の方が明るくなっていることがわかる。ここで第1の導光部2からも明るさが確認できるのは、光源となるLED30が点光源でないため、全反射せず反射面12を通過する光が存在するためである。なお、図10、図11、図12、図13の横軸は、中心点13の位置を「0」とした場合のその中心点13からの距離である。第1の導光部2は、直径が22mmであり、第2の導光部3は、直径が160mmである。
 図11は、第1の導光部2に光散乱粒子21の含有率を0.03重量%と、第2の導光部3の光散乱粒子21の含有率(0.06重量%)よりも1/2に少なくした場合の発光装置40(第2変形例の発光装置40)の明るさの分布を示している。第1の導光部2よりも若干第2の導光部3の方が明るくなっていることがわかる。これは、光散乱粒子21による散乱の結果、反射面12を通過する光が増加するため、第1の導光部2の明るさが増え、その結果、第2の導光部3に入る光が減少するためである。
 図12は、第1の導光部2に光散乱粒子21の含有率を0.1重量%と、第2の導光部3の光散乱粒子21の含有率(0.06重量%)よりも若干多くした場合の発光装置40の明るさの分布を示している。これは、上述した実施の形態に係る発光装置40である。第1の導光部2と第2の導光部3の明るさが概ね平準化されていることがわかる。これは、第1の導光部2の光散乱粒子21がさらに増加した結果、反射面12を通過する光が更に増加し、一方、第2の導光部3に入る光が更に減少したものである。
 図13は、第1の導光部2に光散乱粒子21の含有率を0.3重量%と、第2の導光部3の光散乱粒子21の含有率(0.06重量%)の5倍多くした場合の発光装置40(第3変形例の発光装置40)の明るさの分布を示している。第1の導光部2の方が第2の導光部3よりもその明るさが明るくなっていることがわかる。
 なお、図14には、板厚が10mmのPMMA板に粒径7.3μmの光散乱粒子21を含有させる濃度を変化させた場合の光の拡散角と光の透過率の関係を示している。ここで、拡散角とは、散乱されて拡がった光が、その中心照度の半値になる角度を全角表示で表した角度である。図14に示すように、光散乱粒子21の含有率が0.06重量%のときは、殆ど拡散せず、しかも透過率は98%程度となる。この図14を利用して透光部材1の明るさや出射方向を種々設定できる。
 また、光散乱粒子21は、散乱パラメーターをτ(1/τは平均自由行程でその単位はcm)、第1の導光部2の厚みをT(単位はcm)としたとき、τとTの積が0.1以上50以下の範囲内とされている。τとTの積が0.1未満になると、光線の平均自由行程が長くなり板厚Tの距離内で散乱される光線量が少なくなり、第1の導光部2の反射面12から適切な光線を外部に出射させることができなくなる。一方、τとTの積が50を超えると、光線の平均自由行程が短くなり、板厚Tの距離内で多重散乱される光量が多くなり、図14に示すように、後方散乱が大きくなり前方への光の透過率が下がってしまう。つまり入射部11に入射し第1の導光部2から図9に矢示付き破線に沿って第2の導光部3へと光を進行させる光量効率が低下してしまう。
 また、プリズム部22は、中心点13に近い側の鋸歯23の突起角度θは、中心点13から遠い側の鋸歯23の突起角度θよりも小さい。そのため、中心点13から遠い側では、LED30から離れる方向への光の照射ができ、広角に光を照射することが可能となる。よって、発光装置40は、広い範囲を照明できる照明装置としての用途に適するものとなる。また、広角に光を照射することにより、発光装置40を薄型化できる。また、広角に光を照射することにより、発光装置40をモジュール化して多数配置する場合にそのモジュールの数を少なくでき、コスト削減ができる。
 なお、照明装置40が広角に光を照射することができていることは、図10、図11、図12、図13において、透光部材1から距離が離れた位置も明るくなっていることから明らかである。
 また、この突起角度θは、適宜変更することができるため、発光装置40等の用途によって発光の仕方を変更することができる。発光の仕方を上述のように広角の照射としたり、ダウンライトのように狭角の照射とすることもできる。ここで、各鋸歯23の突起頂部を径方向に結ぶ線Lと第2の導光部3の上面側の平面との交差角βが2°から10°となる場合には、突起角度θは、45°から75°の間で設定することが好ましい。
 また、第2の導光部3のうちLED30から離れた位置の端部15の下部には、導光された光を上面側へと反射させる反射部16が形成されているため、プリズム部22だけでは光の方向転換ができない分の光があった場合にもその光を上面側に方向転換することができる。
(他の形態)
 以上、本発明の実施の形態における透光部材1および発光装置40について説明したが、本発明の要旨を逸脱しない限り種々変更実施可能である。 
 本発明の実施の形態に係る光学素子(透光部材1)や発光装置40は、光が導光される板状の導光部(第1の導光部2および第2の導光部3)を備え、第2の導光部3はその一方の面に導光された光を方向転換させる断面形状が複数の鋸歯23からなるプリズム部22を有し、プリズム部22は、第2の導光部3に導光される平行光が入射側の鋸歯の反射面24に入射する入射角δよりもそこから離れた離隔位置の鋸歯23の反射面24に入射する入射角δが大きくされている。しかし、第2の導光部3に導光される光は平行光に限られない。また、プリズム部22は、第1の導光部2と第2の導光部3の境界または第1の導光部2の一部に配置されていても良い。また、板状の導光部としては、第2の導光部3のみとしても良い。
 また、本発明の実施の形態に係る光学素子(透光部材1)は、光が導光される板状の導光部(第1の導光部2および第2の導光部3)を備え、第2の導光部3はその一方の面に導光された光を方向転換させる断面形状が複数の鋸歯23からなるプリズム部22を有し、プリズム部22は、第2の導光部3に導光される光の入射側の鋸歯23の突起角度θよりもそこから離れた離隔位置の鋸歯23の突起角度θが大きくされている。ここで、プリズム部22は、第1の導光部2と第2の導光部3の境界または第1の導光部2の一部に配置されていても良い。
 また、鋸歯23の反射面24に光が入射する入射角δまたは、鋸歯23の突起角度θは、入射側から離隔位置へ向かって徐々に大きくされていることが好ましい。しかし、離隔位置よりも入射側の方の入射角δまたは鋸歯23の突起角度θが大きくなる鋸歯23が一部混在していても良い。ここで、徐々に大きくとは、上述の実施の形態のように、グループ間で徐々に大きくするような場合や、グループ間ではなく1つ1つの鋸歯23についての入射角δや突起角度θを異ならせ徐々に大きくする場合の両者を含むものとする。また、グループ間の場合、2グループとしたり、4グループとしたり、7グループとすることができる。
 また、プリズム部22の第2の導光部3の入射側から離隔した端部15側には、導光部に導光された光をプリズム部22が方向転換させる側と同じ側へと反射させる反射部16を備えていることが好ましい。しかし、この反射部16は必須の構成要素ではないため、省略しても良い。また、プリズム部22を端部15まで伸ばすようにしても良い。
 また、鋸歯23は、同心円状に設けられ、入射側のプリズム部22が同心円の中心に近い側のプリズム部22であり、離隔位置のプリズム部22が同心円の中心から離れている側のプリズム部22であることが好ましい。しかし、第2の導光部3は外形が三角形状、四角形状等の多角形状としたり楕円形としたりしても良い。同様に第1の導光部2の平面形状も多角形状としたり、楕円形状としても良い。また、後述するように、プリズム部22は、中心を共通にする多角形を間隔をおいて並べる形状としても良い。
 また、導光部(第1の導光部2および第2の導光部3)は透光性樹脂であり、導光部には光散乱粒子21が含有され、光散乱粒子21は、その粒径が1~10μmの透光性のシリコーン粒子であることが好ましい。しかし、導光部には光散乱粒子21を含有させないようにしても良い。
 本発明の実施の形態に係る光学素子(透光部材1)は、光を入射する入射部11と、入射部11へ入射した光を反射面12に導く第1の導光部2と、第1の導光部2の光の入射側と反対側に設けられ入射した光のうち一直線状の軌跡をとる光を全反射させる反射面12と、反射した光を導光する第2の導光部3とを有し、第1の導光部2は、光を多重散乱し、反射面12を通過し外部に出射する光を発生させる光散乱粒子21を含有し、第2の導光部3は、入射してきた光の一部または全部を反射面12を通過する光と同一面側に出射している。しかし、光散乱粒子21は第2の導光部3にも含有させることとしても良い。また、入射部11は、第1の導光部2の下面側とLED保持部17とで形成されているが、第1の導光部2の下面側全体または下面側の一部のみとしてもよい。さらに、第2の導光部3が出射する光は反射面12を通過する光と同一面側に出射しているが、一部または全部の光を第2の導光部3の下面側から出射させたり、端部15の外周側へ出射させたりしても良い。
 また、本発明の実施の形態に係る光学素子(透光部材1)は、導光された光を反射面12側と同一側の方向に方向転換させる断面鋸歯状のプリズム部22を第2の導光部3における反射面12側とは反対の側に備えている。このプリズム部22を第2の導光部3の上面側に設けてもよい。また、プリズム部22は鋸歯状とせず、直線Lのような直線状としたり曲線状としたりしてもよい。
 また、本発明の実施の形態に係る光学素子(透光部材1)は、第2の導光部3には光散乱粒子21が含有され、光散乱粒子21の含有率は、第2の導光部3よりも第1の導光部2の方を高くしている。しかし、光散乱粒子21の含有率は、第2の導光部3よりも第1の導光部2を低くしたり、両者の含有率を等しくしても良い。また、第2の導光部3には光散乱粒子21を含有させないようにしても良い。
 また、本発明の実施の形態に係る光学素子(透光部材1)における光散乱粒子21は、散乱パラメータをτ、第1の導光部の厚みをTとしたとき、τとTの積が0.1以上50以下の範囲内とされている。しかし、τとTの積は、それ以外の範囲、たとえば0.01、0.05、60、70、80等としても良い。
 本発明の実施の形態に係る発光装置40は、入射部11に光を入射する発光部材(LED30)を備え、第1の導光部2は、光を多重散乱し、反射面12を通過し外部に出射する光を発生させる光散乱粒子21を含有し、第2の導光部3は、入射してきた光の一部または全部を反射面12を通過する光と同一面側に出射する。しかし、光散乱粒子21は第2の導光部3にも含有させることとしても良い。また、発光部材としては、光を直接入射部11に入射させる光源でなく、光源の光を導く導光体や光源の光を反射する反射部材としても良い。
 また、本発明の実施の形態に係る発光装置40は、第2の導光部3は板状とされ、その板状の第2の導光部3の中心に平面形状で円形の第1の導光部2が配置されている。しかし、第2の導光部3は外形が三角形状、四角形状等の多角形状としたり楕円形としたりしても良い。同様に第1の導光部2の平面形状も多角形状としたり、楕円形状としても良い。
 また、本発明の実施の形態に係る発光装置40は、透光部材1は透光性樹脂であり、光散乱粒子21は、その粒径が1~10μmの透光性のシリコーン粒子とされ、光散乱粒子21は、第2の導光部にも含有されている。しかし、光散乱粒子21は、透光部材1内の光を多重散乱するものであれば、その材質、形状、粒子径等を問わず、種々のものを用いることができる。ただし、光散乱粒子21は、光を図9に示す光の進行経路(矢示付き破線)に沿わせつつも適度に他の方向へと光を散乱させる意味で、粒径が1~10μmの透光性のシリコーン粒子を用いることが好ましい。詳述すると、シリコーン粒子の粒径を1μm以上とすることで、角度分布の広がりを抑え後方散乱成分を少なくできる。すると、前方への光強度が小さくなって第2の導光部3に導光される光量が過度に低下するのをおさえることができ、第1の導光部2の反射面12を透過する光量が過度に多くなるのを抑制し易くなる。一方、シリコーン粒子の粒径を10μm以下とすることで、角度分布が狭くなり過ぎるのを抑制でき、第1の導光部2の反射面12を透過する光量を十分に確保できる。
 また、透光部材1には、PMMA製のものを用いているが、その他のアクリル酸エステルあるいはメタクリル酸エステルの重合体で、透明性の高い非晶質の合成樹脂であるアクリル樹脂、ポリスチレン、ポリカーボネート等の他の透光性樹脂やガラス等を材質としたものを用いることができる。また、第1の導光部2と第2の導光部3とは2材成形によって一体化させているが、当初から第1の導光部2と第2の導光部3とを一体成形して透光部材1を得ることとしても良い。
 また、入射部11は、第1の導光部2の一部であり、かつ平面状とされているが、入射部11は、凸面状、曲面状、非球面状等としても良い。球面状や非球面状にする場合、その曲率を適宜変更させることができる。また、入射部11を第1の導光部2と別体に設けても良い。
 また、発光部材はLED30に限定されず、有機エレクトロルミネッセンス(Organic Electro-Luminescence、OEL、有機EL)、無機エレクトロルミネッセンス(Inorganic Electro-Luminescence、IEL、無機EL)、レーザー光等の他の発光部材を用いることができる。さらに、LED30にはチップ型のものを用いているが、レンズ付きのLEDを用いることができる。
 また、透光部材1は、外形が円形であり、その中央部に円形でかつくぼんだ形状の反射面12を有し、反射面12の周囲に光を導光する円環状の第2の導光部3を有しているが、透光部材1の外形、反射面12の平面形状、第2の導光部3の形状等は、変更できる。たとえば、上述したように、第2の導光部3の形状を四角形状とすることで、透光部材1の外形を四角形状等とすることができる。このように、透光部材1の外形を四角形状とする利点は、複数の発光装置40の発光面を隙間無く並べることができる点であり、このように並べて使用する場合に、それらの発光面が均一に発光させ易くなることである。
 また、透光部材1の反射面12は、図9に示すように断面形状部分の関係関数の微分が「tan(90-θt / 2)」で与えられる曲面としているが、点光源として見た場合のLED30の光を全反射することが可能な形状であれば、断面形状が他の条件で与えられる曲線等で構成されるものであっても良い。また、反射面12は、非球面のような断面曲面となる構成ではなく、直線をつなぎ合わせた断面角形の形状としても良い。すなわち、反射した角光が第2の導光部3では略平行光としての光路が形成されなくても良い。
 また、透光部材1の第2の導光部3は、図7における下面であって中心点13を中心とし同心円上に並べられた225個の鋸歯23からなるプリズム部22を備えており、鋸歯23は、中心点13に近い側の突起角度θが中心点13から遠い側の突起角度θよりも小さい。しかし、プリズム部22の配置位置、形状、数、突起角度θ等は変更することができる。たとえば、LED30の配置位置を中心とする同心円上に鋸歯23を設けた上で、第2の導光部3の端部15を切り取って透光部材1の外形を四角形状とすることができる。
 また、プリズム部22は、中心点13を中心とする同心円上に鋸歯23が配置されることで形成されているが、鋸歯23は、直線上に形成されていても良い。たとえば透光部材1の外形が四角形状の場合は、その四角形状に沿った四角線上に鋸歯23が形成されていても良い。また、反射部16は導光された光を全反射するものであるが、白色のインクが印刷処理がされていたり、アルミニウムや銀等のミラーコート等によって鏡面状等とすることができる。ただし反射部16は、導光された光を全反射する構成にした方が、その製造に際し印刷処理等の手間を要しないため好ましい。
 また、本実施の形態では、隣接する鋸歯23の配置間隔Hは0.2mmとしている。しかし、この配置間隔Hは0.1mm,0.3mm等に変更することができる。また、配置間隔Hは一定のものではなく、一つの透光部材1の中で異ならせても良い。
 また、鋸歯23は、同心円状に設けられ、一端側のプリズム部22が同心円の中心に近い側のプリズム部22であり、他端側のプリズム部22が同心円の中心から離れている側のプリズム部22である。しかし、プリズム部22の配置位置、形状等は変更することができる。たとえば、図15の透光部材1の第1変形例である透光部材1aの鋸歯23aのように、同心円状ではなく、中心を共通にする四角形状等の多角形状に設けられても良い。
 図16、図17は、図15に示す透光部材1aを使用した発光装置40を街路灯として用いた場合の使用状態の一例を示す図である。発光装置40の出射面側に支柱50の一端が取り付けられ、支柱50の他端は地面に埋め込められ、発光装置40が上から地面へ照射範囲W1を照射している。この照射範囲W1は発光装置40から放射状に道路51に沿って均一に広がっている。
 この発光装置40の道路51の幅方向の照射範囲W2は、道路51の幅Yを完全に覆うように放射状に広がっている。その広がり方は、図17に示すように道路51側が広く、道路51から外れる側は狭い。これは図15の透光部材1aに配置された鋸歯23aの突起角度θを位置によって変えているためである。すなわち、図15の上方の鋸歯23a1の突起角度θを、下側の鋸歯23a2の突起角度θを小さくしている。このようにすることで、たとえば、道路と森林との境界にこの発光装置40の街路灯を設置する場合、道路側の照射範囲を広くする等、照射範囲を任意に制御できる。
 この支柱50は、発光装置40の出射面のうち第1の導光部2に相当する部分を覆うように取り付けることが好ましい場合がある。たとえば、発光装置40が図10または図11に示すような比較的不均一な発光分布を有する場合等には、支柱50によって第1の導光部2に相当する比較的暗部となる部分を隠し、照光状態を均一となるようすることができる。また、図16、図17に示すように、一定方向は左右均等範囲に、一定方向とは直交する方向は左右不均等となる範囲に照射する透光部材としては、図15に示すような四角形の透光部材1aではなく、図1に示すような円形の透光部材1としても良い。
 図18には、透光部材1の第2変形例として、上述したLED30の配置位置を中心とする同心円上に鋸歯23を設けた上で、第2の導光部3の端部15を切り取って透光部材1の外形を四角形状(正方形)とした透光部材1bの底面図を示している。透光部材1と同一の形状、機能を有する部材には図3と同一の符号を付し、それらの説明は省略する。透光部材1bの正方形の各辺にを構成する端部15aおよび各角部を構成する端部15bがある。透光部材1の反射部16に相当する反射部16bは、各端部15aに沿って隣接する端部16を結び中心部13側に膨らむように楕円弧状に4つ形成されている。
 図19は、図18のブロック矢印B側から見た透光部材1bの側面図である。また、 図20は、図18のブロック矢印C側から見た透光部材1bの側面図である。図19、図20についても透光部材1と同一の形状、機能を有する部材には図3と同一の符号を付し、それらの説明は省略する。反射部16bの面と第2の導光部3の上面とがなす角は、θ1と同様に30°とされている。図20に示すように、端部15bの部分には反射部16bが存在していない。
 図21には、透光部材1bを用いた発光装置40の第2変形例である発光装置42を光源として3つ使用している看板60の断面概略図を示している。この看板60の前面61bに文字や画像が描かれたり、ポスター等が貼られる。各発光装置42は、広角に照射可能であり、W3の範囲を照射する。つまり、図21に示すように隣接する発光装置42の照射範囲の一部(端部)が重なっている用に照射している。よって看板60は、照射方向へ看板60全体が発光しているものとして観察される。このような発光状態は、各発光装置42がW4の距離だけ離れて看板60内で配置されていても得ることができる。したがって看板60は、従来個々のLEDを並べたものを看板の光源として使用していた場合に比べ、飛躍的に光源数を減らすことができる。そのため看板60は、消費電力の低減、構成部材数の低減等の効果を奏する。
 なお、この図21では、上下に3個の発光装置42が配置されているが、縦横で3個×3個で計9個の発光装置42を配置し、正方形の表面61を有する看板60としたり、3個×5個の計15個の横長の看板60としたりしても良い。縦横の各個数は、適宜な数を採用することができる。
 1,1a,1b 透光部材(光学素子)
 2 第1の導光部(導光部の一部)
 3 第2の導光部(導光部の一部)
16,16b 反射部
21 光散乱粒子
22,22a プリズム部
23 鋸歯
24 鋸歯の反射面
30 LED(発光部材)
40,41,42 発光装置
 δ 入射角
 θ 突起角度

Claims (9)

  1.  光が導光される板状の導光部を備え、上記導光部はその一方の面に上記導光された光を方向転換させる断面形状が複数の鋸歯からなるプリズム部を有し、
     上記プリズム部は、上記導光部に導光される平行光が入射側の上記鋸歯の反射面に入射する入射角よりもそこから離れた離隔位置の上記鋸歯の反射面に入射する入射角が大きくされていることを特徴とする光学素子。
  2.  光が導光される板状の導光部を備え、上記導光部はその一方の面に上記導光された光を方向転換させる断面形状が複数の鋸歯からなるプリズム部を有し、
     上記プリズム部は、上記導光部に導光される光の入射側の上記鋸歯の突起角度よりもそこから離れた離隔位置の上記鋸歯の突起角度が大きくされていることを特徴とする光学素子。
  3.  請求項1または2記載の光学素子において、前記鋸歯の反射面に光が入射する入射角または、前記鋸歯の突起角度は、前記入射側から前記離隔位置へ向かって徐々に大きくされていることを特徴とする光学素子。
  4.  請求項1から3のいずれか1項に記載の光学素子において、前記プリズム部の前記導光部の入射側から離隔した端部側には、前記導光部に導光された光を前記プリズム部が方向転換させる側と同じ側へと反射させる反射部を備えていることを特徴とする光学素子。
  5.  請求項1から4のいずれか1項に記載の光学素子において、前記鋸歯は、同心円状に設けられ、前記入射側のプリズム部が上記同心円の中心に近い側の前記プリズム部であり、前記離隔位置のプリズム部が上記同心円の中心から離れている側の前記プリズム部であることを特徴とする光学素子。
  6.  請求項1から5のいずれか1項に記載の光学素子において、前記導光部は透光性樹脂であり、前記導光部には光散乱粒子が含有され、上記光散乱粒子は、その粒径が1~10μmの透光性のシリコーン粒子であることを特徴とする光学素子。
  7.  光が導光される板状の導光部と、上記光を発する発光部材とを備え、上記導光部はその一方の面に上記導光された光を方向転換させる断面鋸歯状のプリズム部を有し、
     上記プリズム部は、上記導光部に導光される平行光が上記発光部材側の上記鋸歯の反射面に入射する入射角よりも上記発光部材から離れた離隔位置の上記鋸歯の反射面に入射する入射角が大きくされていることを特徴とする光学素子。
  8.  光が導光される板状の導光部と、上記光を発する発光部材とを備え、上記導光部はその一方の面に上記導光された光を方向転換させる断面鋸歯状のプリズム部を有し、
     上記プリズム部は、上記発光部材側の上記鋸歯の突起角度よりも上記発光部材から離れた離隔位置の上記鋸歯の突起角度が大きくされていることを特徴とする発光装置。
  9.  請求項7または8記載の発光装置において、前記鋸歯の反射面に光が入射する入射角または前記鋸歯の突起角度は、前記発光部材側から前記離隔位置へ向かって徐々に大きくされていることを特徴とする発光装置。
PCT/JP2009/006157 2008-11-18 2009-11-17 光学素子および発光装置 WO2010058554A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/129,284 US8616746B2 (en) 2008-11-18 2009-11-17 Optical element and light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-294059 2008-11-18
JP2008294059A JP2010123309A (ja) 2008-11-18 2008-11-18 光学素子および発光装置

Publications (1)

Publication Number Publication Date
WO2010058554A1 true WO2010058554A1 (ja) 2010-05-27

Family

ID=42197997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006157 WO2010058554A1 (ja) 2008-11-18 2009-11-17 光学素子および発光装置

Country Status (3)

Country Link
US (1) US8616746B2 (ja)
JP (1) JP2010123309A (ja)
WO (1) WO2010058554A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713421A (zh) * 2009-11-18 2012-10-03 拉姆伯斯国际公司 Led的内部收集反射器光学器件
JP4717148B1 (ja) * 2010-05-28 2011-07-06 株式会社スズデン 照明器具および照明器具の製造方法
US8746934B2 (en) 2010-11-12 2014-06-10 Rambus Delaware Llc Lighting assembly with asymmetrical light ray angle distribution
TW201300702A (zh) 2011-05-13 2013-01-01 Rambus Inc 照明組件
JP5587839B2 (ja) * 2011-07-20 2014-09-10 パナソニック株式会社 照明ユニット
CN102981309A (zh) * 2012-12-10 2013-03-20 京东方科技集团股份有限公司 显示装置
US9625638B2 (en) 2013-03-15 2017-04-18 Cree, Inc. Optical waveguide body
US9581751B2 (en) 2013-01-30 2017-02-28 Cree, Inc. Optical waveguide and lamp including same
US9366396B2 (en) 2013-01-30 2016-06-14 Cree, Inc. Optical waveguide and lamp including same
US10209429B2 (en) 2013-03-15 2019-02-19 Cree, Inc. Luminaire with selectable luminous intensity pattern
US9366799B2 (en) 2013-03-15 2016-06-14 Cree, Inc. Optical waveguide bodies and luminaires utilizing same
US20150177439A1 (en) * 2013-03-15 2015-06-25 Cree, Inc. Optical Waveguide Bodies and Luminaires Utilizing Same
US9798072B2 (en) 2013-03-15 2017-10-24 Cree, Inc. Optical element and method of forming an optical element
EP3002509B1 (en) * 2013-05-21 2017-09-13 Panasonic Intellectual Property Management Co., Ltd. Illuminator
US9291340B2 (en) 2013-10-23 2016-03-22 Rambus Delaware Llc Lighting assembly having n-fold rotational symmetry
JP2015099336A (ja) * 2013-11-20 2015-05-28 株式会社東芝 光学素子および光学装置
US9651740B2 (en) 2014-01-09 2017-05-16 Cree, Inc. Extraction film for optical waveguide and method of producing same
DE102014100680B4 (de) * 2014-01-22 2019-10-31 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes
US10416377B2 (en) 2016-05-06 2019-09-17 Cree, Inc. Luminaire with controllable light emission
US11719882B2 (en) 2016-05-06 2023-08-08 Ideal Industries Lighting Llc Waveguide-based light sources with dynamic beam shaping
JP6877174B2 (ja) * 2017-02-20 2021-05-26 ニッタン株式会社 防災用表示灯
US10364948B2 (en) * 2017-05-10 2019-07-30 Ideal Industries Lighting Llc Optical waveguides and luminaires having a waveguide with extraction features and reflective material having openings disposed thereon
CN208457847U (zh) * 2018-02-09 2019-02-01 法雷奥市光(中国)车灯有限公司 导光部件、车灯和机动车辆
TW202036059A (zh) * 2018-11-07 2020-10-01 荷蘭商露明控股公司 照明模組
CN113614445B (zh) * 2019-03-28 2023-10-20 三菱电机株式会社 扩散体和照明装置
CN113892046A (zh) * 2019-05-27 2022-01-04 三菱电机株式会社 扩散体以及照明装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108835A (ja) * 1999-10-12 2001-04-20 Nippon Leiz Co Ltd 導光板および平面照明装置
JP2003215578A (ja) * 2002-01-18 2003-07-30 Japan Aviation Electronics Industry Ltd 導光板及び反射型液晶表示装置
JP2003229012A (ja) * 2002-02-05 2003-08-15 Alps Electric Co Ltd 照明装置及び液晶表示装置
JP2004047364A (ja) * 2002-07-15 2004-02-12 Alps Electric Co Ltd 照明装置及び液晶表示装置
JP2005268201A (ja) * 2004-02-20 2005-09-29 Omron Corp 面光源装置
JP2008034124A (ja) * 2006-07-26 2008-02-14 Stanley Electric Co Ltd Led照明灯具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69803297T2 (de) * 1997-08-12 2002-08-22 Decoma Int Inc Doppelreflektierende linse
JP2001108335A (ja) 1999-09-30 2001-04-20 Sanyo Electric Co Ltd 冷媒回収装置およびその利用装置
JP4162935B2 (ja) * 2002-07-04 2008-10-08 株式会社小糸製作所 車両用灯具
JP4067387B2 (ja) * 2002-11-08 2008-03-26 アルプス電気株式会社 導光材および照明装置
JP2004192909A (ja) * 2002-12-10 2004-07-08 Sanyo Electric Co Ltd 導光板及びこの導光板を用いた面光源装置並びにこれを用いた表示装置
CN100562686C (zh) 2004-02-20 2009-11-25 欧姆龙株式会社 面光源装置
WO2006116518A2 (en) * 2005-04-28 2006-11-02 Illumination Management Solutions, Inc. Led that generates a high-aspect ratio light pattern
US7467879B2 (en) * 2006-04-21 2008-12-23 Xerox Corporation Document illuminator with stepped optical element
NL1034727C2 (nl) * 2006-11-24 2010-11-30 Sumitomo Chemical Co Lichtdiffusieplaat, oppervlakemissie lichtbroninrichting in vloeibaar kristal weergave inrichting.
JP4724690B2 (ja) 2007-06-01 2011-07-13 ライツ・アドバンスト・テクノロジー株式会社 導光板および平面照明装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108835A (ja) * 1999-10-12 2001-04-20 Nippon Leiz Co Ltd 導光板および平面照明装置
JP2003215578A (ja) * 2002-01-18 2003-07-30 Japan Aviation Electronics Industry Ltd 導光板及び反射型液晶表示装置
JP2003229012A (ja) * 2002-02-05 2003-08-15 Alps Electric Co Ltd 照明装置及び液晶表示装置
JP2004047364A (ja) * 2002-07-15 2004-02-12 Alps Electric Co Ltd 照明装置及び液晶表示装置
JP2005268201A (ja) * 2004-02-20 2005-09-29 Omron Corp 面光源装置
JP2008034124A (ja) * 2006-07-26 2008-02-14 Stanley Electric Co Ltd Led照明灯具

Also Published As

Publication number Publication date
US8616746B2 (en) 2013-12-31
US20110222309A1 (en) 2011-09-15
JP2010123309A (ja) 2010-06-03

Similar Documents

Publication Publication Date Title
WO2010058554A1 (ja) 光学素子および発光装置
JP5172592B2 (ja) 光学素子および発光装置
JP5306799B2 (ja) 光学素子および発光装置
US10422939B2 (en) Waveguide having unidrectional illuminance
US8807816B2 (en) Luminaire with Functionality-enhancing structure
JP6285783B2 (ja) 発光アプリケーションのための光取り込み構造
US7758227B1 (en) Light fixture with curved light scattering region comprising ellipsoidal domains
US8430548B1 (en) Enhanced light fixture with volumetric light scattering
JP5380182B2 (ja) 発光装置、面光源および液晶ディスプレイ装置
KR102147940B1 (ko) 조명 장치
JP5543157B2 (ja) 光学素子および発光装置
US9234641B2 (en) Optical lens and light source device
JP2011014434A5 (ja)
JPWO2013035788A1 (ja) 照明装置および照明スタンド
KR20120066658A (ko) 발광 디바이스
KR102147939B1 (ko) 조명 장치
JP6347390B2 (ja) 照明装置
US20140092628A1 (en) Illumination device
JP5336879B2 (ja) 光学素子および発光装置ならびに道路灯
JP5363884B2 (ja) 発光装置および光学素子
WO2011083779A1 (ja) 光学素子および発光装置
JP5712271B2 (ja) 光学素子および発光装置
JP6012972B2 (ja) 照明装置
JP2009048847A (ja) 照明装置及びこれを用いた表示装置
US20140313695A1 (en) Light diffuser and backlight module having same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827335

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13129284

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827335

Country of ref document: EP

Kind code of ref document: A1