WO2010090060A1 - 大気圧推定装置 - Google Patents
大気圧推定装置 Download PDFInfo
- Publication number
- WO2010090060A1 WO2010090060A1 PCT/JP2010/050358 JP2010050358W WO2010090060A1 WO 2010090060 A1 WO2010090060 A1 WO 2010090060A1 JP 2010050358 W JP2010050358 W JP 2010050358W WO 2010090060 A1 WO2010090060 A1 WO 2010090060A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- estimated
- flow rate
- atmospheric pressure
- throttle valve
- air flow
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0402—Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0404—Throttle position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/70—Input parameters for engine control said parameters being related to the vehicle exterior
- F02D2200/703—Atmospheric pressure
- F02D2200/704—Estimation of atmospheric pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an atmospheric pressure estimation device for estimating an atmospheric pressure applied to calculation of a control parameter of an internal combustion engine.
- the atmospheric pressure detected by the atmospheric pressure sensor is usually applied to calculate the control parameters such as the fuel supply amount and ignition timing of the internal combustion engine.
- the number of sensors for calculating the engine control parameter is as small as possible. It is desirable to do.
- Patent Document 1 discloses a method for estimating atmospheric pressure according to intake pressure, intake temperature, intake air flow rate, throttle valve opening, and idle control valve opening.
- the flow rate related term FT is calculated using the detected intake pressure, intake temperature, and intake air flow rate, and the effective opening area Aint is calculated from the throttle valve opening and the idle control valve opening. Is calculated.
- a pressure ratio map (PA / MAP) between the intake pressure MAP and the atmospheric pressure PA is calculated by searching a pressure ratio map set in advance according to the flow rate related term FT and the effective opening area Aint, and the pressure ratio ( The estimated atmospheric pressure is calculated by multiplying (PA / MAP) by the intake pressure MAP.
- Patent Document 1 In the method disclosed in Patent Document 1, it is necessary to experimentally obtain a pressure ratio map for calculating the pressure ratio (PA / MAP) in advance, and the design man-hours increase because of the map setting.
- the present invention has been made in consideration of the above-described points, and an object of the present invention is to provide an atmospheric pressure estimation device that can perform estimation of atmospheric pressure applied to calculation of engine control parameters more easily and accurately. To do.
- the present invention provides an atmospheric pressure estimating device including an atmospheric pressure estimating means for estimating an atmospheric pressure applied to calculation of a control parameter of an internal combustion engine, and an intake pressure for detecting an intake pressure (PBA) of the engine.
- HGAIRTH estimated intake throttle valve passage air flow rate
- HGAIRTH estimated intake throttle valve passage air flow rate
- GAIR detected intake throttle valve passage air flow rate
- the estimated intake throttle valve passing air flow rate is calculated based on the estimated atmospheric pressure, the detected intake pressure and the intake throttle valve opening, and the estimated intake throttle valve passing air flow rate is detected.
- the estimated atmospheric pressure is updated so as to coincide with the intake throttle valve passing air flow rate, and the estimated intake throttle valve passing air flow rate is calculated using the updated estimated atmospheric pressure. That is, the update of the estimated atmospheric pressure and the calculation of the estimated intake throttle valve passing air flow are sequentially performed, the estimated intake throttle valve passing air flow follows the detected intake throttle valve passing air flow, and the estimated atmospheric pressure is the actual atmospheric pressure.
- an accurate estimated atmospheric pressure can be obtained by a relatively simple calculation that does not require a map search.
- the atmospheric pressure estimating means applies, as an initial value (HPAINI) of the estimated atmospheric pressure, an intake pressure (PBA) detected during a period from a previous stop of the engine to a time when the start of the engine is completed. It is desirable.
- the intake pressure detected from the previous stop of the engine to the time when the start of the engine is completed is applied as the initial value of the estimated atmospheric pressure.
- the detected intake pressure becomes substantially equal to the atmospheric pressure, and takes a value close to the atmospheric pressure until the start is completed (start of self-supporting), so that an appropriate initial value can be set.
- the atmospheric pressure estimating means sets the estimated atmospheric pressure (HPA) to the intake pressure (PBA) when the intake pressure (PBA) is higher than the estimated atmospheric pressure (HPA).
- the estimated atmospheric pressure when the detected intake pressure is higher than the estimated atmospheric pressure, the estimated atmospheric pressure is set to the detected intake pressure. Since the actual atmospheric pressure is equal to or higher than the intake pressure, when the detected intake pressure is higher than the estimated atmospheric pressure, for example, by setting (initializing) the estimated atmospheric pressure to the detected intake pressure, It is possible to suppress a decrease in estimation accuracy due to detection delay or a decrease in estimation accuracy during restart immediately after the engine is stopped.
- the vehicle further includes vehicle speed detecting means for detecting a vehicle speed (VP) of the vehicle driven by the engine, and the updating means is configured to detect the estimated atmospheric pressure (VPL) when the vehicle speed (VP) is equal to or lower than a predetermined vehicle speed (VPL). It is desirable to stop updating HPA).
- vehicle speed detecting means for detecting a vehicle speed (VP) of the vehicle driven by the engine
- VPL estimated atmospheric pressure
- the update of the estimated atmospheric pressure is stopped when the vehicle speed is equal to or lower than the predetermined vehicle speed.
- the vehicle speed is low, the atmospheric pressure around the vehicle hardly changes. Therefore, by stopping the update, it is possible to prevent the estimation accuracy from being lowered due to the influence of the air sucked into the engine without passing through the intake throttle valve.
- the update means may decrease the update speed (CORHPA) of the estimated atmospheric pressure when the vehicle speed (VP) is equal to or lower than a predetermined vehicle speed (VPL).
- CORHPA update speed of the estimated atmospheric pressure when the vehicle speed (VP) is equal to or lower than a predetermined vehicle speed (VPL).
- the update speed of the estimated atmospheric pressure is reduced.
- the vehicle speed is low, the atmospheric pressure around the vehicle hardly changes. Therefore, by reducing the renewal speed, it is possible to suppress the estimation accuracy from being lowered due to the influence of air sucked into the engine without passing through the intake throttle valve. .
- the atmospheric pressure estimation means includes a first annealing processing means for calculating a first annealing estimated atmospheric pressure (HPA) by performing an annealing process on the estimated atmospheric pressure (HPACAL) updated by the updating means.
- Second annealing processing means for calculating a second annealing estimated atmospheric pressure (HPAF) by performing an annealing process of the first annealing estimated atmospheric pressure (HPA), and the second annealing
- the estimated atmospheric pressure (HPAF) is output, and the flow rate estimating means preferably calculates the estimated intake throttle valve passing air flow rate (HGAIRTH) using the first smoothed estimated atmospheric pressure (HPA).
- the first estimated estimated atmospheric pressure is calculated by performing the updated estimated atmospheric pressure smoothing process, and the second annealed process of the first estimated estimated atmospheric pressure is performed. An estimated annealing atmospheric pressure is calculated. Then, the second smoothed estimated atmospheric pressure is output and used for control parameter calculation, while the first smoothed estimated atmospheric pressure is applied to calculate the estimated intake throttle valve passing air flow rate. Applying the first smoothing estimated atmospheric pressure to the calculation of the estimated intake throttle valve passing air flow rate, and further outputting the second smoothing estimated atmospheric pressure after the smoothing process, thereby reducing the responsiveness of the estimation calculation Therefore, it is possible to sufficiently attenuate the fluctuation component that is not necessary for calculating the control parameter.
- the atmospheric pressure estimating means corrects the estimated intake throttle valve passing air flow rate (HGAIRTH) according to the detection delay characteristic of the intake throttle valve passing air flow rate detecting means (13), thereby correcting the estimated estimated intake throttle valve.
- a flow rate detection delay correcting unit for calculating a passing air flow rate (HGATAFS), and the updating unit is configured such that the corrected estimated intake throttle valve passing air flow rate (HGATAFS) matches the detected intake throttle valve passing air flow rate (GAIR).
- HPA estimated atmospheric pressure
- the corrected estimated intake throttle valve passing air flow rate is calculated by correcting the estimated intake throttle valve passing air flow rate according to the detection delay characteristic of the intake throttle valve passing air flow rate detecting means, and this corrected estimated The estimated atmospheric pressure is updated so that the intake throttle valve passing air flow rate matches the detected intake throttle valve passing air flow rate.
- the atmospheric pressure estimating means corrects the estimated intake throttle valve passing air flow rate (HGAIRTHa) according to the detection delay characteristic of the intake pressure detecting means (8), whereby the first corrected estimated intake throttle valve passing air is corrected.
- the first estimated intake throttle valve passing air flow rate (HGATPBS) is corrected according to the pressure detection delay correcting means for calculating the flow rate (HGATPBS) and the detection delay characteristic of the intake throttle valve passing air flow rate detecting means (13).
- a flow rate detection delay correcting means for calculating a second corrected estimated intake throttle valve passage air flow rate (HGATAFSa), wherein the flow rate estimating means uses the estimated value (HPBA) of the intake pressure.
- a throttle valve passing air flow rate (HGAIRTHa) is calculated, and the updating means detects the second corrected estimated intake throttle valve passing air flow rate (HGARAFSa). To match the air throttle valve passing air flow rate (GAIR), it may be performed the update of the estimated atmospheric pressure (HPA).
- HPA estimated atmospheric pressure
- the estimated intake throttle valve passing air flow rate is calculated using the estimated value of the intake pressure, and by correcting the estimated intake throttle valve passing air flow rate according to the detection delay characteristic of the intake pressure detecting means, The first correction estimated intake throttle valve passage air flow rate is calculated, and the second correction estimation is performed by correcting the first estimated intake throttle valve passage air flow rate according to the detection delay characteristic of the intake throttle valve passage air flow rate detecting means. An intake throttle valve passing air flow rate is calculated. Then, the estimated atmospheric pressure is updated so that the second corrected estimated intake throttle valve passage air flow rate matches the detected intake throttle valve passage air flow rate. Thereby, it is possible to suppress a decrease in estimation accuracy caused by a detection delay of the intake pressure detection means and a detection delay of the intake throttle valve passing air flow rate detection means.
- the atmospheric pressure estimating means corrects the estimated intake throttle valve passage air flow rate (HGAIRTHb) according to the detection delay characteristic of the intake throttle valve opening degree detecting means (4), whereby a first corrected estimated intake throttle is obtained.
- the first estimated intake throttle valve passage air flow rate (HGATTHS) according to the opening degree detection delay correction means for calculating the valve passage air flow rate (HGATTHS) and the detection delay characteristic of the intake throttle valve passage air flow rate detection means (13).
- a flow rate detection delay correcting unit that calculates a second corrected estimated intake throttle valve passage air flow rate (HGAATAFSb), and the flow rate estimating unit includes an estimated value (HTH) of the intake throttle valve opening degree.
- HGAIRTHb Is used to calculate the estimated intake throttle valve passing air flow rate (HGAIRTHb), and the updating means is configured to calculate the second corrected estimated intake throttle valve passing air flow rate (HGATA).
- Sb) coincides with the detected intake air throttle valve passing air flow rate (GAIR), it may be performed the update of the estimated atmospheric pressure (HPA).
- the estimated intake throttle valve passing air flow rate is calculated using the estimated value of the intake throttle valve opening, and the estimated intake throttle valve passing air flow rate is determined according to the detection delay characteristic of the intake throttle valve opening detecting means. Is corrected, the first corrected estimated intake throttle valve passing air flow rate is calculated, and the first estimated intake throttle valve passing air flow rate is corrected according to the detection delay characteristic of the intake throttle valve passing air flow rate detecting means. Thus, the second corrected estimated intake throttle valve passage air flow rate is calculated. Then, the estimated atmospheric pressure is updated so that the second corrected estimated intake throttle valve passage air flow rate matches the detected intake throttle valve passage air flow rate. Thereby, it is possible to suppress a decrease in estimation accuracy caused by a detection delay of the intake throttle valve opening degree detection means and a detection delay of the intake throttle valve passage air flow rate detection means.
- FIG. 4 is a flowchart of a subroutine executed in the process shown in FIG. 3.
- FIG. 4 is a figure which shows the table referred by the process of FIG.
- FIG. It is a figure which shows the table referred by the process of FIG.
- It is a time chart for demonstrating the aspect in which an estimated atmospheric pressure (HPACAL) follows an actual atmospheric pressure (PA).
- HPACAL estimated atmospheric pressure
- PA actual atmospheric pressure
- It is a time chart for demonstrating the annealing process of estimated atmospheric pressure.
- It is a flowchart of the modification of the process shown in FIG.
- FIG. 1 is a diagram showing a configuration of an internal combustion engine and a control device thereof according to an embodiment of the present invention.
- an internal combustion engine hereinafter simply referred to as “engine”
- engine an internal combustion engine having four cylinders
- a cylinder deactivation mechanism 40 is provided for deactivating the cylinders by deactivating the intake and exhaust valves.
- a throttle valve 3 is arranged in the middle of the intake pipe 2 of the engine 1.
- a throttle valve opening (TH) sensor 4 is connected to the throttle valve 3, and an electric signal corresponding to the opening of the throttle valve 3 is output to an electronic control unit (hereinafter referred to as “ECU”) 5. Supply.
- An actuator 7 that drives the throttle valve 3 is connected to the throttle valve 3, and the operation of the actuator 7 is controlled by the ECU 5.
- the intake pipe 2 is provided with an intake air flow rate sensor 13 that detects an intake air flow rate GAIR that is a flow rate of air sucked into the engine 1 via the throttle valve 3, and an intake air temperature TA on the upstream side of the throttle valve 3.
- An intake air temperature sensor 9 is provided for detecting. Detection signals of these sensors 13 and 9 are supplied to the ECU 5.
- the fuel injection valve 6 is provided for each cylinder between the engine 1 and the throttle valve 3 and slightly upstream of the intake valve (not shown) of the intake pipe 2, and each injection valve is connected to a fuel pump (not shown). At the same time, it is electrically connected to the ECU 5 and the valve opening time of the fuel injection valve 6 is controlled by a signal from the ECU 5.
- the ignition plug 12 of each cylinder of the engine 1 is connected to the ECU 5, and the ECU 5 supplies an ignition signal to the ignition plug 12 to perform ignition timing control.
- An intake pressure sensor 8 for detecting the intake pressure PBA is attached downstream of the throttle valve 3.
- An engine cooling water temperature sensor 10 that detects the engine cooling water temperature TW is attached to the main body of the engine 1. The detection signals of these sensors 8 and 10 are supplied to the ECU 5.
- the ECU 5 is connected to a crank angle position sensor 11 that detects a rotation angle of a crankshaft (not shown) of the engine 1, and a signal corresponding to the rotation angle of the crankshaft is supplied to the ECU 5.
- the crank angle position sensor 11 is a cylinder discrimination sensor that outputs a pulse (hereinafter referred to as “CYL pulse”) at a predetermined crank angle position of a specific cylinder of the engine 1, and relates to a top dead center (TDC) at the start of the intake stroke of each cylinder.
- a TDC sensor that outputs a TDC pulse at a crank angle position before a predetermined crank angle (every 180 degrees of crank angle in a four-cylinder engine) and one pulse (hereinafter referred to as “CRK”) with a constant crank angle cycle shorter than the TDC pulse (for example, a cycle of 6 °).
- the CYL pulse, the TDC pulse, and the CRK pulse are supplied to the ECU 5. These pulses are used for various timing controls such as fuel injection timing and ignition timing, and detection of engine speed (engine speed) NE.
- the ECU 5 includes an accelerator sensor 31 for detecting an accelerator pedal depression amount (hereinafter referred to as “accelerator pedal operation amount”) AP of a vehicle driven by the engine 1, and a traveling speed (vehicle speed) VP of the vehicle driven by the engine 1.
- a vehicle speed sensor 32 for detecting the above is connected. Detection signals from these sensors are supplied to the ECU 5.
- the ECU 5 shapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, etc., and a central processing unit (hereinafter referred to as “CPU”). ), A storage circuit for storing a calculation program executed by the CPU, a calculation result, and the like, an output circuit for supplying a drive signal to the actuator 7, the fuel injection valve 6, and the cylinder deactivation mechanism 40, and the like.
- CPU central processing unit
- the CPU of the ECU 5 controls the ignition timing, the opening degree of the throttle valve 3, the control of the amount of fuel supplied to the engine 1 (opening time of the fuel injection valve 6), and the cylinder deactivation control according to the detection signal of the sensor. I do.
- the CPU of the ECU 5 executes an atmospheric pressure estimation process for estimating the atmospheric pressure PA, and applies the estimated atmospheric pressure (HPAF) obtained by the atmospheric pressure estimation process to the control such as the ignition timing control and the fuel amount control. .
- HPAF estimated atmospheric pressure
- FIG. 2 is a block diagram showing the configuration of an atmospheric pressure estimation module that executes atmospheric pressure estimation processing, and the function of each block shown in FIG. 2 is realized by arithmetic processing executed by the CPU of the ECU 5 as described later. .
- the atmospheric pressure estimation module shown in FIG. 2 includes an intake air flow rate estimation unit 51, an estimated atmospheric pressure update unit 52, a first smoothing calculation unit 53, a delay unit 54, and a second smoothing calculation unit 55. ing.
- the intake air flow rate estimation unit 51 detects the detected intake pressure PBA, the intake air temperature TA, the throttle valve opening TH, the engine speed NE, and the estimated atmospheric pressure output from the first smoothing calculation unit 53 one calculation cycle before.
- the estimated throttle valve passage air flow rate HGAIRTH is calculated by applying HPAD to the following equation (1).
- KC is a conversion constant for setting the unit of flow rate to [g / sec]
- KTH (TH) is an opening area flow rate function calculated according to the throttle valve opening TH
- ⁇ ( PBA / HPAD) is a pressure ratio flow function calculated according to the ratio between the upstream pressure (HPAD) and the downstream pressure (PBA) of the throttle valve 3
- R is a gas constant.
- the opening area flow rate function KTH is experimentally obtained in advance and stored as a table. Further, the pressure specific flow rate function ⁇ is given by the following equation (2). “ ⁇ ” in Equation (2) is the specific heat ratio of air. However, when the air flow velocity exceeds the sonic velocity, the pressure ratio flow function ⁇ takes a maximum value regardless of the pressure ratio. Therefore, in the actual calculation process, the pressure ratio flow function ⁇ is also stored in advance as a table (FIG. 5 ( b)) is used.
- the estimated atmospheric pressure update unit 52 updates the estimated atmospheric pressure HPA so that the estimated throttle valve passing air flow rate HGAIRTH matches the detected intake air flow rate GAIR, and the estimated atmospheric pressure before the first smoothing calculation process (hereinafter referred to as the estimated atmospheric pressure HPA).
- HPCAL (referred to as “updated estimated atmospheric pressure”) is calculated.
- the first annealing calculation unit 53 applies the updated estimated atmospheric pressure HPACAL to the following equation (3) to calculate the estimated atmospheric pressure HPA.
- “K” in Expression (3) is a discretization time discretized in the calculation cycle, and CA1 is an annealing coefficient set to a value between “0” and “1”. Note that (k) indicating the current value is omitted.
- HPA CA1 ⁇ HPACAL + (1-CA1) ⁇ HPA (k ⁇ 1) (3)
- the second annealing calculation unit 55 applies the estimated atmospheric pressure HPA to the following equation (4) to calculate the annealing estimated atmospheric pressure HPAF.
- CA2 in Expression (4) is an annealing coefficient set to a value between “0” and “1”.
- HPAF CA2 * HPA + (1-CA2) * HPAF (k-1) (4)
- the estimated annealing atmospheric pressure HPAF calculated by the equation (4) is applied to calculation of engine control parameters such as ignition timing and fuel supply amount.
- FIG. 3 is a flowchart of a main routine of atmospheric pressure estimation processing for realizing the function of the atmospheric pressure estimation module shown in FIG. This process is executed by the CPU of the ECU 5 in synchronization with the TDC pulse.
- step S11 it is determined whether or not the first initialization flag FFINHPAINI is “1”. Since this answer is negative (NO) at first, the initial estimated atmospheric pressure HPAINI is set to the higher one of the previous set value of HPAINI and the intake pressure PBA by the following equation (5) (step S12).
- HPAINI max (HPAINI (k ⁇ 1), PBA) (5)
- step S13 it is determined whether or not the start mode flag FSTMOD is “1”.
- the start mode flag FSTMOD is set to “1” during cranking (from the start of engine 1 to the start of independent operation). During the cranking, the process is immediately terminated.
- the process proceeds to step S14, and the first initialization flag FFINHPAINI is set to “1”.
- step S14 When step S14 is executed, the answer to step S11 is affirmative (YES), the process proceeds to step S15, and the atmospheric pressure estimation subroutine shown in FIG. 4 is executed.
- step S21 of FIG. 4 it is determined whether or not the second initialization flag FFINHPAINIR is “1”. Since this answer is negative (NO) at first, the process proceeds to step S22, and both the estimated atmospheric pressure HPA and the delayed estimated atmospheric pressure HPAD are set to the initial estimated atmospheric pressure HPAINI. Next, the second initialization flag FFINHPAINIR is set to “1” (step S23), and this process ends.
- step S23 When step S23 is executed, the answer to step S21 is affirmative (YES), and the processing after step S24 is executed.
- step S24 the KTH table shown in FIG. 5A is retrieved according to the throttle valve opening TH, and the opening area flow rate function value KTH is calculated.
- the KTH table is set so that the opening area flow rate function value KTH increases as the throttle valve opening TH increases.
- step S25 the pressure ratio RPBAHPA, which is the ratio between the intake pressure PBA and the delay estimated atmospheric pressure HPAD, is calculated by the following equation (6), and the FPBAPA table shown in FIG. 5B is retrieved according to the pressure ratio RPBAHPA.
- the pressure specific flow rate function value FPBAPA is calculated.
- RPBAHPA PBA / HPAD (6)
- step S26 an RRTA table (not shown) is searched according to the intake air temperature TA, and an intake air temperature parameter RRTA is calculated.
- the RRTA table stores the calculation result of the following formula (7) corresponding to the denominator of the formula (1) as a table.
- step S27 the KTHNE table is searched according to the engine speed NE, and the rotation speed correction coefficient KTHNE is calculated.
- the KTHNE table is set so that the engine speed correction coefficient KTHNE decreases as the engine speed NE increases.
- the rotational speed correction coefficient KTHNE is a parameter for correcting the pressure loss of the air cleaner disposed upstream of the intake air flow rate sensor 13, and considers that the pressure loss of the air cleaner increases as the engine rotational speed NE increases. Is set. Since the influence of the air cleaner is usually not so great, the rotational speed correction coefficient KTHNE may always be set to “1” so that the correction according to the engine rotational speed NE is not performed.
- step S28 the opening area flow rate function value KTH, the pressure ratio flow rate function value FPBAPA, the intake air temperature parameter RRTA, the delay estimated atmospheric pressure HPAD, and the rotation speed correction coefficient KTHNE are applied to the following equation (1a), and the estimated throttle valve passage air
- the flow rate HGAIRTH is calculated.
- HGAIRTH KC x HPAD x KTH x FPBAPA x KTHNE / RRTA (1a)
- step S29 the flow rate deviation DGAIR is calculated by the following equation (11).
- DGAIR HGAIRTH-GAIR (11)
- step S30 it is determined whether or not the vehicle speed VP is greater than a predetermined low vehicle speed VPL (eg, “0”). If the answer is negative (NO), the update amount CORHPA is set to “0” (step S32). ). On the other hand, when VP> VPL, the CORHPA table shown in FIG. 5D is searched according to the flow rate deviation DGAIR, and the update amount CORHPA is calculated (step S31). The CORHPA table is set as follows.
- the update amount CORHPA is set to “0” and the flow rate deviation DGAIR is set to the predetermined value ⁇ D1.
- the update amount CORHPA is set to the predetermined amount COR1 (> 0)
- the update amount CORHPA is set to the predetermined amount ⁇ COR1.
- step S33 the updated estimated atmospheric pressure HPACAL is calculated by adding the updated amount CORHPA to the estimated atmospheric pressure HPA (previous value) according to the following equation (12).
- HPACAL HPA + CORHPA (12)
- step S34 the estimated atmospheric pressure HPA is calculated by the annealing operation according to the equation (3), and in step S35, the estimated atmospheric pressure HPAF is calculated by the annealing operation according to the equation (4).
- FIG. 6 is a time chart for explaining the transition of the estimated atmospheric pressure HPA in the present embodiment, and shows an example in which the initial setting value of the estimated atmospheric pressure HPA is greatly deviated from the atmospheric pressure PA.
- the flow rate deviation DGAIR increases, and the update amount CORHPA is set to the negative predetermined amount “ ⁇ COR1”.
- the estimated throttle valve passage air flow rate HGAIRTH gradually decreases, and the estimated atmospheric pressure HPA decreases accordingly, and finally coincides with the atmospheric pressure PA.
- FIG. 6 shows an estimated atmospheric pressure HPA in a state where the first annealing calculation process is not performed for the sake of explanation.
- the estimated atmospheric pressure HPA is initialized by the detected intake pressure PBA immediately after the engine is started as described above. Therefore, the estimated atmospheric pressure HPA substantially coincides with the atmospheric pressure PA from the beginning. It changes to follow the change of.
- FIG. 7 is a time chart showing the test results. Atmospheric pressure PA and estimated atmospheric pressure when traveling from point A at an altitude of 2600 m to point B at an altitude of 3000 m and then descending to point C at an altitude of 2200 are performed. Changes in HPA (FIG. (A)), fuel cut flag FFC, cylinder deactivation flag FSCTP (FIG. (B)), and vehicle speed VP (FIG. (C)) are shown. The two broken lines shown in FIG. 7A indicate an error range of about ⁇ 4.5%. The average vehicle speed when moving from point A to point C is about 100 km / h.
- an accurate estimated atmospheric pressure HPA can be obtained following a relatively rapid change in the atmospheric pressure PA. Even if fuel cut operation or partial cylinder deactivation operation is performed, good estimation accuracy can be maintained.
- FIG. 8 is a time chart showing changes in the atmospheric pressure PA (curve L1), the estimated atmospheric pressure HPA (curve L2), and the smoothed estimated atmospheric pressure HPAF (curve L3). An example of a simulation for adding to TH will be shown.
- the estimated atmospheric pressure HPA after the first annealing calculation process is applied to the calculation of the estimated throttle valve passing air flow rate HGAIRTH, and the second annealing calculation process is performed on the estimated atmospheric pressure HPA.
- Atmospheric pressure HPAF is applied to control parameter calculation.
- the estimated throttle valve passing air flow rate HGAIRTH is based on the delay estimated atmospheric pressure HPAD that is the previous value of the estimated atmospheric pressure HPA, the detected intake pressure PBA, and the throttle valve opening TH. Is calculated, and the estimated atmospheric pressure HPA is updated so that the estimated throttle valve passing air flow rate HGAIRTH matches the detected intake air flow rate GAIR, and the estimated estimated throttle valve passing air is updated using the updated estimated atmospheric pressure HPA.
- the flow rate HGAIRTH is calculated.
- the update of the estimated atmospheric pressure HPA and the calculation of the estimated throttle valve passing air flow rate HGAIRTH are sequentially executed, the estimated throttle valve passing air flow rate HGAIRTH follows the detected intake air flow rate GAIR, and the estimated atmospheric pressure HPA becomes the actual atmospheric pressure.
- the estimated atmospheric pressure HPA becomes the actual atmospheric pressure.
- the maximum value of the intake pressure PBA detected from the start of the engine to the time when the start of the engine is completed is applied (FIG. 3, step S12).
- the intake pressure PBA takes a value close to the atmospheric pressure PA until the start of the engine is completed (independent start), so that an appropriate initial value can be set.
- an effect of accelerating the convergence of the estimated atmospheric pressure HPA to the atmospheric pressure PA after the estimation process is started can be obtained, but at any timing during the period until the start of independent operation.
- the detected intake pressure PBA may be set to the initial estimated atmospheric pressure HPAINI as it is.
- the update of the estimated atmospheric pressure HPA is stopped.
- the vehicle speed VP is low, the atmospheric pressure PA around the vehicle hardly changes. Therefore, by stopping the renewal, air that is drawn into the engine without passing through the throttle valve (for example, a passage that bypasses the throttle valve and idle control)
- the throttle valve for example, a passage that bypasses the throttle valve and idle control
- the throttle valve opening sensor 4, the intake air flow sensor 13, the intake pressure sensor 8, and the vehicle speed sensor 32 are a throttle valve opening detection means, an intake throttle valve passage air flow detection means, an intake pressure detection means,
- the ECU 5 constitutes atmospheric pressure estimating means, flow rate estimating means, updating means, first smoothing processing means, and second smoothing processing means.
- the processes in FIGS. 3 and 4 correspond to atmospheric pressure estimation means
- steps S24 to S28 in FIG. 4 correspond to flow rate estimation means
- steps S29 to S33 correspond to update means
- steps S34 and S34 S35 corresponds to a first annealing processing unit and a second annealing processing unit, respectively.
- FIG. 9 is a flowchart showing a modification of the atmospheric pressure estimation process (main routine) shown in FIG.
- step S13a it is determined whether or not the elapsed time TENGST from the engine start start time is equal to or shorter than the predetermined time TPAINI. If the answer is affirmative (YES), the processing is immediately terminated and step S12 is executed. To do. When the elapsed time TENGST reaches the predetermined time TPAINI, the process proceeds to step S14, and the first initialization flag FFINHPAINI is set to “1”.
- the initial estimated atmospheric pressure HPAINI is updated until a predetermined timing before the start of independent operation.
- the updated estimated atmospheric pressure HPACAL is set to the intake pressure PBA.
- the predetermined low vehicle speed VPL is set to “0”, for example, and the update amount CORHPA when the vehicle is stopped is set to “0” (step S32), but the predetermined low vehicle speed VPL is larger than “0”.
- the update amount CORHPA may be set to a predetermined amount COR2 (-COR2) whose absolute value is smaller than the predetermined amount COR1 (-COR1) by the same processing as in step S31. .
- the update speed of the estimated atmospheric pressure HPA is reduced compared to when the vehicle speed VP is higher than the predetermined low vehicle speed VPL.
- FIG. 10 is a block diagram showing a configuration of an atmospheric pressure estimation module according to the second embodiment of the present invention.
- the atmospheric pressure estimation module shown in FIG. 10 is obtained by adding an AFS delay correction unit 56 to the atmospheric pressure estimation module of FIG. 2 and changing the estimated atmospheric pressure update unit 52 to an estimated atmospheric pressure update unit 52a.
- Other points are the same as those in the first embodiment.
- the AFS delay correction unit 56 corrects the estimated throttle valve passage air flow rate HGAIRTH according to the detection delay characteristic of the intake air flow rate sensor 13, and calculates the AFS correction estimated throttle valve passage air flow rate HGATAFS.
- the estimated atmospheric pressure update unit 52a calculates the updated estimated atmospheric pressure HPACAL so that the AFS correction estimated throttle valve passage air flow rate HGATAFS matches the intake air flow rate GAIR.
- FIG. 11 is a flowchart of atmospheric pressure estimation processing corresponding to the configuration of FIG. The process in FIG. 11 is obtained by changing step S29 in FIG. 4 to step S29a and adding step S41.
- step S41 the HGATAFS calculation process shown in FIG. 12 is executed to calculate the AFS estimated throttle valve passage air flow rate HGATAFS.
- the process of FIG. 12 corresponds to the AFS correction unit 56 of FIG.
- step S29a the flow rate deviation DGAIR is calculated by subtracting the intake air flow rate GAIR from the AFS correction estimated throttle valve passage air flow rate HGATAFS calculated in step S41.
- step S52 a ⁇ D table shown in FIG. 13B is retrieved according to the estimated throttle valve passage air flow rate HGAIRTH, and a delay time constant ⁇ D in the flow rate detection of the intake air flow rate sensor 13 is calculated.
- the ⁇ D table is set so that the delay time constant ⁇ D decreases as the estimated throttle valve passage air flow rate HGAIRTH increases.
- step S53 the crank angle time TCRK (sec) is calculated according to the engine speed NE (rpm).
- the calculation is performed in synchronization with the TDC pulse of the four-cylinder engine, and therefore, it is calculated by the following equation (21).
- TCRK 30 / NE (21)
- step S54 the discretization dead time nTD and the discretization delay time constant m ⁇ D are calculated by the following equations (22) and (23).
- nTD TDEAD / TCRK (22)
- m ⁇ D ⁇ D / TCRK (23)
- step S55 the delay estimated throttle valve passage air flow rate HGAIRTHD (k) is calculated before the discretization dead time nTD and set to the estimated throttle valve passage air flow rate HGAIRTH (k-nTD) stored in the memory.
- step S56 the delay estimated throttle valve passage air flow rate HGAIRTHD (k) and the previous value HGAIRTHD (k-1) of the delay estimation throttle valve passage air flow rate are applied to the following equation (24) to obtain the AFS correction estimated throttle valve passage air flow.
- the flow rate HGATAFS is calculated.
- Expression (24) is an expression that approximates the first-order lag system, and the coefficients A1 and B1 in Expression (24) are calculated by applying the discrete delay time constant m ⁇ D to the following expressions (25) and (26).
- the estimated throttle valve passage air flow rate HGAIRTH is corrected according to the detection delay characteristic of the intake air flow rate sensor 13 by the processing of FIG. 12, and the AFS correction estimated throttle valve which is the estimated air flow rate at the detection timing of the detected intake air flow rate GAIR.
- a passing air flow rate HGATAFS is calculated.
- the process of FIG. 12 corresponds to a flow rate detection delay correcting unit.
- FIG. 14 is a block diagram showing a configuration of an atmospheric pressure estimation module according to the third embodiment of the present invention.
- the atmospheric pressure estimation module shown in FIG. 14 has an intake air pressure estimation unit 57 and a PBS delay correction unit 58 added to the atmospheric pressure estimation module of FIG. 10, and an intake air flow rate estimation unit 51, an AFS delay correction unit 56, and an estimated atmospheric pressure.
- the atmospheric pressure update unit 52a is changed to an intake air flow rate estimation unit 51a, an AFS delay correction unit 56a, and an estimated atmospheric pressure update unit 52b, respectively.
- the rest is the same as in the second embodiment.
- the intake pressure estimation unit 57 calculates the estimated intake pressure HPBA by the following equation (31).
- HPBA PBA (k) + (PBA (k) ⁇ PBA (k ⁇ 1)) (31)
- the intake air flow rate estimation unit 51a calculates the estimated throttle valve passage air flow rate HGAIRTHa using the estimated intake pressure HPBA instead of the intake pressure PBA.
- the PBS delay correction unit 58 corrects the estimated throttle valve passage air flow rate HGAIRTHa according to the detection delay characteristic of the intake pressure sensor 8, and calculates the PBS correction estimated throttle valve passage air flow rate HGATPBS.
- the AFS delay correction unit 56a corrects the PBS correction estimated throttle valve passage air flow rate HGATPBS, and calculates the AFS correction estimation throttle valve passage air flow rate HGATAFSa.
- the estimated atmospheric pressure update unit 52b calculates the updated estimated atmospheric pressure HPACAL so that the AFS correction estimated throttle valve passage air flow rate HGATAFSa matches the intake air flow rate GAIR.
- FIG. 15 is a flowchart of atmospheric pressure estimation processing corresponding to the configuration of FIG. The process of FIG. 15 is obtained by changing steps S25, S28, S41, and S29a of FIG. 11 to steps S25a, 28a, S41a, and step S29b, and adding step S42.
- step S25a the pressure ratio RHPBHPA is calculated by the following equation (32), the pressure ratio flow function table shown in FIG. 5B is searched according to the pressure ratio RHPBHPA, and the pressure ratio flow function value FHPBPA is calculated.
- RHPBHPA HPBA / HPAD (32)
- step S28a the opening area flow rate function value KTH, the pressure ratio flow rate function value FHPBPA, the intake air temperature parameter RRTA, the delay estimated atmospheric pressure HPAD, and the rotation speed correction coefficient KTHNE are applied to the following equation (1b), and the estimated throttle valve passage air
- the flow rate HGAIRTHa is calculated.
- HGAIRTHa KC x HPAD x KTH x FHPBPA x KTHNE / RRTA (1b)
- step S42 the HGATPBS calculation process shown in FIG. 16 is executed to calculate the PBS correction estimated throttle valve passage air flow rate HGATPBS.
- the process of FIG. 16 corresponds to the PBS delay correction unit 58 of FIG.
- step S41a the AFS estimated throttle valve passing air flow rate HGATAFSa is calculated using the PBS corrected estimated throttle valve passing air flow rate HGATPBS instead of the estimated throttle valve passing air flow rate HGAIRTH.
- step S29b the flow rate deviation DGAIR is calculated by subtracting the intake air flow rate GAIR from the AFS correction estimated throttle valve passage air flow rate HGATAFSa calculated in step S41a.
- step S61 of FIG. 16 the delay estimated intake pressure HPBAS is calculated by the following equation (33).
- Expression (33) is an expression that approximates the intake pressure sensor 8 with a first-order lag model.
- the coefficients A2 and B2 of the equation (33) are calculated by the following equations (34) and (35), and the smoothing coefficient C2 of the equations (34) and (35) is set based on experiments.
- HPBAS A2 * HPBA (k) + A2 * HPBA (k-1) + B2 ⁇ HPBAS (k-1) (33)
- A2 C2 / (2 + C2) (34)
- B2 (2-C2) / (2 + C2) (35)
- step S62 the detected intake pressure PBA is applied to the following equation (36) to calculate the pressure ratio RPBAHPA, and the delayed estimated intake pressure HPBAS is applied to the following equation (37) to calculate the pressure ratio RHPBSHPA.
- RPBAHPA PBA / HPAD (36)
- RHPBSHPA HPBAS / HPAD (37)
- step S63 the pressure flow rate function table shown in FIG. 5B is retrieved according to the pressure ratios RPBAHPA and RHPBSHPA, and pressure ratio flow rate function values FPBAPA and FHPPBSPA are calculated.
- step S64 the pressure ratio flow function values FPBAPA and FHPPBSPA are applied to the following equation (38) to calculate the PBS delay correction coefficient KHPBA.
- KHPBA FPBAPA / FHPBSPA (38)
- step S65 the PBS delay correction coefficient KHPBA and the estimated throttle valve passage air flow rate HGAIRTHa are applied to the following equation (39) to calculate the PBS correction estimated throttle valve passage air flow rate HGATPBS.
- HGATPBS KHPBA ⁇ HGAIRTHa (39)
- the estimated throttle valve passage air flow rate HGAIRTHa is corrected according to the detection delay characteristic (first-order lag characteristic) of the intake pressure sensor 8, and the PBS correction estimated throttle valve passage air flow rate HGATPBS is calculated.
- the estimation accuracy of the estimated atmospheric pressure HPA can be further improved by updating the estimated atmospheric pressure HPA using the PBS correction estimated throttle valve passage air flow rate HGATPBS.
- processing in FIG. 16 corresponds to pressure detection delay correction means
- step S41a in FIG. 15 corresponds to flow rate detection delay correction means
- FIG. 17 is a block diagram showing a configuration of an atmospheric pressure estimation module according to the fourth embodiment of the present invention.
- a TH estimation unit 59 and a THS delay correction unit 60 are added to the atmospheric pressure estimation module of FIG. 10, and an intake air flow rate estimation unit 51, an AFS delay correction unit 56, and an estimated atmospheric pressure update unit 52a are respectively estimated for intake air flow rate.
- the unit 51b, the AFS delay correction unit 56b, and the estimated atmospheric pressure update unit 52c are changed. The rest is the same as in the second embodiment.
- the TH estimating unit 59 calculates the estimated throttle valve opening HTH by the following equation (41).
- HTH TH (k) + (TH (k) ⁇ TH (k ⁇ 1)) (41)
- the intake air flow rate estimating unit 51b calculates the estimated throttle valve passage air flow rate HGAIRTHb using the estimated throttle valve opening degree HTH instead of the throttle valve opening degree TH.
- the THS delay correction unit 60 corrects the estimated throttle valve passage air flow rate HGAIRTHb according to the detection delay characteristic of the throttle valve opening sensor 4, and calculates a THS correction estimated throttle valve passage air flow rate HGATTHS.
- the AFS delay correction unit 56b corrects the THS correction estimated throttle valve passage air flow rate HGATTHS, and calculates the AFS correction estimated throttle valve passage air flow rate HGATAFSb.
- the estimated atmospheric pressure update unit 52c calculates the updated estimated atmospheric pressure HPACAL so that the AFS correction estimated throttle valve passage air flow rate HGATAFSb matches the intake air flow rate GAIR.
- FIG. 18 is a flowchart of atmospheric pressure estimation processing corresponding to the configuration of FIG.
- the process of FIG. 18 is obtained by changing steps S24, S28, S41, and S29a of the process of FIG. 11 to steps S24a, 28b, S41b, and step S29c, and adding step S43.
- step S24a the KTH table shown in FIG. 5A is searched according to the estimated throttle valve opening HTH, and the opening area flow function value KTHa is calculated.
- step S28b the opening area flow rate function value KTHa, the pressure ratio flow rate function value FHPBPA, the intake air temperature parameter RRTA, the delay estimated atmospheric pressure HPAD, and the rotation speed correction coefficient KTHNE are applied to the following equation (1c), and the estimated throttle valve passage air
- the flow rate HGAIRTHb is calculated.
- HGAIRTHb KC x HPAD x KTHa x FHPBPA x KTHNE / RRTA (1c)
- step S43 the HGATTHS calculation process shown in FIG. 19 is executed to calculate the THS correction estimated throttle valve passage air flow rate HGATTHS.
- the process of FIG. 19 corresponds to the THS delay correction unit 60 of FIG.
- step S41b instead of the estimated throttle valve passing air flow rate HGAIRTH, the AFS estimated throttle valve passing air flow rate HGATAFSb is calculated using the THS correction estimated throttle valve passing air flow rate HGATTHS.
- step S29c the flow rate deviation DGAIR is calculated by subtracting the intake air flow rate GAIR from the AFS correction estimated throttle valve passage air flow rate HGATAFSb calculated in step S41b.
- the estimated delay throttle valve opening HTHS is calculated by the following equation (43).
- Expression (43) is an expression that approximates the throttle valve opening sensor 4 with a first-order lag model.
- Coefficients A3 and B3 of Expression (43) are calculated by the following Expressions (44) and (45), and the smoothing coefficient C3 of Expressions (44) and (45) is set based on experiments.
- HTHS A3 ⁇ HTH (k) + A3 ⁇ HTH (k-1) + B3 x HTHS (k-1) (43)
- A3 C3 / (2 + C3) (44)
- B3 (2-C3) / (2 + C3) (45)
- step S72 the KTH table shown in FIG. 5A is searched according to the throttle valve opening TH, and the opening area flow function value KTH (TH) is calculated.
- step S73 the KTH table shown in FIG. 5A is searched according to the delay estimated throttle valve opening HTHS, and the opening area flow rate function value KTH (HTHS) is calculated.
- step S74 the opening area flow rate function values KTH (TH) and KTH (HTHS) are applied to the following equation (46) to calculate the THS delay correction coefficient KHTH.
- KHTH KTH (TH) / KTH (HTHS) (46)
- step S75 the THS delay correction coefficient KHTH and the estimated throttle valve passing air flow rate HGAIRTHb are applied to the following equation (47) to calculate the THS corrected estimated throttle valve passing air flow rate HGATTHS.
- HGATTHS KHTH ⁇ HGAIRTHb (47)
- the estimated throttle valve passage air flow rate HGAIRTHb is corrected according to the detection delay characteristic (first-order lag characteristic) of the throttle valve opening sensor 4, and the THS correction estimated throttle valve passage air flow rate HGATTHS is calculated.
- the estimation accuracy of the estimated atmospheric pressure HPA can be further improved by updating the estimated atmospheric pressure HPA using the THS correction estimated throttle valve passage air flow rate HGATTHS.
- step S41b of FIG. 18 corresponds to the flow rate detection delay correction unit.
- the present invention is applied to an engine having a throttle valve.
- the throttle valve is not provided, and the intake air flow rate is changed by continuously changing the lift amount and / or the opening angle of the intake valve.
- the present invention can also be applied to an engine controlled by In that case, a cylinder pressure sensor is provided, and the detected cylinder pressure is used instead of the detected intake pressure.
- the intake valve corresponds to an intake throttle valve.
- the present invention can also be applied to a marine vessel propulsion engine such as an outboard motor having a crankshaft as a vertical direction.
- Throttle valve Intake throttle valve
- Throttle valve opening sensor throttle valve opening detection means
- Electronic control unit atmospheric pressure estimation means, flow rate estimation means, update means, first smoothing processing means, second smoothing processing means, flow rate detection delay correction means, pressure detection delay correction means, opening detection delay correction means
- Intake pressure sensor Intake pressure detection means
- Intake air flow rate sensor Intake throttle valve passage air flow rate detection means
- Vehicle speed sensor Vehicle speed detection means
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
この大気圧推定手法によれば、検出される吸気圧、吸気温度、及び吸入空気流量を用いて流量関連項FTが算出されるとともに、スロットル弁開度及びアイドル制御弁開度から有効開口面積Aintが算出される。そして、流量関連項FT及び有効開口面積Aintに応じて予め設定されている圧力比マップを検索することにより、吸気圧MAPと大気圧PAの圧力比(PA/MAP)が算出され、圧力比(PA/MAP)に吸気圧MAPを乗算することにより、推定大気圧が算出される。
[第1の実施形態]
図1は、本発明の一実施形態にかかる内燃機関とその制御装置の構成を示す図であり、図1において、例えば4気筒を有する内燃機関(以下単に「エンジン」という)1は、一部の気筒の吸気弁及び排気弁の作動を停止させることにより、その気筒の作動を休止させる気筒休止機構40を備えている。
スロットル弁3の下流には吸気圧PBAを検出する吸気圧センサ8が取付けられている。またエンジン1の本体には、エンジン冷却水温TWを検出するエンジン冷却水温センサ10が取り付けられている。これらのセンサ8及び10の検出信号は、ECU5に供給される。
HPA=CA1×HPACAL+(1-CA1)×HPA(k-1) (3)
HPAF=CA2×HPA+(1-CA2)×HPAF(k-1) (4)
HPAINI=max(HPAINI(k-1),PBA) (5)
ステップS24では、スロットル弁開度THに応じて図5(a)に示すKTHテーブルを検索し、開口面積流量関数値KTHを算出する。KTHテーブルは、スロットル弁開度THが増加するほど、開口面積流量関数値KTHが増加するように設定されている。
RPBAHPA=PBA/HPAD (6)
HGAIRTH=
KC×HPAD×KTH×FPBAPA×KTHNE/RRTA
(1a)
DGAIR=HGAIRTH-GAIR (11)
HPACAL=HPA+CORHPA (12)
図9は図3に示す大気圧推定処理(メインルーチン)の変形例を示すフローチャートである。
図4のステップS33における演算を式(12)に代えて、下記式(12a)により行うようにしてもよい。
HPACAL=max(HPA+CORHPA,PBA) (12a)
図4の処理では、所定低車速VPLを例えば「0」とし、車両停止時の更新量CORHPAを「0」に設定する(ステップS32)ようにしたが、所定低車速VPLを「0」より大きい値(例えば10km/h)に設定し、ステップS31と同様の処理によって、更新量CORHPAを所定量COR1(-COR1)より絶対値が小さい所定量COR2(-COR2)に設定するようにしてもよい。これにより、車速VPが所定低車速VPL以下であるときは、所定低車速VPLより高いときと比較して、推定大気圧HPAの更新速度が低減される。その結果、スロットル弁3を通過しないでエンジン1に吸入される空気の影響によって大気圧の推定精度が低下することを抑制できる。
図10は、本発明の第2の実施形態にかかる大気圧推定モジュールの構成を示すブロック図である。図10に示す大気圧推定モジュールは、図2の大気圧推定モジュールにAFS遅れ補正部56を追加し、推定大気圧更新部52を推定大気圧更新部52aに変更したものである。これ以外の点は、第1の実施形態と同一である。
TCRK=30/NE (21)
nTD=TDEAD/TCRK (22)
mτD=τD/TCRK (23)
本実施形態では、図12の処理が流量検出遅れ補正手段に相当する。
図14は、本発明の第3の実施形態にかかる大気圧推定モジュールの構成を示すブロック図である。図14に示す大気圧推定モジュールは、図10の大気圧推定モジュールに、吸気圧推定部57及びPBS遅れ補正部58を追加し、吸入空気流量推定部51、AFS遅れ補正部56、及び推定大気圧更新部52aを、それぞれ吸入空気流量推定部51a、AFS遅れ補正部56a、及び推定大気圧更新部52bに変更したものである。これ以外は第2の実施形態と同一である。
HPBA=PBA(k)+(PBA(k)-PBA(k-1)) (31)
吸入空気流量推定部51aは、吸気圧PBAに代えて、推定吸気圧HPBAを用いて推定スロットル弁通過空気流量HGAIRTHaを算出する。
RHPBHPA=HPBA/HPAD (32)
HGAIRTHa=
KC×HPAD×KTH×FHPBPA×KTHNE/RRTA
(1b)
HPBAS=A2×HPBA(k)+A2×HPBA(k-1)
+B2×HPBAS(k-1) (33)
A2=C2/(2+C2) (34)
B2=(2-C2)/(2+C2) (35)
RPBAHPA=PBA/HPAD (36)
RHPBSHPA=HPBAS/HPAD (37)
KHPBA=FPBAPA/FHPBSPA (38)
HGATPBS=KHPBA×HGAIRTHa (39)
図17は、本発明の第4の実施形態にかかる大気圧推定モジュールの構成を示すブロック図である。図10の大気圧推定モジュールに、TH推定部59及びTHS遅れ補正部60を追加し、吸入空気流量推定部51、AFS遅れ補正部56、及び推定大気圧更新部52aを、それぞれ吸入空気流量推定部51b、AFS遅れ補正部56b、及び推定大気圧更新部52cに変更したものである。これ以外は第2の実施形態と同一である。
HTH=TH(k)+(TH(k)-TH(k-1)) (41)
吸入空気流量推定部51bは、スロットル弁開度THに代えて、推定スロットル弁開度HTHを用いて推定スロットル弁通過空気流量HGAIRTHbを算出する。
ステップS28bでは、下記式(1c)に開口面積流量関数値KTHa,圧力比流量関数値FHPBPA,吸気温パラメータRRTA,遅延推定大気圧HPAD,及び回転数補正係数KTHNEを適用し、推定スロットル弁通過空気流量HGAIRTHbを算出する。
HGAIRTHb=
KC×HPAD×KTHa×FHPBPA×KTHNE/RRTA
(1c)
HTHS=A3×HTH(k)+A3×HTH(k-1)
+B3×HTHS(k-1) (43)
A3=C3/(2+C3) (44)
B3=(2-C3)/(2+C3) (45)
KHTH=KTH(TH)/KTH(HTHS) (46)
ステップS75では、THS遅れ補正係数KHTH及び推定スロットル弁通過空気流量HGAIRTHbを、下記式(47)に適用し、THS補正推定スロットル弁通過空気流量HGATTHSを算出する。
HGATTHS=KHTH×HGAIRTHb (47)
上述した実施形態では、スロットル弁を備える機関に本発明を適用したが、スロットル弁が設けられておらず、吸気弁のリフト量及び/または開角を連続的に変化させることにより、吸入空気流量の制御する機関にも本発明を適用することができる。その場合には、筒内圧センサを設け、検出吸気圧に代えて検出筒内圧を使用する。また吸気弁が吸気絞り弁に相当する。
3 スロットル弁(吸気絞り弁)
4 スロットル弁開度センサ(絞り弁開度検出手段)
5 電子制御ユニット(大気圧推定手段、流量推定手段、更新手段、第1なまし処理手段、第2なまし処理手段、流量検出遅れ補正手段、圧力検出遅れ補正手段、開度検出遅れ補正手段)
8 吸気圧センサ(吸気圧検出手段)
13 吸入空気流量センサ(吸気絞り弁通過空気流量検出手段)
32 車速センサ(車速検出手段)
Claims (18)
- 内燃機関の制御パラメータの算出に適用する大気圧を推定する大気圧推定手段を備える大気圧推定装置において、
前記機関の吸気圧を検出する吸気圧検出手段と、
前記機関の吸気絞り弁を通過する空気の流量を検出する吸気絞り弁通過空気流量検出手段と、
前記吸気絞り弁の開度を検出する絞り弁開度検出手段とを備え、
前記大気圧推定手段は、
推定された大気圧、前記吸気圧、及び前記吸気絞り弁開度に基づいて、推定吸気絞り弁通過空気流量を算出する流量推定手段と、
前記推定吸気絞り弁通過空気流量が、検出される吸気絞り弁通過空気流量と一致するように、前記推定大気圧を更新する更新手段とを有し、
前記流量推定手段は、前記更新手段により更新された推定大気圧を用いて前記推定吸気絞り弁通過空気流量を算出することを特徴とする大気圧推定装置。 - 前記大気圧推定手段は、前記推定大気圧の初期値として、前記機関の前回停止時点から前記機関の始動が完了する時点までの期間中に検出された吸気圧を適用する請求項1の大気圧推定装置。
- 前記大気圧推定手段は、前記吸気圧が前記推定大気圧より高いときは、前記推定大気圧を該吸気圧に設定する請求項1または2の大気圧推定装置。
- 前記機関により駆動される車両の車速を検出する車速検出手段を備え、
前記更新手段は、前記車速が所定車速以下であるときは、前記推定大気圧の更新を停止する請求項1から3の何れか1項の大気圧推定装置。 - 前記機関により駆動される車両の車速を検出する車速検出手段を備え、
前記更新手段は、前記車速が所定車速以下であるときは、前記推定大気圧の更新速度を低下させる請求項1から3の何れか1項の大気圧推定装置。 - 前記大気圧推定手段は、前記更新手段により更新された推定大気圧のなまし処理を行うことにより、第1なまし推定大気圧を算出する第1なまし処理手段と、
前記第1なまし推定大気圧のなまし処理を行うことにより、第2なまし推定大気圧を算出する第2なまし処理手段とを有し、前記第2なまし推定大気圧を出力し、
前記流量推定手段は、前記第1なまし推定大気圧を用いて前記推定吸気絞り弁通過空気流量を算出する請求項1から5の何れか1項の大気圧推定装置。 - 前記大気圧推定手段は、前記吸気絞り弁通過空気流量検出手段の検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量を補正することにより、補正推定吸気絞り弁通過空気流量を算出する流量検出遅れ補正手段を有し、
前記更新手段は、前記補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、前記推定大気圧の更新を行う請求項1から6の何れか1項の大気圧推定装置。 - 前記大気圧推定手段は、前記吸気圧検出手段の検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量を補正することにより、第1補正推定吸気絞り弁通過空気流量を算出する圧力検出遅れ補正手段と、前記吸気絞り弁通過空気流量検出手段の検出遅れ特性に応じて、前記第1推定吸気絞り弁通過空気流量を補正することにより、第2補正推定吸気絞り弁通過空気流量を算出する流量検出遅れ補正手段とを有し、
前記流量推定手段は、前記吸気圧の推定値を用いて前記推定吸気絞り弁通過空気流量を算出し、
前記更新手段は、前記第2補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、前記推定大気圧の更新を行う請求項1から6の何れか1項の大気圧推定装置。 - 前記大気圧推定手段は、前記吸気絞り弁開度検出手段の検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量を補正することにより、第1補正推定吸気絞り弁通過空気流量を算出する開度検出遅れ補正手段と、前記吸気絞り弁通過空気流量検出手段の検出遅れ特性に応じて、前記第1推定吸気絞り弁通過空気流量を補正することにより、第2補正推定吸気絞り弁通過空気流量を算出する流量検出遅れ補正手段とを有し、
前記流量推定手段は、前記吸気絞り弁開度の推定値を用いて前記推定吸気絞り弁通過空気流量を算出し、
前記更新手段は、前記第2補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、前記推定大気圧の更新を行う請求項1から6の何れか1項の大気圧推定装置。 - 内燃機関の制御パラメータの算出に適用する大気圧を推定する大気圧推定方法において、
a)前記機関の吸気圧を吸気圧センサにより検出し、
b)前記機関の吸気絞り弁を通過する空気の流量を空気流量センサにより検出し、
c)前記吸気絞り弁の開度を絞り弁開度センサにより検出するステップを備え、
下記ステップd)及びe)を繰り返し実行することを特徴とする大気圧推定方法:
d)推定された大気圧、検出される吸気圧及び吸気絞り弁開度に基づいて、推定吸気絞り弁通過空気流量を算出し、
e)前記推定吸気絞り弁通過空気流量が、検出される吸気絞り弁通過空気流量と一致するように、前記推定大気圧を更新する。 - 前記推定大気圧の初期値として、前記機関の前回停止時点から前記機関の始動が完了する時点までの期間中に検出された吸気圧が適用される請求項10の大気圧推定方法。
- 前記吸気圧が前記推定大気圧より高いときは、前記推定大気圧が該吸気圧に設定される請求項10または11の大気圧推定方法。
- f)前記機関により駆動される車両の車速を検出するステップを備え、
前記車速が所定車速以下であるときは、前記推定大気圧の更新が停止される請求項10から12の何れか1項の大気圧推定方法。 - f)前記機関により駆動される車両の車速を検出するステップを備え、
前記車速が所定車速以下であるときは、前記推定大気圧の更新速度が低減される請求項10から12の何れか1項の大気圧推定方法。 - g)更新された推定大気圧のなまし処理を行うことにより、第1なまし推定大気圧を算出し、
h)前記第1なまし推定大気圧のなまし処理を行うことにより、第2なまし推定大気圧を算出するステップを備え、
前記ステップd)では、前記第1なまし推定大気圧を用いて前記推定吸気絞り弁通過空気流量が算出され、
前記第2なまし推定大気圧が前記制御パラメータの算出に適用される請求項10から14の何れか1項の大気圧推定方法。 - 前記ステップd)は、
i)前記空気流量センサの検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量を補正することにより、補正推定吸気絞り弁通過空気流量を算出するステップを含み、
前記ステップe)では、前記補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、前記推定大気圧の更新が行われる請求項10から15の何れか1項の大気圧推定方法。 - 前記ステップd)は、
j)前記吸気圧センサの検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量を補正することにより、第1補正推定吸気絞り弁通過空気流量を算出し、
k)前記空気流量センサの検出遅れ特性に応じて、前記第1推定吸気絞り弁通過空気流量を補正することにより、第2補正推定吸気絞り弁通過空気流量を算出するステップを含み、
前記ステップd)では、前記吸気圧の推定値を用いて前記推定吸気絞り弁通過空気流量が算出され、
前記ステップe)では、前記第2補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、前記推定大気圧の更新が行われる請求項10から15の何れか1項の大気圧推定方法。 - 前記ステップd)は、
l)前記絞り弁開度センサの検出遅れ特性に応じて、前記推定吸気絞り弁通過空気流量を補正することにより、第1補正推定吸気絞り弁通過空気流量を算出し、
m)前記空気流量センサの検出遅れ特性に応じて、前記第1推定吸気絞り弁通過空気流量を補正することにより、第2補正推定吸気絞り弁通過空気流量を算出するステップを含み、
前記ステップd)では、前記吸気絞り弁開度の推定値を用いて前記推定吸気絞り弁通過空気流量が算出され、
前記ステップe)では、前記第2補正推定吸気絞り弁通過空気流量が検出吸気絞り弁通過空気流量と一致するように、前記推定大気圧の更新が行われる請求項10から15の何れか1項の大気圧推定方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10738399.4A EP2362087B1 (en) | 2009-02-06 | 2010-01-14 | Atmospheric pressure estimation device |
US13/144,974 US8676472B2 (en) | 2009-02-06 | 2010-01-14 | Atmospheric pressure estimating apparatus |
JP2010549420A JP5291726B2 (ja) | 2009-02-06 | 2010-01-14 | 大気圧推定装置 |
CN201080006778.3A CN102308075B (zh) | 2009-02-06 | 2010-01-14 | 大气压估计装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-026782 | 2009-02-06 | ||
JP2009026782 | 2009-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010090060A1 true WO2010090060A1 (ja) | 2010-08-12 |
Family
ID=42541967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050358 WO2010090060A1 (ja) | 2009-02-06 | 2010-01-14 | 大気圧推定装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8676472B2 (ja) |
EP (1) | EP2362087B1 (ja) |
JP (1) | JP5291726B2 (ja) |
CN (1) | CN102308075B (ja) |
WO (1) | WO2010090060A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013199915A (ja) * | 2012-03-26 | 2013-10-03 | Suzuki Motor Corp | エンジン始動制御システム |
JP5462390B1 (ja) * | 2013-04-23 | 2014-04-02 | 三菱電機株式会社 | 内燃機関の制御装置 |
US9067662B2 (en) | 2013-08-29 | 2015-06-30 | Mitsubishi Electric Corporation | Atmospheric pressure estimation device of outboard motor |
CN112519738A (zh) * | 2019-09-18 | 2021-03-19 | 广州汽车集团股份有限公司 | 真空助力制动系统、制动控制方法和制动控制设备 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013189964A (ja) * | 2012-03-15 | 2013-09-26 | Hitachi Automotive Systems Ltd | エンジンの制御装置 |
US10569035B2 (en) * | 2012-06-29 | 2020-02-25 | ResMed Pty Ltd | Pressure sensor evaluation for respiratory apparatus |
US9435283B2 (en) * | 2013-12-03 | 2016-09-06 | Ford Global Technologies, Llc | Method for inferring barometric pressure at low throttle angles |
JP5840240B2 (ja) * | 2014-02-11 | 2016-01-06 | 三菱電機株式会社 | 内燃機関の制御装置 |
US9574964B2 (en) * | 2015-07-07 | 2017-02-21 | Toyota Jidosha Kabushiki Kaisha | Mobile computer atmospheric barometric pressure system |
JP6328201B2 (ja) * | 2016-10-05 | 2018-05-23 | 三菱電機株式会社 | 内燃機関の制御装置 |
JP7256470B2 (ja) * | 2019-11-18 | 2023-04-12 | トヨタ自動車株式会社 | エンジン制御装置 |
CN115163301B (zh) * | 2022-05-30 | 2023-10-31 | 东风柳州汽车有限公司 | 行车环境大气压力监测方法、装置、设备及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0270957A (ja) * | 1988-01-29 | 1990-03-09 | Hitachi Ltd | エンジン制御方法 |
JPH06101558A (ja) * | 1992-09-24 | 1994-04-12 | Mazda Motor Corp | 大気圧検出装置 |
JPH07180597A (ja) * | 1993-12-24 | 1995-07-18 | Toyota Motor Corp | 過給機付エンジンの大気圧検出装置 |
US6016460A (en) | 1998-10-16 | 2000-01-18 | General Motors Corporation | Internal combustion engine control with model-based barometric pressure estimator |
JP2006046071A (ja) * | 2004-07-30 | 2006-02-16 | Denso Corp | 車両の大気圧推定装置 |
JP2008196466A (ja) * | 2007-02-16 | 2008-08-28 | Honda Motor Co Ltd | 内燃機関の制御装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5136517A (en) | 1990-09-12 | 1992-08-04 | Ford Motor Company | Method and apparatus for inferring barometric pressure surrounding an internal combustion engine |
JPH07180579A (ja) * | 1993-12-21 | 1995-07-18 | Nissan Motor Co Ltd | エンジンの燃料供給装置 |
JP3449813B2 (ja) | 1995-01-06 | 2003-09-22 | 株式会社日立ユニシアオートモティブ | 内燃機関における大気圧推定装置 |
JP3768296B2 (ja) * | 1996-08-05 | 2006-04-19 | 三菱自動車工業株式会社 | 筒内噴射型火花点火式内燃エンジンの制御装置 |
US6430515B1 (en) * | 1999-09-20 | 2002-08-06 | Daimlerchrysler Corporation | Method of determining barometric pressure for use in an internal combustion engine |
DE10039953C1 (de) | 2000-08-16 | 2002-04-11 | Siemens Ag | Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine |
US6366847B1 (en) * | 2000-08-29 | 2002-04-02 | Ford Global Technologies, Inc. | Method of estimating barometric pressure in an engine control system |
JP4415506B2 (ja) * | 2001-04-13 | 2010-02-17 | トヨタ自動車株式会社 | 内燃機関の大気圧学習装置 |
US6434474B1 (en) | 2001-06-19 | 2002-08-13 | Ford Global Technologies, Inc. | Upstream gauge sensor, downstream absolute pressure sensor system |
TW559640B (en) * | 2001-10-31 | 2003-11-01 | Yamaha Motor Co Ltd | Device and method for detection of atmospheric pressure of engine |
JP3900064B2 (ja) * | 2002-10-30 | 2007-04-04 | トヨタ自動車株式会社 | 内燃機関の吸入空気量推定装置 |
JP2006037924A (ja) * | 2004-07-30 | 2006-02-09 | Denso Corp | 車両の制御装置 |
JP2007315247A (ja) * | 2006-05-24 | 2007-12-06 | Hitachi Ltd | エンジン制御装置 |
JP4267667B2 (ja) * | 2007-02-23 | 2009-05-27 | トヨタ自動車株式会社 | 監視装置 |
JP2009068388A (ja) * | 2007-09-12 | 2009-04-02 | Honda Motor Co Ltd | 内燃機関の制御装置 |
JP4488318B2 (ja) * | 2008-05-20 | 2010-06-23 | 三菱電機株式会社 | 内燃機関制御装置 |
JP2010242727A (ja) * | 2009-04-10 | 2010-10-28 | Honda Motor Co Ltd | 内燃機関の制御装置 |
JP5391850B2 (ja) * | 2009-06-10 | 2014-01-15 | トヨタ自動車株式会社 | 内燃機関の大気圧推定装置 |
-
2010
- 2010-01-14 CN CN201080006778.3A patent/CN102308075B/zh not_active Expired - Fee Related
- 2010-01-14 WO PCT/JP2010/050358 patent/WO2010090060A1/ja active Application Filing
- 2010-01-14 US US13/144,974 patent/US8676472B2/en not_active Expired - Fee Related
- 2010-01-14 JP JP2010549420A patent/JP5291726B2/ja not_active Expired - Fee Related
- 2010-01-14 EP EP10738399.4A patent/EP2362087B1/en not_active Not-in-force
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0270957A (ja) * | 1988-01-29 | 1990-03-09 | Hitachi Ltd | エンジン制御方法 |
JPH06101558A (ja) * | 1992-09-24 | 1994-04-12 | Mazda Motor Corp | 大気圧検出装置 |
JPH07180597A (ja) * | 1993-12-24 | 1995-07-18 | Toyota Motor Corp | 過給機付エンジンの大気圧検出装置 |
US6016460A (en) | 1998-10-16 | 2000-01-18 | General Motors Corporation | Internal combustion engine control with model-based barometric pressure estimator |
JP2006046071A (ja) * | 2004-07-30 | 2006-02-16 | Denso Corp | 車両の大気圧推定装置 |
JP2008196466A (ja) * | 2007-02-16 | 2008-08-28 | Honda Motor Co Ltd | 内燃機関の制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2362087A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013199915A (ja) * | 2012-03-26 | 2013-10-03 | Suzuki Motor Corp | エンジン始動制御システム |
JP5462390B1 (ja) * | 2013-04-23 | 2014-04-02 | 三菱電機株式会社 | 内燃機関の制御装置 |
US9067662B2 (en) | 2013-08-29 | 2015-06-30 | Mitsubishi Electric Corporation | Atmospheric pressure estimation device of outboard motor |
CN112519738A (zh) * | 2019-09-18 | 2021-03-19 | 广州汽车集团股份有限公司 | 真空助力制动系统、制动控制方法和制动控制设备 |
Also Published As
Publication number | Publication date |
---|---|
CN102308075A (zh) | 2012-01-04 |
EP2362087B1 (en) | 2013-10-23 |
EP2362087A4 (en) | 2012-07-25 |
US20110276254A1 (en) | 2011-11-10 |
CN102308075B (zh) | 2014-11-26 |
JPWO2010090060A1 (ja) | 2012-08-09 |
US8676472B2 (en) | 2014-03-18 |
EP2362087A1 (en) | 2011-08-31 |
JP5291726B2 (ja) | 2013-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5291726B2 (ja) | 大気圧推定装置 | |
JP4144272B2 (ja) | 内燃機関の燃料噴射量制御装置 | |
JP5118247B2 (ja) | 内燃機関の気筒吸入空気量算出装置 | |
JP2007255188A (ja) | 内燃機関の燃料制御装置 | |
WO2011132464A1 (ja) | 内燃機関の吸気パラメータ算出装置および吸気パラメータ算出方法 | |
JP5021045B2 (ja) | 大気圧推定装置 | |
JP5519410B2 (ja) | 内燃機関の燃料供給装置 | |
JP2010242727A (ja) | 内燃機関の制御装置 | |
JP4862083B2 (ja) | 内燃機関の気筒吸入空気量算出装置 | |
JP5357852B2 (ja) | 内燃機関の制御装置 | |
JP5313847B2 (ja) | 内燃機関の空燃比制御装置 | |
JP5611166B2 (ja) | 内燃機関の吸気パラメータ算出装置 | |
JP2005090325A (ja) | 燃料噴射量制御装置 | |
JP5189012B2 (ja) | 内燃機関の制御装置 | |
JP2011190781A (ja) | 内燃機関の気筒吸入空気量算出装置 | |
JP2009052418A (ja) | 内燃機関の制御装置 | |
JP5511616B2 (ja) | 大気圧推定装置 | |
JP2006132498A (ja) | 内燃機関の流量算出装置 | |
JP2847851B2 (ja) | 車両用内燃機関の制御装置 | |
JP3754007B2 (ja) | 内燃機関の空燃比制御装置 | |
JP5844170B2 (ja) | 内燃機関の制御装置 | |
JP2008280892A (ja) | 内燃機関の制御装置 | |
JP2010116883A (ja) | 内燃機関の制御装置 | |
JP2004019478A (ja) | 内燃機関の回転数制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080006778.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10738399 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010549420 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010738399 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13144974 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |