WO2010090060A1 - 大気圧推定装置 - Google Patents

大気圧推定装置 Download PDF

Info

Publication number
WO2010090060A1
WO2010090060A1 PCT/JP2010/050358 JP2010050358W WO2010090060A1 WO 2010090060 A1 WO2010090060 A1 WO 2010090060A1 JP 2010050358 W JP2010050358 W JP 2010050358W WO 2010090060 A1 WO2010090060 A1 WO 2010090060A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimated
flow rate
atmospheric pressure
throttle valve
air flow
Prior art date
Application number
PCT/JP2010/050358
Other languages
English (en)
French (fr)
Inventor
宗紀 塚本
直樹 尾家
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP10738399.4A priority Critical patent/EP2362087B1/en
Priority to US13/144,974 priority patent/US8676472B2/en
Priority to JP2010549420A priority patent/JP5291726B2/ja
Priority to CN201080006778.3A priority patent/CN102308075B/zh
Publication of WO2010090060A1 publication Critical patent/WO2010090060A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • F02D2200/704Estimation of atmospheric pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an atmospheric pressure estimation device for estimating an atmospheric pressure applied to calculation of a control parameter of an internal combustion engine.
  • the atmospheric pressure detected by the atmospheric pressure sensor is usually applied to calculate the control parameters such as the fuel supply amount and ignition timing of the internal combustion engine.
  • the number of sensors for calculating the engine control parameter is as small as possible. It is desirable to do.
  • Patent Document 1 discloses a method for estimating atmospheric pressure according to intake pressure, intake temperature, intake air flow rate, throttle valve opening, and idle control valve opening.
  • the flow rate related term FT is calculated using the detected intake pressure, intake temperature, and intake air flow rate, and the effective opening area Aint is calculated from the throttle valve opening and the idle control valve opening. Is calculated.
  • a pressure ratio map (PA / MAP) between the intake pressure MAP and the atmospheric pressure PA is calculated by searching a pressure ratio map set in advance according to the flow rate related term FT and the effective opening area Aint, and the pressure ratio ( The estimated atmospheric pressure is calculated by multiplying (PA / MAP) by the intake pressure MAP.
  • Patent Document 1 In the method disclosed in Patent Document 1, it is necessary to experimentally obtain a pressure ratio map for calculating the pressure ratio (PA / MAP) in advance, and the design man-hours increase because of the map setting.
  • the present invention has been made in consideration of the above-described points, and an object of the present invention is to provide an atmospheric pressure estimation device that can perform estimation of atmospheric pressure applied to calculation of engine control parameters more easily and accurately. To do.
  • the present invention provides an atmospheric pressure estimating device including an atmospheric pressure estimating means for estimating an atmospheric pressure applied to calculation of a control parameter of an internal combustion engine, and an intake pressure for detecting an intake pressure (PBA) of the engine.
  • HGAIRTH estimated intake throttle valve passage air flow rate
  • HGAIRTH estimated intake throttle valve passage air flow rate
  • GAIR detected intake throttle valve passage air flow rate
  • the estimated intake throttle valve passing air flow rate is calculated based on the estimated atmospheric pressure, the detected intake pressure and the intake throttle valve opening, and the estimated intake throttle valve passing air flow rate is detected.
  • the estimated atmospheric pressure is updated so as to coincide with the intake throttle valve passing air flow rate, and the estimated intake throttle valve passing air flow rate is calculated using the updated estimated atmospheric pressure. That is, the update of the estimated atmospheric pressure and the calculation of the estimated intake throttle valve passing air flow are sequentially performed, the estimated intake throttle valve passing air flow follows the detected intake throttle valve passing air flow, and the estimated atmospheric pressure is the actual atmospheric pressure.
  • an accurate estimated atmospheric pressure can be obtained by a relatively simple calculation that does not require a map search.
  • the atmospheric pressure estimating means applies, as an initial value (HPAINI) of the estimated atmospheric pressure, an intake pressure (PBA) detected during a period from a previous stop of the engine to a time when the start of the engine is completed. It is desirable.
  • the intake pressure detected from the previous stop of the engine to the time when the start of the engine is completed is applied as the initial value of the estimated atmospheric pressure.
  • the detected intake pressure becomes substantially equal to the atmospheric pressure, and takes a value close to the atmospheric pressure until the start is completed (start of self-supporting), so that an appropriate initial value can be set.
  • the atmospheric pressure estimating means sets the estimated atmospheric pressure (HPA) to the intake pressure (PBA) when the intake pressure (PBA) is higher than the estimated atmospheric pressure (HPA).
  • the estimated atmospheric pressure when the detected intake pressure is higher than the estimated atmospheric pressure, the estimated atmospheric pressure is set to the detected intake pressure. Since the actual atmospheric pressure is equal to or higher than the intake pressure, when the detected intake pressure is higher than the estimated atmospheric pressure, for example, by setting (initializing) the estimated atmospheric pressure to the detected intake pressure, It is possible to suppress a decrease in estimation accuracy due to detection delay or a decrease in estimation accuracy during restart immediately after the engine is stopped.
  • the vehicle further includes vehicle speed detecting means for detecting a vehicle speed (VP) of the vehicle driven by the engine, and the updating means is configured to detect the estimated atmospheric pressure (VPL) when the vehicle speed (VP) is equal to or lower than a predetermined vehicle speed (VPL). It is desirable to stop updating HPA).
  • vehicle speed detecting means for detecting a vehicle speed (VP) of the vehicle driven by the engine
  • VPL estimated atmospheric pressure
  • the update of the estimated atmospheric pressure is stopped when the vehicle speed is equal to or lower than the predetermined vehicle speed.
  • the vehicle speed is low, the atmospheric pressure around the vehicle hardly changes. Therefore, by stopping the update, it is possible to prevent the estimation accuracy from being lowered due to the influence of the air sucked into the engine without passing through the intake throttle valve.
  • the update means may decrease the update speed (CORHPA) of the estimated atmospheric pressure when the vehicle speed (VP) is equal to or lower than a predetermined vehicle speed (VPL).
  • CORHPA update speed of the estimated atmospheric pressure when the vehicle speed (VP) is equal to or lower than a predetermined vehicle speed (VPL).
  • the update speed of the estimated atmospheric pressure is reduced.
  • the vehicle speed is low, the atmospheric pressure around the vehicle hardly changes. Therefore, by reducing the renewal speed, it is possible to suppress the estimation accuracy from being lowered due to the influence of air sucked into the engine without passing through the intake throttle valve. .
  • the atmospheric pressure estimation means includes a first annealing processing means for calculating a first annealing estimated atmospheric pressure (HPA) by performing an annealing process on the estimated atmospheric pressure (HPACAL) updated by the updating means.
  • Second annealing processing means for calculating a second annealing estimated atmospheric pressure (HPAF) by performing an annealing process of the first annealing estimated atmospheric pressure (HPA), and the second annealing
  • the estimated atmospheric pressure (HPAF) is output, and the flow rate estimating means preferably calculates the estimated intake throttle valve passing air flow rate (HGAIRTH) using the first smoothed estimated atmospheric pressure (HPA).
  • the first estimated estimated atmospheric pressure is calculated by performing the updated estimated atmospheric pressure smoothing process, and the second annealed process of the first estimated estimated atmospheric pressure is performed. An estimated annealing atmospheric pressure is calculated. Then, the second smoothed estimated atmospheric pressure is output and used for control parameter calculation, while the first smoothed estimated atmospheric pressure is applied to calculate the estimated intake throttle valve passing air flow rate. Applying the first smoothing estimated atmospheric pressure to the calculation of the estimated intake throttle valve passing air flow rate, and further outputting the second smoothing estimated atmospheric pressure after the smoothing process, thereby reducing the responsiveness of the estimation calculation Therefore, it is possible to sufficiently attenuate the fluctuation component that is not necessary for calculating the control parameter.
  • the atmospheric pressure estimating means corrects the estimated intake throttle valve passing air flow rate (HGAIRTH) according to the detection delay characteristic of the intake throttle valve passing air flow rate detecting means (13), thereby correcting the estimated estimated intake throttle valve.
  • a flow rate detection delay correcting unit for calculating a passing air flow rate (HGATAFS), and the updating unit is configured such that the corrected estimated intake throttle valve passing air flow rate (HGATAFS) matches the detected intake throttle valve passing air flow rate (GAIR).
  • HPA estimated atmospheric pressure
  • the corrected estimated intake throttle valve passing air flow rate is calculated by correcting the estimated intake throttle valve passing air flow rate according to the detection delay characteristic of the intake throttle valve passing air flow rate detecting means, and this corrected estimated The estimated atmospheric pressure is updated so that the intake throttle valve passing air flow rate matches the detected intake throttle valve passing air flow rate.
  • the atmospheric pressure estimating means corrects the estimated intake throttle valve passing air flow rate (HGAIRTHa) according to the detection delay characteristic of the intake pressure detecting means (8), whereby the first corrected estimated intake throttle valve passing air is corrected.
  • the first estimated intake throttle valve passing air flow rate (HGATPBS) is corrected according to the pressure detection delay correcting means for calculating the flow rate (HGATPBS) and the detection delay characteristic of the intake throttle valve passing air flow rate detecting means (13).
  • a flow rate detection delay correcting means for calculating a second corrected estimated intake throttle valve passage air flow rate (HGATAFSa), wherein the flow rate estimating means uses the estimated value (HPBA) of the intake pressure.
  • a throttle valve passing air flow rate (HGAIRTHa) is calculated, and the updating means detects the second corrected estimated intake throttle valve passing air flow rate (HGARAFSa). To match the air throttle valve passing air flow rate (GAIR), it may be performed the update of the estimated atmospheric pressure (HPA).
  • HPA estimated atmospheric pressure
  • the estimated intake throttle valve passing air flow rate is calculated using the estimated value of the intake pressure, and by correcting the estimated intake throttle valve passing air flow rate according to the detection delay characteristic of the intake pressure detecting means, The first correction estimated intake throttle valve passage air flow rate is calculated, and the second correction estimation is performed by correcting the first estimated intake throttle valve passage air flow rate according to the detection delay characteristic of the intake throttle valve passage air flow rate detecting means. An intake throttle valve passing air flow rate is calculated. Then, the estimated atmospheric pressure is updated so that the second corrected estimated intake throttle valve passage air flow rate matches the detected intake throttle valve passage air flow rate. Thereby, it is possible to suppress a decrease in estimation accuracy caused by a detection delay of the intake pressure detection means and a detection delay of the intake throttle valve passing air flow rate detection means.
  • the atmospheric pressure estimating means corrects the estimated intake throttle valve passage air flow rate (HGAIRTHb) according to the detection delay characteristic of the intake throttle valve opening degree detecting means (4), whereby a first corrected estimated intake throttle is obtained.
  • the first estimated intake throttle valve passage air flow rate (HGATTHS) according to the opening degree detection delay correction means for calculating the valve passage air flow rate (HGATTHS) and the detection delay characteristic of the intake throttle valve passage air flow rate detection means (13).
  • a flow rate detection delay correcting unit that calculates a second corrected estimated intake throttle valve passage air flow rate (HGAATAFSb), and the flow rate estimating unit includes an estimated value (HTH) of the intake throttle valve opening degree.
  • HGAIRTHb Is used to calculate the estimated intake throttle valve passing air flow rate (HGAIRTHb), and the updating means is configured to calculate the second corrected estimated intake throttle valve passing air flow rate (HGATA).
  • Sb) coincides with the detected intake air throttle valve passing air flow rate (GAIR), it may be performed the update of the estimated atmospheric pressure (HPA).
  • the estimated intake throttle valve passing air flow rate is calculated using the estimated value of the intake throttle valve opening, and the estimated intake throttle valve passing air flow rate is determined according to the detection delay characteristic of the intake throttle valve opening detecting means. Is corrected, the first corrected estimated intake throttle valve passing air flow rate is calculated, and the first estimated intake throttle valve passing air flow rate is corrected according to the detection delay characteristic of the intake throttle valve passing air flow rate detecting means. Thus, the second corrected estimated intake throttle valve passage air flow rate is calculated. Then, the estimated atmospheric pressure is updated so that the second corrected estimated intake throttle valve passage air flow rate matches the detected intake throttle valve passage air flow rate. Thereby, it is possible to suppress a decrease in estimation accuracy caused by a detection delay of the intake throttle valve opening degree detection means and a detection delay of the intake throttle valve passage air flow rate detection means.
  • FIG. 4 is a flowchart of a subroutine executed in the process shown in FIG. 3.
  • FIG. 4 is a figure which shows the table referred by the process of FIG.
  • FIG. It is a figure which shows the table referred by the process of FIG.
  • It is a time chart for demonstrating the aspect in which an estimated atmospheric pressure (HPACAL) follows an actual atmospheric pressure (PA).
  • HPACAL estimated atmospheric pressure
  • PA actual atmospheric pressure
  • It is a time chart for demonstrating the annealing process of estimated atmospheric pressure.
  • It is a flowchart of the modification of the process shown in FIG.
  • FIG. 1 is a diagram showing a configuration of an internal combustion engine and a control device thereof according to an embodiment of the present invention.
  • an internal combustion engine hereinafter simply referred to as “engine”
  • engine an internal combustion engine having four cylinders
  • a cylinder deactivation mechanism 40 is provided for deactivating the cylinders by deactivating the intake and exhaust valves.
  • a throttle valve 3 is arranged in the middle of the intake pipe 2 of the engine 1.
  • a throttle valve opening (TH) sensor 4 is connected to the throttle valve 3, and an electric signal corresponding to the opening of the throttle valve 3 is output to an electronic control unit (hereinafter referred to as “ECU”) 5. Supply.
  • An actuator 7 that drives the throttle valve 3 is connected to the throttle valve 3, and the operation of the actuator 7 is controlled by the ECU 5.
  • the intake pipe 2 is provided with an intake air flow rate sensor 13 that detects an intake air flow rate GAIR that is a flow rate of air sucked into the engine 1 via the throttle valve 3, and an intake air temperature TA on the upstream side of the throttle valve 3.
  • An intake air temperature sensor 9 is provided for detecting. Detection signals of these sensors 13 and 9 are supplied to the ECU 5.
  • the fuel injection valve 6 is provided for each cylinder between the engine 1 and the throttle valve 3 and slightly upstream of the intake valve (not shown) of the intake pipe 2, and each injection valve is connected to a fuel pump (not shown). At the same time, it is electrically connected to the ECU 5 and the valve opening time of the fuel injection valve 6 is controlled by a signal from the ECU 5.
  • the ignition plug 12 of each cylinder of the engine 1 is connected to the ECU 5, and the ECU 5 supplies an ignition signal to the ignition plug 12 to perform ignition timing control.
  • An intake pressure sensor 8 for detecting the intake pressure PBA is attached downstream of the throttle valve 3.
  • An engine cooling water temperature sensor 10 that detects the engine cooling water temperature TW is attached to the main body of the engine 1. The detection signals of these sensors 8 and 10 are supplied to the ECU 5.
  • the ECU 5 is connected to a crank angle position sensor 11 that detects a rotation angle of a crankshaft (not shown) of the engine 1, and a signal corresponding to the rotation angle of the crankshaft is supplied to the ECU 5.
  • the crank angle position sensor 11 is a cylinder discrimination sensor that outputs a pulse (hereinafter referred to as “CYL pulse”) at a predetermined crank angle position of a specific cylinder of the engine 1, and relates to a top dead center (TDC) at the start of the intake stroke of each cylinder.
  • a TDC sensor that outputs a TDC pulse at a crank angle position before a predetermined crank angle (every 180 degrees of crank angle in a four-cylinder engine) and one pulse (hereinafter referred to as “CRK”) with a constant crank angle cycle shorter than the TDC pulse (for example, a cycle of 6 °).
  • the CYL pulse, the TDC pulse, and the CRK pulse are supplied to the ECU 5. These pulses are used for various timing controls such as fuel injection timing and ignition timing, and detection of engine speed (engine speed) NE.
  • the ECU 5 includes an accelerator sensor 31 for detecting an accelerator pedal depression amount (hereinafter referred to as “accelerator pedal operation amount”) AP of a vehicle driven by the engine 1, and a traveling speed (vehicle speed) VP of the vehicle driven by the engine 1.
  • a vehicle speed sensor 32 for detecting the above is connected. Detection signals from these sensors are supplied to the ECU 5.
  • the ECU 5 shapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, etc., and a central processing unit (hereinafter referred to as “CPU”). ), A storage circuit for storing a calculation program executed by the CPU, a calculation result, and the like, an output circuit for supplying a drive signal to the actuator 7, the fuel injection valve 6, and the cylinder deactivation mechanism 40, and the like.
  • CPU central processing unit
  • the CPU of the ECU 5 controls the ignition timing, the opening degree of the throttle valve 3, the control of the amount of fuel supplied to the engine 1 (opening time of the fuel injection valve 6), and the cylinder deactivation control according to the detection signal of the sensor. I do.
  • the CPU of the ECU 5 executes an atmospheric pressure estimation process for estimating the atmospheric pressure PA, and applies the estimated atmospheric pressure (HPAF) obtained by the atmospheric pressure estimation process to the control such as the ignition timing control and the fuel amount control. .
  • HPAF estimated atmospheric pressure
  • FIG. 2 is a block diagram showing the configuration of an atmospheric pressure estimation module that executes atmospheric pressure estimation processing, and the function of each block shown in FIG. 2 is realized by arithmetic processing executed by the CPU of the ECU 5 as described later. .
  • the atmospheric pressure estimation module shown in FIG. 2 includes an intake air flow rate estimation unit 51, an estimated atmospheric pressure update unit 52, a first smoothing calculation unit 53, a delay unit 54, and a second smoothing calculation unit 55. ing.
  • the intake air flow rate estimation unit 51 detects the detected intake pressure PBA, the intake air temperature TA, the throttle valve opening TH, the engine speed NE, and the estimated atmospheric pressure output from the first smoothing calculation unit 53 one calculation cycle before.
  • the estimated throttle valve passage air flow rate HGAIRTH is calculated by applying HPAD to the following equation (1).
  • KC is a conversion constant for setting the unit of flow rate to [g / sec]
  • KTH (TH) is an opening area flow rate function calculated according to the throttle valve opening TH
  • ⁇ ( PBA / HPAD) is a pressure ratio flow function calculated according to the ratio between the upstream pressure (HPAD) and the downstream pressure (PBA) of the throttle valve 3
  • R is a gas constant.
  • the opening area flow rate function KTH is experimentally obtained in advance and stored as a table. Further, the pressure specific flow rate function ⁇ is given by the following equation (2). “ ⁇ ” in Equation (2) is the specific heat ratio of air. However, when the air flow velocity exceeds the sonic velocity, the pressure ratio flow function ⁇ takes a maximum value regardless of the pressure ratio. Therefore, in the actual calculation process, the pressure ratio flow function ⁇ is also stored in advance as a table (FIG. 5 ( b)) is used.
  • the estimated atmospheric pressure update unit 52 updates the estimated atmospheric pressure HPA so that the estimated throttle valve passing air flow rate HGAIRTH matches the detected intake air flow rate GAIR, and the estimated atmospheric pressure before the first smoothing calculation process (hereinafter referred to as the estimated atmospheric pressure HPA).
  • HPCAL (referred to as “updated estimated atmospheric pressure”) is calculated.
  • the first annealing calculation unit 53 applies the updated estimated atmospheric pressure HPACAL to the following equation (3) to calculate the estimated atmospheric pressure HPA.
  • “K” in Expression (3) is a discretization time discretized in the calculation cycle, and CA1 is an annealing coefficient set to a value between “0” and “1”. Note that (k) indicating the current value is omitted.
  • HPA CA1 ⁇ HPACAL + (1-CA1) ⁇ HPA (k ⁇ 1) (3)
  • the second annealing calculation unit 55 applies the estimated atmospheric pressure HPA to the following equation (4) to calculate the annealing estimated atmospheric pressure HPAF.
  • CA2 in Expression (4) is an annealing coefficient set to a value between “0” and “1”.
  • HPAF CA2 * HPA + (1-CA2) * HPAF (k-1) (4)
  • the estimated annealing atmospheric pressure HPAF calculated by the equation (4) is applied to calculation of engine control parameters such as ignition timing and fuel supply amount.
  • FIG. 3 is a flowchart of a main routine of atmospheric pressure estimation processing for realizing the function of the atmospheric pressure estimation module shown in FIG. This process is executed by the CPU of the ECU 5 in synchronization with the TDC pulse.
  • step S11 it is determined whether or not the first initialization flag FFINHPAINI is “1”. Since this answer is negative (NO) at first, the initial estimated atmospheric pressure HPAINI is set to the higher one of the previous set value of HPAINI and the intake pressure PBA by the following equation (5) (step S12).
  • HPAINI max (HPAINI (k ⁇ 1), PBA) (5)
  • step S13 it is determined whether or not the start mode flag FSTMOD is “1”.
  • the start mode flag FSTMOD is set to “1” during cranking (from the start of engine 1 to the start of independent operation). During the cranking, the process is immediately terminated.
  • the process proceeds to step S14, and the first initialization flag FFINHPAINI is set to “1”.
  • step S14 When step S14 is executed, the answer to step S11 is affirmative (YES), the process proceeds to step S15, and the atmospheric pressure estimation subroutine shown in FIG. 4 is executed.
  • step S21 of FIG. 4 it is determined whether or not the second initialization flag FFINHPAINIR is “1”. Since this answer is negative (NO) at first, the process proceeds to step S22, and both the estimated atmospheric pressure HPA and the delayed estimated atmospheric pressure HPAD are set to the initial estimated atmospheric pressure HPAINI. Next, the second initialization flag FFINHPAINIR is set to “1” (step S23), and this process ends.
  • step S23 When step S23 is executed, the answer to step S21 is affirmative (YES), and the processing after step S24 is executed.
  • step S24 the KTH table shown in FIG. 5A is retrieved according to the throttle valve opening TH, and the opening area flow rate function value KTH is calculated.
  • the KTH table is set so that the opening area flow rate function value KTH increases as the throttle valve opening TH increases.
  • step S25 the pressure ratio RPBAHPA, which is the ratio between the intake pressure PBA and the delay estimated atmospheric pressure HPAD, is calculated by the following equation (6), and the FPBAPA table shown in FIG. 5B is retrieved according to the pressure ratio RPBAHPA.
  • the pressure specific flow rate function value FPBAPA is calculated.
  • RPBAHPA PBA / HPAD (6)
  • step S26 an RRTA table (not shown) is searched according to the intake air temperature TA, and an intake air temperature parameter RRTA is calculated.
  • the RRTA table stores the calculation result of the following formula (7) corresponding to the denominator of the formula (1) as a table.
  • step S27 the KTHNE table is searched according to the engine speed NE, and the rotation speed correction coefficient KTHNE is calculated.
  • the KTHNE table is set so that the engine speed correction coefficient KTHNE decreases as the engine speed NE increases.
  • the rotational speed correction coefficient KTHNE is a parameter for correcting the pressure loss of the air cleaner disposed upstream of the intake air flow rate sensor 13, and considers that the pressure loss of the air cleaner increases as the engine rotational speed NE increases. Is set. Since the influence of the air cleaner is usually not so great, the rotational speed correction coefficient KTHNE may always be set to “1” so that the correction according to the engine rotational speed NE is not performed.
  • step S28 the opening area flow rate function value KTH, the pressure ratio flow rate function value FPBAPA, the intake air temperature parameter RRTA, the delay estimated atmospheric pressure HPAD, and the rotation speed correction coefficient KTHNE are applied to the following equation (1a), and the estimated throttle valve passage air
  • the flow rate HGAIRTH is calculated.
  • HGAIRTH KC x HPAD x KTH x FPBAPA x KTHNE / RRTA (1a)
  • step S29 the flow rate deviation DGAIR is calculated by the following equation (11).
  • DGAIR HGAIRTH-GAIR (11)
  • step S30 it is determined whether or not the vehicle speed VP is greater than a predetermined low vehicle speed VPL (eg, “0”). If the answer is negative (NO), the update amount CORHPA is set to “0” (step S32). ). On the other hand, when VP> VPL, the CORHPA table shown in FIG. 5D is searched according to the flow rate deviation DGAIR, and the update amount CORHPA is calculated (step S31). The CORHPA table is set as follows.
  • the update amount CORHPA is set to “0” and the flow rate deviation DGAIR is set to the predetermined value ⁇ D1.
  • the update amount CORHPA is set to the predetermined amount COR1 (> 0)
  • the update amount CORHPA is set to the predetermined amount ⁇ COR1.
  • step S33 the updated estimated atmospheric pressure HPACAL is calculated by adding the updated amount CORHPA to the estimated atmospheric pressure HPA (previous value) according to the following equation (12).
  • HPACAL HPA + CORHPA (12)
  • step S34 the estimated atmospheric pressure HPA is calculated by the annealing operation according to the equation (3), and in step S35, the estimated atmospheric pressure HPAF is calculated by the annealing operation according to the equation (4).
  • FIG. 6 is a time chart for explaining the transition of the estimated atmospheric pressure HPA in the present embodiment, and shows an example in which the initial setting value of the estimated atmospheric pressure HPA is greatly deviated from the atmospheric pressure PA.
  • the flow rate deviation DGAIR increases, and the update amount CORHPA is set to the negative predetermined amount “ ⁇ COR1”.
  • the estimated throttle valve passage air flow rate HGAIRTH gradually decreases, and the estimated atmospheric pressure HPA decreases accordingly, and finally coincides with the atmospheric pressure PA.
  • FIG. 6 shows an estimated atmospheric pressure HPA in a state where the first annealing calculation process is not performed for the sake of explanation.
  • the estimated atmospheric pressure HPA is initialized by the detected intake pressure PBA immediately after the engine is started as described above. Therefore, the estimated atmospheric pressure HPA substantially coincides with the atmospheric pressure PA from the beginning. It changes to follow the change of.
  • FIG. 7 is a time chart showing the test results. Atmospheric pressure PA and estimated atmospheric pressure when traveling from point A at an altitude of 2600 m to point B at an altitude of 3000 m and then descending to point C at an altitude of 2200 are performed. Changes in HPA (FIG. (A)), fuel cut flag FFC, cylinder deactivation flag FSCTP (FIG. (B)), and vehicle speed VP (FIG. (C)) are shown. The two broken lines shown in FIG. 7A indicate an error range of about ⁇ 4.5%. The average vehicle speed when moving from point A to point C is about 100 km / h.
  • an accurate estimated atmospheric pressure HPA can be obtained following a relatively rapid change in the atmospheric pressure PA. Even if fuel cut operation or partial cylinder deactivation operation is performed, good estimation accuracy can be maintained.
  • FIG. 8 is a time chart showing changes in the atmospheric pressure PA (curve L1), the estimated atmospheric pressure HPA (curve L2), and the smoothed estimated atmospheric pressure HPAF (curve L3). An example of a simulation for adding to TH will be shown.
  • the estimated atmospheric pressure HPA after the first annealing calculation process is applied to the calculation of the estimated throttle valve passing air flow rate HGAIRTH, and the second annealing calculation process is performed on the estimated atmospheric pressure HPA.
  • Atmospheric pressure HPAF is applied to control parameter calculation.
  • the estimated throttle valve passing air flow rate HGAIRTH is based on the delay estimated atmospheric pressure HPAD that is the previous value of the estimated atmospheric pressure HPA, the detected intake pressure PBA, and the throttle valve opening TH. Is calculated, and the estimated atmospheric pressure HPA is updated so that the estimated throttle valve passing air flow rate HGAIRTH matches the detected intake air flow rate GAIR, and the estimated estimated throttle valve passing air is updated using the updated estimated atmospheric pressure HPA.
  • the flow rate HGAIRTH is calculated.
  • the update of the estimated atmospheric pressure HPA and the calculation of the estimated throttle valve passing air flow rate HGAIRTH are sequentially executed, the estimated throttle valve passing air flow rate HGAIRTH follows the detected intake air flow rate GAIR, and the estimated atmospheric pressure HPA becomes the actual atmospheric pressure.
  • the estimated atmospheric pressure HPA becomes the actual atmospheric pressure.
  • the maximum value of the intake pressure PBA detected from the start of the engine to the time when the start of the engine is completed is applied (FIG. 3, step S12).
  • the intake pressure PBA takes a value close to the atmospheric pressure PA until the start of the engine is completed (independent start), so that an appropriate initial value can be set.
  • an effect of accelerating the convergence of the estimated atmospheric pressure HPA to the atmospheric pressure PA after the estimation process is started can be obtained, but at any timing during the period until the start of independent operation.
  • the detected intake pressure PBA may be set to the initial estimated atmospheric pressure HPAINI as it is.
  • the update of the estimated atmospheric pressure HPA is stopped.
  • the vehicle speed VP is low, the atmospheric pressure PA around the vehicle hardly changes. Therefore, by stopping the renewal, air that is drawn into the engine without passing through the throttle valve (for example, a passage that bypasses the throttle valve and idle control)
  • the throttle valve for example, a passage that bypasses the throttle valve and idle control
  • the throttle valve opening sensor 4, the intake air flow sensor 13, the intake pressure sensor 8, and the vehicle speed sensor 32 are a throttle valve opening detection means, an intake throttle valve passage air flow detection means, an intake pressure detection means,
  • the ECU 5 constitutes atmospheric pressure estimating means, flow rate estimating means, updating means, first smoothing processing means, and second smoothing processing means.
  • the processes in FIGS. 3 and 4 correspond to atmospheric pressure estimation means
  • steps S24 to S28 in FIG. 4 correspond to flow rate estimation means
  • steps S29 to S33 correspond to update means
  • steps S34 and S34 S35 corresponds to a first annealing processing unit and a second annealing processing unit, respectively.
  • FIG. 9 is a flowchart showing a modification of the atmospheric pressure estimation process (main routine) shown in FIG.
  • step S13a it is determined whether or not the elapsed time TENGST from the engine start start time is equal to or shorter than the predetermined time TPAINI. If the answer is affirmative (YES), the processing is immediately terminated and step S12 is executed. To do. When the elapsed time TENGST reaches the predetermined time TPAINI, the process proceeds to step S14, and the first initialization flag FFINHPAINI is set to “1”.
  • the initial estimated atmospheric pressure HPAINI is updated until a predetermined timing before the start of independent operation.
  • the updated estimated atmospheric pressure HPACAL is set to the intake pressure PBA.
  • the predetermined low vehicle speed VPL is set to “0”, for example, and the update amount CORHPA when the vehicle is stopped is set to “0” (step S32), but the predetermined low vehicle speed VPL is larger than “0”.
  • the update amount CORHPA may be set to a predetermined amount COR2 (-COR2) whose absolute value is smaller than the predetermined amount COR1 (-COR1) by the same processing as in step S31. .
  • the update speed of the estimated atmospheric pressure HPA is reduced compared to when the vehicle speed VP is higher than the predetermined low vehicle speed VPL.
  • FIG. 10 is a block diagram showing a configuration of an atmospheric pressure estimation module according to the second embodiment of the present invention.
  • the atmospheric pressure estimation module shown in FIG. 10 is obtained by adding an AFS delay correction unit 56 to the atmospheric pressure estimation module of FIG. 2 and changing the estimated atmospheric pressure update unit 52 to an estimated atmospheric pressure update unit 52a.
  • Other points are the same as those in the first embodiment.
  • the AFS delay correction unit 56 corrects the estimated throttle valve passage air flow rate HGAIRTH according to the detection delay characteristic of the intake air flow rate sensor 13, and calculates the AFS correction estimated throttle valve passage air flow rate HGATAFS.
  • the estimated atmospheric pressure update unit 52a calculates the updated estimated atmospheric pressure HPACAL so that the AFS correction estimated throttle valve passage air flow rate HGATAFS matches the intake air flow rate GAIR.
  • FIG. 11 is a flowchart of atmospheric pressure estimation processing corresponding to the configuration of FIG. The process in FIG. 11 is obtained by changing step S29 in FIG. 4 to step S29a and adding step S41.
  • step S41 the HGATAFS calculation process shown in FIG. 12 is executed to calculate the AFS estimated throttle valve passage air flow rate HGATAFS.
  • the process of FIG. 12 corresponds to the AFS correction unit 56 of FIG.
  • step S29a the flow rate deviation DGAIR is calculated by subtracting the intake air flow rate GAIR from the AFS correction estimated throttle valve passage air flow rate HGATAFS calculated in step S41.
  • step S52 a ⁇ D table shown in FIG. 13B is retrieved according to the estimated throttle valve passage air flow rate HGAIRTH, and a delay time constant ⁇ D in the flow rate detection of the intake air flow rate sensor 13 is calculated.
  • the ⁇ D table is set so that the delay time constant ⁇ D decreases as the estimated throttle valve passage air flow rate HGAIRTH increases.
  • step S53 the crank angle time TCRK (sec) is calculated according to the engine speed NE (rpm).
  • the calculation is performed in synchronization with the TDC pulse of the four-cylinder engine, and therefore, it is calculated by the following equation (21).
  • TCRK 30 / NE (21)
  • step S54 the discretization dead time nTD and the discretization delay time constant m ⁇ D are calculated by the following equations (22) and (23).
  • nTD TDEAD / TCRK (22)
  • m ⁇ D ⁇ D / TCRK (23)
  • step S55 the delay estimated throttle valve passage air flow rate HGAIRTHD (k) is calculated before the discretization dead time nTD and set to the estimated throttle valve passage air flow rate HGAIRTH (k-nTD) stored in the memory.
  • step S56 the delay estimated throttle valve passage air flow rate HGAIRTHD (k) and the previous value HGAIRTHD (k-1) of the delay estimation throttle valve passage air flow rate are applied to the following equation (24) to obtain the AFS correction estimated throttle valve passage air flow.
  • the flow rate HGATAFS is calculated.
  • Expression (24) is an expression that approximates the first-order lag system, and the coefficients A1 and B1 in Expression (24) are calculated by applying the discrete delay time constant m ⁇ D to the following expressions (25) and (26).
  • the estimated throttle valve passage air flow rate HGAIRTH is corrected according to the detection delay characteristic of the intake air flow rate sensor 13 by the processing of FIG. 12, and the AFS correction estimated throttle valve which is the estimated air flow rate at the detection timing of the detected intake air flow rate GAIR.
  • a passing air flow rate HGATAFS is calculated.
  • the process of FIG. 12 corresponds to a flow rate detection delay correcting unit.
  • FIG. 14 is a block diagram showing a configuration of an atmospheric pressure estimation module according to the third embodiment of the present invention.
  • the atmospheric pressure estimation module shown in FIG. 14 has an intake air pressure estimation unit 57 and a PBS delay correction unit 58 added to the atmospheric pressure estimation module of FIG. 10, and an intake air flow rate estimation unit 51, an AFS delay correction unit 56, and an estimated atmospheric pressure.
  • the atmospheric pressure update unit 52a is changed to an intake air flow rate estimation unit 51a, an AFS delay correction unit 56a, and an estimated atmospheric pressure update unit 52b, respectively.
  • the rest is the same as in the second embodiment.
  • the intake pressure estimation unit 57 calculates the estimated intake pressure HPBA by the following equation (31).
  • HPBA PBA (k) + (PBA (k) ⁇ PBA (k ⁇ 1)) (31)
  • the intake air flow rate estimation unit 51a calculates the estimated throttle valve passage air flow rate HGAIRTHa using the estimated intake pressure HPBA instead of the intake pressure PBA.
  • the PBS delay correction unit 58 corrects the estimated throttle valve passage air flow rate HGAIRTHa according to the detection delay characteristic of the intake pressure sensor 8, and calculates the PBS correction estimated throttle valve passage air flow rate HGATPBS.
  • the AFS delay correction unit 56a corrects the PBS correction estimated throttle valve passage air flow rate HGATPBS, and calculates the AFS correction estimation throttle valve passage air flow rate HGATAFSa.
  • the estimated atmospheric pressure update unit 52b calculates the updated estimated atmospheric pressure HPACAL so that the AFS correction estimated throttle valve passage air flow rate HGATAFSa matches the intake air flow rate GAIR.
  • FIG. 15 is a flowchart of atmospheric pressure estimation processing corresponding to the configuration of FIG. The process of FIG. 15 is obtained by changing steps S25, S28, S41, and S29a of FIG. 11 to steps S25a, 28a, S41a, and step S29b, and adding step S42.
  • step S25a the pressure ratio RHPBHPA is calculated by the following equation (32), the pressure ratio flow function table shown in FIG. 5B is searched according to the pressure ratio RHPBHPA, and the pressure ratio flow function value FHPBPA is calculated.
  • RHPBHPA HPBA / HPAD (32)
  • step S28a the opening area flow rate function value KTH, the pressure ratio flow rate function value FHPBPA, the intake air temperature parameter RRTA, the delay estimated atmospheric pressure HPAD, and the rotation speed correction coefficient KTHNE are applied to the following equation (1b), and the estimated throttle valve passage air
  • the flow rate HGAIRTHa is calculated.
  • HGAIRTHa KC x HPAD x KTH x FHPBPA x KTHNE / RRTA (1b)
  • step S42 the HGATPBS calculation process shown in FIG. 16 is executed to calculate the PBS correction estimated throttle valve passage air flow rate HGATPBS.
  • the process of FIG. 16 corresponds to the PBS delay correction unit 58 of FIG.
  • step S41a the AFS estimated throttle valve passing air flow rate HGATAFSa is calculated using the PBS corrected estimated throttle valve passing air flow rate HGATPBS instead of the estimated throttle valve passing air flow rate HGAIRTH.
  • step S29b the flow rate deviation DGAIR is calculated by subtracting the intake air flow rate GAIR from the AFS correction estimated throttle valve passage air flow rate HGATAFSa calculated in step S41a.
  • step S61 of FIG. 16 the delay estimated intake pressure HPBAS is calculated by the following equation (33).
  • Expression (33) is an expression that approximates the intake pressure sensor 8 with a first-order lag model.
  • the coefficients A2 and B2 of the equation (33) are calculated by the following equations (34) and (35), and the smoothing coefficient C2 of the equations (34) and (35) is set based on experiments.
  • HPBAS A2 * HPBA (k) + A2 * HPBA (k-1) + B2 ⁇ HPBAS (k-1) (33)
  • A2 C2 / (2 + C2) (34)
  • B2 (2-C2) / (2 + C2) (35)
  • step S62 the detected intake pressure PBA is applied to the following equation (36) to calculate the pressure ratio RPBAHPA, and the delayed estimated intake pressure HPBAS is applied to the following equation (37) to calculate the pressure ratio RHPBSHPA.
  • RPBAHPA PBA / HPAD (36)
  • RHPBSHPA HPBAS / HPAD (37)
  • step S63 the pressure flow rate function table shown in FIG. 5B is retrieved according to the pressure ratios RPBAHPA and RHPBSHPA, and pressure ratio flow rate function values FPBAPA and FHPPBSPA are calculated.
  • step S64 the pressure ratio flow function values FPBAPA and FHPPBSPA are applied to the following equation (38) to calculate the PBS delay correction coefficient KHPBA.
  • KHPBA FPBAPA / FHPBSPA (38)
  • step S65 the PBS delay correction coefficient KHPBA and the estimated throttle valve passage air flow rate HGAIRTHa are applied to the following equation (39) to calculate the PBS correction estimated throttle valve passage air flow rate HGATPBS.
  • HGATPBS KHPBA ⁇ HGAIRTHa (39)
  • the estimated throttle valve passage air flow rate HGAIRTHa is corrected according to the detection delay characteristic (first-order lag characteristic) of the intake pressure sensor 8, and the PBS correction estimated throttle valve passage air flow rate HGATPBS is calculated.
  • the estimation accuracy of the estimated atmospheric pressure HPA can be further improved by updating the estimated atmospheric pressure HPA using the PBS correction estimated throttle valve passage air flow rate HGATPBS.
  • processing in FIG. 16 corresponds to pressure detection delay correction means
  • step S41a in FIG. 15 corresponds to flow rate detection delay correction means
  • FIG. 17 is a block diagram showing a configuration of an atmospheric pressure estimation module according to the fourth embodiment of the present invention.
  • a TH estimation unit 59 and a THS delay correction unit 60 are added to the atmospheric pressure estimation module of FIG. 10, and an intake air flow rate estimation unit 51, an AFS delay correction unit 56, and an estimated atmospheric pressure update unit 52a are respectively estimated for intake air flow rate.
  • the unit 51b, the AFS delay correction unit 56b, and the estimated atmospheric pressure update unit 52c are changed. The rest is the same as in the second embodiment.
  • the TH estimating unit 59 calculates the estimated throttle valve opening HTH by the following equation (41).
  • HTH TH (k) + (TH (k) ⁇ TH (k ⁇ 1)) (41)
  • the intake air flow rate estimating unit 51b calculates the estimated throttle valve passage air flow rate HGAIRTHb using the estimated throttle valve opening degree HTH instead of the throttle valve opening degree TH.
  • the THS delay correction unit 60 corrects the estimated throttle valve passage air flow rate HGAIRTHb according to the detection delay characteristic of the throttle valve opening sensor 4, and calculates a THS correction estimated throttle valve passage air flow rate HGATTHS.
  • the AFS delay correction unit 56b corrects the THS correction estimated throttle valve passage air flow rate HGATTHS, and calculates the AFS correction estimated throttle valve passage air flow rate HGATAFSb.
  • the estimated atmospheric pressure update unit 52c calculates the updated estimated atmospheric pressure HPACAL so that the AFS correction estimated throttle valve passage air flow rate HGATAFSb matches the intake air flow rate GAIR.
  • FIG. 18 is a flowchart of atmospheric pressure estimation processing corresponding to the configuration of FIG.
  • the process of FIG. 18 is obtained by changing steps S24, S28, S41, and S29a of the process of FIG. 11 to steps S24a, 28b, S41b, and step S29c, and adding step S43.
  • step S24a the KTH table shown in FIG. 5A is searched according to the estimated throttle valve opening HTH, and the opening area flow function value KTHa is calculated.
  • step S28b the opening area flow rate function value KTHa, the pressure ratio flow rate function value FHPBPA, the intake air temperature parameter RRTA, the delay estimated atmospheric pressure HPAD, and the rotation speed correction coefficient KTHNE are applied to the following equation (1c), and the estimated throttle valve passage air
  • the flow rate HGAIRTHb is calculated.
  • HGAIRTHb KC x HPAD x KTHa x FHPBPA x KTHNE / RRTA (1c)
  • step S43 the HGATTHS calculation process shown in FIG. 19 is executed to calculate the THS correction estimated throttle valve passage air flow rate HGATTHS.
  • the process of FIG. 19 corresponds to the THS delay correction unit 60 of FIG.
  • step S41b instead of the estimated throttle valve passing air flow rate HGAIRTH, the AFS estimated throttle valve passing air flow rate HGATAFSb is calculated using the THS correction estimated throttle valve passing air flow rate HGATTHS.
  • step S29c the flow rate deviation DGAIR is calculated by subtracting the intake air flow rate GAIR from the AFS correction estimated throttle valve passage air flow rate HGATAFSb calculated in step S41b.
  • the estimated delay throttle valve opening HTHS is calculated by the following equation (43).
  • Expression (43) is an expression that approximates the throttle valve opening sensor 4 with a first-order lag model.
  • Coefficients A3 and B3 of Expression (43) are calculated by the following Expressions (44) and (45), and the smoothing coefficient C3 of Expressions (44) and (45) is set based on experiments.
  • HTHS A3 ⁇ HTH (k) + A3 ⁇ HTH (k-1) + B3 x HTHS (k-1) (43)
  • A3 C3 / (2 + C3) (44)
  • B3 (2-C3) / (2 + C3) (45)
  • step S72 the KTH table shown in FIG. 5A is searched according to the throttle valve opening TH, and the opening area flow function value KTH (TH) is calculated.
  • step S73 the KTH table shown in FIG. 5A is searched according to the delay estimated throttle valve opening HTHS, and the opening area flow rate function value KTH (HTHS) is calculated.
  • step S74 the opening area flow rate function values KTH (TH) and KTH (HTHS) are applied to the following equation (46) to calculate the THS delay correction coefficient KHTH.
  • KHTH KTH (TH) / KTH (HTHS) (46)
  • step S75 the THS delay correction coefficient KHTH and the estimated throttle valve passing air flow rate HGAIRTHb are applied to the following equation (47) to calculate the THS corrected estimated throttle valve passing air flow rate HGATTHS.
  • HGATTHS KHTH ⁇ HGAIRTHb (47)
  • the estimated throttle valve passage air flow rate HGAIRTHb is corrected according to the detection delay characteristic (first-order lag characteristic) of the throttle valve opening sensor 4, and the THS correction estimated throttle valve passage air flow rate HGATTHS is calculated.
  • the estimation accuracy of the estimated atmospheric pressure HPA can be further improved by updating the estimated atmospheric pressure HPA using the THS correction estimated throttle valve passage air flow rate HGATTHS.
  • step S41b of FIG. 18 corresponds to the flow rate detection delay correction unit.
  • the present invention is applied to an engine having a throttle valve.
  • the throttle valve is not provided, and the intake air flow rate is changed by continuously changing the lift amount and / or the opening angle of the intake valve.
  • the present invention can also be applied to an engine controlled by In that case, a cylinder pressure sensor is provided, and the detected cylinder pressure is used instead of the detected intake pressure.
  • the intake valve corresponds to an intake throttle valve.
  • the present invention can also be applied to a marine vessel propulsion engine such as an outboard motor having a crankshaft as a vertical direction.
  • Throttle valve Intake throttle valve
  • Throttle valve opening sensor throttle valve opening detection means
  • Electronic control unit atmospheric pressure estimation means, flow rate estimation means, update means, first smoothing processing means, second smoothing processing means, flow rate detection delay correction means, pressure detection delay correction means, opening detection delay correction means
  • Intake pressure sensor Intake pressure detection means
  • Intake air flow rate sensor Intake throttle valve passage air flow rate detection means
  • Vehicle speed sensor Vehicle speed detection means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 内燃機関の制御パラメータの算出に適用する大気圧を推定する大気圧推定装置が提供される。推定された大気圧、検出された吸気圧及び吸気絞り弁開度に基づいて、推定吸気絞り弁通過空気流量が算出され、推定吸気絞り弁通過空気流量が、検出される吸気絞り弁通過空気流量と一致するように、推定大気圧が更新される。更新された推定大気圧を用いて推定吸気絞り弁通過空気流量が算出される。推定大気圧の更新及び推定スロットル弁通過空気流量の算出が逐次的に実行され、推定スロットル弁通過空気流量が吸入空気流量に追従し、推定大気圧が大気圧に追従する。

Description

大気圧推定装置
 本発明は、内燃機関の制御パラメータの算出に適用する大気圧を推定する大気圧推定装置に関する。
 内燃機関の燃料供給量、点火時期などの制御パラメータの算出には、通常は大気圧センサによって検出された大気圧が適用されるが、機関制御パラメータを算出するためのセンサの数は、できるだけ少なくすることが望ましい。
 特許文献1には、吸気圧、吸気温度、吸入空気流量、スロットル弁開度、及びアイドル制御弁開度に応じて大気圧を推定する手法が示されている。
 この大気圧推定手法によれば、検出される吸気圧、吸気温度、及び吸入空気流量を用いて流量関連項FTが算出されるとともに、スロットル弁開度及びアイドル制御弁開度から有効開口面積Aintが算出される。そして、流量関連項FT及び有効開口面積Aintに応じて予め設定されている圧力比マップを検索することにより、吸気圧MAPと大気圧PAの圧力比(PA/MAP)が算出され、圧力比(PA/MAP)に吸気圧MAPを乗算することにより、推定大気圧が算出される。
米国特許第6016460号公報
 上記特許文献1に示された手法では、圧力比(PA/MAP)を算出するための圧力比マップを予め実験的に求めておく必要があり、マップ設定のために設計工数が増加する。
 また、例えば気筒休止機構を備える機関において一部気筒運転と全筒運転とを切り換える場合には、それぞれの運転状態に対応したマップを設ける必要がある。さらにマップ設定の際に基準とした機関運転状態と、実際の運転状態とのずれが大きくなると、別途補正演算を行うことが必要となる。
 本発明は上述した点を考慮してなされたものであり、機関制御パラメータの算出に適用する大気圧の推定をより簡便にかつ精度良く行うことができる大気圧推定装置を提供することを目的とする。
 上記目的を達成するため本発明は、内燃機関の制御パラメータの算出に適用する大気圧を推定する大気圧推定手段を備える大気圧推定装置において、前記機関の吸気圧(PBA)を検出する吸気圧検出手段(8)と、前記機関の吸気絞り弁(3)を通過する空気の流量(GAIR)を検出する吸気絞り弁通過空気流量検出手段(13)と、前記吸気絞り弁の開度(TH)を検出する絞り弁開度検出手段(4)とを備え、前記大気圧推定手段は、推定された大気圧(HPA)、前記吸気圧(PBA)、及び前記吸気絞り弁開度(TH)に基づいて、推定吸気絞り弁通過空気流量(HGAIRTH)を算出する流量推定手段と、推定吸気絞り弁通過空気流量(HGAIRTH)が検出される吸気絞り弁通過空気流量(GAIR)と一致するように、前記推定大気圧(HPA)を更新する更新手段とを有し、前記流量推定手段は、前記更新手段により更新された推定大気圧(HPA)を用いて前記推定吸気絞り弁通過空気流量(HGAIRTH)を算出することを特徴とする。
 この構成によれば、推定された大気圧、検出される吸気圧及び吸気絞り弁開度に基づいて、推定吸気絞り弁通過空気流量が算出され、推定吸気絞り弁通過空気流量が、検出される吸気絞り弁通過空気流量と一致するように推定大気圧の更新が行われ、更新された推定大気圧を用いて推定吸気絞り弁通過空気流量の算出が行われる。すなわち、推定大気圧の更新及び推定吸気絞り弁通過空気流量の算出が逐次的に実行され、推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量に追従し、推定大気圧が実大気圧に追従する。その結果、マップ検索を必要としない比較的簡単な演算によって正確な推定大気圧を得ることができる。
 前記大気圧推定手段は、前記推定大気圧の初期値(HPAINI)として、前記機関の前回停止時点から前記機関の始動が完了する時点までの期間中に検出された吸気圧(PBA)を適用することが望ましい。
 この構成によれば、推定大気圧の初期値として、機関の前回停止時点から機関の始動が完了する時点までに検出された吸気圧が適用される。機関が停止した後は、検出吸気圧は大気圧とほぼ等しくなり、また始動完了(自立開始)までは大気圧に近い値をとるので、適切な初期値設定を行うことができる。
 前記大気圧推定手段は、前記吸気圧(PBA)が前記推定大気圧(HPA)より高いときは、前記推定大気圧(HPA)を該吸気圧(PBA)に設定することが望ましい。
 この構成によれば、検出吸気圧が推定大気圧より高いときは、推定大気圧が検出吸気圧に設定される。実大気圧は吸気圧以上であるので、検出吸気圧が推定大気圧より高いときは、推定大気圧を検出吸気圧に設定(初期化)することにより、例えば吸気絞り弁通過空気流量検出手段の検出遅れに起因する推定精度の低下、あるいは機関停止直後の再始動時における推定精度の低下を抑制することができる。
 また前記機関により駆動される車両の車速(VP)を検出する車速検出手段をさらに備え、前記更新手段は、前記車速(VP)が所定車速(VPL)以下であるときは、前記推定大気圧(HPA)の更新を停止することが望ましい。
 この構成によれば、車速が所定車速以下であるときは、推定大気圧の更新が停止される。車速が低いときは、車両周辺の大気圧はほとんど変化しないので、更新を停止することにより、吸気絞り弁を通過しないで機関に吸入される空気の影響によって推定精度が低下することを抑制できる。
 あるいは、前記更新手段は、前記車速(VP)が所定車速(VPL)以下であるときは、前記推定大気圧の更新速度(CORHPA)を低下させるようにしてもよい。
 この構成によれば、車速が所定車速以下であるときは、推定大気圧の更新速度が低下される。車速が低いときは、車両周辺の大気圧はほとんど変化しないので、更新速度を低下させることにより、吸気絞り弁を通過しないで機関に吸入される空気の影響によって推定精度が低下することを抑制できる。
 また前記大気圧推定手段は、前記更新手段により更新された推定大気圧(HPACAL)のなまし処理を行うことにより、第1なまし推定大気圧(HPA)を算出する第1なまし処理手段と、前記第1なまし推定大気圧(HPA)のなまし処理を行うことにより、第2なまし推定大気圧(HPAF)を算出する第2なまし処理手段とを有し、前記第2なまし推定大気圧(HPAF)を出力し、前記流量推定手段は、前記第1なまし推定大気圧(HPA)を用いて前記推定吸気絞り弁通過空気流量(HGAIRTH)を算出することが望ましい。
 この構成によれば、更新された推定大気圧のなまし処理を行うことにより、第1なまし推定大気圧が算出され、第1なまし推定大気圧のなまし処理を行うことにより、第2なまし推定大気圧が算出される。そして、第2なまし推定大気圧が出力され、制御パラメータ算出に使用される一方、推定吸気絞り弁通過空気流量の算出には第1なまし推定大気圧が適用される。第1なまし推定大気圧を推定吸気絞り弁通過空気流量の算出に適用し、さらになまし処理を行った第2なまし推定大気圧を出力することにより、推定演算の応答性を低下させることなく、制御パラメータの算出に不要な変動成分を十分に減衰させることができる。
 また前記大気圧推定手段は、前記吸気絞り弁通過空気流量検出手段(13)の検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量(HGAIRTH)を補正することにより、補正推定吸気絞り弁通過空気流量(HGATAFS)を算出する流量検出遅れ補正手段を有し、前記更新手段は、前記補正推定吸気絞り弁通過空気流量(HGATAFS)が検出吸気絞り弁通過空気流量(GAIR)と一致するように、前記推定大気圧(HPA)の更新を行うことが望ましい。
 この構成によれば、吸気絞り弁通過空気流量検出手段の検出遅れ特性に応じて、推定吸気絞り弁通過空気流量を補正することにより、補正推定吸気絞り弁通過空気流量が算出され、この補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、推定大気圧の更新が行われる。これにより、吸気絞り弁通過空気流量検出手段の検出遅れに起因する推定精度の低下を抑制することができる。
 また前記大気圧推定手段は、前記吸気圧検出手段(8)の検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量(HGAIRTHa)を補正することにより、第1補正推定吸気絞り弁通過空気流量(HGATPBS)を算出する圧力検出遅れ補正手段と、前記吸気絞り弁通過空気流量検出手段(13)の検出遅れ特性に応じて、前記第1推定吸気絞り弁通過空気流量(HGATPBS)を補正することにより、第2補正推定吸気絞り弁通過空気流量(HGATAFSa)を算出する流量検出遅れ補正手段とを有し、前記流量推定手段は、前記吸気圧の推定値(HPBA)を用いて前記推定吸気絞り弁通過空気流量(HGAIRTHa)を算出し、前記更新手段は、前記第2補正推定吸気絞り弁通過空気流量(HGARAFSa)が検出吸気絞り弁通過空気流量(GAIR)と一致するように、前記推定大気圧(HPA)の更新を行うようにしてもよい。
 この構成によれば、吸気圧の推定値を用いて推定吸気絞り弁通過空気流量が算出され、吸気圧検出手段の検出遅れ特性に応じて、推定吸気絞り弁通過空気流量を補正することにより、第1補正推定吸気絞り弁通過空気流量が算出され、さらに吸気絞り弁通過空気流量検出手段の検出遅れ特性に応じて、第1推定吸気絞り弁通過空気流量を補正することにより、第2補正推定吸気絞り弁通過空気流量が算出される。そして、この第2補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、推定大気圧の更新が行われる。これにより、吸気圧検出手段の検出遅れ、及び吸気絞り弁通過空気流量検出手段の検出遅れに起因する推定精度の低下を抑制することができる。
 また前記大気圧推定手段は、前記吸気絞り弁開度検出手段(4)の検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量(HGAIRTHb)を補正することにより、第1補正推定吸気絞り弁通過空気流量(HGATTHS)を算出する開度検出遅れ補正手段と、前記吸気絞り弁通過空気流量検出手段(13)の検出遅れ特性に応じて、前記第1推定吸気絞り弁通過空気流量(HGATTHS)を補正することにより、第2補正推定吸気絞り弁通過空気流量(HGATAFSb)を算出する流量検出遅れ補正手段とを有し、前記流量推定手段は、前記吸気絞り弁開度の推定値(HTH)を用いて前記推定吸気絞り弁通過空気流量(HGAIRTHb)を算出し、前記更新手段は、前記第2補正推定吸気絞り弁通過空気流量(HGATAFSb)が検出吸気絞り弁通過空気流量(GAIR)と一致するように、前記推定大気圧(HPA)の更新を行うようにしてもよい。
 この構成によれば、吸気絞り弁開度の推定値を用いて推定吸気絞り弁通過空気流量が算出され、吸気絞り弁開度検出手段の検出遅れ特性に応じて、推定吸気絞り弁通過空気流量を補正することにより、第1補正推定吸気絞り弁通過空気流量が算出され、さらに吸気絞り弁通過空気流量検出手段の検出遅れ特性に応じて、第1推定吸気絞り弁通過空気流量を補正することにより、第2補正推定吸気絞り弁通過空気流量が算出される。そして、この第2補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、推定大気圧の更新が行われる。これにより、吸気絞り弁開度検出手段の検出遅れ、及び吸気絞り弁通過空気流量検出手段の検出遅れに起因する推定精度の低下を抑制することができる。
本発明の一実施形態にかかる内燃機関及びその制御装置の構成を示す図である。 大気圧推定モジュール(第1の実施形態)の構成を示すブロック図である。 大気圧推定処理のメインルーチンのフローチャートである。 図3に示す処理で実行されるサブルーチンのフローチャートである。 図4の処理で参照されるテーブルを示す図である。 推定大気圧(HPACAL)が実大気圧(PA)に追従する態様を説明するためのタイムチャートである。 テスト結果を示すタイムチャートである。 推定大気圧のなまし処理を説明するためのタイムチャートである。 図3に示す処理の変形例のフローチャートである。 大気圧推定モジュール(第2の実施形態)の構成を示すブロック図である。 大気圧推定処理のサブルーチン(第2の実施形態)のフローチャートである。 AFS補正推定スロットル弁通過空気流量(HGATAFS)を算出する処理のフローチャートである。 図12の処理で参照されるテーブルを示す図である。 大気圧推定モジュール(第3の実施形態)の構成を示すブロック図である。 大気圧推定処理のサブルーチン(第3の実施形態)のフローチャートである。 PBS補正推定スロットル弁通過空気流量(HGATPBS)を算出する処理のフローチャートである。 大気圧推定モジュール(第4の実施形態)の構成を示すブロック図である。 大気圧推定処理のサブルーチン(第4の実施形態)のフローチャートである。 THS補正推定スロットル弁通過空気流量(HGATTHS)を算出する処理のフローチャートである。
 以下本発明の実施の形態を図面を参照して説明する。
 [第1の実施形態]
 図1は、本発明の一実施形態にかかる内燃機関とその制御装置の構成を示す図であり、図1において、例えば4気筒を有する内燃機関(以下単に「エンジン」という)1は、一部の気筒の吸気弁及び排気弁の作動を停止させることにより、その気筒の作動を休止させる気筒休止機構40を備えている。
 エンジン1の吸気管2の途中にはスロットル弁3が配されている。また、スロットル弁3にはスロットル弁開度(TH)センサ4が連結されており、当該スロットル弁3の開度に応じた電気信号を出力して電子制御ユニット(以下(ECU)という)5に供給する。スロットル弁3には、スロットル弁3を駆動するアクチュエータ7が接続されており、アクチュエータ7は、ECU5によりその作動が制御される。
 吸気管2には、スロットル弁3を介してエンジン1に吸入される空気の流量である吸入空気流量GAIRを検出する吸入空気流量センサ13が設けられ、さらにスロットル弁3の上流側に吸気温TAを検出する吸気温センサ9が設けられている。これらのセンサ13及び9の検出信号は、ECU5に供給される。
 燃料噴射弁6はエンジン1とスロットル弁3との間かつ吸気管2の図示しない吸気弁の少し上流側に各気筒毎に設けられており、各噴射弁は図示しない燃料ポンプに接続されていると共にECU5に電気的に接続されて当該ECU5からの信号により燃料噴射弁6の開弁時間が制御される。
 エンジン1の各気筒の点火プラグ12は、ECU5に接続されており、ECU5は点火プラグ12に点火信号を供給し、点火時期制御を行う。
 スロットル弁3の下流には吸気圧PBAを検出する吸気圧センサ8が取付けられている。またエンジン1の本体には、エンジン冷却水温TWを検出するエンジン冷却水温センサ10が取り付けられている。これらのセンサ8及び10の検出信号は、ECU5に供給される。
 ECU5には、エンジン1のクランク軸(図示せず)の回転角度を検出するクランク角度位置センサ11が接続されており、クランク軸の回転角度に応じた信号がECU5に供給される。クランク角度位置センサ11は、エンジン1の特定の気筒の所定クランク角度位置でパルス(以下「CYLパルス」という)を出力する気筒判別センサ、各気筒の吸入行程開始時の上死点(TDC)に関し所定クランク角度前のクランク角度位置で(4気筒エンジンではクランク角180度毎に)TDCパルスを出力するTDCセンサ及びTDCパルスより短い一定クランク角周期(例えば6度周期)で1パルス(以下「CRKパルス」という)を発生するCRKセンサから成り、CYLパルス、TDCパルス及びCRKパルスがECU5に供給される。これらのパルスは、燃料噴射時期、点火時期等の各種タイミング制御、エンジン回転数(エンジン回転速度)NEの検出に使用される。
 ECU5には、エンジン1によって駆動される車両のアクセルペダルの踏み込み量(以下「アクセルペダル操作量」という)APを検出するアクセルセンサ31、及びエンジン1により駆動される車両の走行速度(車速)VPを検出する車速センサ32が接続されている。これらのセンサの検出信号は、ECU5に供給される。
 ECU5は各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、CPUで実行される演算プログラム及び演算結果等を記憶する記憶回路のほか、アクチュエータ7、燃料噴射弁6、気筒休止機構40に駆動信号を供給する出力回路等から構成される。
 ECU5のCPUは、上記センサの検出信号に応じて、点火時期制御、スロットル弁3の開度制御、エンジン1に供給する燃料量(燃料噴射弁6の開弁時間)の制御、並びに気筒休止制御を行う。
 さらにECU5のCPUは、大気圧PAを推定する大気圧推定処理を実行し、該大気圧推定処理により得られる推定大気圧(HPAF)を、上記点火時期制御、燃料量制御などの制御に適用する。
 図2は大気圧推定処理を実行する大気圧推定モジュールの構成を示すブロック図であり、図2に示される各ブロックの機能は後述するようにECU5のCPUで実行される演算処理により実現される。
 図2に示す大気圧推定モジュールは、吸入空気流量推定部51と、推定大気圧更新部52と、第1なまし演算部53と、遅延部54と、第2なまし演算部55とを備えている。
 吸入空気流量推定部51は、検出される吸気圧PBA、吸気温TA、スロットル弁開度TH、エンジン回転数NE、及び1演算周期前に第1なまし演算部53から出力された推定大気圧HPADを、下記式(1)に適用して推定スロットル弁通過空気流量HGAIRTHを算出する。式(1)のKCは流量の単位を[g/sec]とするための変換定数であり、KTH(TH)はスロットル弁開度THに応じて算出される開口面積流量関数であり、Ψ(PBA/HPAD)は、スロットル弁3の上流側圧力(HPAD)と、下流側圧力(PBA)との比率に応じて算出される圧力比流量関数であり、Rはガス定数である。開口面積流量関数KTHは、予め実験的に求められ、テーブルとして記憶されている。また圧力比流量関数Ψは、下記式(2)で与えられる。式(2)の「κ」は空気の比熱比である。ただし、空気流速が音速を超えると、圧力比流量関数Ψは圧力比に拘わらず極大値をとるので、実際の演算処理では、圧力比流量関数Ψも予めテーブルとして記憶されたもの(図5(b)参照)が使用される。
Figure JPOXMLDOC01-appb-M000001
 推定大気圧更新部52は、推定スロットル弁通過空気流量HGAIRTHが検出される吸入空気流量GAIRと一致するように、推定大気圧HPAを更新し、第1なまし演算処理前の推定大気圧(以下「更新推定大気圧」という)HPACALを算出する。
 第1なまし演算部53は、更新推定大気圧HPACALを下記式(3)に適用し、推定大気圧HPAを算出する。式(3)の「k」は、演算周期で離散化した離散化時刻であり、CA1は「0」から「1」の間の値に設定されるなまし係数である。なお今回値であることを示す(k)は、省略している。
 HPA=CA1×HPACAL+(1-CA1)×HPA(k-1) (3)
 遅延部54は、推定大気圧HPAを1演算周期だけ遅延させ、遅延推定大気圧HPAD(=HPA(k-1))を出力する。
 第2なまし演算部55は、推定大気圧HPAを下記式(4)に適用し、なまし推定大気圧HPAFを算出する。式(4)のCA2は「0」から「1」の間の値に設定されるなまし係数である。
 HPAF=CA2×HPA+(1-CA2)×HPAF(k-1)  (4)
 本実施形態では、式(4)により算出されるなまし推定大気圧HPAFが、点火時期や燃料供給量などのエンジン制御パラメータの算出に適用される。
 図3は、図2に示す大気圧推定モジュールの機能を実現する大気圧推定処理のメインルーチンのフローチャートである。この処理は、ECU5のCPUでTDCパルスに同期して実行される。
 ステップS11では、第1初期化フラグFFINHPAINIが「1」であるか否かを判別する。最初はこの答が否定(NO)であるので、下記式(5)により、初期推定大気圧HPAINIを、HPAINIの前回設定値及び吸気圧PBAの何れか高い方に設定する(ステップS12)。
 HPAINI=max(HPAINI(k-1),PBA)     (5)
 ステップS13では、始動モードフラグFSTMODが「1」であるか否かを判別する。始動モードフラグFSTMODは、クランキング中(エンジン1の始動開始から自立運転を開始するまで)「1」に設定される。クランキング中は直ちに処理を終了し、自立運転が開始されるとステップS14に進み、第1初期化フラグFFINHPAINIを「1」に設定する。
 ステップS14を実行すると、ステップS11の答が肯定(YES)となり、ステップS15に進んで、図4に示す大気圧推定サブルーチンを実行する。
 図4のステップS21では、第2初期化フラグFFINHPAINIRが「1」であるか否かを判別する。最初はこの答が否定(NO)であるので、ステップS22に進み、推定大気圧HPA及び遅延推定大気圧HPADをともに、初期推定大気圧HPAINIに設定する。次いで第2初期化フラグFFINHPAINIRを「1」に設定し(ステップS23)、本処理を終了する。
 ステップS23を実行すると、ステップS21の答が肯定(YES)となり、ステップS24以下の処理を実行する。
 ステップS24では、スロットル弁開度THに応じて図5(a)に示すKTHテーブルを検索し、開口面積流量関数値KTHを算出する。KTHテーブルは、スロットル弁開度THが増加するほど、開口面積流量関数値KTHが増加するように設定されている。
 ステップS25では、吸気圧PBAと遅延推定大気圧HPADとの比率である圧力比RPBAHPAを、下記式(6)により算出し、圧力比RPBAHPAに応じて図5(b)に示すFPBAPAテーブルを検索し、圧力比流量関数値FPBAPAを算出する。
 RPBAHPA=PBA/HPAD           (6)
 ステップS26では、吸気温TAに応じてRRTAテーブル(図示せず)を検索し、吸気温パラメータRRTAを算出する。RRTAテーブルは、式(1)の分母に相当する下記式(7)の演算結果をテーブルとして記憶したものである。
Figure JPOXMLDOC01-appb-M000002
 ステップS27では、エンジン回転数NEに応じてKTHNEテーブルを検索し、回転数補正係数KTHNEを算出する。KTHNEテーブルは、エンジン回転数NEが増加するほど、回転数補正係数KTHNEが減少するように設定されている。回転数補正係数KTHNEは、吸入空気流量センサ13より上流側に配置されるエアクリーナの圧力損失を補正するためのパラメータであり、エンジン回転数NEが増加するほどエアクリーナの圧力損失増加することを考慮して設定される。なお、エアクリーナの影響は通常はあまり大きくないので、回転数補正係数KTHNEを常に「1」に設定し、エンジン回転数NEに応じた補正を行わないようにしてもよい。
 ステップS28では、下記式(1a)に開口面積流量関数値KTH,圧力比流量関数値FPBAPA,吸気温パラメータRRTA,遅延推定大気圧HPAD,及び回転数補正係数KTHNEを適用し、推定スロットル弁通過空気流量HGAIRTHを算出する。
 HGAIRTH=
    KC×HPAD×KTH×FPBAPA×KTHNE/RRTA
                              (1a)
 上述したステップS24~S28の処理が、吸入空気流量推定部51の演算に相当する。
 ステップS29では、下記式(11)により、流量偏差DGAIRを算出する。
 DGAIR=HGAIRTH-GAIR           (11)
 ステップS30では、車速VPが所定低車速VPL(例えば「0」)より大きいか否かを判別し、その答が否定(NO)であるときは更新量CORHPAを「0」に設定する(ステップS32)。一方、VP>VPLであるときは、流量偏差DGAIRに応じて図5(d)に示すCORHPAテーブルを検索し、更新量CORHPAを算出する(ステップS31)。CORHPAテーブルは以下のように設定されている。流量偏差DGAIRが「0」近傍の所定範囲(所定値-D1以上かつ所定値D1以下の範囲)内にあるときは、更新量CORHPAは「0」に設定され、流量偏差DGAIRが所定値-D1より小さいときは、更新量CORHPAは所定量COR1(>0)に設定され、流量偏差DGAIRが所定値D1より大きいときは、更新量CORHPAは所定量-COR1に設定される。
 ステップS33では、下記式(12)により推定大気圧HPA(前回値)に更新量CORHPAを加算して、更新推定大気圧HPACALを算出する。
 HPACAL=HPA+CORHPA           (12)
 ステップS34では前記式(3)によるなまし演算により、推定大気圧HPAを算出し、ステップS35では前記式(4)によるなまし演算により、なまし推定大気圧HPAFを算出する。
 図6は、本実施形態における推定大気圧HPAの推移を説明するためのタイムチャートであり、推定大気圧HPAの初期設定値が大気圧PAから大きくずれている例を示す。この例では、時刻t0において推定大気圧HPAが大気圧PAよりかなり高いため、流量偏差DGAIRが大きくなり、更新量CORHPAが負の所定量「-COR1」に設定される。その結果、推定スロットル弁通過空気流量HGAIRTHが徐々に減少し、それにともなって推定大気圧HPAが減少して、最終的に大気圧PAと一致する。図6は説明のために第1なまし演算処理が行われていない状態の推定大気圧HPAが示されている。なお、実際には推定大気圧HPAは、上述したようにエンジン始動直後の検出吸気圧PBAによって初期化されるので、推定大気圧HPAは最初から大気圧PAとほぼ一致しており、大気圧PAの変化に追従するように変化する。
 図7はテスト結果を示すタイムチャートであり、標高2600mの地点Aから3000mの地点Bまで登坂し、その後標高2200の地点Cまで降坂する走行を行ったときの、大気圧PA,推定大気圧HPA(同図(a)),燃料カットフラグFFC,気筒休止フラグFCSTP(同図(b)),及び車速VP(同図(c))の推移が示されている。なお、図7(a)に示す2本の破線は、±4.5%程度の誤差範囲を示している。また地点Aから地点Cまで移動する際の平均車速は100km/h程度である。
 図7から明らかなように、本実施形態の大気圧推定手法によれば、大気圧PAの比較的急激な変化に追従して正確な推定大気圧HPAを得ることができる。また燃料カット運転や一部気筒休止運転が行われても、良好な推定精度を維持することがきる。
 図8は、大気圧PA(曲線L1)、推定大気圧HPA(曲線L2)、及びなまし推定大気圧HPAF(曲線L3)の推移を示すタイムチャートであり、周期的な外乱をスロットル弁開度THに加算するシミュレーションを行った例を示す。
 本実施形態では、第1なまし演算処理後の推定大気圧HPAを推定スロットル弁通過空気流量HGAIRTHの算出に適用し、推定大気圧HPAに対して第2なまし演算処理を施したなまし推定大気圧HPAFを制御パラメータの算出に適用している。このように2段階のなまし処理を行うことにより、大気圧PAの変化に対して推定大気圧HPAを精度良く追従させるとともに、制御パラメータ算出に適用するなまし推定大気圧HPAFに含まれる外乱成分を十分に減衰させることができる。
 以上詳述したように本実施形態では、推定大気圧HPAの前回値である遅延推定大気圧HPAD、検出される吸気圧PBA、及びスロットル弁開度THに基づいて、推定スロットル弁通過空気流量HGAIRTHが算出され、推定スロットル弁通過空気流量HGAIRTHが、検出される吸入空気流量GAIRと一致するように推定大気圧HPAの更新が行われ、更新された推定大気圧HPAを用いて推定スロットル弁通過空気流量HGAIRTHの算出が行われる。すなわち、推定大気圧HPAの更新及び推定スロットル弁通過空気流量HGAIRTHの算出が逐次的に実行され、推定スロットル弁通過空気流量HGAIRTHが検出吸入空気流量GAIRに追従し、推定大気圧HPAが実大気圧PAに追従する。その結果、マップ検索を必要としない比較的簡単な演算によって正確な推定大気圧HPAを得ることができる。
 また初期推定大気圧HPAINIとして、機関の始動開始時点から機関の始動が完了する時点までに検出された吸気圧PBAの最大値が適用される(図3,ステップS12)。エンジンの始動完了(自立開始)までは吸気圧PBAは、大気圧PAに近い値をとるので、適切な初期値設定を行うことができる。なお、吸気圧PBAの最大値を採用することにより、推定処理開始後の推定大気圧HPAの大気圧PAへの収束が早まる効果が得られるが、自立運転開始までの期間中の任意のタイミングに検出された吸気圧PBAをそのまま初期推定大気圧HPAINIに設定してもよい。
 また車速VPが所定低車速VPL以下であって、例えば停止しているときは、推定大気圧HPAの更新が停止される。車速VPが低いときは、車両周辺の大気圧PAはほとんど変化しないので、更新を停止することにより、スロットル弁を通過しないでエンジンに吸入される空気(例えば、スロットル弁をバイパスする通路及びアイドル制御弁が設けられている場合に、そのバイパス通路を通過する空気、あるいはブローバイガス通路を通過する空気)の影響によって推定精度が低下することを抑制できる。
 本実施形態では、スロットル弁開度センサ4、吸入空気流量センサ13、吸気圧センサ8、車速センサ32が、それぞれ絞り弁開度検出手段、吸気絞り弁通過空気流量検出手段、吸気圧検出手段、及び車速検出手段に相当し、ECU5が、大気圧推定手段、流量推定手段、更新手段、第1なまし処理手段、第2なまし処理手段を構成する。具体的には、図3及び図4の処理が大気圧推定手段に相当し、図4のステップS24~S28が流量推定手段に相当し、ステップS29~S33が更新手段に相当し、ステップS34及びS35がそれぞれ第1なまし処理手段及び第2なまし処理手段に相当する。
 [変形例1]
 図9は図3に示す大気圧推定処理(メインルーチン)の変形例を示すフローチャートである。
 図9の処理は、図3のステップS13をステップS13aに代えたものである。ステップS13aでは、エンジン始動開始時点からの経過時間TENGSTが所定時間TPAINI以下であるか否かを判別し、その答が肯定(YES)である間は、直ちに処理を終了して、ステップS12を実行する。経過時間TENGSTが所定時間TPAINIに達すると、ステップS14に進み、第1初期化フラグFFINHPAINIを「1」に設定する。
 図9に処理により、自立運転開始前の所定のタイミングまで初期推定大気圧HPAINIの更新が行われる。
 上述した実施形態及びこの変形例では、今回のエンジン始動開始後に検出された吸気圧PBAを用いて初期推定大気圧HPAINIを算出するようにしているが、前回運転終了時点(エンジン停止時点)から今回のエンジン始動開始時点までに検出された吸気圧PBAを初期推定大気圧HPAINIとして設定してよい。エンジン停止中(車両停止中)に大気圧PAが、エンジン制御パラメータの算出結果に大きな影響を及ぼすほど大きく変化することはないと考えられるからである。
 [変形例2]
 図4のステップS33における演算を式(12)に代えて、下記式(12a)により行うようにしてもよい。
 HPACAL=max(HPA+CORHPA,PBA)  (12a)
 式(12a)によれば、検出された吸気圧PBAの方が、更新値(HPA+CORHPA)より高いときは、更新推定大気圧HPACALは吸気圧PBAに設定される。これにより、例えば吸入空気流量センサ13の検出遅れに起因して、推定大気圧HPAが低下して大気圧PAとの偏差が増加したような場合に、推定精度の低下を抑制することができる。
 [変形例3]
 図4の処理では、所定低車速VPLを例えば「0」とし、車両停止時の更新量CORHPAを「0」に設定する(ステップS32)ようにしたが、所定低車速VPLを「0」より大きい値(例えば10km/h)に設定し、ステップS31と同様の処理によって、更新量CORHPAを所定量COR1(-COR1)より絶対値が小さい所定量COR2(-COR2)に設定するようにしてもよい。これにより、車速VPが所定低車速VPL以下であるときは、所定低車速VPLより高いときと比較して、推定大気圧HPAの更新速度が低減される。その結果、スロットル弁3を通過しないでエンジン1に吸入される空気の影響によって大気圧の推定精度が低下することを抑制できる。
 [第2の実施形態]
 図10は、本発明の第2の実施形態にかかる大気圧推定モジュールの構成を示すブロック図である。図10に示す大気圧推定モジュールは、図2の大気圧推定モジュールにAFS遅れ補正部56を追加し、推定大気圧更新部52を推定大気圧更新部52aに変更したものである。これ以外の点は、第1の実施形態と同一である。
 AFS遅れ補正部56は、吸入空気流量センサ13の検出遅れ特性に応じて、推定スロットル弁通過空気流量HGAIRTHを補正し、AFS補正推定スロットル弁通過空気流量HGATAFSを算出する。推定大気圧更新部52aは、AFS補正推定スロットル弁通過空気流量HGATAFSが吸入空気流量GAIRと一致するように、更新推定大気圧HPACALの算出を行う。
 図11は、図10の構成に対応する大気圧推定処理のフローチャートである。図11の処理は、図4のステップS29をステップS29aに変更し、ステップS41を追加したものである。
 ステップS41では、図12に示すHGATAFS算出処理を実行し、AFS推定スロットル弁通過空気流量HGATAFSを算出する。図12の処理が、図10のAFS補正部56に対応する。
 ステップS29aでは、ステップS41で算出されるAFS補正推定スロットル弁通過空気流量HGATAFSから吸入空気流量GAIRを減算することにより、流量偏差DGAIRを算出する。
 図12のステップS51では、推定スロットル弁通過空気流量HGAIRTHに応じて図13(a)に示すTDEADテーブルを検索し、吸入空気流量センサ13の流量検出におけるむだ時間TDEADを算出する。TDEADテーブルは、推定スロットル弁通過空気流量HGAIRTHが増加するほど、むだ時間TDEADが減少するように設定されている。
 ステップS52では、推定スロットル弁通過空気流量HGAIRTHに応じて図13(b)に示すτDテーブルを検索し、吸入空気流量センサ13の流量検出における遅れ時定数τDを算出する。τDテーブルは、推定スロットル弁通過空気流量HGAIRTHが増加するほど、遅れ時定数τDが減少するように設定されている。
 ステップS53では、エンジン回転数NE(rpm)に応じてクランク角度時間TCRK(sec)を算出する。本実施形態では、4気筒エンジンのTDCパルスに同期して演算を行うので、下記式(21)により算出される。
 TCRK=30/NE          (21)
 ステップS54では、下記式(22)及び(23)により、離散化むだ時間nTD及び離散化遅れ時定数mτDを算出する。
 nTD=TDEAD/TCRK       (22)
 mτD=τD/TCRK          (23)
 ステップS55では、遅れ推定スロットル弁通過空気流量HGAIRTHD(k)を、離散化むだ時間nTD前に算出され、メモリに格納されている推定スロットル弁通過空気流量HGAIRTH(k-nTD)に設定する。
 ステップS56では、下記式(24)に遅れ推定スロットル弁通過空気流量HGAIRTHD(k)、及び遅れ推定スロットル弁通過空気流量の前回値HGAIRTHD(k-1)を適用し、AFS補正推定スロットル弁通過空気流量HGATAFSを算出する。式(24)は一次遅れ系を近似する数式であり、式(24)の係数A1及びB1は、離散化遅れ時定数mτDを下記式(25)及び(26)に適用して算出される。
Figure JPOXMLDOC01-appb-M000003
 図12の処理により、推定スロットル弁通過空気流量HGAIRTHが吸入空気流量センサ13の検出遅れ特性に応じて補正され、検出される吸入空気流量GAIRの検出タイミングにおける推定空気流量であるAFS補正推定スロットル弁通過空気流量HGATAFSが算出される。
 このAFS補正推定スロットル弁通過空気流量HGATAFSを用いることにより、特に吸入空気量流量GAIRが小さい低負荷運転状態における大気圧推定精度を向上させることができる。
 本実施形態では、図12の処理が流量検出遅れ補正手段に相当する。
 [第3の実施形態]
 図14は、本発明の第3の実施形態にかかる大気圧推定モジュールの構成を示すブロック図である。図14に示す大気圧推定モジュールは、図10の大気圧推定モジュールに、吸気圧推定部57及びPBS遅れ補正部58を追加し、吸入空気流量推定部51、AFS遅れ補正部56、及び推定大気圧更新部52aを、それぞれ吸入空気流量推定部51a、AFS遅れ補正部56a、及び推定大気圧更新部52bに変更したものである。これ以外は第2の実施形態と同一である。
 吸気圧推定部57は、下記式(31)により推定吸気圧HPBAを算出する。
 HPBA=PBA(k)+(PBA(k)-PBA(k-1))    (31)
 吸入空気流量推定部51aは、吸気圧PBAに代えて、推定吸気圧HPBAを用いて推定スロットル弁通過空気流量HGAIRTHaを算出する。
 PBS遅れ補正部58は、吸気圧センサ8の検出遅れ特性に応じて推定スロットル弁通過空気流量HGAIRTHaを補正し、PBS補正推定スロットル弁通過空気流量HGATPBSを算出する。
 AFS遅れ補正部56aは、PBS補正推定スロットル弁通過空気流量HGATPBSを補正し、AFS補正推定スロットル弁通過空気流量HGATAFSaを算出する。推定大気圧更新部52bは、AFS補正推定スロットル弁通過空気流量HGATAFSaが吸入空気流量GAIRと一致するように、更新推定大気圧HPACALの算出を行う。
 図15は、図14の構成に対応する大気圧推定処理のフローチャートである。図15の処理は、図11のステップS25,S28,S41,及びS29aをそれぞれステップS25a,28a,S41a,及びステップS29bに変更し、ステップS42を追加したものである。
 ステップS25aでは、下記式(32)により圧力比RHPBHPAを算出し、圧力比RHPBHPAに応じて図5(b)に示す圧力比流量関数テーブルを検索し、圧力比流量関数値FHPBPAを算出する。
 RHPBHPA=HPBA/HPAD           (32)
 ステップS28aでは、下記式(1b)に開口面積流量関数値KTH,圧力比流量関数値FHPBPA,吸気温パラメータRRTA,遅延推定大気圧HPAD,及び回転数補正係数KTHNEを適用し、推定スロットル弁通過空気流量HGAIRTHaを算出する。
 HGAIRTHa=
    KC×HPAD×KTH×FHPBPA×KTHNE/RRTA
                              (1b)
 ステップS42では、図16に示すHGATPBS算出処理を実行し、PBS補正推定スロットル弁通過空気流量HGATPBSを算出する。図16の処理が図14のPBS遅れ補正部58に対応する。
 ステップS41aでは、推定スロットル弁通過空気流量HGAIRTHに代えて、PBS補正推定スロットル弁通過空気流量HGATPBSを用いてAFS推定スロットル弁通過空気流量HGATAFSaを算出する。
 ステップS29bでは、ステップS41aで算出されるAFS補正推定スロットル弁通過空気流量HGATAFSaから吸入空気流量GAIRを減算することにより、流量偏差DGAIRを算出する。
 図16のステップS61では、下記式(33)により遅れ推定吸気圧HPBASを算出する。式(33)は、吸気圧センサ8を一次遅れ系モデルで近似する式である。式(33)の係数A2,B2は、下記式(34)及び(35)により算出され、式(34)及び(35)のなまし係数C2は、実験に基づいて設定される。
 HPBAS=A2×HPBA(k)+A2×HPBA(k-1)
                +B2×HPBAS(k-1)   (33)
 A2=C2/(2+C2)                  (34)
 B2=(2-C2)/(2+C2)              (35)
 ステップS62では、下記式(36)に検出吸気圧PBAを適用し、圧力比RPBAHPAを算出するとともに、下記式(37)に遅れ推定吸気圧HPBASを適用し、圧力比RHPBSHPAを算出する。
 RPBAHPA=PBA/HPAD             (36)
 RHPBSHPA=HPBAS/HPAD          (37)
 ステップS63では、圧力比RPBAHPA及びRHPBSHPAに応じて図5(b)に示す圧力流量関数テーブルを検索し、圧力比流量関数値FPBAPA及びFHPBSPAを算出する。ステップS64では、圧力比流量関数値FPBAPA及びFHPBSPAを、下記式(38)に適用し、PBS遅れ補正係数KHPBAを算出する。
 KHPBA=FPBAPA/FHPBSPA         (38)
 ステップS65では、PBS遅れ補正係数KHPBA及び推定スロットル弁通過空気流量HGAIRTHaを、下記式(39)に適用し、PBS補正推定スロットル弁通過空気流量HGATPBSを算出する。
 HGATPBS=KHPBA×HGAIRTHa       (39)
 図16の処理により、吸気圧センサ8の検出遅れ特性(一次遅れ特性)に応じて推定スロットル弁通過空気流量HGAIRTHaが補正され、PBS補正推定スロットル弁通過空気流量HGATPBSが算出される。
 PBS補正推定スロットル弁通過空気流量HGATPBSを用いて、推定大気圧HPAの更新を行うことにより、推定大気圧HPAの推定精度をさらに高めることができる。
 本実施形態では、図16の処理が圧力検出遅れ補正手段に相当し、図15のステップS41aが流量検出遅れ補正手段に相当する。
 [第4の実施形態]
 図17は、本発明の第4の実施形態にかかる大気圧推定モジュールの構成を示すブロック図である。図10の大気圧推定モジュールに、TH推定部59及びTHS遅れ補正部60を追加し、吸入空気流量推定部51、AFS遅れ補正部56、及び推定大気圧更新部52aを、それぞれ吸入空気流量推定部51b、AFS遅れ補正部56b、及び推定大気圧更新部52cに変更したものである。これ以外は第2の実施形態と同一である。
 TH推定部59は、下記式(41)により推定スロットル弁開度HTHを算出する。
 HTH=TH(k)+(TH(k)-TH(k-1))    (41)
 吸入空気流量推定部51bは、スロットル弁開度THに代えて、推定スロットル弁開度HTHを用いて推定スロットル弁通過空気流量HGAIRTHbを算出する。
 THS遅れ補正部60は、スロットル弁開度センサ4の検出遅れ特性に応じて推定スロットル弁通過空気流量HGAIRTHbを補正し、THS補正推定スロットル弁通過空気流量HGATTHSを算出する。
 AFS遅れ補正部56bは、THS補正推定スロットル弁通過空気流量HGATTHSを補正し、AFS補正推定スロットル弁通過空気流量HGATAFSbを算出する。推定大気圧更新部52cは、AFS補正推定スロットル弁通過空気流量HGATAFSbが吸入空気流量GAIRと一致するように、更新推定大気圧HPACALの算出を行う。
 図18は、図17の構成に対応する大気圧推定処理のフローチャートである。図18の処理は、図11の処理のステップS24,S28,S41,及びS29aをそれぞれステップS24a,28b,S41b,及びステップS29cに変更し、ステップS43を追加したものである。
 ステップS24aでは、推定スロットル弁開度HTHに応じて図5(a)に示すKTHテーブルを検索し、開口面積流量関数値KTHaを算出する。
 ステップS28bでは、下記式(1c)に開口面積流量関数値KTHa,圧力比流量関数値FHPBPA,吸気温パラメータRRTA,遅延推定大気圧HPAD,及び回転数補正係数KTHNEを適用し、推定スロットル弁通過空気流量HGAIRTHbを算出する。
 HGAIRTHb=
   KC×HPAD×KTHa×FHPBPA×KTHNE/RRTA
                              (1c)
 ステップS43では、図19に示すHGATTHS算出処理を実行し、THS補正推定スロットル弁通過空気流量HGATTHSを算出する。図19の処理が図17のTHS遅れ補正部60に対応する。
 ステップS41bでは、推定スロットル弁通過空気流量HGAIRTHに代えて、THS補正推定スロットル弁通過空気流量HGATTHSを用いてAFS推定スロットル弁通過空気流量HGATAFSbを算出する。
 ステップS29cでは、ステップS41bで算出されるAFS補正推定スロットル弁通過空気流量HGATAFSbから吸入空気流量GAIRを減算することにより、流量偏差DGAIRを算出する。
 図19のステップS71では、下記式(43)により遅れ推定スロットル弁開度HTHSを算出する。式(43)は、スロットル弁開度センサ4を一次遅れ系モデルで近似する式である。式(43)の係数A3,B3は、下記式(44)及び(45)により算出され、式(44)及び(45)のなまし係数C3は、実験に基づいて設定される。
 HTHS=A3×HTH(k)+A3×HTH(k-1)
                +B3×HTHS(k-1)    (43)
 A3=C3/(2+C3)                  (44)
 B3=(2-C3)/(2+C3)              (45)
 ステップS72では、スロットル弁開度THに応じて図5(a)に示すKTHテーブルを検索し、開口面積流量関数値KTH(TH)を算出する。ステップS73では、遅れ推定スロットル弁開度HTHSに応じて図5(a)に示すKTHテーブルを検索し、開口面積流量関数値KTH(HTHS)を算出する。
 ステップS74では、開口面積流量関数値KTH(TH)及びKTH(HTHS)を、下記式(46)に適用し、THS遅れ補正係数KHTHを算出する。
 KHTH=KTH(TH)/KTH(HTHS)       (46)
 ステップS75では、THS遅れ補正係数KHTH及び推定スロットル弁通過空気流量HGAIRTHbを、下記式(47)に適用し、THS補正推定スロットル弁通過空気流量HGATTHSを算出する。
 HGATTHS=KHTH×HGAIRTHb        (47)
 図19の処理により、スロットル弁開度センサ4の検出遅れ特性(一次遅れ特性)に応じて推定スロットル弁通過空気流量HGAIRTHbが補正され、THS補正推定スロットル弁通過空気流量HGATTHSが算出される。
 THS補正推定スロットル弁通過空気流量HGATTHSを用いて、推定大気圧HPAの更新を行うことにより、推定大気圧HPAの推定精度をさらに高めることができる。
 本実施形態では、図19の処理が開度検出遅れ補正手段に相当し、図18のステップS41bが流量検出遅れ補正手段に相当する。
 [他の変形例]
 上述した実施形態では、スロットル弁を備える機関に本発明を適用したが、スロットル弁が設けられておらず、吸気弁のリフト量及び/または開角を連続的に変化させることにより、吸入空気流量の制御する機関にも本発明を適用することができる。その場合には、筒内圧センサを設け、検出吸気圧に代えて検出筒内圧を使用する。また吸気弁が吸気絞り弁に相当する。
 また本発明は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンにも適用が可能である。
 1 内燃機関
 3 スロットル弁(吸気絞り弁)
 4 スロットル弁開度センサ(絞り弁開度検出手段)
 5 電子制御ユニット(大気圧推定手段、流量推定手段、更新手段、第1なまし処理手段、第2なまし処理手段、流量検出遅れ補正手段、圧力検出遅れ補正手段、開度検出遅れ補正手段)
 8 吸気圧センサ(吸気圧検出手段)
 13 吸入空気流量センサ(吸気絞り弁通過空気流量検出手段)
 32 車速センサ(車速検出手段)

Claims (18)

  1.  内燃機関の制御パラメータの算出に適用する大気圧を推定する大気圧推定手段を備える大気圧推定装置において、
     前記機関の吸気圧を検出する吸気圧検出手段と、
     前記機関の吸気絞り弁を通過する空気の流量を検出する吸気絞り弁通過空気流量検出手段と、
     前記吸気絞り弁の開度を検出する絞り弁開度検出手段とを備え、
     前記大気圧推定手段は、
     推定された大気圧、前記吸気圧、及び前記吸気絞り弁開度に基づいて、推定吸気絞り弁通過空気流量を算出する流量推定手段と、
     前記推定吸気絞り弁通過空気流量が、検出される吸気絞り弁通過空気流量と一致するように、前記推定大気圧を更新する更新手段とを有し、
     前記流量推定手段は、前記更新手段により更新された推定大気圧を用いて前記推定吸気絞り弁通過空気流量を算出することを特徴とする大気圧推定装置。
  2.  前記大気圧推定手段は、前記推定大気圧の初期値として、前記機関の前回停止時点から前記機関の始動が完了する時点までの期間中に検出された吸気圧を適用する請求項1の大気圧推定装置。
  3.  前記大気圧推定手段は、前記吸気圧が前記推定大気圧より高いときは、前記推定大気圧を該吸気圧に設定する請求項1または2の大気圧推定装置。
  4.  前記機関により駆動される車両の車速を検出する車速検出手段を備え、
     前記更新手段は、前記車速が所定車速以下であるときは、前記推定大気圧の更新を停止する請求項1から3の何れか1項の大気圧推定装置。
  5.  前記機関により駆動される車両の車速を検出する車速検出手段を備え、
     前記更新手段は、前記車速が所定車速以下であるときは、前記推定大気圧の更新速度を低下させる請求項1から3の何れか1項の大気圧推定装置。
  6.  前記大気圧推定手段は、前記更新手段により更新された推定大気圧のなまし処理を行うことにより、第1なまし推定大気圧を算出する第1なまし処理手段と、
     前記第1なまし推定大気圧のなまし処理を行うことにより、第2なまし推定大気圧を算出する第2なまし処理手段とを有し、前記第2なまし推定大気圧を出力し、
     前記流量推定手段は、前記第1なまし推定大気圧を用いて前記推定吸気絞り弁通過空気流量を算出する請求項1から5の何れか1項の大気圧推定装置。
  7.  前記大気圧推定手段は、前記吸気絞り弁通過空気流量検出手段の検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量を補正することにより、補正推定吸気絞り弁通過空気流量を算出する流量検出遅れ補正手段を有し、
     前記更新手段は、前記補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、前記推定大気圧の更新を行う請求項1から6の何れか1項の大気圧推定装置。
  8.  前記大気圧推定手段は、前記吸気圧検出手段の検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量を補正することにより、第1補正推定吸気絞り弁通過空気流量を算出する圧力検出遅れ補正手段と、前記吸気絞り弁通過空気流量検出手段の検出遅れ特性に応じて、前記第1推定吸気絞り弁通過空気流量を補正することにより、第2補正推定吸気絞り弁通過空気流量を算出する流量検出遅れ補正手段とを有し、
     前記流量推定手段は、前記吸気圧の推定値を用いて前記推定吸気絞り弁通過空気流量を算出し、
     前記更新手段は、前記第2補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、前記推定大気圧の更新を行う請求項1から6の何れか1項の大気圧推定装置。
  9.  前記大気圧推定手段は、前記吸気絞り弁開度検出手段の検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量を補正することにより、第1補正推定吸気絞り弁通過空気流量を算出する開度検出遅れ補正手段と、前記吸気絞り弁通過空気流量検出手段の検出遅れ特性に応じて、前記第1推定吸気絞り弁通過空気流量を補正することにより、第2補正推定吸気絞り弁通過空気流量を算出する流量検出遅れ補正手段とを有し、
     前記流量推定手段は、前記吸気絞り弁開度の推定値を用いて前記推定吸気絞り弁通過空気流量を算出し、
     前記更新手段は、前記第2補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、前記推定大気圧の更新を行う請求項1から6の何れか1項の大気圧推定装置。
  10.  内燃機関の制御パラメータの算出に適用する大気圧を推定する大気圧推定方法において、
     a)前記機関の吸気圧を吸気圧センサにより検出し、
     b)前記機関の吸気絞り弁を通過する空気の流量を空気流量センサにより検出し、
     c)前記吸気絞り弁の開度を絞り弁開度センサにより検出するステップを備え、
     下記ステップd)及びe)を繰り返し実行することを特徴とする大気圧推定方法:
     d)推定された大気圧、検出される吸気圧及び吸気絞り弁開度に基づいて、推定吸気絞り弁通過空気流量を算出し、
     e)前記推定吸気絞り弁通過空気流量が、検出される吸気絞り弁通過空気流量と一致するように、前記推定大気圧を更新する。
  11.  前記推定大気圧の初期値として、前記機関の前回停止時点から前記機関の始動が完了する時点までの期間中に検出された吸気圧が適用される請求項10の大気圧推定方法。
  12.  前記吸気圧が前記推定大気圧より高いときは、前記推定大気圧が該吸気圧に設定される請求項10または11の大気圧推定方法。
  13.  f)前記機関により駆動される車両の車速を検出するステップを備え、
     前記車速が所定車速以下であるときは、前記推定大気圧の更新が停止される請求項10から12の何れか1項の大気圧推定方法。
  14.  f)前記機関により駆動される車両の車速を検出するステップを備え、
     前記車速が所定車速以下であるときは、前記推定大気圧の更新速度が低減される請求項10から12の何れか1項の大気圧推定方法。
  15.  g)更新された推定大気圧のなまし処理を行うことにより、第1なまし推定大気圧を算出し、
     h)前記第1なまし推定大気圧のなまし処理を行うことにより、第2なまし推定大気圧を算出するステップを備え、
     前記ステップd)では、前記第1なまし推定大気圧を用いて前記推定吸気絞り弁通過空気流量が算出され、
     前記第2なまし推定大気圧が前記制御パラメータの算出に適用される請求項10から14の何れか1項の大気圧推定方法。
  16.  前記ステップd)は、
     i)前記空気流量センサの検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量を補正することにより、補正推定吸気絞り弁通過空気流量を算出するステップを含み、
     前記ステップe)では、前記補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、前記推定大気圧の更新が行われる請求項10から15の何れか1項の大気圧推定方法。
  17.  前記ステップd)は、
     j)前記吸気圧センサの検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量を補正することにより、第1補正推定吸気絞り弁通過空気流量を算出し、
     k)前記空気流量センサの検出遅れ特性に応じて、前記第1推定吸気絞り弁通過空気流量を補正することにより、第2補正推定吸気絞り弁通過空気流量を算出するステップを含み、
     前記ステップd)では、前記吸気圧の推定値を用いて前記推定吸気絞り弁通過空気流量が算出され、
     前記ステップe)では、前記第2補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、前記推定大気圧の更新が行われる請求項10から15の何れか1項の大気圧推定方法。
  18.  前記ステップd)は、
     l)前記絞り弁開度センサの検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量を補正することにより、第1補正推定吸気絞り弁通過空気流量を算出し、
     m)前記空気流量センサの検出遅れ特性に応じて、前記第1推定吸気絞り弁通過空気流量を補正することにより、第2補正推定吸気絞り弁通過空気流量を算出するステップを含み、
     前記ステップd)では、前記吸気絞り弁開度の推定値を用いて前記推定吸気絞り弁通過空気流量が算出され、
     前記ステップe)では、前記第2補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、前記推定大気圧の更新が行われる請求項10から15の何れか1項の大気圧推定方法。
PCT/JP2010/050358 2009-02-06 2010-01-14 大気圧推定装置 WO2010090060A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10738399.4A EP2362087B1 (en) 2009-02-06 2010-01-14 Atmospheric pressure estimation device
US13/144,974 US8676472B2 (en) 2009-02-06 2010-01-14 Atmospheric pressure estimating apparatus
JP2010549420A JP5291726B2 (ja) 2009-02-06 2010-01-14 大気圧推定装置
CN201080006778.3A CN102308075B (zh) 2009-02-06 2010-01-14 大气压估计装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-026782 2009-02-06
JP2009026782 2009-02-06

Publications (1)

Publication Number Publication Date
WO2010090060A1 true WO2010090060A1 (ja) 2010-08-12

Family

ID=42541967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050358 WO2010090060A1 (ja) 2009-02-06 2010-01-14 大気圧推定装置

Country Status (5)

Country Link
US (1) US8676472B2 (ja)
EP (1) EP2362087B1 (ja)
JP (1) JP5291726B2 (ja)
CN (1) CN102308075B (ja)
WO (1) WO2010090060A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199915A (ja) * 2012-03-26 2013-10-03 Suzuki Motor Corp エンジン始動制御システム
JP5462390B1 (ja) * 2013-04-23 2014-04-02 三菱電機株式会社 内燃機関の制御装置
US9067662B2 (en) 2013-08-29 2015-06-30 Mitsubishi Electric Corporation Atmospheric pressure estimation device of outboard motor
CN112519738A (zh) * 2019-09-18 2021-03-19 广州汽车集团股份有限公司 真空助力制动系统、制动控制方法和制动控制设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189964A (ja) * 2012-03-15 2013-09-26 Hitachi Automotive Systems Ltd エンジンの制御装置
US10569035B2 (en) * 2012-06-29 2020-02-25 ResMed Pty Ltd Pressure sensor evaluation for respiratory apparatus
US9435283B2 (en) * 2013-12-03 2016-09-06 Ford Global Technologies, Llc Method for inferring barometric pressure at low throttle angles
JP5840240B2 (ja) * 2014-02-11 2016-01-06 三菱電機株式会社 内燃機関の制御装置
US9574964B2 (en) * 2015-07-07 2017-02-21 Toyota Jidosha Kabushiki Kaisha Mobile computer atmospheric barometric pressure system
JP6328201B2 (ja) * 2016-10-05 2018-05-23 三菱電機株式会社 内燃機関の制御装置
JP7256470B2 (ja) * 2019-11-18 2023-04-12 トヨタ自動車株式会社 エンジン制御装置
CN115163301B (zh) * 2022-05-30 2023-10-31 东风柳州汽车有限公司 行车环境大气压力监测方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270957A (ja) * 1988-01-29 1990-03-09 Hitachi Ltd エンジン制御方法
JPH06101558A (ja) * 1992-09-24 1994-04-12 Mazda Motor Corp 大気圧検出装置
JPH07180597A (ja) * 1993-12-24 1995-07-18 Toyota Motor Corp 過給機付エンジンの大気圧検出装置
US6016460A (en) 1998-10-16 2000-01-18 General Motors Corporation Internal combustion engine control with model-based barometric pressure estimator
JP2006046071A (ja) * 2004-07-30 2006-02-16 Denso Corp 車両の大気圧推定装置
JP2008196466A (ja) * 2007-02-16 2008-08-28 Honda Motor Co Ltd 内燃機関の制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136517A (en) 1990-09-12 1992-08-04 Ford Motor Company Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
JPH07180579A (ja) * 1993-12-21 1995-07-18 Nissan Motor Co Ltd エンジンの燃料供給装置
JP3449813B2 (ja) 1995-01-06 2003-09-22 株式会社日立ユニシアオートモティブ 内燃機関における大気圧推定装置
JP3768296B2 (ja) * 1996-08-05 2006-04-19 三菱自動車工業株式会社 筒内噴射型火花点火式内燃エンジンの制御装置
US6430515B1 (en) * 1999-09-20 2002-08-06 Daimlerchrysler Corporation Method of determining barometric pressure for use in an internal combustion engine
DE10039953C1 (de) 2000-08-16 2002-04-11 Siemens Ag Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
US6366847B1 (en) * 2000-08-29 2002-04-02 Ford Global Technologies, Inc. Method of estimating barometric pressure in an engine control system
JP4415506B2 (ja) * 2001-04-13 2010-02-17 トヨタ自動車株式会社 内燃機関の大気圧学習装置
US6434474B1 (en) 2001-06-19 2002-08-13 Ford Global Technologies, Inc. Upstream gauge sensor, downstream absolute pressure sensor system
TW559640B (en) * 2001-10-31 2003-11-01 Yamaha Motor Co Ltd Device and method for detection of atmospheric pressure of engine
JP3900064B2 (ja) * 2002-10-30 2007-04-04 トヨタ自動車株式会社 内燃機関の吸入空気量推定装置
JP2006037924A (ja) * 2004-07-30 2006-02-09 Denso Corp 車両の制御装置
JP2007315247A (ja) * 2006-05-24 2007-12-06 Hitachi Ltd エンジン制御装置
JP4267667B2 (ja) * 2007-02-23 2009-05-27 トヨタ自動車株式会社 監視装置
JP2009068388A (ja) * 2007-09-12 2009-04-02 Honda Motor Co Ltd 内燃機関の制御装置
JP4488318B2 (ja) * 2008-05-20 2010-06-23 三菱電機株式会社 内燃機関制御装置
JP2010242727A (ja) * 2009-04-10 2010-10-28 Honda Motor Co Ltd 内燃機関の制御装置
JP5391850B2 (ja) * 2009-06-10 2014-01-15 トヨタ自動車株式会社 内燃機関の大気圧推定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270957A (ja) * 1988-01-29 1990-03-09 Hitachi Ltd エンジン制御方法
JPH06101558A (ja) * 1992-09-24 1994-04-12 Mazda Motor Corp 大気圧検出装置
JPH07180597A (ja) * 1993-12-24 1995-07-18 Toyota Motor Corp 過給機付エンジンの大気圧検出装置
US6016460A (en) 1998-10-16 2000-01-18 General Motors Corporation Internal combustion engine control with model-based barometric pressure estimator
JP2006046071A (ja) * 2004-07-30 2006-02-16 Denso Corp 車両の大気圧推定装置
JP2008196466A (ja) * 2007-02-16 2008-08-28 Honda Motor Co Ltd 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2362087A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199915A (ja) * 2012-03-26 2013-10-03 Suzuki Motor Corp エンジン始動制御システム
JP5462390B1 (ja) * 2013-04-23 2014-04-02 三菱電機株式会社 内燃機関の制御装置
US9067662B2 (en) 2013-08-29 2015-06-30 Mitsubishi Electric Corporation Atmospheric pressure estimation device of outboard motor
CN112519738A (zh) * 2019-09-18 2021-03-19 广州汽车集团股份有限公司 真空助力制动系统、制动控制方法和制动控制设备

Also Published As

Publication number Publication date
CN102308075A (zh) 2012-01-04
EP2362087B1 (en) 2013-10-23
EP2362087A4 (en) 2012-07-25
US20110276254A1 (en) 2011-11-10
CN102308075B (zh) 2014-11-26
JPWO2010090060A1 (ja) 2012-08-09
US8676472B2 (en) 2014-03-18
EP2362087A1 (en) 2011-08-31
JP5291726B2 (ja) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5291726B2 (ja) 大気圧推定装置
JP4144272B2 (ja) 内燃機関の燃料噴射量制御装置
JP5118247B2 (ja) 内燃機関の気筒吸入空気量算出装置
JP2007255188A (ja) 内燃機関の燃料制御装置
WO2011132464A1 (ja) 内燃機関の吸気パラメータ算出装置および吸気パラメータ算出方法
JP5021045B2 (ja) 大気圧推定装置
JP5519410B2 (ja) 内燃機関の燃料供給装置
JP2010242727A (ja) 内燃機関の制御装置
JP4862083B2 (ja) 内燃機関の気筒吸入空気量算出装置
JP5357852B2 (ja) 内燃機関の制御装置
JP5313847B2 (ja) 内燃機関の空燃比制御装置
JP5611166B2 (ja) 内燃機関の吸気パラメータ算出装置
JP2005090325A (ja) 燃料噴射量制御装置
JP5189012B2 (ja) 内燃機関の制御装置
JP2011190781A (ja) 内燃機関の気筒吸入空気量算出装置
JP2009052418A (ja) 内燃機関の制御装置
JP5511616B2 (ja) 大気圧推定装置
JP2006132498A (ja) 内燃機関の流量算出装置
JP2847851B2 (ja) 車両用内燃機関の制御装置
JP3754007B2 (ja) 内燃機関の空燃比制御装置
JP5844170B2 (ja) 内燃機関の制御装置
JP2008280892A (ja) 内燃機関の制御装置
JP2010116883A (ja) 内燃機関の制御装置
JP2004019478A (ja) 内燃機関の回転数制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006778.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010549420

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010738399

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13144974

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE