WO2010079814A1 - 窒化物結晶の製造方法、窒化物結晶およびその製造装置 - Google Patents

窒化物結晶の製造方法、窒化物結晶およびその製造装置 Download PDF

Info

Publication number
WO2010079814A1
WO2010079814A1 PCT/JP2010/050118 JP2010050118W WO2010079814A1 WO 2010079814 A1 WO2010079814 A1 WO 2010079814A1 JP 2010050118 W JP2010050118 W JP 2010050118W WO 2010079814 A1 WO2010079814 A1 WO 2010079814A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride crystal
gas
reaction vessel
ammonia
producing
Prior art date
Application number
PCT/JP2010/050118
Other languages
English (en)
French (fr)
Inventor
豊 三川
真紀子 清見
勇二 鏡谷
徹 石黒
Original Assignee
三菱化学株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社, 国立大学法人東北大学 filed Critical 三菱化学株式会社
Priority to CN2010800041660A priority Critical patent/CN102272357A/zh
Priority to EP10729234.4A priority patent/EP2377974A4/en
Priority to US13/143,094 priority patent/US9192910B2/en
Publication of WO2010079814A1 publication Critical patent/WO2010079814A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • C30B7/105Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes using ammonia as solvent, i.e. ammonothermal processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1096Apparatus for crystallization from liquid or supercritical state including pressurized crystallization means [e.g., hydrothermal]

Definitions

  • the present invention relates to a method for producing a nitride crystal by an ammonothermal method, a nitride crystal and a production apparatus therefor.
  • the present invention relates to a method for producing a nitride crystal by an ammonothermal method characterized by a method for supplying a mineralizer.
  • the ammonothermal method is a method for producing a desired material by using a solution-precipitation reaction of raw materials using an ammonia solvent in a supercritical state and / or a subcritical state.
  • this is a method in which crystals are precipitated by generating a supersaturated state due to a temperature difference utilizing the temperature dependence of the solubility of a raw material in an ammonia solvent.
  • a hydrothermal method similar to the ammonothermal method uses supercritical and / or subcritical water as a solvent for crystal growth, but mainly oxide crystals such as quartz (SiO 2 ) and zinc oxide (ZnO).
  • the ammonothermal method can be applied to nitride crystals and is used for growing nitride crystals such as gallium nitride.
  • nitride crystals such as gallium nitride.
  • the ammonothermal method it is necessary that a sufficient amount of raw material exists in a supersaturated state and precipitates.
  • the raw material for crystal growth is sufficiently dissolved in a solvent. is there.
  • nitrides such as gallium nitride have a problem that the amount necessary for practical crystal growth cannot be dissolved because the solubility in pure ammonia is extremely low in a temperature and pressure range that can be employed.
  • a mineralizer that improves the solubility of nitrides such as gallium nitride is generally added to the reaction system. Since the mineralizer can form a complex with a nitride (solvate), more nitride can be dissolved in ammonia.
  • Mineralizers include basic mineralizers and acidic mineralizers. Typical examples of basic mineralizers include alkali metal amides. Typical examples of acidic mineralizers include ammonium halides. (See Patent Document 1).
  • mineralizers are sold as reagents and are usually handled as powdered solids. After such a solid mineralizer is sufficiently dried, it is put into a reaction vessel containing a raw material for crystal growth and a seed crystal and covered. Next, liquid ammonia is injected into the reaction vessel through a valve, and then the temperature is raised by a heater to generate an internal pressure by volume expansion of the internal ammonia. A nitride crystal can be obtained by maintaining the set temperature condition for a predetermined time and growing the crystal, then cooling and taking out the crystal from the reaction vessel (see Patent Documents 2 to 4).
  • the nitride crystal thus grown by the ammonothermal method with the addition of the solid mineralizer has a problem that the oxygen concentration contained in the crystal is relatively high. That is, the nitride crystal obtained by the conventional method contains oxygen in the order of 10 18 to 10 20 atoms / cm 3 (see Non-Patent Document 1 and Non-Patent Document 2). Compared to nitride crystals grown by the method, this value is extremely high.
  • the crystals When the oxygen concentration is high, the crystals are colored black to brown, and when used as an optoelectronic substrate such as an LED or LD (Laser Diode), light absorption occurs and the light extraction efficiency decreases.
  • oxygen functions as a donor, if the crystal contains an amount of oxygen that is not controlled as an unintended impurity, doping for controlling the electrical characteristics of the substrate becomes difficult. For this reason, it is required to reduce the oxygen concentration in the crystal. This is necessary from the viewpoint of the crystal growth rate and the crystallinity of the resulting crystal.
  • these problems have been recognized as unique problems that cannot be avoided as long as the ammonothermal method is adopted, and no solution has been found. Considering such problems of the prior art, in the present invention, studies have been made for the purpose of obtaining a nitride crystal having a low oxygen concentration by an ammonothermal method.
  • the present inventors have supplied the mineralizer by a novel method that has not been studied at all by the conventional method, thereby enabling the oxygen concentration by the ammonothermal method. As a result, it was found that a nitride crystal having a low thickness was obtained, and the present invention was completed. That is, the following present invention has been provided as means for solving the problems.
  • a reactive gas that reacts with ammonia to produce a mineralizer is brought into contact with ammonia to produce a mineralizer.
  • a method for producing a nitride crystal comprising growing a nitride crystal from a crystal growth raw material for nitride put in a reaction vessel by an ammonothermal method in the presence of ammonia and the mineralizer.
  • the reactive gas is a hydrogen halide gas.
  • the plurality of source gases include at least a first source gas and a second source gas, the first source gas is halogen, and the second source gas reacts with halogen to generate the reactive gas.
  • the method for producing a nitride crystal as described in any one of [7] to [10], wherein [12] The method for producing a nitride crystal as described in [11], wherein the second source gas is at least one gas selected from the group consisting of a halogenated alkane having a hydrogen atom and an alkane. .
  • the first source gas is chlorine gas
  • the second source gas is one or more gases selected from the group consisting of methane, monochloromethane, dichloromethane, and trichloromethane.
  • a mineralizer is generated by introducing the reactive gas or a plurality of source gases that generate the reactive gas into a reaction vessel containing ammonia, and a nitride crystal is grown in the reaction vessel
  • a reaction vessel capable of growing a nitride crystal in the presence of ammonia by an ammonothermal method, and means for introducing a reactive gas that reacts with ammonia to generate a mineralizer into the reaction vessel.
  • An apparatus for producing a nitride crystal comprising: [34] The nitride crystal manufacturing apparatus according to [33], wherein the means for introducing the reactive gas into the reaction vessel includes a filter that allows the reactive gas to pass therethrough. [35] The nitride crystal production apparatus according to [33], further comprising means for introducing ammonia gas into the reaction vessel.
  • the nitride crystal manufacturing apparatus according to [35], wherein the means for introducing the ammonia gas into the reaction vessel includes a filter that allows the ammonia gas to pass therethrough.
  • a high-purity nitride crystal having a low oxygen concentration can be efficiently grown. Further, since the nitride crystal of the present invention has a low oxygen concentration and a high purity, it is difficult to cause coloring. Furthermore, if the production apparatus of the present invention is used, a nitride crystal having such characteristics can be produced efficiently.
  • nitride crystal production method, nitride crystal, and production apparatus thereof by the ammonothermal method of the present invention will be described in detail below.
  • the description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the ammonothermal method is a method for producing a desired material by utilizing a dissolution-precipitation reaction of raw materials using an ammonia solvent in a supercritical state and / or a subcritical state.
  • the ammonothermal method of the present invention produces a mineralizer by contacting ammonia with a reactive gas that reacts with ammonia to produce a mineralizer, and nitrides in the presence of the ammonia and the mineralizer It is characterized by growing a crystal.
  • the reactive gas used in the present invention include hydrogen halide gases such as hydrogen fluoride gas, hydrogen chloride gas, hydrogen bromide gas, and hydrogen iodide gas.
  • these reactive gases it is more preferable to use hydrogen chloride gas, hydrogen bromide gas, and hydrogen iodide gas, and among these, it is more preferable to use hydrogen chloride gas from which a higher purity gas is available.
  • these reactive gases those that are liquid depending on the temperature and pressure conditions may be used as they are, or may be used in a gaseous state by adjusting the temperature and pressure. These reaction gases may be used alone or in combination of two or more.
  • the reactive gas When the reactive gas is used in the present invention, it is preferable to select and use one having a low water content contained in the reactive gas.
  • the water content contained in the reactive gas is preferably 10 ppm or less on a weight basis, more preferably 5 ppm or less, further preferably 1 ppm or less, and most preferably none.
  • the oxygen content contained in the reactive gas is preferably 10 ppm or less, more preferably 5 ppm or less, even more preferably 1 ppm or less, and most preferably no oxygen at all.
  • the purity of the reactive gas used in the present invention is preferably 99.9% or more, more preferably 99.99% or more, and further preferably 99.999% or more.
  • the reactive gas is preferably passed through a filter before being brought into contact with ammonia in the ammonothermal method of the present invention.
  • impurities such as moisture mixed in the reactive gas, and impurities present in the pipe and the pipe containing the reactive gas can be removed.
  • Examples of the type of filter used in the present invention include Nanochem Metal-X manufactured by Matheson Tri Gas. By passing the filter, the amount of water in the reactive gas can be suppressed to 200 ppb or less.
  • the embodiment in which the reactive gas is brought into contact with ammonia is not particularly limited.
  • the reactive gas and ammonia can be brought into contact by introducing the reactive gas into a reaction vessel containing ammonia.
  • the reactive gas may be introduced through an opening provided in the reaction vessel, or may be directly introduced into the ammonia liquid through an introduction pipe extending into the ammonia liquid.
  • the contact between the reactive gas and ammonia is not necessarily performed in the reaction vessel, and may be performed in a closed circuit connected to the reaction vessel.
  • the closed circuit means a flow path or container that forms a sealed state together with the reaction container when connected to the reaction container, can be isolated from the outside air, and can prevent impurities such as oxygen and moisture from entering.
  • the closed circuit does not always need to be connected to the reaction vessel, and may have a structure that can be separated from the reaction vessel while maintaining a function of sealing with the reaction vessel by using a valve or other structure.
  • a vessel different from the reaction vessel and the reaction vessel herein referred to as a mixing vessel
  • a valve is provided in each vessel. Attached and sealed structure can be mentioned.
  • the reactive gas was introduced into the mixing vessel to generate a mineralizer, and then the valve was opened and connected through the piping.
  • a method of introducing ammonia containing a mineralizer into the reaction vessel can be performed. Further, for example, both may be in contact with each other in the pipe.
  • the produced mineralizer may be clogged by clogging the piping if it is in powder form. In that case, the thickness of the pipe, the flow rate of the reactive gas, the temperature condition at the time of the supply of the reactive gas, etc. can be adjusted as appropriate so that the generated mineralizer does not block the pipe, and the optimum condition can be found. .
  • the pipe When supplying gas through a pipe extended into the ammonia solution, the pipe will remain in the reaction vessel even during the crystal growth period, so it has excellent corrosion resistance against supercritical ammonia in the presence of mineralizers.
  • It is preferably made of a material. Specifically, it is preferably manufactured using an alloy composed of at least one of Pt, Ir, W, Ta, Rh, Ru, and Re.
  • Ammonia has a melting point of ⁇ 78 ° C. and a boiling point of ⁇ 33 ° C. (both at atmospheric pressure, rounded to the nearest decimal place). That is, since ammonia exists as a liquid between ⁇ 78 ° C. and ⁇ 33 ° C., the reactive gas reacts with the liquid ammonia mainly at the gas-liquid interface.
  • the reactive gas is hydrogen chloride
  • Hydrogen chloride has a melting point of ⁇ 144 ° C. and a boiling point of ⁇ 85 ° C. Therefore, since the temperature range in which ammonia exists as a liquid is equal to or higher than the boiling point of hydrogen chloride, hydrogen chloride is supplied as a gas. In this case, the reaction occurs at the gas-liquid interface as described above.
  • the reactive gas is hydrogen bromide
  • the melting point is ⁇ 87 ° C. and the boiling point is ⁇ 66 ° C. Therefore, a gas-liquid reaction between liquid ammonia and hydrogen bromide gas occurs between ⁇ 66 ° C. and ⁇ 33 ° C. Between 78 ° C.
  • the melting point is ⁇ 51 ° C. and the boiling point is ⁇ 35 ° C., so that the reaction at the gas-liquid interface between liquid ammonia and hydrogen iodide gas occurs between ⁇ 35 ° C. and ⁇ 33 ° C. Become.
  • the boiling point of ammonia is close and the boiling point may be exceeded by the heat of reaction, vaporization of ammonia may start.
  • both ammonia and hydrogen iodide are present in liquid form, resulting in a liquid-liquid reaction.
  • the preferable temperature ranges of the piping and the reaction vessel when supplying the reactive gas are as follows.
  • the introduction temperature of the reactive gas is not particularly limited, but it is reactive to prevent the reactive gas from becoming solid in the piping. It is preferable to set the temperature of the gas pipe to the melting point or higher, and more preferable to set it to the boiling point or higher of the reactive gas because it can be introduced as a gas.
  • the upper limit is preferably about 400 ° C. because damage to the piping and valves due to temperature increases. Even if the temperature range in the reaction vessel is equal to or lower than the melting point of the reactive gas, gas introduction is not hindered.
  • the temperature in the reaction vessel is such that both ammonia and the reactive gas exceed the melting point after the introduction of the reactive gas.
  • the upper limit is preferably ⁇ 33 ° C., which is the boiling point of ammonia.
  • the supply amount and supply speed of the reactive gas with respect to ammonia can be determined as appropriate according to the environmental conditions. Usually, it is preferable to adjust the supply rate of the reactive gas so that the supplied reactive gas sequentially reacts with ammonia.
  • the pressure inside the reaction vessel when the reactive gas and ammonia are brought into contact with each other is preferably controlled to be lower than the gas pressure supplied from the reactive gas cylinder.
  • the pressure is preferably set within a range of 0.01 to 0.5 MPa, more preferably within a range of 0.01 to 0.2 MPa, and set within a range of 0.01 to 0.1 MPa. More preferably.
  • the internal pressure changes due to an increase in the internal temperature due to the reaction heat of ammonia and the reactive gas
  • it is preferable to adjust the supply amount of the reactive gas while monitoring the internal pressure so that the vapor pressure does not become higher than the introduction pressure of the reactive gas even if it is below the boiling point of ammonia.
  • thermocouple In order to monitor the generation of reaction heat, a thermocouple can be inserted into the reaction vessel and the temperature change due to the reaction heat can be measured. Instead, the temperature inside the reaction vessel can be measured instead of directly measuring the temperature inside the reaction vessel.
  • the internal temperature of the reaction container can be known by measuring the reaction container outer wall temperature after obtaining the correlation between the temperature in the reaction container and the temperature of the outer wall of the reaction container in advance.
  • the cooling method include a method using a refrigerant or applying cold air.
  • the refrigerant include dry ice methanol, and the reaction vessel can be cooled to about ⁇ 60 ° C. to ⁇ 70 ° C. by immersing the reaction vessel in the ice. If further cooling is required, the temperature can be adjusted in combination with liquid nitrogen or the like.
  • ammonium halide is produced by contact between the hydrogen halide gas and ammonia.
  • ammonium chloride is produced by contact between the hydrogen chloride gas and ammonia.
  • the ammonium halide such as ammonium chloride thus produced functions as a mineralizer (acid mineralizer).
  • hydrogen bromide gas ammonium bromide is generated
  • hydrogen iodide gas is selected, ammonium iodide is generated and functions as a mineralizer.
  • the ammonium halide produced by the contact of ammonia and reactive gas is a powdered solid, and in some cases, it is expected to react rapidly with ammonia when the reactive gas is introduced to block the reactive gas introduction pipe. So far, it has been recognized that it is difficult to generate and introduce a mineralizer by such a method.
  • the inventors of the present invention achieved the introduction of the reactive gas without causing the clogging of the pipe by appropriately optimizing the reaction temperature and the reactive gas supply rate, and reached the present invention.
  • the reaction temperature is preferably ⁇ 196 to ⁇ 33 ° C., more preferably ⁇ 196 to ⁇ 60 ° C.
  • the reactive gas supply rate is preferably 0.01 to 5 liters / minute, more preferably 0.02 to 2 liters / minute. Further, it is preferable to supply the reactive gas so that the reactive gas supply pressure is always kept higher than the vapor pressure of ammonia so that ammonia does not flow back into the pipe during the introduction of the reactive gas. In the present invention, the optimum conditions can be appropriately selected without being limited to these conditions.
  • the source gas two or more gases that react with each other are used.
  • a halogen is used as the first source gas
  • a gas that reacts with the halogen to generate a reactive gas is selected as the second source gas.
  • second source gas include one or more gases selected from the group consisting of halogenated alkanes having a hydrogen atom and alkanes.
  • the halogen atoms forming the first source gas and the second source gas may be the same or different. Preferred is the same case.
  • the halogen include fluorine, chlorine, bromine and iodine. Among them, it is preferable to employ chlorine for which high purity gas is available.
  • the raw material gas used in the present invention it is preferable to select and use one having a low water content, like the above reactive gas. Further, it is preferable to select and use a material having a small amount of impurities and high purity.
  • the preferable ranges of the water content, the impurity amount, and the purity of the raw material gas are the same as the preferable ranges of the water content, the impurity amount, and the purity of the reactive gas.
  • the source gas is preferably passed through a filter before contacting with ammonia.
  • filters that can be used include Alchem's Nanochem OMX manufactured by Matheson Tri Gas. .
  • the filter used for the hydrogen halide can be referred to.
  • the aspect in which the source gas is supplied to ammonia is such that the reactive gas produced by the source gas can come into contact with ammonia in the reaction vessel or in the closed circuit connected to the reaction vessel.
  • a plurality of source gases may be introduced from separate openings provided in a reaction vessel containing ammonia, and a plurality of source gases and ammonia may be mixed in the reaction vessel. After the reactive gas is generated by contacting the raw material gas, a mixed gas containing the reactive gas may be introduced into a reaction vessel containing ammonia.
  • a reactive gas generated by mixing a plurality of source gases in a separate reaction vessel may be introduced into a reaction vessel containing ammonia, or a reaction generated by mixing a plurality of source gases in a pipe.
  • a sex gas may be introduced into a reaction vessel containing ammonia.
  • the reaction between the generated reactive gas and ammonia is not necessarily performed in the reaction vessel, and may be performed in a pipe.
  • a container for mixing ammonia and reactive gas is used separately from the reaction container, and after the ammonia and the reactive gas are reacted in this mixing container to generate a mineralizer, the mixture is introduced into the reaction container. Also good. In such a case, the mixing container and the reaction container are connected to form a closed circuit.
  • the mineralizer generated in the mixing container be isolated from the outside air and have a structure that can be supplied to the reaction container without mixing impurities such as oxygen and moisture.
  • the mineralizer produced according to the method of the present invention is used for the growth of nitride crystals. That is, a nitride crystal is grown in the presence of a mineralizer and ammonia.
  • the ammonia used for crystal growth is preferably the ammonia used for producing the mineralizer. Therefore, it is particularly preferable to use an ammonia solution containing the generated mineralizer for crystal growth.
  • the ammonia solution containing the mineralizer may be introduced from a closed circuit connected to the reaction vessel to the reaction vessel for growing the nitride crystal, or the nitride crystal is grown as it is in the reaction vessel in which the mineralizer is generated. May be.
  • the mineralizer generation step and the nitride crystal growth step may overlap in time. That is, the nitride crystal may be grown at the same time while generating the mineralizer.
  • the growth conditions for the nitride crystal the growth conditions for the nitride crystal in a normal ammonothermal method can be appropriately selected and employed.
  • a raw material for crystal growth a raw material usually used for growing a nitride crystal by an ammonothermal method can be appropriately selected and used.
  • metal gallium, gallium nitride, or a mixture thereof can be used as a raw material to be a gallium source.
  • the crystal growth raw material used in the present invention is preferably one having an oxygen concentration of 1 ⁇ 10 18 atoms / cm 3 or less, preferably 1 ⁇ 10 17 atoms / cm 3 or less. It is more preferable to use one that is ⁇ 10 16 atoms / cm 3 .
  • a nitride crystal having a desired crystal structure and growth surface By pre-existing a seed crystal, a hexagonal gallium nitride crystal can be efficiently grown.
  • a seed crystal a thin plate single crystal is usually used, but the crystal orientation of the main surface can be arbitrarily selected.
  • the main surface refers to the widest surface of the thin plate seed crystal.
  • a polar plane represented by (0001) plane, (000-1) plane, a semipolar plane represented by (10-12) plane, (10-1-2) plane By using a seed crystal having a nonpolar plane typified by the (10-10) plane and a principal plane with various orientations, the crystal can be grown in an arbitrary orientation.
  • the cut-out orientation of the seed crystal is not limited to the facet plane as described above, and a plane shifted by an arbitrary angle from the facet plane can be selected.
  • the growth temperature of the nitride crystal in the present invention is usually preferably set to 300 to 700 ° C., more preferably set to 350 to 650 ° C., and further preferably set to 400 to 600 ° C.
  • the pressure during the growth of the nitride crystal is usually preferably set to 80 to 300 MPa, more preferably set to 100 to 250 MPa, and further preferably set to 120 to 250 MPa.
  • Additional steps can be added in addition to the above steps.
  • a step of replacing the inside of the reaction vessel or piping with nitrogen gas can be preferably added.
  • the process pressure reduction process which pressure-reduces the inside of reaction container and piping at the same timing can also be added preferably.
  • the pressure is preferably a reduced pressure in the range of 10 -7 ⁇ 10 Torr, and more preferably reducing the pressure in the range of 10 -7 ⁇ 1 Torr, under reduced pressure in the range of 10 -7 ⁇ 10 -3 Torr More preferably.
  • the decompression time is preferably continued until the pressure is reached.
  • the process (heating process) which heats the inside of a reaction container and piping at the same timing as replacing with nitrogen gas can also be added preferably.
  • the heating temperature can be set broadly as long as it can remove the volatile substances adsorbed and adhering to the reaction vessel or the pipe, but 70 to 400 ° C. is taken into consideration in combination with nitrogen replacement and reduced pressure.
  • a temperature range that is too low has a low effect of sufficiently removing volatile substances, and a temperature range that is too high has a large effect of removing volatile substances, but damage to pipes and valves due to temperature increases.
  • the heating time is not particularly limited, but it is preferable to continue the heating and decompression steps until the reduced pressure range is reached in order to confirm the effect of heating under reduced pressure.
  • a nitride crystal having a lower oxygen concentration can be grown. At least one of these steps is preferably performed, more preferably a combination of a nitrogen substitution step and a reduced pressure step or a heating step, and even more preferably all three. Further, the three steps can be repeated a plurality of times. By repeatedly performing it, it becomes possible to further remove the adhering and adsorbing substances. Through the three steps, it becomes possible to effectively remove volatile substances adhering to and adsorbing on the members (seed crystals, raw materials, structural materials) put in the pipe, the reaction vessel, and the reaction vessel. Among volatile substances, the effect of removing moisture is particularly high.
  • the combination of the decompression step and the heating step is substantially impossible because the mineralizer is vaporized in the conventional ammonothermal method in which a solid mineralizer is added.
  • a solid mineralizer is added.
  • ammonium chloride is used as a mineralizing agent in a solid state and the heating process is applied, not only can the moisture removal process by reduced pressure be applied because ammonium chloride vaporizes, but also the desired mineralization because ammonium chloride is reduced by vaporization.
  • the agent concentration cannot be obtained.
  • the sublimation temperature of ammonium chloride is 338 ° C.
  • the mineralizer-containing ammonia solution is used.
  • the mineralizer-containing ammonia solution is used.
  • only the inside of the reaction vessel for crystal growth may be purged with nitrogen, decompressed, or heated.
  • nitrogen substitution, decompression, and heating in the reaction vessel can be performed according to the nitrogen substitution step, the decompression step, and the heating step.
  • typical crystal growth in the present invention includes the following procedures. First, a necessary crystal growth raw material, seed crystal, and the like are placed in a well-cleaned reaction vessel and covered. By heating under normal pressure or reduced pressure, adsorbed gas and volatile substances are removed. Thereafter, the inside of the reaction vessel is replaced with nitrogen gas and filled with ammonia. Next, a reactive gas or a raw material gas is introduced to generate a mineralizer, and the temperature is raised to grow crystals. After the crystal has grown sufficiently, the temperature is lowered and the nitride crystal is taken out. The preferable range of each material and operation is as described above. According to this method, since raw materials for crystal growth, seed crystals, etc.
  • a nitride crystal can be grown at a faster growth rate than before.
  • the inside of the reaction vessel is thoroughly washed and dried.
  • the seed crystal, the raw material, the frame for fixing the seed crystal, the baffle plate, the raw material basket and the like to be placed in the reaction vessel are similarly thoroughly washed and dried. These are installed at predetermined positions in the reaction vessel, and the reaction vessel is sealed.
  • a vacuum pump is connected to a valve installed in the reaction vessel, and the pressure is reduced to about 10 ⁇ 3 Torr. Thereafter, the valve is replaced with high-purity sufficiently dry nitrogen. Thereafter, the pressure is reduced again to about 10 ⁇ 3 Torr with a vacuum pump. After repeating this step several times, the pipe and the reaction vessel are heated to 100 to 250 ° C. with a heater.
  • the heater for example, a ribbon heater or a silicon rubber heater wound around a pipe or a reaction vessel can be used.
  • the pressure is continuously reduced to 10 ⁇ 7 to 10 ⁇ 3 Torr using a vacuum pump.
  • the heater is turned off and the reaction vessel is cooled.
  • immersion in dry ice methanol can be applied. Since a sudden temperature change may induce distortions to pipes, valves, reaction vessels, seed crystals installed in the reaction vessels, and the like, it is preferable to cool to near room temperature by natural cooling or air cooling. Thereafter, it is cooled to about ⁇ 60 to ⁇ 70 ° C. using the aforementioned dry ice methanol.
  • a valve for filling ammonia is opened, and a predetermined amount of ammonia is filled in the reaction vessel.
  • the ammonia filling amount can be measured with a mass flow controller.
  • Ammonia preferably has a water content of 1 ppb or less by passing through an in-line filter.
  • the valve of the ammonia introduction line is closed.
  • hydrogen halide gas is introduced as a reactive gas
  • the valve of the line for introducing hydrogen halide gas is opened, and the gas is introduced into the reaction vessel.
  • a predetermined amount is measured by a mass flow controller and charged. By using an in-line filter, the amount of water can be suppressed to 200 ppb or less.
  • the hydrogen halide gas introduced into the reaction vessel reacts with ammonia to produce ammonium halide as a mineralizer. By this reaction, the hydrogen halide gas is consumed and a negative pressure is generated, and the hydrogen halide gas can be subsequently introduced into the reaction vessel.
  • the pressure in the reaction vessel is determined by the balance between the pressure decrease due to the production of ammonium halide and the pressure increase due to the generation of heat of reaction.
  • the valve is closed and the reaction vessel is disconnected from the line to complete the filling.
  • the reaction vessel is an autoclave itself, it is set in a heating furnace as it is, controlled to a predetermined temperature, pressure, and temperature difference, and an operation for crystal growth is performed for an arbitrary period.
  • the reaction vessel is an inner tube, the inner tube is inserted into the autoclave and the autoclave is sealed.
  • a predetermined amount of ammonia is filled into the space inside the autoclave, that is, outside the inner tube through the valve.
  • the filling amount of ammonia here is determined so that the pressure inside the inner tube and the pressure outside the inner tube are substantially equal during the crystal growth operation.
  • the temperature of the autoclave is lowered and the crystal is taken out.
  • reaction vessel used in the present invention can withstand desirable temperatures and pressures capable of efficiently growing nitride crystals, and has corrosion resistance to the materials and reaction products used in the present invention. Is needed. For this reason, it is preferable to perform the growth of the nitride crystal in an autoclave or an inner tube inserted in the autoclave. In order to provide excellent corrosion resistance, it is preferable to use a reaction vessel lined with one or more metals or alloys selected from the group consisting of Pt, Ir, W, Ta, Rh, Ru, and Re.
  • the lining may be in close contact with the inner surface of the autoclave, or may be an inner tube separated from the autoclave.
  • a pipe for introducing gas is connected to the autoclave or the inner cylinder in the autoclave, and two or more valves are installed in the pipe.
  • a filter that can remove impurities contained in the gas is installed in the pipe.
  • the pipe has a mechanism capable of measuring the gas flow rate.
  • a mechanism capable of measuring the pressure during gas introduction is provided.
  • a mechanism for heating or cooling the autoclave or the inner cylinder in the autoclave is provided.
  • the pipe materials and pipe inner surface finish are also the following materials and inner surface finish conditions Is preferred.
  • Stainless steel such as SUS316 and SUS316L, and nickel-based alloys such as Hastelloy, Monet, and Inconel can be used as the material for the piping.
  • the inner surface finish preferably has a smooth surface finish for the purpose of minimizing moisture adsorption and enhancing the corrosion resistance. Of these, a BA (Bright Annealed) finish is preferable, and an EP (Electrolytic Polishing) finish is more preferable.
  • the piping can be made of a fluororesin such as polytetrafluoroethylene having excellent corrosion resistance in addition to the metal. Alternatively, a pipe covered with a fluororesin can be used.
  • Hydrogen halide gas is not corrosive to metals if it is in an anhydrous state, but it corrodes members such as gas cylinders, pipes, connectors and the like violently due to the presence of a small amount of moisture. In order not to cause corrosion, it is necessary to remove moisture in all the parts (the inner surface of the pipe, the valve, etc.) in contact with the hydrogen halide gas. In order to remove moisture, the inside of the pipe is depressurized and replaced with high purity dry nitrogen. By repeating the steps of depressurization and nitrogen substitution a plurality of times, the adsorbed moisture on the reaction vessel and the inner surface of the gas pipe is sufficiently removed. Furthermore, moisture can be removed more effectively by reducing the pressure while heating the piping. The above-mentioned (additional process) can be referred for the specific process of moisture removal.
  • the purity of ammonia is preferably 99.99% or more, and more preferably 99.999% or more.
  • the water content in ammonia is preferably 10 ppm or less, more preferably 5 ppm or less, and even more preferably 1 ppm or less. It is also preferable to further reduce the water content by passing through a filter. Examples of the filter used include Nanochem OMA manufactured by Matheson Tri Gas. By passing the filter, the water content in ammonia can be suppressed to 1 ppb or less.
  • any apparatus may be used as long as it can produce a nitride crystal using the ammonothermal method according to the present invention.
  • the production apparatus of the present invention including a reaction vessel capable of growing nitride crystals by an ammonothermal method and means for introducing a reactive gas into the reaction vessel is used.
  • a means for introducing the reactive gas into the reaction vessel for example, there can be mentioned one comprising a cylinder containing the reactive gas and a pipe connecting the cylinder and the reaction vessel. It is preferable that one or more valves are provided in the middle of the piping so that the presence / absence of introduction of the reactive gas can be switched. Further, it is preferable that the filter described in the above section (Ammonia Purity) is provided as an in-line filter in the middle of the pipe.
  • the ammonothermal method of the present invention is performed by generating a reactive gas by reacting a plurality of source gases
  • the source gas cylinders and the gas derived from the source gas cylinders are mixed. Piping to lead to the reaction vessel is required.
  • the reaction is performed after the piping from the first raw material gas cylinder and the piping from the second raw material gas cylinder are merged into one pipe.
  • a device connected to the container can be used. At this time, the first source gas and the second source gas react to become a reactive gas from the junction to the reaction vessel.
  • the pipes from the first source gas cylinder and the second source gas cylinder are led into a container different from the reaction vessel, respectively, and the pipe from the vessel to the reaction vessel is separately provided. You may use the provided apparatus. At this time, the first source gas and the second source gas react in the container in which the two gases are mixed or react between the container and the reaction container to become a reactive gas.
  • the production apparatus of the present invention preferably includes means for introducing ammonia gas into the reaction vessel, in addition to the means for introducing the reactive gas into the reaction vessel.
  • Such means typically comprises an ammonia gas cylinder and piping connecting the cylinder and the reaction vessel.
  • one or more valves and a filter are provided in the same manner as the piping of the reactive gas cylinder.
  • the piping for guiding the ammonia gas and the piping for guiding the reactive gas may be directly connected to the reaction vessel, but these piping are usually joined together to form a single piping connected to the reaction vessel. It is preferable.
  • means employed in a nitride crystal production apparatus by a normal ammonothermal method can be appropriately selected and employed.
  • a cylinder containing an inert gas such as nitrogen can be incorporated into the apparatus in the same manner as the above ammonia gas cylinder. It is also possible to reduce the pressure inside the reaction vessel and the piping using a vacuum pump.
  • a heater for heating the pipe as described above can be preferably installed.
  • a conventional apparatus for producing a nitride crystal by the ammonothermal method was not necessary, and thus a heater for heating the piping was not particularly installed.
  • About the kind of heater it is as above-mentioned.
  • FIG. 1 An example of a preferable manufacturing apparatus of the present invention is shown in FIG.
  • This manufacturing apparatus includes a reaction vessel 1 capable of growing a nitride crystal in the presence of ammonia by an ammonothermal method, a reactive gas cylinder 11, and a pipe extending from the cylinder to the reaction vessel 1.
  • a plurality of valves including an in-line filter 12, a mass flow meter 13, and a valve 10 are provided in the middle of the piping.
  • the reaction vessel 1 is also provided with a pipe through which ammonia gas can be led from the ammonia cylinder 16 through the in-line filter 18 and the mass flow meter 19, and a plurality of valves including the valve 9 are provided in the middle of the pipe. .
  • reaction vessel 1 is also provided with a pipe capable of introducing nitrogen gas from the nitrogen gas cylinder 17 and vacuum pumps 15 and 20.
  • This manufacturing apparatus is provided with a heater 14 for heating the piping. For specific usage modes of the manufacturing apparatus shown in FIG. 1, examples described later can be referred to.
  • the oxygen concentration of the nitride crystal obtained after crystal growth is more pronounced than when a solid mineralizer is added. It becomes low.
  • the oxygen concentration of the nitride crystal obtained by the ammonothermal method of the present invention is usually 5 ⁇ 10 18 atoms / cm 3 or less, preferably 5 ⁇ 10 17 atoms / cm 3 or less, more preferably 1 ⁇ It is 10 17 atoms / cm 3 or less, more preferably 8 ⁇ 10 15 atoms / cm 3 or less.
  • Such a low oxygen concentration is a level that cannot be achieved by the ammonothermal method in which a conventional solid mineralizer is added.
  • the nitride crystal obtained by the ammonothermal method of the present invention has a feature that the silicon concentration is lower than that of the nitride crystal obtained by the conventional ammonothermal method.
  • the silicon concentration of the nitride crystal obtained by the ammonothermal method of the present invention is usually 5 ⁇ 10 18 atoms / cm 3 or less, preferably 1 ⁇ 10 18 atoms / cm 3 or less, more preferably 3 ⁇ 10 17 atoms / cm 3 or less.
  • the nitride crystal obtained by the ammonothermal method of the present invention is also characterized by a low threading dislocation density.
  • Threading dislocation density of the ammonothermal method by obtained nitride crystals of the present invention is 1 ⁇ 10 4 / cm 2 or less, more preferably 1 ⁇ 10 3 / cm 2 or less, more preferably 1 ⁇ 10 2 / Cm 2 or less.
  • the nitride crystal obtained by the ammonothermal method of the present invention also has a feature that the warpage of the lattice plane is small.
  • the radius of curvature of the crystal lattice plane parallel to the main surface of the nitride crystal obtained by the ammonothermal method of the present invention is usually 10 m or more, preferably 50 m or more, more preferably 100 m or more.
  • the type of nitride crystal obtained by the ammonothermal method of the present invention is determined by the type of crystal growth raw material selected.
  • a group III nitride crystal can be preferably grown, and a gallium-containing nitride crystal can be grown more preferably. Specifically, it can be preferably used for the growth of gallium nitride crystals.
  • a crystal having a relatively large diameter can be obtained.
  • a nitride crystal having a maximum diameter of 50 mm or more more preferably a nitride crystal having a maximum diameter of 76 mm or more, and even more preferably a nitride crystal having a maximum diameter of 100 mm or more. Since it grows in an environment with fewer impurities than before, uniform growth can be realized in a larger area.
  • Example 1 In this example, a nitride crystal was grown using the reactor shown in FIG. Crystal growth was performed using an Inconel625 autoclave 1 (internal volume of about 27 cm 3 ) having a diameter of 15 mm and a length of 154 mm lined with platinum as a reaction vessel. The inner surface of the autoclave 1 was thoroughly washed and dried. A platinum wire, a platinum seed crystal support frame, a platinum baffle plate, and a platinum mesh raw material basket used for crystal growth were also washed and dried. Polycrystalline gallium nitride particles were used as a raw material for nitride crystal growth.
  • the polycrystalline gallium nitride particles are washed with hydrofluoric acid at a concentration of about 50% for the purpose of removing deposits, rinsed thoroughly with pure water, dried, weighed 13 g, and filled into a platinum mesh material basket. Then, it was installed as the raw material 5 in the autoclave lower raw material area.
  • the oxygen content of the raw material polycrystalline gallium nitride was 5 ⁇ 10 17 atoms / cm 3 as a result of analysis by SIMS (secondary ion mass spectrometer).
  • a platinum baffle plate 6 (opening ratio: 10%) was installed approximately in the middle of the growing area and the raw material area.
  • hexagonal gallium nitride single crystals (10 mm ⁇ 10 mm ⁇ 0.3 mm) were hung as seed crystals 4 on a platinum seed crystal support frame by a platinum wire having a diameter of 0.2 mm, and placed in an autoclave upper growth area. .
  • the lid 3 of the autoclave on which the valves 9 and 10 were mounted was closed, and the autoclave 1 was sealed.
  • the valve 9, 10 included in the autoclave was operated to communicate the conduit to a rotary pump 15 and vacuum degassed to a pressure by opening the valve 9, 10 has reached about 10 -3 Torr.
  • high purity dry nitrogen was filled from the nitrogen cylinder 17.
  • the process from vacuum degassing to nitrogen substitution was repeated three times, and then vacuum degassing was performed again.
  • the piping was heated to about 100 ° C. with the ribbon heater 14 while maintaining the vacuum state.
  • the autoclave body was heated to about 200 ° C. with a silicon rubber heater 7.
  • the turbo molecular pump 20 was used to continue to rotate the pump until a high vacuum of about 10 ⁇ 7 Torr was reached. After maintaining at about 10 ⁇ 7 Torr for 3 hours, the heater was turned off and the temperature was lowered to near room temperature by natural cooling and air blowing, and then immersed in dry ice methanol and cooled to ⁇ 60 to ⁇ 70 ° C. Here, the valves 9 and 10 were closed and the turbo molecular pump 20 was stopped.
  • the mass flow controller 19 is turned on in order to fill the high purity ammonia (purity 99.999%) with a water content of 1 ppb or less from the ammonia cylinder 16 through an in-line filter 18 (Matheson Tri Gas, Nanochem OMA). Then, the valve 9 was opened. Based on the flow rate control, after filling 17.5 liters of ammonia at a flow rate of 2 liters per minute, the line was automatically closed and filling was stopped, so the valve 9 was closed. Subsequently, a filling operation of hydrogen chloride gas (purity 99.999%), which is a reactive gas, was performed.
  • hydrogen chloride gas purity 99.999%
  • the mass flow controller 13 is turned on, the valve 10 is opened, and 0.35 liters of hydrogen chloride gas with a moisture content of 200 ppb or less is passed through the reactive gas cylinder 11 through an in-line filter 12 (Matheson Tri Gas Company, Nanochem Metal-X). Filled at a flow rate of 0.05 liters per minute.
  • the pressure in the autoclave 1 did not increase, suggesting that the filled hydrogen chloride gas successively reacted with ammonia to produce ammonium chloride.
  • the temperature of the outer wall was monitored with a thermocouple, the temperature fluctuation was ⁇ 0.2 ° C., and the influence of the temperature rise due to the reaction heat was not detected. Since the line was automatically closed after a predetermined amount of filling was completed, the valve 10 was closed. Subsequently, a part of the hydrogen chloride line was replaced with nitrogen gas and then separated from the line.
  • the autoclave 1 was stored in an electric furnace composed of a heater divided into two parts in the vertical direction.
  • the temperature was raised over 12 hours, the autoclave outer wall temperature was set so that the autoclave lower solution temperature was 550 ° C. and the upper solution temperature was 420 ° C., and the temperature was further maintained for 240 hours.
  • the correlation between the autoclave outer wall temperature and the autoclave inner solution temperature was measured in advance and a correlation equation was prepared.
  • the pressure in the autoclave 1 was about 130 MPa. Further, the variation in control temperature during holding was ⁇ 5 ° C. or less.
  • the temperature was lowered in about 8 hours using a program controller until the temperature of the lower outer surface of the autoclave 1 reached 150 ° C., then the heating by the heater was stopped and the mixture was naturally cooled in an electric furnace.
  • the valve 9 attached to the autoclave was opened, and ammonia in the autoclave 1 was removed.
  • the ammonia in the autoclave 1 was completely removed with a vacuum pump.
  • the lid 3 of the autoclave was opened, and the seed crystal support frame, baffle plate, and raw material basket were taken out from the inside. A white powdery substance adhered to the upper part of the inner wall of the autoclave.
  • Example 2 In this example, nitride crystals were grown by the same process as in Example 1 except for the size of the autoclave used. Since the volume of the autoclave was different, the amount of charged ammonia and the amount of charged hydrogen chloride gas were changed based on the volume ratio so as to satisfy the same conditions as in Example 1.
  • Example 2 crystal growth was performed using an autoclave (inner volume of about 110 cm 3 ) having an inner diameter of 22 mm and a length of 290 mm as a reaction vessel.
  • the weight increased by measuring the weight of the seed crystal after the growth and comparing it with the weight before the growth. Further, by performing X-ray diffraction measurement, it was confirmed that the precipitated crystal was hexagonal gallium nitride. The precipitated crystals were less colored and more transparent than crystals grown by the conventional ammonothermal method.
  • Example 2 In this comparative example, a nitride crystal was grown using the reactor shown in FIG. A gallium nitride crystal was grown in the same manner as in Example 1 except that the following conditions in Example 1 were changed. Instead of introducing hydrogen chloride gas, 0.75 g of an ammonium chloride reagent was added. Ammonium chloride was charged into a platinum mesh material basket together with the polycrystalline gallium nitride material into the autoclave 1 and sealed. All processes in which the autoclave lid 3 was not sealed were performed in a dry nitrogen atmosphere.
  • the pressure reduction step was performed at room temperature. Thereafter, it was cooled with dry ice methanol and the valve 9 was closed. Subsequently, ammonia was charged into the autoclave 1 from the ammonia cylinder 17 in the same manner as in Example 1. The subsequent steps are the same as in the first embodiment.
  • the pressure when the temperature was raised to the same temperature was 132 MPa.
  • Example 1 As a result of measuring the weight of the seed crystal taken out after the operation was completed, an increase of 0.26 g was observed. As a result of analysis of the precipitated crystals, it was confirmed to be hexagonal gallium nitride as in Example 1. Compared with Example 1 and Example 2, black to brown coloring was remarkable.
  • the oxygen concentration analysis result by SIMS was 5 ⁇ 10 19 atoms / cm 3 .
  • the analysis result of the silicon concentration was 4 ⁇ 10 19 atoms / cm 3 .
  • a high purity nitride crystal having a low oxygen concentration can be efficiently grown.
  • the apparatus of the present invention capable of producing such a nitride crystal can be enlarged and mass-produced, the industrial applicability is high.
  • the nitride crystal of the present invention has a low oxygen concentration and a high purity, it is difficult to cause coloring, and can be applied to various uses such as optoelectronic substrates such as LEDs and LDs. Therefore, the present invention has high industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 酸素濃度が低くて高純度の窒化物結晶をアモノサーマル法によって効率よく成長させること。 反応容器内または反応容器に繋がる閉回路内で、アンモニアと反応して鉱化剤を生成する反応性ガスとアンモニアとを接触させて鉱化剤を生成し、前記アンモニアと前記鉱化剤の存在下でアモノサーマル法によって窒化物結晶を成長させることを特徴とする窒化物結晶の製造方法。

Description

窒化物結晶の製造方法、窒化物結晶およびその製造装置
 本発明は、アモノサーマル法による窒化物結晶の製造方法、窒化物結晶およびその製造装置に関する。特に、鉱化剤の供給法に特徴を有するアモノサーマル法による窒化物結晶の製造方法に関する。
 アモノサーマル法は、超臨界状態および/または亜臨界状態にあるアンモニア溶媒を用いて、原材料の溶解-析出反応を利用して所望の材料を製造する方法である。結晶成長へ適用するときは、アンモニア溶媒への原料溶解度の温度依存性を利用して温度差により過飽和状態を発生させて結晶を析出させる方法である。アモノサーマル法と類似のハイドロサーマル法は溶媒に超臨界および/または亜臨界状態の水を用いて結晶成長を行うが、主に水晶(SiO)や酸化亜鉛(ZnO)などの酸化物結晶に適用される方法である。一方、アモノサーマル法は窒化物結晶に適用することができ、窒化ガリウムなどの窒化物結晶の育成に利用されている。アモノサーマル法によって単結晶を成長させるためには、十分な量の原料が過飽和状態で存在し析出する必要があるが、そのためには結晶成長用原料が十分に溶媒に溶解することが必要である。しかしながら、例えば窒化ガリウムなどの窒化物は、採用しうる温度圧力範囲において純粋なアンモニアに対する溶解度が極めて低いため、実用的な結晶成長に必要な量を溶解させることができないという問題がある。
 このような問題を解決するために、窒化ガリウムなどの窒化物の溶解度を向上させる鉱化剤を反応系内に添加することが一般に行われている。鉱化剤は、窒化物と錯体などを形成(溶媒和)することができるため、より多くの窒化物をアンモニア中に溶解させることができる。鉱化剤には、塩基性鉱化剤と酸性鉱化剤があり、塩基性鉱化剤の代表例としてはアルカリ金属アミドを挙げることができ、酸性鉱化剤の代表例としてはハロゲン化アンモニウムを挙げることができる(特許文献1参照)。
 これらの鉱化剤は試薬として販売されているものであり、通常は粉末状の固体として取り扱われている。このような固体の鉱化剤は十分に乾燥させた後に、結晶成長用原料や種結晶を入れた反応容器内に投入して蓋をする。次いで、バルブを介して反応容器内に液体アンモニアを注入し、その後、ヒーターで昇温して内部のアンモニアの体積膨張により内圧を発生させる。設定した温度条件で所定の時間維持して結晶を成長させた後、冷却して反応容器内から結晶を取り出すことにより、窒化物結晶を得ることができる(特許文献2~4参照)。
 しかしながら、このようにして固体鉱化剤を添加してアモノサーマル法により結晶成長させた窒化物結晶は、結晶中に含まれる酸素濃度が比較的高いという課題を有している。すなわち、上記従来法により得られた窒化物結晶には、酸素が1018~1020atom/cmのオーダーで含まれているが(非特許文献1、非特許文献2参照)、これはHVPE法で育成された窒化物結晶に比べると極めて高い数値である。
特開2003-277182号公報 特開2005-8444号公報 特開2007-238347号公報 特開2007-290921号公報
Journal of Crystal growth,310,2008,3902-3906 Journal of Crystal growth,310,2008,876-880
 酸素濃度が高いと、結晶に黒~茶色の着色が生じ、LED,LD(Laser Diode)などのオプトエレクトロニクス用基板として使用する場合は光の吸収が発生して光取り出し効率を低下させてしまう。また酸素はドナーとして機能するため、意図しない不純物として制御されていない量の酸素が結晶中に含まれると、基板の電気的特性制御のためのドーピングが困難となってしまう。このため、結晶中の酸素濃度を低減することが求められている。これは、結晶成長速度や得られる結晶の結晶性の観点からも必要とされていることである。しかしながら、従来は、これらの課題はアモノサーマル法を採用する限り避けることができない固有の課題であると認識されており、解決策はまったく見いだされていなかった。
 このような従来技術の課題を考慮しつつ、本発明では、敢えてアモノサーマル法によって酸素濃度が低い窒化物結晶を得ることを目的として検討を進めた。
 上記の課題を解決するために鋭意検討を行なった結果、本発明者らは、従来法ではまったく検討されていなかった斬新な方法により鉱化剤を供給することにより、アモノサーマル法によって酸素濃度が低い窒化物結晶が得られることを見出して、本発明を完成するに至った。すなわち、課題を解決する手段として、以下の本発明を提供するに至った。
[1] 反応容器内または反応容器に繋がる閉回路内で、アンモニアと反応して鉱化剤を生成する反応性ガスとアンモニアとを接触させて鉱化剤を生成し、前記反応容器内にてアンモニアと前記鉱化剤の存在下でアモノサーマル法によって反応容器内に入れられた窒化物の結晶成長原料から窒化物結晶を成長させることを特徴とする窒化物結晶の製造方法。
[2] 前記反応性ガスがハロゲン化水素ガスであることを特徴とする[1]に記載の窒化物結晶の製造方法。
[3] 前記反応性ガスが塩化水素ガス、臭化水素ガス及びヨウ化水素ガスからなる群から選ばれる1以上であることを特徴とする[2]に記載の窒化物結晶の製造方法。
[4] 前記反応性ガスを前記アンモニアに供給することにより鉱化剤を生成することを特徴とする[1]~[3]のいずれか一項に記載の窒化物結晶の製造方法。
[5] 前記反応性ガスの水含有量が10ppm(重量基準)以下であることを特徴とする[1]~[4]のいずれか一項に記載の窒化物結晶の製造方法。
[6] 前記反応性ガスの酸素含有量が10ppm(重量基準)以下であることを特徴とする[1]~[5]のいずれか一項に記載の窒化物結晶の製造方法。
[7] 前記反応性ガスを複数の原料ガスを反応させることにより生成することを特徴とする[1]~[3]のいずれか一項に記載の窒化物結晶の製造方法。
[8] 前記複数の原料ガスを前記アンモニアに供給することにより鉱化剤を生成することを特徴とする[7]に記載の窒化物結晶の製造方法。
[9] 前記複数の原料ガスの水含有量がいずれも10ppm(重量基準)以下であることを特徴とする[7]または[8]に記載の窒化物結晶の製造方法。
[10] 前記複数の原料ガスの酸素含有量がいずれも10ppm(重量基準)以下であることを特徴とする[7]~[9]のいずれか一項に記載の窒化物結晶の製造方法。
[11] 前記複数の原料ガスが少なくとも第1原料ガスと第2原料ガスからなり、前記第1原料ガスがハロゲンであって、前記第2原料ガスがハロゲンと反応して前記反応性ガスを生成するガスであることを特徴とする[7]~[10]のいずれか一項に記載の窒化物結晶の製造方法。
[12] 前記第2原料ガスが、水素原子を有するハロゲン化アルカンとアルカンからなる群より選択される1種以上のガスであることを特徴とする[11]に記載の窒化物結晶の製造方法。
[13] 前記第1原料ガスが塩素ガスであり、前記第2原料ガスが、メタン、モノクロロメタン、ジクロロメタン、およびトリクロロメタンからなる群より選択される1種以上のガスであることを特徴とする[12]に記載の窒化物結晶の製造方法。
[14] アンモニアを入れた反応容器内に、前記反応性ガスまたは前記反応性ガスを生成する複数の原料ガスを導入することにより鉱化剤を生成させ、前記反応容器内において窒化物結晶を成長させることを特徴とする[1]~[13]のいずれか一項に記載の窒化物結晶の製造方法。
[15] 反応容器に繋がる閉回路内であって反応容器外において、アンモニアに前記反応性ガスまたは前記反応性ガスを生成する複数の原料ガスを導入することにより鉱化剤を生成させた後、生成した鉱化剤を含むアンモニアを前記反応容器内に導入して窒化物結晶を成長させることを特徴とする[1]~[13]のいずれか一項に記載の窒化物結晶の製造方法。
[16] 前記反応性ガスまたは前記反応性ガスを生成する複数の前記原料ガスを、フィルターを通過させた後に導入することを特徴とする[14]または[15]に記載の窒化物結晶の製造方法。
[17] 前記反応容器が、Pt、Ir、W、Ta、Rh、Ru、Reからなる群より選択される1種以上の金属または合金によりライニングされていることを特徴とする[14]~[16]のいずれか一項に記載の窒化物結晶の製造方法。
[18] 前記反応容器がオートクレーブであることを特徴とする[14]~[17]のいずれか一項に記載の窒化物結晶の製造方法。
[19] 前記反応容器がオートクレーブ中に挿入された内筒管であることを特徴とする[14]~[17]のいずれか一項に記載の窒化物結晶の製造方法。
[20] 前記反応容器内又は前記反応容器に繋がる閉回路内にアンモニアと反応性ガス又はアンモニアと原料ガスを導入する前に、結晶成長用原料を含む前記反応容器中を窒素ガスで置換することを特徴とする[14]~[19]のいずれか一項に記載の窒化物結晶の製造方法。
[21] 前記反応容器内又は前記反応容器に繋がる閉回路内にアンモニアと反応性ガス又はアンモニアと原料ガスを導入する前に、結晶成長用原料を含む反応容器中を10Torr以下の圧力まで減圧することを特徴とする[14]~[20]のいずれか一項に記載の窒化物結晶の製造方法。
[22] 前記反応容器内又は前記反応容器に繋がる閉回路内にアンモニアと反応性ガス又はアンモニアと原料ガスを導入する前に、結晶成長用原料を含む反応容器中を70℃以上に加熱することを特徴とする[14]~[21]のいずれか一項に記載の窒化物結晶の製造方法。
[23] 前記窒化物結晶がIII族窒化物結晶であることを特徴とする[1]~[22]のいずれか一項に記載の窒化物結晶の製造方法。
[24] 前記窒化物結晶がガリウムを含む窒化物結晶であることを特徴とする[1]~[22]のいずれか一項に記載の窒化物結晶の製造方法。
[25] 窒化物結晶の成長用原料として、金属ガリウム、窒化ガリウム、またはこれら両方を用いることを特徴とする[24]に記載の窒化物結晶の製造方法。
[26] 前記成長用原料中の酸素濃度が1×1018atom/cm以下であることを特徴とする[25]に記載の窒化物結晶の製造方法。
[27] 前記結晶成長前に前記反応容器内に種結晶を入れておくことを特徴とする[1]~[26]のいずれか一項に記載の窒化物結晶の製造方法。
[28] 前記ガスを導入しながら前記アンモニアを冷却することを特徴とする[1]~[27]のいずれか一項に記載の窒化物結晶の製造方法。
[29] [1]~[28]のいずれか一項に記載の窒化物結晶の製造方法により製造される窒化物結晶。
[30] 酸素濃度が5×1018atom/cm以下であり、主面の結晶格子面の曲率半径が50m以上であることを特徴とする窒化物結晶。
[31] 酸素濃度が5×1018atom/cm以下であり、シリコン濃度が5×1018atom/cm以下であることを特徴とする窒化物結晶。
[32] 前記窒化物が窒化ガリウムであることを特徴とする[30]または[31]に記載の窒化物結晶。
[33] アモノサーマル法によりアンモニアの存在下で窒化物結晶を成長させることができる反応容器と、アンモニアと反応して鉱化剤を生成する反応性ガスを前記反応容器へ導入する手段とを備えていることを特徴とする窒化物結晶の製造装置。
[34] 前記反応性ガスを前記反応容器へ導入する前記手段が、前記反応性ガスを通過させるフィルターを備えていることを特徴とする[33]に記載の窒化物結晶の製造装置。
[35] アンモニアガスを前記反応容器へ導入する手段をさらに備えていることを特徴とする[33]に記載の窒化物結晶の製造装置。
[36] 前記アンモニアガスを前記反応容器へ導入する前記手段が、前記アンモニアガスを通過させるフィルターを備えていることを特徴とする[35]に記載の窒化物結晶の製造装置。
[37] 前記反応容器に配管が接合されており、該配管の少なくとも一部を加熱するためのヒーターを備えていることを特徴とする[33]~[36]のいずれか一項に記載の窒化物結晶の製造装置。
 本発明の窒化物結晶の製造方法(以下、本発明のアモノサーマル法と称する)によれば、酸素濃度が低くて高純度の窒化物結晶を効率よく成長させることができる。また、本発明の窒化物結晶は酸素濃度が低くて純度が高いため、着色が生じにくい。さらに、本発明の製造装置を用いれば、このような特徴を有する窒化物結晶を効率よく製造することができる。
本発明で用いる結晶製造装置の概略図である。 比較例で用いる結晶製造装置の概略図である。
 以下において、本発明のアモノサーマル法による窒化物結晶の製造方法、窒化物結晶およびその製造装置について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本発明において、アモノサーマル法とは、超臨界状態および/または亜臨界状態にあるアンモニア溶媒を用いて、原材料の溶解-析出反応を利用して所望の材料を製造する方法である。
(反応性ガス)
 本発明のアモノサーマル法は、アンモニアと反応して鉱化剤を生成する反応性ガスとアンモニアとを接触させて鉱化剤を生成し、前記アンモニアと前記鉱化剤の存在下で窒化物結晶を成長させることを特徴とする。
 本発明で用いる反応性ガスとしては、フッ化水素ガス、塩化水素ガス、臭化水素ガス、ヨウ化水素ガスなどのハロゲン化水素ガスを挙げることができる。これらの反応性ガスの中でも塩化水素ガス、臭化水素ガス、ヨウ化水素ガスを用いることがより好ましく、それらのなかでもより高純度のガスが入手可能な塩化水素ガスを用いることがさらに好ましい。これらの反応性ガスのうち、温度圧力条件によっては液体であるものについては液体のまま用いてもよいし、温度や圧力を調整することによってガス状にして用いてもよい。また、これらの反応ガスは一種を単独で用いてもよいし、複数種を併用してもよい。
 反応性ガスを本発明で用いる際には、反応性ガスに含まれる水含有量が低いものを選択して用いることが好ましい。反応性ガスに含まれる水含有量は、重量基準で10ppm以下であることが好ましく、5ppm以下であることがより好ましく、1ppm以下であることがさらに好ましく、まったく含んでいないことがもっとも好ましい。重量基準で水含有量が10ppm以下の反応性ガスを用いることによって、一段と酸素濃度が低い窒化物結晶を得やすくなるという利点がある。
 反応性ガスに含まれる酸素含有量は、重量基準で10ppm以下であることが好ましく、5ppm以下であることがより好ましく、1ppm以下であることがさらに好ましく、まったく含んでいないことがもっとも好ましい。酸素含有量が10ppm以下の反応性ガスを用いることによって、一段と酸素濃度が低い窒化物結晶を得やすくなるという利点がある。
 本発明で用いる反応性ガスの純度は、99.9%以上であることが好ましく、99.99%以上であることがより好ましく、99.999%以上であることがさらに好ましい。
 反応性ガスは、本発明のアモノサーマル法においてアンモニアと接触させる前に、フィルターを通過させておくことが好ましい。フィルターを通過させることによって、反応性ガスに混入している水分をはじめとした不純物や、反応性ガスを入れたボンベ内、配管に存在している不純物を取り除くことができる。本発明で使用するフィルターの種類としては、Matheson Tri Gas社製のNanochem Metal-Xなどを挙げることができる。フィルターを通すことにより反応性ガス中の水分量を200ppb以下に抑えることができる。
(反応性ガスとアンモニアの接触)
 本発明のアモノサーマル法において、反応性ガスをアンモニアと接触させる態様は特に制限されない。例えば、アンモニアを入れた反応容器に反応性ガスを導入することにより、反応性ガスとアンモニアを接触させることができる。このとき、反応性ガスは、反応容器に設けられた開口部を通して導入してもよいし、アンモニアの液中に伸長した導入管を通してアンモニア液中に直接導入してもよい。
 反応性ガスとアンモニアとの接触は必ずしも反応容器内で行なわれる必要はなく、反応容器に繋がる閉回路内で行ってもよい。閉回路とは、反応容器と繋げたときに反応容器とともに密閉状態を形成して、外気から隔離し、酸素、水分等の不純物混入を抑止することが可能な流路または容器を意味する。また、閉回路は常に反応容器に繋がっている必要はなく、バルブやその他の構造を用いることにより反応容器との間で密閉できる機能を保持したまま、反応容器と分離可能な構造でもよい。このような閉回路と反応容器の接続の例としては、例えば、反応容器と反応容器とは別の容器(ここでは混合用容器と称する)が配管で接続されており、それぞれの容器にバルブが付属し密閉可能な構造となってものが挙げられる。
 このような構造の場合、反応容器と混合用容器中にアンモニアを充填後、混合用容器中に反応性ガスを導入し鉱化剤を生成させた後、バルブを開放し、配管を通じて接続された反応容器へ鉱化剤を含んだアンモニアを導入する方法などを行うことができる。
 また、例えば、配管中で両者が接触するようにしてもよい。配管中で接触させる場合、生成する鉱化剤は粉体状であると、配管を詰まらせて閉塞させる可能性がある。その場合には、生成した鉱化剤が配管を閉塞させないよう、配管の太さ、反応性ガスの流量、反応性ガス供給時の温度条件などを適宜調整し、最適な条件を見出すことができる。
 アンモニア液中に伸長した配管でガスを供給する場合、配管はそのまま結晶育成期間中にも反応容器内に留まることになるため、鉱化剤の存在する超臨界アンモニアに対して優れた耐食性のある材料で製作されていることが好ましい。具体的には、Pt、Ir、W、Ta、Rh、Ru、Reのうちの少なくとも一種類以上からなる合金を用いて製作されていることが好ましい。
 アンモニアの融点は-78℃、沸点は-33℃(ともに大気圧下におけるもので、小数点以下四捨五入)である。つまり-78℃から-33℃の間ではアンモニアは液体として存在するため、反応性ガスは液体アンモニアとは主に気液界面にて反応する。
 反応性ガスが塩化水素の場合は次のようになる。塩化水素の融点は-144℃、沸点は-85℃である。したがってアンモニアが液体で存在する温度範囲は塩化水素の沸点以上となるため、塩化水素はガスとして供給される。この場合、前述のような気液界面での反応となる。
 反応性ガスが臭化水素の場合、融点は-87℃、沸点は-66℃であるため、-66℃から-33℃の間では液体アンモニアと臭化水素ガスの気-液反応となり、-78℃から-66℃の間では液体アンモニアと液体臭化水素との液-液反応となる。-87℃から-78℃の間では固体アンモニアと液体臭化水素が接することとなるが、この場合反応性が低いため、規定量の臭化水素が反応容器内に導入された後にアンモニアの融点以上の温度に上昇させることにより反応を促進させることが好ましい。
 反応性ガスがヨウ化水素の場合、融点は-51℃、沸点は-35℃であるため、-35℃から-33℃の間では液体アンモニアとヨウ化水素ガスの気液界面での反応となる。ただしこの場合アンモニアの沸点に近いために反応熱で沸点を超える可能性があるためアンモニアの気化が始まることがある。-51℃から-35℃の間ではアンモニア、ヨウ化水素ともに液体で存在するため、液-液反応となる。-78℃から-51℃の間では液体アンモニアと固体ヨウ化水素との液-固反応となる。この場合反応性が低くなるためヨウ化水素を規定量導入した後、ヨウ化水素の融点以上の温度になるよう昇温させ反応を促進させることが好ましい。
 反応性ガス供給時の配管、反応容器の好ましい温度範囲は以下の通りである。
 配管の温度範囲としては、アンモニアの沸点以下の温度であれば反応性ガスの導入温度は特に制限を受けることはないが、反応性ガスが配管中で固体となることを防止するために反応性ガスの配管の温度を融点以上にするのが好ましく、さらに好ましくはガスとして導入が可能となるので反応性ガスの沸点以上にするのが好ましい。配管、バルブへの温度によるダメージが大きくなるため、上限は400℃程度が好ましい。
 反応容器内の温度範囲が反応性ガスの融点以下であってもガス導入の妨げにはならない。ただしアンモニアと反応性ガスの反応を促進させるためには反応性ガス導入後、反応容器内の温度をアンモニア、反応性ガスのいずれもが融点を超える温度となることが好ましい。効率的にガスを導入するために上限はアンモニアの沸点である-33℃が好ましい。
 アンモニアに対する反応性ガスの供給量や供給速度は、環境条件に応じて適宜決定することができる。通常は、供給された反応性ガスが逐次アンモニアと反応するように、反応性ガスの供給速度を調整することが好ましい。
 反応性ガスとアンモニアを接触させる際の反応容器内部の圧力は、反応性ガスボンベから供給されるガス圧よりも低く制御されることが好ましい。圧力は、0.01~0.5MPaの範囲内に設定することが好ましく、0.01~0.2MPaの範囲内に設定することがより好ましく、0.01~0.1MPaの範囲内に設定することがさらに好ましい。
 内部圧力がアンモニアと反応性ガスの反応熱による内部温度の上昇により変化する場合には、冷却剤等を用いることにより十分に反応熱を除去することが好ましい。また、反応熱を除去しながら、ガス圧をモニターし反応性ガスの供給量を調整することで規定量の反応性ガスを反応容器内に導入することが好ましい。
 この場合には、反応熱を逐次取り除きアンモニアの沸点である-33℃以下になるようにすることが好ましい。厳密にはアンモニアの沸点以下であっても蒸気圧が反応性ガスの導入圧力よりも高くなることがないように内部圧力をモニタリングしながら反応性ガスの供給量を調整し供給することが好ましい。反応熱の発生をモニタリングするためには反応容器内部に熱電対を挿入し反応熱による温度変化を測定することができる。反応容器内部温度を直接測定せずに反応容器外壁温度を測定することにより代用することもできる。この場合、あらかじめ反応容器内の温度と反応容器外壁温度との相関を取った上で反応容器外壁温度を測定することにより反応容器内部温度を知ることができる。
 冷却方法としては、例えば冷媒を用いたり、冷風を当てたりする方法を挙げることができる。冷媒としては、例えばドライアイスメタノールを挙げることができ、その中に反応容器を浸漬することにより-60℃から-70℃程度にまで冷却することができる。さらに冷却が必要な場合は、液体窒素などと併用して温度を調整することもできる。
 反応性ガスとしてハロゲン化水素ガスを選択した場合、ハロゲン化水素ガスとアンモニアが接触することによりハロゲン化アンモニウムが生成する。例えば反応性ガスとして塩化水素ガスを選択した場合、塩化水素ガスとアンモニアが接触することにより塩化アンモニウムが生成する。このようにして生成した塩化アンモニウムなどのハロゲン化アンモニウムが鉱化剤(酸性鉱化剤)として機能する。臭化水素ガスを選択した場合は臭化アンモニウムが生成し、ヨウ化水素ガスを選択した場合はヨウ化アンモニウムが生成し、それぞれ鉱化剤として機能する。複数のハロゲン化水素ガスを選択することにより、複数のハロゲン化アンモニウムが生成し鉱化剤として機能する。
 これらアンモニアと反応性ガスの接触により生成するハロゲン化アンモニウムは粉体状の固体であり、場合によっては反応性ガス導入時にアンモニアと急速に反応して反応性ガス導入用配管を閉塞させることが予想されるため、これまではこのような方法で、鉱化剤を生成させて、導入することは困難であると認識されていた。しかし、本発明者らは反応温度や反応性ガス供給速度を適宜最適化することにより、配管の閉塞を起こさせずに反応性ガスを導入させることを達成し、本発明に至った。
 このような条件としては、例えば、反応温度を-196~-33℃とすることが好ましく、より好ましくは-196~-60℃である。また、反応性ガス供給速度は0.01~5リットル/分とすることが好ましく、より好ましくは0.02~2リットル/分である。また、反応性ガス導入中にアンモニアが配管中に逆流しないように、反応性ガス供給圧力を常にアンモニアの蒸気圧よりも高く維持するよう反応性ガスを供給することが好ましい。本発明においては、これらの条件に限られることなく、適宜最適な条件を選択することができる。
(原料ガスを用いた反応性ガスの生成)
 上記の(反応性ガスとアンモニアの接触)の項では、反応性ガスをアンモニアに接触させることによって鉱化剤を生成する態様について説明したが、本発明では、供給するガスは反応性ガスに限られず、反応性ガスの原料となる原料ガスを複数種供給してもよい。このような複数の原料ガスは、互いに接触して反応することにより反応性ガスを生成し、そのようにして生成した反応性ガスがアンモニアと反応して鉱化剤を生成する。
 原料ガスとしては、互いに反応する2種以上のガスを用いる。互いに反応するガスをそれぞれ第1原料ガスと第2原料ガスと称するとき、例えば第1原料ガスとしてハロゲンを採用し、第2原料ガスとしてハロゲンと反応して反応性ガスを生成するガスを選択することができる。そのような第2原料ガスとして、例えば水素原子を有するハロゲン化アルカンとアルカンからなる群より選択される1種以上のガスを挙げることができる。具体的にはメタン、モノクロロメタン、ジクロロメタン、およびトリクロロメタンからなる群より選択される1種以上のガスを挙げることができる。第1原料ガスと第2原料ガスをそれぞれ形成するハロゲン原子は同一であってもよいし、異なっていてもよい。好ましいのは同一である場合である。ハロゲンとしては、フッ素、塩素、臭素、ヨウ素を挙げることができる。なかでも高純度ガスが入手可能な塩素を採用することが好ましい。
 本発明で用いる原料ガスは、上記の反応性ガスと同様に、水含有量が低いものを選択して用いることが好ましい。また、不純物量が少なく、純度が高いものを選択して用いることが好ましい。原料ガスの水含有量、不純物量、純度の好ましい範囲は、上記の反応性ガスの水含有量、不純物量、純度の好ましい範囲と同じである。このような好ましい範囲の水含有量、不純物量、純度を有する原料ガスを用いることにより、一段と酸素濃度が低い窒化物結晶を得やすくなるという利点がある。また、原料ガスはアンモニアと接触させる前に、フィルターを通過させておくことが好ましく、使用しうるフィルターの具体例については、アルカン用としてはMatheson Tri Gas社製のNanochem OMXなどを挙げることができる。ハロゲンガス用としては、上記のハロゲン化水素用に用いたフィルターを参照することができる。
 本発明のアモノサーマル法において、原料ガスをアンモニアに対して供給する態様は、反応容器内または反応容器に繋がる閉回路内において、原料ガスが生成する反応性ガスがアンモニアと接触しうるものであれば特に制限されない。したがって、アンモニアを入れた反応容器に設けられた別々の開口部から複数の原料ガスをそれぞれ導入して、反応容器内で複数の原料ガスとアンモニアが混合するようにしてもよいし、あらかじめ複数の原料ガスを接触させて反応性ガスを生成させておいてから、反応性ガスを含む混合ガスをアンモニア入りの反応容器に導入してもよい。後者の場合、別の反応容器で複数の原料ガスを混合して生成した反応性ガスを、アンモニア入り反応容器へ導入してもよいし、複数の原料ガスを配管中で混合して生成した反応性ガスを、アンモニア入り反応容器へ導入してもよい。また、生成した反応性ガスとアンモニアとの反応は必ずしも反応容器内で行う必要はなく、配管中で行ってもよい。また、反応容器とは別にアンモニアと反応性ガスを混合するための容器を用い、本混合用容器中でアンモニアと反応性ガスを反応させ鉱化剤を生成させた後、反応容器へ導入しても良い。このような場合には、混合用容器と反応容器とが繋がって、閉回路を形成することを要する。つまり、混合用容器中で生成した鉱化剤が、外気から隔離され、酸素、水分等の不純物が混入することなく反応容器に供給され得る構造を有することが必要である。
 これら様々な態様のなかで好ましいのは、あらかじめ複数の原料ガスを接触させておいて反応性ガスを生成させておいてから、反応性ガスをアンモニア入り反応容器に導入する態様である。
(結晶成長)
 本発明の方法にしたがって生成させた鉱化剤は、窒化物結晶の成長に用いられる。すなわち、鉱化剤とアンモニアの存在下で窒化物結晶を成長させる。結晶成長に用いるアンモニアは、鉱化剤生成に用いたアンモニアであることが好ましい。したがって、生成した鉱化剤を含むアンモニア溶液を結晶成長に用いることが特に好ましい。鉱化剤を含むアンモニア溶液は、反応容器に繋がる閉回路内から窒化物結晶を成長させる反応容器へ導入してもよいし、鉱化剤を生成した反応容器内でそのまま窒化物結晶を成長させてもよい。後者の場合は、反応容器として窒化物結晶の条件に耐えうるものであって、結晶成長に適した構造を有するものを選択して用いる必要がある。また、後者の場合は、鉱化剤生成工程と窒化物結晶成長工程は時間がオーバーラップしていても構わない。すなわち、鉱化剤を生成させながら、窒化物結晶も同時に成長させても構わない。
 窒化物結晶の成長条件は、通常のアモノサーマル法における窒化物結晶の成長条件を適宜選択して採用することができる。
 結晶成長用原料としては、アモノサーマル法による窒化物結晶の成長に通常用いられる原料を適宜選択して用いることができる。例えば、窒化ガリウム結晶を成長させる場合には、ガリウム源となる原料として金属ガリウム、窒化ガリウム、またはこれらの混合物を用いることができる。本発明で用いる結晶成長用原料は、酸素濃度が1×1018atom/cm以下であるものを用いることが好ましく、1×1017atom/cm以下であるものを用いることが好ましく、1×1016atom/cmであるものを用いることがさらに好ましい。
(種結晶)
 また、種結晶をあらかじめ存在させておくことによって、所望の結晶構造や成長面を有する窒化物結晶を成長させることも可能である。例えば、六方晶の窒化ガリウム結晶を種結晶として用いることにより、六方晶の窒化ガリウム結晶を効率よく成長させることができる。種結晶は通常薄板状の平板単結晶を用いるが、主面の結晶方位は任意に選択することができる。ここで主面とは薄板状の種結晶で最も広い面を指す。六方晶窒化ガリウム単結晶の場合は(0001)面、(000-1)面に代表される極性面、(10-12)面、(10-1-2)面に代表される半極性面、(10-10)面に代表される非極性面と様々な方位の主面を有する種結晶を用いることにより任意の方位へ結晶成長させることができる。種結晶の切り出し方位は前記のようなファセット面に限らず、ファセット面から任意の角度ずらした面を選択することもできる。
 本発明における窒化物結晶の成長温度は、通常300~700℃に設定することが好ましく、350~650℃に設定することがより好ましく、400~600℃に設定することがさらに好ましい。本発明における窒化物結晶の成長時の圧力は、通常80~300MPaに設定することが好ましく、100~250MPaに設定することがより好ましく、120~250MPaに設定することがさらに好ましい。その他の窒化物結晶の成長条件等については、特開2007-238347号公報の製造条件や種結晶の欄を参照することができる。
(付加的な工程)
 本発明のアモノサーマル法では、上記の工程の他にさらに付加的な工程を追加することができる。例えば、反応容器内に必要な結晶成長用原料と種結晶等を入れた後、アンモニア、反応性ガスまたは原料ガスを反応容器内又は反応容器に繋がる閉回路内の系内に導入する前に、反応容器や配管内を窒素ガスで置換する工程(窒素置換工程)を好ましく付加することができる。また、同じタイミングで、反応容器中や配管内を減圧する工程(減圧工程)を好ましく付加することもできる。このとき、圧力は10-7~10Torrの範囲内に減圧することが好ましく、10-7~1Torrの範囲内に減圧することがより好ましく、10-7~10-3Torrの範囲内に減圧することがさらに好ましい。減圧時間は上記圧力に到達するまで継続することが好ましい。また、窒素ガスで置換するのと同じタイミングで、反応容器や配管内を加熱する工程(加熱工程)も好ましく付加することができる。加熱温度は、反応容器や配管内に吸着、付着している揮発性物質を取り除ける温度であれば幅広く設定することができるが、窒素置換、減圧との組み合わせを考慮に入れると、70~400℃の温度範囲に加熱することが好ましく、80~300℃の温度範囲に加熱することがより好ましく、100~250℃の温度範囲に加熱することがさらに好ましい。低すぎる温度範囲は十分に揮発性物質を取り除く効果が低く、高すぎる温度範囲は揮発性物質を取り除く効果は大きいものの、配管、バルブへの温度によるダメージが大きくなる。加熱時間は特に限定されるものではないが、減圧下での加熱の効果を確認するためにも前記減圧範囲となるまで加熱、減圧工程を継続することが好ましい。
 このような窒素置換工程、減圧工程、加熱工程を行うことによって、一段と酸素濃度が低い窒化物結晶を成長させることができるようになる。これらの工程は、少なくとも1つ以上を行うことが好ましく、窒素置換工程と減圧工程または加熱工程とを組み合わせて行うことがより好ましく、3つをすべて行うことがさらに好ましい。また、3つの工程を繰り返し複数回行うことができる。繰り返し行うことにより、さらに付着、吸着物質を除去することが可能となる。3つの工程により、配管内、反応容器内、反応容器内に投入した部材(種結晶、原材料、構造材)に付着、吸着している揮発性物質を効果的に除去することが可能となる。揮発性物質のなかでも、特に水分を除去する効果が高い。高純度反応性ガスを使用することと、3つの工程の組み合わせることにより、さらに高純度、低酸素濃度の窒化物結晶を育成することが可能となる。3つの工程のうち、減圧工程と加熱工程の組み合わせは、固体鉱化剤を添加する従来のアモノサーマル法では鉱化剤が気化してしまうため実質的に行うことができなかったものである。例えば鉱化剤として塩化アンモニウムを固形で使用し加熱工程を適用した場合、塩化アンモニウムが気化するため減圧による水分除去工程を適用できないばかりか、気化により塩化アンモニウムが減少してしまうため所望の鉱化剤濃度が得られなくなる。塩化アンモニウムの昇華温度は0.1MPaにおいて338℃であるが、実際にはこれよりも遥かに低い温度においても蒸気圧が存在するため気化が始まっている。150℃における塩化アンモニウムの蒸気圧は約70Paである。加熱と同じタイミングで減圧しようとすると、塩化アンモニウムの蒸気圧が遥かに高くて急速に蒸発してしまうことから、従来のアモノサーマル法では加熱、減圧工程を組み入れることが不可能であった。
 なお、窒化物結晶の成長を行う反応容器の外で鉱化剤を生成させ、結晶成長時に鉱化剤含有アンモニア溶液を反応容器に導入する態様を採用する場合は、鉱化剤含有アンモニア溶液を生成した後に結晶成長用の反応容器内のみを窒素置換、減圧、加熱しても構わない。このときの反応容器内の窒素置換、減圧、加熱は、上記の窒素置換工程、減圧工程、加熱工程に準じて行うことができる。
 本発明における代表的な結晶成長は、例えば以下の手順からなる。まず十分に洗浄した反応容器内に、必要な結晶成長用原料、種結晶等を入れ、蓋をする。常圧または減圧下で加熱することによって、吸着ガスや揮発物質等を除去する。その後、窒素ガスで反応容器内を置換して、アンモニアを充填する。次いで、反応性ガスまたは原料ガスを導入することにより鉱化剤を生成させ、昇温して結晶成長させる。十分に結晶が成長した後に降温して窒化物結晶を取り出す。各材料や操作の好ましい範囲は上記のとおりである。この方法によれば、結晶成長用原料や種結晶等を反応容器に入れた後は完全にクローズドの系で工程を進めることができるため、加熱工程等で揮発物質等を除去できるうえに外部からの水や不純物の混入も防ぐことができる。このため、一段と高い純度の窒化物結晶を得やすいという利点がある。また、本発明によれば従来よりも速い成長速度で窒化物結晶を成長させることができる。
 より詳細な実施形態の一例を以下に示す。まず反応容器内を十分に洗浄し乾燥させる。種結晶、原料、種結晶を固定する枠、バッフル板、原料カゴ等の反応容器内に設置すべきものも同様に十分に洗浄し乾燥させる。これらを反応容器内の所定の位置に設置し、反応容器を密閉する。次に反応容器に設置されたバルブに真空ポンプを接続して10-3Torr程度まで減圧した後、高純度の十分に乾燥した窒素で置換する。その後、再び真空ポンプで10-3Torr程度まで減圧する。本工程を数回繰り返した後、配管と反応容器をヒーターにて100~250℃に加熱する。ヒーターには、例えば配管や反応容器に巻きつけられるリボンヒーターやシリコンラバーヒーターを用いることができる。加熱工程の間、真空ポンプを用いて10-7~10-3Torrになるように減圧し続ける。十分に減圧された後にヒーターを切り、反応容器を冷却する。反応容器の冷却には、ドライアイスメタノール中への浸漬を適用することができる。急激な温度変化は、配管、バルブ、反応容器、反応容器内に設置された種結晶などに対する歪みを誘発させる可能性があるため、室温付近までは自然冷却あるいは空冷により冷却することが好ましい。その後、前述のドライアイスメタノールを用いて-60~-70℃程度まで冷却する。十分に冷却されたら、バルブを閉めて密閉し真空ポンプを切る。次にアンモニアを充填するためのバルブを開け、反応容器内にアンモニアを所定量充填する。アンモニア充填量は、マスフローコントローラーにて計測することができる。アンモニアは、インラインフィルターを通すことにより水分量を1ppb以下に抑えることが好ましい。アンモニアを所定量充填したら、アンモニア導入ラインのバルブを閉じる。以下、反応性ガスとしてハロゲン化水素ガスを導入するケースについて記述する。つづいてハロゲン化水素ガスを導入するラインのバルブを開き、反応容器中にガスを導入する。アンモニアの場合と同様に、マスフローコントローラーにより所定量を計測し充填を行う。インラインフィルターを使用することにより、水分量を200ppb以下に抑えることができる。反応容器内に導入されたハロゲン化水素ガスはアンモニアと反応し、鉱化剤であるハロゲン化アンモニウムを生成する。本反応によりハロゲン化水素ガスは消費され負圧が生じ、引き続きハロゲン化水素ガスを反応容器内に導入することができる。反応容器内の圧力は、ハロゲン化アンモニウム生成による圧力減少分と反応熱の発生による圧力上昇分のバランスで決定される。反応容器のサイズ、アンモニア量により温度上昇は異なるため、実際の制御ではマスフローコントローラーの流量変化および圧力変化を確認しながらハロゲン化アンモニウムの流量を調整することが好ましい。規定量のハロゲン化水素が充填された後バルブを閉じ、反応容器をラインから切り離し充填を完了する。反応容器がオートクレーブそのものである場合は、このまま加熱炉にセットされ、所定の温度、圧力、温度差に制御し、任意の期間結晶成長のための運転を行う。反応容器が内筒管である場合、内筒管をオートクレーブ内に挿入しオートクレーブを密閉した後、バルブを通じてオートクレーブ内つまり内筒管の外側の空間部分にアンモニアを所定量充填する。ここでのアンモニアの充填量は、結晶育成運転時に内筒管内の圧力と内筒管外の圧力がほぼ等しくなるように決定する。十分に結晶が成長した後、オートクレーブの温度を降下し結晶を取り出す。反応性ガスの代わりに2種類以上の原料ガスを導入し反応性ガスを生成する場合は、前記ハロゲン化水素ガスを挿入する工程と同様の工程を複数回繰り返すことにより原料ガスを導入する以外は同様の工程である。
(反応容器)
 本発明で用いる反応容器は、窒化物結晶を効率よく成長させることができる望ましい温度と圧力に耐えることができるとともに、本発明で使用する材料や反応生成物に対して耐食性を有するものであることが必要とされる。このため、窒化物結晶の成長は、オートクレーブ内や、オートクレーブ内に挿入された内筒管内で行うことが好ましい。また、優れた耐食性を持たせるために、Pt、Ir、W、Ta、Rh、Ru、Reからなる群より選択される1種以上の金属または合金によりライニングされた反応容器を用いることが好ましい。これらの金属の中ではPt、Ir、W、Taからなる群より選択される1種以上の金属または合金によりライニングされた反応容器を用いることがより好ましく、Pt、Irからなる群より選択される1種以上の金属または合金によりライニングされた反応容器を用いることがさらに好ましい。ライニングはオートクレーブ内面に密着していても良いし、オートクレーブとは分離している内筒管であっても良い。
 オートクレーブやオートクレーブ内の内筒にはガスを導入するための配管が接続されており、その配管には2個以上のバルブが設置されていることが好ましい。また、配管にはガス中に含まれる不純物などを除去することができるフィルターが設置されていることが好ましい。さらに、配管にはガスの流量を計測することができる機構が備わっていることが好ましい。さらにガス導入中の圧力が測定できる機構が備わっていることが好ましい。また、オートクレーブやオートクレーブ内の内筒を加熱または冷却するための機構を備えていることも好ましい。その他の反応容器の詳細については、特開2007-238347号公報の結晶製造装置の欄を参照することができる。
(配管の材質)
 水分除去工程を十分に行っていればハロゲン化水素による腐食を抑えることは可能であるが、100%の防食は困難であるため、配管の材質および配管内面仕上げについても以下の材質と内面仕上げ状態が好ましい。配管の材質にはSUS316、SUS316L等のステンレス、およびハステロイ、モネ、インコネルなどのニッケル基合金が使用できる。内面仕上げは水分の吸着を最小限に抑える目的と耐食性を高める目的から滑らかな表面仕上げがなされたものが好ましい。なかでもBA(Bright Annealed、光輝焼鈍)仕上げしたものが好ましく、EP(Electrolytic Polishing、電解研磨)仕上げしたものがより好ましい。配管は金属製以外にも耐食性に優れたポリテトラフルオロエチレンなどのフッ素樹脂を用いることもできる。またはフッ素樹脂で被覆された配管を用いることもできる。
(配管の窒素置換)
 ハロゲン化水素ガスは無水状態であれば金属に対する腐食性は無いが、微量の水分の存在によりガスボンベ、配管、コネクタなどの部材を激しく腐食させる。腐食を発生させないためには、ハロゲン化水素ガスが接触する部分(配管内面、バルブなど)全てにおいて、水分の除去を行う必要がある。水分除去のために配管内を減圧し高純度の乾燥窒素で置換する。減圧と窒素置換の工程を複数回繰り返すことにより、反応容器およびガス配管内面の吸着水分を十分に除去する。さらに配管を加熱しながら減圧することにより、より効果的に水分を除去することができる。水分除去の具体的工程については前述の(付加的な工程)を参照することができる。
(アンモニアの純度)
 アンモニア中の水含有量も同様に低く抑えることが好ましい。アンモニアの純度は99.99%以上であることが好ましく、99.999%以上であることがより好ましい。アンモニア中の水含有量は10ppm以下であることが好ましく、5ppm以下であることがより好ましく、1ppm以下であることがさらに好ましい。フィルターを通過させることによりさらに水含有量を低下させることも好ましく行われる。使用するフィルターとしては例えば、Matheson Tri Gas社製のNanochem OMAなどを挙げることができる。フィルターを通すことによりアンモニア中の水含有量を1ppb以下に抑えることができる。
(窒化物結晶の製造装置)
 本発明では、本発明にしたがってアモノサーマル法を用いて窒化物結晶を製造することができるものであれば、いずれの装置を使用しても構わない。
 典型的には、アモノサーマル法により窒化物結晶を成長させることができる反応容器と、該反応容器へ反応性ガスを導入する手段とを備えている本発明の製造装置を用いる。反応容器へ反応性ガスを導入する手段としては、例えば、反応性ガスが入ったボンベと該ボンベと反応容器を結ぶ配管からなるものを挙げることができる。配管の途中には1つ以上のバルブが設けられており、反応性ガス導入の有無を切り替えられるようになっていることが好ましい。また、配管の途中には、上記の(アンモニアの純度)の項で説明したフィルターがインラインフィルターとして設けられていることが好ましい。
 本発明のアモノサーマル法を、複数の原料ガスを反応させることにより反応性ガスを生成させることにより実施する場合は、各原料ガスのボンベと、該原料ガスボンベから導出されるガスを混合して反応容器へ導くための配管が必要となる。例えば、第1原料ガスと第2原料ガスを混合して反応容器へ導く場合は、第1原料ガスボンベからの配管と第2原料ガスボンベからの配管を合流させて1本の配管としたうえで反応容器へ繋いだ装置を用いることができる。このとき、第1原料ガスと第2原料ガスは、合流点から反応容器へ至るまでの間に反応して反応性ガスとなる。また、配管を合流させるかわりに、第1原料ガスボンベからの配管と第2原料ガスボンベからの配管を上記反応容器とは別の容器内にそれぞれ導いて、さらに該容器から反応容器へ至る配管を別に設けた装置を用いてもよい。このとき、第1原料ガスと第2原料ガスは、2つのガスを混合した容器内で反応するか、該容器から反応容器へ至るまでの間に反応して反応性ガスとなる。このように複数の原料ガスを用いる場合も、各原料ガスボンベからの配管の途中にバルブを設けたり、フィルターを設けたりすることが好ましい。
 本発明の製造装置では、反応容器へ反応性ガスを導入する手段とは別に、アンモニアガスを反応容器へ導入する手段を備えていることが好ましい。そのような手段は、典型的には、アンモニアガスボンベと該ボンベと反応容器を結ぶ配管からなる。配管の途中には、上記反応性ガスボンベの配管と同様に、1つ以上のバルブとフィルターが設けられていることが好ましい。アンモニアガスを導く配管と反応性ガスを導く配管は、それぞれが反応容器へ直接繋げられていてもよいが、通常はこれらの配管は合流させて1本の配管にして反応容器へ繋がれていることが好ましい。
 また、本発明の製造装置には、通常のアモノサーマル法による窒化物結晶の製造装置に採用されている手段を適宜選択して採用することができる。例えば、窒素などの不活性ガスを入れたボンベを上記のアンモニアガスボンベと同様にして装置内に組み込むことができる。また、真空ポンプを用いて反応容器と配管内を減圧できるようにすることもできる。
 本発明の製造装置には、上記のように配管を加熱するためのヒーターを好ましく設置することができる。従来のアモノサーマル法による窒化物結晶の製造装置には、必要性がなかったため、配管に加熱するためのヒーターを特に設置することはなかった。しかしながら本発明では、上記のように結晶成長開始前に加熱することが可能であり、加熱することにより一段と好ましい結晶が得られることから、特に配管を加熱するためのヒーターを設置することが好ましい。ヒーターの種類については、上記のとおりである。
 本発明の好ましい製造装置の一例を図1に示す。この製造装置は、アモノサーマル法によりアンモニアの存在下で窒化物結晶を成長させることができる反応容器1と、反応性ガスボンベ11と該ボンベから反応容器1へ至る配管を備えている。配管の途中には、インラインフィルター12、マスフローメーター13、バルブ10を含む複数のバルブが設けられている。反応容器1には、アンモニアボンベ16からインラインフィルター18、マスフローメーター19を通してアンモニアガスを導くことができる配管も設けられており、該配管の途中にはバルブ9を含む複数のバルブが設けられている。さらに、反応容器1には、窒素ガスボンベ17から窒素ガスを導くことができる配管と真空ポンプ15,20も設けられている。この製造装置には、配管を加熱するためのヒーター14が設置されている。図1に示す製造装置の具体的な使用態様については、後述する実施例を参考にすることができる。
(窒化物結晶)
 本発明にしたがって、反応性ガスとアンモニアを反応させることによって生成した鉱化剤を使用すれば、固体鉱化剤を添加した場合に比べて、結晶成長後に得られる窒化物結晶の酸素濃度が顕著に低くなる。本発明のアモノサーマル法により得られる窒化物結晶の酸素濃度は、通常5×1018atom/cm以下であり、好ましくは5×1017atom/cm以下であり、より好ましくは1×1017atom/cm以下であり、さらに好ましくは8×1015atom/cm以下である。このような低い酸素濃度は、従来の固体鉱化剤を添加するアモノサーマル法では達成できなかったレベルである。
 また、本発明のアモノサーマル法により得られる窒化物結晶は、従来のアモノサーマル法により得られる窒化物結晶に比べて、シリコン濃度が低いという特徴も有する。本発明のアモノサーマル法により得られる窒化物結晶のシリコン濃度は、通常5×1018atom/cm以下であり、好ましくは1×1018atom/cm以下であり、より好ましくは3×1017atom/cm以下である。
 さらに、本発明のアモノサーマル法により得られる窒化物結晶は、貫通転位密度が低いという特徴も有する。本発明のアモノサーマル法により得られる窒化物結晶の貫通転位密度は1×10/cm以下であり、より好ましくは1×10/cm以下であり、さらに好ましくは1×10/cm以下である。
 さらに、本発明のアモノサーマル法により得られる窒化物結晶は、格子面のそりが小さいという特徴も有する。本発明のアモノサーマル法により得られる窒化物結晶の主面に平行な結晶格子面の曲率半径は、通常10m以上であり、好ましくは50m以上であり、より好ましくは100m以上である。
 本発明のアモノサーマル法により得られる窒化物結晶の種類は、選択する結晶成長用原料の種類等によって決まる。本発明によれば、III族窒化物結晶を好ましく成長させることができ、ガリウム含有窒化物結晶をより好ましく成長させることができる。具体的には、窒化ガリウム結晶の成長に好ましく利用することができる。
 本発明のアモノサーマル法によれば、比較的、径が大きな結晶も得ることができる。例えば、最大径が50mm以上である窒化物結晶や、より好ましくは最大径が76mm以上である窒化物結晶や、さらに好ましくは最大径が100mm以上である窒化物結晶を得ることも可能である。従来よりも不純物が少ない環境下で成長するため、より大きな面積で均一な成長が実現できる。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(実施例1)
 本実施例では、図1に示す反応装置を用いて窒化物結晶を成長させた。
 白金を内張りした内寸が直径15mm、長さ154mmのInconel625製オートクレーブ1(内容積約27cm)を反応容器として用い結晶育成を行った。オートクレーブ1の内面を十分に洗浄し乾燥した。結晶育成に使用する白金製ワイヤー、白金製種子結晶支持枠、白金製バッフル板、白金メッシュ製原料カゴも同様に洗浄乾燥させた。窒化物結晶成長用の原料として多結晶窒化ガリウム粒子を用いた。多結晶窒化ガリウム粒子に対して濃度約50%のフッ酸を用いて付着物の除去を目的とした洗浄を行い純水で十分リンスした後乾燥させ、13gを秤量し白金メッシュ製原料カゴに充填してからオートクレーブ下部原料域内に原料5として設置した。原料である多結晶窒化ガリウムの酸素含有量はSIMS(二次イオン質量分析装置)による分析の結果5×1017atoms/cmであった。次に育成域と原料域のほぼ中間に白金製のバッフル板6(開口率10%)を設置した。さらに、六方晶系窒化ガリウム単結晶(10mm×10mm×0.3mm)4枚を、直径0.2mmの白金ワイヤーにより白金製種子結晶支持枠に種結晶4として吊るし、オートクレーブ上部育成域に設置した。
 つづいてバルブ9,10が装着されたオートクレーブの蓋3を閉じオートクレーブ1を密閉した。次いでオートクレーブに付属したバルブ9,10を介して導管をロータリーポンプ15に通じるように操作し、バルブ9,10を開けて圧力が10-3Torr程度に達するまで真空脱気した。その後、窒素ボンベ17から高純度の乾燥窒素を充填した。この真空脱気から窒素置換に至るまでの工程を3回繰り返した後、再度真空脱気した。真空状態を維持しながら配管をリボンヒーター14で100℃程度に加熱をした。オートクレーブ本体はシリコンラバーヒーター7で200℃程度まで加熱をした。加熱を維持しながらターボ分子ポンプ20を用いて圧力10-7Torr程度の高真空に達するまでポンプを回し続けた。約10-7Torrで3時間維持した後、ヒーターを切り自然冷却と送風により室温近傍まで降温した後、ドライアイスメタノール中に浸漬し-60~-70℃まで冷却した。ここでバルブ9,10を閉じターボ分子ポンプ20を停止した。
 続いてアンモニアボンベ16からインラインフィルター18(Matheson Tri Gas社、Nanochem OMA)を通し含有水分量を1ppb以下に抑えた高純度アンモニア(純度99.999%)を充填するためマスフローコントローラー19のスイッチをONにしてバルブ9を開けた。流量制御に基づき、17.5リットルのアンモニアを毎分2リットルの流量で充填した後、自動的にラインが閉じ充填がストップするのでバルブ9を閉じた。つづいて反応性ガスである塩化水素ガス(純度99.999%)の充填作業を行った。マスフローコントローラー13をONにしバルブ10を開け、反応性ガスボンベ11からインラインフィルター12(Matheson Tri Gas社、Nanochem Metal―X)を通し含有水分量を200ppb以下に抑えた塩化水素ガス0.35リットルを毎分0.05リットルの流量で充填した。充填中はオートクレーブ1内の圧力の上昇は見られず、充填された塩化水素ガスは逐次アンモニアと反応し塩化アンモニウムが生じていることが示唆された。外壁の温度を熱電対にてモニターしたところ、温度変動は±0.2℃であり反応熱による温度上昇の影響は検知されなかった。所定量の充填が完了したのち自動的にラインが閉じたのでバルブ10を閉じた。つづいて塩化水素のラインの一部を窒素ガスで置換した後ラインから切り離した。
 続いてオートクレーブ1を上下に2分割されたヒーターで構成された電気炉内に収納した。12時間かけて昇温し、オートクレーブ下部溶液温度が550℃に、上部溶液温度が420℃になるようにオートクレーブ外壁温度を設定したのち、その温度でさらに240時間保持した。オートクレーブ外壁温度とオートクレーブ内部溶液温度との関係はあらかじめ実測して相関式を作成しておいた。オートクレーブ1内の圧力は約130MPaであった。また保持中の制御温度のバラツキは±5℃以下であった。
 育成期間終了後、オートクレーブ1の下部外面の温度が150℃になるまでプログラムコントローラーを用いておよそ8時間で降温した後、ヒーターによる加熱を止め、電気炉内で自然放冷した。オートクレーブ1の下部外面の温度がほぼ室温にまで降下したことを確認した後、まず、オートクレーブに付属したバルブ9を開放しオートクレーブ1内のアンモニアを取り除いた。次に真空ポンプでオートクレーブ1内のアンモニアを完全に除去した。その後、オートクレーブの蓋3を開け内部から種子結晶支持枠、バッフル板、原料カゴを取り出した。オートクレーブ内壁上部には白色の粉末状物質が付着していた。
 育成後の種結晶の重量を測定して育成前の重量と比較することにより、重量が増加していることが確認される。また、X線回折測定を行うことにより、析出した結晶は六方晶窒化ガリウムであることが確認される。さらに、析出した結晶をSIMSにて分析することにより、結晶中の酸素含有量とシリコン含有量が低いことが確認される。また、析出した結晶は、従来方式のアモノサーマル法にて育成された結晶よりも、着色が少なく透明度が高いことが確認される。内壁に付着した白色粉体を粉末X線にて同定することにより、塩化アンモニウムの結晶であることが確認される。これによって、ガスとして導入した塩化水素が内部で塩化アンモニウムを生成し鉱化剤として作用していたことが裏付けられる。
(実施例2)
 本実施例では使用したオートクレーブのサイズを除いて、実施例1と同様のプロセスによって窒化物結晶を成長させた。オートクレーブの容積が異なるため、実施例1と同様の条件となるように、充填アンモニア量、充填塩化水素ガス量を容積比率に基づき変化させた。
 実施例2では内寸が直径22mm、長さ290mmのオートクレーブ(内容積約110cm)を反応容器として用い結晶成長を行った。
 育成後の種結晶の重量を測定して育成前の重量と比較することにより、重量が増加していることが確認された。また、X線回折測定を行うことにより、析出した結晶は六方晶窒化ガリウムであることが確認された。析出した結晶は、従来方式のアモノサーマル法にて育成された結晶よりも、着色が少なく透明度が高かった。
 種結晶上に成長した窒化ガリウム結晶をSIMSにより測定した結果、酸素が最大5.0×1017atom/cm検出された。異なる測定位置では検出限界以下であった。また、シリコンが3.0×1017atom/cm検出された。測定装置はCameca製4F型二次イオン質量分析装置を使用した。一次イオン種としてCsイオンを用い、一次イオンエネルギーを14.5keVとした。本条件における検出限界は、酸素が8×1015atom/cm、シリコンが1×1015atom/cmである。内壁に付着した白色粉体を粉末X線にて同定することにより、塩化アンモニウムの結晶であることが確認された。これによって、ガスとして導入した塩化水素が内部で塩化アンモニウムを生成し鉱化剤として作用していたことが裏付けられた。
(比較例)
 本比較例では、図2に示す反応装置を用いて窒化物結晶を成長させた。
 実施例1における以下の条件を変更した以外は、実施例1と同様にして窒化ガリウム結晶の成長を行った。塩化水素ガスを導入する代わりに、塩化アンモニウムの試薬を0.75g投入した。塩化アンモニウムは白金メッシュ製原料カゴに多結晶窒化ガリウム原料と一緒にオートクレーブ1内に投入し密閉した。オートクレーブの蓋3が密閉されていない工程では全て乾燥窒素雰囲気下で作業を行った。密封後はロータリーポンプ15で減圧したが、鉱化剤として塩化アンモニウムの試薬が存在するために加熱工程は行うことができないため、室温での減圧工程となった。その後ドライアイスメタノールで冷却しバルブ9を閉じた。つづいて、アンモニアを実施例1と同様にアンモニアボンベ17からオートクレーブ1中に充填した。以降の工程は実施例1と同様である。同様の温度まで昇温した時の圧力は132MPaであった。
 運転完了後取り出された種結晶の重量を測定した結果、0.26gの増加が認められた。析出結晶の分析の結果、実施例1と同様に六方晶窒化ガリウムであることが確認された。実施例1や実施例2と比較して黒から褐色の着色が顕著であった。SIMSによる酸素濃度分析結果は5×1019atom/cmであった。シリコン濃度の分析結果は4×1019atom/cmであった。
 本発明のアモノサーマル法による窒化物結晶の製造方法によれば、酸素濃度が低くて高純度の窒化物結晶を効率よく成長させることができる。また、そのような窒化物結晶を製造することができる本発明の装置は、大型化して大量生産を図ることも可能であることから、工業的な利用可能性が高い。また、本発明の窒化物結晶は酸素濃度が低くて純度が高いことから、着色が生じにくく、LEDやLDなどのオプトエレクトロニクス用基板を始めとする様々な用途に応用されうる。したがって、本発明は産業上の利用可能性が高い。
 なお、2009年1月8日に出願された日本特許出願2009-002189号および2009年8月26日に出願された日本特許出願2009-195856号の明細書、特許請求の範囲、図面、要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1 オートクレーブ(反応容器)
 2 ライニング
 3 オートクレーブ蓋
 4 種結晶
 5 原料
 6 バッフル板
 7 ヒーター
 8 圧力センサー
 9 バルブ
10 バルブ
11 反応性ガスボンベ
12 インラインフィルター
13 マスフローメーター
14 ヒーター
15 真空ポンプ1(ロータリーポンプ)
16 アンモニアボンベ
17 窒素ボンベ
18 インラインフィルター
19 マスフローメーター
20 真空ポンプ2(ターボ分子ポンプ)

Claims (37)

  1.  反応容器内または反応容器に繋がる閉回路内で、アンモニアと反応して鉱化剤を生成する反応性ガスとアンモニアとを接触させて鉱化剤を生成し、前記反応容器内にてアンモニアと前記鉱化剤の存在下でアモノサーマル法によって反応容器内に入れられた窒化物の結晶成長原料から窒化物結晶を成長させることを特徴とする、窒化物結晶の製造方法。
  2.  前記反応性ガスがハロゲン化水素ガスであることを特徴とする請求項1に記載の窒化物結晶の製造方法。
  3.  前記反応性ガスが塩化水素ガス、臭化水素ガス及びヨウ化水素ガスからなる群から選ばれる1以上であることを特徴とする請求項2に記載の窒化物結晶の製造方法。
  4.  前記反応性ガスを前記アンモニアに供給することにより鉱化剤を生成することを特徴とする請求項1~3のいずれか一項に記載の窒化物結晶の製造方法。
  5.  前記反応性ガスの水含有量が10ppm(重量基準)以下であることを特徴とする請求項1~4のいずれか一項に記載の窒化物結晶の製造方法。
  6.  前記反応性ガスの酸素含有量が10ppm(重量基準)以下であることを特徴とする請求項1~5のいずれか一項に記載の窒化物結晶の製造方法。
  7.  前記反応性ガスを複数の原料ガスを反応させることにより生成することを特徴とする請求項1~3のいずれか一項に記載の窒化物結晶の製造方法。
  8.  前記複数の原料ガスを前記アンモニアに供給することにより鉱化剤を生成することを特徴とする請求項7に記載の窒化物結晶の製造方法。
  9.  前記複数の原料ガスの水含有量がいずれも10ppm(重量基準)以下であることを特徴とする請求項7または8に記載の窒化物結晶の製造方法。
  10.  前記複数の原料ガスの酸素含有量がいずれも10ppm(重量基準)以下であることを特徴とする請求項7~9のいずれか一項に記載の窒化物結晶の製造方法。
  11.  前記複数の原料ガスが少なくとも第1原料ガスと第2原料ガスからなり、前記第1原料ガスがハロゲンであって、前記第2原料ガスがハロゲンと反応して前記反応性ガスを生成するガスであることを特徴とする請求項7~10のいずれか一項に記載の窒化物結晶の製造方法。
  12.  前記第2原料ガスが、水素原子を有するハロゲン化アルカンとアルカンからなる群より選択される1種以上のガスであることを特徴とする請求項11に記載の窒化物結晶の製造方法。
  13.  前記第1原料ガスが塩素ガスであり、前記第2原料ガスが、メタン、モノクロロメタン、ジクロロメタン、およびトリクロロメタンからなる群より選択される1種以上のガスであることを特徴とする請求項12に記載の窒化物結晶の製造方法。
  14.  アンモニアを入れた反応容器内に、前記反応性ガスまたは前記反応性ガスを生成する複数の原料ガスを導入することにより鉱化剤を生成させ、前記反応容器内において窒化物結晶を成長させることを特徴とする請求項1~13のいずれか一項に記載の窒化物結晶の製造方法。
  15.  反応容器に繋がる閉回路内であって反応容器外において、アンモニアに前記反応性ガスまたは前記反応性ガスを生成する複数の原料ガスを導入することにより鉱化剤を生成させた後、生成した鉱化剤を含むアンモニアを前記反応容器内に導入して窒化物結晶を成長させることを特徴とする請求項1~13のいずれか一項に記載の窒化物結晶の製造方法。
  16.  前記反応性ガスまたは前記反応性ガスを生成する複数の前記原料ガスを、フィルターを通過させた後に導入することを特徴とする請求項14または15に記載の窒化物結晶の製造方法。
  17.  前記反応容器が、Pt、Ir、W、Ta、Rh、Ru、Reからなる群より選択される1種以上の金属または合金によりライニングされていることを特徴とする請求項14~16のいずれか一項に記載の窒化物結晶の製造方法。
  18.  前記反応容器がオートクレーブであることを特徴とする請求項14~17のいずれか一項に記載の窒化物結晶の製造方法。
  19.  前記反応容器がオートクレーブ中に挿入された内筒管であることを特徴とする請求項14~17のいずれか一項に記載の窒化物結晶の製造方法。
  20.  前記反応容器内又は前記反応容器に繋がる閉回路内にアンモニアと反応性ガス又はアンモニアと原料ガスを導入する前に、結晶成長用原料を含む前記反応容器中を窒素ガスで置換することを特徴とする請求項14~19のいずれか一項に記載の窒化物結晶の製造方法。
  21.  前記反応容器内又は前記反応容器に繋がる閉回路内にアンモニアと反応性ガス又はアンモニアと原料ガスを導入する前に、結晶成長用原料を含む反応容器中を10Torr以下の圧力まで減圧することを特徴とする請求項14~20のいずれか一項に記載の窒化物結晶の製造方法。
  22.  前記反応容器内又は前記反応容器に繋がる閉回路内にアンモニアと反応性ガス又はアンモニアと原料ガス導入する前に、結晶成長用原料を含む反応容器中を70℃以上に加熱することを特徴とする請求項14~21のいずれか一項に記載の窒化物結晶の製造方法。
  23.  前記窒化物結晶がIII族窒化物結晶であることを特徴とする請求項1~22のいずれか一項に記載の窒化物結晶の製造方法。
  24.  前記窒化物結晶がガリウムを含む窒化物結晶であることを特徴とする請求項1~22のいずれか一項に記載の窒化物結晶の製造方法。
  25.  窒化物結晶の成長用原料として、金属ガリウム、窒化ガリウム、またはこれら両方を用いることを特徴とする請求項24に記載の窒化物結晶の製造方法。
  26.  前記成長用原料中の酸素濃度が1×1018atom/cm以下であることを特徴とする請求項25に記載の窒化物結晶の製造方法。
  27.  前記結晶成長前に前記反応容器内に種結晶を入れておくことを特徴とする請求項1~26のいずれか一項に記載の窒化物結晶の製造方法。
  28.  前記ガスを導入しながら前記アンモニアを冷却することを特徴とする請求項1~27のいずれか一項に記載の窒化物結晶の製造方法。
  29.  請求項1~28のいずれか一項に記載の窒化物結晶の製造方法により製造される窒化物結晶。
  30.  酸素濃度が5×1018atom/cm以下であり、主面の結晶格子面の曲率半径が50m以上であることを特徴とする窒化物結晶。
  31.  酸素濃度が5×1018atom/cm以下であり、シリコン濃度が5×1018atom/cm以下であることを特徴とする窒化物結晶。
  32.  前記窒化物が窒化ガリウムであることを特徴とする請求項30または31に記載の窒化物結晶。
  33.  アモノサーマル法によりアンモニアの存在下で窒化物結晶を成長させることができる反応容器と、アンモニアと反応して鉱化剤を生成する反応性ガスを前記反応容器へ導入する手段とを備えていることを特徴とする窒化物結晶の製造装置。
  34.  前記反応性ガスを前記反応容器へ導入する前記手段が、前記反応性ガスを通過させるフィルターを備えていることを特徴とする請求項33に記載の窒化物結晶の製造装置。
  35.  アンモニアガスを前記反応容器へ導入する手段をさらに備えていることを特徴とする請求項33に記載の窒化物結晶の製造装置。
  36.  前記アンモニアガスを前記反応容器へ導入する前記手段が、前記アンモニアガスを通過させるフィルターを備えていることを特徴とする請求項35に記載の窒化物結晶の製造装置。
  37.  前記反応容器に配管が接合されており、該配管の少なくとも一部を加熱するためのヒーターを備えていることを特徴とする請求項33~36のいずれか一項に記載の窒化物結晶の製造装置。
PCT/JP2010/050118 2009-01-08 2010-01-07 窒化物結晶の製造方法、窒化物結晶およびその製造装置 WO2010079814A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800041660A CN102272357A (zh) 2009-01-08 2010-01-07 氮化物结晶的制造方法、氮化物结晶及其制造装置
EP10729234.4A EP2377974A4 (en) 2009-01-08 2010-01-07 PROCESS FOR PRODUCING NITRIDE CRYSTAL, NITRIDE CRYSTAL, AND MANUFACTURING DEVICE THEREOF
US13/143,094 US9192910B2 (en) 2009-01-08 2010-01-07 Process for producing nitride crystal, nitride crystal and apparatus for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009002189 2009-01-08
JP2009-002189 2009-01-08
JP2009195856 2009-08-26
JP2009-195856 2009-08-26

Publications (1)

Publication Number Publication Date
WO2010079814A1 true WO2010079814A1 (ja) 2010-07-15

Family

ID=42316579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050118 WO2010079814A1 (ja) 2009-01-08 2010-01-07 窒化物結晶の製造方法、窒化物結晶およびその製造装置

Country Status (6)

Country Link
US (1) US9192910B2 (ja)
EP (1) EP2377974A4 (ja)
JP (1) JP5534172B2 (ja)
KR (1) KR20110112278A (ja)
CN (1) CN102272357A (ja)
WO (1) WO2010079814A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136423A (ja) * 2010-12-27 2012-07-19 Mitsubishi Chemicals Corp 窒化物結晶の製造方法および結晶製造装置
JP2013071889A (ja) * 2011-09-28 2013-04-22 Mitsubishi Chemicals Corp Iii族窒化物結晶の製造方法とそれに用いるシード
US9096945B2 (en) 2011-10-28 2015-08-04 Mitsubishi Chemical Corporation Method for producing nitride crystal and nitride crystal

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9224817B2 (en) * 2006-04-07 2015-12-29 Sixpoint Materials, Inc. Composite substrate of gallium nitride and metal oxide
CN102695823B (zh) 2009-11-27 2015-05-27 三菱化学株式会社 氮化物结晶的制造方法、制造容器和构件
JP6020440B2 (ja) 2011-03-22 2016-11-02 三菱化学株式会社 窒化物結晶の製造方法
JP2014062023A (ja) * 2011-10-28 2014-04-10 Mitsubishi Chemicals Corp 窒化物結晶の製造方法
CN103361735B (zh) * 2012-03-26 2017-07-28 北京通美晶体技术有限公司 一种iiia‑va族半导体单晶衬底及其制备方法
US9976229B2 (en) 2012-03-29 2018-05-22 Mitsubishi Chemical Corporation Method for producing nitride single crystal
US11332847B2 (en) * 2015-12-29 2022-05-17 Rutgers, The State University Of New Jersey Methods for low energy inorganic material synthesis
CN106319629A (zh) * 2016-09-19 2017-01-11 中原特钢股份有限公司 一种用于生产氮化镓晶体的超高压容器
CN110042459B (zh) * 2019-05-27 2020-09-01 上海玺唐半导体科技有限公司 氮化镓晶体生产系统及其填充氨的方法
CN111172583B (zh) * 2019-12-31 2021-05-18 上海玺唐半导体科技有限公司 半导体材料生产系统及生产方法
JP7483669B2 (ja) 2020-11-02 2024-05-15 エスエルティー テクノロジーズ インコーポレイテッド 窒化物結晶成長のための超高純度鉱化剤及び改良された方法
CN112695373B (zh) * 2020-12-10 2021-08-27 国镓芯科(深圳)半导体科技有限公司 一种氮化镓晶体生长系统的泄放氨工序和生长方法
JPWO2022181755A1 (ja) 2021-02-25 2022-09-01
JPWO2023027077A1 (ja) 2021-08-25 2023-03-02

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277182A (ja) 2002-03-19 2003-10-02 Mitsubishi Chemicals Corp 窒化物単結晶の製造方法
JP2005008444A (ja) 2003-06-17 2005-01-13 Mitsubishi Chemicals Corp 窒化物結晶の製造方法
JP2006513122A (ja) * 2002-12-27 2006-04-20 ゼネラル・エレクトリック・カンパニイ 窒化ガリウム結晶、ホモエピタキシャル窒化ガリウムを基材とするデバイス、及びその製造方法
JP2007039321A (ja) * 2005-07-01 2007-02-15 Mitsubishi Chemicals Corp 超臨界溶媒を用いた結晶製造方法、結晶成長装置、結晶およびデバイス
JP2007238347A (ja) 2006-03-06 2007-09-20 Mitsubishi Chemicals Corp 超臨界溶媒を用いた結晶製造方法および結晶製造装置
JP2007290921A (ja) 2006-04-26 2007-11-08 Mitsubishi Chemicals Corp 窒化物単結晶の製造方法、窒化物単結晶、およびデバイス
JP2007534580A (ja) * 2003-07-11 2007-11-29 クリー インコーポレイテッド 半絶縁性GaNおよびその製造方法
JP2008179536A (ja) * 2006-03-13 2008-08-07 Tohoku Univ 窒化ガリウム系材料及びその製造方法
JP2008239481A (ja) * 2008-04-15 2008-10-09 Sumitomo Electric Ind Ltd 窒化ガリウム基板
JP2009002189A (ja) 2007-06-20 2009-01-08 Yamada Seisakusho Co Ltd ウォーターポンプのインペラ
JP2009195856A (ja) 2008-02-22 2009-09-03 Efo:Kk 水処理装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936488B2 (en) 2000-10-23 2005-08-30 General Electric Company Homoepitaxial gallium-nitride-based light emitting device and method for producing
JP4513264B2 (ja) 2002-02-22 2010-07-28 三菱化学株式会社 窒化物単結晶の製造方法
US20030209191A1 (en) 2002-05-13 2003-11-13 Purdy Andrew P. Ammonothermal process for bulk synthesis and growth of cubic GaN
AU2002354463A1 (en) * 2002-05-17 2003-12-02 Ammono Sp.Zo.O. Bulk single crystal production facility employing supercritical ammonia
US9279193B2 (en) 2002-12-27 2016-03-08 Momentive Performance Materials Inc. Method of making a gallium nitride crystalline composition having a low dislocation density
US7098487B2 (en) 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
US20060169996A1 (en) * 2002-12-27 2006-08-03 General Electric Company Crystalline composition, wafer, and semi-conductor structure
JP4541935B2 (ja) 2004-03-10 2010-09-08 三菱化学株式会社 窒化物結晶の製造方法
JP2005343704A (ja) * 2004-05-31 2005-12-15 Sumitomo Electric Ind Ltd AlxGayIn1−x−yN結晶の製造方法
WO2007004495A1 (ja) 2005-07-01 2007-01-11 Mitsubishi Chemical Corporation 超臨界溶媒を用いた結晶製造方法、結晶成長装置、結晶およびデバイス
WO2007008198A1 (en) * 2005-07-08 2007-01-18 The Regents Of The University Of California Method for growing group iii-nitride crystals in supercritical ammonia using an autoclave
JP4187175B2 (ja) 2006-03-13 2008-11-26 国立大学法人東北大学 窒化ガリウム系材料の製造方法
CN103184519A (zh) * 2006-10-08 2013-07-03 迈图高新材料公司 用于形成氮化物晶体的方法
WO2008051589A2 (en) * 2006-10-25 2008-05-02 The Regents Of The University Of California Method for growing group iii-nitride crystals in a mixture of supercritical ammonia and nitrogen, and group iii-nitride crystals grown thereby
US8721788B2 (en) * 2007-10-05 2014-05-13 Mitsubishi Chemical Corporation Method for charging with liquefied ammonia, method for producing nitride crystal, and reactor for growth of nitride crystal
JP4816633B2 (ja) 2007-12-26 2011-11-16 三菱化学株式会社 窒化物単結晶の製造方法
JP5324110B2 (ja) * 2008-01-16 2013-10-23 国立大学法人東京農工大学 積層体およびその製造方法
US8852341B2 (en) * 2008-11-24 2014-10-07 Sixpoint Materials, Inc. Methods for producing GaN nutrient for ammonothermal growth

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277182A (ja) 2002-03-19 2003-10-02 Mitsubishi Chemicals Corp 窒化物単結晶の製造方法
JP2006513122A (ja) * 2002-12-27 2006-04-20 ゼネラル・エレクトリック・カンパニイ 窒化ガリウム結晶、ホモエピタキシャル窒化ガリウムを基材とするデバイス、及びその製造方法
JP2005008444A (ja) 2003-06-17 2005-01-13 Mitsubishi Chemicals Corp 窒化物結晶の製造方法
JP2007534580A (ja) * 2003-07-11 2007-11-29 クリー インコーポレイテッド 半絶縁性GaNおよびその製造方法
JP2007039321A (ja) * 2005-07-01 2007-02-15 Mitsubishi Chemicals Corp 超臨界溶媒を用いた結晶製造方法、結晶成長装置、結晶およびデバイス
JP2007238347A (ja) 2006-03-06 2007-09-20 Mitsubishi Chemicals Corp 超臨界溶媒を用いた結晶製造方法および結晶製造装置
JP2008179536A (ja) * 2006-03-13 2008-08-07 Tohoku Univ 窒化ガリウム系材料及びその製造方法
JP2007290921A (ja) 2006-04-26 2007-11-08 Mitsubishi Chemicals Corp 窒化物単結晶の製造方法、窒化物単結晶、およびデバイス
JP2009002189A (ja) 2007-06-20 2009-01-08 Yamada Seisakusho Co Ltd ウォーターポンプのインペラ
JP2009195856A (ja) 2008-02-22 2009-09-03 Efo:Kk 水処理装置
JP2008239481A (ja) * 2008-04-15 2008-10-09 Sumitomo Electric Ind Ltd 窒化ガリウム基板

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CRYSTAL GROWTH, vol. 310, 2008, pages 3902 - 3906
JOURNAL OF CRYSTAL GROWTH, vol. 310, 2008, pages 876 - 880
See also references of EP2377974A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136423A (ja) * 2010-12-27 2012-07-19 Mitsubishi Chemicals Corp 窒化物結晶の製造方法および結晶製造装置
JP2013071889A (ja) * 2011-09-28 2013-04-22 Mitsubishi Chemicals Corp Iii族窒化物結晶の製造方法とそれに用いるシード
US9096945B2 (en) 2011-10-28 2015-08-04 Mitsubishi Chemical Corporation Method for producing nitride crystal and nitride crystal
US9518337B2 (en) 2011-10-28 2016-12-13 Mitsubishi Chemical Corporation Method for producing nitride crystal and nitride crystal
US10526726B2 (en) 2011-10-28 2020-01-07 Mitsubishi Chemical Corporation Method for producing nitride crystal and nitride crystal
US11162190B2 (en) 2011-10-28 2021-11-02 Mitsubishi Chemical Corporation Method for producing nitride crystal and nitride crystal

Also Published As

Publication number Publication date
US9192910B2 (en) 2015-11-24
EP2377974A1 (en) 2011-10-19
JP2011068545A (ja) 2011-04-07
EP2377974A4 (en) 2014-11-19
CN102272357A (zh) 2011-12-07
JP5534172B2 (ja) 2014-06-25
KR20110112278A (ko) 2011-10-12
US20110268645A1 (en) 2011-11-03

Similar Documents

Publication Publication Date Title
JP5534172B2 (ja) 窒化物結晶の製造方法
US8021481B2 (en) Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride
JP4541935B2 (ja) 窒化物結晶の製造方法
US8987156B2 (en) Polycrystalline group III metal nitride with getter and method of making
JP4433696B2 (ja) 窒化物結晶の製造方法
JP5356933B2 (ja) 窒化物結晶の製造装置
EP2210660B1 (en) PROCESS FOR CHARGING LIQUEFIED AMMONIA and PROCESS FOR PRODUCTION OF NITRIDE CRYSTALS
JP2009520678A (ja) 結晶性組成物、デバイスと関連方法
JP5888242B2 (ja) 半導体結晶の製造方法、結晶製造装置および第13族窒化物半導体結晶
US10358739B2 (en) Heteroepitaxial hydrothermal crystal growth of zinc selenide
JP5037021B2 (ja) フッ素ガスの供給方法およびその装置
US7306676B2 (en) Apparatus for manufacturing semiconductor single crystal
JP5167752B2 (ja) 液化アンモニアの充填方法および窒化物結晶の製造方法
JP5929807B2 (ja) GaN多結晶およびそれを用いたGaN単結晶の製造方法
EP1895029B1 (en) Apparatus for producing semiconductor single crystal
JP2009102174A (ja) 液化アンモニアの充填方法、および、窒化物結晶の製造方法
JP2012171863A (ja) 窒化物結晶の製造方法および結晶製造装置
JP2013203652A (ja) 窒化物単結晶の製造方法
JP5300062B2 (ja) 窒化物結晶の製造方法、窒化物結晶成長用原料の溶解輸送促進剤および窒化物結晶成長促進剤
JP5747810B2 (ja) 窒化物結晶の製造方法および結晶製造装置
JP2009114057A (ja) 窒化物結晶の製造方法
WO2013147097A1 (ja) 窒化物単結晶の製造方法
JP2012171862A (ja) 窒化物結晶の製造方法
JP2015059077A (ja) 窒化物結晶の製造方法、反応容器および結晶製造装置
JP2014144890A (ja) 窒化物単結晶の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004166.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117010666

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13143094

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010729234

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE