WO2010073437A1 - Led点灯装置及びヘッドランプ用led点灯装置 - Google Patents

Led点灯装置及びヘッドランプ用led点灯装置 Download PDF

Info

Publication number
WO2010073437A1
WO2010073437A1 PCT/JP2009/004739 JP2009004739W WO2010073437A1 WO 2010073437 A1 WO2010073437 A1 WO 2010073437A1 JP 2009004739 W JP2009004739 W JP 2009004739W WO 2010073437 A1 WO2010073437 A1 WO 2010073437A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
current
value
lighting device
voltage
Prior art date
Application number
PCT/JP2009/004739
Other languages
English (en)
French (fr)
Inventor
井上優
大澤孝
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010543761A priority Critical patent/JP5721440B2/ja
Priority to US13/119,446 priority patent/US8536790B2/en
Priority to CN200980152908.1A priority patent/CN102265706B/zh
Priority to DE112009002597.8T priority patent/DE112009002597B4/de
Publication of WO2010073437A1 publication Critical patent/WO2010073437A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology

Definitions

  • the present invention relates to an LED lighting device for lighting an LED (Light Emitting Diode) used as a light source such as an in-vehicle headlamp and a tail lamp, and an LED lighting device for a headlamp.
  • LED Light Emitting Diode
  • LEDs have begun to be used as light sources for in-vehicle headlamps and tail lamps.
  • the light emission efficiency is still low, and in order to secure a sufficient amount of light emission for the headlamp, it is necessary to use the same input power as that of the discharge lamp type headlamp. Is as large as a discharge lamp. Therefore, at the present stage, it is necessary to reduce the power consumption of both the LED and the lighting power source from the viewpoint of heat generation countermeasures and energy saving. This problem is the same even when an LED is used as the light source for the tail lamp.
  • a light source with a large peak current is used.
  • the DC rated current is applied to each segment (one light emitting element of the LED or fluorescent display tube).
  • a lighting method in which energization (lighting) and non-energization (light-off) of a large current pulse exceeding a short time is repeated at a high speed so as not to be visually recognized as flickering and the average power is within the rated power.
  • Patent Document 1 As a technique for performing such pulse lighting, a technique for lighting a LED for illumination by applying a pulse current is described in the following prior art.
  • the energy stored in the coil is variable when the switching element of the step-up power supply is on, and an arbitrary output current for lighting the LED is obtained.
  • the apparatus described in Patent Document 1 uses an AC power supply as a power supply, averages the output current for a time longer than the period of the AC power supply, and the averaged output current becomes a target current value.
  • the current value that is energized when the switching element of the step-up power supply is on is appropriately controlled.
  • Patent Document 2 the energy stored in the coil is kept constant when the switching element of the step-up power supply is on, and an arbitrary output current for lighting the LED is obtained.
  • the circuit described in Patent Document 2 averages output current using a DC power supply of a portable device as a power supply, and continues to turn on and off the switching element of the step-up power supply so that the averaged output current becomes a target current value. Control is performed by changing the ratio between the time and the time to keep off and intermittent operation.
  • the light source for headlamps is defined in terms of brightness and emission color, and in order to obtain an appropriate emission color, it is necessary to set the current supplied to the LED to a specific value.
  • the current stored in the coil is made variable and the current supplied to the LED is changed, the emission color changes depending on the amount of the supplied current, and for the headlamp using the LED as the light source. There was a problem that it was not preferable as a lighting power source.
  • the lighting frequency is 200 Hz or more that flicker is not recognized with a general light source for illumination.
  • the circuit of Patent Document 2 is lit at a lighting frequency at which flicker is not visually recognized.
  • a strobe phenomenon in which an object to be illuminated appears intermittently appears, and the flicker is easily visually recognized.
  • the above strobe phenomenon appears remarkably at the lighting frequency of 200 Hz described above, so that it is insufficient as a light source, and has a higher frequency. It is necessary to turn on.
  • the energy stored in the coil is made constant for each switching operation of the switching element, and the LED energization current for each switching operation is made constant.
  • This lighting method is effective in preventing the emission color of the LED from being changed by a change in energization current.
  • a blinking and bright state that occurs when the switching element is repeatedly turned on and off to turn on the LED at a high frequency, and a timing that keeps the switching element off and that the LED is turned off, and a dark state that is turned off. It is not considered to make the difference in light or fluctuation (flicker) inconspicuous in correspondence with the in-vehicle headlamp.
  • the present invention has been made to solve the above-described problems, and can reduce the number of parts with a simple configuration, reduce power consumption while maintaining visual brightness, prevent flicker from being recognized, or emit light. It is an object of the present invention to obtain an LED lighting device and a headlamp LED lighting device capable of maintaining color and brightness at predetermined values.
  • An LED lighting device includes an LED circuit in which a plurality of LEDs connected to a DC power source via an inductor are connected in series, and a switching element that allows current to flow through the inductor.
  • An LED lighting device configured to turn on the LED circuit by outputting a pulsed current (flyback current) generated by turning off the switching element after the current is supplied to the LED circuit from the inductor to the LED circuit.
  • the first control unit that controls the peak value of the pulsed current output to the LED circuit to a predetermined value by adjusting the energization current when turning off the switching element to a predetermined value, at approximately equal intervals
  • a pulse output from the inductor to the LED circuit by adjusting the operating cycle of the operating switching element The average value of the current in which and a second control unit for controlling so as to maintain a predetermined value.
  • the LED lighting device can be realized with a simple circuit that performs on / off control of the switching element at a predetermined cycle, and the number of components can be reduced.
  • the LED can be lit with a pulsed current, it can be lit brighter than when it is lit with direct current, so if the brightness feels equivalent, the power consumption is lower than the power consumption with direct current lighting. can do.
  • the average current value is changed while maintaining the pulsed current value, the brightness can be changed while maintaining the emission color at a predetermined value.
  • the pulsed current value is changed while maintaining the average current value, the emission color can be changed while maintaining the brightness. It should be noted that lighting with the current in the form of a pulse is repeated at a high speed by turning on and off the switching element, so that flicker is not recognized.
  • FIG. 1 is a circuit diagram showing a configuration of an LED lighting device according to Embodiment 1 of the present invention.
  • an LED lighting power source 1 includes LEDs 2-1 to 2-n, an error amplifier 3, an oscillator (VCO: Voltage Controlled Oscillator) 4, a flip-flop 5, a comparator 6, a switching transistor 7, a choke coil L1 (inductor), and A DC power supply 8 having a power supply voltage Vi is provided.
  • VCO Voltage Controlled Oscillator
  • the LEDs 2-1 to 2-n constitute an LED circuit composed of n LEDs connected in series (hereinafter referred to as an LED series circuit), and the anode of the LED 2-1 at the end is connected to one end of the choke coil L1.
  • the cathode of the LED2-n at the other end is grounded via the shunt resistor R2.
  • the error amplifier 3 has an inverting input terminal connected to the cathode of the LED 2-n via a resistor R 0, a reference power supply Vt that provides a target current is connected to a non-inverting input terminal, an output terminal is connected to the oscillator 4, and so on.
  • the output terminal is connected to the connection point between the inverting input terminal and the resistor R0 via the capacitor C0.
  • the oscillator 4 generates a rectangular wave having an oscillation frequency corresponding to the voltage value applied from the error amplifier 3 and outputs it to the set terminal S of the flip-flop 5.
  • the error amplifier 3 and the oscillator 4 constitute period determining means.
  • the set terminal S is connected to the output terminal of the oscillator 4, the reset terminal R is connected to the output terminal of the comparator 6, and the output terminal Q is the gate of the switching transistor 7. Connected to the terminal.
  • the FF 5 sets the potential of the output terminal Q to a high level when a rising edge is input to the set terminal S, and sets the potential of the output terminal Q to a low level when a rising edge is input to the reset terminal R.
  • the FF 5 is not limited to the RS flip-flop, and may be a circuit having two stable output states that hold the switching transistor 7 on and off.
  • the comparator 6 has a reference power source Vc that provides a predetermined current value connected to the inverting input terminal, a non-inverting input terminal connected to a connection point between the source terminal of the switching transistor 7 and the shunt resistor R1, and an output having a reset terminal FF5. Connected to R.
  • the FF 5 and the comparator 6 described above constitute lighting means.
  • the switching transistor (switching element) 7 is composed of a field effect transistor (FET), the gate terminal is connected to the output terminal Q of the FF 5, the drain terminal is connected to the connection point between the choke coil L 1 and the LED series circuit, and the source The terminal is grounded via the shunt resistor R1, and current supply from the DC power supply 8 to the choke coil L1 is controlled by ON / OFF switching.
  • FET field effect transistor
  • the switching transistor 7 When the switching transistor 7 is turned on, the voltage Vi of the DC power supply 8 is applied to the choke coil L1, and current is supplied from the DC power supply 8 to the choke coil L1. On the other hand, when the switching transistor 7 is turned off, the pulsed output current Io (peak current) flowing out from the choke coil L1 is supplied to the LED series circuit, and the LEDs 2-1 to 2-n are lit.
  • the switching transistor 7, the DC power supply 8, and the choke coil L1 constitute a step-up power supply (power supply unit).
  • the pulsed output current Io flowing in the series circuit of the LEDs 2-1 to 2-n is averaged by the error amplifier 3 that also serves as an integrator using the resistor R0 and the capacitor C0.
  • the error amplifier 3 compares the averaged current Ia value with the target current value from the reference power source Vt, and applies a voltage obtained by amplifying the error between the two to the oscillator 4.
  • the oscillator 4 outputs a rectangular wave having an oscillation frequency corresponding to the output voltage of the error amplifier 3 to the set terminal S of the FF 5.
  • the oscillator 4 decreases the oscillation frequency if the value of the average current Ia is higher than the target current value, and increases the oscillation frequency if it is lower than the target current value.
  • the FF 5 outputs from the output terminal Q a drive signal that becomes high level (high potential) at the edge timing of the rectangular wave input from the oscillator 4 via the set terminal S, and turns on the switching transistor 7.
  • the average current Ia (power) energized in the LED series circuit is controlled to an arbitrary value by increasing or decreasing the timing at which the switching transistor 7 is turned on earlier or later. That is, by arbitrarily manipulating the oscillation frequency of the oscillator 4, the number of times that the gate terminal of the switching transistor 7 is energized per unit time is increased or decreased, and the average value (average current Ia) of the output current Io flowing through the LED series circuit Is controlled to a predetermined value.
  • the comparator 6 detects whether a voltage drop across the shunt resistor R1 is compared with a predetermined voltage value of the voltage value and the reference power source Vc by the current I FET reaches a predetermined voltage value of the reference voltage Vc.
  • the comparator 6 sets the reset terminal R of the FF 5 to a high level (high potential).
  • the drive signal output from the output terminal Q is set to low level (low potential), and the switching transistor 7 is turned off.
  • FIG. 2 is a diagram showing output waveforms of each component circuit of the LED lighting device in FIG. 1, FIG. 2 (a) is an output voltage waveform of the oscillator (VCO) 4, and FIG. 2 (b) is an output voltage of the FF5. waveform, FIG. 2 (c) the waveform of the current I FET flowing through the choke coil L1 and the switching transistor 7, FIG. 2 (d) shows the waveform of the output current Io.
  • the drive signal at which the FF 5 becomes high level (high potential) is output from the output terminal Q at the timing of the rising edge of the rectangular wave input from the oscillator 4.
  • the switching transistor 7 is turned on while the drive signal from the FF 5 is high level, and is turned off when the driving signal is low level (low potential). In this on / off period, a pulsed current IFET having a peak value as shown in FIG. 2C flows from the coil L1 between the drain and the source. 2C is the voltage of the reference power supply Vc, and the comparator 6 compares this comparison value with a voltage representing the current amount of the current IFET generated in the shunt resistor R1.
  • the output current Io is a pulsed current that flows from the choke coil L1 to the LED series circuit when the switching transistor 7 is turned off. Further, if the cycle for turning on / off the switching transistor 7 is made constant, the energy stored in the choke coil L1 is made constant in one cycle. Therefore, as shown in FIGS. 2C and 2D, at the timing when the switching transistor 7 is turned off. , the beginning of the peak current of the output current Io flowing out of the choke coil L1 is equal to the peak current of the current I FET flowing through the terminal at the timing of turning on the switching transistor 7.
  • the value of the average current Ia indicated by a broken line in FIG. 2D is a current value obtained by averaging the output current Io by the integrator of the error amplifier 3.
  • the value of the average current Ia and the target current from the reference power source Vt are compared by the error amplifier 3 and controlled so that the value of the average current Ia becomes constant.
  • the output power per cycle of the period is calculated by (the square of the inductance ⁇ pulsed current I FET of the choke coil L1) / 2. Therefore, if the pulsed current IFET is made constant, the number of cycles and the output power are proportional, and therefore the cycle of the repetitive operation (the cycle of the output rectangular wave of the oscillator 4 shown in FIG. 2A) is an arbitrary cycle.
  • the output polarity of the LED lighting device 1 may be the same polarity as the power supply voltage or a polarity obtained by inverting the polarity of the power supply voltage.
  • the output power per pulse of the output current Io can be controlled to be substantially constant without particularly performing the feedback control.
  • the lighting frequency is 200 Hz or more that flicker is not recognized with a general light source for illumination.
  • the vehicular headlamp is used even under high-speed running, the strobe phenomenon tends to appear remarkably, and it is necessary to light it at a higher frequency. Therefore, in the first embodiment, the LED circuit is lit at 1 KHz or higher, preferably from 20 KHz where the sound generated by the switching element and the inductor exceeds the audible range, and 1 MHz or lower, which is the range in which the switching element can be easily handled.
  • a triangular wave which is a non-square wave output from the inductor, is output to the LED circuit, and the current supplied to the inductor is controlled by a switching element connected in series to the inductor.
  • the lighting of the LED circuit at a high frequency is achieved with an inexpensive circuit.
  • LED circuits used for the left and right headlamps are replaced with the LED lighting device according to the first embodiment.
  • LED circuits used for the left and right headlamps are replaced with the LED lighting device according to the first embodiment.
  • a plurality of LED circuits constituting the left and right headlamps are lit using a plurality of LED lighting devices according to the first embodiment, variations in brightness and emission color of the plurality of LED circuits are apparent.
  • the first embodiment since the brightness and the emission color can be individually adjusted, the variation can be made difficult to be recognized.
  • the LED lighting device 1 is configured as shown in FIG. 1, and a high peak current (output current Io) is supplied for each pulse at a predetermined repetition period.
  • LEDs 2-1 to 2-n are turned on.
  • the peak current of the output current Io is constant, the light emission color of the LED can be made constant, and if the light emission color does not matter, the peak current of the output current Io can be increased to make the LED apparent
  • the amount of light emitted (brightness) can be increased.
  • by operating the oscillation frequency of the oscillator 4 to shorten the repetition cycle it is possible to speed up one cycle of turning on / off the LED so that flicker is not visually recognized.
  • the variation in light emission amount and light emission color for each LED exists in a normal distribution, and the plurality of LEDs used in the LED headlamp have a light emission amount and a light emission color at a specific current value (specified current value) from the distribution. It may be necessary to select and use a plurality of equivalent LEDs.
  • the LED manufacturer selects an LED having the same light emission amount and emission color at the specified current value, and the LED headlamp manufacturer selects the LED as the specified current value. It can be considered to be completed as an LED headlamp that is turned on.
  • an LED circuit in which a plurality of LEDs are connected in series is provided per vehicle.
  • a headlamp is configured by using a plurality of LED circuits
  • a plurality of LED circuits having different light emission amounts and emission colors at a specified current value are equal to each other with different average current values and peak current values for energizing each LED circuit. It is possible to approach the light emission amount and the light emission color.
  • a plurality of LED circuits having different light emission amounts and light emission colors at a specified current value it is possible to approach the specified light emission amount and light emission color as a vehicle headlamp.
  • the choke coil L1 detected by the shunt resistor R1 and the current IFET flowing through the switching transistor 7 can be controlled to an arbitrary value. Even if the pulsed current I FET to be energized is changed to an arbitrary value by changing the comparison voltage Vc, the error amplifier 3 generates an average value (average current Ia) of the LED energizing current (output current Io). If controlled, the amount of light emission (brightness) does not change. Thus, by increasing the peak current and extending the cycle of the repeated operation, it is possible to change the emission color while keeping the emission amount (brightness) constant.
  • This configuration can also be applied to Embodiments 2 to 7 described later.
  • Embodiment 1 described above by controlling the LED current (average current Ia) to a constant low current, it can be used as a power supply for DRL (Daytime Running Lamps).
  • DRL Daytime Running Lamps
  • the LED lighting device 1 according to the first embodiment to an LED headlamp, the light emission for bright driving (high light emission amount) in the normal driving state and the light emission amount for daytime driving are reduced in the same emission color. Dimming (DRL) lighting is possible.
  • a DRL-compatible LED lighting device can be realized without adding a dedicated component. The switching from the normal driving state to the DRL lighting state in which the light emission amount is reduced, or vice versa, can be performed by changing the voltage Vt in FIG.
  • the LED lighting devices of the second to seventh embodiments can also be DRL-compatible LED lighting devices.
  • FIG. FIG. 3 is a circuit diagram showing a configuration of an LED lighting device according to Embodiment 2 of the present invention.
  • the LED lighting device 1A according to the second embodiment includes a choke coil L1 of an autotransformer L2 (the number of primary coil turns n1, the number of secondary coil turns n2 of the configuration shown in FIG. ).
  • resistors Rb1 to Rbn are connected in parallel to the LEDs as elements that distribute the voltages applied to the LEDs 2-1 to 2-n substantially evenly.
  • the switching transistor 7, the DC power supply 8, and the autotransformer L2 constitute a step-up power supply (power supply unit). Since the other components are the same as or correspond to those in FIG. 1, the same reference numerals are given and redundant description is omitted.
  • FIG. 4A and 4B are diagrams showing output waveforms of each component circuit of the LED lighting device in FIG. 3,
  • FIG. 4A is an output voltage waveform of the oscillator (VCO) 4
  • FIG. 4B is an output voltage of the FF 5.
  • FIG. 4 (d) an output voltage waveform,
  • FIG. 4 (e) shows a waveform of the output current Io.
  • the drive signal at which the FF 5 becomes high level (high potential) is output from the output terminal Q at the timing of the rising edge of the rectangular wave input from the oscillator 4 (FIG. 4). (See (a) and (b)).
  • a pulsed current IFET having a peak value as shown in FIG. 4C flows from the primary coil of the autotransformer L2 between the drain terminal and the source terminal.
  • 4C is the voltage of the reference power supply Vc, and the comparator 6 compares this comparison value with the voltage representing the current amount of the current IFET generated in the shunt resistor R1.
  • the output current Io is a pulsed current that flows out from the secondary coil of the autotransformer L2 and flows through the LED series circuit when the switching transistor 7 is off.
  • the leading peak current of the output current Io flowing out from the secondary coil of the autotransformer L2 when the switching transistor 7 is turned off is the peak current (current I) flowing from the primary coil to the end when the switching transistor 7 is turned on.
  • FET is multiplied by the turn ratio of the autotransformer L2 (the number of turns of the primary coil n1 / 2 the number of turns of the secondary coil n2).
  • the value of the average current Ia indicated by a broken line in FIG. 4E is a current value obtained by averaging the output current Io by the integrator of the error amplifier 3.
  • the average current Ia and the target current from the reference power source Vt are compared by the error amplifier 3 and controlled so that the value of the average current Ia is constant as in the first embodiment.
  • the output power per cycle of the period is calculated by (the square of the inductance ⁇ pulsed current I FET autotransformer L2) / 2. Therefore, if the pulsed current IFET is made constant, the number of cycles and the output power are proportional to each other. Therefore, the cycle of the repetitive operation (the cycle of the output rectangular wave of the oscillator 4 shown in FIG. 4A) is an arbitrary cycle. By controlling the output power, the output power can be controlled.
  • the output polarity of the LED lighting device 1A may be the same polarity as the power supply voltage or a polarity obtained by inverting the polarity of the power supply voltage.
  • the output power per pulse of the output current Io can be controlled to be substantially constant without particularly performing the feedback control.
  • the autotransformer L2 is switched to the power supply voltage Vi at the timing when the switching transistor 7 is turned on, as indicated by a broken line in FIG. 4D (secondary coil winding number n2 / primary coil winding number n1).
  • a forward voltage of the transformer (a reverse voltage with respect to the LED) having a value multiplied by is generated.
  • the LED does not light even if a reverse voltage is applied to the LED.
  • the part lower than GND (broken line) is the forward voltage generated by the transformer, and is the reverse voltage applied to the LED.
  • the reverse voltage is concentrated on a specific LED having a small amount of leakage current.
  • the allowable reverse voltage of the LED is about 5V, and if the voltage is excessively concentrated, the LED may be broken.
  • the resistors Rb1 to Rbn having the same resistance value are connected in parallel to each of the LEDs 2-1 to 2-n, and the voltage applied to each LED is distributed substantially evenly. Thereby, it can avoid that a reverse voltage concentrates on the said specific LED, and it can prevent that the voltage applied to each LED exceeds an allowable reverse voltage.
  • a pair of Zener diodes in which capacitors and one terminal of the same polarity of two Zener diodes are connected to each other are connected. Can be used.
  • the LED lighting device 1A is configured as shown in FIG. 3, and a current having a high peak current is supplied for each pulse as the output current Io at a predetermined repetition period. Turn on -1 to 2-n. Thereby, the same effect as the first embodiment can be obtained.
  • an autotransformer L2 is used instead of the choke coil L1, and an element that distributes the voltage applied to each of the LEDs 2-1 to 2-n substantially equally is connected to each LED in parallel. Therefore, even if a reverse voltage is generated by the autotransformer L2, it is possible to prevent the voltage applied to each LED from exceeding the allowable reverse voltage.
  • FIG. 5 is a circuit diagram showing a configuration of an LED lighting device according to Embodiment 3 of the present invention. 5, in the LED lighting device 1B according to the third embodiment, a circuit for cutting off power supply (a circuit surrounded by a broken line in FIG. 5) (first power cut-off unit) with respect to the configuration shown in FIG. has been added. For example, if the LED forward voltage is 3V and the number of LEDs constituting the series circuit is 8, the total value of the forward voltage of the series circuit is 24V, but the power supply voltage of the DC power supply 8 is 28V. When the total value of the forward voltages of the series circuit is exceeded, the current continues to flow from the DC power supply 8 to the LED series circuit when the switching transistor 7 is turned off, and the output current cannot be controlled.
  • the circuit includes a transistor 7a, a transistor 9, a Zener diode 10, and resistors R3, R4, and R5.
  • the transistor 7a which is a field effect transistor, has a drain terminal connected to one end of the choke coil L1, a source terminal connected to the emitter terminal of the transistor 9, one end of the resistor R5, and the DC power supply 8, and a gate terminal connected to the resistor R3. Is grounded.
  • the resistor R5 has one end connected to the DC power supply 8, the source terminal of the transistor 7a and the emitter terminal of the transistor 9, and the other end connected to the cathode of the Zener diode 10 and is grounded via the Zener diode 10.
  • the transistor 9 is a bipolar transistor, and has an emitter terminal connected to the source terminal of the transistor 7a, one end of the resistor R5 and the DC power supply 8, and a collector terminal connected to a connection point between the gate terminal of the transistor 7a and the resistor R3.
  • the base terminal is connected to the connection point between the resistor R5 and the Zener diode 10 via the resistor R4.
  • the Zener diode 10 so that the Zener voltage is equal to or less than the total value of the forward voltage of the LED series circuit, the power supply can be shut down so as not to exceed the total voltage.
  • the forward voltage of the LED has a large variation, and it is necessary to allow a design margin in calculating the total value of the forward voltage of the series circuit.
  • the value actually compared with the power supply voltage is the LED series circuit. For example, when eight LEDs having a forward voltage of 3V are connected in series with a predetermined voltage set for the total value of the forward voltage of 19V, a margin of about 20% is provided for the total value of 24V and 19V. Must be set to In the above circuit, the LED is turned off when the power supply voltage is high, so that it is suitable for in-vehicle use as a light source such as a position lamp.
  • the power supply is controlled so as not to exceed the total value of the forward voltage of the LED series circuit. Can be cut off. Thereby, when the power supply voltage of the DC power supply 8 is high, it is possible to avoid occurrence of abnormal operation and LED destruction.
  • the case where the circuit is added to the LED lighting device described with reference to FIG. 1 in the first embodiment is shown.
  • the autotransformer L2 described in the second embodiment is used. The same effect can be obtained even when applied to the existing configuration.
  • FIG. FIG. 6 is a circuit diagram showing a configuration of an LED lighting device according to Embodiment 4 of the present invention.
  • the LED lighting device 1C according to the fourth embodiment adds a Zener diode (first power supply limiting unit) 11 that limits the power supply from the DC power supply 8 to the configuration shown in FIG.
  • the switching transistor 7 is turned off even when a transient high voltage pulse in which the power supply voltage of the DC power supply 8 exceeds the total value of the forward voltage of the LED series circuit is applied. As a result, current continues to flow from the DC power supply 8 to the LED series circuit, and the output current cannot be controlled.
  • a Zener diode 11 for limiting power supply from the DC power supply 8 is provided.
  • the Zener diode 11 is composed of, for example, a high-power power Zener diode. As shown in FIG. 6, the cathode is connected to one end of the DC power supply 8 and the autotransformer L2, and the anode is grounded. In this configuration, even if an overvoltage exceeding a predetermined voltage is generated in the DC power supply 8, the voltage is clipped (limited) to the Zener voltage of the Zener diode 11, and a transient large current pulse is applied to the LED series circuit. It is not energized.
  • the power source can be limited so as not to exceed the total value of the forward voltage of the LED series circuit.
  • the LED since the LED does not turn off even at a high power supply voltage, it is suitable for in-vehicle use as a light source such as a headlamp.
  • the power source can be limited so as not to exceed the total value of the forward voltage of the LED series circuit by providing the Zener diode 11 for limiting the power source.
  • FIG. 7 is a circuit diagram showing a configuration of an LED lighting device according to Embodiment 5 of the present invention.
  • the LED lighting device 1D according to the fifth embodiment uses an insulating transformer 12 in place of the autotransformer L2 in the configuration shown in FIG. If a transformer is used for the step-up power supply (power supply unit), a forward voltage of the transformer (a reverse voltage with respect to the LED) is generated as described in the second embodiment.
  • the allowable reverse voltage of the LED is a relatively low value (about 5 V)
  • the LED is destroyed when the reverse voltage applied by the transformer exceeds the total allowable reverse voltage of the LED series circuit. there is a possibility.
  • the forward voltage generated in the secondary winding of the isolation transformer 12 is reverse to the LED series circuit. Considering that the voltage is applied, even if a reverse voltage is generated, select the primary and secondary windings so that the total allowable reverse voltage of the LED series circuit is not exceeded.
  • the insulated transformer 12 is used. Note that the allowable reverse voltage also has the same variation as the forward voltage, and it is necessary to provide a design margin and set the set value to a predetermined voltage set for the total value.
  • the rectifying diode can be omitted. Further, the primary side and the secondary side of the insulating transformer 12 can be separated, and destruction due to a ground fault of the output line can be easily avoided.
  • the switching transistor 7 when the switching transistor 7 is turned on, a forward voltage is generated in the secondary winding of the insulating transformer 12.
  • the forward voltage is obtained by (power supply voltage ⁇ secondary coil winding number / primary coil winding number). Therefore, when an overvoltage is supplied from the DC power source 8, a reverse overvoltage exceeding the total allowable reverse voltage of the LED series circuit is applied to the LED series circuit.
  • the LED lighting device 1D is provided with a circuit (a circuit surrounded by a broken line in FIG. 7) (second power cutoff unit) that shuts off the power supply when an overvoltage is supplied from the power source.
  • the circuit includes a comparator 13 and an AND circuit 14 as shown in FIG.
  • the comparator 13 has an inverting input terminal connected to the connection point between the DC power supply 8 and the isolation transformer 12, a non-inverting input terminal connected to the reference power supply Va, and an output terminal connected to one input terminal of the AND circuit 14. is doing.
  • the AND circuit 14 has one input terminal connected to the output terminal of the comparator 13, the other input terminal connected to the output terminal Q of the FF 5, and the output terminal connected to the gate terminal of the switching transistor 7. .
  • the comparator 13 compares the power supply voltage of the DC power supply 8 with a predetermined voltage value of the reference power supply Va (allowable voltage value set according to the total value of the allowable reverse voltage of the LED series circuit). If the power supply voltage does not exceed the predetermined voltage value of the reference power supply Va, the potential of the output terminal is kept at a high level (high potential), but if the DC power supply 8 exceeds the predetermined voltage value of the reference power supply Va, the output terminal Is set to a low level (low potential).
  • the AND circuit 14 when both the outputs of the FF 5 and the comparator 13 are at a high level, the output is set to a high level and the switching transistor 7 is turned on. As a result, a voltage is applied from the insulating transformer 12 to the LED series circuit. On the other hand, when the DC power supply 8 becomes overvoltage and the output of the comparator 13 becomes low level, the AND circuit 14 sets the output to low level to turn off the switching transistor 7 and cut off the power supply.
  • the circuit receives a power supply voltage in which the forward voltage of the secondary winding of the isolation transformer 12 generated when the switching transistor 7 is turned on is higher than the total allowable reverse voltage of the LED series circuit.
  • the switching operation of the switching transistor 7 is stopped.
  • the LED lighting device 1D is suitable for a light source such as a position lamp for in-vehicle use.
  • the insulation transformer 12 in which the primary side and secondary side windings are selected so as not to exceed the total allowable reverse voltage of the LED series circuit is used as the step-up power supply. Therefore, it is possible to easily avoid the damage caused by the ground fault of the output line.
  • a Zener diode (second power supply limiting unit) is provided in the same connection relationship as in the fourth embodiment. Also good.
  • a power zener diode for high current a zener voltage that does not exceed the total value of the reverse voltage of the LED series circuit
  • the occurrence of abnormal operation and LED destruction due to the application of the reverse voltage can be similarly avoided.
  • the LED since the LED does not turn off, it is suitable for a light source such as a headlamp for in-vehicle use.
  • Embodiment 6 As in the first to fifth embodiments described above, when there is a single step-up power supply, there is a timing for turning on the switching transistor 7 (the output current Io is zero). If it is not increased, the rated light emission may not be obtained. For example, if the on-duty of the switching transistor 7 is 50%, the peak current must be quadrupled. However, since the allowable current value of the LED having a high light emission amount is about twice the rated current value, it is necessary to reduce the peak current of the LED while ensuring the on-duty of the switching transistor 7.
  • step-up power supplies are connected in parallel, and the output of an oscillator (VCO; Voltage Controlled Oscillator) 4 is distributed so that the operation timing of each power supply is generated alternately.
  • VCO Voltage Controlled Oscillator
  • the switching transistor of the other step-up power supply is turned off to output the output current Io to the LED series circuit.
  • FIG. 8 is a circuit diagram showing a configuration of an LED lighting device according to Embodiment 6 of the present invention.
  • the LED lighting device 1E according to the sixth embodiment includes two step-up power supplies including insulating transformers 12-1 and 12-2 connected to the DC power supply 8.
  • the isolation transformers 12-1 and 12-2 are connected in parallel to the DC power source 8, and the drain terminals of the switching transistors 7-1 and 7-2 are connected to the other end of the primary winding.
  • the cathodes of the diodes D1 and D2 are connected to the anode of the LED 2-1 of the LED series circuit through a filter circuit including a coil L1 and a capacitor C.
  • the switching transistors 7-1 and 7-2 have their source terminals grounded via shunt resistors R1a and R1b, and their gate terminals flip-flops 5-1 and 5-2 (hereinafter referred to as FF5-1 and 5-2). Are connected to output terminals Q of each other.
  • the reset terminals R of FF5-1 and 5-2 are connected to the output terminals of comparators 6-1 and 6-2, respectively, and the output terminal Q of FF5 is connected to the set terminal S of FF5-1.
  • An inverting output terminal Q bar of FF5 is connected to the set terminal S of FF5-2.
  • a reference power source Vc that provides a predetermined current value is connected to the inverting input terminal, and the non-inverting input terminal is connected to the source terminals of the switching transistors 7-1, 7-2 and the shunt resistor R1a Each is connected to a connection point with R1b.
  • the output of the oscillator 4 is connected to the clock terminal CK of the FF 5, the output terminal Q for inverting the output at each edge timing of the rectangular wave output from the oscillator 4, and the inverted value from the inverted output terminal Q bar. Output.
  • the pulsed output current Io flowing through the LED series circuit is averaged by the error amplifier 3 that also serves as an integrator using the resistor R0 and the capacitor C0. Similar to the first to fifth embodiments, the error amplifier 3 compares the averaged current Ia value with the target current value from the reference power source Vt, and supplies the amplified voltage to the oscillator 4. Apply.
  • the oscillator 4 outputs a rectangular wave having an oscillation frequency corresponding to the output voltage of the error amplifier 3 to the clock terminal CK of the FF 5 that divides the frequency into two.
  • the oscillator 4 decreases the oscillation frequency if the value of the average current Ia is higher than the target current value, and increases the oscillation frequency if it is lower than the target current value.
  • the FF 5 sets the FF 5-1 by the rising edge of the output terminal Q that inverts the output at every edge timing of the rectangular wave input from the oscillator 4 via the clock terminal CK, and from the output terminal Q of the FF 5-1.
  • the switching transistor 7-1 is turned on by the output, and the inverted value thereof is set by the rising edge of the inverting output terminal Q bar.
  • the FF5-2 is set, and the output from the output terminal Q of the FF5-2 is set by the switching transistor 7-2. Turn on.
  • the shunt resistor R1a when the switching transistor 7-1 is on, the current I FET-1 flowing between the drain and source of the switching transistor 7-1 from the primary coil of the insulating transformer 12-1 is displayed. A voltage representing the amount of current is generated.
  • the comparator 6-1 the voltage value generated by the current IFET-1 and the predetermined voltage value of the reference power source Vc are compared, and whether or not the voltage drop generated in the shunt resistor R1a has reached the predetermined voltage value of the reference voltage Vc. Is detected.
  • the comparator 6-2 compares the voltage value of the current IFET-2 with a predetermined voltage value of the reference power source Vc, and whether the voltage drop generated in the shunt resistor R1b has reached the predetermined voltage value of the reference voltage Vc. Detect whether or not.
  • the comparators 6-1 and 6-2 set the reset terminals R of the FFs 5-1 and 5-2 to a high level (high potential).
  • the drive signal output from the output terminal Q is set to low level (low potential) at the timing when the potential of the reset terminal R is set to high level by the comparators 6-1 and 6-2.
  • the switching transistors 7-1 and 7-2 are turned off.
  • the output currents from the two step-up power supplies are added by the diodes D1 and D2 and passed through the LED series circuit. At this time, a steep current change of the output current Io is suppressed by the filter circuit including the coil L1 and the capacitor C, and noise is removed.
  • FIG. 9 is a diagram showing output waveforms of each component circuit of the LED lighting device in FIG. 8, FIG. 9 (a) is an output voltage waveform of the oscillator (VCO) 4, and FIG. 9 (b) is an output terminal of the FF5.
  • 9C shows the waveform of the output voltage from Q
  • FIG. 9C shows the waveform of the current IFET-1 flowing through the insulating transformer 12-1 and the switching transistor 7-1
  • FIG. 9D shows the insulating transformer 12-2 and the switching transistor 7- 2 shows the waveform of the current IFET -2 flowing in FIG. 2
  • FIG. 9 (e) shows the waveform of the output current Io.
  • FIGS. 9A and 9B show how the output of the output terminal Q of the FF 5 and the output of the inverted output terminal Q bar are inverted at the timing of the rising edge of the rectangular wave input from the oscillator 4.
  • the switching transistors 7-1 and 7-2 are turned on while the drive signals from the FFs 5-1 and 5-2 are at a high level, and are turned off when the driving signal is at a low level (low potential). Further, the switching transistors 7-1 and 7-2 operate alternately according to the mutually inverted rectangular waves output from the FF5. As a result, as shown in FIGS. 9C and 9D, the currents I FET-1 and I FET-2 are connected to the isolation transformer 12 so as to interpolate the off periods of the switching transistors 7-1 and 7-2. -1,12-2 flows between the drains and sources of the switching transistors 7-1 and 7-2.
  • the comparison value indicated by the broken line is the voltage of the reference power source Vc, and this comparison value and the current amounts of the currents I FET-1 and I FET-2 generated in the shunt resistors R1a and R1b. Are compared by comparators 6-1 and 6-2. Further, as shown by the broken lines drawn from FIG. 9A to FIG. 9C and FIG. 9D, the rising edges of the output rectangular wave of the oscillator 4 shown in FIG. 7-1 and 7-2 operate alternately, and the state where the energization current flows alternately is shown.
  • the output current Io is added by the diodes D1 and D2, and as shown in FIG. 9 (e), when the switching transistor 7-1 is off, a pulsed current flows from the isolation transformer 12-1 to the LED series circuit. And the pulsed current flowing from the isolation transformer 12-2 to the LED series circuit when the switching transistor 7-2 is off.
  • the output current from these step-up power supplies has a waveform close to a sine wave, with the steeple portion being smoothly suppressed by a filter circuit comprising a coil L and a capacitor C, as shown in FIG. 9 (e).
  • a filter circuit comprising a coil L and a capacitor C, as shown in FIG. 9 (e).
  • This filter circuit may be provided in the configurations of the first to fifth embodiments.
  • the average current Ia indicated by the broken line in FIG. 9E is a current value obtained by averaging the output current Io by the integrator of the error amplifier 3.
  • the value of the average current Ia and the target current from the reference power source Vt are compared by the error amplifier 3 and controlled so that the value of the average current Ia becomes constant.
  • the LED lighting device 1E is configured as shown in FIG. 8, and the output of the oscillator 4 is distributed and used as the operation timing of each power source, and no current is output. While the switching transistor is on, the switching transistor of the other step-up power supply is turned off, and the respective output currents are added by the diodes D1 and D2 to energize the LED series circuit. By doing so, it is possible to light the LED by passing a current close to the rated (DC) current without passing an excessive peak current to the LED.
  • DC rated
  • step-up power supplies are connected in parallel.
  • three or more step-up power supplies are connected in parallel to interpolate each output current generation interval. You may comprise as follows.
  • the configuration using the isolation transformers 12-1 and 12-2 as the step-up power supply is given as an example.
  • the power supply using the choke coil L1 shown in the first embodiment By connecting a plurality of power sources using the autotransformer L2 shown in the second embodiment in parallel and controlling the current intervals of the currents output to the LED series circuit to interpolate each other, the same effect as described above is obtained. be able to.
  • Embodiment 7 FIG.
  • the first control unit that arbitrarily adjusts the pulse current value (the value of the output current Io) that is passed through the LED series circuit, and the value of the average current Ia that is passed through the LED series circuit. At least one of the second control units to be adjusted.
  • the first and second control units for example, in FIG.
  • timing for setting the value of the variable resistor or setting appropriate information in the CPU is a process from assembly of a product (LED lighting device) to shipment.
  • the variable resistor is operated or stored as data in the CPU so that a predetermined light emission color or light emission amount is obtained at the timing.
  • the data used by the CPU can be stored as EEPROM (Electronically Erasable and Programmable Read Only Memory) as a storage medium.
  • the predetermined value (comparison reference value) of the comparison value (Vc) for setting the LED to a predetermined emission color and the predetermined value (comparison reference) of the target value (Vt) for lighting the LED with a predetermined light emission amount. Value) is determined in advance, and based on these values, adjustment of the value of the variable resistor and LED lighting control by the CPU are performed.
  • the CPU may correct the comparison value Vc or the target value Vt based on characteristic change data prepared in advance. For example, the CPU monitors the change in the light emission amount of the LED from the output voltage value or current value, etc., and when the LED becomes dark due to a change with time (change occurs), the target value Vt is adjusted by the CPU and the output current value is adjusted. Increase the brightness (by increasing the value of the average current Ia) to adjust the brightness.
  • timing is when the accumulated LED lighting time reaches a predetermined lighting time.
  • the value of the average current Ia may be adjusted again. For example, when the accumulated lighting time reaches a predetermined time, it is determined that the LED has become dark due to a change over time, the target value Vt is adjusted to a predetermined value, the value of the average current Ia is increased, and the predetermined brightness is corrected. .
  • the value of the first control unit for arbitrarily adjusting the pulse current value (the value of the output current Io) energized in the LED series circuit and the value of the average current Ia are arbitrarily adjusted. Since at least one of the second control units is provided, it is possible to realize an LED lighting device capable of independently adjusting or correcting the light emission amount and the light emission color of the LED to arbitrary values.
  • the seventh embodiment shows the case where the present invention is applied to the configuration of the first embodiment
  • the pulse current value (output current Io) that is applied to the LED series circuit is compared with the configurations of the second to sixth embodiments.
  • the same effect as described above can be obtained by providing a means for arbitrarily adjusting at least one of the value of the average current Ia and the value of the average current Ia.
  • the LED lighting device and the LED headlamp according to the present invention can realize the LED lighting device with a simple circuit that performs on / off control of the switching element at a predetermined cycle, and can reduce the number of parts. It is suitable for use in an LED lighting device that lights an LED that uses a lamp, tail lamp, or the like as a light source.

Abstract

 スイッチングトランジスタ7をオンして直流電源8からチョークコイルL1に通電される電流が所定値に至ったときに、スイッチングトランジスタ7をオフすることによって発生するパルス状の電流を通電することでLED直列回路を点灯する。当該パルス状電流を発生する周期は、発振器(VCO)4を用いて、LED直列回路に流れる平均電流の値に応じて決定する。当該パルス状電流値と平均電流値をそれぞれ任意に制御する。

Description

LED点灯装置及びヘッドランプ用LED点灯装置
 この発明は、車載ヘッドランプやテールランプ等の光源として使用するLED(発光ダイオード;Light Emitting Diode)を点灯させるLED点灯装置及びヘッドランプ用LED点灯装置に関するものである。
 近年、車載ヘッドランプやテールランプ用の光源としてLEDが使用され始めている。しかしながら、未だに発光効率が低く、ヘッドランプ用として充分な発光量を確保するには、放電灯式ヘッドランプと同等な投入電力が必要であり、当該ヘッドランプにおいて、LED及び点灯用電源による消費電力は放電灯と同程度に大きい。従って、現段階では、LED及び点灯電源の発熱対策や省エネルギーの観点から両者の消費電力を低減する必要がある。なお、この課題は、テールランプ用の光源としてLEDを使用した場合であっても同様である。
 また、少ない点灯電力でLEDの発光量を視覚的に高くみせる手法としては、人の視覚において、ピーク電流通電時の明るさが当該光源の明るさとして認識されるため、ピーク電流の大きな光源が明るく感じられることを利用して、数字や文字等を表示するディスプレイにLEDや蛍光表示管を使用する構成において、個々のセグメント(LEDや蛍光表示管の1発光素子)に対してDC定格電流を超える短時間の大電流パルスの通電(点灯)と非通電(消灯)を、ちらつきとして視認されないように高速で繰り返して平均電力を定格電力以内にする点灯方式が一般的である。
 このようなパルス点灯を行う技術として、照明用のLEDにパルス電流を通電して点灯するものが、下記の先行文献に記載されている。例えば、特許文献1では、ステップアップ電源のスイッチング素子がオンのときにコイルに蓄えられるエネルギーを可変として、LED点灯用の任意の出力電流を得ている。これを実現するため、特許文献1に記載される装置は、交流電源を電源として出力電流を当該交流電源の周期より長い時間平均化し、当該平均化出力電流が目標の電流値となるように、ステップアップ電源のスイッチング素子がオンのときに通電される電流値を適宜制御している。
 また、特許文献2では、ステップアップ電源のスイッチング素子がオンのときにコイルに蓄えられるエネルギーを一定にして、LED点灯用の任意の出力電流を得ている。特許文献2に記載の回路は、携帯機器の直流電源を電源として出力電流を平均化し、当該平均化出力電流が目標の電流値となるようにステップアップ電源のスイッチング素子のオン、オフを継続する時間とオフを保つ時間との比率を変えて間欠動作させて制御している。
特開2001-313423号公報 特開2002-203988号公報
 ヘッドランプ用の光源は明るさと発光色が規定されており、適切な発光色を得るためには、LEDに通電する電流を特定の値にする必要がある。しかしながら、特許文献1に記載される装置では、コイルに蓄えるエネルギーを可変としてLEDに通電する電流を変化させるため、当該通電電流量によって発光色が変わってしまい、LEDを光源とするヘッドランプ用の点灯電源としては好ましくないという課題があった。
 なお、一般的な照明用の光源でちらつき(フリッカ)が認識されないのは、点灯周波数が200Hz以上であるとされている。これを鑑みると、特許文献2の回路においても、フリッカが視認されない点灯周波数で点灯させていると予想される。しかし、光を物体に照射する光学系では、同様な点灯周波数であっても、被照明物が断続的に見えるストロボ現象が現れ、上記フリッカが視認されやすい。例えば、走行中に前方を照らし出す(高速で移動する物体を照明する)ヘッドランプでは、前述した200Hzの点灯周波数では上記ストロボ現象が顕著に表れるため、光源としては不十分であり、さらに高い周波数で点灯させる必要がある。
 さらに、特許文献2では、スイッチング素子のスイッチング動作1回ごとにコイルに蓄えるエネルギーを一定にしてスイッチング動作1回ごとのLED通電電流を一定にする。この点灯方式は、通電電流の変化によってLEDの発光色を変化させないようにするには有効である。しかしながら、LEDを高い周波数で点滅点灯すべく、スイッチング素子のオンオフを繰り返すタイミングと、LEDを消灯すべく、スイッチング素子のオフを保持するタイミングとにおいて生じる、点滅点灯した明るい状態と消灯した暗い状態との光の差若しくは光の変動(フリッカ)を、車載ヘッドランプに対応させて目立たなくすることが考慮されていない。
 この発明は、上記のような課題を解決するためになされたもので、簡易な構成で部品点数を削減でき、視覚的な明るさを保ちながら消費電力を低減し、フリッカを認識させない、あるいは発光色と明るさをそれぞれ所定値に保つことができるLED点灯装置及びヘッドランプ用LED点灯装置を得ることを目的とする。
 この発明に係るLED点灯装置は、直流電源にインダクタを介して接続した複数のLEDを直列に接続したLED回路と、インダクタに電流を流すスイッチング素子を備え、スイッチング素子をオンして直流電源からインダクタに電流を通電した後、スイッチング素子をオフすることによって発生するパルス状の電流(フライバック電流)を当該インダクタからLED回路に出力して、当該LED回路を点灯する構成のLED点灯装置であって、スイッチング素子をオフするときの通電電流を所定の値に調整することによって、LED回路に出力するパルス状の電流のピーク値を所定の値に制御する第1の制御部と、略等間隔で動作するスイッチング素子の動作周期を調整することによって、インダクタからLED回路に出力されるパルス状の電流の平均値を所定の値に保つように制御する第2の制御部とを備えるものである。
 この発明によれば、所定の周期でスイッチング素子をオンオフ制御する簡易な回路でLED点灯装置を実現することができ、部品点数の削減が可能である。また、LEDをパルス状の電流で点灯するために直流で点灯するときより視覚的に明るく点灯することができるため、同等と感じる明るさであれば、消費電力を直流点灯での消費電力より低くすることができる。さらに、パルス状の電流値を保ちながら平均電流値を変化させれば、発光色を所定値に保ちながら明るさを変えることができる。逆に平均電流値を保ちながらパルス状の電流値を変化させれば、明るさを保ちながら発光色を変えることができる。なお、当パルス状の電流による点灯は、スイッチング素子のオンオフによる高速な周期で繰り返されるため、フリッカを認識されることがない。
この発明の実施の形態1によるLED点灯装置の構成を示す回路図である。 図1中のLED点灯装置の各構成回路の出力波形を示す図である。 この発明の実施の形態2によるLED点灯装置の構成を示す回路図である。 図3中のLED点灯装置の各構成回路の出力波形を示す図である。 この発明の実施の形態3によるLED点灯装置の構成を示す回路図である。 この発明の実施の形態4によるLED点灯装置の構成を示す回路図である。 この発明の実施の形態5によるLED点灯装置の構成を示す回路図である。 この発明の実施の形態6によるLED点灯装置の構成を示す回路図である。 図8中のLED点灯装置の各構成回路の出力波形を示す図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1によるLED点灯装置の構成を示す回路図である。図1において、LED点灯電源1は、LED2-1~2-n、誤差増幅器3、発振器(VCO;Voltage Controlled Oscillator)4、フリップフロップ5、コンパレータ6、スイッチングトランジスタ7、チョークコイルL1(インダクタ)及び電源電圧Viの直流電源8を備える。LED2-1~2-nは直列に接続されたn個のLEDからなるLED回路(以下、LED直列回路と称す)を構成し、端部のLED2-1のアノードがチョークコイルL1の一端に接続しており、もう一方の端部のLED2-nのカソードがシャント抵抗R2を介して接地されている。
 誤差増幅器3は、反転入力端子がLED2-nのカソードに抵抗R0を介して接続しており、目標電流を与える基準電源Vtが非反転入力端子に接続し、出力端子が発振器4に接続するとともに、コンデンサC0を介して反転入力端子と抵抗R0の接続点に出力端子が接続している。発振器4は、誤差増幅器3から印加される電圧値に応じた発振周波数の矩形波を生成してフリップフロップ5のセット端子Sに出力する。誤差増幅器3及び発振器4が周期決定手段を構成する。
 フリップフロップ5(以下、FF5と略称する)は、セット端子Sが発振器4の出力端子に接続し、リセット端子Rがコンパレータ6の出力端子に接続しており、出力端子Qがスイッチングトランジスタ7のゲート端子に接続している。FF5は、セット端子Sに立ち上がりエッジが入力されると、出力端子Qの電位をハイレベルとし、リセット端子Rに立ち上がりエッジが入力されると、出力端子Qの電位をロウレベルとする。なお、FF5としては、RSフリップフロップに限定されるものではなく、スイッチングトランジスタ7のオンオフを保持する2つの安定出力状態を有する回路であればよい。
 コンパレータ6は、所定の電流値を与える基準電源Vcが反転入力端子に接続し、非反転入力端子がスイッチングトランジスタ7のソース端子とシャント抵抗R1との接続点に接続し、出力がFF5のリセット端子Rに接続している。上述したFF5及びコンパレータ6が点灯手段を構成する。
 スイッチングトランジスタ(スイッチング素子)7は、電界効果トランジスタ(FET)から構成され、ゲート端子がFF5の出力端子Qに接続し、ドレイン端子がチョークコイルL1とLED直列回路との接続点に接続し、ソース端子がシャント抵抗R1を介して接地されており、オンオフのスイッチングによって直流電源8からチョークコイルL1への電流の通電を制御する。
 スイッチングトランジスタ7がオン状態になると、直流電源8の電圧ViがチョークコイルL1に印加され、直流電源8からチョークコイルL1へ電流が通電される。一方、スイッチングトランジスタ7がオフ状態になると、チョークコイルL1から流出したパルス状の出力電流Io(ピーク電流)がLED直列回路に供給されてLED2-1~2-nが点灯する。なお、スイッチングトランジスタ7、直流電源8及びチョークコイルL1からステップアップ電源(電源供給部)が構成される。
 次に動作について説明する。
 LED2-1~2-nの直列回路に流れるパルス状の出力電流Ioは、抵抗R0及びコンデンサC0を用いた積分器を兼ねる誤差増幅器3によって平均化処理される。誤差増幅器3は、当該平均化処理した電流Iaの値と基準電源Vtからの目標電流値とを比較し、両者の誤差を増幅した電圧を発振器4に印加する。
 発振器4では、誤差増幅器3の出力電圧に応じた発振周波数の矩形波をFF5のセット端子Sに出力する。ここで、発振器4は、平均電流Iaの値が目標電流値よりも高ければ発振周波数を下げ、目標電流値よりも低ければ発振周波数を上げる。FF5は、セット端子Sを介して発振器4から入力した矩形波のエッジタイミングでハイレベル(高電位)となる駆動信号を出力端子Qから出力し、スイッチングトランジスタ7をオンする。
 上記構成において、スイッチングトランジスタ7のオンを開始するタイミングを早くあるいは遅くすることで、LED直列回路に通電される平均電流Ia(電力)を任意の値に保つ制御がなされる。つまり、発振器4の発振周波数を任意に操作することにより、スイッチングトランジスタ7のゲート端子に単位時間あたりに通電する回数を増減して、LED直列回路に流れる出力電流Ioの平均値(平均電流Ia)を所定の値に制御する。
 また、シャント抵抗R1の両端には、スイッチングトランジスタ7がオンであるとき、チョークコイルL1からスイッチングトランジスタ7のドレイン-ソース間を流れた電流IFETの電流量を表す電圧が生じる。コンパレータ6では、この電流IFETによる電圧値と基準電源Vcの所定電圧値とを比較してシャント抵抗R1に発生する電圧降下が基準電圧Vcの所定電圧値に達したか否かを検出する。
 ここで、上記電圧降下が基準電圧Vcの電圧値に達すると、コンパレータ6は、FF5のリセット端子Rにハイレベル(高電位)にする。FF5では、コンパレータ6によってリセット端子Rの電位がハイレベルにされたタイミングで、出力端子Qから出力している駆動信号をロウレベル(低電位)にしてスイッチングトランジスタ7をオフする。
 図2は、図1中のLED点灯装置の各構成回路の出力波形を示す図であり、図2(a)は発振器(VCO)4の出力電圧波形、図2(b)はFF5の出力電圧波形、図2(c)はチョークコイルL1とスイッチングトランジスタ7に流れる電流IFETの波形、図2(d)は出力電流Ioの波形を示している。図2(a)(b)に示す例では、発振器4から入力した矩形波の立ち上がりエッジのタイミングで、FF5がハイレベル(高電位)となる駆動信号を出力端子Qから出力する。
 スイッチングトランジスタ7は、FF5からの駆動信号がハイレベルの間にオン状態となり、ロウレベル(低電位)になるとオフ状態となる。このオンオフ期間において、図2(c)に示すようなピーク値を有するパルス状の電流IFETがコイルL1からドレイン-ソース間に流れる。なお、図2(c)中の破線の比較値は基準電源Vcの電圧であり、この比較値とシャント抵抗R1に発生した電流IFETの電流量を表す電圧とがコンパレータ6によって比較される。
 出力電流Ioは、図2(b)(d)に示すように、スイッチングトランジスタ7がオフになったとき、チョークコイルL1からLED直列回路へ流れるパルス状の電流である。また、スイッチングトランジスタ7をオンオフする周期を一定にすると1周期でチョークコイルL1に蓄えられるエネルギーは一定であるので、図2(c)(d)に示すように、スイッチングトランジスタ7をオフしたタイミングで、チョークコイルL1から流出する出力電流Ioの先頭のピーク電流は、スイッチングトランジスタ7をオンしたタイミングで終末に流れる電流IFETのピーク電流と等しい。
 なお、図2(d)中に破線で示した平均電流Iaの値は、誤差増幅器3の積分器によって出力電流Ioを平均化処理した電流値である。この平均電流Iaの値と基準電源Vtからの目標電流とが誤差増幅器3により比較され、平均電流Iaの値が一定になるように制御される。
 LED直列回路に印加される電圧に変化がなく、出力電流Ioの値を一定に制御する(出力電力を一定にする)場合、電源電圧が高ければ短時間で所定のパルス状電流IFETの値に到達するので通電幅を狭くして、電源電圧が低ければ所定のパルス状電流IFETの値に到達するまでに長時間を要するので通電幅を広くする。
 そこで、誤差増幅器3の目標電流値とコンパレータ6の基準電源Vcを適切に設定してスイッチングトランジスタ7をオンする時間を調整し、パルス状の電流IFETを一定に保つことによって、LED直列回路に流れる出力電流Ioのピーク電流が一定となる。
 上記周期の1サイクルあたりの出力電力は、(チョークコイルL1のインダクタンス×パルス状電流IFETの2乗)/2で求められる。従って、パルス状電流IFETを一定にすれば、サイクル数と出力電力とは比例することから、繰り返し動作の周期(図2(a)に示す発振器4の出力矩形波の周期)を任意の周期に制御することにより出力電力を制御できる。なお、LED点灯装置1の出力極性は、電源電圧と同極性でも、電源電圧の極性を反転した極性でも構わない。
 このようにパルス状電流IFETの値を一定にすることで、出力電流Ioのピーク電流を一定としながらもLED直列回路に印加される電圧が高いときは出力電流Ioの通電幅が狭くなり、上記電圧が低いときは通電幅が広くなる。これにより、実施の形態1では、特にフィードバック制御を実施することなく、出力電流Ioの1パルスあたりの出力電力を概ね一定に制御できる。
 なお、一般的な照明用の光源でちらつき(フリッカ)が認識されないのは、点灯周波数が200Hz以上であるとされている。しかしながら、車輌用ヘッドランプは、高速走行下でも用いられるため、ストロボ現象が顕著に現れやすく、さらに高い周波数で点灯させる必要がある。そこで、この実施の形態1では、LED回路を1KHz以上、好ましくはスイッチング素子及びインダクタの発する音が可聴範囲を超える20KHzからスイッチング素子の扱いが容易な範囲である1MHz以下で点灯する。この実施の形態1においては、インダクタが出力する非方形波である三角波をLED回路に出力し、そのインダクタに通電する電流をインダクタに対して直列に接続されたスイッチング素子でコントロールすることにより、上記高い周波数でのLED回路の点灯を安価な回路で達成している。
 また、この実施の形態1に示すLED点灯装置を複数用いて1台の車輌用ヘッドランプを構成する場合、例えば、左右のヘッドランプに用いられるLED回路を、この実施の形態1によるLED点灯装置で構成する場合、あるいは、左右のヘッドランプを構成する複数のLED回路をこの実施の形態1によるLED点灯装置を複数用いて点灯する場合、それら複数のLED回路の明るさや発光色のばらつきが顕在化しやすいが、この実施の形態1では、個々に明るさと発光色が調整できるため、当該ばらつきを認識され難くすることができる。
 以上のように、この実施の形態1では、LED点灯装置1を図1に示すように構成し、所定の繰り返し周期で、1パルスごとにピーク電流(出力電流Io)の高い電流を供給してLED2-1~2-nを点灯する。これによって、出力電流Ioのピーク電流が一定であることからLEDの発光色を一定にすることができ、また発光色を問わなければ出力電流Ioのピーク電流を高くすることにより、LEDの見かけ上の発光量(明るさ)を高くすることができる。さらに、発振器4の発振周波数を操作して繰り返し周期を早くすることにより、LEDの点灯、消灯の1サイクルが高速化され、ちらつき(フリッカ)を視認されないようにすることが可能である。
 また、上記実施の形態1では、規定電流における発光色が同等なLEDを、当該同等な発光色で点灯させる場合を示したが、通電電流によってLEDの発光色が変化することを利用すれば、特定の通電電流で発光色が異なるLEDであっても、通電電流を適切に選定することにより、所望の発光色で点灯させることが可能である。
 例えば、LEDの量産技術は日々進歩しているものの、現時点においては、まだLEDヘッドランプはLED単体での発光量が少ないため、車輌1台あたりに複数のLEDを用いて構成することが必要である。また、LED毎の発光量と発光色のばらつきは正規分布的に存在し、LEDヘッドランプに用いる複数のLEDは、当該分布の中から特定電流値(規定電流値)における発光量と発光色が同等な複数のLEDを選別して用いる必要がある場合がある。この場合、LEDヘッドランプの製造工程としては、LEDの製造メーカにおいて、規定電流値における発光量と発光色が同等なLEDを選別し、LEDヘッドランプの製造メーカが、そのLEDを当該規定電流値で点灯するLEDヘッドランプとして完成させることが考えられる。
 しかしながら、この実施の形態1においては、LEDを規定電流値とは異なる平均電流値とピーク電流値を通電することが可能であり、特に、LEDを複数直列に接続したLED回路を車輌1台あたりに複数用いてヘッドランプを構成する場合に、規定電流値においては発光量と発光色が異なる複数のLED回路を、各LED回路へ通電する平均電流値とピーク電流値とを互いに異ならせて同等の発光量と発光色に近付けることが可能となる。
 同様に、規定電流値における発光量と発光色が互いに異なる複数のLED回路を使用しながらも、車輌のヘッドランプとして、規定の発光量と発光色に近付けることが可能となる。
 例えば、図1の構成において、コンパレータ6の比較値(電圧Vc)を調節することで、シャント抵抗R1によって検出されたチョークコイルL1とスイッチングトランジスタ7に流れる電流IFETを任意の値に制御できる。なお、比較電圧Vcを変更して通電するパルス状の電流IFETを任意の値に変化させても、LEDの通電電流(出力電流Io)は、誤差増幅器3により平均値(平均電流Ia)を制御すれば、発光量(明るさ)が変化することはない。これにより、ピーク電流を高くして繰り返し動作の周期を長くすることで、発光量(明るさ)を一定に保ちつつ、発光色を変化させることができる。この構成は、後述する実施の形態2~7においても適用可能である。
 さらに、上記実施の形態1において、LEDの通電電流(平均電流Ia)を一定の低電流に制御することにより、DRL(Daytime Running Lamps)用電源として使用できる。例えば、実施の形態1によるLED点灯装置1をLED式のヘッドランプに適用することで、同じ発光色において、通常走行状態の明るい(発光量の高い)点灯と昼間走行用の発光量を絞った減光(DRL)点灯が可能である。
 このように、実施の形態1では、専用の部品を追加することなく、DRL対応のLED点灯装置を実現することができる。通常走行状態の点灯から発光量を絞ったDRL点灯状態への切り替え、あるいはその逆の切り替えは、図1の電圧Vtを可変として、例えば不図示の車輌ドライバによるスイッチ操作や、車輌の周囲温度を検出する不図示の照度検出手段の検出結果に応じて、当該電圧Vtの値を変更することにより行うことができる。このとき、図1の電圧Vcを変化させなければ、LEDの発光色を変化させずに発光量を変化させることができる。また、LEDの発光色を変える場合には、図1の電圧Vcを変更するようにしてもよい。図1の電圧Vtの変更や、図1の電圧Vcの変更を行う手段としては、後述する実施の形態7に示す第1の調整手段や、第2の調整手段を用いることができ、これら第1の調整手段や第2の調整手段が電圧Vtや電圧Vcを切り替える目標電圧値を不図示の記憶手段に予め記憶しておけばよい。なお、上述の制御を実施の形態2~7においても実施すれば、実施の形態2~7のLED点灯装置も、DRL対応のLED点灯装置とすることができる。
実施の形態2.
 図3は、この発明の実施の形態2によるLED点灯装置の構成を示す回路図である。図3に示すように、実施の形態2によるLED点灯装置1Aは、図1に示した構成のうち、チョークコイルL1をオートトランスL2(1次コイルの巻回数n1、2次コイルの巻回数n2)に置き換えている。また、LED点灯装置1Aでは、LED2-1~2-nの各々に印加される電圧を略均等に配分する素子として抵抗Rb1~Rbnを各LEDに並列に接続している。なお、スイッチングトランジスタ7、直流電源8及びオートトランスL2からステップアップ電源(電源供給部)が構成される。この他の構成要素については図1と同一若しくはこれに相当するものであるので、同一符号を付して重複する説明を省略する。
 次に動作について説明する。
 図4は、図3中のLED点灯装置の各構成回路の出力波形を示す図であり、図4(a)は発振器(VCO)4の出力電圧波形、図4(b)はFF5の出力電圧波形、図4(c)は電流IFETの波形、図4(d)は出力電圧波形、図4(e)は出力電流Ioの波形を示している。上記実施の形態1で示した図2と同様に、発振器4から入力した矩形波の立ち上がりエッジのタイミングで、FF5がハイレベル(高電位)となる駆動信号を出力端子Qから出力する(図4(a)(b)参照)。
 スイッチングトランジスタ7のオン期間において、図4(c)に示すようなピーク値を有するパルス状の電流IFETが、オートトランスL2の1次コイルからドレイン端子-ソース端子間に流れる。なお、図4(c)中の破線の比較値は基準電源Vcの電圧であり、この比較値とシャント抵抗R1に発生した電流IFETの電流量を表す電圧とがコンパレータ6によって比較される。
 出力電流Ioは、図4(e)に示すように、スイッチングトランジスタ7がオフのときに、オートトランスL2の2次コイルから流出してLED直列回路に通電されるパルス状の電流である。なお、スイッチングトランジスタ7がオフしたときにオートトランスL2の2次コイルから流出する出力電流Ioの先頭のピーク電流は、スイッチングトランジスタ7がオンしたタイミングで1次コイルから終末に流れるピーク電流(電流IFET)にオートトランスL2の巻数比(1次コイルの巻回数n1/2次コイルの巻回数n2)を乗じた電流値となる。
 図4(e)中に破線で示した平均電流Iaの値は、誤差増幅器3の積分器によって出力電流Ioを平均化処理した電流値である。この平均電流Iaと基準電源Vtからの目標電流とが誤差増幅器3によって比較され、上記実施の形態1と同様にして平均電流Iaの値が一定になるように制御される。
 上記周期の1サイクルあたりの出力電力は、(オートトランスL2のインダクタンス×パルス状電流IFETの2乗)/2で求められる。従って、パルス状電流IFETを一定にすれば、サイクル数と出力電力とは比例することから、繰り返し動作の周期(図4(a)に示す発振器4の出力矩形波の周期)を任意の周期に制御することにより出力電力を制御できる。なお、LED点灯装置1Aの出力極性は、電源電圧と同極性であっても、電源電圧の極性を反転した極性でも構わない。
 このようにパルス状電流IFETの値を一定にすることで、出力電流Ioのピーク電流を一定にしながらLED直列回路に印加される電圧が高いときは出力電流Ioの通電幅が狭くなり、上記電圧が低いときは通電幅が広くなる。これにより、実施の形態2においても、特にフィードバック制御を実施することなく、出力電流Ioの1パルスあたりの出力電力を概ね一定に制御することができる。
 なお、オートトランスL2は、スイッチングトランジスタ7がオンするタイミングで、図4(d)中に破線で示すように、電源電圧Viに(2次コイルの巻回数n2/1次コイルの巻回数n1)を乗じた値のトランスのフォワード電圧(LEDに対して逆方向電圧)を発生する。ただし、LEDに逆方向電圧を印加してもLEDは点灯しない。図4(d)において、GND(破線)より低い部分がトランスが発生するフォワード電圧であり、LEDに印加される逆方向電圧である。
 また、LED直列回路の各LEDに逆方向電圧が印加されると、LEDに多少の逆方向の漏れ電流が生じるが、LEDの個体差によってその電流量は異なる。このため、LED直列回路において、漏れ電流量が少ない特定のLEDには逆方向電圧が集中することとなる。ここで、LEDの許容逆方向電圧は5V程度であり、過度に電圧が集中すると、LEDが破壊する可能性がある。
 そこで、LED2-1~2-nの各々に並列に同一抵抗値の抵抗Rb1~Rbnを接続して、各LEDに印加される電圧を略均等に配分する。これにより、上記特定のLEDに逆方向電圧が集中することを回避でき、個々のLEDに印加される電圧が許容逆方向電圧を超えることを防ぐことができる。
 なお、LED2-1~2-nの各々の印加電圧を略均等に配分する素子としては、抵抗の他に、コンデンサや、2個のツェナーダイオードの同極性の片側端子を互いに接続したツェナーダイオード対の使用が可能である。
 以上のように、この実施の形態2は、LED点灯装置1Aを図3に示すように構成し、所定の繰り返し周期で、出力電流Ioとして1パルスごとにピーク電流の高い電流を供給してLED2-1~2-nを点灯する。これにより、上記実施の形態1と同様の効果を得ることができる。
 また、上記実施の形態2では、チョークコイルL1の代わりにオートトランスL2を用い、LED2-1~2-nの各々に印加される電圧を略均等に配分する素子を各LEDに並列に接続したので、オートトランスL2によって逆方向電圧が発生しても、個々のLEDに印加される電圧が許容逆方向電圧を超えないようにすることができる。
実施の形態3.
 図5は、この発明の実施の形態3によるLED点灯装置の構成を示す回路図である。図5において、実施の形態3によるLED点灯装置1Bでは、図1に示した構成に対して、電源供給を遮断する回路(図5中に破線で囲った回路)(第1の電源遮断部)を追加している。例えば、LEDの順方向電圧が3Vであり、直列回路を構成するLEDが8個であると、直列回路の順方向電圧の合計値は24Vであるが、直流電源8の電源電圧が28Vであって直列回路の順方向電圧の合計値を超える場合、スイッチングトランジスタ7をオフしているときに直流電源8から電流がLEDの直列回路に流れ続け、出力電流を制御できなくなる。
 そこで、実施の形態3では、直流電源8の電源電圧が高いときに、電源供給を遮断する回路を設けている。当該回路は、図5に示すようにトランジスタ7a、トランジスタ9、ツェナーダイオード10及び抵抗R3,R4,R5を備えて構成される。電界効果トランジスタであるトランジスタ7aは、チョークコイルL1の一端にドレイン端子が接続し、ソース端子がトランジスタ9のエミッタ端子、抵抗R5の一端、及び直流電源8に接続しており、ゲート端子が抵抗R3を介して接地される。
 また、抵抗R5は、一端が直流電源8、トランジスタ7aのソース端子及びトランジスタ9のエミッタ端子に接続しており、他端がツェナーダイオード10のカソードに接続し、ツェナーダイオード10を介して接地される。トランジスタ9は、バイポーラトランジスタからなり、エミッタ端子がトランジスタ7aのソース端子、抵抗R5の一端及び直流電源8に接続し、コレクタ端子がトランジスタ7aのゲート端子と抵抗R3との接続点に接続しており、ベース端子が抵抗R4を介して抵抗R5とツェナーダイオード10との接続点に接続されている。
 直流電源8の電圧が上昇し、ツェナーダイオード10に印加される電圧がツェナー電圧に到達すると、抵抗R5を介してツェナーダイオード10のカソードからアノード、GNDに電流が流れることによって抵抗R5及び抵抗R4を介してトランジスタ9のベース電圧が上昇して、トランジスタ9がオンする。このとき、トランジスタ9及び抵抗R3を介して直流電源8からの電流がGNDに流れると、トランジスタ7aのソース-ゲート間の電位差が小さくなり、トランジスタ7aがオフ状態となる。これにより、直流電源8からチョークコイルL1への電流が遮断される。
 このようにして、ツェナー電圧がLED直列回路の順方向電圧の合計値以下になるようにツェナーダイオード10を選定することにより、当該合計値の電圧を超えないように電源を遮断することができる。ただし、現実には、LEDの順方向電圧はばらつきが大きく直列回路の順方向電圧の合計値を算出するにあたり設計的な余裕を見込む必要があり、実際に電源電圧と比較する値はLED直列回路の順方向電圧の合計値に対して設定した所定の電圧、例えば上記順方向電圧が3VのLEDを8個直列に接続した場合は、合計値24Vに対して20%程度の余裕を設けて19Vに設定する必要がある。上記回路では高電源電圧時にLEDが消灯するので、車載用としては例えばポジションランプ等の光源に好適である。
 以上のように、この実施の形態3によれば、ツェナーダイオード10を適切に選定した図5に示すような回路を設けることにより、LED直列回路の順方向電圧の合計値を超えないように電源を遮断することができる。これにより、直流電源8の電源電圧が高いときに異常動作の発生やLED破壊を回避することが可能である。
 なお、上記実施の形態3では、上記実施の形態1で図1を用いて説明したLED点灯装置に上記回路を追加した場合を示したが、上記実施の形態2で説明したオートトランスL2を用いた構成に適用しても、同様の効果が得られる。
実施の形態4.
 図6は、この発明の実施の形態4によるLED点灯装置の構成を示す回路図である。実施の形態4によるLED点灯装置1Cは、図3に示した構成に対して、直流電源8からの電源供給を制限するツェナーダイオード(第1の電源制限部)11を追加する。上記実施の形態3と同様に、直流電源8の電源電圧がLED直列回路の順方向電圧の合計値を超える一過性の高電圧パルスが印加されても、スイッチングトランジスタ7をオフしているときに直流電源8から電流がLEDの直列回路に流れ続け、出力電流を制御できなくなる。
 そこで、実施の形態4では、直流電源8からの電源供給を制限するツェナーダイオード11を設けている。このツェナーダイオード11は、例えば大電力用のパワーツェナーダイオードからなり、図6に示すように、カソードが直流電源8及びオートトランスL2の一端に接続しており、アノードが接地される。この構成において、直流電源8で予め規定された電圧を超える過電圧が発生しても、当該電圧はツェナーダイオード11のツェナー電圧にクリップ(制限)され、一過性の大電流パルスがLED直列回路に通電されることはない。
 このように、ツェナーダイオード11を適切に選定することにより、LED直列回路の順方向電圧の合計値を超えないように電源を制限することができる。なお、この構成であれば、高電源電圧時であってもLEDが消灯することはないので、車載用としては例えばヘッドランプ等の光源に好適である。
 以上のように、この実施の形態4によれば、電源の制限用にツェナーダイオード11を設けることにより、LED直列回路の順方向電圧の合計値を超えないように電源を制限することができる。これにより、直流電源8の電源電圧が高いときにも、異常動作の発生やLED破壊を回避することが可能である。
 なお、上記実施の形態4では、上記実施の形態2で図3を用いて説明したLED点灯装置に上記回路を追加した場合を示したが、上記実施の形態1の構成(チョークコイルL1を用いた構成)に適用しても、同様の効果が得られる。
実施の形態5.
 図7は、この発明の実施の形態5によるLED点灯装置の構成を示す回路図である。図7に示すように、実施の形態5によるLED点灯装置1Dは、図3に示した構成のうち、オートトランスL2の代わりに絶縁トランス12を使用している。なお、ステップアップ電源(電源供給部)にトランスを使用すると、上記実施の形態2で説明したようにトランスのフォワード電圧(LEDに対して逆方向電圧)が発生する。ここで、LEDの許容逆方向電圧は比較的低い値(5V程度)であるため、トランスによって印加された逆方向電圧がLED直列回路の許容逆方向電圧の合計値を超えると、LEDが破壊する可能性がある。
 実施の形態5では、LED直列回路を絶縁トランス12の2次巻線に発生するフライバック電圧で点灯するときに、絶縁トランス12の2次巻線に発生するフォワード電圧がLED直列回路に逆方向電圧となって印加されることを考慮して、逆方向電圧が発生しても、LED直列回路の許容逆方向電圧の合計値を超えないように1次側と2次側の巻線を選定した絶縁トランス12を使用する。なお、当該許容逆方向電圧に関しても上記順方向電圧と同様なばらつきがあり、設計的な余裕を備えて、設定値は合計値に対して設定した所定の電圧とすることが必要である。
 このように構成することにより、LEDに印加される電圧が許容逆方向電圧を超えないので、LED直列回路の通電電流は個々のLEDが自ら整流して略直流となる。従って、整流用のダイオードを省略することができる。また、絶縁トランス12の1次側と2次側を分離でき、出力ラインの地絡事故等による破壊を容易に回避できる。
 また、スイッチングトランジスタ7がオンするとき、絶縁トランス12の2次巻線にはフォワード電圧が発生する。このフォワード電圧は(電源電圧×2次コイル巻回数/1次コイル巻回数)で求められる。従って、直流電源8から過電圧が供給されると、LED直列回路の許容逆方向電圧の合計値を超える逆方向の過電圧がLED直列回路に印加される。
 そこで、LED点灯装置1Dには、電源から過電圧が供給されたときには電源供給を遮断する回路(図7中に破線で囲った回路)(第2の電源遮断部)を設けている。当該回路は、図7に示すようにコンパレータ13及びAND回路14を備えて構成される。コンパレータ13は、反転入力端子が直流電源8と絶縁トランス12との接続点に接続し、非反転入力端子に基準電源Vaが接続しており、出力端子がAND回路14の一方の入力端子に接続している。AND回路14は、一方の入力端子がコンパレータ13の出力端子に接続され、もう一方の入力端子がFF5の出力端子Qと接続しており、出力端子がスイッチングトランジスタ7のゲート端子に接続している。
 当該回路において、コンパレータ13は、直流電源8の電源電圧と基準電源Vaの所定の電圧値(LED直列回路の許容逆方向電圧の合計値に応じて設定した許容電圧値)とを比較しており、電源電圧が基準電源Vaの所定の電圧値を超えなければ、出力端子の電位をハイレベル(高電位)に保つが、直流電源8が基準電源Vaの所定の電圧値を超えると、出力端子の電位をロウレベル(低電位)にする。
 AND回路14では、FF5とコンパレータ13の出力がともにハイレベルであると、出力をハイレベルにしてスイッチングトランジスタ7をオンさせる。これにより、絶縁トランス12からLED直列回路へ電圧が印加される。一方、直流電源8が過電圧となってコンパレータ13の出力がロウレベルになると、AND回路14は、出力をロウレベルにしてスイッチングトランジスタ7をオフし、電源供給を遮断する。
 このように、上記回路は、スイッチングトランジスタ7がオンのタイミングで発生する絶縁トランス12の2次巻線のフォワード電圧がLED直列回路の許容逆方向電圧の合計値より高くなる電源電圧が入力されるときに、スイッチングトランジスタ7のスイッチング動作を停止させる。このとき、LEDは消灯するので、LED点灯装置1Dは、車載用としては例えばポジションランプ等の光源に好適である。
 以上のように、この実施の形態5によれば、LED直列回路の許容逆方向電圧の合計値を超えないように1次側と2次側の巻線を選定した絶縁トランス12をステップアップ電源に使用したので、出力ラインの地絡事故等による破壊を容易に回避できる。
 また、実施の形態5によれば、絶縁トランス12の2次巻線のフォワード電圧がLED直列回路の許容逆方向電圧の合計値より高くならないように、スイッチングトランジスタ7のスイッチング動作を停止させる回路を設けたので、直流電源8の電源電圧が高いときであっても、逆方向電圧の印加に起因した異常動作の発生やLED破壊を回避することが可能である。
 さらに、上記実施の形態5において、上記回路(図7中に破線で囲った回路)の代わりに、上記実施の形態4と同様な接続関係でツェナーダイオード(第2の電源制限部)を設けてもよい。当該ツェナーダイオードとしては、例えば大電流用のパワーツェナーダイオード(ツェナー電圧がLED直列回路の逆方向電圧の合計値を超えないもの)を使用する。このように構成すれば、LED直列回路に印加される電圧がツェナー電圧にクリップ(制限)されるので、同様に逆方向電圧の印加に起因した異常動作の発生やLED破壊を回避できる。なお、この場合、LEDが消灯することはないので、車載用としてはヘッドランプ等の光源に好適である。
実施の形態6.
 上記実施の形態1~5のように、ステップアップ電源が1つの構成では、スイッチングトランジスタ7をオンするタイミング(出力電流Ioは零)が存在するので、LEDに通電するピーク電流を定格値よりも高くしなければ定格の発光量が得られない場合がある。例えば、スイッチングトランジスタ7のオンデューティが50%ならば、ピーク電流を4倍にしなければならない。しかしながら、高発光量のLEDの許容電流値は、定格電流値の2倍程度であるために、スイッチングトランジスタ7のオンデューティを確保しつつ、LEDのピーク電流は低くする必要がある。
 そこで、この実施の形態6では、例えば2個のステップアップ電源を並列に接続し、発振器(VCO;Voltage Controlled Oscillator)4の出力を分配してそれぞれの電源の動作タイミングが交互に発生するようにして、電流が出力されない一方のスイッチングトランジスタがオンしている最中に、他方のステップアップ電源のスイッチングトランジスタをオフして出力電流IoをLED直列回路に出力する構成としている。
 図8は、この発明の実施の形態6によるLED点灯装置の構成を示す回路図である。図8に示すように、実施の形態6によるLED点灯装置1Eは、直流電源8に接続する絶縁トランス12-1,12-2からなる2つのステップアップ電源を備える。絶縁トランス12-1,12-2は、直流電源8に並列に接続し、1次巻線のもう一端にスイッチングトランジスタ7-1,7-2のドレイン端子が接続しており、2次巻線の一端がダイオードD1,D2のアノードにそれぞれ接続している。ダイオードD1,D2のカソードは、コイルL1及びコンデンサCからなるフィルタ回路を介してLED直列回路のLED2-1のアノードに接続している。
 スイッチングトランジスタ7-1,7-2は、ソース端子がシャント抵抗R1a,R1bを介して接地されており、ゲート端子がフリップフロップ5-1,5-2(以下、FF5-1,5-2と略称する)の出力端子Qにそれぞれ接続している。FF5-1,5-2のリセット端子Rには、コンパレータ6-1,6-2の出力端子にそれぞれ接続しており、FF5-1のセット端子SにはFF5の出力端子Qが接続し、FF5-2のセット端子SにはFF5の反転出力端子Qバーが接続している。
 コンパレータ6-1,6-2は、所定の電流値を与える基準電源Vcが反転入力端子にそれぞれ接続し、非反転入力端子がスイッチングトランジスタ7-1,7-2のソース端子とシャント抵抗R1a,R1bとの接続点にそれぞれ接続している。また、FF5は、クロック端子CKに発振器4の出力が接続しており、発振器4が出力する矩形波のエッジタイミング毎に出力を反転する出力端子Qと、その反転値を反転出力端子Qバーから出力する。
 次に動作について説明する。
 LED直列回路に流れるパルス状の出力電流Ioは、抵抗R0及びコンデンサC0を用いた積分器を兼ねる誤差増幅器3によって平均化処理される。誤差増幅器3は、上記実施の形態1~5と同様に、当該平均化処理した電流Iaの値と基準電源Vtからの目標電流値とを比較し、両者の誤差を増幅した電圧を発振器4に印加する。
 発振器4では、誤差増幅器3の出力電圧に応じた発振周波数の矩形波を2分周するFF5のクロック端子CKに出力する。ここで、発振器4は、平均電流Iaの値が目標電流値よりも高ければ発振周波数を下げ、目標電流値よりも低ければ発振周波数を上げる。FF5は、クロック端子CKを介して発振器4から入力した矩形波のエッジタイミング毎に出力を反転する出力端子Qの立ち上がりエッジによって、FF5-1をセットし、このFF5-1の出力端子Qからの出力でスイッチングトランジスタ7-1をオンするとともに、その反転値を反転出力端子Qバーの立ち上がりエッジによって、FF5-2をセットし、このFF5-2の出力端子Qからの出力でスイッチングトランジスタ7-2をオンする。
 また、シャント抵抗R1aの両端には、スイッチングトランジスタ7-1がオンであるとき、絶縁トランス12-1の1次コイルからスイッチングトランジスタ7-1のドレイン-ソース間を流れた電流IFET-1の電流量を表す電圧が生じる。コンパレータ6-1では、この電流IFET-1による電圧値と基準電源Vcの所定電圧値とを比較してシャント抵抗R1aに発生する電圧降下が基準電圧Vcの所定電圧値に達したか否かを検出する。同様に、コンパレータ6-2は、電流IFET-2による電圧値と基準電源Vcの所定電圧値とを比較してシャント抵抗R1bに発生する電圧降下が基準電圧Vcの所定電圧値に達したか否かを検出する。
 ここで、上記電圧降下が基準電圧Vcの電圧値に達すると、コンパレータ6-1,6-2は、FF5-1,5-2のリセット端子Rをハイレベル(高電位)にする。FF5-1,5-2では、コンパレータ6-1,6-2によってリセット端子Rの電位がハイレベルにされたタイミングで、出力端子Qから出力している駆動信号をロウレベル(低電位)にしてスイッチングトランジスタ7-1,7-2をオフする。
 2つのステップアップ電源からの出力電流は、ダイオードD1,D2によって加算されてLED直列回路へ通電される。このとき、コイルL1及びコンデンサCからなるフィルタ回路によって出力電流Ioの急峻な電流変化を抑制し、ノイズが除去される。
 図9は、図8中のLED点灯装置の各構成回路の出力波形を示す図であり、図9(a)は発振器(VCO)4の出力電圧波形、図9(b)はFF5の出力端子Qからの出力電圧波形、図9(c)は絶縁トランス12-1とスイッチングトランジスタ7-1に流れる電流IFET-1の波形、図9(d)は絶縁トランス12-2とスイッチングトランジスタ7-2に流れる電流IFET-2の波形、図9(e)出力電流Ioの波形を示している。図9(a)(b)は、発振器4から入力した矩形波の立ち上がりエッジのタイミングで、FF5の出力端子Qと、反転出力端子Qバーの出力をそれぞれ反転する様子を示す。
 スイッチングトランジスタ7-1,7-2は、FF5-1,5-2からの駆動信号がハイレベルの間にオン状態となり、ロウレベル(低電位)になるとオフ状態となる。また、スイッチングトランジスタ7-1,7-2は、FF5から出力された互いに反転した矩形波に応じて交互に動作する。これにより、図9(c)(d)に示すように、スイッチングトランジスタ7-1,7-2の互いのオフ期間を補間するように電流IFET-1,IFET-2が、絶縁トランス12-1,12-2からスイッチングトランジスタ7-1,7-2のドレイン-ソース間に流れる。
 なお、図9(c)(d)中の破線の比較値は基準電源Vcの電圧であり、この比較値とシャント抵抗R1a,R1bに発生した電流IFET-1,IFET-2の電流量を表す電圧とがコンパレータ6-1,6-2で比較される。また、図9(a)から図9(c)(d)へ引いた破線で示すように、図9(a)に示す発振器4の出力矩形波の立ち上がりエッジを交互に分配して、スイッチングトランジスタ7-1,7-2が交互に動作して、交互に通電電流が流れている様子を示す。
 出力電流Ioは、ダイオードD1,D2により加算されて、図9(e)に示すように、スイッチングトランジスタ7-1がオフのときに、絶縁トランス12-1からLED直列回路へ流れるパルス状の電流と、スイッチングトランジスタ7-2がオフのときに、絶縁トランス12-2からLED直列回路へ流れるパルス状の電流との合計値となる。
 なお、これら両ステップアップ電源からの出力電流は、図9(e)に示すように、コイルL及びコンデンサCからなるフィルタ回路によって尖塔部分が滑らかに抑制されてサイン波に近い波形となる。このように、各ステップアップ電源から出力電流をLED直列回路へ通電する経路にコイルL1及びコンデンサCからなるフィルタ回路を設けたので、急峻な電流が抑制され、ノイズ発生を軽減することができる。このフィルタ回路は、上記実施の形態1~5の構成に設けても構わない。
 また、図9(e)中に破線で示した平均電流Iaは、誤差増幅器3の積分器によって出力電流Ioを平均化処理した電流値である。この平均電流Iaの値と基準電源Vtからの目標電流とが誤差増幅器3により比較され、平均電流Iaの値が一定になるように制御される。
 以上のように、この実施の形態6では、LED点灯装置1Eを図8に示すように構成し、発振器4の出力をそれぞれの電源の動作タイミングとして分配し使用して、電流が出力されない一方のスイッチングトランジスタがオンしている最中、他方のステップアップ電源のスイッチングトランジスタをオフしてそれぞれの出力電流をダイオードD1,D2で加算してLED直列回路に通電する。このようにすることにより、過剰なピーク電流をLEDに通電することなく、定格(直流)電流に近い電流をLEDに通電して点灯させることが可能である。
 なお、上記実施の形態6では、2個のステップアップ電源を並列に接続した構成を示したが、3個以上のステップアップ電源を並列に接続して、各々の出力電流の発生間隔を補間するように構成しても構わない。
 また、上記実施の形態6では、ステップアップ電源に絶縁トランス12-1,12-2を用いた構成を例に挙げたが、上記実施の形態1で示したチョークコイルL1を用いる電源や、上記実施の形態2で示したオートトランスL2を用いる電源を複数並列に接続し、これらがLED直列回路へ出力する電流の通電間隔を互いに補間するように制御することにより、上記と同様の効果を得ることができる。
実施の形態7.
 この実施の形態7は、LED直列回路に通電するパルス電流値(出力電流Ioの値)を任意に調節する第1の制御部、及び、LED直列回路に通電された平均電流Iaの値を任意に調整する第2の制御部のうちの少なくとも一方を備えるものである。第1及び第2の制御部としては、例えば上記実施の形態1で示した図1において、コイルL1とスイッチングトランジスタ7に流れる電流IFETと比較する比較値(Vc)、及び、出力電流Ioの値との誤差を増幅するための目標となる電流相当の値(Vt)を、可変抵抗を用いて任意の電圧に調整したり、LED点灯装置の点灯制御を行う不図示のマイクロコンピュータ(CPU)の出力をD/Aコンバータを用いて変換した任意のアナログ電圧値に調整することが可能である。
 上記可変抵抗の値の設定、あるいはCPUに適切な情報を設定するタイミングの1つの例としては、製品(LED点灯装置)が組み立てられてから出荷までの間の工程が挙げられる。当該タイミングにおいて所定の発光色あるいは発光量となるように、可変抵抗を操作あるいはCPUにデータとして記憶する。CPUが利用するデータは、EEPROM(Electronically Erasable and Programmable Read Only Memory)を記憶媒体として記憶することも可能である。
 このように、LEDを所定の発光色にするための比較値(Vc)の所定値(比較基準値)及びLEDを所定の発光量で点灯させるための目標値(Vt)の所定値(比較基準値)を予め決定しておき、これらの値に基づいて、上記可変抵抗の値の調節や上記CPUによるLED点灯制御を行う。
 また、上記タイミングの別な例としては、LEDを長時間点灯し、経時変化が発生したときが挙げられる。このときに予め用意した特性変化データに基づいて、上記CPUが、比較値Vcあるいは目標値Vtを補正するようにしてもよい。例えば、CPUが出力電圧値あるいは電流値等からLEDの発光量の変化をモニタしておき、経時変化によりLEDが暗くなる(変化が生じる)と、目標値VtをCPUによって調整し出力電流値を増加させて(平均電流Iaの値を増加させて)明るさを調整する。
 この他のタイミングの例として、積算したLEDの点灯時間が、所定の点灯時間に達するときも挙げられる。このとき、平均電流Iaの値を再度調整するようにしてもよい。例えば、積算した点灯時間が所定時間に達すると、LEDが経時変化によって暗くなったと判断し、目標値Vtを所定値に調整して平均電流Iaの値を増加させ、所定の明るさに補正する。
 以上のように、この実施の形態7によれば、LED直列回路に通電するパルス電流値(出力電流Ioの値)を任意に調整する第1の制御部及び平均電流Iaの値を任意に調整する第2の制御部の少なくとも一方を設けたので、LEDの発光量及び発光色を各々独立して任意な値に調整若しくは補正が可能なLED点灯装置を実現することができる。
 なお、上記実施の形態7は、上記実施の形態1の構成に適用した場合を示したが、上記実施の形態2~6の構成に対してLED直列回路に通電するパルス電流値(出力電流Ioの値)と平均電流Iaの値の少なくとも一方を任意に調整する手段を設けた構成としても上記と同様の効果が得られる。
 この発明に係るLED点灯装置及びLEDヘッドランプは、所定の周期でスイッチング素子をオンオフ制御する簡易な回路でLED点灯装置を実現することができ、部品点数の削減等が可能であるため、車載ヘッドランプやテールランプ等を光源として使用するLEDを点灯させるLED点灯装置等に用いるのに適している。

Claims (19)

  1.  直流電源にインダクタを介して接続した複数のLEDを直列に接続したLED回路と、前記インダクタに電流を流すスイッチング素子を備え、前記スイッチング素子をオンして前記直流電源から前記インダクタに電流を通電した後、前記スイッチング素子をオフすることによって発生するパルス状の電流を当該インダクタから前記LED回路に出力して、当該LED回路を点灯する構成のLED点灯装置であって、
     前記スイッチング素子をオフするときの通電電流を所定の値に調整することによって、前記LED回路に出力する前記パルス状の電流のピーク値を所定の値に制御する第1の制御部と、
     略等間隔で動作する前記スイッチング素子の動作周期を調整することによって、前記インダクタから前記LED回路に出力される前記パルス状の電流の平均値を所定の値に保つように制御する第2の制御部とを備えたことを特徴とするLED点灯装置。
  2.  前記インダクタは、チョークコイル又はオートトランスであって、
     前記直流電源と前記チョークコイル又は前記オートトランスとの間の経路に設けられ、前記直流電源の電圧が、前記LED回路の前記複数のLEDの各々の順方向電圧の合計値に対して設定した所定の電圧より高くなるときに、前記インダクタへの電源の供給を遮断する第1の電源遮断部を設けたことを特徴とする請求項1記載のLED点灯装置。
  3.  前記インダクタは、チョークコイル又はオートトランスであって、
     前記直流電源と前記チョークコイル又は前記オートトランスとの間の経路に設けられ、前記直流電源の電圧が、前記LED回路の前記複数のLEDの各々の順方向電圧の合計値に対して設定した所定の電圧より高くなるときに、前記インダクタに供給する電源の供給量を制限する第1の電源制限部を設けたことを特徴とする請求項1記載のLED点灯装置。
  4.  前記インダクタは、絶縁トランスであって、
     前記直流電源の電圧が高く、前記絶縁トランスの2次巻線に発生するフォワード電圧が、前記LED回路の前記複数のLEDの各々の許容逆方向電圧の合計値に対して設定した所定の電圧より高くなるときに、前記絶縁トランスに電流を通電する前記スイッチング素子の動作を停止する第2の電源遮断部を設けたことを特徴とする請求項1記載のLED点灯装置。
  5.  前記インダクタは、絶縁トランスであって、
     前記直流電源と前記絶縁トランスとの間の経路に設けられ、前記直流電源の電圧が高く、前記絶縁トランスの2次巻線に発生するフォワード電圧が、前記LED回路の前記複数のLEDの各々の許容逆方向電圧の合計値に対して設定した所定の電圧より高くなるときに、前記絶縁トランスに供給する電源の供給量を制限する第2の電源制限部を設けたことを特徴とする請求項1記載のLED点灯装置。
  6.  前記LED回路の各々のLEDに並列に接続され、前記LED回路に印加された逆方向電圧を前記各々のLEDに略均等に配分する素子を備えたことを特徴とする請求項1記載のLED点灯装置。
  7.  前記インダクタ及び前記スイッチング素子による回路構成を、複数個並列に接続して備え、
     前記第2の制御部は、前記複数のスイッチング素子の動作タイミングを互いに補間するように、各々のスイッチング素子の周期を決定し、動作させることを特徴とする請求項1記載のLED点灯装置。
  8.  前記LED回路へ出力される出力電流の急峻な変化を低減するフィルタ回路を備えたことを特徴とする請求項1記載のLED点灯装置。
  9.  前記第1の制御部の設定値を調整することによって、前記LED回路に通電されるパルス状電流のピーク電流を調整し、前記LED回路の発光色を調整することを特徴とする請求項1記載のLED点灯装置。
  10.  前記第1の制御部による調整は、LED点灯装置が組み立てられてから出荷されるまでの間の工程において実施されることを特徴とする請求項9記載のLED点灯装置。
  11.  前記LED回路に通電されるパルス状電流のピーク電流をLEDの点灯時間に応じて変更するために、前記第1の制御部の設定値を調整することを特徴とする請求項9記載のLED点灯装置。
  12.  前記第2の制御部の設定値を調整することによって、前記LED回路に通電される平均電流を調整し、前記LED回路の発光量を調整することを特徴とする請求項1記載のLED点灯装置。
  13.  前記第2の制御部による調整は、LED点灯装置が組み立てられてから出荷されるまでの間の工程において実施されることを特徴とする請求項12記載のLED点灯装置。
  14.  前記LED回路に通電する平均電流をLEDの点灯時間に応じて変更するために、前記第2の制御部の設定値を調整することを特徴とする請求項12記載のLED点灯装置。
  15.  前記第1及び/又は前記第2の制御部が、前記制御を行う際に参照する前記パルス状の電流のピーク値及び/又は平均値の設定値に相当するデータを記憶する記憶部を備えたことを特徴とする請求項1記載のLED点灯装置。
  16.  前記パルス状の電流の周期は、20KHz以上1MHz以下であり、波形は、非方形であることを特徴とする請求項1記載のLED点灯装置。
  17.  直流電源にインダクタを介して接続した複数のLEDを直列に接続したLED回路を光源とするヘッドランプと、前記インダクタに電流を流すスイッチング素子を備え、前記スイッチング素子をオンして前記直流電源から前記インダクタに電流を通電した後、前記スイッチング素子をオフすることによって発生するパルス状の電流を当該インダクタから前記LED回路に出力して当該LED回路を点灯する構成のヘッドランプ用LED点灯装置であって、
     前記スイッチング素子をオフするときの通電電流を所定の値に調整することによって、前記LED回路に出力する前記パルス状の電流のピーク値を所定の値に制御する第1の制御部と、
     略等間隔で動作する前記スイッチング素子の動作周期を調整することによって、前記インダクタから前記LED回路に出力される前記パルス状の電流の平均値を所定の値に保つように制御する第2の制御部を備えたことを特徴とするヘッドランプ用LED点灯装置。
  18.  前記パルス状電流のピーク電流の値を変更する前記第1の制御部の設定値の変更及び/又は前記平均電流の値を変更する前記第2の制御部の設定値の変更は、車輌を運転するドライバによるスイッチ操作又は車輌の周囲照度を検出する照度検出部の検出結果に応じて実施されることを特徴とする請求項17記載のヘッドランプ用LED点灯装置。
  19.  前記パルス状電流のピーク電流の値を変更する前記第1の制御部の設定値と、前記平均電流の値を変更する前記第2の制御部の設定値を、前記LED回路の発光色及び発光量がヘッドランプの規定値に近づくように設定したことを特徴とする請求項17記載のヘッドランプ用LED点灯装置。
PCT/JP2009/004739 2008-12-26 2009-09-18 Led点灯装置及びヘッドランプ用led点灯装置 WO2010073437A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010543761A JP5721440B2 (ja) 2008-12-26 2009-09-18 Led点灯装置及びヘッドランプ用led点灯装置
US13/119,446 US8536790B2 (en) 2008-12-26 2009-09-18 LED lighting device and head lamp LED lighting device
CN200980152908.1A CN102265706B (zh) 2008-12-26 2009-09-18 Led点亮装置及前灯用led点亮装置
DE112009002597.8T DE112009002597B4 (de) 2008-12-26 2009-09-18 LED-Beleuchtungsvorrichtung und Scheinwerfer-LED-Beleuchtungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-332837 2008-12-26
JP2008332837 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010073437A1 true WO2010073437A1 (ja) 2010-07-01

Family

ID=42287102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004739 WO2010073437A1 (ja) 2008-12-26 2009-09-18 Led点灯装置及びヘッドランプ用led点灯装置

Country Status (5)

Country Link
US (1) US8536790B2 (ja)
JP (1) JP5721440B2 (ja)
CN (1) CN102265706B (ja)
DE (1) DE112009002597B4 (ja)
WO (1) WO2010073437A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594137A (zh) * 2011-01-14 2012-07-18 英飞凌科技奥地利有限公司 用于控制开关式电源的系统和方法
JP2012169625A (ja) * 2011-02-11 2012-09-06 Tai-Her Yang Led装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130078500A (ko) * 2011-12-30 2013-07-10 매그나칩 반도체 유한회사 Led 구동 회로 및 이를 이용한 조명 장치
EP2852258B1 (en) * 2012-05-18 2018-11-21 Koito Manufacturing Co., Ltd. Light source control device
KR101503977B1 (ko) * 2012-07-31 2015-03-19 삼성전기주식회사 발광 다이오드 조명 구동 장치 및 방법
TW201408124A (zh) * 2012-08-03 2014-02-16 Anwell Semiconductor Corp 高效率led驅動晶片及其驅動電路
JP5833520B2 (ja) * 2012-09-28 2015-12-16 本田技研工業株式会社 鞍乗型車両における点灯制御装置
US9030124B2 (en) * 2013-01-30 2015-05-12 North American Lighting, Inc. Lighting system and method for PWM duty cycle control
TWI497010B (zh) * 2013-02-19 2015-08-21 LED lamps THD improvement circuit
JP6167400B2 (ja) * 2013-08-02 2017-07-26 パナソニックIpマネジメント株式会社 点灯装置、照明器具、点灯装置の設計方法及び点灯装置の製造方法
US9084322B2 (en) * 2013-08-09 2015-07-14 Osram Sylvania Inc. Bi-level current configurable driver
CN103745693B (zh) * 2013-12-27 2016-01-27 深圳市华星光电技术有限公司 一种led背光驱动电路及其驱动方法
KR102116148B1 (ko) * 2014-04-15 2020-06-08 매그나칩 반도체 유한회사 스위치 제어 회로 및 이를 이용한 변환기
US9468054B2 (en) * 2014-06-10 2016-10-11 Lunera Lighting, Inc. Retrofit LED lighting system with circuit level enhancement
US9942971B2 (en) * 2016-08-15 2018-04-10 Ford Global Technologies, Llc Detecting outages in a LED lamp assembly
FR3063843B1 (fr) * 2017-03-08 2019-03-15 Valeo Equipements Electriques Moteur Circuit electrique de decharge d'une capacite, systeme electrique et vehicule automobile comportant un tel circuit electrique de decharge
CN110269505B (zh) * 2018-03-15 2021-09-24 浙江绍兴苏泊尔生活电器有限公司 Led控制方法和系统、烹饪器具
JP7193529B2 (ja) * 2018-03-28 2022-12-20 株式会社小糸製作所 点灯回路および車両用灯具
WO2019216517A1 (ko) * 2018-05-09 2019-11-14 브라이트랩 인크 적응적 전력 절약 및 밝기 조절이 가능한 휴대용 조명장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011739A (ja) * 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd 調光時誤動作防止回路および照明装置
JP2005110356A (ja) * 2003-09-29 2005-04-21 Rohm Co Ltd 負荷駆動装置及び携帯機器
JP2006210272A (ja) * 2005-01-31 2006-08-10 Matsushita Electric Works Ltd Led駆動装置、及びそれを用いた照明装置
JP2006310402A (ja) * 2005-04-26 2006-11-09 Sony Corp 光源基板製造方法、光源基板、バックライト装置、液晶ディスプレイ装置、調整装置
JP2006319221A (ja) * 2005-05-13 2006-11-24 Sharp Corp Led駆動回路、led照明装置およびバックライト
JP2007011457A (ja) * 2005-06-28 2007-01-18 Honda Motor Co Ltd 運転支援自動車
JP2007210377A (ja) * 2006-02-08 2007-08-23 Koito Ind Ltd 点灯制御装置および照明装置
JP2008168771A (ja) * 2007-01-11 2008-07-24 Ichikoh Ind Ltd 車両用灯具

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480201B2 (ja) 1996-11-06 2003-12-15 松下電器産業株式会社 インターリーブ方式スイッチングコンバータ
DE29622335U1 (de) 1996-12-23 1997-02-13 Petermann Petra Fahrzeugscheinwerfersteuerung
JP3285590B2 (ja) 1997-02-10 2002-05-27 ティーディーケイ株式会社 昇圧型スイッチング電源装置
JP3600415B2 (ja) 1997-07-15 2004-12-15 株式会社東芝 分布定数素子
JPH11178333A (ja) 1997-12-15 1999-07-02 Sansha Electric Mfg Co Ltd 直流電源装置
DE10013215B4 (de) * 2000-03-17 2010-07-29 Tridonicatco Gmbh & Co. Kg Ansteuerschaltung für Leuchtdioden
JP4474562B2 (ja) 2000-04-28 2010-06-09 東芝ライテック株式会社 発光ダイオード駆動装置
JP2002203988A (ja) 2000-12-28 2002-07-19 Toshiba Lsi System Support Kk 発光素子駆動回路
EP1499165B1 (en) 2003-07-07 2007-09-12 Rohm Co., Ltd. Load driving device and portable apparatus utilizing such driving device
US7358706B2 (en) 2004-03-15 2008-04-15 Philips Solid-State Lighting Solutions, Inc. Power factor correction control methods and apparatus
US7276861B1 (en) * 2004-09-21 2007-10-02 Exclara, Inc. System and method for driving LED
JP2006211762A (ja) 2005-01-26 2006-08-10 Sharp Corp レギュレータ及びこれを備えた電子機器
JP4829622B2 (ja) 2005-02-17 2011-12-07 キヤノン株式会社 スイッチング電源、スイッチング電源を備えた電子機器、スイッチング電源を備えた記録装置
WO2007016373A2 (en) 2005-07-28 2007-02-08 Synditec, Inc. Pulsed current averaging controller with amplitude modulation and time division multiplexing for arrays of independent pluralities of light emitting diodes
JP4749110B2 (ja) 2005-10-06 2011-08-17 新光電装株式会社 Led点灯回路
JP4675971B2 (ja) * 2005-12-12 2011-04-27 三菱電機株式会社 車両灯具用発光ダイオード点灯装置
EP1984667B1 (en) * 2006-02-10 2017-08-23 Philips Lighting North America Corporation Methods and apparatus for high power factor controlled power delivery using a single switching stage per load
JP4924916B2 (ja) 2006-02-15 2012-04-25 株式会社デンソー 発光ダイオード駆動装置
US7642762B2 (en) * 2007-01-29 2010-01-05 Linear Technology Corporation Current source with indirect load current signal extraction
JP4895854B2 (ja) 2007-02-16 2012-03-14 アルパイン株式会社 ドライバ回路
US8106597B2 (en) * 2008-01-22 2012-01-31 Supertex, Inc. High efficiency boost LED driver with output
US8130519B2 (en) * 2008-11-12 2012-03-06 Supertex, Inc. Led driver with low harmonic distortion of input AC current and methods of controlling the same
US7863836B2 (en) * 2008-06-09 2011-01-04 Supertex, Inc. Control circuit and method for regulating average inductor current in a switching converter
US8564155B2 (en) * 2009-05-06 2013-10-22 Polar Semiconductor, Inc. Multiple output power supply
US8102683B2 (en) * 2010-02-09 2012-01-24 Power Integrations, Inc. Phase angle measurement of a dimming circuit for a switching power supply
CN201680231U (zh) * 2010-03-17 2010-12-22 Bcd半导体制造有限公司 一种lcd的led背光驱动装置
JP5079855B2 (ja) * 2010-08-24 2012-11-21 シャープ株式会社 Led駆動回路及びこれを用いたled照明灯具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011739A (ja) * 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd 調光時誤動作防止回路および照明装置
JP2005110356A (ja) * 2003-09-29 2005-04-21 Rohm Co Ltd 負荷駆動装置及び携帯機器
JP2006210272A (ja) * 2005-01-31 2006-08-10 Matsushita Electric Works Ltd Led駆動装置、及びそれを用いた照明装置
JP2006310402A (ja) * 2005-04-26 2006-11-09 Sony Corp 光源基板製造方法、光源基板、バックライト装置、液晶ディスプレイ装置、調整装置
JP2006319221A (ja) * 2005-05-13 2006-11-24 Sharp Corp Led駆動回路、led照明装置およびバックライト
JP2007011457A (ja) * 2005-06-28 2007-01-18 Honda Motor Co Ltd 運転支援自動車
JP2007210377A (ja) * 2006-02-08 2007-08-23 Koito Ind Ltd 点灯制御装置および照明装置
JP2008168771A (ja) * 2007-01-11 2008-07-24 Ichikoh Ind Ltd 車両用灯具

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594137A (zh) * 2011-01-14 2012-07-18 英飞凌科技奥地利有限公司 用于控制开关式电源的系统和方法
JP2012169625A (ja) * 2011-02-11 2012-09-06 Tai-Her Yang Led装置
JP2019195075A (ja) * 2011-02-11 2019-11-07 楊 泰和 Led装置

Also Published As

Publication number Publication date
CN102265706A (zh) 2011-11-30
JP5721440B2 (ja) 2015-05-20
CN102265706B (zh) 2014-08-20
JPWO2010073437A1 (ja) 2012-05-31
US8536790B2 (en) 2013-09-17
US20110169411A1 (en) 2011-07-14
DE112009002597T5 (de) 2012-08-02
DE112009002597B4 (de) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5721440B2 (ja) Led点灯装置及びヘッドランプ用led点灯装置
JP5564239B2 (ja) Led駆動回路
EP3513627B1 (en) Load control device for a light-emitting diode light source having different operating modes
JP5760176B2 (ja) 固体光源点灯装置およびそれを用いた照明器具と照明システム
JP4353804B2 (ja) Pwm出力を具えたled駆動回路
JP5043213B2 (ja) Led駆動回路及びこれを用いたled照明灯具
US9070326B2 (en) Backlight unit and method for driving the same
JP2011165394A (ja) Led駆動回路、調光装置、led照明灯具、led照明機器、及びled照明システム
JP2008010152A (ja) 調光信号出力機能を有する放電灯点灯装置及び照明制御システム
US20140239840A1 (en) Output current compensation for jitter in input voltage for dimmable led lamps
JP2013122846A (ja) 点灯装置
JP2009295571A (ja) 光源駆動方法及び光源駆動装置
JP2004319583A (ja) Led照明装置
JP4853638B2 (ja) 高圧放電灯点灯装置
EP2665340B1 (en) LED driver circuits and methods
JP2007004995A (ja) Led点灯装置
JP4971254B2 (ja) Led点灯装置
JP2014007078A (ja) Led駆動回路、led駆動方法、led照明装置、led表示装置、及び、テレビジョン受像機
JP4752213B2 (ja) 発光ダイオード駆動回路
JP2015122202A (ja) Led群発光回路及びled照明装置
JP5562081B2 (ja) Ledの調光方法及び調光装置
TWI400004B (zh) 光源驅動方法及光源驅動裝置
CN114731747A (zh) 被布置用于发射特定颜色光的基于发光二极管led的照明设备以及对应的方法
JP2011243325A (ja) Led調光装置
JP5036766B2 (ja) Led駆動回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152908.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834255

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010543761

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13119446

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090025978

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834255

Country of ref document: EP

Kind code of ref document: A1