WO2010073886A1 - 電流形電力変換回路 - Google Patents

電流形電力変換回路 Download PDF

Info

Publication number
WO2010073886A1
WO2010073886A1 PCT/JP2009/070309 JP2009070309W WO2010073886A1 WO 2010073886 A1 WO2010073886 A1 WO 2010073886A1 JP 2009070309 W JP2009070309 W JP 2009070309W WO 2010073886 A1 WO2010073886 A1 WO 2010073886A1
Authority
WO
WIPO (PCT)
Prior art keywords
current source
circuit
power conversion
conversion circuit
source power
Prior art date
Application number
PCT/JP2009/070309
Other languages
English (en)
French (fr)
Inventor
俊彰 佐藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2009332039A priority Critical patent/AU2009332039B2/en
Priority to CN200980149687.2A priority patent/CN102246406B/zh
Priority to BRPI0923400-4A priority patent/BRPI0923400A2/pt
Priority to US13/132,338 priority patent/US8670259B2/en
Priority to EP09834690.1A priority patent/EP2369731A4/en
Publication of WO2010073886A1 publication Critical patent/WO2010073886A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters

Definitions

  • the present invention relates to a current source power conversion circuit.
  • a current source power conversion circuit needs to use an element having a structure for preventing reverse conduction in a switch circuit.
  • the switch circuit may have a configuration in which an IGBT (Insulated Gate Bipolar Transistor) and a diode are connected in series.
  • IGBT Insulated Gate Bipolar Transistor
  • a configuration is disclosed in Patent Document 1, for example.
  • a circuit in which circuits for ensuring the reverse breakdown voltage of the IGBT are combined in multiple phases is known.
  • the current source power conversion circuit is also used as a current source PWM (PulseulWidth Modulation) rectifier circuit. Specifically, it is disclosed in Patent Document 2.
  • PWM PulseulWidth Modulation
  • each phase switch circuit for example, the emitter potential in the case of an IGBT in which the current source power conversion circuit is used as a rectifier circuit
  • the conventional current source power conversion circuit it is necessary to use an independent power source for each phase switch circuit in order to drive each phase switch circuit. If a drive power supply is provided for each switch circuit, six drive power supplies are required in the case of a three-phase current source power conversion circuit, and there is a problem that the current source power conversion circuit has an expensive and complicated configuration.
  • the current source power conversion circuit according to the present invention has an object to provide a current source power conversion circuit having a simple structure with a low cost by using less drive power.
  • a current source power conversion circuit includes a first switch circuit having a first self-extinguishing element and a first diode connected in series with each other, and a second switch connected in series with each other.
  • a current source power conversion circuit including a plurality of half-bridge rectifier circuits including a series connection of a self-extinguishing element and a second switch circuit having a second diode connected in parallel. In any half-bridge rectifier circuit, the forward direction of the first self-extinguishing element, the first diode, the second self-extinguishing element, and the second diode is aligned in the same direction.
  • the first current electrode, the second current electrode, and the control electrode are ignited / extinguished based on a control signal applied to the control electrode with reference to the first current electrode.
  • the second current electrode of the first self-extinguishing element is connected to the first diode, the first current electrode of the first self-extinguishing element of one half-bridge rectifier circuit, and the second current electrode of the other half-bridge rectifier circuit.
  • the first current electrode of one self-extinguishing element is short-circuited and connected.
  • the first drive circuit that gives a signal to the first self-extinguishing element the capacitor that is charged by a power source that drives the first drive circuit, and the second switch circuit that is driven by the electric charge charged in the capacitor And a second drive circuit, and a discharge blocking diode may be provided between the power supply and the capacitor to prevent the capacitor from discharging to the power supply.
  • the circuit for accumulating charges in the capacitor may be a bootstrap circuit.
  • circuit for accumulating charges in the capacitor may be a charge pump circuit.
  • the first diode may function as a discharge blocking diode.
  • the second diode may function as a discharge blocking diode.
  • the second diode may be arranged farther from the first switch circuit than the second self-extinguishing element.
  • At least one switch circuit among the first switch circuit and the second switch circuit of the plurality of half-bridge rectifier circuits may be a self-extinguishing element having a reverse withstand voltage characteristic.
  • a self-extinguishing element having a reverse withstand voltage characteristic may function as a discharge blocking diode.
  • the driving power source to be used can be reduced, and an inexpensive and simple configuration can be achieved.
  • the drive power supply to be used can be further reduced, and an inexpensive and simple configuration can be achieved.
  • the circuit that accumulates the electric charge in the capacitor is a bootstrap circuit, the driving power supply to be used can be reduced, and an inexpensive and simple configuration can be achieved.
  • the circuit for accumulating electric charge in the capacitor is a charge pump circuit, the driving power source to be used can be reduced and a simple and inexpensive configuration can be achieved.
  • circuit configuration can be further simplified by substituting the discharge blocking diode with the first diode or the second diode of the first switch circuit.
  • the second diode away from the first switch circuit rather than the second self-extinguishing element, the voltage drop of the second diode can be eliminated when charging the capacitor, and the capacitor charging voltage is secured higher. Thus, the operation reliability of the second switch circuit is improved.
  • the number of elements constituting the switch circuit is reduced, and the circuit configuration is reduced. It can be simplified. Furthermore, since the loss generated in the switch circuit is also reduced, the heat sink for heat dissipation can be reduced, and further space saving can be achieved.
  • circuit configuration can be further simplified by substituting the discharge blocking diode with a self-extinguishing element having a reverse withstand voltage characteristic.
  • 1 is a circuit diagram of a current source power conversion circuit according to a first embodiment of the present invention. It is a circuit diagram of a conventional current source power conversion circuit. 1 is a circuit diagram of a current source power conversion circuit according to a first embodiment of the present invention. It is a circuit diagram of the current source power conversion circuit according to the second embodiment of the present invention. It is a circuit diagram of a current source power conversion circuit according to a modification of the second embodiment of the present invention. It is a circuit diagram of the current source power conversion circuit according to the third embodiment of the present invention. It is a circuit diagram of the current source power conversion circuit according to the fourth embodiment of the present invention. It is a circuit diagram of the current source power conversion circuit according to the fifth embodiment of the present invention. FIG. 10 is a circuit diagram of a current source power conversion circuit according to a modification of the fifth embodiment of the present invention.
  • FIG. 1 shows a part of a circuit diagram of a current source power conversion circuit according to the present embodiment.
  • FIG. 2 shows a circuit diagram of a conventional current source power conversion circuit.
  • the circuit shown in FIG. 2 is a three-phase current source rectifier circuit.
  • a three-phase current source rectifier circuit 101 a three-phase AC power source 120, and an LC filter circuit 130 are illustrated.
  • the three-phase current source rectifier circuit shown in FIG. 2 includes three half-bridge rectifier circuits connected in parallel to each other.
  • the half-bridge rectifier circuit corresponding to the r-phase includes IGBTs 103r and 105r and diodes 104r and 106r.
  • the half-bridge rectifier circuit corresponding to the s phase includes IGBTs 103s and 105s and diodes 104s and 106s.
  • the half-bridge rectifier circuit corresponding to the t-phase includes IGBTs 103t and 105t and diodes 104t and 106t.
  • the IGBTs 103r, 103s, 103t, 105r, 105s, and 105t are switching elements and are self-extinguishing elements.
  • the diodes 104r, 104s, and 104t are reverse blocking diodes.
  • the diodes 104r, 104s, and 104t are connected in series to the IGBTs 103r, 103s, and 103t in such a polarity that the forward current flows through the diodes 104r, 104s, and 104t when the forward current flows through the IGBTs 103r, 103s, and 103t, respectively.
  • the anodes of the diodes 104r, 104s, and 104t and the emitters of the IGBTs 103r, 103s, and 103t are connected to each other.
  • the diodes 106r, 106s, and 106t are reverse blocking diodes.
  • the diodes 106r, 106s, and 106t are connected in series to the IGBTs 105r, 105s, and 105t in such a polarity that the forward current flows through the diodes 106r, 106s, and 106t when the forward current flows through the IGBTs 105r, 105s, and 105t, respectively.
  • the cathodes of the diodes 106r, 106s, and 106t and the collectors of the IGBTs 105r, 105s, and 105t are connected to each other.
  • the collectors of the IGBTs 103r, 103s, and 103t and the emitters of the IGBTs 105r, 105s, and 105t are connected to each other via connection points 107r, 107s, and 107t.
  • the reverse blocking diode prevents the current from flowing in the reverse direction in the self-extinguishing element and prevents the element from being destroyed by applying a reverse voltage to the self-extinguishing element.
  • the r-phase voltage Vr from the three-phase AC power supply 120 is input to the connection point 107r via the coil L11 of the LC filter circuit 130.
  • the s-phase voltage Vs from the three-phase AC power source 120 is input to the connection point 107 s via the coil L 12 of the LC filter circuit 130.
  • the t-phase voltage Vt from the three-phase AC power source 120 is input to the connection point 107t via the coil L13 of the LC filter circuit 130.
  • the LC filter circuit 130 is configured as a low-pass filter with coils L11, L12, and L13 and capacitors C11, C12, and C13.
  • the emitters of the IGBTs 103r, 103s, and 103t are connected to each other via the diodes 104r, 104s, and 104t, respectively. Therefore, the emitters of the IGBTs 103r, 103s, and 103t cannot be shared as the GND terminal of the control circuit. Further, in the three-phase current source rectifier circuit shown in FIG. 2, different phase voltages are applied to the collectors of the IGBTs 103r, 103s, and 103t, and therefore the collector potentials are different.
  • FIG. 1 shows a current source power conversion circuit according to the present embodiment, which is similar to FIG. 2 in that the current source power conversion circuit is also a three-phase current source rectifier circuit.
  • the circuit shown in FIG. 1 is a three-phase current source rectifier circuit.
  • the three-phase current source rectifier circuit shown in FIG. 1 includes three half-bridge rectifier circuits connected in parallel to each other.
  • the half-bridge rectifier circuit 2r corresponding to the r phase includes IGBTs 3r and 5r and diodes 4r and 6r.
  • the half-bridge rectifier circuit 2s corresponding to the s phase includes IGBTs 3s and 5s and diodes 4s and 6s.
  • the half-bridge rectifier circuit 2t corresponding to the t phase includes IGBTs 3t and 5t and diodes 4t and 6t.
  • the IGBTs 3r, 3s, 3t, 5r, 5s, and 5t are switching elements and are self-extinguishing elements.
  • the diodes 4r, 4s, and 4t are reverse blocking diodes.
  • the diodes 4r, 4s, and 4t are connected in series to the IGBTs 3r, 3s, and 3t with the polarity in which the forward current flows through the diodes 4r, 4s, and 4t when the forward current flows through the IGBTs 3r, 3s, and 3t, respectively.
  • the switch circuit is configured.
  • the cathodes of the diodes 4r, 4s, 4t and the collectors of the IGBTs 3r, 3s, 3t are connected to each other.
  • the diodes 6r, 6s, 6t are reverse blocking diodes.
  • the diodes 6r, 6s, and 6t are connected in series to the IGBTs 5r, 5s, and 5t in such a manner that the forward current flows through the diodes 6r, 6s, and 6t when the forward current flows through the IGBTs 5r, 5s, and 5t, respectively.
  • the switch circuit is configured.
  • the anodes of the diodes 6r, 6s, and 6t and the emitters of the IGBTs 5r, 5s, and 5t are connected to each other.
  • the anodes of the diodes 4r, 4s, 4t and the cathodes of the diodes 6r, 6s, 6t are connected to each other via connection points 7r, 7s, 7t.
  • the three-phase AC power supply 8 is connected to the connection points 7r, 7s, and 7t through the LC filter circuit 30.
  • the LC filter circuit 30 is configured as a low-pass filter with coils L1, L2, and L3 and capacitors C1, C2, and C3.
  • the series connection of the IGBTs 3r, 5r configured as described above and the diodes 4r, 6r is grasped as a one-phase half-bridge rectifier circuit 2r.
  • a series connection of IGBTs 3s, 5s and diodes 4s, 6s is grasped as a one-phase half-bridge rectification circuit 2s
  • a series connection of IGBTs 3t, 5t and diodes 4t, 6t is grasped as a half-bridge rectification circuit 2t. Is done.
  • the emitter terminals of the self-extinguishing elements (3r, 3s, 3t) of each phase of the one-side arm are short-circuited and connected to each other.
  • the emitter terminal functions as a common potential.
  • the emitters of the IGBTs 3r, 3s, and 3t of each phase are respectively connected to the connection line 9 so that these emitters function as a common potential.
  • the reference potentials of the drive power supplies of the drive circuits for driving 3s and 3t can be set to the same potential. Therefore, it is possible to share the drive power supply of the drive circuit that drives the IGBTs 3r, 3s, and 3t of each phase.
  • the circuit configuration is such that one drive power supply 11 is connected in parallel to the drive circuits 10 r and 10 s that drive the IGBTs 3 r and 3 s of the respective phases.
  • the drive power supply 11 can be shared with the drive circuit.
  • the three-phase current source rectifier circuit according to the present embodiment employs the circuit configuration as shown in FIG. It can be driven with. Therefore, in the three-phase current source rectifier circuit according to the present embodiment, the number of drive power supplies is combined with the drive power supplies (three) of the drive circuits that drive the three IGBTs 5r, 5s, and 5t of the lower arm, A total of four drive power supplies can be provided. Further, in the three-phase current source rectifier circuit according to the present embodiment, the number of wirings can be reduced by reducing the drive power supply, so that a simple and simple circuit configuration can be achieved. Further, in the three-phase current source rectifier circuit according to the present embodiment, space saving can be achieved by the reduced drive power supply.
  • an IGBT is used as a self-extinguishing element.
  • the present invention is not limited to this, and other elements having the same function may be used.
  • a three-phase current source rectifier circuit has been described.
  • the present invention is not limited to three phases.
  • FIG. 4 shows a circuit diagram of the current source power conversion circuit according to the present embodiment.
  • the current source power conversion circuit shown in FIG. 4 is a three-phase current source rectifier circuit, but only two-phase (r, s) IGBTs 3r and 3s are shown in the upper arm, and only one-phase (r) IGBT 5r is shown in the lower arm. 4.
  • the current source rectifier circuit shown in FIG. 4 by connecting the emitters of the IGBTs 3r and 3s of each phase to the connection line 9, the emitters of the IGBTs 3r and 3s function as a common potential, and drive the IGBTs 3r and 3s of each phase.
  • the drive power supply 11 of the drive circuits 10r and 10s is shared. As described above, the drive power supply 11 can be shared by the drive circuit that drives the IGBT 3t.
  • the drive circuit 13 of the IGBT 5s is driven by using the drive power supply 11 that drives the drive circuits 10r and 10s by using a bootstrap circuit.
  • the bootstrap circuit shown in FIG. 4 includes a diode 12 connected in series to the positive electrode of the drive power supply 11 and a capacitor 14 connected to a drive circuit 13 that drives the IGBT 5r.
  • the cathode of the diode 12 is connected to one terminal of the capacitor 14, and the other terminal of the capacitor 14 is connected to the anode of the diode 6r.
  • the capacitor 14 is charged by the drive power supply 11 when the upper arm IGBT 3 r is turned on.
  • the diode 12 is a discharge blocking diode for blocking the discharge of the capacitor 14 with respect to the power supply 11, and changes depending on the potential of the power supply 11 and the charged capacitor 14 (this depends on the r-phase voltage Vr). It is also possible to grasp that it functions to maintain a potential difference with respect to the power source 11 and prevent backflow to the power source 11.
  • the diode 12 may be another element as long as it has a withstand voltage characteristic equal to or higher than the potential of the drive power supply 11.
  • the drive circuit 13 is driven by using the charged capacitor 14 as a drive power source having the emitter potential of the IGBT 5r as a reference potential.
  • a level shift circuit 15 is connected to the drive circuit 13, The potential of the gate signal is appropriately shifted and input to the drive circuit 13.
  • the power supply for driving the drive circuit 13 of the IGBT 5r of the lower arm is created by using the bootstrap circuit, and the drive power supply 11 actually provided is provided.
  • the power supply is shared.
  • the current source rectifier circuit shown in FIG. 4 discloses a circuit configuration in which the drive power supply is shared for the IGBT 5r for one phase (r), similarly, the IGBTs 5s, 5t for other phases (s, t) are disclosed.
  • the upper arm IGBT 3r, 3s and 3t are made conductive, and the capacitor 14 connected to the drive circuit of the lower arm is charged.
  • level shift circuit shown in this embodiment can be replaced with an insulating circuit using a photocoupler or the like. Further, when the reference potential of the gate signal is different from the emitter potential of the IGBTs 3r, 3s, and 3t of the upper arm, a level shift circuit and an insulating circuit are also required for the upper arm.
  • FIG. 5 shows a circuit diagram of a current source power conversion circuit according to this modification.
  • the current source power conversion circuit shown in FIG. 5 is a three-phase current source rectifier circuit, but only two-phase (r, s) IGBTs 3r and 3s are shown in the upper arm, and only one-phase (r) IGBT 5r is shown in the lower arm. 5.
  • the current source power conversion circuit shown in FIG. 5 is the same as the current source power conversion circuit shown in FIG. 4 except for the charge pump circuit. Therefore, the same components are denoted by the same reference numerals and detailed description thereof is omitted. .
  • the charge pump circuit shown in FIG. 5 includes diodes 12 and 16 connected in series to the positive electrode of the drive power supply 11 and a capacitor 14 connected to the drive circuit 13 that drives the IGBT 5. Further, the charge pump circuit shown in FIG. 5 includes switch elements (for example, MOS FETs) 17 and 18 connected in series to the negative electrode of the drive power source 11 and one terminal of the capacitor 14, and an oscillation circuit 19 that controls the switch elements. And a capacitor 20 connected between the diodes 12 and 16 and between the switch elements 17 and 18.
  • switch elements for example, MOS FETs
  • one terminal of the capacitor 14 is connected to the anode of the diode 6r and the switch element 18, and the other terminal of the capacitor 14 is connected to the cathode of the diode 12.
  • the oscillation circuit 19 operates the switch elements 17 and 18 exclusively. Therefore, in the charge pump circuit shown in FIG. 5, when the switch element 17 is turned on and the switch element 18 is turned off, the capacitor 20 is charged by the drive power supply 11. Next, the charge accumulated in the capacitor 20 is transferred to the capacitor 14 when the switch element 17 is turned off and the switch element 18 is turned on.
  • the drive circuit 13 is driven by using the charged capacitor 14 as a drive power source having the emitter potential of the IGBT 5r as a reference potential.
  • a level shift circuit 15 is connected to the drive circuit 13, and the potential of the gate signal is appropriately shifted and input to the drive circuit 13.
  • a power source for driving the drive circuit 13 of the IGBT 5r of the lower arm is created using the charge pump circuit, and the drive power source actually provided 11 has a common power source.
  • the three-phase current source rectifier circuit shown in FIG. 5 discloses a circuit configuration in which the drive power supply is shared for the IGBT 5r for one phase (r), similarly, the IGBTs 5s for other phases (s, t) are disclosed. , 5t can be shared by using a charge pump circuit. That is, the drive power source for driving the three-phase current source rectifier circuit can be made one.
  • FIG. 6 shows a circuit diagram of the current source power conversion circuit according to the present embodiment.
  • the current source power conversion circuit shown in FIG. 6 is a three-phase current source rectifier circuit.
  • the configuration of the three-phase current source rectifier circuit illustrated in FIG. 5 is substantially the same as that of the three-phase current source rectifier circuit illustrated in FIG. 4, but is different in that the diode 12 is not provided.
  • the diode 12 is a discharge prevention diode for preventing the capacitor 14 from discharging to the power supply 11.
  • the function of the diode 12 is replaced by the diode 4r connected in series to the IGBT 3r.
  • the diode 4 r needs to have a withstand voltage characteristic required for the diode 12.
  • a drive power supply is usually provided with a low potential side of a DC bus (or a high frequency link or the like) as a reference potential. Therefore, the potential of the capacitor charged by the bootstrap circuit may be higher than that of the drive power supply, and the diode 12 is required to have a withstand voltage that is equal to or higher than the potential of the DC bus (or high frequency link, etc.).
  • the drive power supply is provided with the high potential side of the DC bus (or high frequency link or the like) as the reference potential, and the withstand voltage is provided by the diode 4r of the current source power conversion circuit.
  • the diode 12 can be substituted by 4r.
  • the discharge prevention diode can be reduced, and the circuit can be simplified.
  • the discharge prevention of the capacitor 14 for one phase (r) has been described.
  • the diodes 4s and 4t are also prevented from discharging in the other phases (s, t). It can function as a diode.
  • the IGBTs 3r, 3s, and 3t are kept conductive.
  • the three-phase current source rectifier circuit shown in FIG. 6 has a circuit configuration using a bootstrap circuit.
  • a three-phase current source rectifier circuit using a charge pump circuit has the configuration according to the present embodiment. Applicable.
  • the function of the diode 12 is substituted by the diode 6r connected in series to the IGBT 5r.
  • FIG. 7 shows a circuit diagram of the current source power conversion circuit according to the present embodiment.
  • the current source power conversion circuit shown in FIG. 7 is a three-phase current source rectifier circuit.
  • the configuration of the three-phase current source rectifier circuit shown in FIG. 7 is substantially the same as that of the three-phase current source rectifier circuit shown in FIG. 4, but the connection position of the diode 6r is different.
  • the diode 6r is connected to the emitter side of the IGBT 5r in FIG. 4, it is connected to the collector side of the IGBT 5r in the present embodiment. That is, in FIG. 7, the diode 6r is arranged farther from the switch circuit (IGBT 4r, diode 5r) of the upper arm than the IGBT 5r.
  • the reverse blocking diode 6r is separated from the upper arm switch circuit and connected to the collector side of the IGBT 5r.
  • the voltage drop of the diode 6r can be eliminated. Therefore, in the three-phase current source rectifier circuit according to the present embodiment, it is possible to secure a higher drive power supply voltage (charge voltage for the capacitor 14) for driving the drive circuit 13 of the IGBT 5r, and the operation reliability is improved.
  • the elimination of the voltage drop of the capacitor 14 for one phase (r) has been described.
  • the diodes 6s and 6t are also provided for the other phases (s, t).
  • the voltage drop of the capacitor can be eliminated by arranging it away from the switch circuit of the upper arm. Further, since the potential of the drive power supply 11 is higher than the high potential side of the direct current bus (or high frequency link), the potential of the capacitor 14 becomes high, and the potential difference between the emitter potential of the IGBT 5r in the lower arm and the low potential side of the direct current bus. May be larger. However, in this case as well, the diode 6r can have a withstand voltage characteristic, so that the IGBT 5r of the lower arm is not broken due to a lack of withstand voltage in the reverse direction.
  • the three-phase current source rectifier circuit shown in FIG. 7 has a circuit configuration using a bootstrap circuit, but the configuration according to the present embodiment can also be applied to a current source rectifier circuit using a charge pump circuit. It is. Further, the three-phase current source rectifier circuit shown in FIG. 7 has been described with the configuration in which the diode 12 is provided. However, the present invention is not limited to this, and the diode 12 is replaced with a diode as in the three-phase current source rectifier circuit shown in FIG. 4r may be substituted.
  • FIG. 8 shows a circuit diagram of the current source power conversion circuit according to the present embodiment.
  • the current source power conversion circuit shown in FIG. 8 is a three-phase current source rectifier circuit.
  • IGBTs 3r, 3s, 3t, 5r, 5s... which are self-extinguishing elements are included in the switch circuits of the half-bridge rectifier circuits 2r, 2s, 2t. 5t and diodes 4r, 4s, 4t, 6r, 6s, and 6t.
  • the switch circuits of the half-bridge rectifier circuits 2r, 2s are replaced with IGBTs 3r, 3s, 5r and diodes 4r, 4s6r. , 22s, 23r.
  • Examples of the self-extinguishing elements 22r, 22s, and 23r having a reverse breakdown voltage include an RB-IGBT (Reverse Blocking Insulated Gate Bipolar Transistor).
  • the current source power conversion circuit shown in FIG. 8 is the same as the current source power conversion circuit shown in FIG. 4 except for the self-extinguishing elements 22r, 22s, and 23r. The detailed description will be omitted.
  • the current source power conversion circuit shown in FIG. 8 is a three-phase current source rectifier circuit. As in FIG. 4, the upper arm has two-phase (r, s) self-extinguishing elements 22r, 22s, Only the self-extinguishing element 23r for one phase (r) in the arm is shown in FIG.
  • the number of elements constituting the switch circuit is the switch circuit (IGBT3r, 3s, 3t, 5r, 5s.5t and diodes 4r, 4s) reduced in the current source power conversion circuit shown in FIG. , 4t, 6r, 6s, 6t). Therefore, the current source power conversion circuit shown in FIG. 8 can be further simplified in circuit configuration and inexpensive. Further, in the current source power conversion circuit shown in FIG. 8, since the loss generated in the switch circuit is also reduced, the heat sink for heat dissipation can be reduced, and further space saving can be achieved.
  • FIG. 9 shows a circuit diagram of the current source power conversion circuit of Modification 1 according to the present embodiment.
  • the current source power conversion circuit shown in FIG. 9 is a three-phase current source rectifier circuit.
  • the current source power conversion circuit shown in FIG. 9 is obtained by applying the configuration of the third embodiment to the current source power conversion circuit shown in FIG.
  • the current source power conversion circuit shown in FIG. 9 is a circuit that eliminates the diode 12 by providing the self-extinguishing elements 22r, 22s, and 23r having reverse withstand voltage characteristics to function as a discharge blocking diode. It is a configuration.
  • the current source power conversion circuit shown in FIG. 9 is the same as the current source power conversion circuit shown in FIG. 8 except that the diode 12 is omitted.
  • the current source power conversion circuit shown in FIG. 9 is a three-phase current source rectifier circuit.
  • the upper arm has two-phase (r, s) self-extinguishing elements 22r, 22s, Only the self-extinguishing element 23r for one phase (r) is shown in FIG.
  • RB-IGBTs are represented using symbols as shown in the drawings as the self-extinguishing elements 22r, 22s, and 23r having reverse withstand voltage characteristics.
  • the current source power conversion circuit according to the present modification the number of elements constituting the switch circuit is reduced and the voltage drop in the switch circuit is reduced as in the third embodiment. A higher voltage can be secured. Therefore, the current source power conversion circuit according to this modification can further improve the reliability of the operation of the lower arm switch circuit.
  • the current source power conversion circuit including the drive circuit can be configured with a simple circuit. Therefore, the current source power conversion circuit can be configured in a space-saving manner. Therefore, in the present embodiment, the current source power conversion circuit module according to the first to fifth embodiments and the modifications thereof can be accommodated in one module, and a current source power conversion circuit module can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

 本発明に係る電流形電力変換回路は、使用する駆動電源を減らし、安価で単純な構成の電流形電力変換回路である。本発明に係る電流形電力変換回路の一例は、相互に直列接続された第1自己消弧形素子(3r,3s,3t)及び第1ダイオード(4r,4s,4t)を有する第1スイッチ回路と、相互に直列接続された第2自己消弧形素子(5r,5s,5t)及び第2ダイオード(6r,6s,6t)を有する第2スイッチ回路との直列接続を含むハーフブリッジ整流回路(2r,2s,2t)の複数を並列接続して備える。一のハーフブリッジ整流回路(3r,3s,3t)の第1自己消弧形素子(3r,3s,3t)の第1電流電極と、他のハーフブリッジ整流回路(3r,3s,3t)の第1自己消弧形素子(3r,3s,3t)の第1電流電極とが短絡して接続する。

Description

電流形電力変換回路
 本発明は、電流形電力変換回路に関する発明である。
 一般的に、電流形電力変換回路は、スイッチ回路に逆方向の導通を阻止する構造の素子を用いる必要がある。例えば、スイッチ回路には、IGBT(Insulated Gate Bipolar Transistor)とダイオードとを直列接続させる構成が考えられる。このような構成は、例えば、特許文献1に開示されている。さらに、このようなIGBTとダイオードとで構成されるスイッチ回路を採用した電流形電力変換回路では、IGBTの逆方向耐圧を確保する回路を多相に組み合わせたものが知られている。
 また、電流形電力変換回路は、電流形のPWM(Pulse Width Modulation)整流回路としても用いられる。具体的には、特許文献2に開示されている。
特開2003-164140号公報 特開2007-295686号公報
 従来の電流形電力変換回路では、各相のスイッチ回路に印加される電位(例えば、整流回路として電流形電力変換回路が用いられるIGBTの場合、エミッタ電位)がそれぞれ異なる。そのため、従来の電流形電力変換回路では、各相のスイッチ回路を駆動するために、各相のスイッチ回路それぞれに独立した電源を用いる必要があった。スイッチ回路毎に駆動電源を設けると、3相の電流形電力変換回路であれば6つの駆動電源が必要となり、高価かつ複雑な構成の電流形電力変換回路となる課題があった。
 そこで、本発明に係る電流形電力変換回路は、使用する駆動電源を減らし、安価で単純な構成の電流形電力変換回路を提供することを目的とする。
 上記課題を解決するため、この発明の電流形電力変換回路は、相互に直列接続された第1自己消弧形素子及び第1ダイオードを有する第1スイッチ回路と、相互に直列接続された第2自己消弧形素子及び第2ダイオードを有する第2スイッチ回路との直列接続を含むハーフブリッジ整流回路の複数を並列接続して備える電流形電力変換回路である。いずれのハーフブリッジ整流回路においても、第1自己消弧形素子、第1ダイオード、第2自己消弧形素子及び第2ダイオードの順方向は同方向に揃い、いずれの第1自己消弧形素子も、第1電流電極及び第2電流電極並びに制御電極を有し、第1電流電極を基準として制御電極に与えられる制御信号に基づいて点弧/消弧し、いずれのハーフブリッジ整流回路においても、第1自己消弧形素子の第2電流電極が第1ダイオードに接続され、一のハーフブリッジ整流回路の第1自己消弧形素子の第1電流電極と、他のハーフブリッジ整流回路の第1自己消弧形素子の第1電流電極とが短絡して接続する。
 また、第1自己消弧形素子に信号を与える第1ドライブ回路と、第1ドライブ回路を駆動する電源によって充電されるコンデンサと、コンデンサに充電された電荷によって駆動され、第2スイッチ回路を制御する第2ドライブ回路とを更に備え、電源とコンデンサとの間には、電源に対するコンデンサの放電を阻止する放電阻止ダイオードが存在しても良い。
 また、コンデンサに電荷を蓄積する回路が、ブートストラップ回路であっても良い。
 また、コンデンサに電荷を蓄積する回路が、チャージポンプ回路であっても良い。
 また、第1ダイオードを放電阻止ダイオードとして機能させても良い。
 また、第2ダイオードを放電阻止ダイオードとして機能させても良い。
 また、第2ダイオードは第2自己消弧形素子よりも第1スイッチ回路から離れて配置されても良い。
 また、複数のハーフブリッジ整流回路の第1スイッチ回路及び第2スイッチ回路のうち少なくとも一つのスイッチ回路は、逆方向耐電圧特性を持つ自己消弧形素子であっても良い。
 また、逆方向耐電圧特性を持つ自己消弧形素子は、放電阻止ダイオードとして機能させても良い。
 この電流形電力変換回路によると、各相の第1自己消弧形素子の第1電流電極を共通電位とするので、使用する駆動電源を減らし、安価で単純な構成とすることができる。
 また、電源によって電荷が蓄積されるコンデンサに基づき第2スイッチ回路を制御することで、さらに使用する駆動電源を減らし、安価で単純な構成とすることができる。
 また、コンデンサに電荷を蓄積する回路が、ブートストラップ回路であることで使用する駆動電源を減らし、安価で単純な構成とすることができる。
 また、コンデンサに電荷を蓄積する回路が、チャージポンプ回路であることで使用する駆動電源を減らし、安価で単純な構成とすることができる。
 また、放電阻止ダイオードを、第1スイッチ回路の第1ダイオードや第2ダイオードで代用して、さらに回路構成を簡略化できる。
 また、第2ダイオードを第2自己消弧形素子よりも第1スイッチ回路から離して配置することで、コンデンサの充電時に、第2ダイオードの電圧降下を排除でき、コンデンサの充電電圧をより高く確保して、第2スイッチ回路の動作の信頼性を向上させる。
 また、第1スイッチ回路及び第2スイッチ回路のうち少なくとも一つのスイッチ回路を、逆方向耐電圧特性を持つ自己消弧形素子にすることで、スイッチ回路を構成する素子数が減り、回路構成を単純化できる。さらに、スイッチ回路で生じる損失も小さくなるため、放熱用のヒートシンクを小さくでき、さらなる省スペース化が可能である。
 また、放電阻止ダイオードを、逆方向耐電圧特性を持つ自己消弧形素子で代用して、さらに回路構成を簡略化できる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1に係る電流形電力変換回路の回路図である。 従来の電流形電力変換回路の回路図である。 本発明の実施の形態1に係る電流形電力変換回路の回路図である。 本発明の実施の形態2に係る電流形電力変換回路の回路図である。 本発明の実施の形態2の変形例に係る電流形電力変換回路の回路図である。 本発明の実施の形態3に係る電流形電力変換回路の回路図である。 本発明の実施の形態4に係る電流形電力変換回路の回路図である。 本発明の実施の形態5に係る電流形電力変換回路の回路図である。 本発明の実施の形態5の変形例に係る電流形電力変換回路の回路図である。
 (実施の形態1)
 図1に、本実施の形態に係る電流形電力変換回路の回路図の一部を示す。また、図2に、従来の電流形電力変換回路の回路図を示す。
 まず、図2に示す回路は、3相電流形整流回路である。図2では、3相電流形整流回路101と、三相交流電源120と、LCフィルタ回路130とを図示している。図2に示した3相電流形整流回路は相互に並列接続されたハーフブリッジ整流回路を3つ備えている。具体的にはr相に対応するハーフブリッジ整流回路はIGBT103r,105rと、ダイオード104r,106rとを有する。またs相に対応するハーフブリッジ整流回路はIGBT103s,105sと、ダイオード104s,106sとを有する。またt相に対応するハーフブリッジ整流回路はIGBT103t,105tと、ダイオード104t,106tとを有する。IGBT103r,103s,103t,105r,105s,105tは、スイッチング素子であり、自己消弧形素子である。ダイオード104r,104s,104tは逆阻止用のダイオードである。ダイオード104r,104s,104tは、それぞれIGBT103r,103s,103tに順方向電流が流れる場合において、ダイオード104r,104s,104tに順方向電流が流れる極性で、IGBT103r,103s,103tに直列接続されている。具体的には、ダイオード104r,104s,104tのアノードとIGBT103r,103s,103tのエミッタとが互いに接続されている。また、ダイオード106r,106s,106tは逆阻止用のダイオードである。ダイオード106r,106s,106tは、それぞれIGBT105r,105s,105tに順方向電流が流れる場合において、ダイオード106r,106s,106tに順方向電流が流れる極性で、IGBT105r,105s,105tに直列接続されている。具体的には、ダイオード106r,106s,106tのカソードとIGBT105r,105s,105tのコレクタとが互いに接続されている。IGBT103r,103s,103tのコレクタとIGBT105r,105s,105tのエミッタとは、接続点107r,107s,107tを介して互いに接続されている。逆阻止用ダイオードは、自己消弧形素子において逆方向に電流が流れるのを阻止するとともに、自己消弧形素子に逆方向電圧が引加されて素子が破壊するのを防止する。
 また、接続点107rには、三相交流電源120からのr相電圧VrがLCフィルタ回路130のコイルL11を介して入力されている。同様に、接続点107sには、三相交流電源120からのs相電圧VsがLCフィルタ回路130のコイルL12を介して入力されている。接続点107tには、三相交流電源120からのt相電圧VtがLCフィルタ回路130のコイルL13を介して入力されている。なお、LCフィルタ回路130は、コイルL11,L12,L13とコンデンサC11,C12,C13とでローパスフィルタとして構成されている。
 以上のように、図2に示した3相電流形整流回路では、IGBT103r,103s,103tのエミッタは、それぞれダイオード104r,104s,104tを介して相互に接続されている。そのため、IGBT103r,103s,103tのエミッタを制御回路のGND端子として共通化することができない。さらに、図2に示した3相電流形整流回路では、各IGBT103r,103s,103tのコレクタには異なる相電圧が印加されるため、コレクタ電位がそれぞれ異なる。従って、図2に示した3相電流形整流回路のIGBT103r,103s,103t,105r,105s,105tを駆動する場合は、それぞれのIGBT103r,103s,103t,105r,105s,105tに独立した駆動電源が必要であった。図2に示した3相電流形整流回路では、独立した6つの駆動電源が必要である。
 一方、図1には本実施の形態に係る電流形電力変換回路を示し、当該電流形電力変換回路も3相電流形整流回路である点で図2と類似している。図1に示す回路は、3相電流形整流回路である。図1に示した3相電流形整流回路は相互に並列接続されたハーフブリッジ整流回路を3つ備えている。具体的にはr相に対応するハーフブリッジ整流回路2rはIGBT3r,5rと、ダイオード4r,6rとを有する。またs相に対応するハーフブリッジ整流回路2sはIGBT3s,5sと、ダイオード4s,6sとを有する。またt相に対応するハーフブリッジ整流回路2tはIGBT3t,5tと、ダイオード4t,6tとを有する。IGBT3r,3s,3t,5r,5s,5tは、スイッチング素子であり、自己消弧形素子である。ダイオード4r,4s,4tは逆阻止用のダイオードである。ダイオード4r,4s,4tは、それぞれIGBT3r,3s,3tに順方向電流が流れる場合において、ダイオード4r,4s,4tに順方向電流が流れる極性で、IGBT3r,3s,3tに直列接続され、上アームのスイッチ回路を構成している。具体的には、ダイオード4r,4s,4tのカソードとIGBT3r,3s,3tのコレクタとが互いに接続されている。また、ダイオード6r,6s,6tは逆阻止用のダイオードである。ダイオード6r,6s,6tは、それぞれIGBT5r,5s,5tに順方向電流が流れる場合において、ダイオード6r,6s,6tに順方向電流が流れる極性で、IGBT5r,5s,5tに直列接続され、下アームのスイッチ回路を構成している。具体的には、ダイオード6r,6s,6tのアノードとIGBT5r,5s,5tのエミッタとが互いに接続されている。ダイオード4r,4s,4tのアノードとダイオード6r,6s,6tのカソードとは、接続点7r,7s,7tを介して互いに接続されている。また、接続点7r,7s,7tには、LCフィルタ回路30を介して三相交流電源8が接続される。LCフィルタ回路30は、コイルL1,L2,L3とコンデンサC1,C2,C3とでローパスフィルタとして構成されている。
 図1に示す3相電流形整流回路では、上述のように構成したIGBT3r,5rと、ダイオード4r,6rとの直列接続が1相のハーフブリッジ整流回路2rとして把握される。同様に、IGBT3s,5sと、ダイオード4s,6sとの直列接続が1相のハーフブリッジ整流回路2sとして把握され、IGBT3t,5tと、ダイオード4t,6tとの直列接続がハーフブリッジ整流回路2tとして把握される。図1に示す3相電流形整流回路では、これら3つのハーフブリッジ整流回路2r,2s,2tを、3つ並列接続している。また、いずれのハーフブリッジ整流回路2r,2s,2tも、IGBT3r,3s,3t、ダイオード4r,4s,4t、IGBT5r,5s,5t及びダイオード6r,6s,6tの順方向は同方向に揃っている。さらに、図1に示す3相電流形整流回路では、各相のIGBT3r,3s,3tのエミッタを接続線9にそれぞれ接続し短絡することで、IGBT3r,3s,3tのエミッタを共通電位としている。つまり、本実施の形態に係る多相の電流形整流回路では、片側アームの各相の自己消弧形素子(3r,3s,3t)のエミッタ端子を互いに短絡して接続することで、これらのエミッタ端子が共通電位として機能する。
 図1に示す3相電流形整流回路のように、各相のIGBT3r,3s,3tのエミッタを接続線9にそれぞれ接続してこれらのエミッタを共通電位として機能させることで、各相のIGBT3r,3s,3tを駆動するドライブ回路の駆動電源の基準電位を互いに同電位とすることができる。そのため、各相のIGBT3r,3s,3tを駆動するドライブ回路の駆動電源を共通化することができる。具体的には、図3に示すように各相のIGBT3r,3sを駆動するドライブ回路10r,10sに対して、駆動電源11が1つ並列接続された回路構成となる。なお、図3に示す回路図では、片側アーム(上アーム)の2相分(r,s)についてのみ記載されているが、ハーフブリッジ整流回路2tの上アームについても同様にドライブ回路を設け、当該ドライブ回路に対しても駆動電源11を共用できる。
 以上のように、本実施の形態に係る3相電流形整流回路では、図3のような回路構成を採用することで、上アーム側のIGBTを駆動するそれぞれのドライブ回路を1つの駆動電源11で駆動できる。そのため、本実施の形態に係る3相電流形整流回路では、駆動電源の個数を、下アームの3つのIGBT5r,5s,5tを駆動するドライブ回路のそれぞれの駆動電源(3個)とあわせて、合計4個の駆動電源とすることができる。また、本実施の形態に係る3相電流形整流回路では、駆動電源を減らすことで、配線数を減らすことができるので、安価で単純な回路構成とすることができる。さらに、本実施の形態に係る3相電流形整流回路では、減らした駆動電源の分だけ省スペース化を図ることもできる。
 なお、本実施の形態では、自己消弧形素子としてIGBTを用いる例を説明したが、本発明はこれに限られず、同様の機能を有する他の素子でも良い。また、本実施の形態では、3相電流形整流回路として説明したが、本発明は3相には限定されない。
 (実施の形態2)
 図4に、本実施の形態に係る電流形電力変換回路の回路図を示す。図4に示す電流形電力変換回路は3相電流形整流回路であるが、上アームに2相分(r,s)のIGBT3r,3s、下アームに1相分(r)のIGBT5rのみを図4に記載している。図4に示す電流形整流回路でも、各相のIGBT3r,3sのエミッタを接続線9にそれぞれ接続することで、IGBT3r,3sのエミッタを共通電位として機能させ、各相のIGBT3r,3sを駆動するドライブ回路10r,10sの駆動電源11を共通化している。上述のように、IGBT3tを駆動するドライブ回路に対しても駆動電源11を共通化できる。
 図4に示す電流形整流回路の下アームでは、ブートストラップ回路を用いることで、ドライブ回路10r,10sを駆動する駆動電源11を利用して、IGBT5sのドライブ回路13を駆動する。具体的には、図4に示すブートストラップ回路は、駆動電源11の正極に直列接続されたダイオード12と、IGBT5rを駆動するドライブ回路13に接続されたコンデンサ14とを備えている。そして、図4に示すブートストラップ回路は、ダイオード12のカソードがコンデンサ14の一方の端子に、コンデンサ14の他方の端子がダイオード6rのアノードにそれぞれ接続されている。そして、図4に示すブートストラップ回路において、上アームのIGBT3rがオンすることで、駆動電源11によりコンデンサ14が充電される。なお、ダイオード12は、電源11に対するコンデンサ14の放電を阻止するための放電阻止ダイオードであり、電源11の電位と、充電されたコンデンサ14の電位(これはr相電圧Vrに依存して変化する)との間の電位差を維持し、電源11への逆流を阻止する機能を果たすと把握することもできる。また、ダイオード12は、駆動電源11の電位以上の耐電圧特性を有する素子であれば、他の素子でも良い。
 本実施の形態に係る電流形整流回路では、充電されたコンデンサ14をIGBT5rのエミッタ電位を基準電位とする駆動電源に利用し、ドライブ回路13を駆動している。なお、本実施形態では、上アームのIGBT3r、3s、3tのエミッタ電位を基準としたゲート信号を用いることを想定しているため、ドライブ回路13には、レベルシフト回路15が接続されており、ゲート信号の電位を適切にシフトさせてドライブ回路13に入力している。
 以上のように、本実施の形態に係る電流形整流回路では、ブートストラップ回路を利用して、下アームのIGBT5rのドライブ回路13を駆動する電源を作成して、実際に設けている駆動電源11に電源を共通化している。なお、図4に示す電流形整流回路では、1相分(r)のIGBT5rについて駆動電源を共通化する回路構成を開示しているが、同様に、他相(s、t)のIGBT5s,5tについてもブートストラップ回路を利用することで駆動電源の共通化を図ることができる。つまり、3相電流形整流回路を駆動する駆動電源を1個にすることができる。また、本実施の形態に係る電流形整流回路を駆動する場合、下アームのIGBT5r,5s,5tがスイッチング動作を開始する前に、駆動電源電圧を確保しておく必要から、上アームのIGBT3r,3s,3tを導通させて下アームのドライブ回路に接続されたコンデンサ14を充電する。
 なお、本実施形態で示しているレベルシフト回路は、フォトカプラ等を用いた絶縁回路に置き換えることが可能である。また、ゲート信号の基準電位が上アームのIGBT3r、3s、3tのエミッタ電位と異なる場合には、上アームにもレベルシフト回路や絶縁回路が必要となる。
 (変形例)
 図4に示す電流形整流回路では、ブートストラップ回路を利用する構成について説明したが、駆動電源11によって充電されるコンデンサ14と、電源11に対するコンデンサ14の放電を阻止するダイオード12とをさらに備え、当該コンデンサ14に充電された電荷によって下アームのドライブ回路を駆動する構成であれば、他の回路構成を採用しても良い。
 具体的に、本変形例に係る電流形整流回路では、ブートストラップ回路に換えてチャージポンプ回路を用いる回路構成について説明する。図5に、本変形例に係る電流形電力変換回路の回路図を示す。図5に示す電流形電力変換回路は3相電流形整流回路であるが、上アームに2相分(r,s)のIGBT3r,3s、下アームに1相分(r)のIGBT5rのみを図5に記載している。なお、図5に示す電流形電力変換回路は、チャージポンプ回路以外、図4に示す電流形電力変換回路と同じであるため、同じ構成要素については同じ符号を付して詳細な説明は省略する。
 具体的に、図5に示すチャージポンプ回路は、駆動電源11の正極に直列接続されたダイオード12,16と、IGBT5を駆動するドライブ回路13に接続されたコンデンサ14とを備えている。さらに、図5に示すチャージポンプ回路は、駆動電源11の負極とコンデンサ14の一方の端子に直列接続されたスイッチ素子(例えば、MOS FET)17,18と、スイッチ素子を制御する発振回路19と、ダイオード12,16の間とスイッチ素子17,18の間とに接続されたコンデンサ20とを備えている。
 そして、図5に示すチャージポンプ回路は、コンデンサ14の一方の端子がダイオード6rのアノード及びスイッチ素子18に、コンデンサ14の他方の端子がダイオード12のカソードにそれぞれ接続されている。また、発振回路19は、スイッチ素子17,18を排他動作させている。そのため、図5に示すチャージポンプ回路では、スイッチ素子17がオンし、スイッチ素子18がオフすると、コンデンサ20が駆動電源11により充電される。次に、コンデンサ20に溜まっている電荷は、スイッチ素子17がオフし、スイッチ素子18がオンする際に、コンデンサ14に移される。
 本変形例に係る3相電流形整流回路でも、充電されたコンデンサ14をIGBT5rのエミッタ電位を基準電位とする駆動電源に利用し、ドライブ回路13を駆動している。なお、ドライブ回路13には、レベルシフト回路15が接続されており、ゲート信号の電位を適切にシフトさせてドライブ回路13に入力している。
 以上のように、本変形例に係る3相電流形整流回路では、チャージポンプ回路を利用して、下アームのIGBT5rのドライブ回路13を駆動する電源を作成して、実際に設けている駆動電源11に電源を共通化している。なお、図5に示す3相電流形整流回路でも、1相分(r)のIGBT5rについて駆動電源を共通化する回路構成を開示しているが、同様に、他相(s、t)のIGBT5s,5tについてもチャージポンプ回路を利用することで駆動電源の共通化を図ることができる。つまり、3相電流形整流回路を駆動する駆動電源を1個にすることができる。
 (実施の形態3)
 図6に、本実施の形態に係る電流形電力変換回路の回路図を示す。図6に示す電流形電力変換回路は、3相電流形整流回路である。図5に示す3相電流形整流回路の構成は、図4に示す3相電流形整流回路とほぼ同じ構成であるが、ダイオード12を備えていない点で異なる。ダイオード12は、電源11に対するコンデンサ14の放電を阻止するための放電阻止ダイオードである。本実施の形態に係る3相電流形整流回路では、当該ダイオード12の機能をIGBT3rに直列接続されたダイオード4rで代用する。但し、ダイオード4rは、ダイオード12に要求される耐電圧特性を有している必要がある。電圧形のインバータや整流回路、電流形のインバータにおいては、通常、直流バス(もしくは高周波リンク等)の低電位側を基準電位として駆動電源を設ける。よって、ブートストラップ回路により充電されるコンデンサの電位が駆動電源よりも高くなる場合があり、ダイオード12には直流バス(もしくは高周波リンク等)の電位以上の耐電圧を持つことが要求される。本実施例においては、直流バス(もしくは高周波リンク等)の高電位側を基準電位として駆動電源を設けており、かつ、電流形電力変換回路のダイオード4rで耐電圧を持たせているため、ダイオード4rでダイオード12を代用することが可能となっている。
 なお、図4に示す3相電流形整流回路と同じ構成については、同一の構成要素に同じ番号を付与して、図6に示す3相電流形整流回路の詳細な説明を省略する。
 以上のように、本実施の形態に係る3相電流形整流回路では、ダイオード12をダイオード4rで代用することで、放電阻止ダイオードを削減でき、回路の簡素化を図ることができる。なお、図6に示す3相電流形整流回路では、1相分(r)のコンデンサ14の放電阻止について説明したが、同様に、他相(s、t)についてもダイオード4s,4tを放電阻止ダイオードとして機能させることができる。また、本実施の形態に係る3相電流形整流回路を駆動する場合も、下アームのIGBT5r,5s,5tがスイッチング動作を開始する前に、駆動電源電圧を確保しておく必要から、上アームのIGBT3r,3s,3tを導通させておく。
 また、図6に示す3相電流形整流回路は、ブートストラップ回路を用いる回路構成であったが、同様にチャージポンプ回路を用いた3相電流形整流回路にも本実施の形態に係る構成を適用可能である。但し、チャージポンプ回路を用いた3相電流形整流回路(図5に相当)では、当該ダイオード12の機能をIGBT5rに直列接続されたダイオード6rで代用する。
 (実施の形態4)
 図7に、本実施の形態に係る電流形電力変換回路の回路図を示す。図7に示す電流形電力変換回路は、3相電流形整流回路である。図7に示す3相電流形整流回路の構成は、図4に示す3相電流形整流回路とほぼ同じ構成であるが、ダイオード6rの接続位置が異なる。ダイオード6rは、図4ではIGBT5rのエミッタ側に接続されていたが、本実施の形態ではIGBT5rのコレクタ側に接続されている。つまり、図7では、ダイオード6rはIGBT5rよりも上アームのスイッチ回路(IGBT4r,ダイオード5r)から離れて配置される。
 なお、図4に示す3相電流形整流回路と同じ構成については、同一の構成要素に同じ番号を付与して、図7に示す3相電流形整流回路の詳細な説明を省略する。
 以上のように、本実施の形態に係る3相電流形整流回路では、逆阻止用のダイオード6rを上アームのスイッチ回路から離れてIGBT5rのコレクタ側に接続することで、コンデンサ14の充電時に、ダイオード6rの電圧降下を排除できる。そのため、本実施の形態に係る3相電流形整流回路では、IGBT5rのドライブ回路13を駆動するための駆動電源電圧(コンデンサ14の充電電圧)をより高く確保でき、動作の信頼性が向上する。なお、図7に示す3相電流形整流回路では、1相分(r)のコンデンサ14の電圧降下の排除について説明したが、同様に、他相(s、t)についてもダイオード6s,6tを上アームのスイッチ回路から離れて配置することでコンデンサの電圧降下を排除できる。さらに、駆動電源11の電位は直流バス(もしくは高周波リンク)の高電位側よりも高いため、コンデンサ14の電位が高くなり、下アームのIGBT5rのエミッタ電位と直流バスの低電位側との電位差が大きくなる場合がある。しかしながら、その場合もダイオード6rで耐電圧特性を持たせることができるので、下アームのIGBT5rが逆方向の耐電圧不足により破壊することがない。
 また、図7に示す3相電流形整流回路は、ブートストラップ回路を用いる回路構成であったが、同様にチャージポンプ回路を用いた電流形整流回路にも本実施の形態に係る構成を適用可能である。さらに、図7に示す3相電流形整流回路では、ダイオード12を設ける構成で説明したが、本発明はこれに限られず、図6に示す3相電流形整流回路と同様に、ダイオード12をダイオード4rで代用しても良い。
 (実施の形態5)
 図8に、本実施の形態に係る電流形電力変換回路の回路図を示す。図8に示す電流形電力変換回路は、3相電流形整流回路である。実施の形態1乃至4に係る電流形電力変換回路では、ハーフブリッジ整流回路2r,2s,2tのスイッチ回路には自己消弧形素子であるIGBT3r,3s,3t,5r,5s.5tとダイオード4r,4s,4t,6r,6s,6tとにより構成していた。しかし、図8に示す電流形電力変換回路では、ハーフブリッジ整流回路2r,2sのスイッチ回路は、IGBT3r,3s,5r及びダイオード4r,4s6rに代えて、逆方向耐圧を持つ自己消弧形素子22r,22s,23rで構成されている。なお、逆方向耐圧を持つ自己消弧形素子22r,22s,23rとしては、例えばRB-IGBT(Reverse Blocking Insulated Gate Bipolar Transistor)があげられる。また、図8に示す電流形電力変換回路は、自己消弧形素子22r,22s,23r以外は、図4に示す電流形電力変換回路と同じであるため、同じ構成要素には同じ構成番号を付与して詳細な説明は省略する。また、図8に示す電流形電力変換回路は3相電流形整流回路であるが、図4と同様に、上アームに2相分(r,s)の自己消弧形素子22r,22s、下アームに1相分(r)の自己消弧形素子23rのみを図8に記載している。
 図8に示す電流形電力変換回路では、スイッチ回路を構成する素子数が、図4に示す電流形電力変換回路減のスイッチ回路(IGBT3r,3s,3t,5r,5s.5tとダイオード4r,4s,4t,6r,6s,6t)に比べて減る。そのため、図8に示す電流形電力変換回路では、さらに回路構成を単純化できるとともに、安価な構成となる。また、図8に示す電流形電力変換回路では、スイッチ回路で生じる損失も小さくなるため、放熱用のヒートシンクを小さくでき、さらに省スペース化を図ることもできる。
 (変形例)
 図9に、本実施の形態に係る変形例1の電流形電力変換回路の回路図を示す。図9に示す電流形電力変換回路は、3相電流形整流回路である。図9に示す電流形電力変換回路は、実施の形態3の構成を図8に示す電流形電力変換回路に適用したものである。つまり、図9に示す電流形電力変換回路は、逆方向耐電圧特性を持つ自己消弧形素子22r,22s,23rに、放電阻止ダイオードとしての機能も持たせることで、ダイオード12を削除する回路構成である。なお、図9に示す電流形電力変換回路は、ダイオード12を削除した以外は、図8に示す電流形電力変換回路と同じであるため、同じ構成要素には同じ構成番号を付与して詳細な説明は省略する。また、図9に示す電流形電力変換回路は3相電流形整流回路であるが、図4と同様に、上アームに2相分(r,s)の自己消弧形素子22r,22s、下アームに1相分(r)の自己消弧形素子23rのみを図9に記載している。なお、図8及び図9では、逆方向耐電圧特性を持つ自己消弧形素子22r,22s,23rとして、図に示すような記号を用いてRB-IGBTを表している。
 以上のように、本変形例に係る電流形電力変換回路は、実施の形態3と同様に、スイッチ回路を構成する素子数が減り、スイッチ回路での電圧降下が小さくなるため、コンデンサ14の充電電圧をより高く確保できる。そのため、本変形例に係る電流形電力変換回路は、下アームのスイッチ回路の動作における信頼性をさらに向上することができる。
 (実施の形態6)
 実施の形態1乃至5及びその変形例に係る電流形電力変換回路を用いれば、ドライブ回路を含めた電流形電力変換回路は簡単な回路で構成できる。そのため、当該電流形電力変換回路を、省スペースで構成できる。そこで、本実施の形態では、実施の形態1乃至5及びその変形例に係る電流形電力変換回路を1つのモジュール内に納め、電流形電力変換回路モジュールを実現することが可能である。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
3,5,103,105 IGBT
4,6,12,16,104,106 ダイオード
7 接続点
8,120 三相交流電源
9 接続線
10,13 ドライブ回路
14,20 コンデンサ
15 レベルシフト回路
17,18 スイッチ素子
19 発振回路
22,23 自己消弧形素子
30,130 LCフィルタ回路
101 3相電流形整流回路

Claims (10)

  1.  相互に直列接続された第1自己消弧形素子(3r,3s,3t)及び第1ダイオード(4r,4s,4t)を有する第1スイッチ回路と、相互に直列接続された第2自己消弧形素子(5r,5s,5t)及び第2ダイオード(6r,6s,6t)を有する第2スイッチ回路との直列接続を含むハーフブリッジ整流回路(2r,2s,2t)の複数を並列接続して備える電流形電力変換回路であって、
     いずれの前記ハーフブリッジ整流回路においても、前記第1自己消弧形素子、前記第1ダイオード、前記第2自己消弧形素子及び第2ダイオードの順方向は同方向に揃い、
     いずれの前記第1自己消弧形素子も、第1電流電極及び第2電流電極並びに制御電極を有し、前記第1電流電極を基準として前記制御電極に与えられる制御信号に基づいて点弧/消弧し、
     いずれの前記ハーフブリッジ整流回路においても、前記第1自己消弧形素子の前記第2電流電極が前記第1ダイオードに接続され、
     一の前記ハーフブリッジ整流回路(2r)の前記第1自己消弧形素子(3r)の第1電流電極と、他の前記ハーフブリッジ整流回路(2s)の前記第1自己消弧形素子(3s)の第1電流電極とが短絡して接続する、電流形電力変換回路。
  2.  請求項1に記載の電流形電力変換回路であって、
     前記第1自己消弧形素子(3r,3s)に前記信号を与える第1ドライブ回路(10r,10s)と、
     前記第1ドライブ回路を駆動する電源(11)によって充電されるコンデンサ(14)と、
     前記コンデンサ(14)に充電された電荷によって駆動され、前記第2スイッチ回路を制御する第2ドライブ回路(13)と
    を更に備え、
     前記電源と前記コンデンサ(14)との間には、前記電源に対する前記コンデンサ(14)の放電を阻止する放電阻止ダイオード(4r,6r,12,16)が存在する、電流形電力変換回路。
  3.  請求項2に記載の電流形電力変換回路であって、
     前記コンデンサ(14)に電荷を蓄積する回路が、ブートストラップ回路である、電流形電力変換回路。
  4.  請求項2に記載の電流形電力変換回路であって、
     前記コンデンサ(14)に電荷を蓄積する回路が、チャージポンプ回路である、電流形電力変換回路。
  5.  請求項3記載の電流形電力変換回路であって、
     前記第1ダイオード(4r)が前記放電阻止ダイオードとして機能する、電流形電力変換回路。
  6.  請求項3に記載の電流形電力変換回路であって、
     前記第2ダイオード(6r)が前記放電阻止ダイオードとして機能する、電流形電力変換回路。
  7.  請求項4に記載の電流形電力変換回路であって、
     前記第2ダイオード(6r)が前記放電阻止ダイオードとして機能する、電流形電力変換回路。
  8.  請求項5記載の電流形電力変換回路であって、
     前記第2ダイオード(6r)は前記第2自己消弧形素子(5r)よりも前記第1スイッチ回路から離れて配置される、電流形電力変換回路。
  9.  請求項1乃至請求項8のいずれか1つに記載の電流形電力変換回路であって、
     複数の前記ハーフブリッジ整流回路(2r,2s,2t)の前記第1スイッチ回路及び前記第2スイッチ回路のうち少なくとも一つのスイッチ回路は、逆方向耐電圧特性を持つ自己消弧形素子(21r,21,s,21t)である、電流形電力変換回路。
  10.  請求項9に記載の電流形電力変換回路であって、
     逆方向耐電圧特性を持つ前記自己消弧形素子(21r,21,s,21t)は、前記放電阻止ダイオードとして機能する、電流形電力変換回路。
PCT/JP2009/070309 2008-12-23 2009-12-03 電流形電力変換回路 WO2010073886A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2009332039A AU2009332039B2 (en) 2008-12-23 2009-12-03 Current source power conversion circuit
CN200980149687.2A CN102246406B (zh) 2008-12-23 2009-12-03 电流型电力变换电路
BRPI0923400-4A BRPI0923400A2 (pt) 2008-12-23 2009-12-03 circuito de conversão de potência de fonte de corrente.
US13/132,338 US8670259B2 (en) 2008-12-23 2009-12-03 Current source power conversion circuit
EP09834690.1A EP2369731A4 (en) 2008-12-23 2009-12-03 Current source power conversion circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008326655A JP4506891B2 (ja) 2008-12-23 2008-12-23 電流形電力変換回路
JP2008-326655 2008-12-23

Publications (1)

Publication Number Publication Date
WO2010073886A1 true WO2010073886A1 (ja) 2010-07-01

Family

ID=42287504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070309 WO2010073886A1 (ja) 2008-12-23 2009-12-03 電流形電力変換回路

Country Status (7)

Country Link
US (1) US8670259B2 (ja)
EP (1) EP2369731A4 (ja)
JP (1) JP4506891B2 (ja)
CN (1) CN102246406B (ja)
AU (1) AU2009332039B2 (ja)
BR (1) BRPI0923400A2 (ja)
WO (1) WO2010073886A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2528212A4 (en) * 2010-01-19 2017-06-28 Daikin Industries, Ltd. Power conversion device
CN109039205A (zh) * 2018-08-20 2018-12-18 东南大学 SiC器件电流源型双三相永磁同步电机驱动系统及方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506891B2 (ja) * 2008-12-23 2010-07-21 ダイキン工業株式会社 電流形電力変換回路
FR2975843B1 (fr) * 2011-05-23 2013-05-17 Renault Sa Procede de commande des interrupteurs d'un redresseur de courant connecte a un chargeur embarque.
US10090772B2 (en) 2012-03-08 2018-10-02 Massachusetts Institute Of Technology Resonant power converters using impedance control networks and related techniques
TWI462456B (zh) * 2012-10-05 2014-11-21 Nat Univ Tsing Hua 直流/直流轉換電路
GB201621043D0 (en) * 2016-12-12 2017-01-25 Wood John Ultra-lateral power transistor and driver structures
CN103178738A (zh) * 2013-02-27 2013-06-26 薛建仁 新型高效节能pwm工业整流电源
CN103997246A (zh) * 2014-05-08 2014-08-20 东北电力大学 基于高频桥臂的双向光伏逆变器
CN107437889B (zh) * 2016-05-26 2020-06-12 松下知识产权经营株式会社 电力变换电路及电力传送系统
RU2633966C1 (ru) * 2016-11-30 2017-10-20 Юрий Борисович Соколов Источник питания от многофазной сети переменного тока с коррекцией гармонических колебаний
US20220294334A1 (en) * 2019-09-24 2022-09-15 Hitachi Astemo, Ltd. Gate driving power source device
EP4066596A4 (en) * 2021-02-05 2023-01-11 Ajax Tocco Magnethermic Corporation ACTIVE RECTIFIER WITH CURRENT SOURCE INVERTER AND VOLTAGE SOURCE INVERTER POWER SYSTEMS FOR INDUCTION HEATING AND MELTING APPLICATIONS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194971A (ja) * 1989-12-22 1991-08-26 Meidensha Corp 電力用半導体素子
JP2001309670A (ja) * 2000-04-26 2001-11-02 Yaskawa Electric Corp インバータ装置の駆動回路
JP2002084757A (ja) * 2000-09-08 2002-03-22 Sanken Electric Co Ltd 交流−直流変換装置
JP2005229676A (ja) * 2004-02-10 2005-08-25 Denso Corp 2相変調モータ制御装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN172422B (ja) * 1989-03-06 1993-07-24 Kone Elevator Gmbh
JP3216764B2 (ja) * 1994-12-15 2001-10-09 富士電機株式会社 インバータの駆動回路
JP2003133924A (ja) * 2001-10-19 2003-05-09 Ematic:Kk ハイサイドスイッチ駆動電源
JP2003164140A (ja) 2001-11-27 2003-06-06 Mitsubishi Electric Corp 半導体変換回路及び回路モジュール
ATE319217T1 (de) * 2001-12-17 2006-03-15 Koninkl Philips Electronics Nv Trennwandler mit synchronisiertem schaltzweig
JP2003244966A (ja) * 2002-02-18 2003-08-29 Mitsubishi Electric Corp 駆動回路
US7053587B2 (en) * 2004-02-10 2006-05-30 Denso Corporation Apparatus for controlling three-phase AC motor on two-phase modulation technique
JP4049189B2 (ja) 2006-04-24 2008-02-20 ダイキン工業株式会社 直接形交流電力変換装置
US7768805B2 (en) * 2007-03-09 2010-08-03 General Electric Company Clean input UPS with fast rectifier control and improved battery life
FR2927201B1 (fr) * 2008-01-31 2010-02-12 Airbus France Circuit et systemes redresseurs de puissance, procede associe, aeronef comprenant de tels circuit ou systemes
JP5304192B2 (ja) * 2008-03-28 2013-10-02 ダイキン工業株式会社 電力変換装置
JP4506891B2 (ja) * 2008-12-23 2010-07-21 ダイキン工業株式会社 電流形電力変換回路
JP4766181B2 (ja) * 2009-06-04 2011-09-07 ダイキン工業株式会社 電力変換装置
FR2946810B1 (fr) * 2009-06-16 2012-12-14 Renault Sas Dispositif de charge rapide reversible pour vehicule electrique
FR2953662B1 (fr) * 2009-12-03 2011-11-18 Schneider Toshiba Inverter Convertisseur de puissance a source de courant utilisant des transistors a effet de champ normalement fermes
JP4720941B1 (ja) * 2010-01-18 2011-07-13 ダイキン工業株式会社 電力変換装置
JP4720942B1 (ja) * 2010-01-19 2011-07-13 ダイキン工業株式会社 電力変換装置
JP4735761B1 (ja) * 2010-01-19 2011-07-27 ダイキン工業株式会社 電力変換装置
US8462528B2 (en) * 2010-07-19 2013-06-11 GM Global Technology Operations LLC Systems and methods for reducing transient voltage spikes in matrix converters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194971A (ja) * 1989-12-22 1991-08-26 Meidensha Corp 電力用半導体素子
JP2001309670A (ja) * 2000-04-26 2001-11-02 Yaskawa Electric Corp インバータ装置の駆動回路
JP2002084757A (ja) * 2000-09-08 2002-03-22 Sanken Electric Co Ltd 交流−直流変換装置
JP2005229676A (ja) * 2004-02-10 2005-08-25 Denso Corp 2相変調モータ制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2528212A4 (en) * 2010-01-19 2017-06-28 Daikin Industries, Ltd. Power conversion device
CN109039205A (zh) * 2018-08-20 2018-12-18 东南大学 SiC器件电流源型双三相永磁同步电机驱动系统及方法
CN109039205B (zh) * 2018-08-20 2021-09-21 东南大学 SiC器件电流源型双三相永磁同步电机驱动系统及方法

Also Published As

Publication number Publication date
EP2369731A1 (en) 2011-09-28
CN102246406A (zh) 2011-11-16
JP4506891B2 (ja) 2010-07-21
AU2009332039A1 (en) 2011-07-14
US8670259B2 (en) 2014-03-11
JP2010154581A (ja) 2010-07-08
AU2009332039B2 (en) 2014-01-09
CN102246406B (zh) 2014-12-10
US20110242864A1 (en) 2011-10-06
EP2369731A4 (en) 2017-05-31
BRPI0923400A2 (pt) 2020-08-11

Similar Documents

Publication Publication Date Title
JP4506891B2 (ja) 電流形電力変換回路
JP3263317B2 (ja) スイッチングモジュールおよびモジュールを用いた電力変換器
US9214878B2 (en) Multilevel power converter circuit
US7830036B2 (en) Power electronic module pre-charge system and method
US7663898B2 (en) Switching power supply with direct conversion off AC power source
US6268758B1 (en) Circuit arrangement with half-bridge
WO2017056209A1 (ja) 無停電電源装置
US20200119658A1 (en) Bridge circuit for inverter or rectifier
US6940188B2 (en) Electric power converting device
WO2016207969A1 (ja) 充電共用インバータ
US10270366B2 (en) Device and method for generating a negative voltage for a high side switch in an inverter
JP2012191761A (ja) 交流−直流変換回路
EP4239837A1 (en) Power factor correction and dc-dc multiplexing converter and uninterruptible power supply including the same
JP5034729B2 (ja) 半導体スイッチング素子駆動用電源回路
US20190363636A1 (en) DC/DC Converter with Full-Bridge Actuation
EP3493391A1 (en) Single phase seven level converter
WO2017064848A1 (ja) 電力変換装置、及びそれを用いたパワーコンディショナ
JP6836933B2 (ja) 整流装置、電源装置、電動機装置及び空調装置
JP6447944B2 (ja) 電力変換装置、及びそれを用いたパワーコンディショナ
JPH10248243A (ja) 電力変換回路
JP3383656B2 (ja) 中性点クランプ式電力変換器
JPH0548592U (ja) インバータ装置
EP4239836A1 (en) A charger, a multiplexing current conversion circuit and an uninterruptible power supply including the same
JP2000037080A (ja) 3レベル中性点クランプ形インバータのチャージポンプ電源回路
JP2002199745A (ja) 電力用半導体装置、電力用アームおよびインバータ回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149687.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13132338

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009834690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2578/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009332039

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009332039

Country of ref document: AU

Date of ref document: 20091203

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0923400

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0923400

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110621