WO2010084955A1 - 素子搭載用基板、およびこれを用いた素子収納用パッケージ - Google Patents

素子搭載用基板、およびこれを用いた素子収納用パッケージ Download PDF

Info

Publication number
WO2010084955A1
WO2010084955A1 PCT/JP2010/050809 JP2010050809W WO2010084955A1 WO 2010084955 A1 WO2010084955 A1 WO 2010084955A1 JP 2010050809 W JP2010050809 W JP 2010050809W WO 2010084955 A1 WO2010084955 A1 WO 2010084955A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
support
semiconductor element
mounting substrate
element mounting
Prior art date
Application number
PCT/JP2010/050809
Other languages
English (en)
French (fr)
Inventor
和弘 川畑
清茂 宮脇
植田 義明
真二 中本
杉本 努
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP10733562.2A priority Critical patent/EP2390910A4/en
Priority to CN2010800010272A priority patent/CN101925998B/zh
Priority to JP2010527686A priority patent/JP5484338B2/ja
Priority to US12/865,107 priority patent/US8837164B2/en
Publication of WO2010084955A1 publication Critical patent/WO2010084955A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/057Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49121Beam lead frame or beam lead device

Definitions

  • the present invention relates to an element mounting board for mounting a power semiconductor element, and an element storage package using the same.
  • a silicon (Si) single crystal is widely used as a material for a semiconductor element.
  • a semiconductor element using a semiconductor material having excellent heat resistance such as silicon carbide (SiC), gallium nitride (GaN), diamond, or the like.
  • SiC silicon carbide
  • GaN gallium nitride
  • Patent Document 1 A silicon (Si) single crystal is widely used as a material for a semiconductor element.
  • SiC silicon carbide
  • GaN gallium nitride
  • diamond diamond, or the like.
  • These semiconductor elements have lower current loss and higher switching frequency than conventional Si semiconductor elements.
  • the temperature (hereinafter referred to as “operation temperature”) suitable for operating a semiconductor element formed of these heat-resistant materials satisfactorily is higher than the operation temperature (about 15 to 120 ° C.) of the Si semiconductor element. Since it is high (operating temperature of SiC semiconductor element: about 300 to 500 ° C.), it is expected to be used as a power semiconductor element through which a large current flows.
  • such a high heat-resistant semiconductor element has an operating temperature range higher than that of a conventional Si semiconductor element. Therefore, when used in a conventional package, the temperature inside the package is reduced. It is very difficult to set the operating temperature. Therefore, there is a need for a new package that can be easily set in a temperature range that allows a highly heat-resistant semiconductor element to function well.
  • An element mounting substrate is a support having an element mounting portion for mounting a power semiconductor element on one main surface, and is spaced apart from the mounting surface in the thickness direction. And a support having a plurality of pillars arranged at intervals, and a heat storage region provided between the pillars and having a thermal conductivity lower than that of the support.
  • An element mounting substrate includes a base bonded to a lower surface of the support, and the support has a plurality of pores formed therein.
  • An element storage package includes the element mounting substrate, a frame body that accommodates the element mounting substrate therein and surrounds the power semiconductor element, and the frame.
  • a lid joined to the upper surface of the body.
  • the power semiconductor element can be easily set to a temperature suitable for operation, and the power semiconductor element can be satisfactorily functioned. .
  • FIG. 1 is a cross-sectional view showing an example of an element storage package according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an example of the element storage package.
  • FIG. 3 is an exploded perspective view showing a support in the element storage package.
  • FIG. 4 is a cross-sectional view showing an example of the element storage package when a notch is formed in the base between the pillars.
  • FIG. 5 is an exploded perspective view showing a support according to the first modification.
  • FIG. 6 is an exploded perspective view showing a support according to the second modification.
  • FIG. 7 is an exploded perspective view showing a support according to the third modification.
  • FIG. 8 is a cross-sectional view illustrating an example of an element storage package according to the fourth modification.
  • FIG. 1 is a cross-sectional view showing an example of an element storage package according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an example of the element storage package.
  • FIG. 3 is an exploded
  • FIG. 9 is a cross-sectional view illustrating an example of an element storage package according to the fifth modification.
  • FIG. 10 is a cross-sectional view illustrating an example of an element storage package according to the sixth modification.
  • FIG. 11 is a cross-sectional view showing an example of an element storage package according to Modification 7.
  • the element storage package 1 includes a base body 2, a support body 3, a power semiconductor element 4, a frame body 5, a power supply terminal 6, and a lid body 7. I have.
  • illustration of the cover body 7 is abbreviate
  • the support body 3 and the power semiconductor element 4 are an embodiment of the element mounting substrate according to the present invention.
  • the base 2 is formed of, for example, a ceramic material, a metal material, a glass material, or a high heat resistant resin material.
  • the ceramic material is, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide (SiC) sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a glass ceramic.
  • the metal material is, for example, an Fe-based alloy, oxygen-free copper, SUS, or the like.
  • the glass material is, for example, borosilicate glass or quartz glass.
  • the high heat-resistant resin material is, for example, polyimide.
  • the support 3 is bonded to the upper surface of the base 2.
  • the power semiconductor element 4 is bonded to the upper surface of the support 3 (specifically, the main surface of an element mounting portion 31 described later).
  • the power semiconductor element 4 is a SiC semiconductor element, but is not limited thereto, and may be a semiconductor element using silicon, gallium nitride, diamond, or the like. That is, the type of the power semiconductor element 4 according to the present invention is not particularly limited.
  • the general power semiconductor element 4 is normally set to an operating temperature range of, for example, 200 ° C. or more and 500 ° C. or less.
  • the support body 3 has a function of supporting the power semiconductor element 4 and radiating the heat generated from the power semiconductor element 4 to the outside while insulating the heat.
  • the support body 3 is formed from a ceramic material or a metal material, for example.
  • the ceramic material is, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a glass ceramic.
  • the metal material is, for example, a copper-tungsten composite material, a copper-molybdenum composite material, or copper.
  • the support 3 includes an element mounting portion 31 having a column portion 32.
  • the element mounting portion 31 is a member on which the power semiconductor element 4 is mounted on the main surface (one surface) 31a. That is, the power semiconductor element 4 is mounted on the main surface 31 a of the element mounting portion 31.
  • the heat generated from the power semiconductor element 4 can be diffused by the flat element mounting portion 31.
  • the column part 32 protrudes from the back surface (the other surface) 31b of the element mounting part 31, and a plurality of the column parts 32 are provided.
  • the base body 2 is bonded to the lower surfaces 32 a of the plurality of column portions 32.
  • the interval between the pillar portions 32, the length of the pillar portions 32, the number of the pillar portions 32, and the like are arbitrarily set as appropriate depending on the type of the power semiconductor element 4 and the usage situation.
  • a space P1 is provided between the pillar portions 32.
  • the thermal conductivity of the column part 32 is set to, for example, 1 W / (m ⁇ K) or more and 400 W / (m ⁇ K).
  • the bonding material between the lower surface 32a of the pillar portion 32 and the base body 2 reduces the amount of heat transferred from the pillar portion 32 toward the base body 2 so that the power semiconductor element 4 falls within the operating temperature range.
  • a material such as silver-copper solder, gold-germanium solder, ceramic adhesive or high heat-resistant resin adhesive is used.
  • the heat generated by the power semiconductor element 4 Much of the heat is well released from the upper side of the support 3 to the base body 2 through the lower column part 32, but a part of the heat is generated by the support 3. The heat is transferred from above into the space P1, and the heat tends to flow into the space P1. Therefore, in the region near the power semiconductor element 4, it is possible to prevent the power semiconductor element 4 from becoming excessively high by lowering the temperature of the support 3. Further, in a region separated from the power semiconductor element 4, that is, in the vicinity of the space P ⁇ b> 1 between the pillar portions 32, the heat generated by the power semiconductor element 4 can be favorably stored, and the inside of the package can be stored. Further, it is possible to satisfactorily suppress the temperature of the substrate from being excessively lowered, and to favorably suppress the operation of other electronic components arranged around the package due to the heat released from the package.
  • Such an element storage package is used as a part of various electronic devices such as an inverter of a home appliance and a power conversion device used in a power plant / substation.
  • the frame 5 is provided on the upper surface of the base 2 so as to surround the support 3 and the power semiconductor element 4.
  • the frame 5 is formed of, for example, a ceramic material, a metal material, a glass material, or a high heat resistant resin material.
  • the frame body 5 may be formed integrally with the base body 2 or may be formed separately from the base body 2. When the frame body 5 is formed separately from the base body 2, the frame body 5 and the base body 2 are bonded via a bonding material such as solder or brazing material, for example.
  • the power supply terminal 6 is a terminal for supplying power to the power semiconductor element 4. For this reason, the power supply terminal 6 is electrically connected to the power semiconductor element 4 via the wire (bonding wire) W.
  • the lid body 7 is joined to the upper surface of the frame body 5. That is, the lid body 7 is configured so that the housing space in which the power semiconductor element 4 formed by the frame body 5 is housed is sealed in, for example, an air atmosphere, an inert gas atmosphere, or a vacuum state. It is joined to the upper surface via a joining material such as solder or brazing material.
  • the heat generated from the power semiconductor element 4 can be insulated with a simple configuration, It can dissipate heat.
  • the element mounting substrate according to the present embodiment and the element storage package 1 using the same effectively utilize heat generated from the power semiconductor element within the operating temperature range of the power semiconductor element. There is an effect that can be.
  • the temperature of the power semiconductor element 4 may exceed the operating temperature depending on the type and usage of the power semiconductor element 4.
  • the notch portion 8 is formed in the base 2 between the column portions 32. If it does in this way, it will become easy to escape to the exterior from the base
  • the heat generated from the power semiconductor element 4 can be dissipated while being insulated with a simple configuration.
  • the depth of the notch 8, the number of the notches 8, and the like are arbitrarily set as appropriate depending on the type of the power semiconductor element 4, the usage situation, and the like.
  • the present invention is not limited to this. That is, the number of power semiconductor elements 4 housed in the element housing package 1 is arbitrary. That is, a plurality of support bodies 3 and a plurality of power semiconductor elements 4 mounted on each of the plurality of support bodies 3 may be stored in the element storage package 1. In addition, one support 3 and a plurality of power semiconductor elements 4 mounted on the support 3 may be stored in the element storage package 1.
  • the support 3 a according to Modification 1 includes an element mounting portion 31, a column portion 32, and a bottom plate 33.
  • the element mounting portion 31 is a member on which the power semiconductor element 4 is mounted on the main surface 31a.
  • the column part 32 protrudes from the back surface 31b of the element mounting part 31, and a plurality of pillar parts 32 are provided.
  • the bottom plate 33 is connected to the lower surfaces 32 a of the plurality of column portions 32.
  • the base 2 is joined to the bottom plate 33.
  • the element mounting substrate according to the modified example 1 and the element storage package 1a using the same As described above, according to the element mounting substrate according to the modified example 1 and the element storage package 1a using the same, the lower surface 32a of the plurality of column portions 32 and the bottom plate 33 are connected, Since the base 2 is bonded, heat generated from the power semiconductor element 4 is not directly transmitted to the base 2. For this reason, the heat generated from the power semiconductor element 4 is likely to be trapped in the space P1 between the column parts 32 (that is, between the element mounting part 31 and the bottom plate 33), as compared with the above-described embodiment. In addition, according to the element mounting substrate according to the first modification and the element storage package 1a using the same, since the plurality of pillar portions 32 are provided, the heat generated from the power semiconductor element 4 is transferred to the plurality of pillar portions 32.
  • Heat can be radiated from the side surface 32b of the column part 32. Further, the heat generated from the power semiconductor element 4 can be dissipated from the base 2 joined to the bottom plate 33. As described above, according to the element mounting substrate according to the modified example 1 and the element storage package 1a using the element mounting board, the heat generated from the power semiconductor element 4 is further insulated as compared with the above-described embodiment. In addition, heat can be dissipated to some extent.
  • Modification 2 In the first modification described above, as shown in FIG. 5, a flat element mounting portion 31 on which the semiconductor element 4 is mounted on the main surface 31 a and a plurality of column portions 32 protruding from the back surface 31 b of the element mounting portion 31.
  • the element mounting substrate including the bottom plate 33 connected to the lower surfaces 32a of the plurality of column portions 32 and the base 2 joined to the bottom plate 33 has been described.
  • the heat generated from the power semiconductor element 4 may be radiated too much depending on the type and usage of the power semiconductor element 4. Therefore, in the element mounting substrate 1b according to the modified example 2, as shown in FIG.
  • the support 3b is connected to the back surface 31b of the element mounting portion 31, and the surrounding portion is provided so as to surround the plurality of column portions 32. It has been.
  • the side plate 34 will be described as an example of the surrounding portion.
  • FIG. 6 configurations having the same functions as those in FIG. 3 are given the same reference numerals, and detailed descriptions thereof are omitted.
  • the support 3 b according to Modification 2 includes an element mounting portion 31, a column portion 32, and a side plate 34.
  • the element mounting portion 31 is a member on which the power semiconductor element 4 is mounted on the main surface 31a.
  • the column part 32 protrudes from the back surface 31b of the element mounting part 31, and a plurality of pillar parts 32 are provided.
  • the side plate 34 is connected to the back surface 31 b of the element mounting portion 31 and is provided so as to surround the plurality of column portions 32.
  • the base body 2 is bonded to the lower surfaces 32 a of the plurality of column portions 32 and the lower surfaces 34 a of the side plates 34.
  • a face plate 34 is provided.
  • the heat generated from the power semiconductor element 4 is more likely to be trapped in the space P1 between the pillar portions 32 (that is, between the element mounting portion 31 and the base 2) as compared with the first modification.
  • the heat generated from the power semiconductor element 4 can be radiated from the side plate 34 and the base 2.
  • the heat generated from the power semiconductor element 4 is further insulated as compared with the first modification.
  • heat can be dissipated to some extent.
  • the support 3c includes the bottom plate 36 connected to the lower surfaces 32a of the plurality of column portions 32 and the lower surfaces 35a of the side plates 35, as shown in FIG. An example will be described.
  • FIG. 7 configurations having the same functions as those in FIG. 3 are given the same reference numerals, and detailed descriptions thereof are omitted.
  • the support 3 c according to the modification 3 includes an element mounting portion 31, a column portion 32, a side plate 35, and a bottom plate 36.
  • the element mounting portion 31 is a member on which the power semiconductor element 4 is mounted on the main surface 31a.
  • the column part 32 protrudes from the back surface 31b of the element mounting part 31, and a plurality of pillar parts 32 are provided.
  • the side plate 35 is connected to the back surface 31 b of the element mounting portion 31 and is provided so as to surround the plurality of column portions 32.
  • the bottom plate 36 is connected to the lower surfaces 32 a of the plurality of column portions 32 and the lower surfaces 35 a of the side plates 35.
  • the base 2 is joined to the bottom plate 36.
  • the lower surfaces 32a of the plurality of column portions 32, the lower surfaces 35a of the side plates 35, and the bottom plate 36 are connected.
  • the bottom plate 36 and the base 2 are joined, heat generated from the power semiconductor element 4 is not directly transmitted to the base 2.
  • the side plate 35 is provided so as to be connected to the back surface 31b of the element mounting portion 31 and surround the plurality of column portions 32, the heat generated from the power semiconductor element 4 is compared with that of the second modification. As a result, the space P1 between the column portions 32 (that is, between the element mounting portion 31 and the bottom plate 36) is easily trapped.
  • the heat generated from the power semiconductor element 4 can be radiated from the side plate 35 and the base 2.
  • the heat generated from the semiconductor element 4 can be further insulated as compared with the second modification.
  • heat can be dissipated to some extent.
  • the element storage package 1 d according to the fourth modification includes a support 3 d instead of the support 3 illustrated in FIG. 1.
  • the same reference numerals are given to configurations having the same functions as those in FIG. 3, and detailed descriptions thereof are omitted.
  • the element mounting substrate 1d according to the modification 4 includes a support 3d on which the power semiconductor element 4 is mounted. Further, the base body 2 according to the modified example 4 is joined to the lower surface of the support 3d. Furthermore, a plurality of pores B are formed in the support 3d.
  • the support body 3d is formed from a ceramic material, for example, the plurality of pores B inside the support body 3d are formed as follows, for example. That is, a plurality of resin beads are previously mixed with the ceramic material. Then, the ceramic beads are fired at a predetermined temperature together with the resin beads to decompose the resin beads.
  • the location where the resin bead existed will become the pore B, and the several pore B will be formed in the inside of the support body 3d.
  • the plurality of pores B are formed inside the support 3d.
  • the generated heat is easily trapped in the plurality of pores B formed inside the support 3d.
  • the heat generated from the power semiconductor element 4 is radiated from the base body 2 bonded to the lower surface of the support 3d. can do.
  • the heat generated from the power semiconductor element 4 can be dissipated with a simple configuration while insulating heat. can do.
  • the porosity of the plurality of pores B formed inside the support 3d increases as it goes from the power semiconductor element 4 side to the base 2 side in the support 3d. It is preferable. That is, the higher the porosity, the lower the heat transfer characteristic (the more difficult it is to transfer heat). Therefore, if the porosity of the support 3d increases from the power semiconductor element 4 side toward the base 2 side, the heat generated from the power semiconductor element 4 is transferred to the support 3d on the power semiconductor element 4 side. It is possible to cover not the pores B but the pores B of the support 3d on the base 2 side.
  • the heat can be stored in the pores B of the support 3d on the base 2 side. It becomes possible. Thereby, the possibility that the power semiconductor element 4 exceeds the operating temperature can be reduced.
  • Modification 5 In the above-described embodiment and Modification Examples 1 to 4, the example in which only the support bodies 3, 3 a to 3 d and the power semiconductor element 4 are stored in the element storage packages 1, 1 a to 1 d has been described. However, as shown in FIG. 9, together with the support 3 and the power semiconductor element 4, a pedestal 11 bonded to the upper surface of the base 2 and an electronic component mounted on the upper surface of the pedestal 11 in the element housing package 1 e. 12 may be further accommodated. That is, the frame 5 is provided on the upper surface of the base 2 so as to surround the power semiconductor element 4 and the electronic component 12.
  • the electronic component 12 is, for example, a resistor, a piezoelectric element, a crystal resonator, or a ceramic oscillator.
  • both the power semiconductor element 4 and the electronic component 12 can be stored in the element storage package 1e.
  • a semiconductor element for example, a semiconductor element made of SiC, a semiconductor element made of Si, gallium nitride, diamond, or the like
  • SiC silicon carbide
  • Si silicon carbide
  • gallium nitride silicon carbide
  • diamond silicon carbide
  • FIG. 9 illustrates the case where the support housed in the element housing package 1e is the support body 3 (see FIG. 3) described in the above embodiment
  • the present invention is not limited to this. That is, the support body accommodated in the element storage package 1e is the support body 3a according to the first modification example (see FIG. 5), the support body 3b according to the second modification example (see FIG. 6), and the support according to the third modification example.
  • the support body 3d (refer FIG. 8) which concerns on the body 3c (refer FIG. 7) or the modification 4 may be sufficient.
  • the support 3b according to the second modification or the support 3c according to the third modification are highly heat-insulating support so that the electronic component 12 is not affected by the heat generated from the power semiconductor element 4.
  • the present invention is not limited to this. That is, the number of electronic components 12 housed in the element housing package 1e is arbitrary.
  • Modification 6 In FIG. 9 in Modification 5 described above, an example in which the base 11 is a rectangular parallelepiped is illustrated. However, in Modification 5 described above, the heat generated from the power semiconductor element 4 is transmitted to the electronic component 12 via the support 3, the base 2, and the pedestal 11. For this reason, the electronic component 12 is greatly affected by the heat generated from the power semiconductor element 4. Therefore, there is a possibility that the electronic component 12 may fail due to heat generated from the power semiconductor element 4. Therefore, in Modification 6, an example in which the notch portion 14 is formed in the base 2 between the column portions 132 as illustrated in FIG. 10 will be described. Instead of the electronic component 12, a semiconductor element (for example, a semiconductor element made of SiC, a semiconductor element made of Si, gallium nitride, diamond, or the like) may be used.
  • a semiconductor element for example, a semiconductor element made of SiC, a semiconductor element made of Si, gallium nitride, diamond, or the like
  • the pedestal 13 in the element housing package 1 f according to the modified example 6 includes a flat plate-like electronic component mounting portion 131 on which the electronic component 12 is mounted on the main surface (one surface), and an electronic component mounting. And a plurality of pillars 132 protruding from the back surface (the other surface) of the portion 131. Further, the base body 2 is bonded to the lower surfaces of the plurality of column portions 132.
  • the notch portion 14 is formed in the base 2 between the column portions 132.
  • the notch 14 is deeply cut out in the thickness direction of the base 2 as the distance from the power semiconductor element 4 increases. In this way, the heat generated from the power semiconductor element 4 can easily escape from the base body 2 below the notch portion 14 to the outside of the element housing package 1f as indicated by arrows (heat paths) shown in FIG. Become. For this reason, according to the element housing package 1 f according to the modification 6, the electronic component 12 can suppress the influence of heat generated from the power semiconductor element 4.
  • the element storage package 1 d according to the modified example 7 is provided with the heat insulating material P ⁇ b> 2 between the pillars instead of the space P ⁇ b> 1 provided between the pillars shown in FIG. 1. It has been.
  • FIG. 11 configurations having the same functions as those in FIG. 3 are given the same reference numerals, and detailed descriptions thereof are omitted.
  • the support body 3 a includes an element mounting portion 31 and a column portion 32.
  • the element mounting portion 31 is a member on which the power semiconductor element 4 is mounted on the main surface 31a.
  • the column part 32 protrudes from the back surface 31b of the element mounting part 31, and a plurality of pillar parts 32 are provided.
  • the bottom plate 33 is connected to the lower surfaces 32 a of the plurality of column portions 32.
  • the base 2 is joined to the bottom plate 33.
  • a heat insulating material P2 is provided between the pillar portions 32.
  • the heat insulating material P2 is made of a material having a lower thermal conductivity than the column portion 32.
  • the heat insulating material P2 is made of, for example, a material such as glass or highly heat-resistant resin, and is made of a fiber or formed with bubbles inside.
  • the thermal conductivity of the heat insulating material P2 is set to, for example, 0.02 W / (m ⁇ K) or more and 2 W / (m ⁇ K) or less.
  • the heat insulating material P2 is provided between the plurality of column portions 32, so that the power semiconductor Heat generated from the element 4 is not directly transmitted to the base 2. For this reason, the heat generated from the power semiconductor element 4 is more likely to be trapped in the heat insulating material P2 between the pillar portions 32 (that is, between the element mounting portion 31 and the bottom plate 33) as compared with the above-described embodiment.
  • the heat generated from the power semiconductor element 4 is further increased compared to the above-described embodiment. It can be kept warm in the storage package 1a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】電力用半導体素子を動作に適した温度に容易に設定でき、電力用半導体素子を良好に機能させることが可能となる素子搭載基板、およびこれを用いた素子収納用パッケージを提供する。 【解決手段】素子搭載用基板は、一方主面31aに電力用半導体素子4を装着するための素子搭載部31を有する支持体3であって、素子搭載部31に対して厚み方向に離間させて設けられ、互いに間隔を空けて配置された複数の柱部32を有する支持体3と、柱部32間に設けられ、支持体3よりも熱伝導率が低い蓄熱領域と、を備える。

Description

素子搭載用基板、およびこれを用いた素子収納用パッケージ
 本発明は、電力用半導体素子を装着するための素子搭載用基板、およびこれを用いた素子収納用パッケージに関する。
 半導体素子の材料として、珪素(Si)の単結晶が広く使用されているが、近年、炭化珪素(SiC)、窒化ガリウム(GaN)、ダイヤモンド等の耐熱性に優れた半導体材料を用いた半導体素子が開発されている(例えば、特許文献1参照)。これらの半導体素子は、従来のSi製半導体素子に比べて、通電損失が小さく、スイッチング周波数も高い。また、これらの耐熱性材料で形成された半導体素子を良好に動作させるために適した温度(以下、「動作温度」という)は、Si製半導体素子の動作温度(15~120℃程度)よりも高い(SiC製半導体素子の動作温度:300~500℃程度)であることから、大電流が流れる電力用半導体素子として利用されることが期待されている。
 しかしながら、このような高耐熱性の半導体素子は、その動作温度領域が従来のSi製半導体素子の動作温度領域よりも高いため、従来のパッケージに収容して使用すると、パッケージ内の温度を半導体素子の動作温度に設定することが非常に困難である。それ故、高耐熱性の半導体素子を良好に機能させることができるような温度範囲に容易に設定可能な新たなパッケージが求められている。
 本発明の一実施形態に係る素子搭載用基板は、一方主面に電力用半導体素子を装着するための素子搭載部を有する支持体であって、前記搭載面に対して厚み方向に離間させて設けられ、互いに間隔を空けて配置された複数の柱部を有する支持体と、前記柱部間に設けられ、前記支持体よりも熱伝導率が低い蓄熱領域と、を備える。
 本発明の一実施形態に係る素子搭載用基板は、前記支持体の下面と接合された基体とを備え、前記支持体には、内部に複数の気孔が形成されている。
 本発明の一実施形態に係る素子収納用パッケージは、上記素子搭載用基板と、前記素子搭載用基板を内部に収容し、かつ前記電力用半導体素子を囲むようにして設けられた枠体と、前記枠体の上面に接合された蓋体とを備える。
 上述した素子搭載用基板、および素子収納用パッケージによれば、電力用半導体素子を動作に適した温度に容易に設定でき、電力用半導体素子を良好に機能させることが可能となるという効果を奏する。
図1は、本発明の一実施形態に係る素子収納用パッケージの一例を示す断面図である。 図2は、上記素子収納用パッケージの一例を示す斜視図である。 図3は、上記素子収納用パッケージにおける支持体を示した分解斜視図である。 図4は、柱部間における基体に切欠部が形成された場合における、上記素子収納用パッケージの一例を示す断面図である。 図5は、変形例1に係る支持体を示した分解斜視図である。 図6は、変形例2に係る支持体を示した分解斜視図である。 図7は、変形例3に係る支持体を示した分解斜視図である。 図8は、変形例4に係る素子収納用パッケージの一例を示す断面図である。 図9は、変形例5に係る素子収納用パッケージの一例を示す断面図である。 図10は、変形例6に係る素子収納用パッケージの一例を示す断面図である。 図11は、変形例7に係る素子収納用パッケージの一例を示す断面図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 図1および図2に示すように、本実施形態に係る素子収納用パッケージ1は、基体2、支持体3、電力用半導体素子4、枠体5、電力供給用端子6、および蓋体7を備えている。なお、図2においては、蓋体7の図示を省略している。ここで、支持体3および電力用半導体素子4が、本発明に係る素子搭載用基板の一実施形態となる。
 基体2は、例えば、セラミック材料、金属材料、ガラス材料又は高耐熱の樹脂材料等から形成される。セラミック材料は、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素(SiC)質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体又はガラスセラミックス等である。また、金属材料は、例えば、Fe系合金、無酸素銅又はSUS等である。また、ガラス材料は、例えば、ホウケイ酸ガラス又は石英ガラス等である。さらに、高耐熱の樹脂材料は、例えば、ポリイミド等である。
 支持体3は、基体2の上面に接合されている。また、支持体3の上面(具体的には、後述する素子搭載部31の主面)には、電力用半導体素子4が接合されている。ここで、本実施形態においては、電力用半導体素子4は、SiC製半導体素子であるが、これに限らず、珪素、窒化ガリウム又はダイヤモンド等を用いた半導体素子であってもよい。すなわち、本発明に係る電力用半導体素子4の種類については、特に限定されるものではない。なお、一般的な電力用半導体素子4は、通常、動作温度の範囲が、例えば200℃以上500℃以下に設定されている。
 ここで、本実施形態に係る支持体3は、電力用半導体素子4を支持するとともに、電力用半導体素子4から発せられる熱を、断熱しつつも、外部へ放熱する機能を有している。ここで、支持体3は、例えば、セラミック材料又は金属材料等から形成される。セラミック材料は、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体又はガラスセラミックス等である。また、金属材料は、例えば、銅-タングステン複合材、銅-モリブデン複合材又は銅等である。
 図3に示すように、支持体3は、柱部32を有する素子搭載部31を含んでいる。素子搭載部31は、主面(一方の面)31aに電力用半導体素子4が装着される部材である。すなわち、素子搭載部31の主面31aには電力用半導体素子4が装着される。これにより、電力用半導体素子4から発せられる熱を、平板状の素子搭載部31によって拡散させることができる。また、柱部32は、素子搭載部31の裏面(他方の面)31bから突出されており、複数設けられている。さらに、複数の柱部32の下面32aには基体2が接合される。なお、柱部32間の間隔、柱部32の長さ、柱部32の数等については、電力用半導体素子4の種類や使用状況等によって適宜任意に設定される。そして、柱部32同士の間には、空間P1が設けられる。
 柱部32は、空間P1よりも熱伝導率が大きいため、隣接する柱部32間には柱部32よりも熱伝導率が低い蓄熱領域が存在することになる。なお、柱部32の熱伝導率は、例えば、1W/(m・K)以上400W/(m・K)に設定されている。
 また、柱部32の下面32aと基体2との接合材は、柱部32から基体2に向かって伝わる熱量を低減して、電力用半導体素子4を動作温度の範囲にするために、例えば、銀-銅ロウ、金-ゲルマニウム半田、セラミック接着剤又は高耐熱の樹脂接着剤等の材料を用いる。
 電力用半導体素子4が発する熱のうち、多くの熱は支持体3の上方から下方の柱部32を介して良好に基体2に良好に放出されるものの、一部の熱は支持体3の上方より空間P1内に伝達し、該熱が空間P1内に篭る傾向にある。それ故、電力用半導体素子4の近傍領域においては、支持体3の温度を低下させることで電力用半導体素子4が過度に高温になることを防止することができる。また、電力用半導体素子4から離間した領域、すなわち、柱部32間の空間P1の近傍領域においては、電力用半導体素子4が発した熱を利用して良好に蓄熱することができ、パッケージ内の温度が低下しすぎることが良好に抑制される上、パッケージから放出される熱によってパッケージ周囲に配置される他の電子部品の動作に影響を及ぼすことが良好に抑制される。
 なお、このような素子収納用パッケージは、例えば、家電製品のインバータや発電所・変電所において用いられる電力変換装置等の各種の電子機器の部品として使用される。
 枠体5は、基体2の上面であって、かつ支持体3および電力用半導体素子4を囲むようにして設けられている。ここで、枠体5は、例えば、セラミック材料、金属材料、ガラス材料又は高耐熱の樹脂材料等から形成される。なお、枠体5は、基体2と一体的に形成されていてもよいし、基体2と別個独立に形成されていてもよい。枠体5が基体2と別個独立に形成された場合、枠体5と基体2とは、例えば、半田やロウ材等の接合材を介して接合される。
 電力供給用端子6は、電力用半導体素子4に電力を供給するための端子である。このため、電力供給用端子6は、ワイヤ(ボンディングワイヤ)Wを介して電力用半導体素子4と電気的に接続される。
 蓋体7は、枠体5の上面に接合されている。すなわち、蓋体7は、枠体5によって形成される電力用半導体素子4が収容された収容空間を、例えば、大気雰囲気、不活性ガス雰囲気、あるいは真空状態で密閉するように、枠体5の上面に、半田やロウ材等の接合材を介して接合される。
 以上のように、本実施形態に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1によれば、簡易な構成で、電力用半導体素子4から発せられる熱を、断熱しつつも、放熱することができる。その結果、本実施形態に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1は、電力用半導体素子から発せられる熱を、電力用半導体素子の動作温度の範囲内で有効に活用することができるという効果を奏する。
 なお、上記の構成であっても、電力用半導体素子4の種類や使用状況等によっては、電力用半導体素子4の温度が、動作温度を超えてしまう虞がある。このような場合には、図4に示すように、柱部32間における基体2に切欠部8を形成する。このようにすると、柱部32間の空間P1にこもった熱が、切欠部8が形成された基体2から外部へ逃げ易くなる。これにより、電力用半導体素子4から発せられる熱の温度を下げることができる。すなわち、切欠部8が形成された基体2の厚みは、切欠部8が形成されていない基体2の厚みと比較して、薄くなっているからである。つまり、図4に示す構成であっても、簡易な構成で、電力用半導体素子4から発せられる熱を、断熱しつつも、放熱することができる。なお、切欠部8の深さ、切欠部8の数等については、電力用半導体素子4の種類や使用状況等によって適宜任意に設定される。
 また、上記では、素子収納用パッケージ1内に収納される電力用半導体素子4が1つである場合について説明したが、これに限定されない。すなわち、素子収納用パッケージ1内に収納される電力用半導体素子4の数については、任意である。つまり、素子収納用パッケージ1内に、複数の支持体3と、複数の支持体3のそれぞれに装着された複数の電力用半導体素子4とが収納されていてもよい。また、素子収納用パッケージ1内に、1つの支持体3と、この支持体3に装着された複数の電力用半導体素子4とが収納されていてもよい。
 なお、上述した実施形態は、本発明の実施形態の一具体例を示すものであり、種々の変更が可能である。以下、いくつかの主な変形例を示す。
 (変形例1)
 上述の実施形態では、図3に示すように、主面31aに電力用半導体素子4が装着される素子搭載部31と、素子搭載部31の裏面31bから突出された複数の柱部32と、複数の柱部32の下面32aと接合された基体2とを備えた素子搭載用基板について説明した。しかしながら、このような構成であっても、電力用半導体素子4の種類や使用状況等によっては、電力用半導体素子4から発せられる熱を、放熱し過ぎる場合がある。そこで、変形例1に係る素子搭載用基板1aでは、図5に示すように、支持体3aに、複数の柱部32の下面32aと接続された底板33が含まれている例について説明する。なお、図5において、図3と同様の機能を有する構成については、同じ参照符号を付記し、その詳細な説明を省略する。
 図5に示すように、変形例1に係る支持体3aは、素子搭載部31、柱部32、および底板33を備えている。素子搭載部31は、主面31aに電力用半導体素子4が装着される部材である。また、柱部32は、素子搭載部31の裏面31bから突出されており、複数設けられている。また、底板33は、複数の柱部32の下面32aと接続されている。さらに、底板33には基体2が接合される。
 このように、変形例1に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1aによれば、複数の柱部32の下面32aと底板33とが接続されているとともに、底板33と基体2とが接合されているので、電力用半導体素子4から発せられる熱が、基体2に直接伝わることがない。このため、電力用半導体素子4から発せられる熱が、上述の実施形態と比較して、柱部32間(すなわち、素子搭載部31と底板33との間)の空間P1にこもり易くなる。また、変形例1に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1aによれば、複数の柱部32を備えているので、電力用半導体素子4から発せられる熱を、複数の柱部32の側面32bから放熱することができる。また、電力用半導体素子4から発せられる熱を、底板33と接合された基体2からも放熱することができる。このように、変形例1に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1aによれば、電力用半導体素子4から発せられる熱を、上述の実施形態と比較して、より断熱することができ、しかも、ある程度は放熱することができる。
 (変形例2)
 上述の変形例1では、図5に示すように、主面31aに半導体素子4が装着される平板状の素子搭載部31と、素子搭載部31の裏面31bから突出された複数の柱部32と、複数の柱部32の下面32aと接続された底板33と、底板33と接合された基体2とを備えた素子搭載用基板について説明した。しかしながら、このような構成であっても、電力用半導体素子4の種類や使用状況等によっては、電力用半導体素子4から発せられる熱を、放熱し過ぎる場合がある。そこで、変形例2に係る素子搭載用基板1bでは、図6に示すように、支持体3bに、素子搭載部31の裏面31bに接続され、かつ複数の柱部32を囲むようにして囲繞部が設けられている。ここでは、囲繞部として、側面板34を例に説明する。なお、図6において、図3と同様の機能を有する構成については、同じ参照符号を付記し、その詳細な説明を省略する。
 図6に示すように、変形例2に係る支持体3bは、素子搭載部31、柱部32、および側面板34を備えている。素子搭載部31は、主面31aに電力用半導体素子4が装着される部材である。また、柱部32は、素子搭載部31の裏面31bから突出されており、複数設けられている。また、側面板34は、素子搭載部31の裏面31bに接続され、かつ複数の柱部32を囲むようにして設けられている。さらに、複数の柱部32の下面32aおよび側面板34の下面34aには基体2が接合される。
 つまり、変形例2に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1bによれば、素子搭載部31の裏面31bに接続され、かつ複数の柱部32を囲むようにして設けられた側面板34を備えている。このため、電力用半導体素子4から発せられる熱が、変形例1と比較して、柱部32間(すなわち、素子搭載部31と基体2との間)の空間P1にこもり易くなる。また、変形例2に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1bによれば、電力用半導体素子4から発せられる熱を、側面板34および基体2から放熱することができる。このように、変形例2に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1bによれば、電力用半導体素子4から発せられる熱を、変形例1と比較して、より断熱することができ、しかも、ある程度は放熱することができる。
 (変形例3)
 上述の変形例2では、図6に示すように、主面31aに電力用半導体素子4が装着される平板状の素子搭載部31と、素子搭載部31の裏面31bから突出された複数の柱部32と、素子搭載部4の裏面31bに接続され、かつ複数の柱部32を囲むようにして設けられた側面板34と、複数の柱部32の下面32aおよび側面板34の下面34aと接合された基体2とを備えた素子搭載用基板について説明した。しかしながら、このような構成であっても、電力用半導体素子4の種類や使用状況等によっては、電力用半導体素子4から発せられる熱を、放熱し過ぎる場合がある。そこで、変形例3に係る素子搭載用基板1cでは、図7に示すように、支持体3cに、複数の柱部32の下面32aおよび側面板35の下面35aと接続された底板36が含まれている例について説明する。なお、図7において、図3と同様の機能を有する構成については、同じ参照符号を付記し、その詳細な説明を省略する。
 図7に示すように、変形例3に係る支持体3cは、素子搭載部31、柱部32、側面板35、および底板36を備えている。素子搭載部31は、主面31aに電力用半導体素子4が装着される部材である。また、柱部32は、素子搭載部31の裏面31bから突出されており、複数設けられている。また、側面板35は、素子搭載部31の裏面31bに接続され、かつ複数の柱部32を囲むようにして設けられている。また、底板36は、複数の柱部32の下面32aおよび側面板35の下面35aと接続されている。さらに、底板36には基体2が接合される。
 つまり、変形例3に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1cによれば、複数の柱部32の下面32aおよび側面板35の下面35aと底板36とが接続されているとともに、底板36と基体2とが接合されているので、電力用半導体素子4から発せられる熱が、基体2に直接伝わることがない。さらに、素子搭載部31の裏面31bに接続され、かつ複数の柱部32を囲むようにして設けられた側面板35を備えているので、電力用半導体素子4から発せられる熱が、変形例2と比較して、柱部32間(すなわち、素子搭載部31と底板36との間)の空間P1にこもり易くなる。また、変形例3に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1cによれば、電力用半導体素子4から発せられる熱を、側面板35および基体2から放熱することができる。このように、変形例3に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1cによれば、半導体素子4から発せられる熱を、変形例2と比較して、より断熱することができ、しかも、ある程度は放熱することもできる。
 (変形例4)
 図8に示すように、変形例4に係る素子収納用パッケージ1dは、図1に示す支持体3の代わりに、支持体3dを備えている。なお、図8において、図3と同様の機能を有する構成については、同じ参照符号を付記し、その詳細な説明を省略する。
 図8に示すように、変形例4に係る素子搭載用基板1dは、上面に電力用半導体素子4が装着される支持体3dを備えている。また、変形例4に係る基体2は、支持体3dの下面と接合されている。さらに、支持体3dには、内部に複数の気孔Bが形成されている。なお、支持体3dが例えばセラミック材料から形成される場合、支持体3dの内部の複数の気孔Bは、例えば、次のようにして形成される。すなわち、複数の樹脂ビーズを、セラミック材料に予め混合しておく。そして、セラミック材料を樹脂ビーズとともに所定の温度で焼成することにより、樹脂ビーズを分解させる。このようにすると、樹脂ビーズが存在していた箇所が気孔Bとなり、支持体3dの内部に複数の気孔Bが形成される。なお、これはあくまで一例であって、支持体3dの内部に気孔Bを形成する方法については、特に限定されない。
 つまり、変形例4に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1dによれば、支持体3dの内部に複数の気孔Bが形成されているので、電力用半導体素子4から発せられる熱が、支持体3dの内部に形成された複数の気孔Bにこもり易くなる。また、変形例4に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1dによれば、電力用半導体素子4から発せられる熱を、支持体3dの下面と接合された基体2から放熱することができる。このように、変形例4に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1dによれば、簡易な構成で、電力用半導体素子4から発せられる熱を、断熱しつつも、放熱することができる。
 ここで、図8に示すように、支持体3dの内部に形成された複数の気孔Bの気孔率は、支持体3dにおける電力用半導体素子4側から基体2側へ向かうに従って、高くなっていることが好ましい。すなわち、気孔率が高ければ高いほど、熱の伝達特性が低く(熱が伝わり難く)なる。このため、支持体3dにおける電力用半導体素子4側から基体2側へ向かうに従って気孔率が高くなっていれば、電力用半導体素子4から発せられる熱を、電力用半導体素子4側の支持体3dの気孔Bではなく、基体2側の支持体3dの気孔Bにこもらせておくことが可能となる。また、他の電子部品から発せられる熱が、基体2を介して支持体3dへ伝わった場合であっても、当該熱を、基体2側の支持体3dの気孔Bにこもらせておくことが可能となる。これにより、電力用半導体素子4が動作温度を超える可能性を低減できる。
 (変形例5)
 上述の実施形態、および変形例1~4では、素子収納用パッケージ1,1a~1d内に、支持体3,3a~3d、および電力用半導体素子4のみを収納する例について説明した。しかしながら、図9に示すように、素子収納用パッケージ1e内に、支持体3および電力用半導体素子4とともに、基体2の上面に接合された台座11と、台座11の上面に装着された電子部品12とをさらに収納してもよい。すなわち、枠体5は、基体2の上面であって、かつ電力用半導体素子4および電子部品12を囲むようにして設けられている。ここで、電子部品12は、例えば、抵抗器、圧電素子、水晶振動子又はセラミック発振子等である。このようにすると、素子収納用パッケージ1e内に、電力用半導体素子4および電子部品12の双方を収納することができる。なお、電子部品12の代わりに、半導体素子(例えば、SiC製半導体素子、Si製半導体素子、窒化ガリウム又はダイヤモンド等を用いた半導体素子)であってもよい。
 なお、図9では、素子収納用パッケージ1e内に収納される支持体が、上述の実施形態で説明した支持体3(図3参照)である場合について図示したが、これに限定されない。すなわち、素子収納用パッケージ1e内に収納される支持体は、変形例1に係る支持体3a(図5参照)、変形例2に係る支持体3b(図6参照)、変形例3に係る支持体3c(図7参照)、または変形例4に係る支持体3d(図8参照)であってもよい。ここで、電力用半導体素子4から発せられる熱の影響を電子部品12に及ぼさないために、断熱性の高い支持体を用いることが好ましい。例えば、変形例2に係る支持体3b、または、変形例3に係る支持体3cである。
 また、上記では、素子収納用パッケージ1e内に収納される電子部品12が1つである場合について説明したが、これに限定されない。すなわち、素子収納用パッケージ1e内に収納される電子部品12の数については、任意である。
 (変形例6)
 上述の変形例5における図9では、台座11が、直方体である例について図示した。しかしながら、上述の変形例5では、電力用半導体素子4から発せられる熱が、支持体3、基体2、および台座11を介して、電子部品12へ伝わることになる。このため、電子部品12は、電力用半導体素子4から発せられる熱の影響を大きく受けることになる。そのため、電力用半導体素子4から発せられる熱によって、電子部品12が故障する可能性がある。そこで、変形例6では、図10に示すように、柱部132間における基体2に切欠部14が形成されている例について説明する。なお、電子部品12の代わりに、半導体素子(例えば、SiC製半導体素子、Si製半導体素子、窒化ガリウム又はダイヤモンド等を用いた半導体素子)であってもよい。
 図10に示すように、変形例6に係る素子収納用パッケージ1fにおける台座13は、主面(一方の面)に電子部品12が装着される平板状の電子部品搭載部131と、電子部品搭載部131の裏面(他方の面)から突出された複数の柱部132とを有している。また、複数の柱部132の下面には基体2が接合される。
 ここで、柱部132間における基体2には切欠部14が形成されている。この切欠部14は、電力用半導体素子4から遠ざかるに従って、基体2の厚み方向に深く切り欠かれている。このようにすると、図10に示す矢印(熱の経路)のように、電力用半導体素子4から発せられる熱は、切欠部14の下方の基体2から、素子収納用パッケージ1fの外部へ逃げ易くなる。このため、変形例6に係る素子収納用パッケージ1fによれば、電子部品12は、電力用半導体素子4から発せられる熱の影響を抑制することがきる。
 (変形例7)
 上述の実施形態では、図3に示すように、主面31aに電力用半導体素子4が装着される素子搭載部31と、素子搭載部31の裏面31bから突出された複数の柱部32と、複数の柱部32の下面32aと接合された基体2とを備えた素子搭載用基板について説明した。しかしながら、このような構成であっても、電力用半導体素子4の種類や使用状況等によっては、電力用半導体素子4から発せられる熱を、放熱し過ぎる場合がある。そこで、図11に示すように、変形例7に係る素子収納用パッケージ1dは、図1に示す柱部同士の間に設けられる空間P1の代わりに、柱部同士の間に保温材料P2が設けられている。なお、図11において、図3と同様の機能を有する構成については、同じ参照符号を付記し、その詳細な説明を省略する。
 図11に示すように、変形例7に係る支持体3aは、素子搭載部31、柱部32を備えている。素子搭載部31は、主面31aに電力用半導体素子4が装着される部材である。また、柱部32は、素子搭載部31の裏面31bから突出されており、複数設けられている。また、底板33は、複数の柱部32の下面32aと接続されている。さらに、底板33には基体2が接合される。また、柱部32同士の間に保温材料P2が設けられている。
 保温材料P2は、柱部32よりも熱伝導率の低い材料からなる。保温材料P2は、例えばガラス、高耐熱の樹脂等の材料からなり、繊維状に加工したり、内部に気泡を形成したものからなる。保温材料P2の熱伝導率は、例えば0.02W/(m・K)以上2W/(m・K)以下に設定されている。
 このように、変形例7に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1aによれば、複数の柱部32同士の間に保温材料P2が設けられているので、電力用半導体素子4から発せられる熱が、基体2に直接伝わることがない。このため、電力用半導体素子4から発せられる熱が、上述の実施形態と比較して、柱部32間(すなわち、素子搭載部31と底板33との間)の保温材料P2にこもり易くなる。このように、変形例1に係る素子搭載用基板、およびこれを用いた素子収納用パッケージ1aによれば、電力用半導体素子4から発せられる熱を、上述の実施形態と比較して、より素子収納用パッケージ1a内に保温することができる。

Claims (8)

  1.  一方主面に電力用半導体素子を装着するための素子搭載部を有する支持体であって、前記搭載面に対して厚み方向に離間させて設けられ、互いに間隔を空けて配置された複数の柱部を有する支持体と、
     前記柱部間に設けられ、前記支持体よりも熱伝導率が低い蓄熱領域と、を備えた素子搭載用基板。
  2.  請求項1に記載の素子搭載用基板であって、
     前記柱部で前記支持体に接合された基体を更に備え、
     前記柱部間における前記基体に切欠部が形成されている素子搭載用基板。
  3.  請求項1又は請求項2に記載の素子搭載用基板であって、
     前記支持体は、前記複数の柱部を囲むようにして設けられた囲繞部を更に有する、素子搭載用基板。
  4.  上面に電力用半導体素子が装着される支持体と、
     前記支持体の下面と接合された基体とを備え、
     前記支持体には、内部に複数の気孔が形成されている、素子搭載用基板。
  5.  請求項4に記載の素子搭載用基板であって、
     前記支持体の内部に形成された複数の気孔の気孔率は、前記支持体における前記電力用半導体素子側から前記基体側へ向かうに従って、高くなっている、素子搭載用基板。
  6.  請求項1乃至請求項5のいずれかに記載の素子搭載用基板であって、
     前記電力用半導体素子は、SiCからなる半導体素子である、素子搭載用基板。
  7.  請求項1乃至請求項6のいずれかに記載の素子搭載用基板と、
     前記素子搭載用基板を内部に収容し、かつ前記電力用半導体素子を囲むようにして設けられた枠体と、
     前記枠体の上面に接合された蓋体とを備えた、素子収納用パッケージ。
  8.  請求項7に記載の素子収納用パッケージであって、
     前記枠体内に、電子部品が装着される台座を更に備えた、素子収納用パッケージ。
PCT/JP2010/050809 2009-01-22 2010-01-22 素子搭載用基板、およびこれを用いた素子収納用パッケージ WO2010084955A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10733562.2A EP2390910A4 (en) 2009-01-22 2010-01-22 COMPONENT MOUNTING CARD, AND COMPONENT MAINTAINING BOX USING THE SAME
CN2010800010272A CN101925998B (zh) 2009-01-22 2010-01-22 元件搭载用基板及利用该基板的元件容纳用封装件
JP2010527686A JP5484338B2 (ja) 2009-01-22 2010-01-22 素子搭載用基板、およびこれを用いた素子収納用パッケージ
US12/865,107 US8837164B2 (en) 2009-01-22 2010-01-22 Substrate for mounting device and package for housing device employing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009011751 2009-01-22
JP2009-011751 2009-01-22
JP2009-105165 2009-04-23
JP2009105165 2009-04-23

Publications (1)

Publication Number Publication Date
WO2010084955A1 true WO2010084955A1 (ja) 2010-07-29

Family

ID=42356005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050809 WO2010084955A1 (ja) 2009-01-22 2010-01-22 素子搭載用基板、およびこれを用いた素子収納用パッケージ

Country Status (5)

Country Link
US (1) US8837164B2 (ja)
EP (1) EP2390910A4 (ja)
JP (1) JP5484338B2 (ja)
CN (1) CN101925998B (ja)
WO (1) WO2010084955A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109208A1 (ja) * 2013-01-11 2014-07-17 三菱電機株式会社 半導体装置
JP2014143292A (ja) * 2013-01-24 2014-08-07 National Institute For Materials Science 密封型窒化物半導体素子及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10015907B2 (en) * 2016-03-23 2018-07-03 Amulaire Thermal Technology, Inc. Heat dissipating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260987A (ja) * 1998-02-11 1999-09-24 Lg Semicon Co Ltd ヒートスプレッドを有するリードフレーム及び同リードフレームを用いた半導体パッケージ
JP2004296726A (ja) * 2003-03-26 2004-10-21 Kyocera Corp 放熱部材および半導体素子収納用パッケージおよび半導体装置
JP2005032881A (ja) * 2003-07-09 2005-02-03 Toyota Industries Corp 電機器システム、電機器モジュールの冷却装置およびその冷却装置用多孔質放熱体
JP2006294890A (ja) * 2005-04-12 2006-10-26 Nissan Motor Co Ltd 半導体装置及びその製造方法
JP2008135511A (ja) * 2006-11-28 2008-06-12 Mitsubishi Materials Corp パワーモジュール用基板及びパワーモジュール

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354720A (en) * 1980-10-20 1982-10-19 Amp Incorporated Connector assembly having improved latching means
US4620216A (en) * 1983-04-29 1986-10-28 International Business Machines Corporation Unitary slotted heat sink for semiconductor packages
US4965227A (en) * 1987-05-21 1990-10-23 Olin Corporation Process for manufacturing plastic pin grid arrays and the product produced thereby
US5144412A (en) * 1987-02-19 1992-09-01 Olin Corporation Process for manufacturing plastic pin grid arrays and the product produced thereby
EP0434264B1 (en) * 1989-12-22 1994-10-12 Westinghouse Electric Corporation Package for power semiconductor components
US5148265A (en) * 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
US5158912A (en) * 1991-04-09 1992-10-27 Digital Equipment Corporation Integral heatsink semiconductor package
US5206460A (en) * 1991-07-24 1993-04-27 Yang Mu K Oscillator package
JPH0567658A (ja) * 1991-09-09 1993-03-19 Advantest Corp Icキヤリア
US5736787A (en) * 1996-07-11 1998-04-07 Larimer; William R. Transistor package structured to provide heat dissipation enabling use of silicon carbide transistors and other high power semiconductor devices
JPH11111898A (ja) 1997-10-06 1999-04-23 Zojirushi Vacuum Bottle Co 半導体素子の冷却装置
US5930666A (en) * 1997-10-09 1999-07-27 Astralux, Incorporated Method and apparatus for packaging high temperature solid state electronic devices
KR100506534B1 (ko) * 2000-01-31 2005-08-05 긴세키 가부시키가이샤 압전진동자를 사용한 발진회로용 용기, 그 제조방법 및발진기
US6683368B1 (en) * 2000-06-09 2004-01-27 National Semiconductor Corporation Lead frame design for chip scale package
US6292367B1 (en) * 2000-06-22 2001-09-18 International Business Machines Corporation Thermally efficient semiconductor chip
US6541310B1 (en) * 2000-07-24 2003-04-01 Siliconware Precision Industries Co., Ltd. Method of fabricating a thin and fine ball-grid array package with embedded heat spreader
US6894903B2 (en) * 2001-02-28 2005-05-17 Sumitomo Electric Industries, Ltd. Optical data link
US6921971B2 (en) 2003-01-15 2005-07-26 Kyocera Corporation Heat releasing member, package for accommodating semiconductor element and semiconductor device
US20050110168A1 (en) * 2003-11-20 2005-05-26 Texas Instruments Incorporated Low coefficient of thermal expansion (CTE) semiconductor packaging materials
US7196907B2 (en) * 2004-02-09 2007-03-27 Wen-Chun Zheng Elasto-plastic sockets for Land or Ball Grid Array packages and subsystem assembly
JP4568202B2 (ja) * 2005-09-29 2010-10-27 Okiセミコンダクタ株式会社 半導体装置
JP4811936B2 (ja) * 2006-08-02 2011-11-09 オムロンオートモーティブエレクトロニクス株式会社 電子機器の製造方法、電子機器
JP5000660B2 (ja) * 2006-09-27 2012-08-15 京セラ株式会社 コンデンサ装置、電子部品、フィルタ装置、通信装置、およびコンデンサ装置の製造方法
US20080130935A1 (en) * 2006-09-27 2008-06-05 Yamaha Corporation Microphone package
JP4385058B2 (ja) * 2007-05-07 2009-12-16 三菱電機株式会社 電子制御装置
US20100019379A1 (en) * 2008-07-24 2010-01-28 Broadcom Corporation External heat sink for bare-die flip chip packages
US8791471B2 (en) * 2008-11-07 2014-07-29 Cree Hong Kong Limited Multi-chip light emitting diode modules
US8368112B2 (en) * 2009-01-14 2013-02-05 Cree Huizhou Opto Limited Aligned multiple emitter package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260987A (ja) * 1998-02-11 1999-09-24 Lg Semicon Co Ltd ヒートスプレッドを有するリードフレーム及び同リードフレームを用いた半導体パッケージ
JP2004296726A (ja) * 2003-03-26 2004-10-21 Kyocera Corp 放熱部材および半導体素子収納用パッケージおよび半導体装置
JP2005032881A (ja) * 2003-07-09 2005-02-03 Toyota Industries Corp 電機器システム、電機器モジュールの冷却装置およびその冷却装置用多孔質放熱体
JP2006294890A (ja) * 2005-04-12 2006-10-26 Nissan Motor Co Ltd 半導体装置及びその製造方法
JP2008135511A (ja) * 2006-11-28 2008-06-12 Mitsubishi Materials Corp パワーモジュール用基板及びパワーモジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2390910A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109208A1 (ja) * 2013-01-11 2014-07-17 三菱電機株式会社 半導体装置
US9293390B2 (en) 2013-01-11 2016-03-22 Mitsubishi Electric Corporation Heat radiation structure for semiconductor device
JP5921723B2 (ja) * 2013-01-11 2016-05-24 三菱電機株式会社 半導体装置
JP2014143292A (ja) * 2013-01-24 2014-08-07 National Institute For Materials Science 密封型窒化物半導体素子及びその製造方法

Also Published As

Publication number Publication date
EP2390910A1 (en) 2011-11-30
CN101925998A (zh) 2010-12-22
US8837164B2 (en) 2014-09-16
US20110273846A1 (en) 2011-11-10
CN101925998B (zh) 2012-06-27
JPWO2010084955A1 (ja) 2012-07-19
JP5484338B2 (ja) 2014-05-07
EP2390910A4 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP2000174166A5 (ja)
JP2012528471A (ja) 冷却される電気構成ユニット
JP2007059875A (ja) 放熱部材およびこれを用いた電子部品収納用パッケージおよび電子装置
JP5484338B2 (ja) 素子搭載用基板、およびこれを用いた素子収納用パッケージ
JP6034054B2 (ja) 電子部品収納用パッケージおよび電子装置
JP2006013420A (ja) 電子部品収納用パッケージおよび電子装置
JP6162520B2 (ja) 半導体素子収納用パッケージおよびこれを備えた実装構造体
JP2014011271A (ja) 素子収納用パッケージおよび実装構造体
JP2003037204A (ja) 半導体素子収納用パッケージ
JP2006060122A (ja) 電子部品収納用パッケージおよび電子装置
JP2008263184A (ja) 構造体及び電子装置
JP2010129624A (ja) 電子部品収納用パッケージ、および電子装置
JP2005268030A5 (ja)
JP2006128589A (ja) 電子部品収納用パッケージおよび電子装置
JP3971592B2 (ja) 半導体素子収納用パッケージ
JP3792561B2 (ja) 半導体素子収納用パッケージ
JP3752440B2 (ja) 半導体素子収納用パッケージ
JP2003188295A (ja) 半導体素子収納パッケージ用放熱板及び光通信モジュールパッケージ用放熱板
JP2003100933A (ja) 半導体素子収納用パッケージ
JP2005272162A5 (ja)
JP2003152127A (ja) 半導体素子収納用パッケージ
JP2006310807A (ja) 放熱部材、電子部品搭載用基板、電子部品収納用パッケージおよび電子装置
JP2005340560A (ja) 電子部品収納用パッケージおよび電子装置
JP2000183199A (ja) 半導体素子収納用パッケージ
JP2017069245A (ja) 半導体素子収納用パッケージおよび半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001027.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010527686

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010733562

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12865107

Country of ref document: US