WO2010067794A1 - 圧電性複合基板の製造方法、および圧電素子の製造方法 - Google Patents
圧電性複合基板の製造方法、および圧電素子の製造方法 Download PDFInfo
- Publication number
- WO2010067794A1 WO2010067794A1 PCT/JP2009/070536 JP2009070536W WO2010067794A1 WO 2010067794 A1 WO2010067794 A1 WO 2010067794A1 JP 2009070536 W JP2009070536 W JP 2009070536W WO 2010067794 A1 WO2010067794 A1 WO 2010067794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- single crystal
- piezoelectric
- piezoelectric single
- crystal body
- manufacturing
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 60
- 239000002131 composite material Substances 0.000 title claims abstract description 59
- 239000013078 crystal Substances 0.000 claims abstract description 199
- 230000010287 polarization Effects 0.000 claims abstract description 46
- 238000005468 ion implantation Methods 0.000 claims abstract description 21
- 150000002500 ions Chemical class 0.000 claims abstract description 18
- 230000005684 electric field Effects 0.000 claims description 17
- 230000002336 repolarization Effects 0.000 claims description 17
- 238000005304 joining Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 9
- 230000008646 thermal stress Effects 0.000 claims description 6
- 239000010409 thin film Substances 0.000 abstract description 26
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 33
- 238000010897 surface acoustic wave method Methods 0.000 description 19
- 238000005498 polishing Methods 0.000 description 11
- 230000005616 pyroelectricity Effects 0.000 description 10
- 238000005336 cracking Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000002411 adverse Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 229910012463 LiTaO3 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000036544 posture Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/06—Joining of crystals
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/20—Doping by irradiation with electromagnetic waves or by particle radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/04—Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
- H10N30/045—Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/07—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
- H10N30/072—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/08—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/42—Piezoelectric device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49005—Acoustic transducer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49126—Assembling bases
Definitions
- the present invention relates to a method for manufacturing a piezoelectric composite substrate having a plurality of piezoelectric single crystal bodies, and a method for manufacturing a piezoelectric element in which a drive electrode is formed on at least one piezoelectric single crystal body of the piezoelectric composite substrate.
- a piezoelectric vibrator and a piezoelectric resonator using a piezoelectric composite substrate having a piezoelectric single crystal thin film have been developed.
- a manufacturing method in which AlN or ZnO as a piezoelectric material is deposited by sputtering or CVD has been conventionally employed.
- the single crystal thin film obtained by this manufacturing method becomes a C-axis oriented film, and the orientation direction of the crystal axis is aligned above and below the substrate, so that the performance of the piezoelectric element cannot be adjusted by controlling the tilt of the crystal axis or polarization axis. .
- Non-Patent Document 2 As a conventional manufacturing method capable of controlling the tilt of the crystal axis and the polarization axis, there is a manufacturing method for polishing a single crystal substrate of a piezoelectric body (for example, see Non-Patent Document 2). In this method, since most of the piezoelectric single crystal is discarded as polishing waste, the utilization efficiency of the material is poor, and it is difficult to make the thickness of the thin film uniform, and the productivity is poor.
- a plurality of piezoelectric bodies may be bonded together by thermal bonding.
- each piezoelectric body is held and heated after being superposed.
- the piezoelectric body is a thin film, it is easily broken and difficult to handle, and the productivity is also poor.
- the piezoelectric body is heated during manufacturing, resulting in concentration of pyroelectric charges on the bonded surface, resulting in damage to the bonded surface and deterioration of the piezoelectric characteristics.
- the present invention provides a method for manufacturing a piezoelectric composite substrate that can control the tilt of the crystal axis and polarization axis of a single crystal thin film, has good productivity, and can avoid adverse effects due to pyroelectricity in the manufacturing process, and a piezoelectric element
- the purpose is to provide a manufacturing method.
- the present invention is a method for manufacturing a piezoelectric composite substrate comprising a first piezoelectric single crystal body that utilizes the piezoelectric effect and a second piezoelectric single crystal body that is bonded to the first piezoelectric single crystal body. And an ion implantation process, a bonding process, and a peeling process.
- the microcavities are integrated and formed in the release layer by implanting ions into the first polar face of the first piezoelectric single crystal.
- the first polar surface has a substantially uniform polarity.
- the release layer is separated from the first polar face into the first piezoelectric single crystal body.
- the bonding step after the ion implantation step, the first polar surface of the first piezoelectric single crystal body is bonded to the second polar surface of the second piezoelectric single crystal body.
- the second polarity surface has a polarity that is opposite to the first polarity surface and substantially uniform.
- the peeling layer is divided by applying thermal stress to the microcavity after the joining step.
- the postures of the first piezoelectric single crystal body and the second piezoelectric single crystal body can be controlled in the joining step, the direction of the crystal axis can be arbitrarily set. Further, the thin film can be peeled off from the first piezoelectric single crystal body in the peeling step, and the first piezoelectric single crystal body can be reused. Therefore, the tilt of the crystal axis and polarization axis of the piezoelectric single crystal thin film can be controlled, and productivity can be improved.
- the polarity remains without canceling the positive and negative polarities at the bonding surface. .
- the joint surface has pyroelectricity, and pyroelectric charges due to heating are concentrated on the joint surface, which may cause damage to the joint surface.
- the first piezoelectric single crystal body and the second piezoelectric single crystal body are bonded with the polar surfaces having opposite polarities, the positive and negative polarities are canceled at the bonded surfaces, and the pyroelectricity is almost eliminated. Therefore, even if a thermal stress is applied to the microcavity in the peeling step, a good quality bonded surface can be obtained.
- the method for manufacturing a piezoelectric composite substrate according to the present invention preferably includes a repolarization step. Part of polarization may be reversed on the surface of the piezoelectric single crystal body by the action of ion implantation or thermal bonding. Therefore, the reverse polarization can be restored by applying an electric field in the repolarization step after the joining step.
- each piezoelectric body is deformed by application of an electric field in the repolarization step. If the first piezoelectric single crystal body and the second piezoelectric single crystal body are bonded with a polar surface having the same polarity in the bonding process, that is, if the direction of polarization in the direction perpendicular to the bonding surface is reversed. The distortion of each piezoelectric single crystal in the direction perpendicular to the bonding surface due to the application of an electric field in the repolarization process occurs in the opposite direction. This may cause damage to the bonding surface, such as wafer cracking.
- the first piezoelectric single crystal body and the second piezoelectric single crystal body are bonded to each other with a polar surface having opposite polarity, and the direction of polarization in the direction perpendicular to the bonded surface is the same.
- distortion of each piezoelectric single crystal in the direction perpendicular to the bonding surface due to the application of an electric field in the repolarization process occurs in the same direction. Therefore, damage to the joint surface can be suppressed.
- the effect of facilitating detection of the reversal current generated when reversal of the reversal polarization is also obtained. If the first piezoelectric single crystal body and the second piezoelectric single crystal body are bonded with the same polarity polarity plane in the bonding step, the non-inverted polarization of the second piezoelectric single crystal body is restored by applying an electric field. (Inverted). Then, due to the reversal current in the second piezoelectric single crystal body, it becomes difficult to detect the reversal current in the first piezoelectric single crystal body.
- the first piezoelectric single crystal body and the second piezoelectric single crystal body are bonded to each other with a polar surface having a reverse polarity in the bonding step, the first piezoelectric single crystal body is bonded by applying an electric field in the repolarization step.
- the polarization of the second piezoelectric single crystal is hardly reversed, and it is easy to detect the reversal current in the first piezoelectric single crystal. If the reversal current from the first piezoelectric single crystal can be detected, the control of the repolarization process and the determination of the completion of the repolarization process become easy.
- the repolarization process of the present invention is included after the peeling process. As a result, reversal polarization due to heating or the like in the peeling step can be restored in the repolarization step while suppressing damage due to distortion.
- the second piezoelectric single crystal is bonded to the first piezoelectric single crystal so that the polarization axis is in the same direction as the first piezoelectric single crystal.
- the energy required to shift the constituent elements in the electric dipole inside the piezoelectric single crystal is significantly smaller than the energy required to remove the constituent elements from the crystal unit. Therefore, by injecting ions of opposite polarity from the first polarity surface, ions are injected from the same direction as the direction in which ions indicating spontaneous polarization inside the piezoelectric single crystal are shifted. Polarity inversion can be suppressed.
- the piezoelectric single crystal is LiTaO 3 or LiNbO 3
- Li ions, Ta ions, and Nb ions shift to the + C axis side, so it is better to inject cations from the ⁇ C axis side to the + C axis side. .
- the electrode pattern in which the polar surface is partially exposed may be provided on the first polar surface or the second polar surface of the present invention.
- the method for manufacturing a piezoelectric element of the present invention may include a step of forming a drive electrode on the first piezoelectric single crystal body of the piezoelectric composite substrate manufactured by the method according to any one of claims 1 to 6. Good.
- the directions of the crystal axes of the first piezoelectric single crystal body and the second piezoelectric single crystal body can be arbitrarily set in the joining step.
- the 1st piezoelectric single crystal body which peeled the thin film at the peeling process can be reused. For this reason, the inclination of the crystal axis and polarization axis of the single crystal thin film can be controlled, and the productivity can be improved.
- the first piezoelectric single crystal body and the second piezoelectric single crystal body are bonded to each other with a polar surface having a reverse polarity, so that the bonding surface has almost no pyroelectricity, and peeling after the bonding step is performed. Even if thermal stress is applied to the microcavity in the process, almost no pyroelectric charge is generated, and damage to the joint surface can be suppressed and good piezoelectric characteristics can be obtained.
- FIG. 3 is a diagram showing a manufacturing process flow of the method for manufacturing the surface acoustic wave resonator according to the first embodiment of the present invention. It is a schematic diagram which shows the piezoelectric composite board
- FIG. 1 is a diagram showing a manufacturing process flow of a method for manufacturing a surface acoustic wave resonator according to this embodiment.
- FIG. 2 is a schematic view showing a piezoelectric composite substrate and a piezoelectric single crystal in each process in the manufacturing process flow.
- a 42 ° Y-cut LiTaO 3 substrate is employed as the first piezoelectric single crystal body 1. Accordingly, the crystal axis of the piezoelectric single crystal 1 is inclined by 42 ° from the principal surface normal direction, and the polarization axis thereof is inclined by 48 ° from the principal surface normal direction.
- the crystal axis affects the electromechanical coupling coefficient, frequency temperature characteristics, and sound velocity, and has an important effect on the frequency, bandwidth, insertion loss, etc. of the surface acoustic wave resonator. Therefore, a surface acoustic wave resonator having excellent characteristics can be configured by setting the inclination of the crystal axis of the piezoelectric single crystal 1 used in the present embodiment as described above.
- the design freedom such as the frequency and bandwidth of the surface acoustic wave resonator to be manufactured, the insertion loss, the electromechanical coupling coefficient, the frequency temperature characteristic, and the speed of sound is free. Increase the degree.
- the piezoelectric single crystal body 1 is subjected to polarization treatment.
- a plurality of electric dipoles spontaneously polarized along the polarization axis are aligned inside the piezoelectric single crystal body by the polarization treatment, and the polarization directions of the electric dipoles are aligned.
- the positive and negative polarities appear to be canceled between the adjacent electric dipoles, but both main surfaces of the piezoelectric single crystal body 1 having no adjacent electric dipoles have either positive or negative polarity, A positive polarity surface or a negative polarity surface having almost uniform polarity over the entire surface.
- the second piezoelectric single crystal body 2 subjected to the polarization treatment is adopted as the support substrate of the first piezoelectric single crystal body 1.
- the piezoelectric single crystal body 2 it is preferable to use a Z-cut wafer or the like having a large market distribution amount because the manufacturing cost is lowered.
- an ion implantation step of implanting H + ions into the main surface 1B of the piezoelectric single crystal body 1 is performed (S1).
- Main surface 1B is mirror-polished, and here is a first polar surface that is negative and substantially uniform.
- the main surface 1A facing the main surface 1B is a positive polarity and a substantially uniform polar surface.
- the implantation energy of H + ions is 150 KeV, and the dose (ion implantation density) is 9 ⁇ 10 16 atoms / cm 2 .
- H + ions are accumulated from the main surface 1B of the piezoelectric single crystal 1 at a depth of about 1 ⁇ m to form a microcavity, thereby forming the release layer 3.
- a part of polarization in the main surface 1B may be reversed, and the main surface 1B may be partially positive.
- a joining step for directly joining the main surface 1B of the piezoelectric single crystal body 1 to the main surface 2A of the piezoelectric single crystal body 2 is performed (S2).
- the main surface 2A is mirror-polished, and is a positive polarity and substantially uniform second polar surface here.
- the main surface 2B facing the main surface 2A is a negative polarity and a substantially uniform polar surface.
- this joining step (S2) is performed by thermal joining or the like, a part of polarization in the main surface 1B may be reversed by the heat energy, and the main surface 1B may become partially positive.
- a part of the polarization in the main surface 2A may be reversed, and the main surface 2A may be partially negative.
- the piezoelectric single crystal body 1 and the piezoelectric single crystal body 2 are bonded to each other between the positive polarity surface and the negative polarity surface as described above, the polarities of the polar surfaces basically cancel each other. However, since the polarization polarity partially reversed by ion implantation or thermal bonding remains without being canceled, the bonding surface has weak pyroelectricity.
- the bonded piezoelectric single crystal body 1 and the piezoelectric single crystal body 2 are placed in a 500 ° C. heating environment, and a peeling process for dividing the peeling layer 3 is performed (S3).
- S3 a peeling process for dividing the peeling layer 3
- the microcavity grows due to thermal stress, and a thickness portion of about 1 ⁇ m below the release layer 3 of the piezoelectric single crystal 1 is peeled off as the piezoelectric single crystal thin film 4 together with the piezoelectric single crystal 2.
- the piezoelectric composite substrate 5 is configured.
- the thickness of the piezoelectric single crystal thin film 4 is determined by the energy at the time of ion implantation, and the thickness is not affected by substrate swell and the like and is stable. Since this thickness determines the sound velocity of the surface acoustic wave, the surface acoustic wave resonator can be set to a stable performance by the manufacturing method of the present embodiment.
- the remaining piezoelectric single crystal body 1 and the piezoelectric composite substrate 5 are subjected to a polishing process of performing chemical mechanical polishing (CMP) after the respective release layers (S4).
- CMP chemical mechanical polishing
- the peeled surface between the piezoelectric single crystal 1 and the piezoelectric composite substrate 5 is roughened by about 10 nm in terms of RMS (root mean square), it is mirror-polished by CMP so that the roughness becomes 1 nm or less.
- polishing is performed in the depth direction by about 100 nm.
- the piezoelectric single crystal body 1 after mirror polishing is used again in the ion implantation process.
- the piezoelectric single crystal 1 after mirror polishing is reused, several tens to several hundreds of piezoelectric single crystal thin films 4 can be obtained from the high-priced piezoelectric single crystal 1. Therefore, the usage amount of Li, Ta, etc. per piece of the piezoelectric single crystal thin film 4 can be suppressed, and the environmental load can be suppressed.
- the piezoelectric single crystal 2 having a low unit price is used, the piezoelectric composite substrate 5 can be obtained at a low unit price.
- the reason why the piezoelectric single crystal 1 has a high unit price is that the growth rate of the single crystal is slow, it is easy to break, it is difficult to slice, and raw materials such as Li and Ta are scarce.
- a repolarization process is performed on the piezoelectric composite substrate 5 after mirror polishing (S5).
- a pulse voltage of about 5 ms and 22 kV is applied to the piezoelectric composite substrate 5 from the normal direction of the principal surface of the piezoelectric composite substrate 5 in a 400 ° C. environment.
- the surface on the piezoelectric single crystal thin film 4 side has a positive polarity
- the surface on the piezoelectric single crystal body 2 side has a negative polarity
- a positive potential is applied to the piezoelectric single crystal body 2 side.
- an electric field is applied to the inside of the piezoelectric composite substrate 5 in a certain direction, the positive pole of the electric dipole faces a negative potential, the negative pole of the electric dipole faces a positive potential, and a part of the inverted polarization is restored. It will be.
- This step is preferably performed after the peeling step, and the temperature is 200 to 1200 ° C. in consideration of the melting point of each part and the difference in thermal expansion coefficient. Note that the higher the temperature, the lower the coercive electric field of the piezoelectric body, so that the applied electric field can be kept low. Further, it is desirable that the electric field be intermittently applied in the range of 1 ⁇ s to 1 minute, since damage to the crystal due to the DC electric field can be suppressed.
- heating at 200 ° C. or higher is desirable because it relaxes the distortion of crystals received by ion implantation.
- the heating temperature for taking crystal strain is preferably lower than the Curie temperature by 100 ° C. or more in order to avoid the elimination of polarization.
- each layer of the piezoelectric composite substrate 5 disposed in the electric field is deformed by the piezoelectric effect.
- the piezoelectric single crystal thin film 4 and the piezoelectric single crystal The direction of polarization with the crystal body 2 in the main surface normal direction is such that the upper side is positive and the lower side is negative.
- the distortion in the main surface normal direction is the same,
- the relative displacement amount of the single crystal can be suppressed, the risk of wafer cracking can be reduced, and the quality of the bonding surface between the piezoelectric single crystal 1 and the piezoelectric single crystal 2 can be improved.
- the inclination of the polarization axis in the piezoelectric single crystal body 2 from the principal surface normal direction is arbitrary, but it is preferable to match the inclination of the piezoelectric single crystal body 1 and the polarization axis to the crack of the wafer.
- an aluminum IDT electrode 6 is formed on the piezoelectric single crystal thin film 4 of the piezoelectric composite substrate 5 by using a photolithography process to form a surface acoustic wave resonator (S6).
- the piezoelectric composite substrate 5 according to the first embodiment of the present invention can be manufactured.
- the present invention is adopted in the method of manufacturing the surface acoustic wave resonator.
- the present invention is not limited to this, and the method of manufacturing the bulk acoustic wave resonator or the interfacial acoustic wave resonator can be used. Can also be adopted.
- the surface acoustic wave resonator and the bulk acoustic wave resonator may have a general configuration.
- a configuration such as Japanese Patent Application No. 2003-32409 may be employed.
- Second Embodiment An example of a process in which the method for manufacturing a piezoelectric composite substrate according to the second embodiment of the present invention is employed in the method for manufacturing a surface acoustic wave vibrator will be described.
- FIG. 3 is a configuration example of the piezoelectric composite substrate 15 manufactured in the present embodiment.
- the piezoelectric composite substrate 15 includes piezoelectric single crystal bodies 11 and 12, a Si substrate 17, and an intermediate layer electrode pattern 16.
- the piezoelectric single crystals 11 and 12 are piezoelectric single crystals each having a thickness of 0.1 to 9.9 ⁇ m.
- the Si substrate 17 is a substrate having a thickness of about 0.5 mm and is bonded to the piezoelectric single crystal body 12.
- a vibration space 15 ⁇ / b> A formed by removing the sacrificial layer is exposed at the bonding surface between the Si substrate 17 and the piezoelectric single crystal body 12. Further, the piezoelectric single crystals 11 and 12 are provided with a hole 15B reaching the vibration space 15A.
- the intermediate layer electrode pattern 16 is partially provided between the piezoelectric single crystal bodies 11 and 12, and the piezoelectric single crystal bodies 11 and 12 are directly bonded in a region including the end portion of the main surface, and the central portion of the main surface is formed. Joining is performed via the intermediate layer electrode pattern 16 in the region including the same.
- the piezoelectric single crystal body 11 is a first piezoelectric single crystal body, and has the same configuration as the piezoelectric single crystal body 1 of the first embodiment. That is, the piezoelectric single crystal body 11 is a 42 ° Y-cut LiTaO 3 substrate, and both main surfaces of the piezoelectric single crystal body 11 are positive or negative surfaces having either positive or negative polarity by polarization treatment.
- the piezoelectric single crystal body 12 is a second piezoelectric single crystal body, and has the same configuration as the piezoelectric single crystal body 11. That is, the piezoelectric single crystal body 12 is a 42 ° Y-cut LiTaO 3 substrate, and both main surfaces are a positive polarity surface or a negative polarity surface having a positive or negative polarity by polarization treatment.
- FIG. 4 is a view showing a manufacturing process flow of the method for manufacturing the surface acoustic wave resonator according to the present embodiment.
- FIG. 5 is a schematic diagram showing a piezoelectric composite substrate and a piezoelectric single crystal in each process in the manufacturing process flow of the method for manufacturing the surface acoustic wave vibrator according to the present embodiment.
- an ion implantation process for implanting H + ions into the main surface 11B of the first piezoelectric single crystal body 11 is performed (S11).
- the main surface 11B is mirror-polished, and here is a first polar surface that is negative and substantially uniform.
- the main surface 11A facing the main surface 11B is a positive and substantially uniform polar surface.
- the implantation energy of H + ions is 150 KeV, and the dose (ion implantation density) is 9 ⁇ 10 16 atoms / cm 2 .
- H + ions are accumulated at a depth of about 1 ⁇ m from the main surface 11B of the piezoelectric single crystal 11 to form a microcavity, thereby forming the release layer 13.
- a part of polarization in the main surface 11B may be reversed, and the main surface 11B may become partially positive.
- a bonding step is performed in which the main surface 11B of the piezoelectric single crystal 11 is directly bonded to the main surface of the second piezoelectric single crystal 12 (S12).
- the piezoelectric single crystal body 12 used in this step is formed on the composite substrate 19 in advance.
- the composite substrate 19 is obtained by bonding the negative polarity surface of the piezoelectric single crystal body 12 to the Si substrate 17 provided with the sacrificial layer 18 and providing the intermediate layer electrode pattern 16 on the positive polarity surface of the piezoelectric single crystal body 12. .
- the main surface 11B which is the negative polarity surface of the piezoelectric single crystal body 11, is bonded to the surface of the composite substrate 19 where the positive polarity surface of the piezoelectric single crystal body 12 and the intermediate layer electrode pattern 16 are exposed.
- the composite substrate 19 is manufactured as follows. First, a recess that becomes the vibration space 15A is formed on the main surface of the Si substrate 17 by reactive ion etching, and a sacrificial layer 18 is formed in the recess. Thereafter, the main surface of the Si substrate 17 is smoothed by CMP. Next, the ion-implanted piezoelectric single crystal is bonded to the sacrificial layer forming surface of the Si substrate 17, and the thin film that becomes the piezoelectric single crystal 12 is peeled off by thermal peeling. Next, the intermediate layer electrode pattern 16 is formed after the surface polishing by CMP.
- the composite substrate 19 can be prepared through the above steps.
- the piezoelectric single crystal body 11 and the piezoelectric single crystal body 12 are regions including the principal surface end portions, and the positive polarity surface and the negative polarity surface are directly joined. The polarities of each other will cancel each other. However, since the polarization polarity partially reversed by ion implantation or thermal bonding remains without being canceled, the bonding surface has weak pyroelectricity. Note that such pyroelectricity does not occur at a position where the intermediate layer electrode pattern 16 is interposed between the piezoelectric single crystal body 11 and the piezoelectric single crystal body 12.
- the bonded piezoelectric single crystal body 11 and the composite substrate 19 are placed in a 500 ° C. heating environment, and a peeling process for dividing the peeling layer 13 is performed (S13).
- a peeling process for dividing the peeling layer 13 is performed (S13).
- the microcavity grows due to thermal stress, and a portion having a thickness of about 1 ⁇ m below the release layer 13 of the piezoelectric single crystal 11 is peeled off as the piezoelectric single crystal 14, together with the composite substrate 19.
- the composite substrate 15 is configured.
- the thickness of the piezoelectric single crystal body 14 is determined by the energy at the time of ion implantation, and the thickness is not affected by substrate waviness or the like and is stable. Since this thickness determines the sound velocity of the surface acoustic wave, the surface acoustic wave vibrator can be set to a stable performance by the manufacturing method of the present embodiment.
- the remaining piezoelectric single crystal body 11 and the piezoelectric composite substrate 15 are subjected to a polishing process of performing chemical mechanical polishing (CMP) after the respective release layers (S14).
- CMP chemical mechanical polishing
- the piezoelectric single crystal body 1 after mirror polishing is used again in the ion implantation process.
- a repolarization process is performed on the piezoelectric composite substrate 15 after mirror polishing (S15).
- a pulse voltage of about 5 ms and 22 kV is applied to the piezoelectric composite substrate 15 from the normal direction of the principal surface of the piezoelectric composite substrate 15 in a 400 ° C. environment.
- a negative potential is applied to the piezoelectric single crystal body 14 side, and a positive potential is applied to the piezoelectric single crystal body 12 side.
- an electric field is applied to the inside of the piezoelectric composite substrate 15 in a certain direction, and a part of the inverted polarization is restored.
- the piezoelectric layers of the piezoelectric composite substrate 15 disposed in the electric field are deformed by the piezoelectric effect.
- the normal surface normal between the piezoelectric single crystal body 14 and the piezoelectric single crystal body 12 is present.
- the direction of polarization is such that the upper side is positive and the lower side is negative, so the distortion in the main surface normal direction is the same direction, and the relative displacement of each piezoelectric single crystal is suppressed. And the risk of wafer cracking can be reduced.
- the direction of strain parallel to the principal surface can be matched. It can. Since the adverse effect due to the strain in the repolarization process occurs regardless of the presence or absence of the intermediate layer electrode pattern, the effect of reducing the strain can be obtained even if the plurality of piezoelectric single crystals are not directly joined.
- the reversal in the piezoelectric single crystal body 12 in this step is performed. There are almost no electrodes, and it is easy to detect a minute inversion current in the piezoelectric single crystal body 14.
- holes 15B reaching the sacrificial layer are formed in the piezoelectric single crystal bodies 14 and 12 of the piezoelectric composite substrate 15 by etching or the like, and the sacrificial layer 18 is removed to form the vibration space 15A (S16).
- the piezoelectric composite substrate 15 according to the second embodiment of the present invention can be manufactured by the above manufacturing method.
- the present invention is adopted in the method of manufacturing the surface acoustic wave vibrator.
- the present invention is not limited to this, but in the method of manufacturing the bulk acoustic wave vibrator or the interfacial acoustic wave vibrator. Can also be adopted.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
単結晶薄膜の結晶軸や分極軸の傾きを制御可能で生産性が良く、製造工程での焦電性による悪影響を回避できる圧電性複合基板の製造方法の提供を図る。複数の圧電体を備える圧電性複合基板の製造方法であって、イオン注入工程(S1)と接合工程(S2)と剥離工程(S3)を含む。イオン注入工程(S1)では、圧電体の圧電単結晶体(1)へH+イオンを注入する。接合工程(S2)では圧電単結晶体(1)に圧電単結晶体(2)を接合する。その際、圧電単結晶体(1)と圧電単結晶体(2)とで接合面側の極性面の正負を逆にしておく。そして、剥離工程(S3)では、加熱により圧電単結晶体(1)を剥離層(3)で分断して圧電単結晶薄膜(4)を剥離する。
Description
この発明は、複数の圧電単結晶体を備える圧電性複合基板の製造方法、および、圧電性複合基板の少なくとも一つの圧電単結晶体に駆動電極を形成した圧電素子の製造方法に関するものである。
近年、圧電体の単結晶薄膜を備える圧電性複合基板を利用する圧電振動子や圧電共振子が開発されている。圧電体の単結晶薄膜の製造には、従来はスパッタ法やCVD法などにより圧電体であるAlNやZnOを堆積する製造方法が採用されている。(例えば、非特許文献1参照。)。この製造方法で得られる単結晶薄膜はC軸配向膜となり結晶軸の配向方向が基板の上下に整列するため、結晶軸や分極軸の傾きを制御して圧電素子の性能を調整することができない。
また、結晶軸や分極軸の傾きを制御できる従来の製造方法としては、圧電体の単結晶基体を研磨する製造方法がある(例えば、非特許文献2参照。)。この方法では、圧電単結晶の大半が研磨くずとして廃棄されるため材料の利用効率が悪く、また、薄膜の厚みを均質にすることが難しく生産性が悪い。
また、圧電素子を構成する際に複数の圧電体を熱接合により貼り合わせることがある。(例えば、特許文献1参照)。この場合、各圧電体を把持して重ね合わせてから加熱することになるが、圧電体が薄膜であれば割れやすく取り扱いが困難であり、やはり生産性が悪い。
Y. Osugi et al.; "Single crystalFBAR with LiNbO3 and LiTaO3", 2007 IEEE MTT-S International MicrowaveSymposium, pp.873-876
M. Bruel ; "A new Silicon OnInsulator material technology", Electronics Letters, vol. 31, Issue 14,June 6th 1995, p.1201
従来の製造方法を用いて圧電体の薄膜を別の圧電体に接合した圧電性複合基板を製造する場合、単結晶薄膜の結晶軸や分極軸の傾きを制御しながら生産性を改善することは難しかった。
その上、複数の圧電体を接合した圧電性複合基板では、製造時に圧電体が加熱されることで、接合面に焦電荷が集中して生じて接合面にダメージが及び圧電特性が劣化することがある。
そこで本発明は、単結晶薄膜の結晶軸や分極軸の傾きを制御可能で生産性が良く、製造工程での焦電性による悪影響を回避できる圧電性複合基板の製造方法、および、圧電素子の製造方法の提供を目的とする。
この発明は、圧電効果が利用される第1の圧電単結晶体と、第1の圧電単結晶体に接合される第2の圧電単結晶体とを備える圧電性複合基板の製造方法であって、イオン注入工程と接合工程と剥離工程とを含む。イオン注入工程は、第1の圧電単結晶体の第1の極性面にイオンを注入することにより、剥離層にマイクロキャビティを集積して形成する。第1の極性面は略均一な極性を有する。剥離層は第1の極性面から第1の圧電単結晶体の内部に離れる。接合工程は、イオン注入工程の後、第2の圧電単結晶体の第2の極性面に第1の圧電単結晶体の第1の極性面を接合する。第2の極性面は、第1の極性面とは逆極性で略均一な極性を有する。剥離工程は、接合工程の後、マイクロキャビティに熱応力を作用させるにより剥離層を分断する。
この製造方法によれば、接合工程で第1の圧電単結晶体と第2の圧電単結晶体との姿勢を制御できるため結晶軸の方向を任意に設定できる。また、剥離工程で第1の圧電単結晶体から薄膜を剥離でき、第1の圧電単結晶体を再利用できる。このため、圧電単結晶薄膜の結晶軸や分極軸の傾きを制御可能で生産性が改善できる。
また、仮に接合工程で、第1の圧電単結晶体と第2の圧電単結晶体とを同極性の極性面で接合していれば、接合面で正負の極性が打ち消されずに極性が残留する。このため接合面が焦電性を持つに至り、加熱による焦電荷が接合面に集中して生じ、接合面にダメージが及ぶ危険性がある。しかしながら本製造方法では、第1の圧電単結晶体と第2の圧電単結晶体とを逆極性の極性面で接合するので、接合面で正負の極性が打ち消されて焦電性がほとんどなくなる。したがって、剥離工程でマイクロキャビティに熱応力を作用させても良好な品質の接合面が得られる。
この発明の圧電性複合基板の製造方法は、再分極工程を含むと好適である。イオン注入や熱接合などの作用によって圧電単結晶体の表面では一部の分極が反転することがある。そこで、接合工程の後、再分極工程で電界を印加することで、反転分極を復元させることができる。
なお、再分極工程での電界印加により各圧電体は変形することになる。仮に接合工程で第1の圧電単結晶体と第2の圧電単結晶体とを同極性の極性面で接合していれば、すなわち接合面に垂直な方向での分極の向きが逆であれば、再分極工程での電界印加による接合面に垂直な方向での各圧電単結晶体の歪みが逆向きに生じる。これにより、ウェハ割れが生じるなど接合面にダメージが及ぶことがある。しかしながら本製造方法によれば、第1の圧電単結晶体と第2の圧電単結晶体とは逆極性の極性面で接合していて、接合面に垂直な方向での分極の向きが同じなので、再分極工程での電界印加による接合面に垂直な方向での各圧電単結晶体の歪みが同方向に生じる。したがって、接合面に及ぶダメージが抑えられる。
その上、本製造方法によれば、反転分極が復元する際に生じる反転電流の検出が容易になる効果も得られる。仮に接合工程で第1の圧電単結晶体と第2の圧電単結晶体とを同極性の極性面で接合していれば、電界印加により第2の圧電単結晶体の非反転な分極まで復元(反転)することがある。すると、第2の圧電単結晶体での反転電流によって、第1の圧電単結晶体での反転電流の検出が困難になる。一方、本製造方法によれば、接合工程で第1の圧電単結晶体と第2の圧電単結晶体とを逆極性の極性面で接合しているので、再分極工程での電界印加により第2の圧電単結晶体の分極まで反転させることが殆ど無く、第1の圧電単結晶体での反転電流の検出が容易である。第1の圧電単結晶体からの反転電流を検出することができれば、再分極処理の制御や再分極処理の完了の判断が容易になる。
この発明の再分極工程は、剥離工程の後に含むと好適である。これにより剥離工程での加熱などによる反転分極についても、歪みによるダメージを抑えながら再分極工程で復元できる。
この発明の接合工程は、分極軸が第1の圧電単結晶体と同方向になるようにして、第2の圧電単結晶体を第1の圧電単結晶体に接合すると好適である。これにより、各圧電単結晶体への電界印加の際に、接合面に平行な方向での歪みの向きまで同じになり、さらにウェハ割れなどの危険性を抑えられる。
この発明のイオン注入工程は、第1の極性面に逆極性のイオンを注入すると好適である。一般に圧電単結晶体の内部の電気双極子における構成元素をシフトさせるのに必要なエネルギーは、構成元素を結晶単位から外すのに必要なエネルギーに比べ、著しく小さい。そこで、第1の極性面から逆極性のイオンを注入することにより、圧電単結晶体の内部の自発分極を示すイオンのシフトしている方向と同一方向からイオンを注入することになり、自発分極の極性反転を抑制できる。例えば、圧電単結晶体がLiTaO3やLiNbO3であれば、LiイオンやTaイオン、Nbイオンは+C軸側にシフトするので、-C軸側から+C軸側に陽イオンを注入するとよい。
この発明の第1の極性面または第2の極性面に、部分的に極性面が露出する電極パターンを備えてもよい。
このように接合面に電極パターンを形成する場合であっても、接合面の一部で第1の圧電単結晶体と第2の圧電単結晶体とが直接接合していれば、本発明の採用によって、直接接合した位置での焦電性を抑えられ望ましい。
本発明の圧電素子の製造方法は、請求項1~6のいずれかに係る方法で製造された圧電性複合基板の、第1の圧電単結晶体に駆動電極を形成する工程を有してもよい。
この発明によれば、接合工程で第1の圧電単結晶体と第2の圧電単結晶体との結晶軸の方向を任意に設定できる。また、剥離工程で薄膜を剥離した第1の圧電単結晶体を再利用できる。このため、単結晶薄膜の結晶軸や分極軸の傾きを制御可能であり、その生産性が改善できる。
その上、接合工程では、第1の圧電単結晶体と第2の圧電単結晶体とを逆極性の極性面で接合するので接合面が焦電性をほとんど持たず、接合工程の後の剥離工程でマイクロキャビティに熱応力を作用させても焦電荷が殆ど生じず、接合面のダメージを抑えて良好な圧電特性が得られる。
《第1の実施形態》
以下、本発明の第1の実施形態に係る圧電性複合基板の製造方法を、表面弾性波共振子の製造方法に採用した工程例を説明する。
以下、本発明の第1の実施形態に係る圧電性複合基板の製造方法を、表面弾性波共振子の製造方法に採用した工程例を説明する。
図1は、本実施形態に係る表面弾性波共振子の製造方法の製造工程フローを示す図である。図2は、同製造工程フローにおける各工程での圧電性複合基板や、圧電単結晶体を示す模式図である。
本実施形態では第1の圧電単結晶体1として42°YカットのLiTaO3基板を採用する。したがって、この圧電単結晶体1の結晶軸は主面法線方向から42°傾き、その分極軸は主面法線方向から48°傾く。結晶軸は電気機械結合係数や周波数温度特性、音速に影響し、弾性表面波共振子の周波数や帯域幅、挿入損失などに重要な影響を与える。そのため、本実施形態で利用する圧電単結晶体1の結晶軸の傾きを上記のようにしておくことで、優れた特性の弾性表面波共振子を構成できる。本実施形態では、圧電単結晶体1の結晶軸が制御可能であるため、製造する弾性表面波共振子の周波数や帯域幅、挿入損失、電気機械結合係数、周波数温度特性、音速などの設計自由度を高められる。
また、この圧電単結晶体1には分極処理を施しておく。分極処理によって圧電単結晶体の内部では、分極軸に沿って自発分極した複数の電気双極子が整列し、各電気双極子の分極の向きが揃った状態になる。この状態では、隣接する電気双極子の間で正負の極性が打ち消されたようになるが、隣接する電気双極子が存在しない圧電単結晶体1の両主面は正負いずれかの極性を帯び、全面で極性がほぼ均一な正極性面または負極性面になる。
また、本実施形態では第1の圧電単結晶体1の支持基板として、分極処理された第2の圧電単結晶体2を採用する。圧電単結晶体2としては市場流通量の多いZカットウエハなどを使用すると製造コストが低くなって好適である。
製造工程フローでは、まず圧電単結晶体1の主面1BにH+イオンを注入するイオン注入工程を行う(S1)。主面1Bは鏡面研磨されていて、ここでは負極性で略均一な第1の極性面である。なお、主面1Bに対向する主面1Aは正極性で略均一な極性面である。
H+イオンの注入エネルギーは150KeVとし、ドーズ量(イオン注入密度)は9×1016atom/cm2とする。これにより、H+イオンが圧電単結晶体1の主面1Bから約1μmの深さで集積してマイクロキャビティを形成して剥離層3を構成する。ここで、注入されるイオンのエネルギーによって、主面1Bにおける一部の分極が反転して主面1Bが部分的に正極性になることがある。
次に、圧電単結晶体2の主面2Aに圧電単結晶体1の主面1Bを直接接合する接合工程を行う(S2)。主面2Aは鏡面研磨されていて、ここでは正極性で略均一な第2の極性面である。なお、主面2Aに対向する主面2Bは負極性で略均一な極性面である。ここで、この接合工程(S2)を熱接合などで行うと、熱エネルギーによって主面1Bにおける一部の分極が反転して主面1Bが部分的に正極性になることがある。また、主面2Aにおける一部の分極が反転して主面2Aが部分的に負極性になることもある。
このように圧電単結晶体1と圧電単結晶体2とを正極性面と負極性面とで接合するため、基本的には、各極性面の互いの極性は打ち消し合うことになる。ただし、イオン注入や熱接合によって反転した一部の分極の極性は打ち消されずに残留するので、接合面は弱い焦電性を持つことになる。
次に、接合した圧電単結晶体1と圧電単結晶体2とを500℃加熱環境下におき、剥離層3を分断する剥離工程を行う(S3)。これにより剥離層3では、マイクロキャビティが熱応力により成長し、圧電単結晶体1の剥離層3より下部の約1μmの厚み部分が、圧電単結晶薄膜4として剥離して圧電単結晶体2とともに圧電性複合基板5を構成する。圧電単結晶薄膜4の厚みはイオン注入するときのエネルギーで決まり、基板うねりなどに厚みが左右されることはなく安定する。この厚みは、表面弾性波の音速を決定するので、本実施形態の製造方法により表面弾性波共振子を安定した性能に設定できる。
この工程では、圧電性複合基板5における圧電単結晶薄膜4と圧電単結晶体2との接合面に熱が作用することになる。上述のように、この接合面は弱い焦電性を持つのでいくらかの焦電荷が生じることになる。しかしながら、この焦電荷の総量は少ないので、圧電単結晶体1と圧電単結晶体2との接合面は十分な品質を確保できる。
次に、残りの圧電単結晶体1と圧電性複合基板5とで、それぞれの剥離層の後を化学機械研磨(CMP)する研磨工程を行う(S4)。ここで、圧電単結晶体1と圧電性複合基板5との剥離面は、それぞれRMS(二乗平均平方根)で10nm程度荒れるので、CMPにより荒れが1nm以下になるように鏡面研磨する。CMPでは深さ方向に約100nmほど研磨を行う。鏡面研磨後の圧電単結晶体1は再びイオン注入工程で利用する。
鏡面研磨後の圧電単結晶体1は再利用するので、高単価な圧電単結晶体1から、数十枚~数百枚の圧電単結晶薄膜4を得ることができる。したがって、圧電単結晶薄膜4の一枚当たりのLiやTaなどの使用量を抑制でき環境負荷を抑えられる。また、低単価な圧電単結晶体2を利用するので圧電性複合基板5を低単価で得られる。圧電単結晶体1が高単価となるのは、単結晶の育成速度が遅く、割れやすいためスライスしづらく、LiやTaなどの原料が希少であるためである。
次に、鏡面研磨後の圧電性複合基板5に再分極工程を行う(S5)。ここでは、圧電性複合基板5に対して、400℃環境下で約5ms、22kVのパルス電圧を圧電性複合基板5の主面法線方向から印加する。本実施形態では圧電単結晶薄膜4側の表面を正極性に、圧電単結晶体2側の表面を負極性にしていて、分極の向きもこれにしたがっているので、圧電単結晶薄膜4側に負電位を、圧電単結晶体2側に正電位を印加する。これにより、圧電性複合基板5の内部に一定方向に電界が印加され、電気双極子の正極が負電位を向き、電気双極子の負極が正電位を向き、一部の反転した分極が復元することになる。この工程は剥離工程後に行うことが望ましく、温度は各部の融点や熱膨張係数差を考慮して、200~1200℃で行う。なお、高温であるほど圧電体の抗電界が下がるので、印加する電界を低く抑えることができる。また、電界は1μs~1分の範囲で断続的に印加すると直流電界による結晶へのダメージを抑制でき望ましい。また、200℃以上での加熱は、イオン注入により受けた結晶のひずみを緩和するため望ましい。結晶ひずみをとるための加熱温度は、分極の解消を避けるためにキューリー温度より100℃以上低くするとよい。
なお、この工程では圧電効果によって電界中に配置された圧電性複合基板5の各層は変形することになる。その際、接合面での圧電単結晶薄膜4の歪みと圧電単結晶体2の歪みが相違することで、ウェハ割れが生じる危険性があるが、本製造方法では圧電単結晶薄膜4と圧電単結晶体2との主面法線方向での分極の向きを、上側が正極性で下側が負極性となるようにしているため、主面法線方向での歪みが同じ向きになり、各圧電単結晶体の相対変位量を抑えることができ、ウェハ割れの危険性を低減して圧電単結晶体1と圧電単結晶体2との接合面の品質を改善できる。なお、圧電単結晶体2における分極軸の主面法線方向からの傾きは任意であるが、圧電単結晶体1と分極軸の傾きまで合わせればウェハ割れをさらに抑制でき好適である。
また、圧電体内の分極が電界の印加方向に反転する際には反転電流が発生する。本製造方法のように主面法線方向での分極の向きを圧電単結晶薄膜4と圧電単結晶体2とで同じにしていれば、圧電単結晶体2での反転電極がほとんど無いので、圧電単結晶薄膜4での微小な反転電流を検出しやすくなる。したがってこの反転電流を用いての再分極工程の制御や再分極工程の完了判断が可能になる。
次に、圧電性複合基板5の圧電単結晶薄膜4上に、フォトリソグラフィプロセスを利用して、アルミニウムによるIDT電極6を形成して表面弾性波共振子を構成する(S6)。
以上の製造工程フローにより、本発明の第1の実施形態に係る圧電性複合基板5を製造できる。
本実施形態では、表面弾性波共振子の製造方法に本発明を採用する実施形態を示したが、本発明はこれ以外にも、バルク弾性波共振子や、界面弾性波共振子の製造方法にも採用することができる。表面弾性波共振子やバルク弾性波共振子は一般的な構成を採用するとよい。境界弾性波共振子については、特願2003-32409などの構成を採用するとよい。
《第2の実施形態》
次に、本発明の第2の実施形態に係る圧電性複合基板の製造方法を、表面弾性波振動子の製造方法に採用した工程例を説明する。
次に、本発明の第2の実施形態に係る圧電性複合基板の製造方法を、表面弾性波振動子の製造方法に採用した工程例を説明する。
図3は本実施形態で製造される圧電性複合基板15の構成例である。
圧電性複合基板15は、圧電単結晶体11,12とSi基板17と中間層電極パターン16とを備える。圧電単結晶体11,12は、それぞれ0.1~9.9μmの厚みの圧電単結晶体である。Si基板17は約0.5mmの厚みの基板であって、圧電単結晶体12に接合されている。Si基板17と圧電単結晶体12との接合面には、犠牲層を除去してなる振動空間15Aが露出する。また、圧電単結晶体11,12には、振動空間15Aに至る孔15Bを備える。中間層電極パターン16は、圧電単結晶体11,12の間に部分的に設けられていて、圧電単結晶体11,12は主面端部を含む領域で直接接合し、主面中央部を含む領域で中間層電極パターン16を介して接合する。
本実施形態では、圧電単結晶体11が第1の圧電単結晶体であり、第1の実施形態の圧電単結晶体1と同様な構成である。すなわち、圧電単結晶体11は42°YカットのLiTaO3基板であり、圧電単結晶体11の両主面は分極処理によって正負いずれかの極性を帯びた正極性面または負極性面である。
同様に、圧電単結晶体12が第2の圧電単結晶体であり、圧電単結晶体11と同様の構成である。すなわち、この圧電単結晶体12は42°YカットのLiTaO3基板であり、両主面は分極処理により正負いずれかの極性を帯びた正極性面または負極性面である。
図4は、本実施形態に係る表面弾性波共振子の製造方法の製造工程フローを示す図である。図5は、本実施形態に係る表面弾性波振動子の製造方法の製造工程フローにおける各工程での圧電性複合基板や、圧電単結晶体を示す模式図である。
製造工程フローでは、まず第1の圧電単結晶体11の主面11BにH+イオンを注入するイオン注入工程を行う(S11)。主面11Bは鏡面研磨されていて、ここでは負極性で略均一な第1の極性面である。なお、主面11Bに対向する主面11Aは正極性で略均一な極性面である。
H+イオンの注入エネルギーは150KeVとし、ドーズ量(イオン注入密度)は9×1016atom/cm2とする。これにより、H+イオンが圧電単結晶体11の主面11Bから約1μmの深さで集積してマイクロキャビティを形成して剥離層13を構成する。ここで、注入されるイオンのエネルギーによって、主面11Bにおける一部の分極が反転して主面11Bが部分的に正極性になることがある。
次に、第2の圧電単結晶体12の主面に圧電単結晶体11の主面11Bを直接接合する接合工程を行う(S12)。この工程で用いる圧電単結晶体12は、予め複合基板19に形成されている。複合基板19は犠牲層18が設けられたSi基板17に、圧電単結晶体12の負極性面を接合し、圧電単結晶体12の正極性面に中間層電極パターン16を設けたものである。そのため、複合基板19の圧電単結晶体12の正極性面と中間層電極パターン16とが露出する表面に、圧電単結晶体11の負極性面である主面11Bを接合する。
なお、この複合基板19は次のようにして製造しておく。まず、Si基板17の主面にリアクティブイオンエッチングにより振動空間15Aとなる窪みを形成し、その窪みに犠牲層18を形成する。その後、Si基板17の主面はCMPにより平滑化する。次に、イオン注入を行った圧電単結晶体をSi基板17の犠牲層形成面に接合し、熱剥離により圧電単結晶体12となる薄膜を剥離する。次いで、CMPによる表面研磨後に中間層電極パターン16を形成する。以上のような工程を経ることにより複合基板19を用意できる。
ここで、圧電単結晶体11と圧電単結晶体12とは主面端部を含む領域で、正極性面と負極性面とを直接接合するため、基本的には、接合箇所での各極性面の互いの極性は打ち消し合うことになる。ただし、イオン注入や熱接合によって反転した一部の分極の極性は打ち消されずに残留するので、接合面は弱い焦電性を持つことになる。なお、圧電単結晶体11と圧電単結晶体12との間に中間層電極パターン16が介在する位置では、このような焦電性は生じない。
次に、接合した圧電単結晶体11と複合基板19を500℃加熱環境下におき、剥離層13を分断する剥離工程を行う(S13)。これにより剥離層13では、マイクロキャビティが熱応力により成長し、圧電単結晶体11の剥離層13より下部の約1μmの厚み部分が、圧電単結晶体14として剥離して複合基板19とともに、圧電性複合基板15を構成する。圧電単結晶体14の厚みはイオン注入するときのエネルギーで決まり、基板うねりなどに厚みが左右されることはなく安定する。この厚みは、表面弾性波の音速を決定するので、本実施形態の製造方法により表面弾性波振動子を安定した性能に設定できる。
この工程では、圧電性複合基板15における圧電単結晶体14と複合基板19と接合面に熱が作用することになる。上述のように、この接合面の主面端部を含む領域は弱い焦電性を持つので、いくらかの焦電荷が生じることになる。しかしながら、この焦電荷の総量は少ないので、接合面は十分な品質を確保できる。
次に、残りの圧電単結晶体11と圧電性複合基板15とで、それぞれの剥離層の後を化学機械研磨(CMP)する研磨工程を行う(S14)。鏡面研磨後の圧電単結晶体1は再びイオン注入工程で利用する。
次に、鏡面研磨後の圧電性複合基板15に再分極工程を行う(S15)。ここでは、圧電性複合基板15に対して、400℃環境下で約5ms、22kVのパルス電圧を圧電性複合基板15の主面法線方向から印加する。本実施形態では圧電単結晶体14側に負電位を、圧電単結晶体12側に正電位を印加する。これにより、圧電性複合基板15の内部に一定方向に電界が印加され、一部の反転した分極が復元することになる。
なお、この工程では圧電効果によって電界中に配置された圧電性複合基板15の各圧電体層は変形することになる。その際、圧電体層間の接合面での各層の歪みが相違することでウェハ割れが生じる危険性があるが、本製造方法では圧電単結晶体14と圧電単結晶体12との主面法線方向での分極の向きを、上側が正極性で下側が負極性となるようにしているため、主面法線方向での歪みが同じ向きになり、各圧電単結晶体の相対変位量を抑えることができ、ウェハ割れの危険性を低減できる。さらには、圧電単結晶体12における分極軸の主面法線方向からの傾きと、圧電単結晶体11の分極軸の傾きとを合わせることで、主面に平行な歪みの向きも合わせることができる。なお、再分極工程での歪みによる悪影響は中間層電極パターンの有無によらずに生じるので、仮に複数の圧電単結晶体が直接接合されていなくても、歪みを低減する効果は得られる。
また、本製造方法のように主面法線方向での分極の向きを圧電単結晶体14と圧電単結晶体12とで同じにしていれば、本工程での圧電単結晶体12での反転電極がほとんど無く、圧電単結晶体14での微小な反転電流を検出しやすい。
次に、圧電性複合基板15の圧電単結晶体14,12に、犠牲層に至る孔15Bをエッチングなどにより形成し、犠牲層18を除去して振動空間15Aを構成する(S16)。
以上の製造方法により、本発明の第2の実施形態に係る圧電性複合基板15を製造できる。
本実施形態では、表面弾性波振動子の製造方法に本発明を採用する実施形態を示したが、本発明はこれ以外にも、バルク弾性波振動子や、界面弾性波振動子の製造方法にも採用することができる。
1,2,4,11,12,14…圧電単結晶体
3,13…剥離層
5,15…圧電性複合基板
6…IDT電極
15A…振動空間
15B…孔
16…中間層電極パターン
17…Si基板
18…犠牲層
19…複合基板
3,13…剥離層
5,15…圧電性複合基板
6…IDT電極
15A…振動空間
15B…孔
16…中間層電極パターン
17…Si基板
18…犠牲層
19…複合基板
Claims (7)
- 圧電効果が利用される第1の圧電単結晶体と、前記第1の圧電単結晶体に接合される第2の圧電単結晶体と、を備える圧電性複合基板の製造方法であって、
前記第1の圧電単結晶体の略均一な極性を有する第1の極性面にイオンを注入することにより、前記第1の極性面から内部に離れた剥離層にマイクロキャビティを集積して形成するイオン注入工程と、
前記イオン注入工程の後、前記第2の圧電単結晶体の、前記第1の極性面とは逆極性で略均一な極性を有する第2の極性面に、前記第1の圧電単結晶体の前記第1の極性面を接合する接合工程と、
前記接合工程の後、前記マイクロキャビティに熱応力を作用させるにより前記剥離層を分断する剥離工程と、を含む、圧電性複合基板の製造方法。 - 前記接合工程の後、前記第1の圧電単結晶体に対して電界を印加して、前記第1の極性面の一部の反転した分極を復元させる再分極工程を含む、請求項1に記載の圧電性複合基板の製造方法。
- 前記再分極工程は前記剥離工程の後に含む、請求項2に記載の圧電性複合基板の製造方法。
- 前記接合工程は、分極軸が前記第1の圧電単結晶体と同方向になるようにして、前記第2の圧電単結晶体を前記第1の圧電単結晶体に接合する、請求項1~3のいずれかに記載の圧電性複合基板の製造方法。
- 前記イオン注入工程は、前記第1の極性面に同極性のイオンを注入する、請求項1~4のいずれかに記載の複合基板の製造方法。
- 前記第1の極性面または前記第2の極性面に、部分的に前記極性面が露出する電極パターンを備える、請求項1~5のいずれかに記載の圧電性複合基板の製造方法。
- 請求項1~6のいずれかに記載の方法で製造された圧電性複合基板の、前記第1の圧電単結晶体に駆動電極を形成する工程を有する、圧電素子の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010542105A JP5353897B2 (ja) | 2008-12-10 | 2009-12-08 | 圧電性複合基板の製造方法、および圧電素子の製造方法 |
US13/111,040 US8572825B2 (en) | 2008-12-10 | 2011-05-19 | Method for producing piezoelectric composite substrate and method for producing piezoelectric element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008314093 | 2008-12-10 | ||
JP2008-314093 | 2008-12-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/111,040 Continuation US8572825B2 (en) | 2008-12-10 | 2011-05-19 | Method for producing piezoelectric composite substrate and method for producing piezoelectric element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010067794A1 true WO2010067794A1 (ja) | 2010-06-17 |
Family
ID=42242783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/070536 WO2010067794A1 (ja) | 2008-12-10 | 2009-12-08 | 圧電性複合基板の製造方法、および圧電素子の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8572825B2 (ja) |
JP (1) | JP5353897B2 (ja) |
WO (1) | WO2010067794A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015012005A1 (ja) * | 2013-07-25 | 2015-01-29 | 日本碍子株式会社 | 複合基板及びその製法 |
JP2015505958A (ja) * | 2011-11-30 | 2015-02-26 | ベイカー ヒューズ インコーポレイテッド | イオン注入法によって作られた結晶センサ |
JP2017114694A (ja) * | 2015-12-21 | 2017-06-29 | 信越化学工業株式会社 | 化合物半導体積層基板及びその製造方法、並びに半導体素子 |
JP2019077607A (ja) * | 2017-10-20 | 2019-05-23 | 信越化学工業株式会社 | タンタル酸リチウム単結晶基板及びこれの接合基板とこの製造法及びこの基板を用いた弾性表面波デバイス |
JP2020092322A (ja) * | 2018-12-05 | 2020-06-11 | 太陽誘電株式会社 | 圧電膜およびその製造方法、圧電デバイス、共振器、フィルタ並びにマルチプレクサ |
WO2021157218A1 (ja) * | 2020-02-03 | 2021-08-12 | 信越化学工業株式会社 | 複合基板およびその製造方法 |
JP2022512700A (ja) * | 2018-10-16 | 2022-02-07 | 国立大学法人東北大学 | 弾性波デバイス |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4636292B2 (ja) * | 2008-08-27 | 2011-02-23 | 株式会社村田製作所 | 電子部品及び電子部品の製造方法 |
JP4582235B2 (ja) * | 2008-10-31 | 2010-11-17 | 株式会社村田製作所 | 圧電デバイスの製造方法 |
DE102012202727B4 (de) * | 2012-02-22 | 2015-07-02 | Vectron International Gmbh | Verfahren zur Verbindung eines ersten elektronischen Bauelements mit einem zweiten Bauelement |
JP2017034527A (ja) * | 2015-08-04 | 2017-02-09 | セイコーエプソン株式会社 | 圧電素子、プローブ、超音波測定装置、電子機器、分極処理方法、及び、初期化装置 |
CN116032233A (zh) * | 2023-03-29 | 2023-04-28 | 武汉敏声新技术有限公司 | 谐振器的制备方法及谐振器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1155070A (ja) * | 1997-06-02 | 1999-02-26 | Matsushita Electric Ind Co Ltd | 弾性表面波素子とその製造方法 |
JP2001223556A (ja) * | 2000-02-14 | 2001-08-17 | Ueda Japan Radio Co Ltd | 圧電振動子及びアレイ型圧電振動子 |
JP2003017967A (ja) * | 2001-06-29 | 2003-01-17 | Toshiba Corp | 弾性表面波素子及びその製造方法 |
JP2004513517A (ja) * | 2000-11-06 | 2004-04-30 | コミツサリア タ レネルジー アトミーク | ターゲット基板に結合される少なくとも一の薄層を備えた積層構造の作製方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55124316A (en) * | 1979-03-20 | 1980-09-25 | Toshiba Corp | Manufacture of piezoelectric substrate for surface wave element |
JP3264074B2 (ja) | 1994-01-24 | 2002-03-11 | 松下電器産業株式会社 | 積層強誘電体及びその接合方法 |
FR2788176B1 (fr) * | 1998-12-30 | 2001-05-25 | Thomson Csf | Dispositif a ondes acoustiques guidees dans une fine couche de materiau piezo-electrique collee par une colle moleculaire sur un substrat porteur et procede de fabrication |
-
2009
- 2009-12-08 JP JP2010542105A patent/JP5353897B2/ja active Active
- 2009-12-08 WO PCT/JP2009/070536 patent/WO2010067794A1/ja active Application Filing
-
2011
- 2011-05-19 US US13/111,040 patent/US8572825B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1155070A (ja) * | 1997-06-02 | 1999-02-26 | Matsushita Electric Ind Co Ltd | 弾性表面波素子とその製造方法 |
JP2001223556A (ja) * | 2000-02-14 | 2001-08-17 | Ueda Japan Radio Co Ltd | 圧電振動子及びアレイ型圧電振動子 |
JP2004513517A (ja) * | 2000-11-06 | 2004-04-30 | コミツサリア タ レネルジー アトミーク | ターゲット基板に結合される少なくとも一の薄層を備えた積層構造の作製方法 |
JP2003017967A (ja) * | 2001-06-29 | 2003-01-17 | Toshiba Corp | 弾性表面波素子及びその製造方法 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015505958A (ja) * | 2011-11-30 | 2015-02-26 | ベイカー ヒューズ インコーポレイテッド | イオン注入法によって作られた結晶センサ |
US11239405B2 (en) | 2013-07-25 | 2022-02-01 | Ngk Insulators, Ltd. | Method of producing a composite substrate |
US10211389B2 (en) | 2013-07-25 | 2019-02-19 | Ngk Insulators, Ltd. | Composite substrate |
WO2015012005A1 (ja) * | 2013-07-25 | 2015-01-29 | 日本碍子株式会社 | 複合基板及びその製法 |
JP2017114694A (ja) * | 2015-12-21 | 2017-06-29 | 信越化学工業株式会社 | 化合物半導体積層基板及びその製造方法、並びに半導体素子 |
JP2019077607A (ja) * | 2017-10-20 | 2019-05-23 | 信越化学工業株式会社 | タンタル酸リチウム単結晶基板及びこれの接合基板とこの製造法及びこの基板を用いた弾性表面波デバイス |
JP2022512700A (ja) * | 2018-10-16 | 2022-02-07 | 国立大学法人東北大学 | 弾性波デバイス |
US12074581B2 (en) | 2018-10-16 | 2024-08-27 | Skyworks Solutions, Inc. | Methods and assemblies related to fabrication of acoustic wave devices |
US12081188B2 (en) | 2018-10-16 | 2024-09-03 | Skyworks Solutions, Inc. | Acoustic wave devices |
JP2020092322A (ja) * | 2018-12-05 | 2020-06-11 | 太陽誘電株式会社 | 圧電膜およびその製造方法、圧電デバイス、共振器、フィルタ並びにマルチプレクサ |
JP7269719B2 (ja) | 2018-12-05 | 2023-05-09 | 太陽誘電株式会社 | 圧電膜およびその製造方法、圧電デバイス、共振器、フィルタ並びにマルチプレクサ |
JP2021125496A (ja) * | 2020-02-03 | 2021-08-30 | 信越化学工業株式会社 | 複合基板およびその製造方法 |
WO2021157218A1 (ja) * | 2020-02-03 | 2021-08-12 | 信越化学工業株式会社 | 複合基板およびその製造方法 |
JP7271458B2 (ja) | 2020-02-03 | 2023-05-11 | 信越化学工業株式会社 | 複合基板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5353897B2 (ja) | 2013-11-27 |
JPWO2010067794A1 (ja) | 2012-05-17 |
US8572825B2 (en) | 2013-11-05 |
US20110220275A1 (en) | 2011-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5353897B2 (ja) | 圧電性複合基板の製造方法、および圧電素子の製造方法 | |
JP4821834B2 (ja) | 圧電性複合基板の製造方法 | |
EP2226934B1 (en) | Composite piezoelectric substrate manufacturing method | |
US9240540B2 (en) | Piezoelectric device | |
KR101251031B1 (ko) | 복합 압전기판의 제조방법 및 압전 디바이스 | |
WO2012043615A1 (ja) | 圧電デバイスの製造方法 | |
JP2003017967A (ja) | 弾性表面波素子及びその製造方法 | |
WO2013031651A1 (ja) | 弾性波装置及びその製造方法 | |
JP5522263B2 (ja) | 圧電デバイス、圧電デバイスの製造方法 | |
US20130111719A1 (en) | Method for implanting a piezoelectric material | |
JP5359615B2 (ja) | 複合基板の製造方法 | |
JP5277975B2 (ja) | 複合基板の製造方法 | |
JP5992912B2 (ja) | 弾性波装置及びその製造方法 | |
CN116323471A (zh) | 用于转移膜的方法 | |
JP5413025B2 (ja) | 複合基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09831898 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010542105 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09831898 Country of ref document: EP Kind code of ref document: A1 |