WO2010082232A1 - フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法 - Google Patents

フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法 Download PDF

Info

Publication number
WO2010082232A1
WO2010082232A1 PCT/JP2009/000126 JP2009000126W WO2010082232A1 WO 2010082232 A1 WO2010082232 A1 WO 2010082232A1 JP 2009000126 W JP2009000126 W JP 2009000126W WO 2010082232 A1 WO2010082232 A1 WO 2010082232A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist
group
resin
acid
solution
Prior art date
Application number
PCT/JP2009/000126
Other languages
English (en)
French (fr)
Inventor
江口明良
西村政通
Original Assignee
ダイセル化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル化学工業株式会社 filed Critical ダイセル化学工業株式会社
Priority to KR1020117016465A priority Critical patent/KR20110106882A/ko
Priority to PCT/JP2009/000126 priority patent/WO2010082232A1/ja
Priority to US13/132,375 priority patent/US8753793B2/en
Publication of WO2010082232A1 publication Critical patent/WO2010082232A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography

Definitions

  • the present invention relates to a method for producing a photoresist resin solution, a photoresist composition, and a pattern forming method.
  • the photoresist composition solution needs to be finely filtered before it is used for semiconductor production, and the filtration performance is often poor.
  • proposals such as Patent Document 1 and Patent Document 2 have been made.
  • the lithograph using an ArF excimer laser has further evolved, and the pattern is further miniaturized by exposure during immersion. As a result, further improvement in the filtration performance of the photoresist resin solution is required.
  • An object of the present invention is to provide a photoresist composition having good filterability that enables uniform pattern formation, and is a resin solution for photoresist that is stable for a long period of time, that is, has a filtration performance even when stored for a long period of time.
  • An object of the present invention is to provide a photoresist resin solution that does not decrease.
  • the present invention relates to a photoresist characterized in that a solution containing a photoresist resin that becomes alkali-soluble by an acid is heated and aged at 30 to 90 ° C. for 30 minutes or longer and then filtered through a filter medium having a pore diameter of 1 ⁇ m or less.
  • a method for producing a resin solution is provided.
  • At least the following formula (1) is used as a polymerization unit of a photoresist resin that becomes alkali-soluble by an acid.
  • R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, and R 1 represents a protecting group removable by an acid.
  • the present invention provides at least the following formula (2) as a polymerization unit of a photoresist resin that becomes alkali-soluble by an acid.
  • R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom
  • R 2 represents a group having 4 to 20 carbon atoms including a lactone skeleton.
  • the present invention also provides at least the following formula (3) as a polymerization unit of a photoresist resin that becomes alkali-soluble by an acid.
  • R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom
  • R 3 represents 4 to 4 carbon atoms containing an alicyclic skeleton having a polar group. 20 groups are shown.
  • the present invention further includes a step of heating and aging a solution containing a resin for a photoresist that is alkali-soluble by an acid at 30 to 90 ° C. for 30 minutes or more, a polymerization reaction is performed, and the polymerization solution is added and precipitated in a poor solvent. The produced precipitate is filtered, dissolved in an organic solvent, and the poor solvent is distilled off.
  • the method for producing a resin solution for a photoresist as described above is provided.
  • the solvent used in the solution containing the photoresist resin that is alkali-soluble by acid contains at least propylene glycol monomethyl ether acetate (PGMEA) and / or propylene glycol monomethyl ether (PGME).
  • PMEA propylene glycol monomethyl ether acetate
  • PGME propylene glycol monomethyl ether
  • the present invention also provides that the solid content concentration of the solution is 3 to 40% by weight in the step of heating and aging a solution containing a photoresist resin that becomes alkali-soluble by an acid at 30 to 90 ° C. for 30 minutes or more.
  • a method for producing a photoresist resin solution as described above is provided.
  • the present invention further provides a photoresist resin solution in which a solution containing a photoresist resin that is alkali-soluble by an acid is heated and aged at 30 to 90 ° C. for 30 minutes or longer and then filtered through a filter medium having a pore diameter of 1 ⁇ m or less. To do.
  • the present invention provides the above-mentioned photoresist solution, wherein a solution containing a photoresist resin that is alkali-soluble by an acid is heated and aged at 30 to 90 ° C. for 30 minutes or longer and then filtered through a filter medium having a pore diameter of 1 ⁇ m or less.
  • a photoresist composition containing a photoacid generator in a resin solution.
  • the present invention also provides a pattern forming method, wherein the photoresist composition described above is applied to a substrate, and after exposure, the pattern is formed by a process including at least alkali dissolution.
  • the resin for photoresist of the present invention is often used for a positive photoresist, and has, as a polymerized unit of the resin, for example, a group that becomes alkali-soluble by the action of an acid.
  • acrylic and methacrylic may be collectively referred to as (meth) acrylic in this document.
  • an acidic group that exhibits alkali-solubility such as phenol or carboxylic acid, is often protected.
  • the above formula (1) represents a polymer unit having a group that becomes alkali-soluble by an acid.
  • the polymer unit represented by this formula (1) Examples of the monomer corresponding to are as follows.
  • ring Z 1 represents an alicyclic hydrocarbon ring having 6 to 20 carbon atoms which may have a substituent.
  • R a represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, and R 4 to R 6 may be the same or different and may have a substituent.
  • a good alkyl group having 1 to 6 carbon atoms is shown.
  • R 7 is a substituent bonded to ring Z 1 and is the same or different and is an oxo group, an alkyl group, a hydroxyl group which may be protected with a protecting group, or a hydroxy group which is protected with a protecting group.
  • R 7 represents a —COOR c group.
  • R c represents a tertiary hydrocarbon group, a tetrahydrofuranyl group, a tetrahydropyranyl group, or an oxepanyl group which may have a substituent.
  • p represents an integer of 1 to 3.
  • R 8 and R 9 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • R 10 represents a hydrogen atom or an organic group. At least two of R 8 , R 9 and R 10 may be bonded to each other to form a ring together with adjacent atoms.
  • the alicyclic hydrocarbon ring having 6 to 20 carbon atoms in ring Z 1 may be a single ring or a polycyclic ring such as a condensed ring or a bridged ring.
  • Typical alicyclic hydrocarbon rings include, for example, cyclohexane ring, cyclooctane ring, cyclodecane ring, adamantane ring, norbornane ring, norbornene ring, bornane ring, isobornane ring, perhydroindene ring, decalin ring, perhydrofluorene ring.
  • the alicyclic hydrocarbon ring includes an alkyl group such as a methyl group (eg, a C 1-4 alkyl group), a halogen atom such as a chlorine atom, a hydroxyl group optionally protected by a protecting group, an oxo group, a protected group It may have a substituent such as a carboxyl group which may be protected with a group.
  • the ring Z 1 is preferably a polycyclic alicyclic hydrocarbon ring (bridged hydrocarbon ring) such as an adamantane ring.
  • Examples of the halogen atom in R a [and R in the above formulas (1) to (3)] include a fluorine atom and a chlorine atom.
  • Examples of the alkyl group having 1 to 6 carbon atoms in R a (and R) include methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl groups and the like.
  • R a (and R) is preferably a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms which may be substituted with a fluorine atom.
  • alkyl group having 1 to 6 carbon atoms which may have a substituent in R 4 to R 6 , R 8 and R 9 in formulas (4a), (4b) and (4d) include, for example, methyl, Linear or branched alkyl groups having 1 to 6 carbon atoms such as ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl and hexyl groups; haloalkyl having 1 to 6 carbon atoms such as trifluoromethyl group Groups and the like.
  • examples of the alkyl group represented by R 7 include straight-chain such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, hexyl, octyl, decyl, dodecyl group, etc. Examples thereof include branched alkyl groups having about 1 to 20 carbon atoms. Examples of the hydroxyl group that may be protected with a protecting group for R 7 include a hydroxyl group and a substituted oxy group (for example, C 1-4 alkoxy group such as methoxy, ethoxy, propoxy group, etc.).
  • Examples of the hydroxyalkyl group which may be protected with a protecting group include a group in which a hydroxyl group which may be protected with the protecting group is bonded via an alkylene group having 1 to 6 carbon atoms.
  • Examples of the carboxyl group that may be protected with a protecting group include a —COOR d group.
  • R d represents a hydrogen atom or an alkyl group, and examples of the alkyl group include linear or branched carbon such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, and hexyl groups. Examples thereof include alkyl groups of 1 to 6.
  • the tertiary hydrocarbon group in R c of the —COOR c group includes, for example, t-butyl, t-amyl, 2-methyl-2-adamantyl, (1-methyl-1-adamantyl) ethyl group Etc.
  • the tetrahydrofuranyl group includes a 2-tetrahydrofuranyl group
  • the tetrahydropyranyl group includes a 2-tetrahydropyranyl group
  • the oxepanyl group includes a 2-oxepanyl group.
  • Examples of the organic group for R 10 include a group containing a hydrocarbon group and / or a heterocyclic group.
  • the hydrocarbon group includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
  • Examples of the aliphatic hydrocarbon group include linear or branched alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, hexyl, and octyl groups (C 1- 8 alkyl groups); linear or branched alkenyl groups such as allyl groups (C 2-8 alkenyl groups, etc.); linear or branched alkynyl groups such as propynyl groups (C 2-8 alkynyl) Group, etc.).
  • Examples of the alicyclic hydrocarbon group include cycloalkyl groups such as cyclopropyl, cyclopentyl, and cyclohexyl groups (3 to 8 membered cycloalkyl groups); cycloalkenyl groups such as cyclopentenyl and cyclohexenyl groups (3 to 8 members) Cycloalkenyl groups and the like); bridged carbocyclic groups such as adamantyl and norbornyl groups (C 4-20 bridged carbocyclic groups and the like) and the like.
  • Examples of the aromatic hydrocarbon group include C 6-14 aromatic hydrocarbon groups such as phenyl and naphthyl groups.
  • Examples of the group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded include benzyl and 2-phenylethyl groups. These hydrocarbon groups are protected with alkyl groups (C 1-4 alkyl groups, etc.), haloalkyl groups (C 1-4 haloalkyl groups, etc.), halogen atoms, hydroxyl groups that may be protected with protecting groups, and protecting groups. It may have a substituent such as a hydroxymethyl group which may be protected, a carboxyl group which may be protected with a protecting group, or an oxo group.
  • the protecting group a protecting group conventionally used in the field of organic synthesis can be used.
  • heterocyclic group examples include heterocyclic groups containing at least one heteroatom selected from an oxygen atom, a sulfur atom and a nitrogen atom.
  • Preferred organic groups include C 1-8 alkyl groups, organic groups containing a cyclic skeleton, and the like.
  • the “ring” constituting the cyclic skeleton includes a monocyclic or polycyclic non-aromatic or aromatic carbocyclic or heterocyclic ring.
  • monocyclic or polycyclic non-aromatic carbocycles and lactone rings are particularly preferable.
  • the monocyclic non-aromatic carbocycle include a cycloalkane ring having about 3 to 15 members such as a cyclopentane ring and a cyclohexane ring.
  • polycyclic non-aromatic carbocycle bridged carbocycle
  • examples of the polycyclic non-aromatic carbocycle include, for example, an adamantane ring; a norbornane ring, a norbornene ring, a bornane ring, an isobornane ring, a tricyclo [5.2.1.0 2,6 ] decane ring, Tetracyclo [4.4.0.1 2,5 .
  • a bridged carbocyclic ring such as a bicyclic ring system, a tricyclic ring system, and a tetracyclic ring system (for example, a bridging carbocyclic ring having about 6 to 20 carbon atoms).
  • the lactone ring include a ⁇ -butyrolactone ring, a 4-oxatricyclo [4.3.1.1 3,8 ] undecan-5-one ring, and a 4-oxatricyclo [4.2.1.0 3 , 7 ] nonan-5-one ring, 4-oxatricyclo [5.2.1.0 2,6 ] decan-5-one ring, and the like.
  • the ring constituting the cyclic skeleton includes an alkyl group such as a methyl group (eg, a C 1-4 alkyl group), a haloalkyl group such as a trifluoromethyl group (eg, a C 1-4 haloalkyl group), a chlorine atom Or a halogen atom such as a fluorine atom, a hydroxyl group that may be protected with a protective group, a hydroxyalkyl group that may be protected with a protective group, a mercapto group that may be protected with a protective group, or a protective group.
  • an alkyl group such as a methyl group (eg, a C 1-4 alkyl group), a haloalkyl group such as a trifluoromethyl group (eg, a C 1-4 haloalkyl group), a chlorine atom Or a halogen atom such as a fluorine atom, a hydroxyl group that may be protected with
  • It may have a substituent such as a carboxyl group which may be protected, an amino group which may be protected with a protecting group, and a sulfonic acid group which may be protected with a protecting group.
  • a protecting group a protecting group conventionally used in the field of organic synthesis can be used.
  • the ring constituting the cyclic skeleton may be directly bonded to an oxygen atom (oxygen atom adjacent to R 10 ) shown in the formula (4d) or may be bonded via a linking group.
  • the linking group include linear or branched alkylene groups such as methylene, methylmethylene, dimethylmethylene, ethylene, propylene and trimethylene groups; carbonyl groups; oxygen atoms (ether bonds; —O—); oxycarbonyl groups ( An ester bond; —COO—); an aminocarbonyl group (amide bond; —CONH—); and a group in which a plurality of these are bonded.
  • At least two of R 8 , R 9 and R 10 may be bonded to each other to form a ring together with adjacent atoms.
  • the ring include cycloalkane rings such as cyclopropane ring, cyclopentane ring and cyclohexane ring; oxygen-containing rings such as tetrahydrofuran ring, tetrahydropyran ring and oxepane ring; bridged ring and the like.
  • stereoisomers may exist, but these can be used alone or as a mixture of two or more.
  • the following compounds may be mentioned, but the invention is not limited thereto.
  • the following compounds may be mentioned, but the invention is not limited thereto.
  • the compound represented by the above formula (4d) can be obtained, for example, by reacting the corresponding vinyl ether compound and (meth) acrylic acid by a conventional method using an acid catalyst.
  • 1-adamantyloxy-1-ethyl (meth) acrylate can be produced by reacting 1-adamantyl-vinyl-ether with (meth) acrylic acid in the presence of an acid catalyst.
  • the photoresist resin that is alkali-soluble by an acid in the present invention may have other polymerized units as polymerized units (repeating structural units) other than the polymerized unit having a group that is alkali-soluble by the acid. Good.
  • the polymerizable unsaturated monomer corresponding to the other polymerized units include monomers that can impart or improve hydrophilicity and water solubility.
  • Examples of such monomers include hydroxyl group-containing monomers (including compounds in which hydroxyl groups are protected), mercapto group-containing monomers (including compounds in which mercapto groups are protected), carboxyl groups Containing monomers (including compounds in which carboxyl groups are protected), amino group-containing monomers (including compounds in which amino groups are protected), sulfonic acid group-containing monomers (where sulfonic acid groups are protected) Polar group-containing monomers such as lactone skeleton-containing monomers, cyclic ketone skeleton-containing monomers, acid anhydride group-containing monomers, imide group-containing monomers, and the like Is mentioned.
  • the above formula (2) represents a polymer unit containing a lactone skeleton, and the monomer corresponding to the polymer unit represented by the formula (2) includes The following are listed.
  • Each of the compounds represented by the formulas (5a) to (5c) may have stereoisomers, but these can be used alone or as a mixture of two or more.
  • R a is the same as above.
  • R 11 to R 13 are the same or different and are protected by a hydrogen atom, an alkyl group, a hydroxyl group that may be protected with a protecting group, a hydroxyalkyl group that may be protected with a protecting group, or a protecting group.
  • V 1 to V 3 are the same or different and represent —CH 2 —, —CO— or —COO—. Provided that (i) at least one of V 1 to V 3 is —CO— or —COO—, or (ii) at least one of R 11 to R 13 is protected with a protecting group.
  • X 1 represents a carbon atom, an oxygen atom or a sulfur atom, and substituents R 17 and R 18 are present only when it is a carbon atom.
  • R 14 to R 18 may be the same or different and each may be a hydrogen atom, an alkyl group, a hydroxyl group that may be protected with a protecting group, a hydroxyalkyl group that may be protected with a protecting group, or a protective group.
  • halogen atom such as a carboxyl group, a cyano group, a fluorine atom or a chlorine atom, or an alkyl group having 1 to 6 carbon atoms substituted by a fluorine atom.
  • q represents 1 or 2
  • r represents 0 or 1.
  • a typical example of a monomer (polar group-containing monomer) corresponding to the polymerization unit represented by the formula (3) is a monomer represented by the following formula (6).
  • ring Z 2 represents an alicyclic hydrocarbon ring having 6 to 20 carbon atoms.
  • R a is the same as above.
  • R 19 is a substituent bonded to ring Z 2 and is the same or different and is an oxo group, an alkyl group, a hydroxyl group which may be protected with a protecting group, or a hydroxy group which is protected with a protecting group.
  • An alkyl group, a carboxyl group that may be protected with a protecting group, an amino group that may be protected with a protecting group, or a sulfonic acid group that may be protected with a protecting group is shown.
  • At least one of the s R 19 s may be protected with an oxo group, a hydroxyl group that may be protected with a protecting group, a hydroxyalkyl group that may be protected with a protecting group, or a protecting group.
  • s represents an integer of 1 to 3.
  • the alicyclic hydrocarbon ring having 6 to 20 carbon atoms in the ring Z 2 may be a single ring or a polycyclic ring such as a condensed ring or a bridged ring.
  • Typical alicyclic hydrocarbon rings include, for example, cyclohexane ring, cyclooctane ring, cyclodecane ring, adamantane ring, norbornane ring, norbornene ring, bornane ring, isobornane ring, perhydroindene ring, decalin ring, perhydrofluorene ring.
  • Tricyclo [7.4.0.0 3,8 ] tridecane ring trihydroanthracene ring, tricyclo [5.2.1.0 2,6 ] decane ring, tricyclo [4.2.2.1 2, 5 ] Undecane ring, tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecane ring and the like.
  • the alicyclic hydrocarbon ring is protected with an alkyl group such as a methyl group (for example, a C 1-4 alkyl group), a haloalkyl group such as a trifluoromethyl group, a halogen atom such as a fluorine atom or a chlorine atom, or a protecting group.
  • a hydroxyl group which may be protected a hydroxyalkyl group which may be protected with a protecting group, a mercapto group which may be protected with a protecting group, an oxo group, a carboxyl group which may be protected with a protecting group, a protecting group It may have a substituent such as an amino group which may be protected with a sulfonic acid group which may be protected with a protecting group.
  • the alkyl group for R 19 is a linear or branched chain such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, hexyl, octyl, decyl, dodecyl groups, etc. And an alkyl group having about 1 to 20 carbon atoms.
  • the amino group that may be protected with a protecting group include an amino group and a substituted amino group (for example, C 1-4 alkylamino groups such as methylamino, ethylamino, propylamino group, etc.).
  • R e represents a hydrogen atom or an alkyl group, and examples of the alkyl group include linear or branched carbon such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, and hexyl groups. Examples thereof include alkyl groups of 1 to 6.
  • a hydroxyl group optionally protected with a protecting group for R 19 a hydroxyalkyl group optionally protected with a protecting group, a mercapto group optionally protected with a protecting group, a carboxyl optionally protected with a protecting group
  • the groups are the same as described above.
  • polar group-containing monomer examples include acrylic acid, methacrylic acid, maleic anhydride, maleimide and the like.
  • a polymerization unit constituting a resin that becomes alkali-soluble by an acid can be added as necessary.
  • Specific examples include the following vinyl monomers. Substitution of methyl (meth) acrylate, ethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-butyl (meth) acrylate, n-hexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, etc.
  • (Meth) acrylic acid ester compound cyclohexyl (meth) acrylate, norbornyl (meth) acrylate, adamantyl (meth) acrylate having a linear or branched alkyl group having 1 to 20 carbon atoms which may have a group
  • (Meth) acrylic acid ester compounds having an alicyclic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent such as tetracyclododecanyl (meth) acrylate, styrene, ⁇ -styrene, p-methyl
  • Aromatic alkenyl compounds which may have a substituent such as styrene Acrylonitrile, methacrylonitrile vinyl cyanide compounds such as nitriles, N, N- dimethyl (meth) acrylamide, N- isopropyl (meth) acrylamide, (meth) acrylamide compound, and the like.
  • the ratio of the polymerization unit represented by the formula (1) is not particularly limited, but all of the polymers constituting the polymer are not limited. It is generally 1 to 100 mol%, preferably 5 to 80 mol%, more preferably about 10 to 60 mol%, based on the monomer unit.
  • the polymer units having a lactone skeleton represented by the formula (2) are, for example, about 0 to 95 mol%, preferably about 10 to 90 mol%, more preferably about 20 to 60 mol%.
  • the ratio of the polymer unit represented by the formula (3) is, for example, about 0 to 70 mol%, preferably about 5 to 60 mol%, and more preferably about 10 to 50 mol%. More specifically, the fact that it becomes alkali-soluble by an acid means that the protecting group is removed by heating as required by the action of an acid generated from a photoacid generator, etc. The property of dissolving in an alkali developer or the like is expressed.
  • the present invention provides a highly stable and homogeneous photo-resist by filtering a solution containing a photoresist resin that becomes alkali-soluble with an acid at 30 to 90 ° C. by heating and aging for 30 minutes or more and then filtering with a filter medium having a pore diameter of 1 ⁇ m or less.
  • a method for producing a resist resin solution has been found, and the temperature for heat aging is usually 30 to 90 ° C., preferably 35 to 80 ° C., particularly preferably about 40 to 70 ° C.
  • the heating temperature is lower than 30 ° C., the time required for aging becomes very long, which is not economical.
  • the heating temperature exceeds 90 ° C., the photoresist resin is decomposed, which is not preferable.
  • the time for heating and aging the solution containing a photoresist resin that becomes alkali-soluble by an acid is usually 30 minutes or more, preferably 2 hours or more, particularly preferably 4 hours or more. If the heat aging time is less than 30 minutes, long-term storage stability deteriorates. Moreover, although it is the upper limit of the heat aging time, it is not particularly limited. The effect of the present invention can also be realized by filtering after storage at an appropriate temperature for a long period of time.
  • the pore diameter of the filter medium used for filtration is usually 1 ⁇ m or less, preferably 0.5 ⁇ m or less, particularly preferably 0.1 ⁇ m or less. If the pore diameter exceeds 1 ⁇ m, the particles present in the resin solution cannot be sufficiently removed.
  • the pore diameter is important for the filter medium, and the material is not particularly limited. Examples of the material for the filter medium include polytetrafluoroethylene (PTFE), polyethylene, polypropylene, and nylon.
  • the resin concentration at the time of heat aging is usually 3 to 40% by weight, preferably 3 to 30% by weight, particularly preferably about 3 to 20% by weight.
  • the resin concentration is less than 3% by weight, the amount of the solution to be handled increases, which is not economical.
  • it exceeds 40 weight% filtration resistance will become large when filtering and suitable filtration will become impossible.
  • the solvent used when the photoresist resin solution of the present invention is heat-aged is not particularly limited as long as it is a solvent capable of dissolving the resin, but it is preferable to use a solvent used for the resist composition.
  • examples include glycol solvents, ester solvents, ketone solvents, and mixed solvents thereof.
  • propylene glycol monomethyl ether PGME
  • propylene glycol monomethyl ether acetate PGMEA
  • ethyl lactate methyl isobutyl ketone
  • methyl amyl ketone methyl amyl ketone
  • cyclohexanone a mixture thereof (for example, propylene glycol monomethyl ether acetate and / or A solvent containing at least propylene glycol monomethyl ether), particularly a propylene glycol monomethyl ether acetate single solvent, a mixed solvent of propylene glycol monomethyl ether acetate and propylene glycol monomethyl ether, a mixed solvent of propylene glycol monomethyl ether acetate and ethyl lactate, Propylene glycol monomethyl ether acetate and cyclohexano Of a mixed solvent of a solvent containing at least propylene glycol monomethyl ether acetate is preferably used.
  • the polymerization method used for obtaining the polymer compound (resin for photoresist that becomes alkali-soluble by acid) in the present invention is not particularly limited, but radical polymerization is preferred.
  • the polymerization of the monomer mixture can be performed by a conventional method used for producing an acrylic polymer, such as solution polymerization, bulk polymerization, suspension polymerization, bulk-suspension polymerization, and emulsion polymerization. Is preferred.
  • drop polymerization is preferable among solution polymerization. Specifically, for example, (i) a monomer solution previously dissolved in an organic solvent and a polymerization initiator solution dissolved in an organic solvent are prepared in an organic solvent kept at a constant temperature.
  • a monomer solution previously dissolved in an organic solvent and a polymerization initiator solution dissolved in the organic solvent are respectively prepared, and the polymerization initiator solution is dropped into the monomer solution maintained at a constant temperature. It is performed by a method or the like.
  • radical polymerization initiator is not particularly limited, but examples include azo compounds, peroxide compounds, and redox compounds. 2,2'-azobisisobutyrate, azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), t-butylperoxypivalate, di-t-butylperoxide, iso Preferred are butyryl peroxide, lauroyl peroxide, succinic acid peroxide, dicinnamyl peroxide, di-n-propyl peroxydicarbonate, t-butylperoxyallyl monocarbonate, benzoyl peroxide, hydrogen peroxide, ammonium persulfate, etc. .
  • a known solvent can be used.
  • ether chain ether such as diethyl ether, propylene glycol monomethyl ether, etc., chain ether such as tetrahydrofuran, dioxane, etc.
  • ester methyl acetate, ethyl acetate, Glycol ether esters such as butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate
  • ketones acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • amides N, N-dimethylacetamide, N, N-dimethylformamide, etc.
  • Sulfoxide such as dimethyl sulfoxide
  • alcohol such as methanol, ethanol, propanol
  • hydrocarbon aromatic carbonization such as benzene, toluene, xylene
  • the polymer obtained by polymerization can be purified by precipitation or reprecipitation.
  • the precipitation or reprecipitation solvent may be either an organic solvent or water, or a mixed solvent.
  • the organic solvent used as the precipitation or reprecipitation solvent include hydrocarbons (aliphatic hydrocarbons such as pentane, hexane, heptane, and octane; alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; aromatics such as benzene, toluene, and xylene.
  • Aromatic hydrocarbons halogenated hydrocarbons (halogenated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene), nitro compounds (nitromethane, nitroethane, etc.) , Nitrile (acetonitrile, benzonitrile, etc.), ether (chain ether such as diethyl ether, diisopropyl ether, dimethoxyethane; cyclic ether such as tetrahydrofuran, dioxane), ketone (acetone, methyl ethyl ketone) Diisobutyl ketone, etc.), ester (ethyl acetate, butyl acetate, etc.), carbonate (dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, etc.), alcohol (methanol, ethanol, propanol
  • a solvent containing at least a hydrocarbon (particularly an aliphatic hydrocarbon such as hexane) is preferable.
  • the weight average molecular weight (Mw) of the polymer compound is, for example, about 1,000 to 500,000, preferably about 3000 to 50,000, and the molecular weight distribution (Mw / Mn) is, for example, about 1.2 to 2.5.
  • said Mn shows a number average molecular weight
  • both Mn and Mw are values of polystyrene conversion.
  • the polymer compound has high stability such as chemical resistance, is excellent in solubility in organic solvents, and is excellent in hydrolyzability and solubility in water after hydrolysis, so that it is a highly functional polymer in various fields. Can be used.
  • the step of heating and aging a solution containing a photoresist resin that becomes alkali-soluble by an acid at 30 to 90 ° C. for 30 minutes or longer is performed as described above. Then, the polymerization solution is added and precipitated in a poor solvent, and the produced precipitate is filtered (filtered), then dissolved in an organic solvent, and the poor solvent is distilled off.
  • the photoresist composition of the present invention contains, for example, a photoresist resin (polymer compound) produced by the above method, a photoacid generator, and a resist solvent.
  • the photoresist composition can be prepared, for example, by adding a photoacid generator to the photoresist resin solution obtained as described above.
  • photoacid generator examples include conventional or known compounds that efficiently generate acid upon exposure, such as diazonium salts, iodonium salts (for example, diphenyliodohexafluorophosphate), sulfonium salts (for example, triphenylsulfonium hexafluoroantimony).
  • diazonium salts for example, diphenyliodohexafluorophosphate
  • sulfonium salts for example, triphenylsulfonium hexafluoroantimony
  • sulfonate esters [eg 1-phenyl-1- (4-methylphenyl) sulfonyloxy-1-benzoylmethane, 1,2,3-tri Sulfonyloxymethylbenzene, 1,3-dinitro-2- (4-phenylsulfonyloxymethyl) benzene, 1-phenyl-1- (4-methylphenylsulfonyloxymethyl) -1-hydroxy-1-ben Irumetan etc.], oxathiazole derivatives, s- triazine derivatives, disulfone derivatives (diphenyl sulfone) imide compound, an oxime sulfonate, a diazonaphthoquinone, and benzoin tosylate.
  • photoacid generators can be used alone or in combination of
  • the use amount of the photoacid generator can be appropriately selected according to the strength of the acid generated by light irradiation, the ratio of each repeating unit in the polymer (resin for photoresist), and the like. It can be selected from a range of about 1 to 30 parts by weight, preferably 1 to 25 parts by weight, and more preferably about 2 to 20 parts by weight.
  • the resist solvent examples include glycol solvents, ester solvents, ketone solvents, and mixed solvents exemplified as the polymerization solvent.
  • glycol solvents examples include glycol solvents, ester solvents, ketone solvents, and mixed solvents exemplified as the polymerization solvent.
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, ethyl lactate, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, and a mixed solution thereof are preferable.
  • propylene glycol monomethyl ether acetate alone solvent propylene glycol monomethyl ether
  • a solvent containing at least propylene glycol monomethyl ether acetate, such as a mixed solvent of acetate and propylene glycol monomethyl ether, a mixed solvent of propylene glycol monomethyl ether acetate and ethyl lactate, a mixed solvent of propylene glycol monomethyl ether acetate and cyclohexanone is preferable. Used.
  • the polymer concentration in the photoresist composition is, for example, about 3 to 40% by weight.
  • the photoresist composition may contain an alkali-soluble component such as an alkali-soluble resin (for example, a novolac resin, a phenol resin, an imide resin, a carboxyl group-containing resin), a colorant (for example, a dye), and the like.
  • an alkali-soluble component such as an alkali-soluble resin (for example, a novolac resin, a phenol resin, an imide resin, a carboxyl group-containing resin), a colorant (for example, a dye), and the like.
  • the photoresist composition thus obtained is applied onto a substrate or a substrate, dried, and then exposed to light on a coating film (resist film) through a predetermined mask (or further subjected to post-exposure baking).
  • a coating film resist film
  • predetermined mask or further subjected to post-exposure baking
  • the base material or substrate examples include silicon wafer, metal, plastic, glass, and ceramic.
  • the photoresist composition can be applied using a conventional application means such as a spin coater, a dip coater, or a roller coater.
  • the thickness of the coating film is, for example, about 0.05 to 20 ⁇ m, preferably about 0.1 to 2 ⁇ m.
  • light of various wavelengths such as ultraviolet rays and X-rays can be used.
  • semiconductor resists g-rays, i-rays, and excimer lasers (eg, XeCl, KrF, KrCl, ArF, ArCl, etc.) are usually used. Etc. are used.
  • the exposure energy is, for example, about 1 to 1000 mJ / cm 2 , preferably about 10 to 500 mJ / cm 2 .
  • An acid is generated from the photoacid generator by light irradiation, and the acid causes, for example, a carboxyl group of a repeating unit (a repeating unit having an acid-eliminable group) that becomes alkali-soluble by the action of an acid of a photoresist resin.
  • the protecting group (leaving group) is rapidly removed to generate a carboxyl group that contributes to solubilization. Therefore, a predetermined pattern can be formed with high accuracy by development (alkali dissolution) with water or an alkali developer.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer indicate standard polystyrene conversion values determined by GPC measurement using a tetrahydrofuran solvent using a refractive index system (RI).
  • RI refractive index system
  • Example 1 Synthesis of the following polymer compounds
  • PGMEA propylene glycol monomethyl ether acetate
  • PGME propylene glycol monomethyl ether
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 2 Synthesis of the following polymer compounds The three monomers of Example 1 were substituted with 12.89 g of 1- (1-methacryloyloxy-1-methylethyl) adamantane, 5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonane- A polymer solution was obtained in the same manner as in Example 1, except that the amount was changed to 10.92 g of 2-one and 6.20 g of 1,3-dihydroxy-5-methacryloyloxyadamantane. The obtained polymer was subjected to GPC analysis. As a result, Mw (weight average molecular weight) was 8500, and molecular weight distribution (Mw / Mn) was 1.87.
  • Mw weight average molecular weight
  • Example 3 Synthesis of the following polymer compounds The three monomers of Example 1 were substituted with 11.29 g of 1- (1-methacryloyloxy-1-methylethyl) cyclohexane, 5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonane- A polymer solution was obtained in the same manner as in Example 1, except that 11.94 g of 2-one and 6.77 g of 1,3-dihydroxy-5-methacryloyloxyadamantane were used. When the obtained polymer was analyzed by GPC, it was found that Mw (weight average molecular weight) was 9100, and molecular weight distribution (Mw / Mn) was 1.95.
  • Mw weight average molecular weight
  • Example 4 Synthesis of the following polymer compounds The three monomers of Example 1 were converted to 11.45 g of 1- (1-methacryloyloxy-1-methylethyl) cyclohexane, 5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonane- A polymer solution was obtained in the same manner as in Example 1 except for changing to 12.11 g of 2-one and 6.44 g of 1-hydroxy-3-methacryloyloxyadamantane. When the obtained polymer was analyzed by GPC, it was found that Mw (weight average molecular weight) was 9400 and molecular weight distribution (Mw / Mn) was 1.98.
  • Mw weight average molecular weight
  • Example 5 Synthesis of the following polymer compounds The three monomers of Example 1 were substituted with 12.52 g of 1- (1-methacryloyloxy-1-methylethyl) adamantane, 1-fluoro-5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4, 8 ] A polymer solution was obtained in the same manner as in Example 1 except that 11.46 g of nonan-2-one and 6.02 g of 1,3-dihydroxy-5-methacryloyloxyadamantane were used. When the obtained polymer was analyzed by GPC, it was found that Mw (weight average molecular weight) was 8300 and molecular weight distribution (Mw / Mn) was 1.83.
  • Mw weight average molecular weight
  • Example 6 Synthesis of the following polymer compounds The three monomers of Example 1 were converted to 10.94 g of 1- (1-methacryloyloxy-1-methylethyl) cyclohexane, 1-fluoro-5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4, 8 ] A polymer solution was obtained in the same manner as in Example 1 except that 12.50 g of nonan-2-one and 6.56 g of 1,3-dihydroxy-5-methacryloyloxyadamantane were used. When the obtained polymer was analyzed by GPC, it was found that Mw (weight average molecular weight) was 8800, and molecular weight distribution (Mw / Mn) was 1.85.
  • Mw weight average molecular weight
  • Example 7 Synthesis of the following polymer compounds The three monomers of Example 1 were converted to 11.59 g of 1- (1-methacryloyloxy-1-methylethyl) adamantane, 1-trifluoromethyl-5-methacryloyloxy-3-oxatricyclo [4.2.1.0. 4,8 ] Nonane-2-one 12.83 g and 1,3-dihydroxy-5-methacryloyloxyadamantane were changed to 5.58 g to obtain a polymer solution. When the obtained polymer was analyzed by GPC, it was found that Mw (weight average molecular weight) was 7800 and molecular weight distribution (Mw / Mn) was 1.79.
  • Mw weight average molecular weight
  • Example 8 Synthesis of the following polymer compounds
  • the three monomers of Example 1 were converted to 10.50 g of 1- (1-methacryloyloxy-1-methylethyl) -3-methylcyclohexane, 1-trifluoromethyl-5-methacryloyloxy-3-oxatricyclo [4.2 .1.0 4,8] nonan-2-one 13.59 g, 1,3-dihydroxy-5 except for changing the methacryloyloxyadamantane 5.91g performs the same operation as in example 1, to obtain a polymer solution It was. When the obtained polymer was analyzed by GPC, it was found that Mw (weight average molecular weight) was 8000 and molecular weight distribution (Mw / Mn) was 1.81.
  • Example 9 Synthesis of the following polymer compounds
  • the three monomers of Example 1 were converted to 11.72 g of 2-methyl-2-methacryloyloxyadamantane, 1-cyano-5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonane-2 -A polymer solution was obtained in the same manner as in Example 1 except that 12.37 g and 1-hydroxy-3-methacryloyloxyadamantane were changed to 5.91 g.
  • Mw weight average molecular weight
  • Mn molecular weight distribution
  • Example 10 Synthesis of the following polymer compounds The three monomers of Example 1 were mixed with 12.38 g of 1- (1-methacryloyloxy-1-methylethyl) adamantane, 1-cyano-5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4, 8 ] A polymer solution was obtained in the same manner as in Example 1 except that 11.67 g of nonan-2-one and 5.95 g of 1,3-dihydroxy-5-methacryloyloxyadamantane were used. When the obtained polymer was analyzed by GPC, it was found that Mw (weight average molecular weight) was 8100, and molecular weight distribution (Mw / Mn) was 1.80.
  • Mw weight average molecular weight
  • Example 11 Synthesis of the following polymer compounds The three monomers of Example 1 were converted to 10.81 g of 1- (1-methacryloyloxy-1-methylethyl) cyclohexane, 1-cyano-5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4, 8 ] A polymer solution was obtained in the same manner as in Example 1 except that 12.71 g of nonan-2-one and 6.48 g of 1,3-dihydroxy-5-methacryloyloxyadamantane were used. When the obtained polymer was analyzed by GPC, it was found that Mw (weight average molecular weight) was 8900, and molecular weight distribution (Mw / Mn) was 1.88.
  • Mw weight average molecular weight
  • Example 12 Synthesis of the following polymer compounds The three monomers of Example 1 were converted to 10.96 g of 1- (1-methacryloyloxy-1-methylethyl) cyclohexane, 1-cyano-5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4, 8 ] A polymer solution was obtained in the same manner as in Example 1 except that 12.89 g of nonan-2-one and 6.16 g of 1-hydroxy-3-methacryloyloxyadamantane were used. When the obtained polymer was subjected to GPC analysis, it was found that Mw (weight average molecular weight) was 9100 and molecular weight distribution (Mw / Mn) was 1.91.
  • Mw weight average molecular weight
  • Example 13 Synthesis of the following polymer compounds
  • the three monomers of Example 1 were converted to 11.26 g of 1- (1-methacryloyloxy-1-methylethyl) -3-methylcyclohexane, 1-cyano-5-methacryloyloxy-3-oxatricyclo [4.2.1 .0 4,8] nonan-2-one 12.41 g, 1,3-dihydroxy-5 except for changing the methacryloyloxyadamantane 6.33g performs the same operation as in example 1 to obtain a polymer solution.
  • Mw weight average molecular weight
  • Mn molecular weight distribution
  • Comparative Example 1-13 About the comparative example corresponding to the number of an Example, operation similar to an Example was performed except not performing the heat processing for 60 degreeC and 8 hours in an Example.
  • a photoresist composition with good filterability that enables uniform pattern formation.
  • a photoresist resin solution that is stable over a long period of time that is, a photoresist resin solution that does not deteriorate the filtration performance even when stored for a long period of time is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)

Abstract

 本発明のフォトレジスト用樹脂溶液の製造方法は、酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90°Cにおいて、30分以上加熱熟成後、細孔径1μm以下のろ材によりろ過することを特徴とする。本発明によれば、均一なパターン形成を可能とするろ過性の良好なフォトレジスト組成物が提供される。また、長期的に安定なフォトレジスト用樹脂溶液、つまり長期間保管してもろ過性能が低下しないフォトレジスト用樹脂溶液が提供される。

Description

フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法
 本発明は、フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法に関するものである。
 半導体の製造において、パターン形成のためのリソグラフ技術は飛躍的な革新により、近年その線幅が極微細化されている。リソグラフのための露光は当初、i線、g線が使用され、その線幅も広いものであった。従って、製造される半導体の容量も低かった。しかし、近年の技術開発により、KrFエキシマレーザの使用が可能となり、その線幅も飛躍的に微細なものとなった。その後も、更に短波長であるArFエキシマレーザの適用を目指して開発が進み、極近年においてその実用化がなされた。KrFエキシマレーザでの露光では、従来の樹脂であるノボラック系又はスチレン系樹脂が使用されていたが、ArFエキシマレーザの波長は193nmと更に短波長となり、ノボラック系やスチレン系樹脂のように芳香族を含むものは、その波長を吸収するために、樹脂の構造は芳香族を含まない、つまり脂環族のものに置き換えられた。フォトレジスト用の樹脂としては、酸により脱離してアルカリ可溶となる性質や、基板への均一密着性などが求められ、そのために、脂環族樹脂へ様々な極性基が導入されている。その複雑な構造のためかフォトレジスト用に使用される有機溶媒に溶解しにくい性質がみられる。
 フォトレジスト組成物溶液は半導体製造に使用される前に、微細なろ過が必要であり、ろ過性能が悪い場合が多く、その対策として、特許文献1や特許文献2のような提案がなされている。しかし、ArFエキシマレーザによるリソグラフも、更に進化を遂げて、現在液浸中での露光により更にパターンの微細化が進められている。それによりフォトレジスト用樹脂溶液のろ過性能も更なる向上が求められている。
特開2001-183837号公報 特開2000-231200号公報
 本発明は、均一なパターン形成を可能とするろ過性の良好なフォトレジスト組成物を提供することを目的とし、長期的に安定なフォトレジスト用樹脂溶液、つまり長期間保管してもろ過性能が低下しないフォトレジスト用樹脂溶液を提供する事にある。
 本発明者らは前記課題を解決するために鋭意研究を重ねた結果、合成された樹脂溶液を特殊な条件下で処理することにより、飛躍的にろ過性が改善されることを見出し、本発明を完成するに至った。
 すなわち、本発明は、酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90℃において、30分以上加熱熟成後、細孔径1μm以下のろ材によりろ過することを特徴とするフォトレジスト用樹脂溶液の製造方法を提供する。
 また本発明は、酸によりアルカリ可溶となるフォトレジスト用樹脂が重合単位として、少なくとも下記式(1)
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、R1は酸により脱離可能な保護基を示す。)
を含むことを特徴とする前記記載のフォトレジスト用樹脂溶液の製造方法を提供する。
 更に本発明は、酸によりアルカリ可溶となるフォトレジスト用樹脂が重合単位として、少なくとも下記式(2)
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、R2はラクトン骨格を含む炭素数4~20の基を示す。)
を含むことを特徴とする前記記載のフォトレジスト用樹脂溶液の製造方法を提供する。
 本発明はまた、酸によりアルカリ可溶となるフォトレジスト用樹脂が重合単位として、少なくとも下記式(3)
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、R3は極性基を有する脂環式骨格を含む炭素数4~20の基を示す。)
を含むことを特徴とする前記記載のフォトレジスト用樹脂溶液の製造方法を提供する。
 本発明は更に、酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90℃において、30分以上加熱熟成する工程は、重合反応し、重合溶液を貧溶媒中へ添加沈殿させ、生成した沈殿をろ過後、有機溶媒に溶解し、貧溶媒を留去後実施することを特徴とする前記記載のフォトレジスト用樹脂溶液の製造方法を提供する。
 また、本発明は更に、酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液に使用される溶媒が、少なくともプロピレングリコールモノメチルエーテルアセテート(PGMEA)および/またはプロピレングリコールモノメチルエーテル(PGME)を含むことを特徴とする前記記載のフォトレジスト用樹脂溶液の製造方法を提供する。
 本発明はまた、酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90℃において、30分以上加熱熟成する工程で、溶液の固形分濃度が3~40重量%であることを特徴とする前記記載のフォトレジスト用樹脂溶液の製造方法を提供する。
 本発明は更に、酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90℃において、30分以上加熱熟成後、細孔径1μm以下のろ材によりろ過されたフォトレジスト用樹脂溶液を提供する。
 本発明は更にまた、酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90℃において、30分以上加熱熟成後、細孔径1μm以下のろ材によりろ過された前記記載のフォトレジスト用樹脂溶液に、更に光酸発生剤を含むフォトレジスト用組成物を提供する。
 また本発明は、前記記載のフォトレジスト組成物を基板に塗布し、露光後、アルカリ溶解を少なくとも含む工程によりパターンを形成することを特徴とするパターン形成方法を提供する。
 本発明により、ろ過性能の良好なフォトレジスト用樹脂溶液を提供することで、良好なフォトレジスト組成物を提供することが可能となり、更に、半導体製造工程でのろ過によるトラブルが激減することを可能とした。
 本発明のフォトレジスト用樹脂はポジ型フォトレジストに使用されることが多く、樹脂の重合単位として、例えば、酸の作用によりアルカリ可溶となる基を有する。なお、便宜上、本書においてアクリルとメタクリルを総称して(メタ)アクリルと記載することがある。
 酸によりアルカリ可溶となる基においては、アルカリ可溶性を示す酸性基、たとえば、フェノールやカルボン酸を保護していることが多い。
 酸によりアルカリ可溶となる樹脂を構成する重合単位として、前記式(1)は酸によりアルカリ可溶となる基を有する重合単位を示すものであるが、この式(1)で示される重合単位に相当するモノマーとして以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記式(4a)~(4c)中、環Z1は置換基を有していてもよい炭素数6~20の脂環式炭化水素環を示す。Raは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、R4~R6は、同一又は異なって、置換基を有していてもよい炭素数1~6のアルキル基を示す。R7は環Z1に結合している置換基であって、同一又は異なって、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基を示す。但し、p個のR7のうち少なくとも1つは、-COORc基を示す。前記Rcは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、又はオキセパニル基を示す。pは1~3の整数を示す。R8、R9は、同一又は異なって、水素原子又は置換基を有していてもよい炭素数1~6のアルキル基を示す。R10は水素原子又は有機基を示す。R8、R9、R10のうち少なくとも2つが互いに結合して隣接する原子とともに環を形成していてもよい。
 式(4a)~(4c)中、環Z1における炭素数6~20の脂環式炭化水素環は単環であっても、縮合環や橋かけ環等の多環であってもよい。代表的な脂環式炭化水素環として、例えば、シクロヘキサン環、シクロオクタン環、シクロデカン環、アダマンタン環、ノルボルナン環、ノルボルネン環、ボルナン環、イソボルナン環、パーヒドロインデン環、デカリン環、パーヒドロフルオレン環(トリシクロ[7.4.0.03,8]トリデカン環)、パーヒドロアントラセン環、トリシクロ[5.2.1.02,6]デカン環、トリシクロ[4.2.2.12,5]ウンデカン環、テトラシクロ[4.4.0.12,5.17,10]ドデカン環などが挙げられる。脂環式炭化水素環には、メチル基等のアルキル基(例えば、C1-4アルキル基など)、塩素原子等のハロゲン原子、保護基で保護されていてもよいヒドロキシル基、オキソ基、保護基で保護されていてもよいカルボキシル基などの置換基を有していてもよい。環Z1は例えばアダマンタン環等の多環の脂環式炭化水素環(橋かけ環式炭化水素環)であるのが好ましい。
 Ra[及び前記式(1)~(3)中のR]におけるハロゲン原子としては、フッ素原子、塩素原子等が挙げられる。Ra(及び前記R)における炭素数1~6のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、ペンチル、ヘキシル基等が挙げられる。Ra(及び前記R)としては、水素原子、フッ素原子又はフッ素原子で置換されていてもよい炭素数1~4のアルキル基が好ましい。
 式(4a)、(4b)、(4d)中のR4~R6、R8、R9における置換基を有していてもよい炭素数1~6のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル基などの直鎖状又は分岐鎖状の炭素1~6のアルキル基;トリフルオロメチル基等の炭素1~6のハロアルキル基などが挙げられる。式(4c)中、R7におけるアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル、オクチル、デシル、ドデシル基などの直鎖状又は分岐鎖状の炭素1~20程度のアルキル基が挙げられる。R7における保護基で保護されていてもよいヒドロキシル基としては、例えば、ヒドロキシル基、置換オキシ基(例えば、メトキシ、エトキシ、プロポキシ基等のC1-4アルコキシ基など)などが挙げられる。保護基で保護されていてもよいヒドロキシアルキル基としては、前記保護基で保護されていてもよいヒドロキシル基が炭素数1~6のアルキレン基を介して結合している基などが挙げられる。保護基で保護されていてもよいカルボキシル基としては、-COORd基などが挙げられる。前記Rdは水素原子又はアルキル基を示し、アルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル基などの直鎖状又は分岐鎖状の炭素数1~6のアルキル基などが挙げられる。R7において、-COORc基のRcにおける第3級炭化水素基としては、例えば、t-ブチル、t-アミル、2-メチル-2-アダマンチル、(1-メチル-1-アダマンチル)エチル基などが挙げられる。テトラヒドロフラニル基には2-テトラヒドロフラニル基が、テトラヒドロピラニル基には2-テトラヒドロピラニル基が、オキセパニル基には2-オキセパニル基が含まれる。
 R10における有機基としては、炭化水素基及び/又は複素環式基を含有する基が挙げられる。炭化水素基には脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基及びこれらが2以上結合した基が含まれる。脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル、オクチル基等の直鎖状または分岐鎖状のアルキル基(C1-8アルキル基等);アリル基等の直鎖状または分岐鎖状のアルケニル基(C2-8アルケニル基等);プロピニル基等の直鎖状または分岐鎖状のアルキニル基(C2-8アルキニル基等)などが挙げられる。脂環式炭化水素基としては、例えば、シクロプロピル、シクロペンチル、シクロヘキシル基等のシクロアルキル基(3~8員シクロアルキル基等);シクロペンテニル、シクロヘキセニル基等のシクロアルケニル基(3~8員シクロアルケニル基等);アダマンチル、ノルボルニル基等の橋架け炭素環式基(C4-20橋架け炭素環式基等)などが挙げられる。芳香族炭化水素基としては、例えば、フェニル、ナフチル基等のC6-14芳香族炭化水素基などが挙げられる。脂肪族炭化水素基と芳香族炭化水素基とが結合した基としては、ベンジル、2-フェニルエチル基などが挙げられる。これらの炭化水素基は、アルキル基(C1-4アルキル基等)、ハロアルキル基(C1-4ハロアルキル基等)、ハロゲン原子、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシメチル基、保護基で保護されていてもよいカルボキシル基、オキソ基などの置換基を有していてもよい。保護基としては有機合成の分野で慣用の保護基を使用できる。
 前記複素環式基としては、酸素原子、硫黄原子及び窒素原子から選択された少なくとも1種のヘテロ原子を含む複素環式基が挙げられる。
 好ましい有機基として、C1-8アルキル基、環式骨格を含む有機基等が挙げられる。前記環式骨格を構成する「環」には、単環又は多環の非芳香族性又は芳香族性の炭素環又は複素環が含まれる。なかでも、単環又は多環の非芳香族性炭素環、ラクトン環(非芳香族性炭素環が縮合していてもよい)が特に好ましい。単環の非芳香族性炭素環として、例えば、シクロペンタン環、シクロヘキサン環などの3~15員程度のシクロアルカン環などが挙げられる。
 多環の非芳香族性炭素環(橋架け炭素環)として、例えば、アダマンタン環;ノルボルナン環、ノルボルネン環、ボルナン環、イソボルナン環、トリシクロ[5.2.1.02,6]デカン環、テトラシクロ[4.4.0.12,5.17,10]ドデカン環等のノルボルナン環又はノルボルネン環を含む環;パーヒドロインデン環、デカリン環(パーヒドロナフタレン環)、パーヒドロフルオレン環(トリシクロ[7.4.0.03,8]トリデカン環)、パーヒドロアントラセン環などの多環の芳香族縮合環が水素添加された環(好ましくは完全水素添加された環);トリシクロ[4.2.2.12,5]ウンデカン環などの2環系、3環系、4環系などの橋架け炭素環(例えば、炭素数6~20程度の橋架け炭素環)などが挙げられる。前記ラクトン環として、例えば、γ-ブチロラクトン環、4-オキサトリシクロ[4.3.1.13,8]ウンデカン-5-オン環、4-オキサトリシクロ[4.2.1.03,7]ノナン-5-オン環、4-オキサトリシクロ[5.2.1.02,6]デカン-5-オン環などが挙げられる。
 前記環式骨格を構成する環は、メチル基等のアルキル基(例えば、C1-4アルキル基など)、トリフルオロメチル基などのハロアルキル基(例えば、C1-4ハロアルキル基など)、塩素原子やフッ素原子等のハロゲン原子、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいメルカプト基、保護基で保護されていてもよいカルボキシル基、保護基で保護されていてもよいアミノ基、保護基で保護されていてもよいスルホン酸基などの置換基を有していてもよい。保護基としては有機合成の分野で慣用の保護基を使用できる。
 前記環式骨格を構成する環は、式(4d)中に示される酸素原子(R10の隣接位の酸素原子)と直接結合していてもよく、連結基を介して結合していてもよい。連結基としては、メチレン、メチルメチレン、ジメチルメチレン、エチレン、プロピレン、トリメチレン基などの直鎖状又は分岐鎖状のアルキレン基;カルボニル基;酸素原子(エーテル結合;-O-);オキシカルボニル基(エステル結合;-COO-);アミノカルボニル基(アミド結合;-CONH-);及びこれらが複数個結合した基などが挙げられる。
 R8、R9、R10のうち少なくとも2つは、互いに結合して隣接する原子とともに環を形成していてもよい。該環としては、例えば、シクロプロパン環、シクロペンタン環、シクロヘキサン環などのシクロアルカン環;テトラヒドロフラン環、テトラヒドロピラン環、オキセパン環などの含酸素環;橋架け環などが挙げられる。
 式(4a)~(4d)で表される化合物には、それぞれ立体異性体が存在しうるが、それらは単独で又は2種以上の混合物として使用できる。
 式(4a)で表される化合物の代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。2-(メタ)アクリロイルオキシ-2-メチルアダマンタン、1-ヒドロキシ-2-(メタ)アクリロイルオキシ-2-メチルアダマンタン、5-ヒドロキシ-2-(メタ)アクリロイルオキシ-2-メチルアダマンタン、2-(メタ)アクリロイルオキシ-2-エチルアダマンタン。
 式(4b)で表される化合物の代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。1-(1-(メタ)アクリロイルオキシ-1-メチルエチル)アダマンタン、1-ヒドロキシ-3-(1-(メタ)アクリロイルオキシ-1-メチルエチル)アダマンタン、1-(1-エチル-1-(メタ)アクリロイルオキシプロピル)アダマンタン、1-(1-(メタ)アクリロイルオキシ-1-メチルプロピル)アダマンタン。
 式(4c)で表される化合物の代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。1-t-ブトキシカルボニル-3-(メタ)アクリロイルオキシアダマンタン、1-(2-テトラヒドロピラニルオキシカルボニル)-3-(メタ)アクリロイルオキシアダマンタン。
 式(4d)で表される化合物の代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。1-アダマンチルオキシ-1-エチル(メタ)アクリレート、1-アダマンチルメチルオキシ-1-エチル(メタ)アクリレート、2-(1-アダマンチルエチル)オキシ-1-エチル(メタ)アクリレート、1-ボルニルオキシ-1-エチル(メタ)アクリレート、2-ノルボルニルオキシ-1-エチル(メタ)アクリレート、2-テトラヒドロピラニル(メタ)アクリレート、2-テトラヒドロフラニル(メタ)アクリレート。
 上記式(4d)で表される化合物は、例えば、対応するビニルエーテル化合物と(メタ)アクリル酸とを酸触媒を用いた慣用の方法で反応させることにより得ることができる。例えば、1-アダマンチルオキシ-1-エチル(メタ)アクリレートは、1-アダマンチル-ビニル-エーテルと(メタ)アクリル酸とを酸触媒の存在下で反応させることにより製造できる。
 本発明における酸によりアルカリ可溶となるフォトレジスト用樹脂は、重合単位(繰り返し構造単位)として、前記酸によりアルカリ可溶となる基を有する重合単位以外の他の重合単位を有していてもよい。前記他の重合単位に対応する重合性不飽和単量体の例として、親水性や水溶性を付与又は向上しうる単量体が挙げられる。このような単量体として、例えば、ヒドロキシル基含有単量体(ヒドロキシル基が保護されている化合物を含む)、メルカプト基含有単量体(メルカプト基が保護されている化合物を含む)、カルボキシル基含有単量体(カルボキシル基が保護されている化合物を含む)、アミノ基含有単量体(アミノ基が保護されている化合物を含む)、スルホン酸基含有単量体(スルホン酸基が保護されている化合物を含む)、ラクトン骨格含有単量体、環状ケトン骨格含有単量体、酸無水物基含有単量体、イミド基含有単量体などの単量体などの極性基含有単量体が挙げられる。
 酸によりアルカリ可溶となる樹脂を構成する重合単位として、前記式(2)はラクトン骨格を含む重合単位を示すものであるが、この式(2)で示される重合単位に相当するモノマーには以下のようなものが挙げられる。式(5a)~(5c)で表される化合物には、それぞれ立体異性体が存在しうるが、それらは単独で又は2種以上の混合物として使用できる。
Figure JPOXMLDOC01-appb-C000005
 上記式中、Raは前記に同じ。R11~R13は、同一又は異なって、水素原子、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基を示し、V1~V3は、同一又は異なって、-CH2-、-CO-又は-COO-を示す。但し、(i)V1~V3のうち少なくとも1つは-CO-若しくは-COO-であるか、又は(ii)R11~R13のうち少なくとも1つは、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基である。X1は炭素原子、酸素原子又は硫黄原子を示し、炭素原子のときにのみ置換基R17、R18が存在する。R14~R18は、同一又は異なって、水素原子、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、シアノ基、フッ素原子、塩素原子などのハロゲン原子、フッ素原子により置換されている炭素数1~6のアルキル基を示す。qは1又は2を示し、rは0又は1を示す。
 式(5a)で表される化合物の代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。1-(メタ)アクリロイルオキシ-4-オキサトリシクロ[4.3.1.13,8]ウンデカン-5-オン、1-(メタ)アクリロイルオキシ-4,7-ジオキサトリシクロ[4.4.1.13,9]ドデカン-5,8-ジオン、1-(メタ)アクリロイルオキシ-4,8-ジオキサトリシクロ[4.4.1.13,9]ドデカン-5,7-ジオン、1-(メタ)アクリロイルオキシ-5,7-ジオキサトリシクロ[4.4.1.13,9]ドデカン-4,8-ジオン、1-(メタ)アクリロイルオキシ-3-ヒドロキシアダマンタン、1-(メタ)アクリロイルオキシ-3,5-ジヒドロキシアダマンタン、1-(メタ)アクリロイルオキシ-3,5,7-トリヒドロキシアダマンタン、1-(メタ)アクリロイルオキシ-3-ヒドロキシ-5,7-ジメチルアダマンタン、1-(メタ)アクリロイルオキシ-3-カルボキシアダマンタン。
 式(5b)で表される化合物の代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。例えば、X1が炭素原子の時には、5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-5-メチル-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-1-メチル-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-9-メチル-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-9-カルボキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-9-メトキシカルボニル-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-9-エトキシカルボニル-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、5-(メタ)アクリロイルオキシ-9-t-ブトキシカルボニル-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オンなどが挙げられる。
 また、1-シアノ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-フルオロ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-クロロ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-クロロ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-トリフルオロメチル-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-シアノ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-フルオロ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-クロロ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-クロロ-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-トリフルオロメチル-5-(メタ)アクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン等が挙げられる。
 また、X1が酸素原子の時は、1-シアノ-5-(メタ)アクリロイルオキシ-3,7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-フルオロ-5-(メタ)アクリロイルオキシ-3,7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-クロロ-5-(メタ)アクリロイルオキシ-3,7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-クロロ-5-(メタ)アクリロイルオキシ-3,7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、1-トリフルオロメチル-5-(メタ)アクリロイルオキシ-3,7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-シアノ-5-(メタ)アクリロイルオキシ-3,7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-フルオロ-5-(メタ)アクリロイルオキシ-3,7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-クロロ-5-(メタ)アクリロイルオキシ-3,7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-クロロ-5-(メタ)アクリロイルオキシ-3,7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン、9-トリフルオロメチル-5-(メタ)アクリロイルオキシ-3,7-ジオキサトリシクロ[4.2.1.04,8]ノナン-2-オン等が挙げられる。
 式(5c)で表される化合物の代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。例えば、8-(メタ)アクリロイルオキシ-4-オキサトリシクロ[5.2.1.02,6]デカン-5-オン、9-(メタ)アクリロイルオキシ-4-オキサトリシクロ[5.2.1.02,6]デカン-5-オン等が挙げられる。
 前記式(3)で示される重合単位に相当する単量体(極性基含有単量体)の代表的な例として、下記式(6)で表される単量体が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 上記式中、環Z2は炭素数6~20の脂環式炭化水素環を示す。Raは前記に同じ。R19は環Z2に結合している置換基であって、同一又は異なって、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、保護基で保護されていてもよいアミノ基、又は保護基で保護されていてもよいスルホン酸基を示す。但し、s個のR19のうち少なくとも1つは、オキソ基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、保護基で保護されていてもよいアミノ基、又は保護基で保護されていてもよいスルホン酸基を示す。sは1~3の整数を示す。
 環Z2における炭素数6~20の脂環式炭化水素環は単環であっても、縮合環や橋かけ環等の多環であってもよい。代表的な脂環式炭化水素環として、例えば、シクロヘキサン環、シクロオクタン環、シクロデカン環、アダマンタン環、ノルボルナン環、ノルボルネン環、ボルナン環、イソボルナン環、パーヒドロインデン環、デカリン環、パーヒドロフルオレン環(トリシクロ[7.4.0.03,8]トリデカン環)、パーヒドロアントラセン環、トリシクロ[5.2.1.02,6]デカン環、トリシクロ[4.2.2.12,5]ウンデカン環、テトラシクロ[4.4.0.12,5.17,10]ドデカン環などが挙げられる。脂環式炭化水素環には、メチル基等のアルキル基(例えば、C1-4アルキル基など)、トリフルオロメチル基などのハロアルキル基、フッ素原子や塩素原子等のハロゲン原子、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいメルカプト基、オキソ基、保護基で保護されていてもよいカルボキシル基、保護基で保護されていてもよいアミノ基、保護基で保護されていてもよいスルホン酸基などの置換基を有していてもよい。
 式(6)中、R19におけるアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル、オクチル、デシル、ドデシル基などの直鎖状又は分岐鎖状の炭素数1~20程度のアルキル基が挙げられる。保護基で保護されていてもよいアミノ基としては、アミノ基、置換アミノ基(例えば、メチルアミノ、エチルアミノ、プロピルアミノ基等のC1-4アルキルアミノ基など)などが挙げられる。保護基で保護されていてもよいスルホン酸基としては、-SO3e基などが挙げられる。前記Reは水素原子又はアルキル基を示し、アルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル基などの直鎖状又は分岐鎖状の炭素数1~6のアルキル基などが挙げられる。R19における保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいメルカプト基、保護基で保護されていてもよいカルボキシル基は前記と同様である。
 式(6)で表される化合物の代表的な例として下記化合物が挙げられるが、これらに限定されるものではない。1-ヒドロキシ-3-(メタ)アクリロイルオキシアダマンタン、1,3-ジヒドロキシ-5-(メタ)アクリロイルオキシアダマンタン、1-カルボキシ-3-(メタ)アクリロイルオキシアダマンタン、1,3-ジカルボキシ-5-(メタ)アクリロイルオキシアダマンタン、1-カルボキシ-3-ヒドロキシ-5-(メタ)アクリロイルオキシアダマンタン、1-t-ブトキシカルボニル-3-(メタ)アクリロイルオキシアダマンタン、1,3-ビス(t-ブトキシカルボニル)-5-(メタ)アクリロイルオキシアダマンタン、1-t-ブトキシカルボニル-3-ヒドロキシ-5-(メタ)アクリロイルオキシアダマンタン、1-(2-テトラヒドロピラニルオキシカルボニル)-3-(メタ)アクリロイルオキシアダマンタン、1,3-ビス(2-テトラヒドロピラニルオキシカルボニル)-5-(メタ)アクリロイルオキシアダマンタン、1-ヒドロキシ-3-(2-テトラヒドロピラニルオキシカルボニル)-5-(メタ)アクリロイルオキシアダマンタン、1-(メタ)アクリロイルオキシ-4-オキソアダマンタン。
 前記極性基含有単量体のさらに他の例として、例えば、アクリル酸、メタクリル酸、無水マレイン酸、マレイミドなどが挙げられる。
 酸によりアルカリ可溶となる樹脂を構成する重合単位として、前記式(1)~(3)以外にも必要に応じて追加することができる。具体的には、以下のようなビニル系単量体が挙げられる。メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等の置換基を有してもよい直鎖状又は分岐鎖上の炭素数1~20のアルキル基を有する(メタ)アクリル酸エステル化合物、シクロヘキシル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、テトラシクロドデカニル(メタ)アクリレート等の置換基を有してもよい炭素数6~20の脂環式炭化水素基を有する(メタ)アクリル酸エステル化合物、スチレン、α-スチレン、p-メチルスチレン等の置換基を有してもよい芳香族アルケニル化合物、アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物等が挙げられる。
 本発明の酸によりアルカリ可溶となるフォトレジスト用樹脂を構成する重合単位(モノマー単位と同意)として、前記式(1)で示される重合単位の割合は特に限定されないが、ポリマーを構成する全モノマー単位に対して、一般には1~100モル%、好ましくは5~80モル%、さらに好ましくは10~60モル%程度である。また、前記式(2)で示されるラクトン骨格を有する重合単位は、例えば0~95モル%、好ましくは10~90モル%、さらに好ましくは20~60モル%程度である。更に、前記式(3)で示される重合単位の割合は例えば0~70モル%、好ましくは5~60モル%、さらに好ましくは10~50モル%程度である。なを、酸によりアルカリ可溶となるということは、更に詳細に説明すると、光酸発生剤などから生成した酸の作用により、必要に応じて加熱を加えることで保護基が脱離して樹脂がアルカリ現像液などに溶解する性質が発現するというものである。
 本発明は、酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90℃において、30分以上加熱熟成後、細孔径1μm以下のろ材によりろ過することにより非常に安定で均質なフォトレジスト用樹脂溶液の製造方法を見出したものであるが、加熱熟成する温度は通常は30~90℃であるが、好ましくは35~80℃、特に好ましくは40~70℃程度である。加熱温度が30℃より低いと熟成に要する時間が非常に長くなり経済的ではない。また、加熱温度が90℃を超えるとフォトレジスト用樹脂が分解するために好ましくはない。
 本発明おいて、酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液の加熱熟成する時間は、通常は30分以上であるが、好ましくは2時間以上、特に好ましくは4時間以上である。加熱熟成時間が30分に満たないと長期保存安定性が悪くなる。また、加熱熟成時間の上限であるが、特に限定されないものである。長期間それなりの温度で保存後にろ過することでも、本発明の効果を実現することは可能である。
 本発明において、ろ過に使用されるろ材の細孔径は通常1μm以下であるが、好ましくは0.5μm以下、特に好ましくは0.1μm以下である。細孔径が1μmを超えると、樹脂溶液中に存在する粒子が充分に除去できなくなる。なお、ろ材については細孔径が重要であり、その材質は特に限定されるものではない。ろ材の材質として、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、ナイロンなどが挙げられる。
 本発明において、加熱熟成される時の樹脂濃度は、通常は3~40重量%であり、好ましくは3~30重量%、特に好ましくは3~20重量%程度である。樹脂濃度が3重量%未満では、取り扱う溶液の量が多くなり経済的ではない。また、40重量%を超えるとろ過するときにろ過抵抗が大きくなり好適なろ過が出来なくなる。
 本発明のフォトレジスト樹脂溶液を加熱熟成する時に使用される溶媒としては、樹脂を溶解する溶媒であれば特に限定はされないが、レジスト組成物に使用される溶媒を使用することが好ましい。例えば、グリコール系溶媒、エステル系溶媒、ケトン系溶媒、これらの混合溶媒などが挙げられる。これらのなかでも、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸エチル、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン、これらの混合液(例えば、プロピレングリコールモノメチルエーテルアセテート及び/又はプロピレングリコールモノメチルエーテルを少なくとも含む溶媒)が好ましく、特に、プロピレングリコールモノメチルエーテルアセテート単独溶媒、プロピレングリコールモノメチルエーテルアセテートとプロピレングリコールモノメチルエーテルとの混合溶媒、プロピレングリコールモノメチルエーテルアセテートと乳酸エチルとの混合溶媒、プロピレングリコールモノメチルエーテルアセテートとシクロヘキサノンとの混合溶媒などの、少なくともプロピレングリコールモノメチルエーテルアセテートを含む溶媒が好適に用いられる。
 本発明における高分子化合物(酸によりアルカリ可溶となるフォトレジスト用樹脂)を得るに際し、使用される重合方法としては、特に限定はされないが、ラジカル重合が好ましい。モノマー混合物の重合は、溶液重合、塊状重合、懸濁重合、塊状-懸濁重合、乳化重合など、アクリル系ポリマー等を製造する際に用いる慣用の方法により行うことができるが、特に、溶液重合が好適である。さらに、溶液重合のなかでも滴下重合が好ましい。滴下重合は、具体的には、例えば、(i)予め有機溶媒に溶解した単量体溶液と、有機溶媒に溶解した重合開始剤溶液とをそれぞれ調製し、一定温度に保持した有機溶媒中に前記単量体溶液と重合開始剤溶液とを各々滴下する方法、(ii)単量体と重合開始剤とを有機溶媒に溶解した混合溶液を、一定温度に保持した有機溶媒中に滴下する方法、(iii)予め有機溶媒に溶解した単量体溶液と、有機溶媒に溶解した重合開始剤溶液とをそれぞれ調製し、一定温度に保持した前記単量体溶液中に重合開始剤溶液を滴下する方法などの方法により行われる。
 重合開始剤として、ラジカル重合を使用するのであれば、ラジカル重合開始剤としては特に限定されるものではないが、例としてアゾ系化合物、過酸化物系化合物、レドックス系化合物が挙げられ、特にジメチル2,2′-アゾビスイソブチレート、アゾビスイソブチロニトリル、2,2′-アゾビス(2-メチルブチロニトリル)、t-ブチルパーオキシピバレート、ジ-t-ブチルパーオキシド、イソ-ブチリルパーオキシド、ラウロイルパーオキサイド、スクシン酸パーオキシド、ジシンナミルパーオキシド、ジ-n-プロピルパーオキシジカーボネート、t-ブチルパーオキシアリルモノカーボネート、過酸化ベンゾイル、過酸化水素、過硫酸アンモニウム等が好ましい。
 重合溶媒としては公知の溶媒を使用でき、例えば、エーテル(ジエチルエーテル、プロピレングリコールモノメチルエーテル等グリコールエーテル類などの鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテルなど)、エステル(酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテルエステル類など)、ケトン(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、アミド(N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなど)、スルホキシド(ジメチルスルホキシドなど)、アルコール(メタノール、エタノール、プロパノールなど)、炭化水素(ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン等の脂肪族炭化水素、シクロヘキサン等の脂環式炭化水素など)、これらの混合溶媒などが挙げられる。重合温度は、例えば30~150℃程度の範囲で適宜選択できる。
 重合により得られたポリマーは、沈殿又は再沈殿により精製できる。沈殿又は再沈殿溶媒は有機溶媒及び水の何れであってもよく、また混合溶媒であってもよい。沈殿又は再沈殿溶媒として用いる有機溶媒として、例えば、炭化水素(ペンタン、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサンなどの脂環式炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素)、ハロゲン化炭化水素(塩化メチレン、クロロホルム、四塩化炭素などのハロゲン化脂肪族炭化水素;クロロベンゼン、ジクロロベンゼンなどのハロゲン化芳香族炭化水素など)、ニトロ化合物(ニトロメタン、ニトロエタンなど)、ニトリル(アセトニトリル、ベンゾニトリルなど)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタンなどの鎖状エーテル;テトラヒドロフラン、ジオキサンなどの環状エーテル)、ケトン(アセトン、メチルエチルケトン、ジイソブチルケトンなど)、エステル(酢酸エチル、酢酸ブチルなど)、カーボネート(ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネートなど)、アルコール(メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノールなど)、カルボン酸(酢酸など)、これらの溶媒を含む混合溶媒等が挙げられる。
 中でも、前記沈殿又は再沈殿溶媒として用いる有機溶媒として、少なくとも炭化水素(特に、ヘキサンなどの脂肪族炭化水素)を含む溶媒が好ましい。このような少なくとも炭化水素を含む溶媒において、炭化水素(例えば、ヘキサンなどの脂肪族炭化水素)と他の溶媒との比率は、例えば前者/後者(体積比;25℃)=10/90~99/1、好ましくは前者/後者(体積比;25℃)=30/70~98/2、さらに好ましくは前者/後者(体積比;25℃)=50/50~97/3程度である。
 高分子化合物の重量平均分子量(Mw)は、例えば1000~500000程度、好ましくは3000~50000程度であり、分子量分布(Mw/Mn)は、例えば1.2~2.5程度である。なお、前記Mnは数平均分子量を示し、Mn、Mwともにポリスチレン換算の値である。
 上記高分子化合物は、耐薬品性等の安定性が高く、有機溶剤に対する溶解性に優れ、しかも加水分解性及び加水分解後の水に対する溶解性に優れるため、種々の分野における高機能性ポリマーとして使用できる。
 本発明のフォトレジスト用樹脂溶液の製造方法においては、酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90℃において、30分以上加熱熟成する工程は、上記のように重合反応し、重合溶液を貧溶媒中へ添加沈殿させ、生成した沈殿をろ過(濾別)後、有機溶媒に溶解し、貧溶媒を留去後実施するのが好ましい。
 本発明のフォトレジスト組成物は、例えば上記の方法で製造されたフォトレジスト用樹脂(高分子化合物)と光酸発生剤とレジスト用溶剤とを含む。フォトレジスト組成物は、例えば、上記のようにして得られるフォトレジスト用樹脂溶液に光酸発生剤を添加することにより調製できる。
 光酸発生剤としては、露光により効率よく酸を生成する慣用乃至公知の化合物、例えば、ジアゾニウム塩、ヨードニウム塩(例えば、ジフェニルヨードヘキサフルオロホスフェートなど)、スルホニウム塩(例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムメタンスルホネートなど)、スルホン酸エステル[例えば、1-フェニル-1-(4-メチルフェニル)スルホニルオキシ-1-ベンゾイルメタン、1,2,3-トリスルホニルオキシメチルベンゼン、1,3-ジニトロ-2-(4-フェニルスルホニルオキシメチル)ベンゼン、1-フェニル-1-(4-メチルフェニルスルホニルオキシメチル)-1-ヒドロキシ-1-ベンゾイルメタンなど]、オキサチアゾール誘導体、s-トリアジン誘導体、ジスルホン誘導体(ジフェニルジスルホンなど)、イミド化合物、オキシムスルホネート、ジアゾナフトキノン、ベンゾイントシレートなどを使用できる。これらの光酸発生剤は単独で又は2種以上組み合わせて使用できる。
 光酸発生剤の使用量は、光照射により生成する酸の強度やポリマー(フォトレジスト用樹脂)における各繰り返し単位の比率などに応じて適宜選択でき、例えば、ポリマー100重量部に対して0.1~30重量部、好ましくは1~25重量部、さらに好ましくは2~20重量部程度の範囲から選択できる。
 レジスト用溶剤としては、前記重合溶媒として例示したグリコール系溶媒、エステル系溶媒、ケトン系溶媒、これらの混合溶媒などが挙げられる。これらのなかでも、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン、これらの混合液が好ましく、特に、プロピレングリコールモノメチルエーテルアセテート単独溶媒、プロピレングリコールモノメチルエーテルアセテートとプロピレングリコールモノメチルエーテルとの混合溶媒、プロピレングリコールモノメチルエーテルアセテートと乳酸エチルとの混合溶媒、プロピレングリコールモノメチルエーテルアセテートとシクロヘキサノンとの混合溶媒などの、少なくともプロピレングリコールモノメチルエーテルアセテートを含む溶媒が好適に用いられる。
 フォトレジスト組成物中のポリマー濃度は、例えば、3~40重量%程度である。フォトレジスト組成物は、アルカリ可溶性樹脂(例えば、ノボラック樹脂、フェノール樹脂、イミド樹脂、カルボキシル基含有樹脂など)などのアルカリ可溶成分、着色剤(例えば、染料など)などを含んでいてもよい。
 こうして得られるフォトレジスト組成物を基材又は基板上に塗布し、乾燥した後、所定のマスクを介して、塗膜(レジスト膜)に光線を露光して(又は、さらに露光後ベークを行い)潜像パターンを形成し、次いで現像することにより、微細なパターンを高い精度で形成できる。
 基材又は基板としては、シリコンウエハ、金属、プラスチック、ガラス、セラミックなどが挙げられる。フォトレジスト組成物の塗布は、スピンコータ、ディップコータ、ローラコータなどの慣用の塗布手段を用いて行うことができる。塗膜の厚みは、例えば0.05~20μm、好ましくは0.1~2μm程度である。
 露光には、種々の波長の光線、例えば、紫外線、X線などが利用でき、半導体レジスト用では、通常、g線、i線、エキシマレーザー(例えば、XeCl、KrF、KrCl、ArF、ArClなど)などが使用される。露光エネルギーは、例えば1~1000mJ/cm2、好ましくは10~500mJ/cm2程度である。
 光照射により光酸発生剤から酸が生成し、この酸により、例えばフォトレジスト用樹脂の酸の作用によりアルカリ可溶となる繰り返し単位(酸脱離性基を有する繰り返し単位)のカルボキシル基等の保護基(脱離性基)が速やかに脱離して、可溶化に寄与するカルボキシル基等が生成する。そのため、水又はアルカリ現像液による現像(アルカリ溶解)により、所定のパターンを精度よく形成できる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。ポリマーの重量平均分子量(Mw)及び数平均分子量(Mn)は、屈折率系(RI)を用い、テトラヒドロフラン溶媒を用いたGPC測定により求めた標準ポリスチレン換算値を示す。GPCは、昭和電工株式会社製カラム「KF-806L」を3本直列につないだものを使用し、カラム温度40℃、RI温度40℃、テトラヒドロフラン流速0.8ml/分の条件で行った。
 実施例1
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000007
 還流管、撹拌子、3方コック、温度計を備えた丸底フラスコに、窒素雰囲気下、プロピレングリコールモノメチルエーテルアセテート(PGMEA)35.7g、及びプロピレングリコールモノメチルエーテル(PGME)23.8gを入れて温度を80℃に保ち、撹拌しながら、2-メチル-2-メタクリロイルオキシアダマンタン12.23g、5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン11.60g、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン6.17g、ジメチル2,2′-アゾビスイソブチレート[和光純薬工業(株)製、商品名「V-601」]1.80g、PGMEA66.3g及びPGME44.2gを混合したモノマー溶液を6時間かけて一定速度で滴下した。滴下終了後、さらに2時間撹拌を続けた。重合反応終了後、得られた反応溶液を孔径0.1μmのフィルターでろ過した後、該反応溶液の7倍量のヘキサンと酢酸エチルの9:1(体積比;25℃)混合液中に撹拌しながら滴下した。生じた沈殿物を濾別し、得られた湿結晶を固形分15重量%となるようにプロピレングリコールモノメチルエーテルアセテート(PGMEA)を添加し、撹拌して溶解した。得られた溶液を20torr(=2.67Pa)の圧力で濃縮した。固形分が約40重量%となった時点で濃縮を停止し、PGMEA及びPGMEを添加して、ポリマー濃度10重量%のPGMEA/PGME(重量比6/4)溶液を調製した。この溶液を60℃で8時間加熱し25℃まで空冷した後に、孔径0.1μmのフィルターでろ過することによりポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が8900、分子量分布(Mw/Mn)が1.90であった。
 実施例2
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000008
 実施例1の3つのモノマーを1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン12.89g、5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン10.92g、1,3-ジヒドロキシ-5-メタクリロイルオキシアダマンタン6.20gへ変更した以外は実施例1と同様な操作を行い、ポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が8500、分子量分布(Mw/Mn)が1.87であった。
 実施例3
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000009
 実施例1の3つのモノマーを1-(1-メタクリロイルオキシ-1-メチルエチル)シクロヘキサン11.29g、5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン11.94g、1,3-ジヒドロキシ-5-メタクリロイルオキシアダマンタン6.77gへ変更した以外は実施例1と同様な操作を行い、ポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が9100、分子量分布(Mw/Mn)が1.95であった。
 実施例4
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000010
 実施例1の3つのモノマーを1-(1-メタクリロイルオキシ-1-メチルエチル)シクロヘキサン11.45g、5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン12.11g、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン6.44gへ変更した以外は実施例1と同様な操作を行い、ポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が9400、分子量分布(Mw/Mn)が1.98であった。
 実施例5
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000011
 実施例1の3つのモノマーを1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン12.52g、1-フロロ-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン11.46g、1,3-ジヒドロキシ-5-メタクリロイルオキシアダマンタン6.02gへ変更した以外は実施例1と同様な操作を行い、ポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が8300、分子量分布(Mw/Mn)が1.83であった。
 実施例6
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000012
 実施例1の3つのモノマーを1-(1-メタクリロイルオキシ-1-メチルエチル)シクロヘキサン10.94g、1-フロロ-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン12.50g、1,3-ジヒドロキシ-5-メタクリロイルオキシアダマンタン6.56gへ変更した以外は実施例1と同様な操作を行い、ポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が8800、分子量分布(Mw/Mn)が1.85であった。
 実施例7
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000013
 実施例1の3つのモノマーを1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン11.59g、1-トリフロロメチル-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン12.83g、1,3-ジヒドロキシ-5-メタクリロイルオキシアダマンタン5.58gへ変更した以外は実施例1と同様な操作を行い、ポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が7800、分子量分布(Mw/Mn)が1.79であった。
 実施例8
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000014
 実施例1の3つのモノマーを1-(1-メタクリロイルオキシ-1-メチルエチル)-3-メチルシクロヘキサン10.50g、1-トリフロロメチル-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン13.59g、1,3-ジヒドロキシ-5-メタクリロイルオキシアダマンタン5.91gへ変更した以外は実施例1と同様な操作を行い、ポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が8000、分子量分布(Mw/Mn)が1.81であった。
 実施例9
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000015
 実施例1の3つのモノマーを2-メチル-2-メタクリロイルオキシアダマンタン11.72g、1-シアノ-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン12.37g、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン5.91gへ変更した以外は実施例1と同様な操作を行い、ポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が8700、分子量分布(Mw/Mn)が1.82であった。
 実施例10
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000016
 実施例1の3つのモノマーを1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン12.38g、1-シアノ-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン11.67g、1,3-ジヒドロキシ-5-メタクリロイルオキシアダマンタン5.95gへ変更した以外は実施例1と同様な操作を行い、ポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が8100、分子量分布(Mw/Mn)が1.80であった。
 実施例11
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000017
 実施例1の3つのモノマーを1-(1-メタクリロイルオキシ-1-メチルエチル)シクロヘキサン10.81g、1-シアノ-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン12.71g、1,3-ジヒドロキシ-5-メタクリロイルオキシアダマンタン6.48gへ変更した以外は実施例1と同様な操作を行い、ポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が8900、分子量分布(Mw/Mn)が1.88であった。
 実施例12
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000018
 実施例1の3つのモノマーを1-(1-メタクリロイルオキシ-1-メチルエチル)シクロヘキサン10.96g、1-シアノ-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン12.89g、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン6.16gへ変更した以外は実施例1と同様な操作を行い、ポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が9100、分子量分布(Mw/Mn)が1.91であった。
 実施例13
 下記高分子化合物の合成
Figure JPOXMLDOC01-appb-C000019
 実施例1の3つのモノマーを1-(1-メタクリロイルオキシ-1-メチルエチル)-3-メチルシクロヘキサン11.26g、1-シアノ-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン12.41g、1,3-ジヒドロキシ-5-メタクリロイルオキシアダマンタン6.33gへ変更した以外は実施例1と同様な操作を行い、ポリマー溶液を得た。得られたポリマーをGPC分析したところ、Mw(重量平均分子量)が8800、分子量分布(Mw/Mn)が1.88であった。
 比較例1-13
 実施例の番号に対応した比較例について、実施例における60℃、8時間の加熱処理を行わない以外は実施例と同様の操作を行った。
 ろ過性評価試験
 実施例および比較例で得られたポリマー溶液を、固形分濃度5重量%、溶媒組成PGMEA/PGME(重量比6/4)になるように調製し、1日間および10日間25℃で放置した。その後、調整したポリマー溶液50gを、孔径0.02μm のフィルターを装着したステンレスホルダー(アドバンテック東洋製、KST-47)に入れ、0.15MPaの圧力でろ過し、その性能を評価した。
 ろ過性の結果は表1に示した。ポリマー溶液が詰まりなくろ過できたものは○、途中詰まってろ過できなくなるものは×で示した。
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、均一なパターン形成を可能とするろ過性の良好なフォトレジスト組成物が提供される。また、長期的に安定なフォトレジスト用樹脂溶液、つまり長期間保管してもろ過性能が低下しないフォトレジスト用樹脂溶液が提供される。

Claims (10)

  1.   酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90℃において、30分以上加熱熟成後、細孔径1μm以下のろ材によりろ過することを特徴とするフォトレジスト用樹脂溶液の製造方法。
  2.  酸によりアルカリ可溶となるフォトレジスト用樹脂が重合単位として、少なくとも下記式(1)
    Figure JPOXMLDOC01-appb-C000020
    (式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、R1は酸により脱離可能な保護基を示す。)
    を含むことを特徴とする請求項1記載のフォトレジスト用樹脂溶液の製造方法。
  3.  酸によりアルカリ可溶となるフォトレジスト用樹脂が重合単位として、少なくとも下記式(2)
    Figure JPOXMLDOC01-appb-C000021
    (式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、R2はラクトン骨格を含む炭素数4~20の基を示す。)
    を含むことを特徴とする請求項1記載のフォトレジスト用樹脂溶液の製造方法。
  4.  酸によりアルカリ可溶となるフォトレジスト用樹脂が重合単位として、少なくとも下記式(3)
    Figure JPOXMLDOC01-appb-C000022
    (式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、R3は極性基を有する脂環式骨格を含む炭素数4~20の基を示す。)
    を含むことを特徴とする請求項1記載のフォトレジスト用樹脂溶液の製造方法。
  5.  酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90℃において、30分以上加熱熟成する工程は、重合反応し、重合溶液を貧溶媒中へ添加沈殿させ、生成した沈殿をろ過後、有機溶媒に溶解し、貧溶媒を留去後実施することを特徴とする請求項1記載のフォトレジスト用樹脂溶液の製造方法。
  6.  酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液に使用される溶媒が、少なくともプロピレングリコールモノメチルエーテルアセテート(PGMEA)および/またはプロピレングリコールモノメチルエーテル(PGME)を含むことを特徴とする請求項1記載のフォトレジスト用樹脂溶液の製造方法。
  7.  酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90℃において、30分以上加熱熟成する工程で、溶液の固形分濃度が3~40重量%であることを特徴とする請求項1記載のフォトレジスト用樹脂溶液の製造方法。
  8.  酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90℃において、30分以上加熱熟成後、細孔径1μm以下のろ材によりろ過されたフォトレジスト用樹脂溶液。
  9.  酸によりアルカリ可溶となるフォトレジスト用樹脂を含む溶液を30~90℃において、30分以上加熱熟成後、細孔径1μm以下のろ材によりろ過された請求項8記載のフォトレジスト用樹脂溶液に、更に光酸発生剤を含有させたフォトレジスト組成物。
  10.  請求項9記載のフォトレジスト組成物を基板に塗布し、露光後、アルカリ溶解を少なくとも含む工程によりパターンを形成することを特徴とするパターン形成方法。
PCT/JP2009/000126 2009-01-15 2009-01-15 フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法 WO2010082232A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117016465A KR20110106882A (ko) 2009-01-15 2009-01-15 포토레지스트용 수지 용액의 제조 방법, 포토레지스트 조성물 및 패턴 형성 방법
PCT/JP2009/000126 WO2010082232A1 (ja) 2009-01-15 2009-01-15 フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法
US13/132,375 US8753793B2 (en) 2009-01-15 2009-01-15 Method for producing resin solution for photoresist, photoresist composition, and pattern-forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000126 WO2010082232A1 (ja) 2009-01-15 2009-01-15 フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法

Publications (1)

Publication Number Publication Date
WO2010082232A1 true WO2010082232A1 (ja) 2010-07-22

Family

ID=42339502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000126 WO2010082232A1 (ja) 2009-01-15 2009-01-15 フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法

Country Status (3)

Country Link
US (1) US8753793B2 (ja)
KR (1) KR20110106882A (ja)
WO (1) WO2010082232A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060012B2 (ja) * 2013-03-15 2017-01-11 富士フイルム株式会社 パターン形成方法、及び、電子デバイスの製造方法
US10242871B2 (en) * 2014-10-21 2019-03-26 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition including a compound having an amino group protected with a tert-butoxycarbonyl group

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256565A (ja) * 1993-03-03 1994-09-13 Sumitomo Chem Co Ltd 感放射線性樹脂組成物の調製法
JPH0774073A (ja) * 1991-10-07 1995-03-17 Fuji Photo Film Co Ltd 不純金属成分の低減された感電離放射線性樹脂組成物の製造方法
JP2001125269A (ja) * 1999-10-28 2001-05-11 Fuji Photo Film Co Ltd 化学増幅型レジスト組成物、その調製方法及びそれを用いたパターン形成方法
JP2002502055A (ja) * 1998-02-02 2002-01-22 クラリアント・インターナシヨナル・リミテッド 粒子形成傾向の低下したフォトレジスト組成物の製造方法
JP2002268235A (ja) * 2001-03-07 2002-09-18 Nippon Zeon Co Ltd レジスト組成物の調製方法
JP2004199019A (ja) * 2002-10-25 2004-07-15 Fuji Photo Film Co Ltd レジスト組成物の製造方法
JP2006126818A (ja) * 2004-09-28 2006-05-18 Sumitomo Chemical Co Ltd 化学増幅型レジスト組成物
JP2007034049A (ja) * 2005-07-28 2007-02-08 Fujifilm Corp 化学増幅型レジスト組成物及びその製造方法
JP2009037108A (ja) * 2007-08-03 2009-02-19 Daicel Chem Ind Ltd フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152714A (ja) 1995-11-29 1997-06-10 Hitachi Chem Co Ltd 感光性樹脂組成物及びレジスト像の製造法
JP2000231200A (ja) 1999-02-10 2000-08-22 Mitsubishi Chemicals Corp フォトレジスト組成物
JP3963624B2 (ja) 1999-12-22 2007-08-22 富士フイルム株式会社 遠紫外線露光用ポジ型フォトレジスト組成物
JP2001215704A (ja) * 2000-01-31 2001-08-10 Sumitomo Chem Co Ltd 化学増幅型ポジ型レジスト組成物
JP4929552B2 (ja) 2000-10-30 2012-05-09 住友化学株式会社 固体樹脂の製造方法
US6664023B2 (en) * 2001-03-13 2003-12-16 International Business Machines Corporation Controlled aging of photoresists for faster photospeed
JP2002278053A (ja) * 2001-03-16 2002-09-27 Fuji Photo Film Co Ltd ポジ型フォトレジスト組成物
JP3759526B2 (ja) 2003-10-30 2006-03-29 丸善石油化学株式会社 半導体リソグラフィー用共重合体の製造方法
KR20060051603A (ko) 2004-09-28 2006-05-19 스미또모 가가꾸 가부시키가이샤 화학 증폭 레지스트 조성물
JP5022594B2 (ja) 2005-12-06 2012-09-12 株式会社ダイセル フォトレジスト用樹脂溶液及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774073A (ja) * 1991-10-07 1995-03-17 Fuji Photo Film Co Ltd 不純金属成分の低減された感電離放射線性樹脂組成物の製造方法
JPH06256565A (ja) * 1993-03-03 1994-09-13 Sumitomo Chem Co Ltd 感放射線性樹脂組成物の調製法
JP2002502055A (ja) * 1998-02-02 2002-01-22 クラリアント・インターナシヨナル・リミテッド 粒子形成傾向の低下したフォトレジスト組成物の製造方法
JP2001125269A (ja) * 1999-10-28 2001-05-11 Fuji Photo Film Co Ltd 化学増幅型レジスト組成物、その調製方法及びそれを用いたパターン形成方法
JP2002268235A (ja) * 2001-03-07 2002-09-18 Nippon Zeon Co Ltd レジスト組成物の調製方法
JP2004199019A (ja) * 2002-10-25 2004-07-15 Fuji Photo Film Co Ltd レジスト組成物の製造方法
JP2006126818A (ja) * 2004-09-28 2006-05-18 Sumitomo Chemical Co Ltd 化学増幅型レジスト組成物
JP2007034049A (ja) * 2005-07-28 2007-02-08 Fujifilm Corp 化学増幅型レジスト組成物及びその製造方法
JP2009037108A (ja) * 2007-08-03 2009-02-19 Daicel Chem Ind Ltd フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法

Also Published As

Publication number Publication date
US20110244394A1 (en) 2011-10-06
KR20110106882A (ko) 2011-09-29
US8753793B2 (en) 2014-06-17

Similar Documents

Publication Publication Date Title
JP4355011B2 (ja) 液浸リソグラフィー用共重合体及び組成物
JP5588095B2 (ja) 半導体リソグラフィー用共重合体とその製造方法
JP5631550B2 (ja) フォトレジスト用共重合体の製造方法
JP5030474B2 (ja) 半導体リソグラフィー用樹脂組成物
JP4976229B2 (ja) フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法
JP5914241B2 (ja) 高分子化合物の製造方法、高分子化合物、及びフォトレジスト用樹脂組成物
JP5107089B2 (ja) 液浸用フォトレジスト高分子化合物及び組成物
JP5308660B2 (ja) 半導体リソグラフィー用重合体の製造方法
WO2010082232A1 (ja) フォトレジスト用樹脂溶液の製造方法、フォトレジスト組成物およびパターン形成方法
JP5138234B2 (ja) 半導体リソグラフィー用樹脂の製造方法
JP2010150447A (ja) ラクトン骨格を含む単量体、高分子化合物及びフォトレジスト組成物
JP5743858B2 (ja) 低分子量レジスト用共重合体の製造方法
JP2008106084A (ja) 半導体リソグラフィー用共重合体、組成物並びに該共重合体の製造方法
JP5653583B2 (ja) 半導体リソグラフィー用共重合体の製造方法
JP5085263B2 (ja) フォトレジスト用高分子化合物及びフォトレジスト組成物
JP5384421B2 (ja) 半導体リソグラフィー用共重合体の製造方法
JP5553488B2 (ja) リソグラフィー用重合体並びにその製造方法
WO2014002810A1 (ja) 高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法
JP7236830B2 (ja) 単量体、フォトレジスト用樹脂、フォトレジスト用樹脂組成物、及びパターン形成方法
JP5207878B2 (ja) リソグラフィー用重合体の製造方法、及びパターン形成方法
JP5562651B2 (ja) 化学増幅型フォトレジスト用樹脂及びその製造方法
WO2009113228A1 (ja) ラクトン骨格を含む単量体、高分子化合物及びフォトレジスト組成物
JP5250495B2 (ja) フォトレジスト用共重合体の製造法
JP2007269898A (ja) 樹脂の精製方法
JP2008019366A (ja) 半導体レジスト樹脂の保護膜用樹脂及び半導体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13132375

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117016465

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09838202

Country of ref document: EP

Kind code of ref document: A1