WO2010073438A1 - 真空蒸着装置及び温度調整方法 - Google Patents

真空蒸着装置及び温度調整方法 Download PDF

Info

Publication number
WO2010073438A1
WO2010073438A1 PCT/JP2009/004811 JP2009004811W WO2010073438A1 WO 2010073438 A1 WO2010073438 A1 WO 2010073438A1 JP 2009004811 W JP2009004811 W JP 2009004811W WO 2010073438 A1 WO2010073438 A1 WO 2010073438A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
vapor deposition
vacuum
heating
temperature
Prior art date
Application number
PCT/JP2009/004811
Other languages
English (en)
French (fr)
Inventor
平野竜也
小林敏郎
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020107021550A priority Critical patent/KR101255424B1/ko
Priority to CN200980111673.1A priority patent/CN101981223B/zh
Publication of WO2010073438A1 publication Critical patent/WO2010073438A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material

Definitions

  • the present invention relates to a vacuum deposition apparatus and a temperature adjustment method.
  • This application claims priority based on Japanese Patent Application No. 2008-327518 filed in Japan on December 24, 2008, the contents of which are incorporated herein by reference.
  • the vacuum deposition method is used, for example, in the process of manufacturing an organic EL product to manufacture a thin film of an organic EL element mainly made of a low molecular compound.
  • a crucible containing an organic material is provided in a vacuum chamber, and the crucible is heated by a heater or the like to vaporize the organic material, thereby depositing the organic material on a substrate or the like to form a film.
  • the temperature distribution of the organic material in the crucible may be biased depending on the bias of the heater arrangement, the heat generation amount, and the arrangement of the members in the vacuum chamber. If the temperature distribution of the organic material in the crucible is uneven, the organic material is unevenly vaporized, and the thin film formed on the substrate is not uniform. In addition, a large amount of organic material remains in the crucible in a biased state.
  • Patent Document 1 As a vacuum deposition apparatus that solves such a problem, there is one disclosed in Patent Document 1 below.
  • a large number of granular contaminants made of a material that is not induction-heated are housed in a crucible made of a material that is not induction-heated. It is for heating.
  • the present invention has been made in consideration of such circumstances, and its purpose is to achieve a uniform temperature distribution with a simple configuration and to reduce the extra filling of the material. And providing a temperature control method.
  • the vacuum vapor deposition apparatus of the present invention includes a vacuum chamber capable of accommodating an object to be vapor deposited from outside, a crucible provided in the vacuum chamber for accommodating a vapor deposition material, and heating the crucible to perform the vapor deposition.
  • the temperature of the vapor deposition material in the crucible in the vicinity of the support portion is set. Can be reduced.
  • the temperature of the vapor deposition material in the crucible can be adjusted. That is, the temperature of the vapor deposition material can be made uniform by dispersing and arranging the low temperature portions.
  • the temperature distribution in the crucible is made uniform, the deviation of the vaporization amount of the vapor deposition material can be reduced, so that the reduction of the vapor deposition material can be made uniform in each part in the crucible. Therefore, it is possible to reduce extra filling of the vapor deposition material.
  • the heating source is configured to increase the amount of heating of the crucible in the vicinity of the support portion. According to this configuration, since the amount of heating is increased in the vicinity of the support portion, each of the portion that is separated from the support portion and has no heat transfer to the floor portion, and the portion that is transferred to the floor portion in the vicinity of the support portion. The temperature difference of the vapor deposition material is reduced. Thereby, the temperature of the vapor deposition material can be made more uniform.
  • some of the plurality of support portions are different in heat transfer amount from other support portions. According to this configuration, since a part of the plurality of support portions has a different heat transfer amount from the other support portions, the heat transfer amount to the floor portion in the portion where the vapor deposition material is relatively high is increased. However, the temperature of the vapor deposition material can be made uniform by reducing the amount of heat transferred to the floor at a relatively low temperature portion. Furthermore, the calorific value of the heater can be reduced by reducing the amount of heat transfer at a relatively low temperature portion of the vapor deposition material.
  • a part of the plurality of support portions has a cross-sectional area different from that of the other support portions.
  • a part of the plurality of support portions is made of a material having a thermal conductivity different from that of the other support portions. Further, a part of the plurality of support portions conducts heat between the crucible and the floor portion by interposing a heat transfer inhibiting member having directionality in heat conduction.
  • the vacuum vapor deposition apparatus of the present invention includes a vacuum chamber capable of accommodating an object to be deposited carried from the outside, a crucible provided in the vacuum chamber for accommodating a vapor deposition material, and heating the crucible to perform the vapor deposition.
  • the heating source is characterized in that the amount of heating to the crucible varies depending on the position of the crucible. According to this configuration, since the heating source varies the amount of heating to the crucible according to the position of the crucible, the evaporation material reduces the heating amount at a relatively high temperature portion, and the evaporation material By increasing the heating amount of the relatively low temperature portion, the temperature of the vapor deposition material can be made uniform.
  • the heating source is characterized in that the amount of heat generated is changed to vary the amount of heating to the crucible.
  • the control part which controls the emitted-heat amount of the said heat source is provided.
  • the control unit starts heat generation adjustment on the condition that the vapor deposition material in the crucible becomes a predetermined amount or less. According to this configuration, since the heat generation adjustment is started on the condition that the vapor deposition material is equal to or less than the predetermined amount, the temperature adjustment can be performed only in the region where the total amount of the vapor deposition material is reduced and the temperature distribution is severely biased. . Accordingly, it is possible to effectively equalize the temperature of the vapor deposition material with the minimum necessary control.
  • the heating source is characterized in that the arrangement density is changed to vary the amount of heating to the crucible. According to this configuration, the temperature of the vapor deposition material can be made uniform with a simple configuration.
  • the temperature adjustment method of the present invention includes a vacuum chamber capable of accommodating an object to be deposited carried from the outside, a crucible provided in the vacuum chamber for accommodating a deposition material, and heating the crucible to perform the deposition. It is a temperature adjustment method in a vacuum vapor deposition apparatus provided with the heating source which vaporizes material, and the several support part which is provided between the bottom part of the said crucible, and the floor part of the said vacuum chamber, and supports the said crucible.
  • the temperature adjustment method of the present invention grasps in advance a high temperature portion where the temperature is relatively high among the evaporating material, and provides the support portion on the bottom near the high temperature portion to reduce the temperature of the high temperature portion. It is characterized by that.
  • the high temperature part of the vapor deposition material is grasped in advance, the support part is provided at the bottom near the high temperature part, and the temperature of the high temperature part is lowered, so the temperature of the vapor deposition material is relatively low.
  • the difference with the part becomes smaller.
  • the deviation of the temperature distribution of the vapor deposition material in the crucible can be reduced, and the temperature of the vapor deposition material in the crucible can be adjusted. Therefore, the temperature of the vapor deposition material can be made uniform and easy.
  • the temperature distribution can be made uniform.
  • the vaporization amount of the vapor deposition material becomes constant by making the temperature distribution uniform, the decrease in the vapor deposition material can be made substantially equal at each part in the crucible, and the extra filling of the material can be reduced. Is possible.
  • the temperature adjustment method of the present invention includes a vacuum chamber capable of accommodating an object to be deposited carried from the outside, a crucible provided in the vacuum chamber for accommodating a deposition material, and heating the crucible to perform the deposition. It is a temperature adjustment method in a vacuum vapor deposition apparatus provided with the heating source which vaporizes material, and the several support part which is provided between the bottom part of the said crucible, and the floor part of the said vacuum chamber, and supports the said crucible.
  • the temperature distribution of the vapor deposition material is grasped in advance, and the temperature distribution of the vapor deposition material is adjusted by changing the amount of heat transfer to at least some of the floor portions of the plurality of support portions.
  • the temperature distribution of the vapor deposition material is previously grasped, and the temperature distribution of the vapor deposition material is adjusted by changing the amount of heat transfer to the floor by providing the support portion at the bottom near the high temperature portion. . That is, the heat transfer amount can be reduced for the support portion in the vicinity of the portion having a relatively low temperature, and the heat transfer amount can be increased for the support portion in the vicinity of the portion having the relatively high temperature. Thereby, the deviation of the temperature distribution of the vapor deposition material in the crucible can be reduced, and the temperature of the vapor deposition material in the crucible can be adjusted. Therefore, the temperature of the vapor deposition material can be made uniform and the temperature distribution can be easily made uniform. Furthermore, since the vaporization amount of the vapor deposition material becomes constant by making the temperature distribution uniform, the decrease in the vapor deposition material can be made substantially equal at each part in the crucible, and the extra filling of the material can be reduced. Is possible.
  • the temperature adjustment method of the present invention includes a vacuum chamber capable of accommodating an object to be deposited carried from the outside, a crucible provided in the vacuum chamber for accommodating a deposition material, and heating the crucible to perform the deposition. It is the temperature adjustment method in a vacuum evaporation system provided with the heating source which vaporizes material.
  • the temperature adjusting method of the present invention is characterized in that the temperature distribution of the evaporation material is grasped in advance, and the temperature distribution of the vapor deposition material is adjusted by changing the heating amount in the vicinity of the high temperature portion.
  • the temperature distribution of the vapor deposition material is adjusted in advance by grasping the temperature distribution of the vapor deposition material, changing the amount of heating to the floor by providing the support portion at the bottom near the high temperature portion. . That is, the heating amount can be increased in the vicinity of the portion having a relatively low temperature, and the heating amount can be decreased in the support portion in the vicinity of the portion having a relatively high temperature. Thereby, the deviation of the temperature distribution of the vapor deposition material in the crucible can be reduced, and the temperature of the vapor deposition material in the crucible can be adjusted. Therefore, the temperature of the vapor deposition material can be made uniform and the temperature distribution can be easily made uniform. Furthermore, since the vaporization amount of the vapor deposition material becomes constant by making the temperature distribution uniform, the decrease in the vapor deposition material can be made substantially equal at each part in the crucible, and the extra filling of the material can be reduced. Is possible.
  • the temperature distribution can be made uniform with a simple configuration, and the extra filling of the material can be reduced.
  • FIG. 1 is a schematic cross-sectional view showing a vacuum vapor deposition apparatus A1 according to the first embodiment of the present invention.
  • a vacuum deposition apparatus A1 includes a vacuum chamber 1, a crucible 2 provided in the vacuum chamber 1 and containing an organic material M, and the crucible 2 is heated to vaporize the organic material M.
  • a heat source 3 and three support portions 5 that are arranged in a distributed manner on the bottom 2 c of the crucible 2 to support the crucible 2 and transfer heat between the crucible 2 and the floor portion 1 a of the vacuum chamber 1 are provided.
  • the vacuum chamber 1 is configured such that the substrate B can be carried in and out from the outside and can be decompressed.
  • the substrate B is held at the upper portion by a substrate holding portion (not shown).
  • the crucible 2 has an elongated box shape in which a part of the walls are opened, and is made of metal (for example, titanium or stainless steel).
  • the crucible 2 is supported on the floor 1 a of the vacuum chamber 1 via the support 5.
  • the crucible 2 is arranged so that the longitudinal direction of the bottom surface thereof is oriented in the horizontal direction and the opening of the accommodation hole 2a is directed to the plate surface of the substrate B held by the substrate holding part.
  • This crucible 2 has a structural characteristic and tends to have a low temperature at one end 2b side in the longitudinal direction of its bottom surface.
  • the heating source 3 is composed of an electric heating heater, and a plurality of heating sources 3 are arranged below the crucible 2 with the extending direction directed in the short direction of the bottom surface of the crucible 2.
  • the heating source 3 is disposed on a heat insulating sheet 4 provided on the floor 1a.
  • the support part 5 is a member formed in a block shape, and stands on the floor part 1a.
  • the support portions 5 are provided at substantially equal intervals in the longitudinal direction of the bottom surface of the crucible 2, and the long sides having substantially the same dimensions as the lateral direction of the crucible 2 are directed in the lateral direction of the bottom surface of the crucible 2.
  • the crucible 2 is supported.
  • the operation of the vacuum vapor deposition apparatus A1 having the above configuration will be described with reference to FIGS. 2A to 2C.
  • the substrate B carried into the vacuum chamber 1 by the substrate holding unit (not shown) is held at the top in the vacuum chamber 1.
  • the vacuum chamber 1 is depressurized to a predetermined vacuum level.
  • the crucible 2 in which the organic material M is accommodated in the accommodation hole 2 a is heated to about 200 to 400 ° C. by the heating source 3.
  • the heat source 3 since the heat source 3 is via the heat insulation sheet 4, it heat-radiates favorably to the upper crucible 2.
  • the heat applied to the crucible 2 by the heating source 3 is transmitted to the organic material in the accommodation hole 2 a and is also transmitted to the floor portion 1 a through the support portion 5. That is, the heat transferred to the organic material M or the heat that should have been transferred to the organic material M is transferred to the floor 1a. For this reason, the temperature of the organic material M in the vicinity of the support portion 5 in the plan view is lower than that of other portions. That is, in the organic material M, there are three portions with low temperatures at substantially equal intervals.
  • the organic material M As the crucible 2 is heated, the organic material M is vaporized (indicated by symbol m) and adheres to the plate surface of the substrate B.
  • the organic material M As the crucible 2 is heated, the organic material M is vaporized (indicated by symbol m) and adheres to the plate surface of the substrate B.
  • the crucible 2B As the crucible 2, as shown in FIG. 2B, a large amount of the organic material M is vaporized in a relatively high temperature region, and a small amount of the organic material M is vaporized in a relatively low temperature region.
  • the crucible 2C all of the organic material M at the relatively high temperature portion is vaporized, and at the relatively low temperature portion, three organic materials M are formed in a lump shape. The remaining M remains. In this manner, a thin film is uniformly formed on one plate surface of the substrate B by vapor deposition for a predetermined time.
  • the vacuum deposition apparatus A1 includes the plurality of support portions 5 that are distributed on the bottom portion 2c of the crucible 2 and transfer heat between the crucible 2 and the floor portion 1a of the vacuum chamber 1. . Therefore, the temperature of the organic material M in the crucible 2 near the support portion 5 can be lowered, and the temperature of the organic material in the crucible 2 can be adjusted. That is, originally, because of the structural characteristics of the crucible 2, the one end 2 b side is biased toward the low temperature, so that one low temperature portion is formed on the one end 2 b side, and the temperature distribution is biased.
  • the vacuum deposition apparatus A1 since the low temperature portion can be intentionally provided and dispersed in three, the temperature of the organic material M can be made uniform. Furthermore, since the vaporization amount of the organic material M is uniformized by uniformizing the temperature distribution, the decrease in the organic material M becomes substantially equal at each part in the crucible 2, and extra filling of the organic material M is performed. It becomes possible to reduce.
  • the heating amount of the crucible 2 by the heating source 3 may be increased in the vicinity of the support portion 5.
  • part heat-transferred to the floor part 1a in the vicinity of the support part 5 Becomes smaller.
  • the temperature of the organic material M can be made more uniform.
  • the heat source 3 may be located not only below the crucible 2 but also at the side and above. By warming the entire crucible 2 with such a configuration, material adhesion in the crucible 2 can be prevented.
  • the heating source 3 may be installed in the longitudinal direction of the bottom surface of the crucible 2. That is, as long as the crucible 2 can be heated, the installation direction of the heating source 3 does not matter.
  • FIG. 3 is a schematic cross-sectional view showing a vacuum deposition apparatus A2 according to the second embodiment of the present invention.
  • components similar to those in FIGS. 1 to 3 are denoted by the same reference numerals and description thereof is omitted.
  • the vacuum deposition apparatus A2 is configured such that the amount of heat transferred to the floor portion 1a of the three support portions 5 (5a to 5c) is different from that of the other support portions 5, respectively.
  • the support portion 5a on the one end 2b side is erected on the floor portion 1a via a heat transfer inhibiting member 6 that is directional in heat conduction.
  • the heat transfer inhibiting member 6 inhibits heat transfer from the support portion 5a to the floor portion 1a.
  • a carbon sheet or a stainless steel plate can be used.
  • the support portion 5b adjacent to the support portion 5a is configured to have a smaller cross-sectional area (cross section perpendicular to the heat transfer direction) than the support portion 5a and the support portion 5c.
  • the support part 5c adjacent to the support part 5b is the same as the support part 5 of the first embodiment.
  • the cross-sectional area of the support part 5a is comprised substantially equal to the support part 5c.
  • the amount of heat transfer from the support portion 5a to the floor portion 1a is minimized.
  • the support portions 5b and 5c increase in this order. Therefore, the temperature difference in each part of the organic material M can be made small. Thereby, the temperature of the vapor deposition material can be further uniformized.
  • the support part 5 may replace with the structure mentioned above, and may comprise the support part 5 with the material from which heat conductivity differs from another, and may be set as the structure which changes heat transfer amount.
  • FIG. 4 is a schematic sectional view showing a vacuum deposition apparatus A3 according to the third embodiment of the present invention.
  • the crucible 12 is supported by two support portions 5d having the same heat transfer amount. Further, in the vacuum evaporation apparatus A3, the space between the heat sources 3 is widened in a region sandwiched between the two support portions 5d, and the sensation of the heat source 3 is narrowed outside the region. That is, in the region sandwiched between the two support portions 5d, the heating amount of the crucible 12 is small, and the heating amount is large on both sides. According to such a configuration, even if both sides in the longitudinal direction tend to be low in temperature due to structural characteristics of the crucible 12, the amount of heating on both sides is increased and the vicinity of the center is decreased. The temperature of the material M can be made uniform.
  • FIG. 5 is a schematic sectional view showing a vacuum deposition apparatus A4 according to the fourth embodiment of the present invention.
  • the vacuum evaporation apparatus A4 includes a control unit 7 that controls the amount of heat generated by the heating source 3.
  • the control unit 7 stores information corresponding to the time during which the organic material M is equal to or less than a predetermined amount inside the crucible 12. And the control part 7 will adjust the emitted-heat amount of each heating source 3, if it recognizes that this time passed after vapor deposition start. That is, when a predetermined time elapses, the temperature distribution of the organic material M in the crucible 12 is made uniform.
  • the temperature adjustment is performed only in the region where the total amount of the organic material M is reduced and the temperature distribution is severely biased. Therefore, the temperature of the organic material M can be effectively equalized with the minimum necessary control. Can do. In addition, it is good also as a structure which starts control with the sensor etc. which detect the total amount of the organic material M instead of the structure mentioned above.
  • the high temperature part of the organic material M is grasped in advance by measurement or the like, and the support part 5 is provided on the bottom 2c near the high temperature part, the high temperature part is It can be adjusted to lower the temperature.
  • the high temperature portion can be estimated from the position of the organic material M remaining in the crucible 2 after vapor deposition.
  • the temperature distribution of the organic material M may be grasped in advance by measurement or the like, and the cross-sectional area of the support 5 and the material of the heat transfer inhibiting member 6 may be changed in order to adjust this temperature distribution.
  • the present invention is applied to the crucible 2 in which a part of the wall portion of the crucible 2 is open.
  • the present invention is also applied to a crucible having an opening for steam ejection. Can do.
  • the present invention can be applied to a crucible in which a plurality of small openings are formed in a part of the wall.
  • the present invention is applied to the crucible 2 made of metal, but the present invention can also be applied to a crucible made of non-metal (eg, graphite, quartz) instead of metal. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 この真空蒸着装置は、外部より搬入される被蒸着体(B)を収容可能な真空チャンバ(1)と、前記真空チャンバ(1)内に設けられて蒸着材料(M)を収容する坩堝(2)と、前記坩堝(2)を加熱して前記蒸着材料(M)を気化させる加熱源(3)と、坩堝(2)の底部(2c)に分散配置され坩堝(2)を支持すると共に、坩堝(2)と真空チャンバ(1)の床部(1a)との間で伝熱する複数の支持部(5)とを備える。この真空蒸着装置により、温度分布の均一化を図ることができ、材料の余分な充填を低減することができる。

Description

真空蒸着装置及び温度調整方法
 本発明は、真空蒸着装置及び温度調整方法に関する。
 本願は、2008年12月24日に、日本に出願された特願2008-327518号に基づき優先権を主張し、その内容をここに援用する。
 周知のように、真空蒸着法は、例えば、有機EL商品の製造過程において、主に低分子化合物を材料とする有機EL素子の薄膜を製造するために用いられている。この真空蒸着法では、真空チャンバ内に有機材料を収容した坩堝を設け、この坩堝をヒータ等で加熱することで有機材料を気化させて、基板等に有機材料を付着させて成膜する。
 ところで、ヒータ配置の偏りや発熱量、真空チャンバ内の部材の配置により、坩堝内の有機材料の温度分布が偏ることがある。坩堝内の有機材料の温度分布が偏ると、有機材料が偏って気化するために基板に形成される薄膜が均一にならない。また、坩堝内に有機材料が偏った状態で大量に残存する。
 このような問題を解決した真空蒸着装置として、下記特許文献1のものがある。この真空蒸着装置は、高周波誘導加熱されない材質からなる坩堝内に、高周波誘導加熱される材質からなる多数の粒状混入物を収容し、この粒状混入物を高周波加熱することで有機材料を攪拌しながら加熱するものである。
特開2004-323915号公報
 しかしながら、従来の技術では、有機材料を加熱するために相当数の粒状混入物を必要とするので、有機材料の気化が進むと有機材料が粒状混入物の高さを下回る。このとき、粒状混入物の間に位置する有機材料が激しく加熱される。従って、有機材料が一定量を下回った場合には、新たに有機材料を追加したり、この有機材料を交換したりしなければならず、生産効率や経済性が悪いという問題がある。
 本発明は、このような事情を考慮してなされたもので、その目的は、簡素な構成で温度分布の均一化を図ることができ、材料の余分な充填を低減することができる真空蒸着装置及び温度調整方法を提供することにある。
 上記目的を達成するために、本発明は以下の手段を採用している。
 すなわち、本発明の真空蒸着装置は、外部より搬入される被蒸着体を収容可能な真空チャンバと、前記真空チャンバ内に設けられて蒸着材料を収容する坩堝と、前記坩堝を加熱して前記蒸着材料を気化させる加熱源と、前記坩堝の底部に分散配置され前記坩堝を支持すると共に、前記坩堝と前記真空チャンバの床部との間で伝熱する複数の支持部とを備えることを特徴とする。
 この構成によれば、坩堝の底部に分散配置され、前記坩堝と前記真空チャンバの床部との間で伝熱する複数の支持部を備えるので、支持部近傍の坩堝内の蒸着材料の温度を低下させることができる。低温部分を故意に設けることによって、坩堝内の蒸着材料の温度を調整することができる。つまり、低温部分を分散して配置させることで、蒸着材料の温度の均一化を図ることができる。さらに、坩堝内の温度分布が均一化されることにより、蒸着材料の気化量の偏差を小さくすることができるので、蒸着材料の減少を坩堝内の各部位で均一化することができる。従って、蒸着材料の余分な充填を低減することが可能となる。
 また、前記加熱源は、前記支持部の近傍で前記坩堝の加熱量が大きくなるように構成されていることを特徴とする。
 この構成によれば、支持部近傍で加熱量が大きくなるので、支持部から離間して床部への伝熱が無い部位と、支持部の近傍で床部に伝熱される部位とにおけるそれぞれの蒸着材料の温度差が小さくなる。これにより、蒸着材料の温度の均一化をより図ることができる。
 また、前記複数の支持部の一部は、伝熱量が他の支持部と異なることを特徴とする。
 この構成によれば、前記複数の支持部の一部は、伝熱量が他の支持部と異なるので、蒸着材料が相対的に高温の部位における床部への伝熱量を大きくすると共に、蒸着材料が相対的に低温の部位における床部への伝熱量を小さくすることで、蒸着材料の温度の均一化を図ることができる。さらに、蒸着材料が相対的に低温の部位における伝熱量を小さくすることで、加熱器の発熱量を低減することができる。
 また、前記複数の支持部の一部は、断面積が他の支持部と異なることを特徴とする。
 また、前記複数の支持部の一部は、他の支持部と熱伝導率の異なる材料で構成されていることを特徴とする。
 また、前記複数の支持部の一部は、熱伝導に方向性のある伝熱阻害部材を介在させて前記坩堝と前記床部との間で伝熱することを特徴とする。
 また、本発明の真空蒸着装置は、外部より搬入される被蒸着体を収容可能な真空チャンバと、前記真空チャンバ内に設けられて蒸着材料を収容する坩堝と、前記坩堝を加熱して前記蒸着材料を気化させる加熱源とを備える。前記加熱源は、前記坩堝への加熱量を前記坩堝の位置に応じて異ならせていることを特徴とする。
 この構成によれば、加熱源が、前記坩堝への加熱量を前記坩堝の位置に応じて異ならせているので、蒸着材料が相対的に高温の部位の加熱量を小さくすると共に、蒸着材料が相対的に低温の部位の加熱量を大きくすることで、蒸着材料の温度の均一化を図ることができる。
 また、前記加熱源は、発熱量が変えられて前記坩堝への加熱量を異ならせていることを特徴とする。
 また、前記加熱源の発熱量を制御する制御部を備える。前記制御部は、前記坩堝内の前記蒸着材料が所定量以下となったことを条件として発熱調整を開始することを特徴とする。
 この構成によれば、蒸着材料が所定量以下となったことを条件として発熱調整を開始するので、蒸着材料の総量が低下し温度分布の偏りが激しくなる領域のみで温度調整を行うことができる。従って、必要最小限の制御で効果的に蒸着材料の温度の均一化を図ることができる。
 また、前記加熱源は、配置密度が変えられて前記坩堝への加熱量を異ならせていることを特徴とする。
 この構成によれば、簡素な構成で、蒸着材料の温度の均一化を図ることができる。
 また、本発明の温度調製方法は、外部より搬入される被蒸着体を収容可能な真空チャンバと、前記真空チャンバ内に設けられて蒸着材料を収容する坩堝と、前記坩堝を加熱して前記蒸着材料を気化させる加熱源と、前記坩堝の底部と前記真空チャンバの床部との間に設けられて前記坩堝を支持する複数の支持部とを備える真空蒸着装置における温度調整方法である。本発明の温度調製方法は、前記蒸発材料のうち温度が相対的に高くなる高温部を予め把握し、前記高温部近傍の前記底部に前記支持部を設けて、前記高温部の温度を低下させることを特徴とする。
 この構成によれば、予め蒸着材料の高温部を把握し、前記高温部近傍の底部に前記支持部を設けて、前記高温部の温度を低下させるので、蒸着材料のうち相対的に温度が低い部位との差分が小さくなる。これにより、坩堝内の蒸着材料の温度分布の偏差を小さくすることができ、坩堝内の蒸着材料の温度を調整することができる、従って、蒸着材料の温度の均一化を図ることができ、容易に温度分布の均一化を図ることが可能となる。さらに、温度分布の均一化を図ることにより、蒸着材料の気化量が一定となるので、蒸着材料の減少を坩堝内の各部位で略等しくすることができ、材料の余分な充填を低減することが可能となる。
 また、本発明の温度調製方法は、外部より搬入される被蒸着体を収容可能な真空チャンバと、前記真空チャンバ内に設けられて蒸着材料を収容する坩堝と、前記坩堝を加熱して前記蒸着材料を気化させる加熱源と、前記坩堝の底部と前記真空チャンバの床部との間に設けられて前記坩堝を支持する複数の支持部とを備える真空蒸着装置における温度調整方法である。本発明の温度調製方法は、前記蒸着材料の温度分布を予め把握し、前記複数の支持部のうち少なくとも一部の前記床部への伝熱量を変更して、前記蒸着材料の温度分布を調整することを特徴とする。
 この構成によれば、予め蒸着材料の温度分布を把握し、前記高温部近傍の底部に前記支持部を設けて前記床部への伝熱量を変更して、前記蒸着材料の温度分布を調整する。すなわち、温度が相対的に低い部位の近傍における支持部については、伝熱量を低下させ、温度が相対的に高い部位の近傍における支持部については、伝熱量を増加させることができる。これにより、坩堝内の蒸着材料の温度分布の偏差を小さくすることができ、坩堝内の蒸着材料の温度を調整することができる。従って、蒸着材料の温度の均一化を図ることができ、容易に温度分布の均一化を図ることが可能となる。さらに、温度分布の均一化を図ることにより、蒸着材料の気化量が一定となるので、蒸着材料の減少を坩堝内の各部位で略等しくすることができ、材料の余分な充填を低減することが可能となる。
 また、本発明の温度調製方法は、外部より搬入される被蒸着体を収容可能な真空チャンバと、前記真空チャンバ内に設けられて蒸着材料を収容する坩堝と、前記坩堝を加熱して前記蒸着材料を気化させる加熱源とを備える真空蒸着装置における温度調整方法である。本発明の温度調製方法は、前記蒸発材料の温度分布を予め把握し、前記高温部近傍の前記加熱量を変化させて、前記蒸着材料の温度分布を調整することを特徴とする。
 この構成によれば、予め蒸着材料の温度分布を把握し、前記高温部近傍の底部に前記支持部を設けて前記床部への加熱量を変更して、前記蒸着材料の温度分布を調整する。すなわち、温度が相対的に低い部位の近傍には、加熱量を増加させ、温度が相対的に高い部位の近傍の支持部については、加熱量を低下させることができる。これにより、坩堝内の蒸着材料の温度分布の偏差を小さくすることができ、坩堝内の蒸着材料の温度を調整することができる。従って、蒸着材料の温度の均一化を図ることができ、容易に温度分布の均一化を図ることが可能となる。さらに、温度分布の均一化を図ることにより、蒸着材料の気化量が一定となるので、蒸着材料の減少を坩堝内の各部位で略等しくすることができ、材料の余分な充填を低減することが可能となる。
 本発明に係る真空蒸着装置及び温度調整方法によれば、簡素な構成で温度分布の均一化を図ることができ、材料の余分な充填を低減することができる。
本発明の第一実施形態に係る真空蒸着装置A1の概略構成断面図である。 本発明の第一実施形態に係る真空蒸着装置A1をP方向から見た平面図である。 本発明の第一実施形態に係る真空蒸着装置A1の概略構成断面図であり、加熱動作の一例を示す。 本発明の第一実施形態に係る真空蒸着装置A1の概略構成断面図であり、加熱動作の一例を示す。 本発明の第一実施形態に係る真空蒸着装置A1の概略構成断面図であり、加熱動作の一例を示す。 本発明の第二実施形態に係る真空蒸着装置A2の概略構成断面図である。 本発明の第三実施形態に係る真空蒸着装置A3の概略構成断面図である。 本発明の第四実施形態に係る真空蒸着装置A4の概略構成断面図である。
 以下、図面を参照し、本発明の実施の形態について説明する。
(第一実施形態)
 図1は、本発明の第一実施形態に係る真空蒸着装置A1を示す概略構成断面図である。
 図1Aに示すように、真空蒸着装置A1は、真空チャンバ1と、この真空チャンバ1内に設けられて有機材料Mを収容する坩堝2と、この坩堝2を加熱して有機材料Mを気化させる加熱源3と、坩堝2の底部2cに分散配置され坩堝2を支持すると共に、坩堝2と真空チャンバ1の床部1aとの間で伝熱する三つの支持部5とを備えている。
 真空チャンバ1は、基板Bを外部より搬出入可能、かつ、減圧可能に構成されたものである。この真空チャンバ1内では、基板保持部(不図示)によって基板Bが上部に保持されるようになっている。
 坩堝2は、一部の壁部が開放された細長箱型状のものであり、金属(例えば、チタンやステンレス鋼)で構成されている。この坩堝2は、支持部5を介して、真空チャンバ1の床部1aに支持されている。坩堝2は、その底面の長手方向を水平方向に向けると共に、収容穴2aの開口部を基板保持部に保持された基板Bの板面に向けるように配置されている。
 この坩堝2は、構造上の特性で、その底面の長手方向の一端2b側が低温になる傾向にある。
 加熱源3は、具体的には、電気加熱式のヒータからなり、延在方向を坩堝2の底面の短手方向に向けて、坩堝2の下方に複数配設されている。この加熱源3は、床部1a上に設けられた断熱シート4上に配設されている。
 支持部5は、ブロック状に形成された部材であり、それぞれ床部1aに立設している。
この支持部5は、坩堝2の底面の長手方向に略等間隔で設けられており、坩堝2の短手方向の寸法と略同じ寸法の長辺を坩堝2の底面の短手方向に向けて坩堝2を支持している。
 次に、上記の構成からなる真空蒸着装置A1の動作について、図2A~図2Cを用いて説明する。
 まず、図2Aに示すように、基板保持部(不図示)によって真空チャンバ1内に搬入された基板Bは、真空チャンバ1内で上部に保持される。次に、真空チャンバ1内が減圧され、所定の真空度となる。
 次に、加熱源3によって有機材料Mが収容穴2aに収容された坩堝2が約200~400℃に加熱される。なお、加熱源3は、断熱シート4を介しているので、上方の坩堝2に良好に輻射伝熱する。
 この加熱源3によって坩堝2に加えられた熱は、収容穴2aの有機材料に伝達されると共に、支持部5を介して床部1aに伝達される。すなわち、有機材料Mに伝達された熱又は有機材料Mに伝達されるべきであった熱が、床部1aに伝達される。このため、平面視で支持部5近傍の有機材料Mの温度が、他の部位と比べて低いものとなる。つまり、有機材料Mにおいて、温度が低い部位が略等間隔に三つ存在することとなる。
 坩堝2が加熱されるに従って、有機材料Mが気化し(符号mで示す。)、基板Bの板面に付着する。坩堝2内においては、図2Bに示すように、相対的に高温の部位において有機材料Mが多く気化し、相対的に低温の部位において有機材料Mが少なく気化する。
 そして、坩堝2には、図2Cに示すように、相対的に高温となっていた部位の有機材料Mが全て気化すると共に、相対的に低温となっていた部位に三つの有機材料Mの塊状となったMが残存する。
 このようにして、所定時間の蒸着により、基板Bの一方の板面に薄膜が均一に形成される。
 以上説明したように、本実施形態の真空蒸着装置A1は、坩堝2の底部2cに分散配置され、坩堝2と真空チャンバ1の床部1aとの間で伝熱する複数の支持部5を備える。従って、支持部5近傍の坩堝2内の有機材料Mの温度を低下させることができ、坩堝2内の有機材料の温度を調整することができる。
 すなわち、本来であれば、坩堝2の構造特性上、一端2b側が低温に偏るものであるために、低温部が一端2b側に一つ形成されて、温度分布に偏りが生ずる。しかしながら、真空蒸着装置A1によれば、低温部分を故意に設けて三つに分散させることができるので、有機材料Mの温度の均一化を図ることができる。
 さらに、温度分布が均一化されることにより、有機材料Mの気化量が均一化するので、有機材料Mの減少が坩堝2内の各部位で略等しいものとなり、有機材料Mの余分な充填を低減することが可能となる。
 なお、上述した構成に代えて、支持部5近傍で加熱源3による坩堝2の加熱量を大きくする構成としてもよい。このようにすることで、支持部5から離間して床部1aへの伝熱が無い部位と、支持部5の近傍で床部1aに伝熱される部位とにおけるそれぞれの有機材料Mの温度差が小さくなる。これにより、有機材料Mの温度の均一化をより図ることができる。
 また、加熱源3は、坩堝2の下方だけでなく、側方や上方にもあってもよい。このような構成で坩堝2全体を暖めることにより、坩堝2内の材料付着を防ぐことができる。
 また、加熱源3は、坩堝2の底面の長手方向に向けて設置してもよい。すなわち、坩堝2を加熱することができれば、加熱源3の設置方向は問わない。
(第二実施形態)
 続いて、本発明の第二実施形態について説明する。
 図3は、本発明の第二実施形態に係る真空蒸着装置A2を示す概略構成断面図である。なお、以下の説明においては、図1~3と同様の構成要素のものについては、同一の符号を付し、説明を省略する。
 図3に示すように、真空蒸着装置A2は、三つの支持部5(5a~5c)の床部1aへの伝熱量がそれぞれ他の支持部5と異なるように構成されている。
 一端2b側の支持部5aは、熱伝導に方向性のある伝熱阻害部材6を介して床部1aに立設されている。この伝熱阻害部材6は、支持部5aから床部1aへの熱伝達を阻害するものであり、例えば、カーボンシートやステンレス鋼板を用いることができる。
 支持部5aに隣接する支持部5bは、支持部5a及び支持部5cと比べて、断面積(伝熱方向に直交する断面)が小さく構成されている。
 支持部5bに隣接する支持部5cは、上記第一実施形態の支持部5と同一のものである。なお、支持部5aの断面積は、支持部5cと略等しく構成されている。
 このような構成により、熱伝達率の大きさは、支持部5a<支持部5b<支持部5cの順となっている。
 このような構成によれば、上述したように、坩堝2に構造上の特性で長手方向の一方側が低温になる傾向があったとしても、支持部5aから床部1aへの伝熱量が最小となり、支持部5b,5cの順に大きくなる。従って、有機材料Mの各部位における温度の差分を小さいものとすることができる。これにより、蒸着材料の温度の均一化をさらに図ることができる。
 なお、上述した構成に代えて、支持部5を他のものと熱伝導率の異なる材料で構成して、伝熱量を変化させる構成にしてもよい。また、伝熱阻害部材6を用いた上で断面積を変化させてもよいし、これに加えて熱伝達率の異なる材料で構成してもよい。
(第三実施形態)
 続いて、本発明の第三実施形態について説明する。
 図4は、本発明の第三実施形態に係る真空蒸着装置A3を示す概略構成断面図である。
 図3に示すように、真空蒸着装置A3は、坩堝12が同一の伝熱量を有する二つの支持部5dに支持されている。更に、真空蒸着装置A3では、この二つの支持部5dに挟まれた領域で加熱源3の間隔が広くされると共に、この領域の外側で加熱源3の感覚が狭くされている。すなわち、二つの支持部5dに挟まれた領域においては、坩堝12の加熱量が小となっており、この両側で加熱量が大となっている。
 このような構成によれば、坩堝12に構造上の特性で長手方向の両方側が低温になる傾向があったとしても、この両方側の加熱量を大とし、中央付近を小とするので、有機材料Mの温度の均一化を図ることができる。
(第四実施形態)
 続いて、本発明の第四実施形態について説明する。
 図5は、本発明の第四実施形態に係る真空蒸着装置A4を示す概略構成断面図である。
 真空蒸着装置A4は、加熱源3の発熱量を制御する制御部7を備えている。この制御部7には、有機材料Mが坩堝12の内部で所定量以下となる時間に対応する情報が記憶されている。そして、制御部7は、蒸着開始後、この時間が経過したことを認識すると、各加熱源3の発熱量を調整するようになっている。
 すなわち、所定時間が経過すると、坩堝12内の有機材料Mの温度分布が均一化されるようになっている。
 この構成によれば、有機材料Mの総量が低下し温度分布の偏りが激しくなる領域のみで温度調整を行うので、必要最小限の制御で効果的に有機材料Mの温度の均一化を図ることができる。
 なお、上述した構成に代えて、有機材料Mの総量を検出するセンサ等により制御を開始する構成としてもよい。
 なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上述した実施の形態の構成と同様にして、予め有機材料Mの高温部を計測等により把握しておき、この高温部近傍の底部2cに支持部5を設ければ、この高温部が低温化するように調整することができる。なお、蒸着後に坩堝2に残存する有機材料Mの位置からでも高温部を推測することが可能である。
 同様に、予め有機材料Mの温度分布を計測等により把握しておき、この温度分布を調整するために支持部5の断面積、伝熱阻害部材6の材料等を変更してもよい。
 また、上述した実施の形態では、坩堝2の壁部の一部が開放されている坩堝2について本発明を適用したが、蒸気噴出し用の開口部を持つ坩堝についても本発明を適用することができる。同様に、壁部の一部に小開口部を複数穿設した坩堝についても本発明を適用することができる。
 さらに、上述した実施の形態では、金属で構成した坩堝2について本発明を適用したが、金属に代えて非金属(例えば、グラファイト、石英)で構成した坩堝についても本発明を適用することができる。
1…真空チャンバ
1a…床部
2,12…坩堝
2c…底部
3…加熱源
5(5a~5d)…支持部
6…伝熱阻害部材
7…制御部
B…基板
M,m…有機材料(蒸着材料)
A1,A2,A3,A4…真空蒸着装置

Claims (13)

  1.  外部より搬入される被蒸着体を収容可能な真空チャンバと、
     前記真空チャンバ内に設けられて蒸着材料を収容する坩堝と、
     前記坩堝を加熱して前記蒸着材料を気化させる加熱源と、
     前記坩堝の底部に分散配置され前記坩堝を支持すると共に、前記坩堝と前記真空チャンバの床部との間で伝熱する複数の支持部とを備えることを特徴とする真空蒸着装置。
  2.  前記加熱源は、前記支持部の近傍で前記坩堝の加熱量が大きくなるように構成されている請求項1に記載の真空蒸着装置。
  3.  前記複数の支持部の一部は、伝熱量が他の支持部と異なる請求項1に記載の真空蒸着装置。
  4.  前記複数の支持部の一部は、断面積が他の支持部と異なる請求項3に記載の真空蒸着装置。
  5.  前記複数の支持部の一部は、他の支持部と熱伝導率の異なる材料で構成されている請求項3に記載の真空蒸着装置。
  6.  前記複数の支持部の一部は、熱伝導に方向性のある伝熱阻害部材を介在させて前記坩堝と前記床部との間で伝熱する請求項3に記載の真空蒸着装置。
  7.  外部より搬入される被蒸着体を収容可能な真空チャンバと、
     前記真空チャンバ内に設けられて蒸着材料を収容する坩堝と、
     前記坩堝を加熱して前記蒸着材料を気化させる加熱源とを備え、
     前記加熱源は、前記坩堝への加熱量を前記坩堝の位置に応じて異ならせていることを特徴とする真空蒸着装置。
  8.  前記加熱源は、発熱量が変えられて前記坩堝への加熱量を異ならせている請求項7に記載の真空蒸着装置。
  9.  前記加熱源の発熱量を制御する制御部を備え、
     前記制御部は、前記坩堝内の前記蒸着材料が所定量以下となったことを条件として発熱調整を開始する請求項8に記載の真空蒸着装置。
  10.  前記加熱源は、配置密度が変えられて前記坩堝への加熱量を異ならせている請求項7に記載の真空蒸着装置。
  11.  外部より搬入される被蒸着体を収容可能な真空チャンバと、
     前記真空チャンバ内に設けられて蒸着材料を収容する坩堝と、
     前記坩堝を加熱して前記蒸着材料を気化させる加熱源と、
     前記坩堝の底部と前記真空チャンバの床部との間に設けられて前記坩堝を支持する複数の支持部とを備える真空蒸着装置における温度調整方法であって、
     前記蒸発材料のうち温度が相対的に高くなる高温部を予め把握し、前記高温部近傍の前記底部に前記支持部を設けて、前記高温部の温度を低下させることを特徴とする温度調整方法。
  12.  外部より搬入される被蒸着体を収容可能な真空チャンバと、
     前記真空チャンバ内に設けられて蒸着材料を収容する坩堝と、
     前記坩堝を加熱して前記蒸着材料を気化させる加熱源と、
     前記坩堝の底部と前記真空チャンバの床部との間に設けられて前記坩堝を支持する複数の支持部とを備える真空蒸着装置における温度調整方法であって、
     前記蒸着材料の温度分布を予め把握し、前記複数の支持部のうち少なくとも一部の前記床部への伝熱量を変更して、前記蒸着材料の温度分布を調整することを特徴とする温度調整方法。
  13.  外部より搬入される被蒸着体を収容可能な真空チャンバと、
     前記真空チャンバ内に設けられて蒸着材料を収容する坩堝と、
     前記坩堝を加熱して前記蒸着材料を気化させる加熱源とを備える真空蒸着装置における温度調整方法であって、
     前記蒸発材料の温度分布を予め把握し、前記高温部近傍の前記加熱量を変化させて、前記蒸着材料の温度分布を調整することを特徴とする温度調整方法。
PCT/JP2009/004811 2008-12-24 2009-09-24 真空蒸着装置及び温度調整方法 WO2010073438A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020107021550A KR101255424B1 (ko) 2008-12-24 2009-09-24 진공 증착 장치 및 온도 조정 방법
CN200980111673.1A CN101981223B (zh) 2008-12-24 2009-09-24 真空蒸镀装置以及温度调节方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008327518A JP4468474B1 (ja) 2008-12-24 2008-12-24 真空蒸着装置及び温度調整方法
JP2008-327518 2008-12-24

Publications (1)

Publication Number Publication Date
WO2010073438A1 true WO2010073438A1 (ja) 2010-07-01

Family

ID=42287103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004811 WO2010073438A1 (ja) 2008-12-24 2009-09-24 真空蒸着装置及び温度調整方法

Country Status (5)

Country Link
JP (1) JP4468474B1 (ja)
KR (1) KR101255424B1 (ja)
CN (1) CN101981223B (ja)
TW (1) TWI379914B (ja)
WO (1) WO2010073438A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078626A (zh) * 2014-07-22 2014-10-01 深圳市华星光电技术有限公司 用于oled材料蒸镀的加热装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866239A (zh) * 2012-12-18 2014-06-18 北京汉能创昱科技有限公司 一种线性蒸发源装置
JPWO2014174803A1 (ja) * 2013-04-22 2017-02-23 株式会社Joled El表示装置の製造方法
TWI485276B (zh) * 2013-12-05 2015-05-21 Nat Inst Chung Shan Science & Technology 提升硒化物薄膜成長品質之蒸鍍裝置
CN105276980B (zh) * 2014-05-28 2017-11-03 国核华清(北京)核电技术研发中心有限公司 陶瓷坩埚
WO2017195674A1 (ja) * 2016-05-13 2017-11-16 株式会社アルバック 有機薄膜製造装置、有機薄膜製造方法
WO2018024510A1 (en) * 2016-08-05 2018-02-08 Flisom Ag Homogeneous linear evaporation source with heater
WO2019235118A1 (ja) * 2018-06-08 2019-12-12 株式会社アルバック 真空蒸着装置用の蒸着源

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348337A (ja) * 2005-06-15 2006-12-28 Sony Corp 蒸着成膜装置および蒸着源
JP2008240015A (ja) * 2007-03-26 2008-10-09 Seiko Epson Corp マスク蒸着法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100503881C (zh) * 2005-01-21 2009-06-24 三菱重工业株式会社 真空蒸汽沉积设备
KR100645688B1 (ko) * 2005-08-30 2006-11-14 삼성에스디아이 주식회사 증착장치의 히터 및 이를 채용한 증발원
JP4768584B2 (ja) * 2006-11-16 2011-09-07 財団法人山形県産業技術振興機構 蒸発源およびこれを用いた真空蒸着装置
JP2008208443A (ja) * 2007-02-28 2008-09-11 Sony Corp 蒸着成膜装置、蒸着成膜方法、および表示装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348337A (ja) * 2005-06-15 2006-12-28 Sony Corp 蒸着成膜装置および蒸着源
JP2008240015A (ja) * 2007-03-26 2008-10-09 Seiko Epson Corp マスク蒸着法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078626A (zh) * 2014-07-22 2014-10-01 深圳市华星光电技术有限公司 用于oled材料蒸镀的加热装置

Also Published As

Publication number Publication date
CN101981223B (zh) 2013-05-22
JP4468474B1 (ja) 2010-05-26
KR20100116227A (ko) 2010-10-29
JP2010150577A (ja) 2010-07-08
CN101981223A (zh) 2011-02-23
TW201024438A (en) 2010-07-01
KR101255424B1 (ko) 2013-04-17
TWI379914B (en) 2012-12-21

Similar Documents

Publication Publication Date Title
WO2010073438A1 (ja) 真空蒸着装置及び温度調整方法
US7025832B2 (en) Source for thermal physical vapor deposition of organic electroluminescent layers
TWI324185B (en) Vacuum vapor deposition apparatus
CN101041891B (zh) 汽相淀积源和汽相淀积装置
US9663853B2 (en) Vacuum vapor deposition apparatus
KR20070080635A (ko) 유기물증발 보트
JP4090039B2 (ja) 蒸着装置における蒸発源
JP2008024998A (ja) 真空蒸着源および真空蒸着装置
WO2002014575A1 (en) Method and device for producing organic el elements
JP2011162846A (ja) 真空蒸発源
JP4848452B2 (ja) 真空蒸着装置
KR102511913B1 (ko) 대면적 기판을 코팅하기 위한 장치
JP2023075126A (ja) 真空チャンバ内で基板をコーティングするための気相堆積装置及び方法
WO2012086230A1 (ja) 真空蒸着装置及び真空蒸着方法
JP2013067845A (ja) 蒸着材料加熱装置、蒸着装置、蒸着方法、基板
JP5611086B2 (ja) 蒸着用ボートとこれを使用した成膜方法
JP6058491B2 (ja) 気相成長用反応装置
JP2008156726A (ja) 真空蒸着装置
JP2010229444A (ja) 坩堝
JP4552184B2 (ja) 有機発光素子用基板に有機層を蒸着させる装置および方法
KR101225318B1 (ko) 하이브리드 가열방식 증발원
KR100598717B1 (ko) 불균일하게 배치된 가열수단을 포함하는 유기 전계 발광소자의 증착원
KR20060040233A (ko) 유기물 증착장치 및 그 증착방법
JP2011009380A (ja) 成膜装置
KR20020089288A (ko) 유기물 증착용 소스

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111673.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107021550

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834256

Country of ref document: EP

Kind code of ref document: A1