WO2010071094A1 - ポリビニルアルコールフィルム - Google Patents

ポリビニルアルコールフィルム Download PDF

Info

Publication number
WO2010071094A1
WO2010071094A1 PCT/JP2009/070800 JP2009070800W WO2010071094A1 WO 2010071094 A1 WO2010071094 A1 WO 2010071094A1 JP 2009070800 W JP2009070800 W JP 2009070800W WO 2010071094 A1 WO2010071094 A1 WO 2010071094A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pva
degree
mass
polarizing
Prior art date
Application number
PCT/JP2009/070800
Other languages
English (en)
French (fr)
Inventor
寿夫 中居
孝徳 磯▲ざき▼
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020167027669A priority Critical patent/KR20160120356A/ko
Priority to KR1020117016313A priority patent/KR101910668B1/ko
Priority to CN200980151021.0A priority patent/CN102257044B/zh
Priority to JP2010509605A priority patent/JP5628025B2/ja
Publication of WO2010071094A1 publication Critical patent/WO2010071094A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a polyvinyl alcohol film that can be used as a raw material for a polarizing film having good polarizing performance.
  • Liquid crystal display devices were used in small devices such as calculators and watches in the early stages of their development, but in recent years notebook computers, liquid crystal monitors, liquid crystal color projectors, liquid crystal televisions, in-vehicle navigation systems, mobile phones, It is used in a wide range of measuring instruments used indoors and outdoors.
  • improvement in display quality for example, improvement in contrast, is increasingly required, and polarization performance is strongly improved even for polarizing plates, which are one of LCD members. It has been demanded.
  • polarizing plates are uniaxial stretching, dyeing treatment with iodine or a dichroic dye, fixing treatment with a boron compound, etc. on a raw film made of polyvinyl alcohol (hereinafter sometimes referred to as PVA). And a protective film such as a cellulose triacetate film or an acetic acid / butyric acid cellulose film is bonded to one side or both sides of the obtained polarizing film.
  • PVA polyvinyl alcohol
  • a protective film such as a cellulose triacetate film or an acetic acid / butyric acid cellulose film is bonded to one side or both sides of the obtained polarizing film.
  • various methods such as a method for improving the structure of PVA as a raw material, a method for controlling the physical properties of a PVA film, and a method for devising the manufacturing conditions of a polarizing plate are proposed. It has contributed to improving the contrast of LCDs.
  • Patent Document 1 describes that a polarizing film made of PVA having a polymerization degree of 2500 or more, preferably 6000 to 10,000 is excellent in optical properties.
  • PVA having a high degree of polymerization is an advantageous technique for improving the polarization performance, but industrial implementation has been difficult.
  • the relationship between the complete dissolution temperature (X) in hot water and the equilibrium swelling degree (Y) is shown by the following equation as a raw film.
  • the manufacturing method of the polarizing film using the PVA-type film which is the range is described.
  • the polymerization degree of the PVA used in the above invention is preferably in the range of 3500 to 5000, and even if the production method is applied to the high polymerization degree PVA as it is, as shown in Comparative Examples described later, It has been found that the polarizing performance of the obtained polarizing film is not sufficient.
  • an object of the present invention is to provide a film made of PVA having a high polymerization degree, which is useful as a raw material for producing a polarizing film having high polarization performance.
  • a PVA film characterized by comprising a PVA having a degree of polymerization of 5100 to 10,000, a degree of swelling of 200 to 240%, and a retardation in the central portion in the width direction of 10 to 40 nm achieves the above object.
  • the present invention has been completed.
  • the saponification degree of the PVA is preferably 98 mol% or more.
  • the thickness of the PVA film is preferably 10 to 120 ⁇ m.
  • the present invention also includes the above-described method for producing a PVA film, in which a film-forming stock solution containing PVA having a polymerization degree of 5100 to 10,000 and water is used as a raw material.
  • the present invention further includes a polarizing film obtained by dyeing and stretching the PVA film.
  • the PVA film of the present invention can be used as a raw material for a polarizing film having good polarizing performance.
  • the obtained polarizing film is a component of a liquid crystal display device such as a calculator, a wristwatch, a notebook computer, a liquid crystal monitor, a liquid crystal color projector, a liquid crystal television, an in-vehicle navigation system, a mobile phone, and a measuring instrument used indoors and outdoors. It can be used effectively for the production of a plate.
  • the degree of polymerization of PVA used in the present invention needs to be 5100 to 10000, preferably 5200 to 9500, in order to correspond to the good polarization performance of the polarizing film that is the object of the present invention, and 5400 to 9200. More preferred.
  • the degree of polymerization of PVA is less than 5100, it is difficult to exhibit high polarization performance when a polarizing film is produced.
  • the polymerization degree of PVA exceeds 10,000, the productivity of PVA is lowered.
  • the polymerization degree of PVA as used in the field of this invention means the polymerization degree (viscosity average polymerization degree) measured according to the method as described in the Example mentioned later.
  • the degree of saponification of PVA is preferably 98 mol% or more, more preferably 99 mol% or more, further preferably 99.5 mol% or more, and most preferably 99.8 mol% or more.
  • the degree of saponification of PVA is less than 98 mol%, PVA tends to be eluted in the manufacturing process of the polarizing film, and the eluted PVA may adhere to the film and reduce the performance of the polarizing film.
  • the PVA used in the present invention can be produced by saponifying a polyvinyl ester polymer obtained by polymerizing a vinyl ester.
  • vinyl esters include vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl benzoate, and the like. 1 type or 2 types or more are selected. Among these, vinyl acetate is preferably used from the viewpoints of availability, ease of production of PVA, cost, and the like.
  • the polymerization temperature is not particularly limited, but when methanol is used as a polymerization solvent, the polymerization temperature is preferably around 60 ° C. near the boiling point of methanol.
  • PVA is not limited to a saponified vinyl ester homopolymer unless the effects of the present invention are impaired.
  • modified PVA obtained by graft copolymerization of PVA with unsaturated carboxylic acid or derivative thereof, unsaturated sulfonic acid or derivative thereof, ⁇ -olefin having 2 to 30 carbon atoms, etc.
  • the PVA film of the present invention is obtained by forming the above PVA.
  • a film forming method in addition to a method of melt-extruding hydrous PVA, a casting film forming method, a wet film forming method (discharge into a poor solvent), a gel film forming method (after once cooling and gelling a PVA aqueous solution, Solvent extraction and removal), cast film forming method (flowing PVA aqueous solution on substrate and drying), and a combination of these methods can be employed.
  • the melt extrusion film forming method and the cast film forming method are preferable because a good PVA film can be obtained. Water is preferably used as the solvent used for film formation.
  • a plasticizer may be used.
  • the plasticizer include glycerin, diglycerin, ethylene glycol and the like, but are not limited thereto.
  • the amount of the plasticizer used is not particularly limited, but is usually within a range of 10 to 15 parts by mass with respect to 100 parts by mass of PVA.
  • Examples of the method for drying the PVA film after film formation include drying with hot air, contact drying using a hot roll, and drying using an infrared heater. One of these methods may be employed alone, or two or more may be employed in combination.
  • the drying temperature is not particularly limited but is preferably in the range of 50 to 70 ° C. Further, the drying time at this time is approximately 45 to 75 minutes, although it depends on the concentration of the film forming stock solution and the film forming conditions.
  • moisture content moisture content
  • the moisture content of the film at this time is preferably 1 to 15% by mass, more preferably 1 to 10% by mass, and further preferably 2 to 6% by mass.
  • heat treatment time it is generally within 5 minutes although it varies depending on the heat treatment temperature.
  • the thickness of the PVA film of the present invention is preferably 10 to 120 ⁇ m, more preferably 12 to 80 ⁇ m, further preferably 15 to 75 ⁇ m, and most preferably 20 to 60 ⁇ m. If the thickness is less than 10 ⁇ m, the film may be easily broken in the stretching step described later. Moreover, when thickness exceeds 120 micrometers, there exists a possibility that the stress concerning a film at the time of extending
  • the degree of swelling of the PVA film of the present invention needs to be 200 to 240%, preferably 205 to 235%, and more preferably 210 to 230%. If the degree of swelling is less than 200%, the tension during stretching becomes too large, and it becomes difficult to perform sufficient stretching. On the other hand, if the degree of swelling exceeds 240%, water absorption is high, so that wrinkles and end curls are likely to occur in the production process of the polarizing film, which will be described later, causing breakage during stretching. In order to control the degree of swelling within a predetermined range, for example, the temperature and time when the PVA film after film formation is heat-treated may be adjusted within the above range. The degree of swelling of the PVA film can be measured by the method described later in the item of Examples.
  • the central retardation in the width direction needs to be 10 to 40 nm, more preferably 13 to 37 nm, still more preferably 17 to 33 nm, and most preferably 20 to 30 nm. If the retardation is less than 10 nm, dyeing spots are likely to occur because the dyeing speed when producing a polarizing film is slow. On the other hand, when the retardation exceeds 40 nm, the film is cut even at a low draw ratio.
  • the retardation of the PVA film can be measured by the method described later in the items of the examples.
  • a method of stretching the PVA film by a known method in addition to the method of heat-treating the PVA film after adjusting the humidity described above can be used, and the method is limited to these. It is not a thing.
  • a method of heat treatment after conditioning the humidity is preferable. At this time, it is important to heat-treat only the two parallel sides of the PVA film, preferably only the two sides in the width direction. If the film is not fixed, or if the four sides are fixed and the heat treatment is performed, the stress applied to the film becomes isotropic, so that retardation does not occur and the purpose cannot be achieved.
  • the manufacturing process of a polarizing film can include processes such as moisture adjustment, dyeing, stretching, and color adjustment. At this time, it is preferable to perform wet stretching of the film. Moreover, you may extend
  • the temperature at this time is preferably 20 to 40 ° C., more preferably 25 to 35 ° C., and further preferably 27 to 33 ° C. If the temperature is lower than 20 ° C., the moisture content of the film original fabric becomes low, the tension applied to the film during subsequent stretching increases, and the polarizing performance of the resulting polarizing film may deteriorate. On the other hand, when the temperature exceeds 40 ° C., the water absorption of the original film becomes high and wrinkles and end curls tend to occur in the subsequent process, which may cause breakage during stretching. On the other hand, the time for immersing the original film is generally in the range of 30 to 120 seconds.
  • the dyeing of the PVA film is performed, for example, in an iodine-potassium iodide aqueous solution.
  • the iodine concentration is preferably 0.01 to 0.1% by mass
  • the potassium iodide concentration is preferably 1 to 10% by mass
  • the iodine concentration is 0.02 to 0.08% by mass
  • the potassium iodide concentration 2 to 8% by mass is more preferable
  • potassium iodide concentration of 3 to 6% by mass is further preferable.
  • the temperature of the aqueous solution is not particularly limited, but is preferably 25 to 40 ° C.
  • the wet stretching of the PVA film may be carried out as a step separate from the above-mentioned moisture adjustment and dyeing, but it is efficient and preferably carried out in the above-mentioned water for moisture adjustment or in an aqueous solution for dyeing. More preferably, it is carried out in an aqueous solution for dyeing, ie, an iodine-potassium iodide aqueous solution.
  • the stretch ratio represented by the ratio of the length of the film before and after stretching is preferably 2.0 to 2.9 times, more preferably 2.2 to 2.8 times. It is preferably 2.4 to 2.8 times.
  • the temperature at which the PVA film is wet-stretched is preferably from 20 to 40 ° C., more preferably from 25 to 40 ° C., even more preferably from 25 to 35 ° C., because a polarizing film having better polarizing performance can be obtained. -33 ° C is particularly preferred.
  • the obtained stretched film may be further stretched in a boric acid aqueous solution.
  • the draw ratio at this time is preferably 3 times or less, more preferably 1.2 to 3 times, still more preferably 1.3 to 2.9 times, and most preferably 1.4 to 2.8 times.
  • the boric acid concentration in the aqueous solution is preferably 2 to 6% by mass, more preferably 2 to 5% by mass, and further preferably 2 to 4% by mass.
  • concentration of boric acid is less than 2% by mass, the resulting polarizing film may have more color spots.
  • concentration of boric acid exceeds 6% by mass, the cross-linking of PVA with boric acid becomes excessive, and it may be difficult to stretch the film at a high magnification.
  • the concentration of potassium iodide is preferably 3 to 10% by mass, more preferably 4 to 8% by mass. When the concentration of potassium iodide is less than 3% by mass, the resulting polarizing film may be more bluish. On the other hand, when the concentration of potassium iodide exceeds 10% by mass, the resulting polarizing film may become reddish.
  • the boric acid aqueous solution may contain a metal compound such as iron or zirconium as another component.
  • the temperature of the aqueous solution is not particularly limited, but is preferably 50 to 60 ° C, more preferably 55 to 60 ° C, and further preferably 57 to 60 ° C.
  • the stretching temperature is less than 50 ° C., sufficient stretching cannot be performed, and the polarization degree of the obtained polarizing film may be lowered.
  • stretching temperature exceeds 60 degreeC, there exists a possibility that the transmittance
  • the stretching ratio throughout the entire process is preferably 4.5 to 7.0 times, more preferably 4.7 to 6.5 times, and even more preferably 5.0 to 6.0 times.
  • the polarizing performance of the polarizing film obtained as a draw ratio is less than 4.5 times may become low.
  • the draw ratio exceeds 7.0 times, the film frequently breaks during drawing, and it may be difficult to stably produce a polarizing film.
  • the color adjustment after stretching is preferably performed in an aqueous solution containing boric acid and potassium iodide.
  • a metal compound such as zinc chloride or zinc iodide may be added to the aqueous solution.
  • the temperature of the aqueous solution is preferably lower than the stretching temperature in order to prevent a decrease in polarization performance, specifically 20 to 50 ° C. is preferable, and 30 to 40 ° C. is more preferable. There is no particular limitation on the color adjustment time.
  • the obtained polarizing film can be dried by various types of dryers using a batch method, a continuous float method, a continuous roll contact method, or the like.
  • the drying temperature is preferably from 40 to 80 ° C., more preferably from 45 to 70 ° C., in order to prevent sublimation of iodine from the polarizing film and to suppress the elimination reaction of boric acid crosslinked with PVA. More preferably, it is ⁇ 60 ° C.
  • the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to the following examples.
  • the viscosity average polymerization degree P of PVA the degree of swelling of the PVA film, the retardation Re of the PVA film, the transmittance Y of the polarizing film, and the degree of polarization V were evaluated by the following methods.
  • the evaporating dish heated for 1 hour with a dryer at 105 ° C. was cooled with a desiccator for 30 minutes, and the mass a (g) of the evaporating dish was measured.
  • a 10 mL sample for measuring the degree of polymerization was transferred to this evaporating dish with a whole pipette, dried for 16 hours with a dryer at 105 ° C., cooled with a desiccator for 30 minutes, and the mass b (g) was measured.
  • Example 1 A 5.5 mass% PVA aqueous solution containing 100 parts by mass of PVA having a polymerization degree of 5800 and a saponification degree of 99.8 mol% and 12 parts by mass of glycerin as a plasticizer was cast on a metal roll at 60 ° C. Partial drying was performed to obtain a PVA film having a thickness of 40 ⁇ m. After adjusting the film for 16 hours at 26 ° C. and 20% RH to adjust the moisture content to 3% by mass, both ends of the film in the width direction are parallel to the two sides of the metal frame so that the film does not shrink in the width direction. And heat-treated at 120 ° C. for 3 minutes. When the degree of swelling of the PVA film after heat treatment was measured by the method described in (2) above, it was 230%. Moreover, it was 29 nm when the retardation of the PVA film was measured by the method described in said (3).
  • the PVA film is cut into a flow direction of 11 cm and a width direction of 10 cm, attached to a stretching jig having a flow direction of 4 cm between chucks, and immersed in pure water at 30 ° C. for 1 minute, followed by iodine.
  • a dyeing solution temperature 30 ° C.
  • a dyeing solution containing 0.03% by mass of potassium iodide and 3% by mass of potassium iodide
  • this stretched film was immersed in a stretching solution (temperature 57.5 ° C.) containing 4% by mass of boric acid and 6% by mass of potassium iodide, and 2.3 at a rate of 0.13 m / min. After stretching twice, the stretching direction was fixed and dried at 50 ° C. for 4 minutes to obtain a polarizing film.
  • a stretching solution temperature 57.5 ° C.
  • boric acid 4% by mass of boric acid and 6% by mass of potassium iodide
  • 2.3 a rate of 0.13 m / min.
  • the stretching direction was fixed and dried at 50 ° C. for 4 minutes to obtain a polarizing film.
  • the transmittance and polarization degree of this polarizing film were measured by the methods described in (4) and (5) above, they were 44.0% and 99.99%, respectively, and a polarizing film with good polarization performance was obtained. It was.
  • Example 2 A 5.5 mass% PVA aqueous solution containing 100 parts by mass of PVA having a polymerization degree of 5800 and a saponification degree of 99.8 mol% and 12 parts by mass of glycerin as a plasticizer was cast on a metal roll at 60 ° C. Partial drying was performed to obtain a PVA film having a thickness of 40 ⁇ m. After adjusting the film for 16 hours at 26 ° C. and 20% RH to adjust the moisture content to 3% by mass, both ends of the film in the width direction are parallel to the two sides of the metal frame so that the film does not shrink in the width direction. And heat-treated at 115 ° C. for 3 minutes. When the degree of swelling of the PVA film after heat treatment was measured by the method described in (2) above, it was 240%. Moreover, it was 26 nm when the retardation of the PVA film was measured by the method described in said (3).
  • Example 3 A 5.5% by mass PVA aqueous solution containing 100 parts by mass of PVA having a polymerization degree of 9100 and a saponification degree of 99.8 mol% and 12 parts by mass of glycerin as a plasticizer was cast on a metal roll at 60 ° C. Partial drying was performed to obtain a PVA film having a thickness of 20 ⁇ m. After adjusting the film for 16 hours at 26 ° C. and 20% RH to adjust the moisture content to 3% by mass, both ends of the film in the width direction are parallel to the two sides of the metal frame so that the film does not shrink in the width direction. And heat-treated at 110 ° C. for 3 minutes. When the degree of swelling of the PVA film after heat treatment was measured by the method described in (2) above, it was 230%. Moreover, it was 39 nm when the retardation of the PVA film was measured by the method described in said (3).
  • iodine was adsorbed while stretching the above PVA film and stretched to obtain a polarizing film in the same manner as in Example 1 except that the stretching ratio was 2.5 times.
  • the transmittance and degree of polarization of this polarizing film were measured by the methods described in (4) and (5) above, they were 44.0% and 99.95%, respectively, and polarizing films with good polarizing performance were obtained. It was.
  • Example 4 A 5.5 mass% PVA aqueous solution containing 100 parts by mass of PVA having a polymerization degree of 5200 and a saponification degree of 99.8 mol% and 12 parts by mass of glycerin as a plasticizer was cast on a metal roll at 60 ° C. Partial drying was performed to obtain a PVA film having a thickness of 40 ⁇ m. After adjusting the film for 16 hours at 26 ° C. and 20% RH to adjust the moisture content to 3% by mass, both ends of the film in the width direction are parallel to the two sides of the metal frame so that the film does not shrink in the width direction. And heat-treated at 135 ° C. for 3 minutes. When the degree of swelling of the PVA film after heat treatment was measured by the method described in (2) above, it was 205%. Moreover, it was 29 nm when the retardation of the PVA film was measured by the method described in said (3).
  • Example 3 iodine was adsorbed while stretching the PVA film, and further stretched to obtain a polarizing film.
  • the transmittance and degree of polarization of this polarizing film were measured by the methods described in (4) and (5) above, they were 44.0% and 99.95%, respectively, and polarizing films with good polarizing performance were obtained. It was.
  • Example 5 A 5.5 mass% PVA aqueous solution containing 100 parts by mass of PVA having a polymerization degree of 5500 and a saponification degree of 99.8 mol% and 12 parts by mass of glycerin as a plasticizer was cast on a metal roll at 60 ° C. Partial drying was performed to obtain a PVA film having a thickness of 30 ⁇ m. After adjusting the film for 16 hours at 26 ° C. and 20% RH to adjust the moisture content to 3% by mass, both ends of the film in the width direction are parallel to the two sides of the metal frame so that the film does not shrink in the width direction. And heat-treated at 130 ° C. for 3 minutes. When the degree of swelling of the PVA film after heat treatment was measured by the method described in (2) above, it was 215%. Moreover, it was 29 nm when the retardation of the PVA film was measured by the method described in said (3).
  • iodine was adsorbed while stretching the above PVA film and stretched to obtain a polarizing film in the same manner as in Example 1 except that the stretching ratio was 2.7 times.
  • the transmittance and degree of polarization of this polarizing film were measured by the methods described in (4) and (5) above, which were 44.0% and 99.92%, respectively, and the degree of polarization of the polarizing film was slightly insufficient. It was.
  • Example 2 iodine was adsorbed while stretching the PVA film, and further stretched to obtain a polarizing film.
  • the transmittance and degree of polarization of this polarizing film were measured by the methods described in (4) and (5) above, which were 44.0% and 99.92%, respectively, and the degree of polarization of the polarizing film was slightly insufficient. It was.
  • Example 2 iodine was adsorbed while stretching the above PVA film, and the film was stretched in the same manner as in Example 1 except that the stretching ratio was 1.8 times to obtain a polarizing film.
  • the transmittance and polarization degree of this polarizing film were measured by the methods described in the above (4) and (5), they were 44.0% and 99.20%, respectively, and the polarization degree of the polarizing film was slightly insufficient. It was. Then, when the target value of the draw ratio was changed from 1.8 times to 2.3 times in order to improve the degree of polarization, the drawing film was broken and a polarizing film could not be obtained.
  • the polarizing film obtained from the PVA film of the present invention includes a calculator, a wristwatch, a notebook computer, a liquid crystal monitor, a liquid crystal color projector, a liquid crystal television, an in-vehicle navigation system, a mobile phone, a liquid crystal display device such as a measuring instrument used indoors and outdoors. It can be effectively used for the production of a polarizing plate which is a component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 【課題】高い偏光性能を有する偏光フィルムを製造するための原料として有用な、高重合度のポリビニルアルコールからなるフィルムを提供すること。  【解決手段】重合度が5100~10000のポリビニルアルコールからなり、膨潤度が200~240%、幅方向の中央部のレターデーションが10~40nmであることを特徴とするポリビニルアルコールフィルム。当該ポリビニルアルコールフィルムにおいて、前記ポリビニルアルコールのケン化度は98モル%以上であることが好ましく、ポリビニルアルコールフィルムの厚みは10~120μmであることが好ましい。

Description

ポリビニルアルコールフィルム
 本発明は、偏光性能が良好な偏光フィルムの原料として使用することのできるポリビニルアルコールフィルムに関する。
 液晶表示装置(LCD)はその開発初期の頃、電卓および腕時計等の小型機器で使用されていたが、近年ではノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、携帯電話、屋内外で用いられる計測機器等の広い範囲で使用されるようになっている。一方で、特に液晶テレビ等の用途においては、表示品質の向上、例えばコントラストの向上がますます求められており、LCDの部材の1つである偏光板に対しても、偏光性能の向上が強く求められている。
 従来一般的に使用されている偏光板は、ポリビニルアルコール(以下、PVAと称することがある)からなる原反フィルムに、一軸延伸、ヨウ素や二色性染料による染色処理、ホウ素化合物による固定処理等を施し、得られた偏光フィルムの片面または両面に三酢酸セルロースフィルムや酢酸・酪酸セルロースフィルム等の保護膜を貼り合わせた構成を有している。このような偏光板の偏光性能を向上させる手法として、原料であるPVAの構造を改良する手法、PVAフィルムの物性を制御する方法、偏光板の製造条件を工夫する方法等、様々な手法が提案されており、LCDのコントラスト向上に寄与してきた。
 例えば特許文献1では、2500以上、好ましくは6000~10000の重合度を有するPVAからなる偏光フィルムが光学特性に優れていることが記載されている。重合度の高いPVAを用いることは偏光性能の向上には有利な手法であるが、工業的な実施は困難であった。
 また、偏光性能を向上させる別の方法として、例えば特許文献2では、原反フィルムとして、熱水中での完溶温度(X)と平衡膨潤度(Y)との関係が下式で示される範囲であるPVA系フィルムを用いる偏光フィルムの製造方法が記載されている。
 
 Y > -0.0667X+6.73 ・・・・(I)
 X ≧ 65            ・・・・(II)
 
 しかしながら、上記の発明に使用されるPVAの重合度は好ましくは3500~5000の範囲であり、該製造方法をそのまま高重合度PVAに適用しても、後述する比較例に示されるように、得られる偏光フィルムの偏光性能が充分でないことが判明した。すなわち、高重合度のPVAからなる偏光フィルムを工業的に製造するには、PVAの構造、PVAフィルムの物性等に関する知見を総動員して、最適な原料の条件を見出すことが必要であった。
特開平1-105204号公報 特開平7-120616号公報
 そこで、本発明の目的は、高い偏光性能を有する偏光フィルムを製造するための原料として有用な、高重合度のPVAからなるフィルムを提供することにある。
 発明者らは、PVAの構造およびPVAフィルムの物性に関する知見を最大限に生かして検討を行った。その結果、重合度が5100~10000のPVAからなり、膨潤度が200~240%、幅方向の中央部のレターデーションが10~40nmであることを特徴とするPVAフィルムが上記の目的を達成することを見出し、本発明を完成するに至った。
 この場合において、前記PVAのケン化度が98モル%以上であることが好ましい。
 また、PVAフィルムの厚みは10~120μmであることが好ましい。
 本発明は、重合度が5100~10000のPVAと水とを含有する製膜原液を原料として製膜する、上記のPVAフィルムの製造方法をも包含する。
 本発明はさらに、上記のPVAフィルムを染色、延伸して得られる偏光フィルムをも包含する。
 本発明のPVAフィルムは、偏光性能が良好な偏光フィルムの原料として使用することができる。得られた偏光フィルムは、電卓、腕時計、ノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、携帯電話、屋内外で用いられる計測機器等の液晶表示装置の構成部品である偏光板の作製に有効に用いることができる。
 以下に、本発明を詳細に説明する。
 本発明において用いられるPVAの重合度は、本発明の目的とする偏光フィルムの良好な偏光性能に対応するため、5100~10000であることが必要であり、5200~9500が好ましく、5400~9200がより好ましい。PVAの重合度が5100未満であると、偏光フィルムを製造したときに、高い偏光性能を発現することが困難となる。一方、PVAの重合度が10000を超えると、PVAの生産性が低下する。なお、本発明でいうPVAの重合度は、後述する実施例に記載の方法にしたがって測定した重合度(粘度平均重合度)を意味する。
 また、PVAのケン化度は、98モル%以上であることが好ましく、99モル%以上がより好ましく、99.5モル%以上がさらに好ましく、99.8モル%以上が最も好ましい。PVAのケン化度が98モル%未満であると、偏光フィルムの製造工程でPVAが溶出し易くなり、溶出したPVAがフィルムに付着して偏光フィルムの性能を低下させるおそれがある。
 本発明において使用されるPVAは、ビニルエステルを重合して得られるポリビニルエステル系重合体をケン化することにより製造することができる。ビニルエステルとしては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル等を例示することができ、これらの中から1種または2種以上を選択する。これらの中でも酢酸ビニルが、入手の容易性、PVAの製造の容易性、コスト等の点から好ましく用いられる。重合温度に特に制限はないが、メタノールを重合溶媒として使用する場合は、重合温度はメタノールの沸点付近の60℃前後であることが好ましい。
 PVAは、本発明の効果が損なわれることがない限り、ビニルエステルの単独重合体のケン化物に限定されない。例えば、PVAに不飽和カルボン酸またはその誘導体、不飽和スルホン酸またはその誘導体、炭素数2~30のα-オレフィン等を5モル%未満の割合でグラフト共重合した変性PVA;ビニルエステルと不飽和カルボン酸またはその誘導体、不飽和スルホン酸またはその誘導体、炭素数2~30のα-オレフィン等とを15モル%未満の割合で共重合した変性ポリビニルエステルのケン化物;ホルマリン、ブチルアルデヒド、ベンズアルデヒド等のアルデヒド類でPVAの水酸基の一部を架橋したポリビニルアセタール系重合体などであってもよい。
 上記のPVAを製膜することにより本発明のPVAフィルムが得られる。製膜方法としては、含水PVAを溶融押出する方法の他、流延製膜法、湿式製膜法(貧溶媒中への吐出)、ゲル製膜法(PVA水溶液を一旦冷却ゲル化した後、溶媒を抽出除去)、キャスト製膜法(PVA水溶液を基盤上に流し、乾燥)、およびこれらの組み合わせによる方法等を採用することができる。これらの中でも、溶融押出製膜法および流延製膜法が、良好なPVAフィルムが得られることから好ましい。製膜の際に使用される溶剤としては、水が好適に使用される。
 主にPVAと溶剤とからなる製膜原液の揮発分率は、製膜方法やPVAの分子量によっても変化するが、50~95質量%が好ましく、60~95質量%がより好ましく、70~95質量%がさらに好ましい。揮発分率が50質量%未満であると、製膜原液の粘度が高くなり過ぎて、調製時の濾過や脱泡が困難となり、異物や欠点のないPVAフィルムを得ることが困難となるおそれがある。また、揮発分率が95質量%を超えると、製膜原液の粘度が低くなり過ぎて、目的とする厚みや高い厚み精度を有するPVAフィルムを製造することが困難になるおそれがある。
 本発明のPVAフィルムを製造するにあたり、可塑剤を使用してもよい。可塑剤としては、グリセリン、ジグリセリン、エチレングリコール等が挙げられるが、これらに限定されるものではない。可塑剤の使用量も特に制限されないが、通常はPVA100質量部に対して、10~15質量部の範囲内である。
 製膜後のPVAフィルムの乾燥方法としては、例えば熱風による乾燥や、熱ロールを用いた接触乾燥や、赤外線ヒーターによる乾燥等が挙げられる。これらの方法のうちの1種類を単独で採用してもよいし、2種類以上を組み合わせて採用してもよい。乾燥温度については特に制限はないが、50~70℃の範囲内が好ましい。また、このときの乾燥時間は、製膜原液の濃度や製膜条件にもよるが、おおむね45~75分である。
 乾燥したPVAフィルムを調湿して水分率(含水率)を調整した後、フィルムの平行な二辺のみ、好ましくは幅方向の二辺のみを固定し、100~140℃の範囲内で熱処理を行うことにより、水分減少に伴う応力発生によって、フィルムに穏やかな延伸を加えることができる。これにより、後述する低いレベルのレターデーションを安定的にフィルムに付与することが可能となる。このときのフィルムの水分率は、1~15質量%であることが好ましく、1~10質量%がより好ましく、2~6質量%がさらに好ましい。熱処理の時間に特に制限はなく、また熱処理温度によっても異なるが、おおむね5分以内である。
 こうして得られる本発明のPVAフィルムの厚みは、10~120μmであることが好ましく、12~80μmがより好ましく、15~75μmがさらに好ましく、20~60μmが最も好ましい。厚みが10μm未満になると、後述する延伸工程においてフィルムの破断が発生し易くなるおそれがある。また、厚みが120μmを超えると、延伸時にフィルムにかかる応力が大きくなり、充分な延伸が困難となるおそれがある。
 本発明のPVAフィルムの膨潤度は、200~240%であることが必要であり、205~235%が好ましく、210~230%がより好ましい。膨潤度が200%未満であると、延伸時の張力が大きくなりすぎて、充分な延伸を行うことが困難となる。また、膨潤度が240%を超えると、吸水性が高いために、後述の偏光フィルムの製造工程においてフィルムにしわや端部カールが発生し易くなり、延伸時の破断の原因となる。膨潤度を所定の範囲に制御するためには、例えば、製膜後のPVAフィルムを熱処理する際の温度や時間を上記の範囲内に調整すればよい。PVAフィルムの膨潤度は、実施例の項目において後述する方法により測定することができる。
 本発明のPVAフィルムにおいて、幅方向の中央部のレターデーションは、10~40nmであることが必要であり、13~37nmがより好ましく、17~33nmがさらに好ましく、20~30nmが最も好ましい。レターデーションが10nm未満であると、偏光フィルムを製造する際の染色速度が遅くなるため染色斑が発生し易くなる。また、レターデーションが40nmを超えると、低い延伸倍率でもフィルムの切断が発生する。PVAフィルムのレターデーションは、実施例の項目において後述する方法により測定することができる。
 PVAフィルムのレターデーションを所定の範囲に制御するためには、前述したPVAフィルムを調湿した後に熱処理する方法の他、PVAフィルムを公知の方法で延伸する方法が挙げられ、これらに限定されるものではない。これらの中でも、発生したレターデーションを固定する観点から、調湿した後に熱処理する方法が好ましい。このとき、PVAフィルムの平行な二辺のみ、好ましくは幅方向の二辺のみを固定して熱処理することが重要である。フィルムを固定しないで、あるいは四方を固定して熱処理すると、フィルムにかかる応力が等方的となるため、レターデーションが発生せず、目的を達することができない。
 続いて、本発明のPVAフィルム原反を用いた偏光フィルムの製造方法について述べる。偏光フィルムの製造工程は、水分調整、染色、延伸、色調整等の工程を含むことができる。このとき、フィルムの湿式延伸を行うことが好ましい。また、必要に応じて、湿式延伸する工程に続いて、得られた延伸フィルムをさらにホウ酸水溶液中で延伸してもよい。さらに、必要に応じて、例えばホウ酸およびヨウ化カリウムを含む水溶液中で色調整し、乾燥して、偏光フィルムを製造することができる。
 PVAフィルムの水分調整は、純水または蒸留水中に浸漬して行うことが好ましい。このときの温度としては、20~40℃が好ましく、25~35℃がより好ましく、27~33℃がさらに好ましい。温度が20℃未満であると、フィルム原反の含水率が低くなり、後の延伸の際にフィルムにかかる張力が高くなって、得られる偏光フィルムの偏光性能が低下するおそれがある。また、温度が40℃を超えると、フィルム原反の吸水性が高くなり、後の工程においてフィルムにしわや端部カールが発生し易くなり、延伸時の破断の原因となるおそれがある。一方、フィルム原反を浸漬する時間としては、おおむね30~120秒の範囲内である。
 PVAフィルムの染色は、例えばヨウ素-ヨウ化カリウム水溶液中で行う。このときのヨウ素の濃度は0.01~0.1質量%、ヨウ化カリウムの濃度は1~10質量%にすることが好ましく、ヨウ素濃度0.02~0.08質量%、ヨウ化カリウム濃度2~8質量%がより好ましく、ヨウ素濃度0.03~0.06質量%、ヨウ化カリウム濃度3~6質量%がさらに好ましい。水溶液の温度については特に制限はないが、25~40℃が好ましい。
 PVAフィルム原反の湿式延伸は、上記の水分調整や染色とは別の工程として行ってもよいが、上記の水分調整用の水中で、または染色用の水溶液中で行うことが効率的で好ましく、染色用の水溶液、すなわちヨウ素-ヨウ化カリウム水溶液中で行うことがより好ましい。PVAフィルム原反の湿式延伸の際、延伸前後のフィルムの長さの比で表される延伸倍率は2.0~2.9倍とすることが好ましく、2.2~2.8倍がより好ましく、2.4~2.8倍がさらに好ましい。
 PVAフィルムを湿式延伸する際の温度としては、偏光性能により優れた偏光フィルムを得ることができることから、20~40℃が好ましく、25~40℃がより好ましく、25~35℃がさらに好ましく、27~33℃が特に好ましい。
 前述のとおり、PVAフィルムを湿式延伸する工程に続いて、得られた延伸フィルムをさらにホウ酸水溶液中で延伸してもよい。このときの延伸倍率は3倍以下であることが好ましく、1.2~3倍がより好ましく、1.3~2.9倍がさらに好ましく、1.4~2.8倍が最も好ましい。
 このときの水溶液中のホウ酸濃度は、2~6質量%であることが好ましく、2~5質量%がより好ましく、2~4質量%がさらに好ましい。ホウ酸の濃度が2質量%未満の場合、得られる偏光フィルムに色斑が多くなるおそれがある。またホウ酸の濃度が6質量%を超える場合、ホウ酸によるPVAの架橋が過剰となり、フィルムを高倍率で延伸することが困難となるおそれがある。
 また、偏光フィルムの色相をニュートラルグレーに近づけるため、ホウ酸水溶液にヨウ化カリウムを添加することも好ましい。ヨウ化カリウムの濃度は3~10質量%が好ましく、4~8質量%がより好ましい。ヨウ化カリウムの濃度が3質量%未満の場合、得られる偏光フィルムの青みが強くなるおそれがある。一方、ヨウ化カリウムの濃度が10質量%を超える場合、得られる偏光フィルムの赤みが強くなるおそれがある。ホウ酸水溶液は、他の成分として例えば鉄、ジルコニウム等の金属化合物を含んでいてもよい。
 上記延伸において、水溶液の温度に特に制限はないが、50~60℃が好ましく、55~60℃がより好ましく、57~60℃がさらに好ましい。延伸温度が50℃未満の場合、十分な延伸ができず、得られる偏光フィルムの偏光度が低下するおそれがある。また、延伸温度が60℃を超えると、得られる偏光フィルムの透過度が低下するおそれがある。
 全工程を通しての延伸倍率は4.5~7.0倍とすることが好ましく、4.7~6.5倍がより好ましく、5.0~6.0倍がさらに好ましい。延伸倍率が4.5倍未満であると、得られる偏光フィルムの偏光性能が低くなるおそれがある。また、延伸倍率が7.0倍を超えると、延伸中にフィルムの破断が多発し、安定して偏光フィルムを製造することが困難となるおそれがある。
 延伸後の色調整は、ホウ酸とヨウ化カリウムを含有した水溶液中で行うことが好ましい。このとき、水溶液に塩化亜鉛、ヨウ化亜鉛等の金属化合物を添加してもよい。水溶液の温度は、偏光性能の低下を防ぐため、延伸温度よりも低い方が好ましく、具体的には20~50℃が好ましく、30~40℃がより好ましい。色調整の時間については、特に制限はない。
 得られた偏光フィルムの乾燥は、各種の乾燥機を用いてバッチ式、連続フロート式、連続ロール上接触式等の方法で行うことができる。乾燥温度としては、偏光フィルムからのヨウ素の昇華を防ぐため、またPVAと架橋したホウ酸の脱離反応を抑えるため、40~80℃で行うことが好ましく、45~70℃がより好ましく、50~60℃がさらに好ましい。乾燥時間については特に制限はなく、装置や乾燥温度によって異なるが、例えば3~6分の範囲内である。
 以下に本発明を実施例等により具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。実施例等において、PVAの粘度平均重合度P、PVAフィルムの膨潤度、PVAフィルムのレターデーションRe、偏光フィルムの透過率Yおよび偏光度Vは、以下の方法で評価した。
(1)PVAの粘度平均重合度Pの測定
 PVA0.28g、蒸留水70g、および撹拌子を、100mL共通すり合わせ三角フラスコに投入した。95℃の恒温槽に、栓をした上記三角フラスコを浸漬し、撹拌子で撹拌しながらPVAを溶解し、0.4%PVA水溶液を作製した。このPVA水溶液をブフナー漏斗形ガラスろ過器3Gでろ過し、30℃の恒温水槽中で冷却して、重合度測定用サンプルとした。参照試料として、別の100mL共栓すり合わせ三角フラスコに蒸留水を70g入れて栓をし、30℃の恒温水槽に浸漬した。
 105℃の乾燥機で1時間加熱した蒸発皿を、デシケーターで30分間冷却し、蒸発皿の質量a(g)を測定した。この蒸発皿に重合度測定用サンプル10mLをホールピペットで移動させ、これを105℃の乾燥機で16時間乾燥後、デシケーターで30分間冷却し、質量b(g)を測定した。重合度測定用サンプルの濃度c(g/L)は、下記式により算出した。
 
  c = 1000×(b-a)/10
 
 オストワルド粘度計に、重合度測定用サンプル、あるいは蒸留水を10mLホールピペットで投入し、30℃の恒温水槽中で15分間安定させた。投入した重合度測定用サンプルの落下秒数t(s)と蒸留水の落下秒数t(s)を測定し、下記式により粘度平均重合度Pを算出した。
 
  η = t/t
  [η] = 2.303×Log(η/c)
  Log(P) = 1.613×Log([η]×10/8.29)
 
(2)PVAフィルムの膨潤度の測定
 PVAフィルムを5cm×5cmに裁断し、30℃の蒸留水1Lに4時間浸漬した。このPVAフィルムを蒸留水中から取り出し、2枚のろ紙ではさんで表面の水滴を吸収させた後、質量Dを測定した。さらに、このPVAフィルムを105℃の乾燥機で16時間乾燥し、デシケーターで30分間冷却した後、質量Eを測定し、下記式によりPVAフィルムの膨潤度を算出した。
 
  A = 100×D/E(%)
 
(3)PVAフィルムのレターデーションReの測定
 PVAフィルムの中央部から、幅方向5cm×流れ方向10cmの長方形のサンプルを採取し、大塚電子社製の光学材料検査装置RETS-1100を用いて、測定波長550nmにおけるレターデーションReを測定した。
(4)偏光フィルムの透過率Yの測定
 偏光フィルムの幅方向の中央部から、延伸方向に4cm×幅方向に4cmの正方形のサンプルを2枚採取し、日立製作所製の分光光度計U-4100(積分球付属)を用いて、JIS Z 8722(物体色の測定方法)に準拠し、C光源、2°視野の可視光領域の視感度補正を行い、1枚の偏光フィルムサンプルについて、延伸軸方向に対して45°傾けた場合の光の透過率と-45°傾けた場合の光の透過率を測定して、それらの平均値Y1(%)を求めた。もう1枚の偏光フィルムサンプルについても同様にして、45°傾けた場合の光の透過度と-45°傾けた場合の光の透過度を測定して、それらの平均値Y2(%)を求めた。下記式によりY1とY2を平均し、偏光フィルムの透過率Y(%)とした。
 
  Y = (Y1+Y2)/2
 
(5)偏光フィルムの偏光度Vの測定
 上記(4)で採取した2枚の偏光フィルムを、その延伸方向が平行になるように重ねた場合の光の透過率Y∥(%)、延伸方向が直交するように重ねた場合の光の透過率Y⊥(%)を、(4)に記載された透過率の場合と同様にして測定し、下記式により偏光度V(%)を求めた。
 
  V = {(Y∥-Y⊥)/(Y∥+Y⊥)}1/2×100
 
[実施例1]
 重合度5800、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを26℃、20%RHで16時間調湿して含水率を3質量%に調整した後、フィルムが幅方向に収縮しないようにフィルムの幅方向の両端を金属枠の平行な二辺に固定して、120℃で3分間熱処理をした。熱処理後のPVAフィルムの膨潤度を上記(2)に記載した方法で測定したところ、230%であった。また、PVAフィルムのレターデーションを上記(3)に記載した方法で測定したところ、29nmであった。
 次に、上記のPVAフィルムを流れ方向11cm×幅方向10cmにカットし、流れ方向を延伸方向としてチャック間4cmの延伸治具に取り付け、30℃の純水に1分間浸漬し、続けて、ヨウ素を0.03質量%、ヨウ化カリウムを3質量%の割合で含有する染色液(温度30℃)に浸漬し、0.13m/minの速度で2.6倍に延伸して、ヨウ素を吸着させた。
 続けてこの延伸フィルムを、ホウ酸を4質量%、ヨウ化カリウムを6質量%の割合で含有する延伸液(温度57.5℃)に浸漬し、0.13m/minの速度で2.3倍に延伸した後、延伸方向を固定して50℃で4分間乾燥して偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.99%であり、偏光性能が良好な偏光フィルムが得られた。
[実施例2]
 重合度5800、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを26℃、20%RHで16時間調湿して含水率を3質量%に調整した後、フィルムが幅方向に収縮しないようにフィルムの幅方向の両端を金属枠の平行な二辺に固定して、115℃で3分間熱処理をした。熱処理後のPVAフィルムの膨潤度を上記(2)に記載した方法で測定したところ、240%であった。また、PVAフィルムのレターデーションを上記(3)に記載した方法で測定したところ、26nmであった。
 次に、実施例1と同様にして、上記のPVAフィルムを延伸しながらヨウ素を吸着させ、さらに延伸して偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.96%であり、偏光性能が良好な偏光フィルムが得られた。
[実施例3]
 重合度9100、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み20μmのPVAフィルムを得た。このフィルムを26℃、20%RHで16時間調湿して含水率を3質量%に調整した後、フィルムが幅方向に収縮しないようにフィルムの幅方向の両端を金属枠の平行な二辺に固定して、110℃で3分間熱処理をした。熱処理後のPVAフィルムの膨潤度を上記(2)に記載した方法で測定したところ、230%であった。また、PVAフィルムのレターデーションを上記(3)に記載した方法で測定したところ、39nmであった。
 次に、延伸倍率を2.5倍としたこと以外は実施例1と同様にして、上記のPVAフィルムを延伸しながらヨウ素を吸着させ、さらに延伸して偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.95%であり、偏光性能が良好な偏光フィルムが得られた。
[実施例4]
 重合度5200、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを26℃、20%RHで16時間調湿して含水率を3質量%に調整した後、フィルムが幅方向に収縮しないようにフィルムの幅方向の両端を金属枠の平行な二辺に固定して、135℃で3分間熱処理をした。熱処理後のPVAフィルムの膨潤度を上記(2)に記載した方法で測定したところ、205%であった。また、PVAフィルムのレターデーションを上記(3)に記載した方法で測定したところ、29nmであった。
 次に、実施例3と同様にして、上記のPVAフィルムを延伸しながらヨウ素を吸着させ、さらに延伸して偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.95%であり、偏光性能が良好な偏光フィルムが得られた。
[実施例5]
 重合度5500、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み30μmのPVAフィルムを得た。このフィルムを26℃、20%RHで16時間調湿して含水率を3質量%に調整した後、フィルムが幅方向に収縮しないようにフィルムの幅方向の両端を金属枠の平行な二辺に固定して、130℃で3分間熱処理をした。熱処理後のPVAフィルムの膨潤度を上記(2)に記載した方法で測定したところ、215%であった。また、PVAフィルムのレターデーションを上記(3)に記載した方法で測定したところ、29nmであった。
 次に、実施例1と同様にして、上記のPVAフィルムを延伸しながらヨウ素を吸着させ、さらに延伸して偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.99%であり、偏光性能が良好な偏光フィルムが得られた。
[比較例1]
 重合度4800、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する6.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを26℃、20%RHで16時間調湿して含水率を3質量%に調整した後、フィルムが幅方向に収縮しないようにフィルムの幅方向の両端を金属枠の平行な二辺に固定して、120℃で3分間熱処理をした。熱処理後のPVAフィルムの膨潤度を上記(2)に記載した方法で測定したところ、220%であった。また、PVAフィルムのレターデーションを上記(3)に記載した方法で測定したところ、28nmであった。
 次に、延伸倍率を2.7倍としたこと以外は実施例1と同様にして、上記のPVAフィルムを延伸しながらヨウ素を吸着させ、さらに延伸して偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.92%であり、偏光フィルムの偏光度が若干不足していた。
[比較例2]
 重合度5800、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを26℃、20%RHで16時間調湿して含水率を3質量%に調整した後、フィルムが幅方向に収縮しないようにフィルムの幅方向の両端を金属枠の平行な二辺に固定して、140℃で3分間熱処理をした。熱処理後のPVAフィルムの膨潤度を上記(2)に記載した方法で測定したところ、195%であった。また、PVAフィルムのレターデーションを上記(3)に記載した方法で測定したところ、29nmであった。
 次に、実施例1と同様にして、上記のPVAフィルムを延伸しながらヨウ素を吸着させ、さらに延伸して偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.92%であり、偏光フィルムの偏光度が若干不足していた。
[比較例3]
 重合度5800、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを26℃、20%RHで16時間調湿して含水率を3質量%に調整した後、フィルムが幅方向に収縮しないようにフィルムの幅方向の両端を金属枠の平行な二辺に固定して、110℃で3分間熱処理をした。熱処理後のPVAフィルムの膨潤度を上記(2)に記載した方法で測定したところ、250%であった。PVAフィルムのレターデーションを上記(3)に記載した方法で測定したところ、28nmであった。
 次に、実施例1と同様にして、上記のPVAフィルムを延伸しながらヨウ素を吸着させ、さらに延伸して偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.87%であり、偏光フィルムの偏光度が若干不足していた。
[比較例4]
 重合度5800、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを26℃、20%RHで16時間調湿して含水率を3質量%に調整した後、金属枠の四方すべてに固定して、120℃で3分間熱処理をした。熱処理後のPVAフィルムの膨潤度を上記(2)に記載した方法で測定したところ、230%であった。また、PVAフィルムのレターデーションを上記(3)に記載した方法で測定したところ、5nmであった。
 次に、実施例1と同様にして、上記のPVAフィルムを延伸しながらヨウ素を吸着させ、さらに延伸して偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.97%であり、偏光性能は良好であったが、偏光フィルムを直交させた状態で観察すると大きな染色斑が認められた。
[比較例5]
 重合度5800、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを26℃、65%RHで16時間調湿して含水率を8質量%に調整した後、フィルムが幅方向に収縮しないようにフィルムの幅方向の両端を金属枠の平行な二辺に固定して、120℃で3分間熱処理をした。熱処理後のPVAフィルムの膨潤度を上記(2)に記載した方法で測定したところ、230%であった。また、PVAフィルムのレターデーションを上記(3)に記載した方法で測定したところ、70nmであった。
 次に、実施例1と同様にして、上記のPVAフィルムを延伸しながらヨウ素を吸着させ、さらに延伸倍率を1.8倍とした以外は実施例1と同様に延伸して偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.20%であり、偏光フィルムの偏光度が若干不足していた。そこで、偏光度を改善するために延伸倍率の目標値を1.8倍から2.3倍に変更したところ、延伸切れが発生して偏光フィルムを得ることができなかった。
 上記の結果をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明のPVAフィルムから得られた偏光フィルムは、電卓、腕時計、ノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、携帯電話、屋内外で用いられる計測機器等の液晶表示装置の構成部品である偏光板の作製に有効に用いることができる。

Claims (5)

  1.  重合度が5100~10000のポリビニルアルコールからなり、膨潤度が200~240%、幅方向の中央部のレターデーションが10~40nmであることを特徴とするポリビニルアルコールフィルム。
  2.  前記ポリビニルアルコールのケン化度が98モル%以上である、請求項1に記載のポリビニルアルコールフィルム。
  3.  厚みが10~120μmである、請求項1または2に記載のポリビニルアルコールフィルム。
  4.  重合度が5100~10000のポリビニルアルコールと水とを含有する製膜原液を原料として製膜する、請求項1~3のいずれか1項に記載のポリビニルアルコールフィルムの製造方法。
  5.  請求項1~3のいずれか1項に記載のポリビニルアルコールフィルムを染色、延伸して得られる偏光フィルム。
PCT/JP2009/070800 2008-12-18 2009-12-14 ポリビニルアルコールフィルム WO2010071094A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167027669A KR20160120356A (ko) 2008-12-18 2009-12-14 폴리비닐알코올 필름
KR1020117016313A KR101910668B1 (ko) 2008-12-18 2009-12-14 폴리비닐알코올 필름
CN200980151021.0A CN102257044B (zh) 2008-12-18 2009-12-14 聚乙烯醇膜
JP2010509605A JP5628025B2 (ja) 2008-12-18 2009-12-14 ポリビニルアルコールフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008321801 2008-12-18
JP2008-321801 2008-12-18

Publications (1)

Publication Number Publication Date
WO2010071094A1 true WO2010071094A1 (ja) 2010-06-24

Family

ID=42268764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070800 WO2010071094A1 (ja) 2008-12-18 2009-12-14 ポリビニルアルコールフィルム

Country Status (5)

Country Link
JP (1) JP5628025B2 (ja)
KR (2) KR101910668B1 (ja)
CN (2) CN102257044B (ja)
TW (1) TWI468454B (ja)
WO (1) WO2010071094A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023599A (ja) * 2011-07-21 2013-02-04 Kuraray Co Ltd アクリル系熱可塑性樹脂組成物
JP2013023598A (ja) * 2011-07-21 2013-02-04 Kuraray Co Ltd アクリル系熱可塑性樹脂組成物
WO2013035752A1 (ja) * 2011-09-09 2013-03-14 日本化薬株式会社 偏光素子、および、偏光板
WO2013035751A1 (ja) * 2011-09-09 2013-03-14 日本化薬株式会社 偏光素子および偏光板
WO2013035753A1 (ja) * 2011-09-09 2013-03-14 日本化薬株式会社 偏光素子、および、偏光板
WO2014024712A1 (ja) * 2012-08-06 2014-02-13 株式会社クラレ 積層体、偏光フィルムおよび偏光フィルムの製造方法
WO2014050697A1 (ja) * 2012-09-26 2014-04-03 株式会社クラレ ポリビニルアルコールフィルムおよび偏光フィルム
WO2015076169A1 (ja) * 2013-11-21 2015-05-28 株式会社クラレ ポリビニルアルコールフィルム
JP2017037290A (ja) * 2015-08-12 2017-02-16 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、その製造方法及び該フィルムからなる偏光膜
WO2017033552A1 (ja) * 2015-08-26 2017-03-02 日本合成化学工業株式会社 偏光膜製造用ポリビニルアルコール系樹脂、およびその製造方法、ポリビニルアルコール系フィルムおよびその製造方法、偏光膜、ポリビニルアルコール系樹脂
CN107167860A (zh) * 2017-05-27 2017-09-15 中国石油化工集团公司 聚乙烯醇系薄膜及其测试方法
WO2018199138A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2018199140A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2018199141A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2018199139A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2019151206A1 (ja) * 2018-01-30 2019-08-08 株式会社クラレ ポリビニルアルコールフィルム及びその製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146459A1 (ja) * 2012-03-30 2013-10-03 株式会社クラレ ポリビニルアルコール系重合体フィルム
CN105917256B (zh) * 2014-01-28 2019-01-15 株式会社可乐丽 光学膜制造用初始膜
JP6215864B2 (ja) 2014-04-25 2017-10-18 日東電工株式会社 偏光子、偏光板および画像表示装置
JP6214594B2 (ja) 2014-04-25 2017-10-18 日東電工株式会社 偏光子、偏光板および画像表示装置
JP6215261B2 (ja) 2014-06-27 2017-10-18 日東電工株式会社 長尺状の偏光子、長尺状の偏光板および画像表示装置
KR101577911B1 (ko) * 2014-10-23 2015-12-16 경북대학교 산학협력단 폴리아세트산비닐 필름의 불균일계 비누화에 의한 폴리비닐알코올 필름의 제조방법
CN104459864B (zh) * 2014-12-12 2016-12-07 云南云天化股份有限公司 聚乙烯醇系聚合物薄膜及其制造方法
WO2016137292A1 (ko) * 2015-02-27 2016-09-01 경북대학교 산학협력단 폴리아세트산비닐 필름의 불균일계 비누화에 의한 기능성 추출물 함유 폴리비닐알코올 필름의 제조방법
KR102461860B1 (ko) * 2015-03-17 2022-11-01 미쯔비시 케미컬 주식회사 폴리비닐 알코올계 필름, 폴리비닐 알코올계 필름의 제조 방법, 편광 필름 및 편광판
TWI693151B (zh) * 2015-04-13 2020-05-11 日商可樂麗股份有限公司 聚乙烯醇薄膜
WO2016182010A1 (ja) * 2015-05-13 2016-11-17 株式会社クラレ ポリビニルアルコールフィルム
JP7163000B2 (ja) 2015-06-25 2022-10-31 日東電工株式会社 非偏光部を有する偏光子
CN111732749B (zh) * 2020-08-10 2022-11-11 安徽皖维高新材料股份有限公司 一种聚乙烯醇光学薄膜的制备方法
KR20230116249A (ko) * 2022-01-28 2023-08-04 경북대학교 산학협력단 Pva 포함 기능성 고분자 구조체 제조 방법 및 이에 의해 제조된 pva 포함 기능성 고분자 구조체

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232316A (ja) * 1992-02-25 1993-09-10 Kuraray Co Ltd 偏光膜
JPH05245858A (ja) * 1992-03-04 1993-09-24 Kuraray Co Ltd ポリビニルアルコール系フィルムの製造方法
JPH0815524A (ja) * 1994-06-28 1996-01-19 Sumitomo Bakelite Co Ltd 耐熱性光学用フィルムの製造方法及び耐熱性光学用フィルム並びにこれを用いた液晶表示パネル
JPH09230141A (ja) * 1995-12-22 1997-09-05 Sumitomo Bakelite Co Ltd 光学補償フィルムの製造方法、光学補償フィルム及びそれを用いた液晶表示素子
JP2004020630A (ja) * 2002-06-12 2004-01-22 Kuraray Co Ltd 光学用ポリビニルアルコールフィルムおよびその製造方法
JP2006189560A (ja) * 2005-01-05 2006-07-20 Sumitomo Chemical Co Ltd 偏光フィルムの製造方法、偏光板および光学積層体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543748B2 (ja) 1987-07-03 1996-10-16 株式会社クラレ 偏光フイルム及びその製造法
JP3327423B2 (ja) 1993-10-21 2002-09-24 日本合成化学工業株式会社 偏光フイルムの製造法
ATE328940T1 (de) * 2000-05-01 2006-06-15 Kuraray Co Polyvinylalkoholfolie und polarisationsfilm
TW200617446A (en) * 2004-06-22 2006-06-01 Fuji Photo Film Co Ltd Polarizing plate and liquid crystal display device
CN100445780C (zh) * 2004-06-29 2008-12-24 日东电工株式会社 偏振镜及其制造方法、偏振片、光学薄膜和图像显示装置
KR101202101B1 (ko) * 2004-12-28 2012-11-15 닛폰고세이가가쿠고교 가부시키가이샤 폴리비닐알콜계 필름 및 그것을 이용한 편광막, 편광판

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232316A (ja) * 1992-02-25 1993-09-10 Kuraray Co Ltd 偏光膜
JPH05245858A (ja) * 1992-03-04 1993-09-24 Kuraray Co Ltd ポリビニルアルコール系フィルムの製造方法
JPH0815524A (ja) * 1994-06-28 1996-01-19 Sumitomo Bakelite Co Ltd 耐熱性光学用フィルムの製造方法及び耐熱性光学用フィルム並びにこれを用いた液晶表示パネル
JPH09230141A (ja) * 1995-12-22 1997-09-05 Sumitomo Bakelite Co Ltd 光学補償フィルムの製造方法、光学補償フィルム及びそれを用いた液晶表示素子
JP2004020630A (ja) * 2002-06-12 2004-01-22 Kuraray Co Ltd 光学用ポリビニルアルコールフィルムおよびその製造方法
JP2006189560A (ja) * 2005-01-05 2006-07-20 Sumitomo Chemical Co Ltd 偏光フィルムの製造方法、偏光板および光学積層体

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023599A (ja) * 2011-07-21 2013-02-04 Kuraray Co Ltd アクリル系熱可塑性樹脂組成物
JP2013023598A (ja) * 2011-07-21 2013-02-04 Kuraray Co Ltd アクリル系熱可塑性樹脂組成物
CN103765257A (zh) * 2011-09-09 2014-04-30 日本化药株式会社 偏振元件和偏振片
EP2752692A1 (en) * 2011-09-09 2014-07-09 Nippon Kayaku Kabushiki Kaisha Polarizer and polarizing plate
WO2013035753A1 (ja) * 2011-09-09 2013-03-14 日本化薬株式会社 偏光素子、および、偏光板
JP2013057910A (ja) * 2011-09-09 2013-03-28 Nippon Kayaku Co Ltd 偏光素子、および、偏光板
JP2013057909A (ja) * 2011-09-09 2013-03-28 Nippon Kayaku Co Ltd 偏光素子、および、偏光板
KR101887991B1 (ko) * 2011-09-09 2018-08-14 니폰 가야꾸 가부시끼가이샤 편광소자 및 편광판
KR101887989B1 (ko) * 2011-09-09 2018-09-20 니폰 가야꾸 가부시끼가이샤 편광소자, 및 편광판
CN103765261A (zh) * 2011-09-09 2014-04-30 日本化药株式会社 偏振元件和偏振片
EP2752694A4 (en) * 2011-09-09 2015-06-17 Nippon Kayaku Kk POLARIZATION ELEMENT AND POLARIZATION PLATE
KR20140059187A (ko) * 2011-09-09 2014-05-15 니폰 가야꾸 가부시끼가이샤 편광소자, 및 편광판
KR20140068856A (ko) * 2011-09-09 2014-06-09 니폰 가야꾸 가부시끼가이샤 편광소자 및 편광판
WO2013035751A1 (ja) * 2011-09-09 2013-03-14 日本化薬株式会社 偏光素子および偏光板
KR101981547B1 (ko) * 2011-09-09 2019-05-23 니폰 가야꾸 가부시끼가이샤 편광소자, 및 편광판
US20140218797A1 (en) * 2011-09-09 2014-08-07 Polatechno Co., Ltd. Polarizing Element And Polarizing Plate
US20140218666A1 (en) * 2011-09-09 2014-08-07 Polatechno Co., Ltd. Polarizing Element And Polarizing Plate
US20140218628A1 (en) * 2011-09-09 2014-08-07 Polatechno Co., Ltd. Polarizer And Polarizing Plate
WO2013035752A1 (ja) * 2011-09-09 2013-03-14 日本化薬株式会社 偏光素子、および、偏光板
JPWO2013035751A1 (ja) * 2011-09-09 2015-03-23 日本化薬株式会社 偏光素子および偏光板
EP2752693A4 (en) * 2011-09-09 2015-06-24 Nippon Kayaku Kk POLARIZATION ELEMENT AND POLARIZATION PLATE
CN103765255B (zh) * 2011-09-09 2018-01-30 日本化药株式会社 偏振元件和偏振片
EP2752692A4 (en) * 2011-09-09 2015-06-17 Nippon Kayaku Kk POLARIZER AND POLARIZATION PLATE
KR102059228B1 (ko) * 2012-08-06 2019-12-24 주식회사 쿠라레 적층체, 편광 필름 및 편광 필름의 제조 방법
KR20150040925A (ko) * 2012-08-06 2015-04-15 가부시키가이샤 구라레 적층체, 편광 필름 및 편광 필름의 제조 방법
JPWO2014024712A1 (ja) * 2012-08-06 2016-07-25 株式会社クラレ 積層体、偏光フィルムおよび偏光フィルムの製造方法
WO2014024712A1 (ja) * 2012-08-06 2014-02-13 株式会社クラレ 積層体、偏光フィルムおよび偏光フィルムの製造方法
JP5587517B1 (ja) * 2012-09-26 2014-09-10 株式会社クラレ ポリビニルアルコールフィルムおよび偏光フィルム
JP5563725B1 (ja) * 2012-09-26 2014-07-30 株式会社クラレ ポリビニルアルコールフィルムおよび偏光フィルム
WO2014050697A1 (ja) * 2012-09-26 2014-04-03 株式会社クラレ ポリビニルアルコールフィルムおよび偏光フィルム
TWI611905B (zh) * 2012-09-26 2018-01-21 可樂麗股份有限公司 聚乙烯醇薄膜及其製法、偏光膜及其製法暨偏光板
CN105723259A (zh) * 2013-11-21 2016-06-29 株式会社可乐丽 聚乙烯醇膜
CN105723259B (zh) * 2013-11-21 2019-05-10 株式会社可乐丽 聚乙烯醇膜
WO2015076169A1 (ja) * 2013-11-21 2015-05-28 株式会社クラレ ポリビニルアルコールフィルム
JP2017037290A (ja) * 2015-08-12 2017-02-16 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、その製造方法及び該フィルムからなる偏光膜
WO2017033552A1 (ja) * 2015-08-26 2017-03-02 日本合成化学工業株式会社 偏光膜製造用ポリビニルアルコール系樹脂、およびその製造方法、ポリビニルアルコール系フィルムおよびその製造方法、偏光膜、ポリビニルアルコール系樹脂
WO2018199139A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
KR102463853B1 (ko) 2017-04-26 2022-11-04 미쯔비시 케미컬 주식회사 폴리비닐알코올계 필름, 편광막 및 편광판, 및 폴리비닐알코올계 필름의 제조 방법
WO2018199141A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2018199140A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JP7335697B2 (ja) 2017-04-26 2023-08-30 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
KR20190139854A (ko) * 2017-04-26 2019-12-18 미쯔비시 케미컬 주식회사 폴리비닐알코올계 필름, 편광막 및 편광판, 및 폴리비닐알코올계 필름의 제조 방법
WO2018199138A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JPWO2018199141A1 (ja) * 2017-04-26 2020-03-12 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JPWO2018199139A1 (ja) * 2017-04-26 2020-03-12 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JPWO2018199140A1 (ja) * 2017-04-26 2020-03-12 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JP7335699B2 (ja) 2017-04-26 2023-08-30 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
TWI798217B (zh) * 2017-04-26 2023-04-11 日商三菱化學股份有限公司 聚乙烯醇系薄膜、偏光膜、偏光板及聚乙烯醇系薄膜之製造方法
JP7335696B2 (ja) 2017-04-26 2023-08-30 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JP7335698B2 (ja) 2017-04-26 2023-08-30 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
CN107167860A (zh) * 2017-05-27 2017-09-15 中国石油化工集团公司 聚乙烯醇系薄膜及其测试方法
WO2019151206A1 (ja) * 2018-01-30 2019-08-08 株式会社クラレ ポリビニルアルコールフィルム及びその製造方法

Also Published As

Publication number Publication date
KR101910668B1 (ko) 2018-10-22
TWI468454B (zh) 2015-01-11
CN103992606B (zh) 2016-08-24
KR20110105803A (ko) 2011-09-27
CN102257044B (zh) 2015-12-02
CN103992606A (zh) 2014-08-20
CN102257044A (zh) 2011-11-23
KR20160120356A (ko) 2016-10-17
JP5628025B2 (ja) 2014-11-19
TW201033273A (en) 2010-09-16
JPWO2010071094A1 (ja) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5628025B2 (ja) ポリビニルアルコールフィルム
JP5350368B2 (ja) 偏光フィルムの製造法
JP6788673B2 (ja) 偏光フィルム及びその製造方法
JP5624803B2 (ja) ポリビニルアルコール系重合体フィルム
WO2018003671A1 (ja) 偏光膜用ポリビニルアルコール系フィルム、およびその製造方法、ならびにその偏光膜用ポリビニルアルコール系フィルムを用いた偏光膜
KR102232980B1 (ko) 광학 필름 제조용 원반 필름
JP5179402B2 (ja) 偏光フィルム用ポリビニルアルコールフィルムおよびその製造方法、ならびにそれを用いた偏光フィルムの製造方法
JP2019015926A (ja) 偏光フィルム及びその製造方法
WO2015020044A1 (ja) 光学フィルム製造用原反フィルム
JP5931125B2 (ja) 偏光フィルムの製造方法
KR20160089349A (ko) 폴리비닐알코올 필름
JP2018135426A (ja) ポリビニルアルコールフィルム及びその製造方法、並びにそれを用いた偏光フィルム
JPH06118231A (ja) 光学用フィルム
WO2019151206A1 (ja) ポリビニルアルコールフィルム及びその製造方法
JP5606704B2 (ja) 偏光フィルムの製造方法
WO2021132435A1 (ja) ポリビニルアルコールフィルム及び偏光フィルム
JP6858499B2 (ja) 光学フィルムの製造方法
WO2016121507A1 (ja) フィルム
JP5563331B2 (ja) ポリビニルアルコール系重合体フィルムの製造方法
JP7413116B2 (ja) 偏光フィルムの製造方法
JPH08190017A (ja) 偏光膜の製造方法
WO2021020349A1 (ja) 偏光フィルム及びその製造方法
JP7093350B2 (ja) 原反フィルム、延伸光学フィルムの製造方法、及び延伸光学フィルム
JP6792456B2 (ja) フィルム
WO2022145489A1 (ja) ポリビニルアルコールフィルム及びそれを用いた偏光フィルム並びに偏光板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151021.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010509605

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117016313

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09833397

Country of ref document: EP

Kind code of ref document: A1