WO2010081910A2 - Verfahren zur herstellung von carbonitriden über polykondensations- bzw. sol-gel-verfahren unter verwendung wasserstoff-freier isocyanate - Google Patents

Verfahren zur herstellung von carbonitriden über polykondensations- bzw. sol-gel-verfahren unter verwendung wasserstoff-freier isocyanate Download PDF

Info

Publication number
WO2010081910A2
WO2010081910A2 PCT/EP2010/050574 EP2010050574W WO2010081910A2 WO 2010081910 A2 WO2010081910 A2 WO 2010081910A2 EP 2010050574 W EP2010050574 W EP 2010050574W WO 2010081910 A2 WO2010081910 A2 WO 2010081910A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nitride
hydrogen
coating
free
isocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2010/050574
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2010081910A3 (de
Inventor
Carsten Ludwig Schmidt
Martin Jansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften
Priority to US13/144,964 priority Critical patent/US20120015194A1/en
Priority to JP2011545763A priority patent/JP2012515135A/ja
Priority to EP10701004A priority patent/EP2379448A2/de
Publication of WO2010081910A2 publication Critical patent/WO2010081910A2/de
Publication of WO2010081910A3 publication Critical patent/WO2010081910A3/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • C01P2006/37Stability against thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a process for the preparation of hydrogen-free carbon nitrides, in particular carbon nitrides of stoichiometry C 3 N 4 .
  • the synthesis is carried out using
  • Hydrogen-free starting materials namely inorganic isocyanates, which split off exclusively by thermal treatment of CO 2 .
  • a way is proposed to provide carbonitrides inexpensively and efficiently, conveniently in the form of powders or coatings.
  • Li + and Cl can be intercalated, Si catalyses graphitization, S is incorporated into the network, etc.
  • the presence of hydrogen is to be considered a major impediment to the provision of a clean, reproducible, and defined carbonitride.
  • halotriazines are reacted with substituted carbodiimides.
  • hydrogen-containing samples are obtained which can be confirmed by means of elemental analysis or IR spectroscopy (bands at 3130 cm -1 and 3077 cm -1 ).
  • the complete absence of halogens or silicon is not ensured.
  • the product is sensitive to moisture, which can not be reconciled with a pure C 3 N 4 .
  • only powders are obtained in this way, coatings are not accessible.
  • the stated object has been achieved by a process for the preparation of a carbon nitride comprising the steps of (i) providing an i5 hydrogen-free, inorganic isocyanate and (ii) thermal treatment of the hydrogen-free, inorganic isocyanate, this by CO 2 -Abstratation in a Carbon Nitride is transferred.
  • a carbon nitride can be obtained, which contains a proportion of hydrogen, based on the total weight of the
  • Such a hydrogen-free carbon nitride is obtained according to the invention by using as starting material a hydrogen-free inorganic isocyanate. Furthermore, it was found according to the invention 30 that such hydrogen-free inorganic isocyanates are converted by thermal treatment under CO 2 -Abstratation in a carbon nitride. The absence of hydrogen in the product is thus ensured according to the invention by using hydrogen-free starting materials.
  • the thermal treatment preferably takes place under protective gas, for example under argon or nitrogen. Only CO 2 is split off.
  • the thermal treatment is preferably carried out at a temperature of up to 500 ° C., more preferably up to 470 ° C., even more preferably up to 450 ° C.
  • the starting material is preferably at a temperature of at least 200 ° C., more preferably at least 300 0 C and even more preferably at least 400 0 C treated.
  • a carbon nitride is a dense, three-dimensionally highly crosslinked inorganic macromolecule, which is preferably present in the form of a powder or a coating.
  • the carbon nitride is composed exclusively of the atoms C and N.
  • the stoichiometry is CNi, 3 3 (corresponding to C 3 N 4 ).
  • the batch is preferably at certain intervals, for example every 6 h to 10 h, in particular every 8 h, cooled and crushed, eg mortared, in order to complete as much as possible guarantee.
  • the total duration of the polycondensation is between 8 and 24 h.
  • the condensation can be carried out up to a temperature of 500 0 C.
  • a maximum of 475 ° C. and more preferably a maximum of 450 ° C. are preferred. Higher temperatures require the use of high-pressure conditions (p> 1 atm).
  • the polycondensation may also be carried out simultaneously or in suitable solvent or dispersing agents, for example, high-boiling liquid solvents (preferably having a boiling point> 130 0 C), ionic liquids, molten salt, etc. However, this is not preferred.
  • the polycondensation can be carried out under reduced pressure. But this is not preferred.
  • the thermal treatment is carried out according to the invention preferably in the presence of a catalytic amount of mercury.
  • the thermal treatment is particularly preferably carried out on a mercury contact under a protective gas atmosphere.
  • a preferred embodiment of the reaction is the reaction of the pure, solid isocyanates at the mercury (Hg) contact under an atmosphere of dry nitrogen in a closed vessel (autoclave, glass ampoule, etc.).
  • a further preferred embodiment consists in the dispersion of the isocyanate in an organic solvent, in particular in a polar aprotic solvent. Particularly preferred are as solvents
  • the solvent is evaporated and compacted the deposited inorganic macromolecule, in particular under protective gas, such as N 2 .
  • isocyanate-based educts Hydrogen-free representatives from which by CO 2 -Abstratation a solid of the empirical formula "C 3 N 4 " results This includes, for example, molecular, monomeric isocyanates, such as cyanogen isocyanate, tris isocyanato-s-triazine or resulting oligomers (associates) and macromolecular polyisocyanates (C 2 N 2 O) x or [(C 3 N 3 ) (NCO) 3 ] X, where x is an integer from 1 to 500, in particular from 3 to 100, preferably from 5 to 50, and most preferably from 10 to 40.
  • molecular, monomeric isocyanates such as cyanogen isocyanate, tris isocyanato-s-triazine or resulting oligomers (associates) and macromolecular polyisocyanates (C 2 N 2 O) x or [(C 3 N 3 ) (NCO) 3 ] X, where
  • polystyrene foam is preferred, the use of polymeric (C 2 N 2 O) x being particularly preferred.
  • the starting materials are known to be sensitive to moisture and are thus handled under protective gas conditions for the provision and warranty as well as working with suitable shielding gases are known in the art.
  • Suitable elements for this purpose are, for example, Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, B, Al, Ga, In, Si, Ge, Sn, Pb, P, Cu, Ag, Au, Zn Isocyanates of the elements are accessible by known metathesis reactions. Preference is given to the reaction of CICN with elemental isocyanates, the reaction of CICN with AgNCO being particularly preferred.
  • Another possibility is the thermal decomposition of CuNCO (copper isocyanate) or AgNCO (silver isocyanate) under vacuum conditions.
  • CuNCO copper isocyanate
  • AgNCO silver isocyanate
  • Another possibility is the reaction of cyanamide with carbonylbisimidazole (Staabs reagent).
  • [(C 3 N 3 ) (NCO) 3 ] x can be prepared by reacting C 3 N 3 Cl 3 (cyanuric chloride) with AgNCO 1 or by reacting C 3 N 3 (NHb) 3 (melamine) with oxalyl chloride or phosgene , Preference is given to the thermal decomposition of the corresponding acyl azide via thermally-induced Lossen rearrangement.
  • the (polymeric) isocyanates represented in this way are moisture-sensitive compounds. They can be uniquely characterized by IR, UV, MS, NMR and elemental analysis. Particularly meaningful are the
  • the preferred thermal process of this invention is to ensure an ideally complete CO 2 abstraction while inhibiting thermal fragmentation of the resulting carbonitride.
  • the starting material isocyanate, for example, the yellow powder (C 2 N 2 O) x , advantageously in a reaction chamber, for example, in a heated glass ampule filled and this sealed under inert gas, for example nitrogen.
  • a reaction chamber for example, in a heated glass ampule filled and this sealed under inert gas, for example nitrogen.
  • inert gas for example nitrogen.
  • a steel Autoclave can be used. The closed conditions prevent the sublimation of lower oligomers of the polyisocyanate and thus the change in the total stoichiometry. Since the CO 2 formed can not be removed efficiently, it is necessary to interrupt the thermolysis at least once, to open the reaction space and to allow the CO 2 to escape.
  • the solid is then homogenized mechanically and again subjected to thermolysis under protective gas, for example under N 2 , in a closed system.
  • protective gas for example under N 2
  • the polycondensation is interrupted twice. Particularly preferably three times.
  • the reaction, carried out at a maximum of 500 0 C, is completed after 24 h at the latest.
  • the density of the resulting C 3 N 4 is 2.0 g / cm 3 to 2.3 g / cm 3 , especially 2.0 g / cm 3
  • a catalytic amount of elemental mercury for example a drop of elemental mercury, is added to the isocyanate, in particular to the polyisocyanate (C 2 N 2 O) x , and the thermolysis is carried out as described.
  • the drop is removed mechanically and the powder at 150 0 C to 250 0 C, in particular at 200 0 C, heated in vacuo.
  • the density is 2.0 g / cm 3 to 2.3 g / cm 3 , in particular 2.3 g / cm 3 .
  • the carbon nitride obtainable according to the invention thus preferably has a density of at least 2.0 g / cm 3 , more preferably of at least 2.1 g / cm 3 , even more preferably of at least 2.2 g / cm 3, and most preferably of at least 2 , 3 g / cm 3 .
  • High density networks are a prerequisite for the preparation of crystalline variants of C 3 N 4 by high pressure techniques.
  • the known amorphous CN networks have a density ⁇ 2.0 g / cm 3 .
  • the inventive route represents a significant improvement in the synthesis of amorphous CN networks.
  • the inorganic isocyanate is dispersed in a solvent of suitable polarity.
  • a solvent of suitable polarity This is preferably carried out by polymerization of molecular isocyanates which oligomerize in suitable solvents and optionally form lyophilic colloids.
  • the coating may be prepared by known methods, e.g. optionally by spraying, dipping or spinning, applied to substrates. Even brushing or brushing are possible.
  • Suitable substrates are e.g. Glasses and ceramics as well as metals.
  • the resulting brown powder is not appreciably hydrolysis-sensitive.
  • the connection is an electrical insulator.
  • a scanning electron micrograph shows the presence of an amorphous network with a macroporous microstructure.
  • the elemental analysis gives the following values: [calculated for C 3 N 4 ]: C: 39.06 wt%, [39.14 wt%]; N: 59.21 wt%, [60.86 wt%]; O: 1.73 wt% [0.0 wt%]).
  • the carbon nitride obtainable in accordance with the present invention preferably consists exclusively of C and N and is especially free of H, Hal (e.g., F, Cl, Br, J), Si, O, S, and alkali metals.
  • the carbon nitride each has less than 2 wt .-%, in particular less than 1 wt .-%, preferably less than 0.1 wt .-% of each of these elements, based on the total weight, on.
  • the C 3 N 4 can be thermally controlled to a lower carbonitride CN x (x ⁇ 1.33) or completely degraded to carbon. This is conveniently achieved by suitable heating under N 2 at temperatures> 450 0 C. This controlled degradation allows the realization of different CN X layers (0 ⁇ x ⁇ 1.33).
  • the thermal decomposition preferably takes place between 500 D C and 600 0 C.
  • the carbon nitride according to the invention in particular C 3 N 4 , at temperatures> 475 0 C controlled in a carbonitride of the form CN x , where x ⁇ 1, 33, are transferred and in particular controlled at temperatures> 475 0 C in pure carbon ,
  • Figure 1 shows the IR spectrum of a C 3 N 4 polymer according to the invention, which was cured at 400 0 C.
  • Cyanamide is reacted with Staabs reagent (carbonylbisimidazole) (1: 1) in acetonitrile. C 2 N 2 O is suspended in acetonitrile and imidazole. The solvents are removed in a dynamic vacuum.
  • Staabs reagent carbonylbisimidazole
  • Colorless C 2 N 2 O is dispersed in acetonitrile (1 g on 10 g of solvent). The result is a bright yellow clear solution.
  • the solution is slowly concentrated until an orange viscous dispersion is formed. With suitable viscosity, the solution can be used for coating processes. Glass panes (cleaned and degreased) are dipped in the solution, wetted for 30 seconds and withdrawn at a controlled rate. The film is dried at RT under inert gas. If necessary, the coating process is repeated.
  • the substrates coated in this way are slowly heated to 450 ° C. under flowing N 2 . This results in brown, grip-proof coatings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Carbon And Carbon Compounds (AREA)
PCT/EP2010/050574 2009-01-19 2010-01-19 Verfahren zur herstellung von carbonitriden über polykondensations- bzw. sol-gel-verfahren unter verwendung wasserstoff-freier isocyanate Ceased WO2010081910A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/144,964 US20120015194A1 (en) 2009-01-19 2010-01-19 Method For Producing Carbonitrides by Means of a Polycondensation or Sol-Gel Method Using Hydrogen-Free Isocyanates
JP2011545763A JP2012515135A (ja) 2009-01-19 2010-01-19 水素不含イソシアネートを使用して重縮合法またはゾルゲル法によりカルボニトリドを製造する方法
EP10701004A EP2379448A2 (de) 2009-01-19 2010-01-19 Verfahren zur herstellung von carbonitriden über polykondensations- bzw. sol-gel-verfahren unter verwendung wasserstoff-freier isocyanate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009005095.7 2009-01-19
DE200910005095 DE102009005095A1 (de) 2009-01-19 2009-01-19 Verfahren zur Herstellung von Carbonitriden über Polykondensations- bzw. Sol-Gel-Verfahren unter Verwendung Wasserstoff-freier Isocyanate

Publications (2)

Publication Number Publication Date
WO2010081910A2 true WO2010081910A2 (de) 2010-07-22
WO2010081910A3 WO2010081910A3 (de) 2010-11-25

Family

ID=42262888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/050574 Ceased WO2010081910A2 (de) 2009-01-19 2010-01-19 Verfahren zur herstellung von carbonitriden über polykondensations- bzw. sol-gel-verfahren unter verwendung wasserstoff-freier isocyanate

Country Status (5)

Country Link
US (1) US20120015194A1 (enExample)
EP (1) EP2379448A2 (enExample)
JP (1) JP2012515135A (enExample)
DE (1) DE102009005095A1 (enExample)
WO (1) WO2010081910A2 (enExample)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011009891A1 (de) * 2009-07-21 2011-01-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur darstellung anorganischer harze auf der basis wasserstofffreier, polymerer isocyanate zur darstellung nitridischer, carbidischer und carbonitridischer netzwerke und deren verwendung als schutzüberzüge
CN111574892A (zh) * 2020-06-08 2020-08-25 国网山东省电力公司电力科学研究院 一种用于绝缘子表面防青苔的防污闪涂料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108706559B (zh) * 2018-05-30 2020-04-07 安徽大学 一种石墨相氮化碳材料的制备方法
CN110980665A (zh) * 2019-11-29 2020-04-10 平顶山学院 一种二维薄层结构氮化碳的制备方法
CN116924697B (zh) * 2023-07-31 2025-08-29 上海耀皮工程玻璃有限公司 一种Low-E镀膜玻璃调色层及其制备方法和用途

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW349984B (en) * 1993-09-13 1999-01-11 Starck H C Gmbh Co Kg Pastes for the coating of substrates, methods for manufacturing them and their use
US5606056A (en) 1994-05-24 1997-02-25 Arizona Board Of Regents Carbon nitride and its synthesis
DE19706028C1 (de) 1997-02-17 1998-07-02 Bayer Ag Neue Carbodiimid-Polymere als Vorstufen für C/N- und B/C/N-Werkstoffe
JPH11229147A (ja) * 1998-02-19 1999-08-24 Nachi Fujikoshi Corp 硬質窒化炭素膜の合成方法
US6428762B1 (en) 1999-07-27 2002-08-06 William Marsh Rice University Powder synthesis and characterization of amorphous carbon nitride, a-C3N4
CA2403382A1 (en) * 2000-03-20 2001-09-27 Teva Pharmaceutical Industries Ltd. Novel processes for preparing torsemide intermediate
JP3921529B2 (ja) * 2002-09-10 2007-05-30 独立行政法人産業技術総合研究所 窒化炭素の合成方法
JP4941953B2 (ja) * 2004-10-29 2012-05-30 独立行政法人物質・材料研究機構 窒化炭素多孔体およびその製造方法
RU2288170C2 (ru) 2005-02-16 2006-11-27 Карбодеон Лтд Ой Способ получения нитрида углерода
DE102005014590A1 (de) 2005-03-24 2006-09-28 Universität Tübingen Verfahren zur Herstellung von Kohlenstoffnitrid
FI121924B (fi) * 2006-07-13 2011-06-15 Carbodeon Ltd Oy Menetelmä karbonitridin valmistamiseksi

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011009891A1 (de) * 2009-07-21 2011-01-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur darstellung anorganischer harze auf der basis wasserstofffreier, polymerer isocyanate zur darstellung nitridischer, carbidischer und carbonitridischer netzwerke und deren verwendung als schutzüberzüge
CN111574892A (zh) * 2020-06-08 2020-08-25 国网山东省电力公司电力科学研究院 一种用于绝缘子表面防青苔的防污闪涂料及其制备方法

Also Published As

Publication number Publication date
EP2379448A2 (de) 2011-10-26
DE102009005095A1 (de) 2010-07-22
US20120015194A1 (en) 2012-01-19
WO2010081910A3 (de) 2010-11-25
JP2012515135A (ja) 2012-07-05

Similar Documents

Publication Publication Date Title
WO2010081910A2 (de) Verfahren zur herstellung von carbonitriden über polykondensations- bzw. sol-gel-verfahren unter verwendung wasserstoff-freier isocyanate
EP2507299A2 (de) Chlorierte oligogermane und verfahren zu deren herstellung
EP0367105B1 (de) Organosiloxanamin-Copolykondensate, Verfahren zu ihrer Herstellung und Verwendung (II)
EP0367106B1 (de) Organosiloxanamin-Copolykondensate, Verfahren zu ihrer Herstellung und Verwendung (I)
DE102012016486B4 (de) Verfahren zur Herstellung von Übergangsmetallverbindungen der allgemeinen Zusammensetzung Mea Cb Nc Hd mit Me = Übergangsmetall, a = 1 - 4, b = 6 - 9, c = 8 - 14, d = 0 - 8 und deren Verwendung.
EP3621938A1 (de) Verfahren und zusammensetzung zur herstellung von siliciumcarbidhaltigen dreidimensionalen objekten
WO2012001180A1 (de) Polysilane mittlerer kettenlänge und verfahren zu deren herstellung
DE69603677T2 (de) Verfahren zur Herstellung von Aluminiumnitridwhiskern
DE102020116953A1 (de) Verfahren zur Herstellung eines Kohlenstoffnitrids der Zusammensetzung C11N4
EP2456735A1 (de) Verfahren zur darstellung anorganischer harze auf der basis wasserstofffreier, polymerer isocyanate zur darstellung nitridischer, carbidischer und carbonitridischer netzwerke und deren verwendung als schutzüberzüge
EP0560005B1 (de) Verfahren zur Herstellung von Siliciumnitrid, Ausgangsverbindung hierfür sowie Verfahren zu dessen Herstellung
EP0558887B1 (de) Anorganische mikroporöse Festkörper sowie Verfahren zu ihrer Herstellung
EP2925805B1 (de) Verfahren zum herstellen kohlenstoffhaltiger hydridosilane
DE10125629A1 (de) Siliciumsubnitrid
EP1317462B1 (de) Siliciumborkarbonitridkeramiken und vorlaeuferverbindungen, verfahren zu deren herstellung und verwendung
EP0971934B1 (de) Borhaltige carbosilane, borhaltige oligo- oder polycarbosilazane und siliciumborcarbonitridkeramiken
DE69611718T2 (de) Verfahren zur Herstellung von vernetzten Polycarbodiimiden
DE3923009A1 (de) Aminotriazinpolymere und verfahren zu ihrer herstellung
DE10344015A1 (de) Kristalline Verbindungen in den Systemen C-N, B-N und B-C-N
EP0511567B1 (de) Organische Silazanpolymere, Verfahren zu ihrer Herstellung, sowie ein Verfahren zur Herstellung von Keramikmaterialien daraus
DE10160504C2 (de) Verfahren zur Herstellung dünner, schwer löslicher Beschichtungen
DE4331654C1 (de) Organoarsenido- und Organophosphidometallane, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102008045742A1 (de) Verfahren zur Herstellung von kohlenstoffbasierten Nonopartikeln
DE102005014590A1 (de) Verfahren zur Herstellung von Kohlenstoffnitrid
DE102006006675A1 (de) Antimikrobielle polymerabgeleitete Silber-(Kupfer)-Nanokomposite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10701004

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010701004

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011545763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13144964

Country of ref document: US