WO2012043615A1 - 圧電デバイスの製造方法 - Google Patents

圧電デバイスの製造方法 Download PDF

Info

Publication number
WO2012043615A1
WO2012043615A1 PCT/JP2011/072160 JP2011072160W WO2012043615A1 WO 2012043615 A1 WO2012043615 A1 WO 2012043615A1 JP 2011072160 W JP2011072160 W JP 2011072160W WO 2012043615 A1 WO2012043615 A1 WO 2012043615A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
film
ion implantation
substrate
thin film
Prior art date
Application number
PCT/JP2011/072160
Other languages
English (en)
French (fr)
Inventor
岩本敬
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012536501A priority Critical patent/JP5447682B2/ja
Publication of WO2012043615A1 publication Critical patent/WO2012043615A1/ja
Priority to US13/850,513 priority patent/US9246462B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02697Forming conducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/025Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks comprising an acoustic mirror
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49005Acoustic transducer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.

Definitions

  • the present invention relates to a method for manufacturing a piezoelectric device using a thin film of a piezoelectric single crystal material.
  • FIG. 1 is a cross-sectional view schematically showing the manufacturing process of the piezoelectric device of Patent Document 1.
  • hydrogen ions are implanted from the surface 7 side of the piezoelectric substrate 5 to form an ion implantation layer 6 at a predetermined depth d of the piezoelectric substrate 5.
  • a binder 8 is deposited on the surface 7 of the piezoelectric substrate 5 by sputtering.
  • the piezoelectric substrate 5 and the support substrate 9 are bonded. Finally, the bonded body of the piezoelectric substrate 5 and the support substrate 9 is subjected to heat treatment, and separation is performed using the ion implantation layer 6 as a separation surface. As a result, a piezoelectric thin film 5 ′ as shown in FIG. 1 (D) is formed on the support substrate 9.
  • the piezoelectric substrate 5 When the piezoelectric substrate 5 and the support substrate 9 are joined in such a warped state (see FIG. 1 (C)), the piezoelectric substrate 5 has an increased crystal lattice distance compared to the crystal lattice distance before ion implantation. It joins with the support substrate 9 in a state. Therefore, the distance between the crystal lattices of the piezoelectric thin film 5 ′ separated by the ion implantation layer after being bonded to the support substrate 9 becomes wider than the distance between the crystal lattices before the ion implantation.
  • the piezoelectric thin film 5 ′ in which the crystal interstitial distance is increased as described above is deteriorated in piezoelectricity as compared with the piezoelectric thin film in which the crystal interstitial distance is not increased.
  • the piezoelectric thin film device manufactured by the manufacturing method of Patent Document 1 has a problem that the piezoelectricity is deteriorated. Particularly, in the high frequency filter device, since the expansion of the distance between crystal lattices greatly affects the deterioration of piezoelectricity, there is a fatal problem in the device characteristics.
  • the implanted ion element between the crystals is degassed from the piezoelectric thin film 5 ', and the distance between the crystal lattices of the piezoelectric thin film 5' tends to return to the distance between the crystal lattices before the ion implantation.
  • the piezoelectric thin film 5 ′ is bonded to the support substrate 9, the piezoelectric thin film 5 ′ is restrained by the support substrate 9 and cannot return to the distance between crystal lattices before ion implantation. That is, a shear stress is generated in the piezoelectric thin film 5 ′ formed on the support substrate 9. Therefore, the piezoelectric thin film device manufactured by the manufacturing method of Patent Document 1 has a problem that the piezoelectric thin film 5 'is easily damaged.
  • an object of the present invention is to provide a method of manufacturing a piezoelectric device that prevents deterioration of piezoelectricity of a piezoelectric thin film and breakage of the piezoelectric thin film due to ion implantation.
  • the present invention relates to a method for manufacturing a piezoelectric device including a piezoelectric thin film and a support.
  • This method for manufacturing a piezoelectric device has at least a stress layer forming step including a ion implantation step, a compressive stress film forming step, and a tensile stress film forming step, a support forming step, and a separation step.
  • an ionized element is implanted into the piezoelectric substrate, thereby forming a portion in the piezoelectric substrate where the concentration of the element implanted into the piezoelectric substrate reaches a peak.
  • a compressive stress film for compressing the ion implantation side surface is formed as a stress layer on the back surface of the piezoelectric substrate facing the ion implantation side surface.
  • the support formation step forms the support on the ion implantation surface side of the piezoelectric substrate.
  • the piezoelectric substrate is heated to perform separation using a portion where the concentration of the element injected into the piezoelectric substrate reaches a peak as a separation surface, and a piezoelectric thin film is formed on the surface of the support.
  • the piezoelectric substrate is formed on the support substrate in a substantially flat state in which the warpage is relaxed. Further, since the heat treatment is performed in the separation step, the implanted ion element existing in the piezoelectric thin film is degassed from the piezoelectric thin film, and the crystal distortion of the piezoelectric thin film caused by the ion implantation step is corrected. Accordingly, the distance between crystal lattices of the piezoelectric thin film expanded by ion implantation returns to the stable distance between crystal lattices before ion implantation. Therefore, the piezoelectric thin film in this manufacturing method has stable and good piezoelectricity.
  • the method for manufacturing a piezoelectric device includes at least a temporary support forming step.
  • the temporary support is formed on the ion implantation surface side of the piezoelectric substrate.
  • the support formation process forms the support on the piezoelectric thin film separated from the piezoelectric substrate in the separation process.
  • the temporary support is formed on the substantially flat piezoelectric substrate in which the warpage is relaxed in the temporary support formation process. Therefore, also in the piezoelectric device manufacturing method of the present invention, the distance between crystal lattices of the piezoelectric thin film expanded by ion implantation returns to the stable distance between crystal lattices before ion implantation. Then, a piezoelectric thin film is formed on the support at a distance between crystal lattices before ion implantation.
  • the piezoelectric device manufacturing method of the present invention may have a tensile stress film forming step instead of the compressive stress film forming step.
  • a tensile stress film that pulls the surface on the ion implantation side is formed as a stress layer on the surface on the ion implantation side of the piezoelectric substrate.
  • the tensile stress film is formed on the ion implantation surface side in the tensile stress film formation step of this manufacturing method
  • tensile stress is applied to the portion of the piezoelectric substrate on the ion implantation surface side from the center line in the thickness direction of the piezoelectric substrate. Is done.
  • the portion of the piezoelectric substrate closer to the ion implantation surface than the center line is pulled by this tensile stress and contracts. That is, the piezoelectric substrate becomes substantially flat as the warpage is eased. Therefore, in the temporary support body forming step, the temporary support body is formed on the substantially flat piezoelectric substrate in which the warpage is alleviated.
  • the implanted ion element existing in the piezoelectric thin film is degassed from the piezoelectric thin film, and the crystal distortion of the piezoelectric thin film caused by the ion implantation step is corrected. Accordingly, the distance between crystal lattices of the piezoelectric thin film expanded by ion implantation returns to the stable distance between crystal lattices before ion implantation. Therefore, the piezoelectric thin film in this manufacturing method has stable and good piezoelectricity.
  • the piezoelectric device manufacturing method in which the tensile stress film is formed as a stress layer can also prevent the piezoelectric thin film from being deteriorated and the piezoelectric thin film from being damaged.
  • the compressive stress film forming step may be performed by using a material having a smaller linear expansion coefficient than that of the piezoelectric substrate on the back surface side of the piezoelectric substrate facing the ion implantation side surface.
  • a material having a smaller linear expansion coefficient than that of the piezoelectric substrate on the back surface side of the piezoelectric substrate facing the ion implantation side surface By forming a film and setting the temperature lower than the temperature at which the compressive stress film is formed, the surface on the implantation side of the piezoelectric substrate is constrained while applying a compressive stress to the surface on the ion implantation side of the piezoelectric substrate.
  • the compressive stress film is formed by using a material having a larger linear expansion coefficient than that of the piezoelectric substrate on the back surface side facing the ion implantation side surface of the piezoelectric substrate.
  • a material having a larger linear expansion coefficient than that of the piezoelectric substrate on the back surface side facing the ion implantation side surface of the piezoelectric substrate By setting the temperature higher than the temperature, the surface on the implantation side of the piezoelectric substrate is constrained while compressive stress is applied to the surface on the ion implantation side.
  • the method for manufacturing a piezoelectric device includes at least an electrode film forming step.
  • an IDT (Interdigital Transducer) electrode film is formed on the piezoelectric thin film formed on the surface of the support.
  • the ion implantation step is performed after the compressive stress film forming step.
  • the warpage of the piezoelectric substrate is reduced and the piezoelectric substrate becomes substantially flat. Therefore, in the support body formation process performed after the ion implantation process, the piezoelectric substrate is formed on the support substrate in a substantially flat state in which the warpage is relaxed.
  • the method for manufacturing a piezoelectric device according to the present invention includes at least a dielectric film forming step.
  • a dielectric film is formed on the piezoelectric thin film so as to cover the IDT electrode film.
  • the method for manufacturing a piezoelectric device includes at least a sacrificial layer forming step, an exposing step, and a sacrificial layer removing step.
  • a sacrificial layer is formed in a space serving as a void layer formed between the piezoelectric thin film and the support.
  • the piezoelectric thin film is etched to form a hole that exposes a part of the sacrificial layer to the surface side of the piezoelectric thin film.
  • the sacrificial layer removal step the sacrificial layer is removed through the hole.
  • a piezoelectric device having a membrane structure is manufactured.
  • FIG. 10 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device of Patent Document 1.
  • FIG. It is a figure which shows typically a mode that the piezoelectric substrate which passed through the ion implantation process curved. It is a flowchart which shows the manufacturing method of the piezoelectric device which concerns on 1st Embodiment.
  • FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 3.
  • FIG. 5A is a diagram schematically showing a state in which the piezoelectric single crystal substrate that has undergone the ion implantation process is warped.
  • FIG. 5B is a diagram schematically illustrating a state in which the warpage of the piezoelectric single crystal substrate is relaxed by the compressive stress film.
  • FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 3.
  • FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 3.
  • FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 3.
  • It is sectional drawing which shows typically the manufacturing process of the piezoelectric device shown in FIG.
  • FIG. 12A is a schematic diagram of the surface acoustic wave device manufactured in the first embodiment.
  • FIG. 12B is a schematic view of the surface acoustic wave device manufactured in the second embodiment.
  • FIG. 14A is a diagram schematically showing a state where the piezoelectric single crystal substrate is warped by the compressive stress film.
  • FIG. 14B is a diagram schematically showing a state in which ions are implanted into the surface of the piezoelectric single crystal substrate warped by the compressive stress film.
  • FIG. 14A is a diagram schematically showing a state where the piezoelectric single crystal substrate is warped by the compressive stress film.
  • FIG. 14B is a diagram schematically showing a state in which ions are implanted into the surface of the piezoelectric single crystal substrate warped by the compressive stress film.
  • FIG. 14C is a diagram schematically showing a state in which the warp of the piezoelectric single crystal substrate is relaxed through the ion implantation process. It is a flowchart which shows the manufacturing method of the piezoelectric device which concerns on 4th Embodiment.
  • FIG. 16 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 15. It is a flowchart which shows the manufacturing method of the piezoelectric device which concerns on 5th Embodiment.
  • FIG. 18 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 17.
  • FIG. 18 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 17.
  • FIG. 18 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 17.
  • FIG. 18 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 17. It is a flowchart which shows the manufacturing method of the piezoelectric device which concerns on 6th Embodiment.
  • FIG. 22 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 21.
  • FIG. 23A is a diagram schematically showing a warped state of the piezoelectric single crystal substrate that has undergone the ion implantation step.
  • FIG. 23B is a diagram schematically showing a state in which the warpage of the piezoelectric single crystal substrate is relaxed by the tensile stress film.
  • a method for manufacturing a piezoelectric device according to the first embodiment of the present invention will be described with reference to the drawings.
  • a method for manufacturing a surface acoustic wave device will be described as an example of a method for manufacturing a piezoelectric device.
  • FIG. 3 is a flowchart showing the method for manufacturing the piezoelectric device according to the first embodiment.
  • 4 and 6 to 8 are cross-sectional views schematically showing the manufacturing process of the piezoelectric device according to the first embodiment.
  • FIG. 5 (A) is a diagram schematically showing the warping of the piezoelectric single crystal substrate that has undergone the ion implantation process
  • FIG. 5 (B) shows that the warping of the piezoelectric single crystal substrate is relaxed by the compressive stress film. It is a figure which shows a mode typically.
  • a piezoelectric single crystal substrate 1 having a predetermined thickness is prepared. Further, as shown in FIG. 6 described later, a support substrate 50 having a predetermined thickness is prepared.
  • the piezoelectric single crystal substrate 1 uses a lithium tantalate substrate, and the support substrate 50 corresponding to the support uses an Si substrate.
  • the piezoelectric single crystal substrate 1 may be a lithium niobate substrate, a lithium tetraborate substrate, a langasite substrate, or a potassium niobate substrate.
  • the support substrate 50 may be a ceramic such as glass, quartz, sapphire, or a piezoelectric single crystal substrate.
  • hydrogen ions are implanted from the surface 12 side of the piezoelectric single crystal substrate 1 to form an ion implanted portion 100 in the piezoelectric single crystal substrate 1 (FIG. 3: S101).
  • a lithium tantalate substrate is used as the piezoelectric single crystal substrate 1
  • hydrogen ions are implanted at a dose of 1.0 ⁇ 10 17 atoms / cm 2 at an acceleration energy of 150 KeV, so that a position approximately 1 ⁇ m deep from the surface 12 is obtained.
  • a hydrogen distribution portion is formed, and an ion implantation portion 100 is formed.
  • the ion implanted portion 100 is a portion where the concentration of the ion element implanted into the piezoelectric single crystal substrate reaches a peak.
  • the thickness of the piezoelectric single crystal substrate 1 is preferably 10 times or more the depth of the hydrogen distribution portion. This is because the piezoelectric single crystal substrate 1 is excessively warped.
  • ion implantation is performed under conditions according to each substrate.
  • the piezoelectric single crystal substrate 1 is warped with the ion implantation portion 100 side of the piezoelectric single crystal substrate 1 projecting as shown in FIG. 5A. .
  • the reason for this warping is that the distance between crystal lattices of the piezoelectric material is expanded by the implanted ion element in the ion-implanted portion of the piezoelectric single crystal substrate 1.
  • the piezoelectric single crystal substrate 1 and the support substrate 50 are bonded in such a warped state (see FIG. 6C described later), the piezoelectric material of the surface 12 on the ion implantation portion 100 side has a crystal interstitial distance.
  • the support substrate 50 is bonded in an extended state compared to the distance between crystal lattices before ion implantation. For this reason, when the piezoelectric thin film 10 is separated after being bonded to the support substrate 50, the distance between crystal lattices of the piezoelectric thin film 10 becomes larger than the distance between crystal lattices before ion implantation (FIG. 7 described later). (See (A)).
  • a compressive stress film 90 is formed on the back surface 13 of the piezoelectric single crystal substrate 1 facing the surface 12 on the ion implantation portion 100 side (FIG. 3: S102).
  • the compressive stress film 90 is a film that compresses the surface 12 on the ion implanted portion 100 side of the piezoelectric single crystal substrate 1.
  • the compressive stress film 90 for example, silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, zinc oxide, tantalum oxide, or the like can be used.
  • the compressive stress film 90 is formed on the back surface 13 facing the surface 12 on the ion implantation portion 100 side of the piezoelectric single crystal substrate 1 by vapor deposition, sputtering, CVD, or the like.
  • the film forming conditions such as the material and the film thickness are set so that the film for compressing the surface 12 on the ion implanted portion 100 side of the piezoelectric single crystal substrate 1 is formed.
  • the following two methods may be used in addition to the film forming method described above.
  • a compressive stress film 90 is formed on the back surface 13 of the piezoelectric single crystal substrate 1 using a material having a smaller linear expansion coefficient than that of the piezoelectric single crystal substrate 1, and a support described later is formed on the surface 12 on the ion implantation side.
  • a body it is a method of forming at a temperature lower than the temperature at which the compressive stress film 90 is formed.
  • the second method is to form a compressive stress film 90 on the back surface 13 of the piezoelectric single crystal substrate 1 using a material having a larger linear expansion coefficient than that of the piezoelectric single crystal substrate 1, and to form a later-described film on the surface 12 on the ion implantation side.
  • the support is formed at a temperature higher than the temperature at which the compressive stress film 90 is formed.
  • the first method is used.
  • the ion implantation portion 100 side from the center line C in the thickness direction of the piezoelectric single crystal substrate 1 in the piezoelectric single crystal substrate 1 is formed by the compressive stress film 90.
  • Compressive stress is applied to the part.
  • a portion of the piezoelectric single crystal substrate 1 closer to the ion implantation portion 100 than the center line C is compressed by this compressive stress and contracts. That is, the piezoelectric single crystal substrate 1 becomes substantially flat as the warpage is relaxed.
  • a dielectric film 21 is formed on the surface 12 on the ion implanted portion 100 side of the piezoelectric single crystal substrate 1 (FIG. 3: S103).
  • the dielectric film 21 for example, silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, or the like can be used.
  • the dielectric film 21 is formed by vapor deposition, sputtering, CVD, or the like.
  • the dielectric film 21 is appropriately selected from a structure, material, and film thickness that satisfy physical properties desired to be obtained as a surface acoustic wave device.
  • the piezoelectric material on the surface 12 on the ion implantation portion 100 side has a crystal lattice distance before the ion implantation. It is in contact with the dielectric film 21 in an extended state as compared with FIG. In this case, when the distance between the crystal lattices of the piezoelectric thin film 10 expanded after the ion implantation is returned to the distance between the crystal lattices before the ion implantation due to deaeration of the implanted ion element by the heating process of S106 described later, the return is made.
  • the dielectric film 21 applies a force that hinders the above.
  • the dielectric film 21 is formed after the compressive stress film forming step of S102 is performed.
  • a predetermined metal film is formed instead of the dielectric film 21 in the step S103, or the support 50 is ionized on the piezoelectric single crystal substrate 1 without performing the step S103 or the step S104 described later. Even when directly joining the surface 12 on the injection portion 100 side, it is necessary to form or join a predetermined metal film after the compressive stress film forming step of S102.
  • a bonding film 22 for bonding to the support substrate 50 is formed on the surface of the dielectric film 21 (FIG. 3: S104). Further, the surface of the bonding film 22 is planarized by polishing.
  • the bonding film 22 is made of an inorganic material, and for example, silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, or the like can be used.
  • the bonding film 22 is formed by vapor deposition, sputtering, CVD, or the like.
  • the portion composed of the support substrate 50, the dielectric film 21, and the bonding film 22 corresponds to the “support” of the present invention.
  • the support substrate 50 is bonded to the surface of the bonding film 22 on the piezoelectric single crystal substrate 1 (FIG. 3: S105).
  • activation bonding called hydrophilic bonding, hydrophilic bonding, or bonding using mutual diffusion through a metal layer can be used.
  • the support substrate 50 is bonded to the piezoelectric single crystal substrate 1.
  • the support substrate 50 may be formed on the piezoelectric single crystal substrate 1 by film formation or the like. .
  • the joined body of the piezoelectric single crystal substrate 1 and the support substrate 50 shown in FIG. 6C is heated (up to 500 ° C. in this embodiment), and separation is performed with the ion implanted portion 100 as a separation surface (FIG. 6). 3: S106).
  • the heating temperature can be lowered by heating in a reduced pressure atmosphere.
  • the single crystal piezoelectric thin film 10 is formed on the surface of the dielectric film 21 on the support substrate 50 as shown in FIG.
  • the piezoelectric single crystal substrate 1 is bonded to the support substrate 50 in a substantially flat state in which the warpage is relaxed. Furthermore, since the separation process in S106 is heated to 500 ° C., the implanted ion element (here, hydrogen) that was present in the piezoelectric thin film 10 is degassed from the piezoelectric thin film 10 and the ion implantation process in S101 is performed. The resulting crystal distortion of the piezoelectric thin film 10 is corrected. As a result, the distance between crystal lattices of the piezoelectric thin film 10 expanded by ion implantation returns to the stable distance between crystal lattices before ion implantation.
  • the implanted ion element here, hydrogen
  • the piezoelectric thin film 10 in this embodiment has stable and good piezoelectricity.
  • the piezoelectric thin film 10 is formed on the support substrate 50 at a distance between crystal lattices before ion implantation, no shear stress is applied to the piezoelectric thin film 10.
  • the manufacturing method of the piezoelectric device of this embodiment it is possible to prevent the piezoelectric thin film 10 from being deteriorated in piezoelectricity and being damaged.
  • the piezoelectric thin film 10 as a single crystal thin film, it is possible to form a thin film having better piezoelectricity than a polycrystalline thin film formed by sputtering, vapor deposition, CVD, or the like.
  • the crystal orientation of the piezoelectric single crystal substrate 1 is the crystal orientation of the piezoelectric thin film 10
  • the crystal orientation corresponding to the characteristics is prepared.
  • the single crystal thin film is formed by ion implantation, bonding, and separation, a plurality of piezoelectric thin films 10 can be formed from one piezoelectric single crystal substrate 1, thereby saving single crystal piezoelectric material. Can do.
  • the surface of the separated piezoelectric thin film 10 is polished and flattened by CMP or the like (FIG. 3: S107).
  • This surface roughness is preferably 0.5 nm or less in terms of arithmetic average roughness Ra.
  • upper electrodes 60A and 60B and IDT (Interdigital Transducer) electrodes 60C having predetermined thicknesses are formed on the surface of the piezoelectric thin film 10 using Al (aluminum) or the like (see FIG. 7B).
  • FIG. 3: S108 the upper electrodes 60A and 60B and the IDT electrode 60C correspond to the “electrode film” of the present invention.
  • the electrodes 60A to 60C may be made of not only Al but also Al, W, Mo, Ta, Hf, Cu, Pt, Ti, Au, etc., alone or in a stacked manner depending on the device specifications. .
  • an insulating film 70 is formed on the surfaces of the piezoelectric thin film 10 and the electrodes 60A to 60C (FIG. 3: S109).
  • openings 82A and 82B are formed by etching or the like in regions where the upper electrodes 60A and 60B of the insulating film 70 are exposed (FIG. 3: S110).
  • external terminals are formed (FIG. 3: S111). More specifically, bump pads 61A and 61B are formed on the upper electrodes 60A and 60B, and bumps 62A and 62B are formed on both the bump pads 61A and 61B.
  • packaging using a mold is performed through a dividing process of dividing a plurality of thin film piezoelectric devices formed on the support substrate 50 into individual thin film piezoelectric devices.
  • a thin film piezoelectric device surface acoustic wave resonator
  • a plurality of thin film piezoelectric devices can be manufactured at once. Therefore, according to this embodiment, since a plurality of thin film piezoelectric devices can be manufactured at once, the manufacturing cost of the thin film piezoelectric device can be greatly reduced.
  • the characteristics of the surface acoustic wave resonator of the present embodiment obtained as described above and the characteristics of the surface acoustic wave resonator that is a comparative example of the surface acoustic wave resonator of the present embodiment were measured.
  • the results are shown in Table 1.
  • the surface acoustic wave resonator of the comparative example is different from the surface acoustic wave resonator of the present embodiment in that the compressive stress film 90 is not formed on the back surface 13 of the piezoelectric single crystal substrate 1 during manufacturing. Other manufacturing methods and configurations are the same.
  • the surface acoustic wave resonator of the comparative example shown in the upper part of Table 1 supports the piezoelectric thin film 10 without applying compressive stress to the surface 12 on the ion implantation surface side of the piezoelectric single crystal substrate 1 as described above. It is formed by forming on the substrate 50.
  • the surface acoustic wave resonator of this embodiment shown in the lower part of Table 1 is nitrided with a thickness of 250 nm as a compressive stress film 90 on the back surface 13 of the piezoelectric single crystal substrate 1 so that the piezoelectric single crystal substrate 1 becomes flat.
  • a silicon film is formed by sputtering.
  • the amount of warpage of the surface acoustic wave resonator of the comparative example shown in the upper part of Table 1 was 220 ⁇ m per 80 mm, whereas the surface acoustic wave resonance of the present embodiment shown in the lower part of Table 1
  • the warp amount of the child was improved to 20 ⁇ m per 80 mm by the formation of the compressive stress film 90.
  • a method for manufacturing a piezoelectric device according to the second embodiment of the present invention will be described with reference to FIGS.
  • a method for manufacturing a surface acoustic wave device will be described as an example of a method for manufacturing a piezoelectric device.
  • FIG. 9 is a flowchart showing a method for manufacturing a piezoelectric device according to the second embodiment.
  • 10 and 11 are cross-sectional views schematically showing the manufacturing process of the piezoelectric device shown in FIG.
  • the second embodiment is different from the first embodiment in that it undergoes a temporary support forming process, and is the same up to the compressive stress film forming process.
  • an etching target layer forming step of forming the etching target layer 3 on the surface of the piezoelectric single crystal substrate 1 on the ion implantation side is performed (FIGS. 9, 10: S203). ).
  • a constituent material that can be etched while ensuring selectivity with respect to the piezoelectric thin film 10 and the support material in the subsequent temporary support substrate removal step may be employed.
  • An inorganic material such as ZnO, SiO 2 , or AlN may be used.
  • a metal material such as Cu, Al, Ti, an organic material such as polyimide, or a multilayer film thereof can be used. Note that the etched layer 3 may not be provided.
  • a temporary support forming process is performed in which the temporary support 4 is formed on the etching target layer 3 laminated on the piezoelectric single crystal substrate 1 (FIG. 9, 10: S204).
  • the temporary support 4 is formed on the piezoelectric single crystal substrate 1 in a substantially flat state in which the warpage is relaxed.
  • the temporary support 4 and the to-be-etched layer 3 constitute a temporary support substrate.
  • the temporary support substrate composed of the layer to be etched 3 and the temporary support 4 is not particularly limited, and the thermal stress acting on the interface with the piezoelectric single crystal substrate 1 (piezoelectric thin film 10) is smaller than that of the support 51.
  • a constituent material that can be made substantially zero is selected.
  • a lithium tantalate substrate of the same type as that of the piezoelectric single crystal substrate 1 is used as the constituent material of the temporary support 4, and the Cu film and the SiO 2 film are laminated by sputtering as the constituent material of the layer to be etched 3. adopt. Therefore, the linear expansion coefficient of the temporary support 4 alone and the linear expansion coefficient of the piezoelectric single crystal substrate 1 alone are equal, whereby the temporary support substrate and the piezoelectric single crystal, which are a composite material composed of the etched layer 3 and the temporary support 4, are obtained.
  • the thermal stress acting on the interface with the substrate 1 (piezoelectric thin film 10) can be made substantially zero.
  • the linear expansion coefficient of the layer to be etched 3 is different from that of the lithium tantalate substrate, but a highly ductile constituent material (such as a metal material) such as the Cu film is directly laminated on the piezoelectric single crystal substrate 1.
  • a highly ductile constituent material such as a metal material
  • the thermal stress at the interface with the piezoelectric single crystal substrate 1 can be reduced.
  • the piezoelectric single crystal substrate 1 is heated, and the ion implantation portion 100 where the concentration of the element implanted into the piezoelectric single crystal substrate 1 reaches a peak is used as the separation surface.
  • a separation step is performed (FIG. 9, 10: S205).
  • a support body forming step for forming the support body 51 on the dielectric film 21 is performed ( FIG. 9, 10: S207). Therefore, also in the method for manufacturing a piezoelectric device of this embodiment, the piezoelectric thin film 10 is formed on the support 51 at a distance between crystal lattices before ion implantation.
  • This support forming step may be realized by adopting any method as long as it can be performed at least at an annealing temperature or lower, preferably at a separation temperature or lower.
  • the support 51 and the dielectric film 21 constitute a support substrate.
  • the support substrate composed of the dielectric film 21 and the support substrate 51 does not need to consider the thermal stress acting on the interface with the piezoelectric single crystal substrate 1 (piezoelectric thin film 10) in the heating process, unlike the temporary support substrate described above.
  • a constituent material having an arbitrary linear expansion coefficient can be selected. Therefore, it is possible to employ a constituent material having a linear expansion coefficient that is remarkably smaller than that of the piezoelectric thin film 10 as the dielectric film 21 and the support body 51, and the temperature-frequency characteristics of the surface acoustic wave device are greatly improved. Can be improved. Further, by adopting a constituent material having good thermal conductivity as the dielectric film 21 and the support 51, the heat dissipation and power durability of the surface acoustic wave device can be improved. Furthermore, by using inexpensive constituent materials and forming methods for the dielectric film 21 and the support 51, the manufacturing cost of the surface acoustic wave device can be reduced.
  • a temporary support substrate removing step for removing the temporary support substrate composed of the etched layer 3 and the temporary support 4 is performed (FIG. 9, 11: S208).
  • This process may be realized by any method as long as it can be performed at least at an annealing temperature or lower, preferably at a separation temperature or lower.
  • the layer to be etched 3 is wet etched or dry etched.
  • wet etching is used when the layer 3 to be etched is an inorganic material or a metal material
  • dry etching is used when the layer 3 is an organic material.
  • the temporary support 4 separated from the layer to be etched 3 is preferably reused in the subsequent production of the surface acoustic wave device.
  • electrodes are formed in the same manner as in the first embodiment (FIGS. 9 and 11: S209 to S212), and a surface acoustic wave device is obtained through a dividing process and a molding process.
  • the device obtained by the second embodiment is a surface acoustic wave device in which the front and back of the piezoelectric thin film 10 are opposite to those in the case of manufacturing in the first embodiment.
  • a surface acoustic wave device 10 in which the front and back surfaces of the piezoelectric thin film 10 are opposite to those in the case of manufacturing in the first embodiment will be described with reference to FIG.
  • FIG. 12A is a schematic diagram of the surface acoustic wave device manufactured in the first embodiment
  • FIG. 12B is a schematic diagram of the surface acoustic wave device manufactured in the second embodiment.
  • ions are implanted from the ion implantation surface A into the piezoelectric single crystal substrate 1 in the ion implantation process to form the ion implantation portion 100
  • the ion implantation portion 100 serves as the separation surface B from the piezoelectric single crystal substrate 1 to the piezoelectric.
  • the thin film 10 is separated.
  • the support substrate is formed on the ion implantation surface A
  • the functional electrode 60 ⁇ / b> C of the device is formed on the separation surface B of the piezoelectric thin film 10.
  • the support substrate is formed on the separation surface B, and the functional electrode 60C of the device is formed on the ion implantation surface A after the temporary support substrate is removed. Will be formed.
  • the piezoelectric thin film 10 formed by the method of separating and forming the piezoelectric thin film 10 from the piezoelectric single crystal substrate 1 using the ion-implanted portion 100 as a separation surface a certain degree of hydrogen ions can be obtained even if the crystallinity and piezoelectricity are recovered in the heating process. There is a residue.
  • the residual density of hydrogen ions is large in the region to be the ion implantation portion 100 in the piezoelectric single crystal substrate 1, that is, in the region near the separation surface B in the piezoelectric thin film 10 and small in the region near the ion implantation surface A.
  • the region where the residual density of hydrogen ions is smaller tends to have less local deterioration of piezoelectricity.
  • the degree of deterioration of piezoelectricity is large in the region near the separation surface B, and the deterioration of piezoelectricity is near the ion implantation surface A.
  • the degree is small. Therefore, in the surface acoustic wave device manufactured in the present embodiment, the functional electrode 60C is formed on the ion implantation surface A with less piezoelectric deterioration, so that the surface acoustic wave device manufactured in the first embodiment is further improved. Good device characteristics can be obtained.
  • FIG. 13 is a flowchart showing a method for manufacturing a piezoelectric device according to the third embodiment.
  • FIG. 14A is a diagram schematically showing a state where the piezoelectric single crystal substrate is warped by the compressive stress film.
  • FIG. 14B is a diagram schematically showing a state in which ions are implanted into the surface of the piezoelectric single crystal substrate warped by the compressive stress film.
  • FIG. 14C is a diagram schematically showing a state in which the warp of the piezoelectric single crystal substrate is relaxed through the ion implantation process.
  • the piezoelectric device manufacturing method of this embodiment is different from the piezoelectric device manufacturing method shown in the first embodiment in that the compressive stress film forming step is performed before the ion implantation step. That is, S303 to S311 in FIG. 13 are the same as S103 to S111 shown in the first embodiment, respectively.
  • the compressive stress film 90 is formed on the back surface 13 in the compressive stress film forming step of S301.
  • compressive stress is applied to the surface 12 side of the piezoelectric single crystal substrate 1 in the piezoelectric single crystal substrate 1 by the compressive stress film 90 (see FIG. 14A). Due to this compressive stress, the portion of the piezoelectric single crystal substrate 1 closer to the surface 12 than the center line C is compressed and contracted. As a result, the piezoelectric single crystal substrate 1 warps with the compressive stress film 90 side of the piezoelectric single crystal substrate 1 protruding.
  • the distance between the crystal lattices of the piezoelectric material in the ion implanted portion of the piezoelectric single crystal substrate 1 is expanded by the implanted ion element.
  • the piezoelectric single crystal substrate 1 becomes substantially flat as the warpage is eased (see FIG. 14C).
  • the piezoelectric single crystal substrate 1 is bonded to the support substrate 50 in a flat state in the bonding step of S305. Further, since the separation process in S306 is heated to 500 ° C., the implanted ion element (here, hydrogen) existing in the piezoelectric thin film 10 is degassed from the piezoelectric thin film 10 and the ion implantation process in S101 is performed. The resulting crystal distortion of the piezoelectric thin film 10 is corrected. As a result, the distance between crystal lattices of the piezoelectric thin film 10 expanded by ion implantation returns to the stable distance between crystal lattices before ion implantation. Therefore, according to the piezoelectric device manufacturing method of this embodiment, the same effects as the piezoelectric device manufacturing method of the first embodiment can be obtained.
  • the implanted ion element here, hydrogen
  • a method for manufacturing a piezoelectric device according to the fourth embodiment will be described with reference to the drawings.
  • a method for manufacturing a boundary acoustic wave device will be described as an example of a method for manufacturing a piezoelectric device.
  • FIG. 15 is a flowchart showing a method for manufacturing a piezoelectric device according to the fourth embodiment.
  • FIG. 16 is a cross-sectional view schematically showing the manufacturing process of the piezoelectric device according to the fourth embodiment.
  • the insulating film 70 forming step (FIG. 3: S109) in the piezoelectric device manufacturing method shown in the first embodiment is replaced with the dielectric film 71 forming step (FIG. 15: FIG. 15).
  • S409 S401 to S408, S410, and S411 of FIG. 15 are the same as S101 to S108, S110, and S111 of FIG. 3 shown in the first embodiment, respectively.
  • the compressive stress film 90 is formed in the compressive stress film forming step of S402 to alleviate the warp of the piezoelectric single crystal substrate 1, and the flat piezoelectric single crystal substrate 1 is used as the support substrate 50 in the bonding step of S405. Joined and heat separated in the separation step of S406. Therefore, according to the piezoelectric device manufacturing method of this embodiment, the same effects as the piezoelectric device manufacturing method of the first embodiment can be obtained.
  • FIG. 17 is a flowchart showing a method for manufacturing a piezoelectric device according to the fifth embodiment.
  • 18 to 20 are cross-sectional views schematically showing manufacturing steps of the piezoelectric device shown in FIG.
  • a method for manufacturing a piezoelectric device a method for manufacturing a piezoelectric device having a membrane structure such as an elastic bulk wave device (see FIG. 19), a plate wave device (see FIG. 20), and a Lamb wave device is taken as an example.
  • a membrane structure such as an elastic bulk wave device (see FIG. 19), a plate wave device (see FIG. 20), and a Lamb wave device is taken as an example.
  • an elastic bulk wave device see FIG. 19
  • a plate wave device see FIG. 20
  • Lamb wave device a Lamb wave device
  • the steps S501, S502, and S508 in FIG. 17 are the same as the steps S101, S102, and S108 in FIG. 3, and the other steps (S503 to S507, S509 to S512) are different. To do.
  • the piezoelectric single crystal substrate 1 that has undergone the ion implantation process of S501 and the compressive stress film formation process of S502 is prepared.
  • the piezoelectric single crystal substrate 1 has undergone both processes, warping is relaxed and the piezoelectric single crystal substrate 1 is in a substantially flat state.
  • a lower electrode film 20 having a predetermined thickness is formed on the surface 12 on the ion implantation portion 100 side of the piezoelectric single crystal substrate 1 using Al (aluminum) or the like (FIG. 17). : S503).
  • Al aluminum
  • S503 a lower electrode film 20 having a predetermined thickness
  • not only Al but also W, Mo, Ta, Hf, Cu, Pt, Ti, Au, or the like may be used as the lower electrode film 20 in a single layer or a plurality of layers depending on the specifications of the device.
  • the process of S503 is omitted.
  • a support layer 40 having a predetermined thickness is formed on the surface of the support substrate 50 (FIG. 17: S504).
  • the support layer 40 is made of an insulating material and uses an inorganic material such as silicon oxide, nitride, aluminum oxide, or PSG, or an organic material such as a resin, and is used as an etching gas or an etchant for removing the sacrificial layer 30. Any material having strong resistance to the surface may be used.
  • the support layer 40 is formed in a certain region (a region excluding the region where the sacrificial layer 30 is formed) on the surface of the support substrate 50 by vapor deposition, sputtering, CVD, spin coating, or the like.
  • the support layer 40 is formed immediately below the non-vibrating region where the piezoelectric thin film 10 does not function as a piezoelectric device.
  • the film thickness of the support layer 40 is set according to the depth of the space
  • the portion composed of the support layer 40 and the support substrate 50 corresponds to the “support” of the present invention.
  • the material of the support layer 40 is better determined with respect to the piezoelectric single crystal substrate 1 and the sacrificial layer 30 in consideration of the linear expansion coefficient.
  • a sacrificial layer 30 having a predetermined thickness is formed on the surface of the support substrate 50 (FIG. 17: S505).
  • the sacrificial layer 30 is made of a material that is more easily etched than the upper electrode 60, the piezoelectric thin film 10, the lower electrode 20, and the support layer 40. Specifically, it is appropriately set according to conditions from a metal such as Ni, Cu, and Al, an insulating film such as SiO 2 , ZnO, and PSG (phosphosilicate glass), an organic film, and the like.
  • the sacrificial layer 30 is a space that becomes the void layer 80 on the surface of the support substrate 50 by vapor deposition, sputtering, CVD, spin coating, or the like (that is, the vibration region in which the piezoelectric thin film 10 functions as a piezoelectric device and the holes 81A and 81B).
  • a film having the same thickness as that of the support layer 40 is formed in the space immediately below.
  • the surfaces of the sacrificial layer 30, the support layer 40, and the lower electrode 20 are planarized by CMP or the like.
  • the lower electrode 20 on the piezoelectric single crystal substrate 1 is bonded to the sacrificial layer 30 and the support layer 40 of the support substrate 50 (FIG. 17: S506).
  • This joining method is the same as that in the first embodiment.
  • the joined body of the piezoelectric single crystal substrate 1 and the support substrate 50 shown in FIG. 18C is heated (up to 500 ° C. in this embodiment) to perform separation using the ion implanted portion 100 as a separation surface (FIG. 18). 17: S507).
  • a single crystal piezoelectric thin film 10 is formed on the surface of the lower electrode 20 on the support substrate 50 as shown in FIG. This separation method is the same as in the first embodiment.
  • upper electrodes 63B and 63C having a predetermined film thickness are formed on the surface of the piezoelectric thin film 10 using Al (aluminum) or the like.
  • Al aluminum
  • the upper electrodes 63B and 63C are formed by laminating not only Al but also W, Mo, Ta, Hf, Cu, Pt, Ti, Au, or the like according to device specifications. Can be used.
  • a plate wave device see FIG. 19
  • the upper electrodes 60A and 60B and the IDT electrode 60C having a predetermined film thickness are formed on the surface of the piezoelectric thin film 10 using Al (aluminum) or the like. It forms (FIG. 17: S509).
  • These upper electrodes 60A, 60B, and 60C can be used not only for Al but also for W, Mo, Ta, Hf, Cu, Pt, Ti, Au, etc., alone or in a stacked manner, depending on the device specifications. .
  • an etching gas is introduced to form holes 81A and 81B that expose part of the sacrificial layer 30 to the surface side of the piezoelectric thin film 10 (FIG. 17: S510).
  • an opening for exposing a part of the lower electrode 20 to the surface side of the piezoelectric thin film 10 is formed at the same time.
  • the sacrificial layer 30 is removed by flowing an etching gas or etching solution through the holes 81A and 81B (FIG. 17: S511). As a result, the space where the sacrificial layer 30 was formed becomes a void layer 80 as shown in FIG. 19 and a void layer 80 ′ as shown in FIG.
  • packaging using a mold is performed through a dividing process of dividing a plurality of thin film piezoelectric devices formed on the support substrate 50 into individual thin film piezoelectric devices. In this way, a thin film piezoelectric device is formed.
  • the compressive stress film 90 is formed in the compressive stress film forming step of S502 to alleviate the warp of the piezoelectric single crystal substrate 1, and the flat piezoelectric single crystal substrate 1 is supported in the bonding step of S506. Bonded to the substrate 50 and heat-separated in the separation step of S507.
  • the same effects as the piezoelectric device manufacturing method of the first embodiment can be obtained. Further, as shown in FIG. 18D, since the surface of the piezoelectric thin film 10 that is the ion implantation portion 100 is on the upper side, stress is applied to the upper electrode 63C or IDT electrode 60C side as shown in FIGS. Is done. Therefore, when the sacrificial layer 30 is removed, even if the distance between the piezoelectric thin film 10 and the support layer 40 is short, it is difficult to cause a sticking phenomenon.
  • the piezoelectric device manufacturing method of the sixth embodiment is different from the piezoelectric device manufacturing method shown in the second embodiment in that a tensile stress film forming step is performed instead of the compressive stress film forming step. .
  • FIG. 21 is a flowchart showing a method for manufacturing a piezoelectric device according to the sixth embodiment.
  • 22 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG.
  • FIG. 23A is a diagram schematically showing a warped state of the piezoelectric single crystal substrate that has undergone the ion implantation step.
  • FIG. 23B is a diagram schematically showing a state in which the warpage of the piezoelectric single crystal substrate is relaxed by the tensile stress film.
  • the piezoelectric device manufacturing method of the sixth embodiment shown in FIG. 21 is obtained by replacing S202 to S204 shown in FIG. 9 with S602 and S604 and S208 with S608, and other steps (S201 and S205 to The same applies to S207 and S209 to S212. Therefore, S602, S604, and S608 will be described in detail below.
  • a tensile stress film 91 is formed on the surface 12 on the ion implantation portion 100 side of the piezoelectric single crystal substrate 1 (FIG. 21: S602).
  • the tensile stress film 91 is a film that pulls the surface 12 on the ion implanted portion 100 side of the piezoelectric single crystal substrate 1.
  • the tensile stress film 91 also serves as the etching target layer 3 (see FIG. 10) described in the second embodiment, and ensures selectivity with respect to the piezoelectric thin film 10 and the temporary support 4 in later S208. Then, a constituent material that can be etched is employed.
  • the tensile stress film 91 for example, silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, zinc oxide, tantalum oxide, or the like can be used.
  • the tensile stress film 91 is formed on the surface 12 on the ion implantation portion 100 side of the piezoelectric single crystal substrate 1 by vapor deposition, sputtering, CVD, or the like.
  • film forming conditions such as a material and a film thickness are set so that a film that pulls the surface 12 on the ion implantation portion 100 side of the piezoelectric single crystal substrate 1 is formed.
  • the tensile stress film 91 When the tensile stress film 91 is formed on the surface 12 on the ion-implanted portion 100 side in the tensile stress film formation step of S602, the tensile stress film 91 causes the center line C in the thickness direction of the piezoelectric single crystal substrate 1 in the piezoelectric single crystal substrate 1 to be formed. Further, a tensile stress is applied to the portion closer to the ion implanted portion 100 (see FIG. 23). The portion of the piezoelectric single crystal substrate 1 closer to the ion implantation portion 100 than the center line C is pulled by this tensile stress and contracts. That is, the piezoelectric single crystal substrate 1 becomes substantially flat as the warpage is relaxed.
  • the distance between crystal lattices of the piezoelectric thin film 10 after the heating step of S205 is less than that when the amount of warpage is not relaxed. It approaches the distance between crystal lattices.
  • the temporary support body 4 is formed on the piezoelectric single crystal substrate 1 in a substantially flat state in which the warpage is relaxed (FIG. 21, FIG. 22: S604).
  • the formation method and material of the temporary support body 4 in this process are the same as S204 shown in 2nd Embodiment.
  • a temporary support substrate removing step for removing the temporary support substrate composed of the tensile stress film 91 and the temporary support 4 is performed (FIG. 11, FIG. 21: S608).
  • the tensile stress film 91 is wet-etched or dry-etched instead of the etched layer 3 described in the second embodiment.
  • the removal method of the temporary support substrate in this step is the same as S208 shown in the second embodiment.
  • electrodes are formed in the same manner as in the second embodiment (FIGS. 11 and 21: S209 to S212), and a surface acoustic wave device is obtained through a dividing process and a molding process.
  • bulk wave piezoelectric devices and plate wave devices have been described as examples.
  • other devices such as gyros, RF switches, vibration power generation elements, etc., which are made of piezoelectric single crystal thin films and have membranes.
  • the manufacturing method of the present invention can be applied.

Abstract

 イオン注入を起因とした、圧電薄膜の圧電性の劣化と圧電薄膜の破損を防ぐ圧電デバイスの製造方法を提供する。 圧電単結晶基板(1)におけるイオン注入側の面(12)に対向する裏面(13)に圧縮応力膜(90)を形成する。圧縮応力膜(90)は、圧電単結晶基板(1)におけるイオン注入側の面(12)を圧縮する膜である。圧縮応力膜(90)を裏面(13)に形成すると、圧縮応力膜(90)によって、圧電単結晶基板(1)における圧電単結晶基板(1)の厚み方向の中心線(C)よりイオン注入側の部分に圧縮応力が印加される。これにより、圧電単結晶基板(1)は、反りが緩和して平らになる。そして、支持基板(50)を平らな圧電単結晶基板(1)上の接合膜(22)の表面に接合する。次に、圧電単結晶基板(1)と支持基板(50)との接合体を加熱し、イオン注入部分(100)を分離面とした分離を行う。

Description

圧電デバイスの製造方法
 この発明は、圧電単結晶材料の薄膜を用いた圧電デバイスの製造方法に関するものである。
 現在、圧電薄膜を用いた薄膜型圧電デバイスが多く開発されている。このような薄膜型圧電デバイスを形成するための圧電薄膜の製造方法は複数あるが、例えば、特許文献1に示すように、イオン注入層を分離面として圧電基板から圧電薄膜を分離形成する方法を用いた圧電デバイスの製造方法が考案されている。
 このイオン注入層を分離面として圧電基板から圧電薄膜を分離形成する方法を用いた圧電デバイスの製造方法について、図1を用いて以下説明する。
 図1は、特許文献1の圧電デバイスの製造工程を模式的に示す断面図である。まず、図1(A)に示すように、圧電基板5の表面7側から水素イオンを注入することで、圧電基板5の所定の深さdの位置にイオン注入層6を形成する。次に、図1(B)に示すように、圧電基板5の表面7に結合材8をスパッタリングにより堆積させる。次に、図1(C)に示すように、圧電基板5と支持基板9とを接合させる。最後に、圧電基板5と支持基板9の接合体に加熱処理を施し、イオン注入層6を分離面とした分離を行う。この結果、図1(D)に示すような圧電薄膜5′が支持基板9上に形成される。
特表2002-534886号公報
 しかしながら、上記特許文献1の製造方法においてイオンを注入すると(図1(A)参照)、圧電基板5は、図2に示すように、圧電基板5のイオン注入層6側を凸にして反りが生じる。この反りが生じる理由は、圧電基板5のイオン注入部分において圧電材料の結晶格子間距離が、注入されたイオン元素によって拡がるためである。
 このように反った状態で圧電基板5と支持基板9とを接合すると(図1(C)参照)、圧電基板5は、結晶格子間距離がイオン注入前の結晶格子間距離に比べて伸びた状態で支持基板9と接合することになる。そのため、支持基板9と接合した後にイオン注入層で分離された圧電薄膜5′の結晶格子間距離は、イオン注入前の結晶格子間距離に比べて拡がった状態となる。しかし、このように結晶格子間距離が拡がった状態の圧電薄膜5′は、結晶格子間距離が拡がっていない状態の圧電薄膜に比べて圧電性が劣化することが一般的に知られている。
 よって、特許文献1の製造方法で製造された圧電薄膜デバイスは、圧電性が劣化しているという問題があった。特に高周波フィルタデバイスでは、結晶格子間距離の拡がりが圧電性の劣化に大きく影響するため、デバイス特性に致命的な問題があった。
 また、圧電性回復のための熱処理を行うと、結晶間の注入イオン元素が圧電薄膜5′から脱気されて圧電薄膜5′の結晶格子間距離がイオン注入前の結晶格子間距離に戻ろうとする。しかし、圧電薄膜5′は支持基板9に接合しているため、支持基板9に拘束されてイオン注入前の結晶格子間距離に戻れなくなる。即ち、支持基板9上に形成された圧電薄膜5′にせん断応力が発生した状態となる。従って、特許文献1の製造方法で製造された圧電薄膜デバイスは、圧電薄膜5′の破損が起こりやすいという問題もあった。
 したがって、本発明の目的は、イオン注入を起因とした、圧電薄膜の圧電性の劣化と圧電薄膜の破損を防ぐ圧電デバイスの製造方法を提供することにある。
 この発明は、圧電薄膜と支持体とを備える圧電デバイスの製造方法に関するものである。この圧電デバイスの製造方法では、少なくとも、イオン注入工程、圧縮応力膜形成工程および引張応力膜形成工程を包含する応力層形成工程、支持体形成工程、および分離工程を有する。
 イオン注入工程は、圧電基板にイオン化した元素を注入することで、圧電基板の中に圧電基板に注入された元素の濃度がピークになる部分を形成する。圧縮応力膜形成工程は、圧電基板におけるイオン注入側の面に対向する裏面に、イオン注入側の面を圧縮する圧縮応力膜を応力層として形成する。仮支持体を形成しない場合、支持体形成工程は、支持体を圧電基板のイオン注入面側に形成する。分離工程は、圧電基板を加熱して圧電基板に注入された元素の濃度がピークになる部分を分離面とした分離を行い、圧電薄膜を支持体の表面上に形成する。
 この製造方法の圧縮応力膜形成工程において圧縮応力膜を裏面側に形成すると、圧縮応力膜によって、圧電基板における圧電基板の厚み方向の中心線よりイオン注入側の部分に圧縮応力が印加される。圧電基板における中心線よりイオン注入側の部分は、この圧縮応力により圧縮されて収縮する。すなわち圧電基板は、反りが緩和して略平らになる。
 そのため、支持体形成工程では、圧電基板は、反りが緩和された略平らな状態で支持基板に形成される。さらに、分離工程において加熱処理を施しているため、圧電薄膜中に存在していた注入イオン元素が圧電薄膜から脱気されるとともに、イオン注入工程に起因した圧電薄膜の結晶歪が補正される。これらにより、イオン注入により拡がった圧電薄膜の結晶格子間距離は、安定したイオン注入前の結晶格子間距離に戻る。そのため、この製造方法における圧電薄膜は、安定した良好な圧電性を有する。
 また、この製造方法では、圧電薄膜がイオン注入前の結晶格子間距離で支持体上に形成されるため、圧電薄膜にせん断応力がかからない。
 従って、この圧電デバイスの製造方法によれば、圧電薄膜の圧電性の劣化と圧電薄膜の破損を防ぐことができる。
 また、この発明の圧電デバイスの製造方法では、少なくとも仮支持体形成工程を有する。仮支持体形成工程は、圧電基板のイオン注入面側に仮支持体を形成する。仮支持体を形成する場合、支持体形成工程は、分離工程で圧電基板から分離した圧電薄膜に支持体を形成する。
 この発明の圧電デバイスの製造方法では、仮支持体形成工程において、反りが緩和された略平らな状態の圧電基板に仮支持体が形成される。そのため、この発明の圧電デバイスの製造方法においても、イオン注入により拡がった圧電薄膜の結晶格子間距離は、安定したイオン注入前の結晶格子間距離に戻る。そして、圧電薄膜がイオン注入前の結晶格子間距離で支持体上に形成される。
 また、この発明の圧電デバイスの製造方法では、圧縮応力膜形成工程の代わりに、引張応力膜形成工程を有しても構わない。引張応力膜形成工程は、圧電基板におけるイオン注入側の面に、イオン注入側の面を引張る引張応力膜を応力層として形成する。
 この製造方法の引張応力膜形成工程において引張応力膜をイオン注入面側に形成すると、引張応力膜によって、圧電基板における圧電基板の厚み方向の中心線よりイオン注入面側の部分に引張応力が印加される。圧電基板における中心線よりイオン注入面側の部分は、この引張応力により引張られて収縮する。すなわち圧電基板は、反りが緩和して略平らになる。
 そのため、仮支持体形成工程では、反りが緩和された略平らな状態の圧電基板に仮支持体が形成される。さらに、分離工程において加熱処理を施しているため、圧電薄膜中に存在していた注入イオン元素が圧電薄膜から脱気されるとともに、イオン注入工程に起因した圧電薄膜の結晶歪が補正される。これらにより、イオン注入により拡がった圧電薄膜の結晶格子間距離は、安定したイオン注入前の結晶格子間距離に戻る。そのため、この製造方法における圧電薄膜は、安定した良好な圧電性を有する。
 また、この製造方法では、圧電薄膜がイオン注入前の結晶格子間距離で支持体上に形成されるため、圧電薄膜にせん断応力がかからない。
 従って、引張応力膜を応力層として形成する圧電デバイスの製造方法によっても、圧電薄膜の圧電性の劣化と圧電薄膜の破損を防ぐことができる。
 また、この発明の圧電デバイスの製造方法において、上記圧縮応力膜形成工程は、圧電基板におけるイオン注入側の面に対向する裏面側に、圧電基板よりも線膨張係数の小さい材料を用いて圧縮応力膜を形成し、圧縮応力膜を形成した温度よりも低い温度にすることで圧電基板におけるイオン注入側の面に圧縮応力を印加しながら圧電基板の注入側の面を拘束する。もしくは、圧縮応力膜形成工程は、圧電基板におけるイオン注入側の面に対向する裏面側に、圧電基板よりも線膨張係数の大きな材料を用いて圧縮応力膜を形成し、圧縮応力膜を形成した温度よりも高い温度にすることでイオン注入側の面に圧縮応力を印加しながら圧電基板の注入側の面を拘束する。
 また、この発明の圧電デバイスの製造方法では、少なくとも電極膜形成工程を有する。電極膜形成工程は、支持体の表面上に形成された圧電薄膜上にIDT(InterdigitalTransducer)電極膜を形成する。
 また、この発明の圧電デバイスの製造方法において、イオン注入工程は、圧縮応力膜形成工程の後に行われる。
 まず、圧縮応力膜形成工程において圧縮応力膜を裏面側に形成すると、圧縮応力膜によって、圧電基板における圧電基板の厚み方向の中心線よりイオン注入側の面に圧縮応力が印加される。この圧縮応力により、圧電基板における中心線より面側の部分は圧縮されて収縮する。この結果、圧電基板は、圧電基板の圧縮応力膜側を凸にして反りが生じる。
 そして、イオン注入工程においてイオンを注入すると、圧電基板のイオン注入部分において圧電材料の結晶格子間距離が、注入されたイオン元素によって拡がる。これにより、圧電基板は、反りが緩和して略平らになる。
 そのため、イオン注入工程の後に行われる支持体形成工程において、圧電基板は、反りが緩和された略平らな状態で支持基板に形成される。
 また、この発明の圧電デバイスの製造方法では、少なくとも誘電体膜形成工程を有する。誘電体膜形成工程は、IDT電極膜を被覆するよう誘電体膜を圧電薄膜上に形成する。
 また、この発明の圧電デバイスの製造方法では、少なくとも、犠牲層形成工程、露出工程、および犠牲層除去工程を有する。
 犠牲層形成工程は、圧電薄膜と支持体との間に形成される空隙層となる空間に犠牲層を形成する。露出工程は、圧電薄膜をエッチングし、犠牲層の一部を圧電薄膜の表面側に露出させる孔部を形成する。犠牲層除去工程は、孔部を介して犠牲層を除去する。
 この製造方法では、メンブレン構造を有する圧電デバイスを製造する。
 この発明によれば、圧電薄膜の圧電性の劣化と圧電薄膜の破損を防ぐことができる。
特許文献1の圧電デバイスの製造工程を模式的に示す断面図である。 イオン注入工程を経た圧電基板の反った様子を模式的に示す図である。 第1の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。 図3に示す圧電デバイスの製造工程を模式的に示す断面図である。 図5(A)は、イオン注入工程を経た圧電単結晶基板の反った様子を模式的に示す図である。図5(B)は、圧縮応力膜により圧電単結晶基板の反りが緩和された様子を模式的に示す図である。 図3に示す圧電デバイスの製造工程を模式的に示す断面図である。 図3に示す圧電デバイスの製造工程を模式的に示す断面図である。 図3に示す圧電デバイスの製造工程を模式的に示す断面図である。 第2の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。 図9に示す圧電デバイスの製造工程を模式的に示す断面図である。 図9に示す圧電デバイスの製造工程を模式的に示す断面図である。 図12(A)は、第1の実施形態で製造する弾性表面波デバイスの模式図である。図12(B)は、第2の実施形態で製造する弾性表面波デバイスの模式図である。 第3の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。 図14(A)は、圧縮応力膜により圧電単結晶基板の反った様子を模式的に示す図である。図14(B)は、圧縮応力膜により反った圧電単結晶基板の表面に対してイオンを注入している様子を模式的に示す図である。図14(C)は、イオン注入工程を経て圧電単結晶基板の反りが緩和された様子を模式的に示す図である。 第4の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。 図15に示す圧電デバイスの製造工程を模式的に示す断面図である。 第5の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。 図17に示す圧電デバイスの製造工程を模式的に示す断面図である。 図17に示す圧電デバイスの製造工程を模式的に示す断面図である。 図17に示す圧電デバイスの製造工程を模式的に示す断面図である。 第6の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。 図21に示す圧電デバイスの製造工程を模式的に示す断面図である。 図23(A)は、イオン注入工程を経た圧電単結晶基板の反った様子を模式的に示す図である。図23(B)は、引張応力膜により圧電単結晶基板の反りが緩和された様子を模式的に示す図である。
 本発明の第1の実施形態に係る圧電デバイスの製造方法について、図を参照して説明する。なお、以下の説明では、圧電デバイスの製造方法として弾性表面波デバイスの製造方法を例に説明する。
 図3は、第1の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。図4、図6~図8は、第1の実施形態に係る圧電デバイスの製造工程を模式的に示す断面図である。図5(A)は、イオン注入工程を経た圧電単結晶基板の反った様子を模式的に示す図であり、図5(B)は、圧縮応力膜により圧電単結晶基板の反りが緩和された様子を模式的に示す図である。
 まず、図4(A)に示すように、所定厚みからなる圧電単結晶基板1を用意する。また、後述の図6に示すように、所定厚みからなる支持基板50を用意する。圧電単結晶基板1は、タンタル酸リチウム基板を利用し、支持体に相当する支持基板50は、Si基板を利用する。ここで、圧電単結晶基板1は、タンタル酸リチウム基板の他、ニオブ酸リチウム基板、四ホウ酸リチウム基板やランガサイト基板、ニオブ酸カリウム基板を用いても構わない。また、支持基板50は、Si基板の他、ガラス等のセラミック、水晶、サファイアまたは圧電単結晶基板等を用いても構わない。
 そして、図4(B)に示すように、圧電単結晶基板1の表面12側から水素イオンを注入することで、圧電単結晶基板1にイオン注入部分100を形成する(図3:S101)。例えば圧電単結晶基板1にタンタル酸リチウム基板を用いれば、加速エネルギー150KeVで1.0×1017atom/cm2のドーズ量により水素イオン注入を行うことにより、表面12から深さ約1μmの位置に水素分布部分が形成されて、イオン注入部分100が形成される。このイオン注入部分100は、圧電単結晶基板に注入されたイオン元素の濃度がピークになる部分である。ここで、圧電単結晶基板1の厚みは、水素分布部分の深さに対して10倍以上の厚みであることが好ましい。この理由は、圧電単結晶基板1に過剰な反りが生じるためである。
 なお、圧電単結晶基板1にタンタル酸リチウム基板以外の素材を用いた場合、それぞれの基板に応じた条件でイオン注入を行う。
 ここで、上記S101のイオン注入工程においてイオンを注入すると、圧電単結晶基板1は、図5(A)に示すように、圧電単結晶基板1のイオン注入部分100側を凸にして反りが生じる。この反りが生じる理由は、圧電単結晶基板1のイオン注入部分において圧電材料の結晶格子間距離が、注入されたイオン元素によって拡がるためである。
 このように反った状態で圧電単結晶基板1と支持基板50とを接合した場合(後述の図6(C)参照)、イオン注入部分100側の面12の圧電材料は、結晶格子間距離がイオン注入前の結晶格子間距離に比べて伸びた状態で支持基板50と接合することになる。そのため、支持基板50と接合した後に圧電薄膜10を分離した場合、圧電薄膜10の結晶格子間距離は、イオン注入前の結晶格子間距離に比べて拡がった状態となってしまう(後述の図7(A)参照)。
 そこで、図5(B)に示すように、圧電単結晶基板1におけるイオン注入部分100側の面12に対向する裏面13に圧縮応力膜90を形成する(図3:S102)。圧縮応力膜90は、圧電単結晶基板1におけるイオン注入部分100側の面12を圧縮する膜である。圧縮応力膜90は、例えば酸化シリコン、窒化シリコン、酸化アルミニウム、窒化アルミニウム、酸化亜鉛、酸化タンタルなどを用いることができる。圧縮応力膜90は、蒸着、スパッタリング、CVD等により、圧電単結晶基板1におけるイオン注入部分100側の面12に対向する裏面13に成膜される。ただし、いずれの成膜方法でも圧電単結晶基板1におけるイオン注入部分100側の面12を圧縮する膜が成膜されるよう、材料や膜厚などの成膜条件を設定する。ここで、圧電単結晶基板1におけるイオン注入部分100側の面12に圧縮応力をかける方法としては、上記に述べた成膜方法のほかに、次のような2つの方法を用いてもよい。まず1つ目の方法は、圧電単結晶基板1より線膨張係数の小さい材料を用いて圧縮応力膜90を圧電単結晶基板1の裏面13に形成し、イオン注入側の面12に後述の支持体を形成する際(この実施形態では図3S105と図6(C)参照)、圧縮応力膜90を形成したときの温度よりも低い温度で形成する方法である。次に2つ目の方法は、圧電単結晶基板1より線膨張係数の大きい材料を用いて圧縮応力膜90を圧電単結晶基板1の裏面13に形成し、イオン注入側の面12に後述の支持体を形成する際(この実施形態では図3S105と図6(C)参照)、圧縮応力膜90を形成したときの温度よりも高い温度で形成する方法である。この実施形態では、1つ目の方法を用いている。
 上記S102の圧縮応力膜形成工程において圧縮応力膜90を裏面13に形成すると、圧縮応力膜90によって、圧電単結晶基板1における圧電単結晶基板1の厚み方向の中心線Cよりイオン注入部分100側の部分に圧縮応力が印加される。圧電単結晶基板1における中心線Cよりイオン注入部分100側の部分は、この圧縮応力により圧縮されて収縮する。すなわち圧電単結晶基板1は、反りが緩和して略平らになる。
 なお、S102の圧縮応力膜形成工程で形成した圧縮応力膜90の圧縮応力で、圧電単結晶基板1を絶対的に平らにすることは困難である。しかし、反り量を緩和することは容易であり、反り量を緩和することにより、後述のS106の加熱工程後の圧電薄膜10の結晶格子間距離は、反り量を緩和しない場合と比べてイオン注入前の結晶格子間距離に近づく。
 次に、図6(A)に示すように、圧電単結晶基板1におけるイオン注入部分100側の面12に誘電体膜21を形成する(図3:S103)。誘電体膜21は、例えば酸化シリコン、窒化シリコン、酸化アルミニウム、窒化アルミニウムなどを用いることができる。誘電体膜21は、蒸着、スパッタリング、CVD等により、成膜される。誘電体膜21は、弾性表面波デバイスとして得たい物性を満たす構造・材料・膜厚を適宜選択する。
 なお、仮に上記S102の圧縮応力膜形成工程を行わずに誘電体膜21を形成した場合、イオン注入部分100側の面12の圧電材料は、結晶格子間距離がイオン注入前の結晶格子間距離に比べて伸びた状態で誘電体膜21と接することになる。この場合、後述のS106の加熱工程による注入イオン元素の脱気等で、イオン注入後に拡がった圧電薄膜10の結晶格子間距離がイオン注入前の結晶格子間距離に戻ろうとする際に、戻るのを阻害する力が誘電体膜21により掛かることになる。そのため、この実施形態では、上記S102の圧縮応力膜形成工程を行った後に誘電体膜21を形成している。同様に、上記S103の工程において誘電体膜21の代わりに所定の金属膜を形成する場合や、上記S103の工程や後述のS104の工程を行わずに支持体50を圧電単結晶基板1におけるイオン注入部分100側の面12に直接に接合する場合も、上記S102の圧縮応力膜形成工程を行った後に所定の金属膜を形成したり接合したりする必要がある。
 次に、図6(B)に示すように、支持基板50と接合するための接合膜22を誘電体膜21の表面に形成する(図3:S104)。さらに、接合膜22の表面を研磨することにより平坦化する。接合膜22は、無機材料からなり、例えば酸化シリコン、窒化シリコン、酸化アルミニウム、窒化アルミニウムなどを用いることができる。接合膜22は、蒸着、スパッタリング、CVD等により、成膜される。ここで、支持基板50と誘電体膜21と接合膜22とからなる部分が、本発明の「支持体」に相当する。
 次に、図6(C)に示すように、支持基板50を圧電単結晶基板1上の接合膜22の表面に接合する(図3:S105)。
 なお、この接合には、直接接合と呼ばれる活性化接合や親水化接合、あるいは、金属層を介した相互拡散を利用した接合を用いることができる。また、本実施形態では、支持基板50を圧電単結晶基板1に接合しているが、実施の際は、支持基板50を、成膜等により圧電単結晶基板1上に形成しても構わない。
 次に、図6(C)に示す圧電単結晶基板1と支持基板50との接合体を(この実施形態では500℃まで)加熱し、イオン注入部分100を分離面とした分離を行う(図3:S106)。ここで、S106の分離工程は、減圧雰囲気下で加熱すれば、加熱温度を低くすることができる。
 S106の分離工程により、図7(A)に示すように、支持基板50上の誘電体膜21の表面に、単結晶の圧電薄膜10が形成される。
 ここで、S105の接合工程において圧電単結晶基板1は、反りが緩和された略平らな状態で支持基板50に接合される。さらに、S106の分離工程では500℃まで加熱しているため、圧電薄膜10中に存在していた注入イオン元素(ここでは水素)が圧電薄膜10から脱気されるとともに、S101のイオン注入工程に起因した圧電薄膜10の結晶歪が補正される。これらにより、イオン注入により拡がった圧電薄膜10の結晶格子間距離は、安定したイオン注入前の結晶格子間距離に戻る。そのため、この実施形態における圧電薄膜10は、安定した良好な圧電性を有する。
 また、この実施形態では、圧電薄膜10がイオン注入前の結晶格子間距離で支持基板50上に形成されるため、圧電薄膜10にせん断応力がかからない。
 従って、この実施形態の圧電デバイスの製造方法によれば、圧電薄膜10の圧電性の劣化と圧電薄膜10の破損を防ぐことができる。
 なお、圧電薄膜10を単結晶薄膜とすることで、スパッタ、蒸着、CVD法等で成膜される多結晶薄膜より圧電性に優れた薄膜を形成することができる。また、圧電単結晶基板1の結晶方位が圧電薄膜10の結晶方位となるため、圧電デバイスの特性に応じた結晶方位を有する圧電単結晶基板1を用意することで、該特性に応じた結晶方位を有する圧電薄膜10を形成できる。また、イオン注入、接合、分離により単結晶薄膜を形成しているため、1枚の圧電単結晶基板1から複数の圧電薄膜10を形成することができるため、単結晶の圧電材料を節約することができる。
 次に、分離形成した圧電薄膜10の表面をCMP処理等により研磨して平坦化する(図3:S107)。この表面粗さは、算術平均粗さRaで0.5nm以下が好ましい。
 次に、図7(B)に示すように、圧電薄膜10の表面上に、Al(アルミニウム)等を用いて、所定膜厚の上部電極60A,60BとIDT(InterdigitalTransducer)電極60Cを形成する(図3:S108)。ここで、上部電極60A、60BとIDT電極60Cが、本発明の「電極膜」に相当する。
 なお、電極60A~60Cには、Alのみでなく、デバイスの仕様に応じて、Al,W、Mo、Ta、Hf、Cu、Pt、Ti、Au等を単体もしくは複数積層して用いてもよい。
 次に、図7(C)に示すように、圧電薄膜10及び電極60A~60Cを保護するため、圧電薄膜10及び電極60A~60Cの表面に絶縁膜70を形成する(図3:S109)。
 次に、図8(A)に示すように、絶縁膜70の上部電極60A,60Bを露出させる領域に開口部82A、82Bをエッチング等で形成する(図3:S110)。
 次に、図8(B)に示すように、外部端子を形成する(図3:S111)。詳述すると、上部電極60A、60B上にバンプパッド61A、61Bを形成し、両バンプパッド61A、61B上にバンプ62A、62Bを形成する。
 最後に、支持基板50上に形成された複数の薄膜型圧電デバイスから個別の薄膜型圧電デバイスに分割する分割工程を経て、モールド金型を用いたパッケージングを行う。このようにして薄膜型圧電デバイス(弾性表面波共振子)を形成する。そのため、複数の薄膜型圧電デバイスを一括製造できる。従って、この実施形態によれば、複数の薄膜型圧電デバイスを一括製造できるため、薄膜型圧電デバイスの製造コストを大幅に削減できる。
 ここで、以上のようにして得られた本実施形態の弾性表面波共振子の特性と、本実施形態の弾性表面波共振子の比較例である弾性表面波共振子の特性と、を測定した結果を表1に示す。比較例の弾性表面波共振子が本実施形態の弾性表面波共振子と相違する点は、製造する際に圧電単結晶基板1の裏面13に圧縮応力膜90を形成しなかった点であり、その他の製造方法および構成については同じである。
Figure JPOXMLDOC01-appb-T000001
 表1の上段に示されている比較例の弾性表面波共振子は、上述したように、圧電単結晶基板1のイオン注入面側の面12に圧縮応力を印加せずに圧電薄膜10を支持基板50に形成して作製したものである。一方、表1の下段に示されている本実施形態の弾性表面波共振子は、圧電単結晶基板1が平らになるよう圧電単結晶基板1の裏面13に圧縮応力膜90として厚み250nmの窒化シリコン膜をスパッタリング法で形成して作製したものである。なお、表1の上段に示されている比較例の弾性表面波共振子の反り量が80mmあたり220μmであったのに対し、表1の下段に示されている本実施形態の弾性表面波共振子の反り量は圧縮応力膜90の形成によって同じく80mmあたり20μmにまで改善した。
 表1に示すように、圧縮応力膜90を形成した場合と形成しなかった場合では、圧縮応力膜90を形成した方が圧電性に優れた共振子特性を得られることが明らかとなった。これは、圧電薄膜10の結晶格子間距離が伸びた状態で圧電薄膜10が支持基板50に形成されると圧電性が劣化するが、圧縮応力膜90によって圧電薄膜10の結晶格子間距離の伸びを修正した状態で圧電薄膜10を支持基板50に形成することによって、圧電薄膜10の圧電性が回復するためであると考えられる。
 次に、本発明の第2の実施形態に係る圧電デバイスの製造方法について、図9~図12を参照して説明する。なお、以下の説明では、圧電デバイスの製造方法として弾性表面波デバイスの製造方法を例に説明する。
 図9は、第2の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。図10,図11は、図9に示す圧電デバイスの製造工程を模式的に示す断面図である。この第2の実施形態は、上記第1の実施形態と、仮支持体形成工程を経る点で異なり、圧縮応力膜形成工程までは同じである。
 圧縮応力膜形成工程(図9、10:S202)の後、圧電単結晶基板1のイオン注入側の面に被エッチング層3を積層形成する被エッチング層形成工程を行う(図9、10:S203)。被エッチング層3は、後の仮支持基板除去工程において、圧電薄膜10や支持材に対して選択性を確保してエッチングできる構成材料を採用するとよく、ZnO、SiO、AlNなどの無機材料やCu、Al、Tiなどの金属材料、ポリイミド系などの有機材料、あるいはそれらの多層膜などを用いることができる。
 なお、被エッチング層3は設けられずともよい。
 次に、圧電単結晶基板1に積層した被エッチング層3に仮支持体4を形成する仮支持体形成工程を行う(図9、10:S204)。この実施形態の圧電デバイスの製造方法では、この仮支持体形成工程において、反りが緩和された略平らな状態の圧電単結晶基板1に仮支持体4が形成される。ここで、仮支持体4は被エッチング層3とともに仮支持基板を構成する。被エッチング層3と仮支持体4とからなる仮支持基板は、特に限定されるものではなく、圧電単結晶基板1(圧電薄膜10)との界面に作用する熱応力が支持体51よりも小さく、好ましくは略ゼロにすることが可能な構成材料を選定するのがよい。
 ここでは仮支持体4の構成材料として圧電単結晶基板1と同種のタンタル酸リチウム基板を採用し、被エッチング層3の構成材料としてCu膜およびSiO膜をそれぞれスパッタ成膜により積層したものを採用する。したがって仮支持体4単体の線膨張係数と圧電単結晶基板1単体の線膨張係数は等しく、これにより、被エッチング層3と仮支持体4とからなる複合材である仮支持基板と圧電単結晶基板1(圧電薄膜10)との界面に作用する熱応力を略ゼロにすることができる。
 なお、被エッチング層3の線膨張係数はタンタル酸リチウム基板の線膨張係数と相違するが、上記Cu膜のような延性が高い構成材料(金属材料など)を圧電単結晶基板1に直接積層するとともに、被エッチング層3の厚みを必要十分な程度に薄くしておくことにより、圧電単結晶基板1(圧電薄膜10)との界面における熱応力を低減することができる。
 上記S204の後、第1の実施形態と同様に、圧電単結晶基板1を加熱して、圧電単結晶基板1に注入された元素の濃度がピークになるイオン注入部分100を分離面とした分離を行う分離工程を行う(図9、10:S205)。この結果、イオン注入により拡がった圧電薄膜10の結晶格子間距離は、安定したイオン注入前の結晶格子間距離に戻る。
 そして、第1の実施形態と同様に誘電体膜21を圧電薄膜10に形成した後(図9、10:S206)、その誘電体膜21に支持体51を形成する支持体形成工程を行う(図9、10:S207)。そのため、この実施形態の圧電デバイスの製造方法においても、圧電薄膜10がイオン注入前の結晶格子間距離で支持体51上に形成される。この支持体形成工程は、少なくともアニール温度以下、好ましくは分離温度以下で実施できればどのような方法を採用して実現してもよい。
 ここで、支持体51は誘電体膜21とともに支持基板を構成する。誘電体膜21と支持基板51とからなる支持基板は、前述の仮支持基板のように加熱工程における圧電単結晶基板1(圧電薄膜10)との界面に作用する熱応力を考慮する必要が無く、任意の線膨張係数の構成材料を選定できる。そのため、誘電体膜21や支持体51として、単体での線膨張係数が圧電薄膜10に比べて著しく小さな構成材料を採用することも可能になり、弾性表面波デバイスの温度―周波数特性を大幅に改善させられる。また、誘電体膜21や支持体51として熱伝導性の良い構成材料を採用することで、弾性表面波デバイスの放熱性、耐電力性を良化できる。さらに、誘電体膜21や支持体51として安価な構成材料、形成方法を採用することで、弾性表面波デバイスの製造コストを低廉にできる。
 次に、被エッチング層3および仮支持体4からなる仮支持基板を除去する仮支持基板除去工程を行う(図9、11:S208)。この工程は、少なくともアニール温度以下、好ましくは分離温度以下で実施できればどのような方法を採用して実現してもよい。
 ここでは、被エッチング層3および仮支持体4からなる仮支持基板を除去するために、被エッチング層3をウエットエッチング、あるいはドライエッチングする。一般的には、被エッチング層3が無機系材料、金属系材料であればウエットエッチングを用い、有機系材料であればドライエッチングを用いる。これにより、圧電薄膜10に不要な応力や衝撃を与えることなく被エッチング層3および仮支持体4を除去でき、圧電薄膜10における不具合の発生を抑止できる。なお、被エッチング層3から分離した仮支持体4は、その後の弾性表面波デバイスの製造で再利用すると好適である。
 最後に、第1の実施形態と同様に電極形成等を行い(図9、11:S209~S212)、分割工程とモールド工程を経て、弾性表面波デバイスを得る。
 以上より、第2の実施形態により得られるデバイスは、第1の実施形態で製造する場合とは圧電薄膜10の表裏が逆向きの弾性表面波デバイスとなる。ここで、第1の実施形態で製造する場合とは圧電薄膜10の表裏が逆向きの弾性表面波デバイス10の構造に基づく本発明の作用効果の一例を、図12を参照して説明する。
 図12(A)は、第1の実施形態で製造する弾性表面波デバイスの模式図、図12(B)は、第2の実施形態で製造する弾性表面波デバイスの模式図である。いずれの場合も、イオン注入工程で圧電単結晶基板1にイオン注入面Aからイオンを注入することでイオン注入部分100を形成し、イオン注入部分100を分離面Bとして圧電単結晶基板1から圧電薄膜10を分離する。第1の実施形態では、イオン注入面Aに支持基板を形成することになり、圧電薄膜10の分離面Bにデバイスの機能電極60Cを形成することになる。一方、第2の実施形態では、イオン注入面Aに仮支持基板を形成した後、分離面Bに支持基板を形成し、仮支持基板を除去した後のイオン注入面Aにデバイスの機能電極60Cを形成することになる。
 イオン注入部分100を分離面として圧電単結晶基板1から圧電薄膜10を分離形成する方法により形成した圧電薄膜10では、加熱工程で結晶性や圧電性を回復していても一定程度の水素イオンの残留がある。そして、水素イオンの残留密度は圧電単結晶基板1におけるイオン注入部分100となる領域、即ち圧電薄膜10における分離面Bの近傍領域で大きく、イオン注入面Aの近傍領域で小さい。水素イオンの残留密度が小さい領域ほど局所的な圧電性の劣化が少ない傾向があるため、分離面Bの近傍領域では圧電性の劣化の程度が大きく、イオン注入面A近傍では圧電性の劣化の程度が小さい。したがって、本実施形態で製造する弾性表面波デバイスでは、圧電性の劣化が少ないイオン注入面Aに機能電極60Cを形成することで、第1の実施形態で製造する弾性表面波デバイスよりも、さらに良好なデバイス特性が得られる。
 次に、第3の実施形態に係る圧電デバイスの製造方法について、図を参照して説明する。なお、以下の説明では、圧電デバイスの製造方法として弾性表面波デバイスの製造方法を例に説明する。
 図13は、第3の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。図14(A)は、圧縮応力膜により圧電単結晶基板の反った様子を模式的に示す図である。図14(B)は、圧縮応力膜により反った圧電単結晶基板の表面に対してイオンを注入している様子を模式的に示す図である。図14(C)は、イオン注入工程を経て圧電単結晶基板の反りが緩和された様子を模式的に示す図である。
 この実施形態の圧電デバイスの製造方法が第1の実施形態に示した圧電デバイスの製造方法と相違する点は、圧縮応力膜形成工程をイオン注入工程の前に行う点である。即ち、図13のS303~S311は、それぞれ第1の実施形態に示したS103~S111と同じである。
 詳述すると、まず、S301の圧縮応力膜形成工程において圧縮応力膜90を裏面13に形成する。その結果、圧縮応力膜90によって、圧電単結晶基板1における圧電単結晶基板1の表面12側に圧縮応力が印加される(図14(A)参照)。この圧縮応力により、圧電単結晶基板1における中心線Cより面12側の部分は圧縮されて収縮する。この結果、圧電単結晶基板1は、圧電単結晶基板1の圧縮応力膜90側を凸にして反りが生じる。
 そして、S302のイオン注入工程においてイオンを注入すると(図14(B)参照)、圧電単結晶基板1のイオン注入部分において圧電材料の結晶格子間距離が、注入されたイオン元素によって拡がる。これにより、圧電単結晶基板1は、反りが緩和して略平らになる(図14(C)参照)。
 そのため、S305の接合工程において圧電単結晶基板1は、平らな状態で支持基板50に接合される。さらに、S306の分離工程では500℃まで加熱しているため、圧電薄膜10中に存在していた注入イオン元素(ここでは水素)が圧電薄膜10から脱気されるとともに、S101のイオン注入工程に起因した圧電薄膜10の結晶歪が補正される。これらにより、イオン注入により拡がった圧電薄膜10の結晶格子間距離は、安定したイオン注入前の結晶格子間距離に戻る。
 従って、この実施形態の圧電デバイスの製造方法によれば、第1の実施形態の圧電デバイスの製造方法と同様の効果を奏する。
 次に、第4の実施形態に係る圧電デバイスの製造方法について、図を参照して説明する。なお、以下の説明では、圧電デバイスの製造方法として弾性境界波デバイスの製造方法を例に説明する。
 図15は、第4の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。図16は、第4の実施形態に係る圧電デバイスの製造工程を模式的に示す断面図である。
 この実施形態の圧電デバイスの製造方法は、第1の実施形態に示した圧電デバイスの製造方法における絶縁膜70の形成工程(図3:S109)を、誘電体膜71の形成工程(図15:S409)に置き換えたものである。即ち、図15のS401~S408、S410、S411は、それぞれ第1の実施形態に示した図3のS101~S108、S110、S111と同じである。
 この実施形態においても、S402の圧縮応力膜形成工程で圧縮応力膜90を形成して圧電単結晶基板1の反りを緩和し、S405の接合工程において平らな圧電単結晶基板1を支持基板50に接合し、S406の分離工程において加熱分離している。
 従って、この実施形態の圧電デバイスの製造方法によれば、第1の実施形態の圧電デバイスの製造方法と同様の効果を奏する。
 次に、第5の実施形態に係る圧電デバイスの製造方法について、図を参照して説明する。
 図17は、第5の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。図18~図20は、図17に示す圧電デバイスの製造工程を模式的に示す断面図である。なお、以下の説明では、圧電デバイスの製造方法として、弾性バルク波デバイス(図19参照)、板波デバイス(図20参照)、及びラム波デバイスなどのメンブレン構造を持つ圧電デバイスの製造方法を例に説明する。
 この実施形態の圧電デバイスの製造方法は、図17のS501、S502、S508の工程が図3のS101、S102、S108の工程と共通し、その他の工程(S503~S507、S509~S512)が相違するものである。
 まず、S501のイオン注入工程とS502の圧縮応力膜形成工程とを経た圧電単結晶基板1を用意する。ここで、この圧電単結晶基板1は、両工程を経ているため反りが緩和されて略平らな状態になっている。
 そして、圧電単結晶基板1におけるイオン注入部分100側の面12に、図18(A)に示すように、Al(アルミニウム)等を用いて所定膜厚の下部電極膜20を形成する(図17:S503)。ここで、下部電極膜20には、Alのみでなく、デバイスの仕様に応じて、W、Mo、Ta、Hf、Cu、Pt、Ti、Au等を単体もしくは複数積層して用いてもよい。
 なお、下部電極膜20を有さない構造の板波デバイス(図20参照)を製造する場合は、S503の工程を省略する。
 一方、図18(B)に示すように、支持基板50の表面に、所定膜厚の支持層40を形成する(図17:S504)。支持層40は、絶縁性材料からなり、シリコン酸化物や窒化物、アルミニウム酸化物、PSG等の無機物や、樹脂等の有機物を利用し、犠牲層30の除去のためのエッチングガスやエッチング液に対して強い耐性を有するものであればよい。支持層40は、蒸着、スパッタリング、CVD、スピン塗布等により、支持基板50の表面の一定領域(犠牲層30を形成する領域を除外した領域)に成膜される。即ち、この支持層40は、圧電薄膜10が圧電デバイスとして機能しない非振動領域の直下に形成される。そして、支持層40の膜厚は、メンブレンの中空領域を構成する空隙層80の深さに応じて設定される。ここで、支持層40と支持基板50とからなる部分が、本発明の「支持体」に相当する。
 なお、支持層40は、圧電単結晶基板1や犠牲層30に対して、線膨張係数を加味した上で材質を決定するとよりよい。
 次に、図18(B)に示すように、支持基板50の表面に、所定膜厚の犠牲層30を形成する(図17:S505)。犠牲層30は、上部電極60と圧電薄膜10と下部電極20と支持層40よりもエッチングされやすい材料からなる。具体的には、Ni,Cu,Al等の金属や、SiO、ZnO、PSG(リンケイ酸ガラス)等の絶縁膜や、有機膜等から、条件に応じて適宜設定する。犠牲層30は、蒸着、スパッタリング、CVD、スピン塗布等により、支持基板50の表面上における空隙層80となる空間(即ち、圧電薄膜10が圧電デバイスとして機能する振動領域および孔部81A、81Bの直下の空間)に、支持層40の膜厚と同じ膜厚で成膜される。
 そして、犠牲層30及び支持層40や下部電極20の表面をCMP等により平坦化処理する。
 次に、図18(C)に示すように、圧電単結晶基板1上の下部電極20と支持基板50の犠牲層30及び支持層40とを接合する(図17:S506)。
 なお、この接合方法は、第1の実施形態と同じである。
 次に、図18(C)に示す圧電単結晶基板1と支持基板50との接合体を(この実施形態では500℃まで)加熱し、イオン注入部分100を分離面とした分離を行う(図17:S507)。この分離工程により、図18(D)に示すように、支持基板50上の下部電極20の表面に、単結晶の圧電薄膜10が形成される。
 なお、この分離方法は、第1の実施形態と同じである。
 次に、弾性バルク波デバイス(図19参照)であれば、S508のポリッシングの後、圧電薄膜10の表面上に、Al(アルミニウム)等を用いて所定膜厚の上部電極63B、63Cを形成する(図17:S509)。ここで、上部電極63B、63Cも、下部電極と同様に、Alのみでなく、デバイスの仕様に応じて、W、Mo、Ta、Hf、Cu、Pt、Ti、Au等を単体もしくは複数積層して用いることができる。また、板波デバイス(図20参照)であれば、S508のポリッシングの後、圧電薄膜10の表面上に、Al(アルミニウム)等を用いて所定膜厚の上部電極60A,60BとIDT電極60Cを形成する(図17:S509)。これらの上部電極60A、60B、60Cも、Alのみでなく、デバイスの仕様に応じて、W、Mo、Ta、Hf、Cu、Pt、Ti、Au等を単体もしくは複数積層して用いることができる。
 次に、フォトリソグラフィ技術を用いてレジスト膜をパターニングした後、エッチングガスを流入させることで、犠牲層30の一部を圧電薄膜10の表面側に露出させる孔部81A,81Bを形成する(図17:S510)。板波デバイス(図20参照)であれば、同時に、下部電極20の一部を圧電薄膜10の表面側に露出させる開口部も形成する。
 そして、エッチングガスもしくはエッチング液を孔部81A,81Bを介して流入させることで、犠牲層30を除去する(図17:S511)。これにより、犠牲層30が形成されていた空間は、図19に示すような空隙層80、図20に示すような空隙層80′となる。
 次に、第1の実施形態の圧電デバイスの製造方法と同様に、外部端子を形成する(図17:S512)。この際、弾性バルク波デバイス(図19参照)であれば、引き回し配線63Aを外部端子として形成する。
 最後に、支持基板50上に形成された複数の薄膜型圧電デバイスから個別の薄膜型圧電デバイスに分割する分割工程を経て、モールド金型を用いたパッケージングを行う。このようにして薄膜型圧電デバイスを形成する。
 以上より、この実施形態においても、S502の圧縮応力膜形成工程で圧縮応力膜90を形成して圧電単結晶基板1の反りを緩和し、S506の接合工程において平らな圧電単結晶基板1を支持基板50に接合し、S507の分離工程において加熱分離している。
 従って、この実施形態の圧電デバイスの製造方法によれば、第1の実施形態の圧電デバイスの製造方法と同様の効果を奏する。さらに、図18(D)に示すように圧電薄膜10はイオン注入部分100であった面が上側になるため、図19、図20に示すように上部電極63C又はIDT電極60C側へ応力が印加される。よって、犠牲層30を除去した際に、圧電薄膜10と支持層40との距離が近くても、スティッキング現象を引き起こし難い。
 次に、第6の実施形態に係る圧電デバイスの製造方法について、図を参照して説明する。第6の実施形態の圧電デバイスの製造方法が第2の実施形態に示した圧電デバイスの製造方法と相違する点は、圧縮応力膜形成工程の代わりに、引張応力膜形成工程を行う点である。
 図21は、第6の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。図22は、図21に示す圧電デバイスの製造工程を模式的に示す断面図である。図23(A)は、イオン注入工程を経た圧電単結晶基板の反った様子を模式的に示す図である。図23(B)は、引張応力膜により圧電単結晶基板の反りが緩和された様子を模式的に示す図である。
 図21に示す第6の実施形態の圧電デバイスの製造方法は、図9に示したS202~S204をS602、S604に置き換えてS208をS608に置き換えたものであり、その他の工程(S201、S205~S207、S209~S212)については同じである。そのため、S602、S604、S608について以下詳述する。
 まず、図22、図23に示すように、圧電単結晶基板1におけるイオン注入部分100側の面12に引張応力膜91を形成する(図21:S602)。引張応力膜91は、圧電単結晶基板1におけるイオン注入部分100側の面12を引っ張る膜である。また、引張応力膜91は、第2の実施形態で述べた被エッチング層3(図10参照)も兼ねており、後のS208において、圧電薄膜10や仮支持体4に対して選択性を確保してエッチングできる構成材料を採用する。引張応力膜91は、例えば酸化シリコン、窒化シリコン、酸化アルミニウム、窒化アルミニウム、酸化亜鉛、酸化タンタルなどを用いることができる。引張応力膜91は、蒸着、スパッタリング、CVD等により、圧電単結晶基板1におけるイオン注入部分100側の面12に成膜される。ただし、いずれの成膜方法でも圧電単結晶基板1におけるイオン注入部分100側の面12を引っ張る膜が成膜されるよう、材料や膜厚などの成膜条件を設定する。
 上記S602の引張応力膜形成工程において引張応力膜91をイオン注入部分100側の面12に形成すると、引張応力膜91によって、圧電単結晶基板1における圧電単結晶基板1の厚み方向の中心線Cよりイオン注入部分100側の部分に引張応力が印加される(図23参照)。圧電単結晶基板1における中心線Cよりイオン注入部分100側の部分は、この引張応力により引っ張られて収縮する。すなわち圧電単結晶基板1は、反りが緩和して略平らになる。
 なお、S602の引張応力膜形成工程で形成した引張応力膜91の引張応力で、圧電単結晶基板1を絶対的に平らにすることは困難である。しかし、反り量を緩和することは容易であり、反り量を緩和することにより、S205の加熱工程後の圧電薄膜10の結晶格子間距離は、反り量を緩和しない場合と比べてイオン注入前の結晶格子間距離に近づく。
 よって、この実施形態の仮支持体形成工程においても、反りが緩和された略平らな状態の圧電単結晶基板1に仮支持体4が形成される(図21、図22:S604)。なお、この工程における仮支持体4の形成方法および材料は、第2の実施形態に示したS204と同じである。
 次に、引張応力膜91および仮支持体4からなる仮支持基板を除去する仮支持基板除去工程を行う(図11、図21:S608)。この工程では、当該仮支持基板を除去するために、第2の実施形態で述べた被エッチング層3の代わりに、引張応力膜91をウエットエッチング、あるいはドライエッチングする。なお、この工程における仮支持基板の除去方法は、第2の実施形態に示したS208と同じである。
 最後に、第2の実施形態と同様に電極形成等を行い(図11、図21:S209~S212)、分割工程とモールド工程を経て、弾性表面波デバイスを得る。
 従って、この実施形態の圧電デバイスの製造方法によれば、第2の実施形態の圧電デバイスの製造方法と同様の効果を奏する。
 なお、上述の実施形態では、バルク波の圧電デバイスや板波デバイスを例に説明したが、他に、ジャイロ、RFスイッチ、振動発電素子等、圧電単結晶薄膜からなりメンブレンを有する各種デバイスに対しても、本発明の製造方法を適用することができる。
 また、上述の各実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1  圧電単結晶基板
 3  被エッチング層
 4  仮支持体
 5  圧電基板
 6  イオン注入層
 7  表面
 8  結合材
 9  支持基板
 10  圧電薄膜
 20  下部電極膜
 21  誘電体膜
 22  接合膜
 30  犠牲層
 40  支持層
 50  支持基板
 51  支持体
 60A、60B  上部電極膜
 60C  IDT電極膜
 61A、61B  バンプパッド
 62A、61B  バンプ
 63A  引き回し配線
 63B、63C  上部電極膜
 70  絶縁膜
 71  誘電体膜
 80  空隙層
 81A,81B  孔部
 82A  開口部
 90  圧縮応力膜
 91  引張応力膜
 100  イオン注入部分

Claims (9)

  1.  圧電薄膜と前記圧電薄膜を支持する支持体とを備える圧電デバイスの製造方法であって、
     圧電基板にイオン化した元素を注入することで、前記圧電基板の中に圧電基板に注入された元素の濃度がピークになる部分を形成するイオン注入工程と、
     前記圧電基板におけるイオン注入側の面を収縮させる応力層を前記圧電基板に形成する応力層形成工程と、
     前記支持体を形成する支持体形成工程と、
     前記圧電基板を加熱して前記圧電基板に注入された元素の濃度がピークになる部分を分離面として、前記圧電基板から前記圧電薄膜を分離する分離工程と、を有する圧電デバイスの製造方法。
  2.  前記応力層形成工程は、前記圧電基板におけるイオン注入側の面に対向する裏面側に、前記イオン注入側の面を圧縮する圧縮応力膜を前記応力層として形成する圧縮応力膜形成工程であり、
     前記支持体形成工程は、前記支持体を前記圧電基板の前記イオン注入面側に形成する工程である、請求項1に記載の圧電デバイスの製造方法。
  3.  前記圧電基板のイオン注入面側に仮支持体を形成する仮支持体形成工程をさらに有し、
     前記応力層形成工程は、前記圧電基板におけるイオン注入側の面に対向する裏面側に、前記イオン注入側の面を圧縮する圧縮応力膜を前記応力層として形成する圧縮応力膜形成工程であり、
     前記支持体形成工程は、前記分離工程で前記圧電基板から分離した前記圧電薄膜に前記支持体を形成する工程である、請求項1に記載の圧電デバイスの製造方法。
  4.  前記圧電基板のイオン注入面側に仮支持体を形成する仮支持体形成工程をさらに有し、
     前記応力層形成工程は、前記圧電基板におけるイオン注入面側に、前記イオン注入側の面を引張る引張応力膜を前記応力層として形成する引張応力膜形成工程であり、
     前記支持体形成工程は、前記分離工程で前記圧電基板から分離した前記圧電薄膜に前記支持体を形成する工程である、請求項1に記載の圧電デバイスの製造方法。
  5.  前記圧縮応力膜形成工程は、
     前記圧電基板におけるイオン注入側の面に対向する裏面側に、前記圧電基板よりも線膨張係数の小さい材料を用いて前記圧縮応力膜を形成し、前記圧縮応力膜を形成した温度よりも低い温度にすることで前記圧電基板におけるイオン注入側の面に圧縮応力を印加しながら前記圧電基板の注入側の面を拘束する工程、
     もしくは、前記圧電基板におけるイオン注入側の面に対向する裏面側に、前記圧電基板よりも線膨張係数の大きな材料を用いて前記圧縮応力膜を形成し、前記圧縮応力膜を形成した温度よりも高い温度にすることでイオン注入側の面に圧縮応力を印加しながら前記圧電基板の注入側の面を拘束する工程である、請求項2又は3に記載の圧電デバイスの製造方法。
  6.  前記支持体の表面上に形成された前記圧電薄膜上にIDT電極膜を形成する電極膜形成工程を有する、請求項1から5のいずれか1項に記載の圧電デバイスの製造方法。
  7.  前記イオン注入工程は、前記圧縮応力膜形成工程の後に行われる、請求項2、3、5、6のいずれか1項に記載の圧電デバイスの製造方法。
  8.  前記IDT電極膜を被覆するよう誘電体膜を前記圧電薄膜上に形成する誘電体膜形成工程を有する、請求項6又は7に記載の圧電デバイスの製造方法。
  9.  前記圧電薄膜と前記支持体との間に形成される空隙層となる空間に犠牲層を形成する犠牲層形成工程と、
     前記圧電薄膜をエッチングし、前記犠牲層の一部を前記圧電薄膜の表面側に露出させる孔部を形成する露出工程と、
     前記孔部を介して前記犠牲層を除去する犠牲層除去工程と、を有する、請求項1から8のいずれか1項に記載の圧電デバイスの製造方法。
PCT/JP2011/072160 2010-09-28 2011-09-28 圧電デバイスの製造方法 WO2012043615A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012536501A JP5447682B2 (ja) 2010-09-28 2011-09-28 圧電デバイスの製造方法
US13/850,513 US9246462B2 (en) 2010-09-28 2013-03-26 Method for manufacturing piezoelectric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010216935 2010-09-28
JP2010-216935 2010-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/850,513 Continuation US9246462B2 (en) 2010-09-28 2013-03-26 Method for manufacturing piezoelectric device

Publications (1)

Publication Number Publication Date
WO2012043615A1 true WO2012043615A1 (ja) 2012-04-05

Family

ID=45893054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072160 WO2012043615A1 (ja) 2010-09-28 2011-09-28 圧電デバイスの製造方法

Country Status (3)

Country Link
US (1) US9246462B2 (ja)
JP (1) JP5447682B2 (ja)
WO (1) WO2012043615A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504490A (ja) * 2015-12-16 2019-02-14 オステンド・テクノロジーズ・インコーポレーテッド ウェーハ平坦性を改善する方法およびその方法により作成された接合ウェーハ組立体
WO2019054238A1 (ja) * 2017-09-15 2019-03-21 日本碍子株式会社 弾性波素子およびその製造方法
WO2019130895A1 (ja) * 2017-12-28 2019-07-04 日本碍子株式会社 圧電性材料基板と支持基板との接合体および弾性波素子
CN111769041A (zh) * 2020-07-14 2020-10-13 济南晶正电子科技有限公司 一种离子注入的方法
JP2021519536A (ja) * 2018-03-26 2021-08-10 ソイテック 圧電層を支持基板上に転写する方法
JP7439415B2 (ja) 2019-08-28 2024-02-28 住友金属鉱山株式会社 圧電性基板、圧電性基板の製造方法、及び複合基板

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104871431B (zh) * 2012-12-26 2018-04-10 日本碍子株式会社 复合基板及其制造方法,以及弹性波装置
JP6288110B2 (ja) * 2013-12-27 2018-03-07 株式会社村田製作所 弾性波装置
FR3033462B1 (fr) * 2015-03-04 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif a ondes elastiques de surface comprenant un film piezoelectrique monocristallin et un substrat cristallin, a faibles coefficients viscoelastiques
WO2017068828A1 (ja) * 2015-10-23 2017-04-27 株式会社村田製作所 弾性波装置
KR102157602B1 (ko) * 2015-10-23 2020-09-18 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
FR3045933B1 (fr) * 2015-12-22 2018-02-09 Soitec Substrat pour un dispositif a ondes acoustiques de surface ou a ondes acoustiques de volume compense en temperature
US10103116B2 (en) * 2016-02-01 2018-10-16 Qualcomm Incorporated Open-passivation ball grid array pads
JP6621384B2 (ja) * 2016-07-20 2019-12-18 信越化学工業株式会社 弾性表面波デバイス用複合基板の製造方法
FR3064820B1 (fr) * 2017-03-31 2019-11-29 Soitec Procede d'ajustement de l'etat de contrainte d'un film piezoelectrique
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US20220116015A1 (en) 2018-06-15 2022-04-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US10756697B2 (en) * 2018-06-15 2020-08-25 Resonant Inc. Transversely-excited film bulk acoustic resonator
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US20210328574A1 (en) 2020-04-20 2021-10-21 Resonant Inc. Small transversely-excited film bulk acoustic resonators with enhanced q-factor
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US11509279B2 (en) 2020-07-18 2022-11-22 Resonant Inc. Acoustic resonators and filters with reduced temperature coefficient of frequency
US11824511B2 (en) 2018-03-21 2023-11-21 Qorvo Us, Inc. Method for manufacturing piezoelectric bulk layers with tilted c-axis orientation
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11728785B2 (en) 2018-06-15 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US11349450B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Symmetric transversely-excited film bulk acoustic resonators with reduced spurious modes
US11228296B2 (en) 2018-06-15 2022-01-18 Resonant Inc. Transversely-excited film bulk acoustic resonator with a cavity having a curved perimeter
US11349452B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US11146238B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Film bulk acoustic resonator fabrication method
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US11323095B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Rotation in XY plane to suppress spurious modes in XBAR devices
US11323091B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US10868510B2 (en) 2018-06-15 2020-12-15 Resonant Inc. Transversely-excited film bulk acoustic resonator with half-lambda dielectric layer
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11329628B2 (en) 2020-06-17 2022-05-10 Resonant Inc. Filter using lithium niobate and lithium tantalate transversely-excited film bulk acoustic resonators
US10826462B2 (en) 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11171629B2 (en) 2018-06-15 2021-11-09 Resonant Inc. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US11201601B2 (en) 2018-06-15 2021-12-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11374549B2 (en) 2018-06-15 2022-06-28 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
CN110011631B (zh) * 2019-03-13 2022-05-03 电子科技大学 具有应力缓冲层的空腔型体声波谐振器及其制备方法
US11901873B2 (en) 2019-03-14 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with partial BRAGG reflectors
US11401601B2 (en) 2019-09-13 2022-08-02 Qorvo Us, Inc. Piezoelectric bulk layers with tilted c-axis orientation and methods for making the same
US20210273629A1 (en) 2020-02-28 2021-09-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with multi-pitch interdigital transducer
US11849642B2 (en) * 2020-04-17 2023-12-19 Wisconsin Alumni Research Foundation 3D printed and in-situ poled flexible piezoelectric pressure sensor
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11469733B2 (en) 2020-05-06 2022-10-11 Resonant Inc. Transversely-excited film bulk acoustic resonators with interdigital transducer configured to reduce diaphragm stress
CN111769040A (zh) * 2020-06-19 2020-10-13 济南晶正电子科技有限公司 一种压电晶片离子注入的方法、注入片、压电薄膜及电子元器件
US11482981B2 (en) 2020-07-09 2022-10-25 Resonanat Inc. Transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
CN111883648B (zh) * 2020-07-23 2021-05-25 中国科学院上海微系统与信息技术研究所 一种压电薄膜的制备方法、压电薄膜及带通滤波器
US11264969B1 (en) 2020-08-06 2022-03-01 Resonant Inc. Transversely-excited film bulk acoustic resonator comprising small cells
US11671070B2 (en) 2020-08-19 2023-06-06 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators using multiple dielectric layer thicknesses to suppress spurious modes
US11271539B1 (en) 2020-08-19 2022-03-08 Resonant Inc. Transversely-excited film bulk acoustic resonator with tether-supported diaphragm
US11894835B2 (en) 2020-09-21 2024-02-06 Murata Manufacturing Co., Ltd. Sandwiched XBAR for third harmonic operation
US11929733B2 (en) 2020-10-05 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with input and output impedances matched to radio frequency front end elements
US11728784B2 (en) 2020-10-05 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters
US11658639B2 (en) 2020-10-05 2023-05-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with noncontiguous passband
US11476834B2 (en) 2020-10-05 2022-10-18 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters with switches in parallel with sub-filter shunt capacitors
US11405017B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Acoustic matrix filters and radios using acoustic matrix filters
US11405020B2 (en) 2020-11-26 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonators with structures to reduce acoustic energy leakage
US11239816B1 (en) 2021-01-15 2022-02-01 Resonant Inc. Decoupled transversely-excited film bulk acoustic resonators
WO2022190465A1 (ja) * 2021-03-10 2022-09-15 日本碍子株式会社 接合体
CN113922784B (zh) * 2021-10-19 2024-04-05 中国科学院上海微系统与信息技术研究所 一种声波谐振器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534886A (ja) * 1998-12-30 2002-10-15 タレス 分子結合剤によってキャリヤ基板に結合された圧電材料の薄層中で案内される表面弾性波のためのデバイスおよび製造方法
JP2003017967A (ja) * 2001-06-29 2003-01-17 Toshiba Corp 弾性表面波素子及びその製造方法
WO2009093376A1 (ja) * 2008-01-24 2009-07-30 Murata Manufacturing Co., Ltd. 弾性波素子の製造方法
WO2010082571A1 (ja) * 2009-01-15 2010-07-22 株式会社村田製作所 圧電デバイスおよび圧電デバイスの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767749B2 (en) * 2002-04-22 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting
JP4743258B2 (ja) * 2008-10-31 2011-08-10 株式会社村田製作所 圧電デバイスの製造方法
JP4821834B2 (ja) * 2008-10-31 2011-11-24 株式会社村田製作所 圧電性複合基板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534886A (ja) * 1998-12-30 2002-10-15 タレス 分子結合剤によってキャリヤ基板に結合された圧電材料の薄層中で案内される表面弾性波のためのデバイスおよび製造方法
JP2003017967A (ja) * 2001-06-29 2003-01-17 Toshiba Corp 弾性表面波素子及びその製造方法
WO2009093376A1 (ja) * 2008-01-24 2009-07-30 Murata Manufacturing Co., Ltd. 弾性波素子の製造方法
WO2010082571A1 (ja) * 2009-01-15 2010-07-22 株式会社村田製作所 圧電デバイスおよび圧電デバイスの製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504490A (ja) * 2015-12-16 2019-02-14 オステンド・テクノロジーズ・インコーポレーテッド ウェーハ平坦性を改善する方法およびその方法により作成された接合ウェーハ組立体
JP7025589B2 (ja) 2015-12-16 2022-02-24 オステンド・テクノロジーズ・インコーポレーテッド ウェーハ平坦性を改善する方法およびその方法により作成された接合ウェーハ組立体
JP2022008584A (ja) * 2015-12-16 2022-01-13 オステンド・テクノロジーズ・インコーポレーテッド ウェーハ平坦性を改善する方法およびその方法により作成された接合ウェーハ組立体
KR102222096B1 (ko) * 2017-09-15 2021-03-04 엔지케이 인슐레이터 엘티디 탄성파 소자 및 그 제조 방법
JPWO2019054238A1 (ja) * 2017-09-15 2019-11-07 日本碍子株式会社 弾性波素子およびその製造方法
US11632093B2 (en) 2017-09-15 2023-04-18 Ngk Insulators, Ltd. Acoustic wave devices and a method of producing the same
KR20190040246A (ko) * 2017-09-15 2019-04-17 엔지케이 인슐레이터 엘티디 탄성파 소자 및 그 제조 방법
WO2019054238A1 (ja) * 2017-09-15 2019-03-21 日本碍子株式会社 弾性波素子およびその製造方法
JPWO2019130895A1 (ja) * 2017-12-28 2019-12-26 日本碍子株式会社 圧電性材料基板と支持基板との接合体および弾性波素子
JP2020010367A (ja) * 2017-12-28 2020-01-16 日本碍子株式会社 圧電性材料基板と支持基板との接合体および弾性波素子
US11658635B2 (en) 2017-12-28 2023-05-23 Ngk Insulators, Ltd. Joined body of piezoelectric material substrate and support substrate, and acoustic wave element
WO2019130895A1 (ja) * 2017-12-28 2019-07-04 日本碍子株式会社 圧電性材料基板と支持基板との接合体および弾性波素子
JP7256204B2 (ja) 2018-03-26 2023-04-11 ソイテック 圧電層を支持基板上に転写する方法
JP2021519536A (ja) * 2018-03-26 2021-08-10 ソイテック 圧電層を支持基板上に転写する方法
JP7439415B2 (ja) 2019-08-28 2024-02-28 住友金属鉱山株式会社 圧電性基板、圧電性基板の製造方法、及び複合基板
CN111769041B (zh) * 2020-07-14 2022-09-13 济南晶正电子科技有限公司 一种离子注入的方法
CN111769041A (zh) * 2020-07-14 2020-10-13 济南晶正电子科技有限公司 一种离子注入的方法

Also Published As

Publication number Publication date
US20140130319A1 (en) 2014-05-15
JP5447682B2 (ja) 2014-03-19
US9246462B2 (en) 2016-01-26
JPWO2012043615A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5447682B2 (ja) 圧電デバイスの製造方法
KR101251031B1 (ko) 복합 압전기판의 제조방법 및 압전 디바이스
US10580962B2 (en) Method for manufacturing piezoelectric device
JP5522263B2 (ja) 圧電デバイス、圧電デバイスの製造方法
JP4821834B2 (ja) 圧電性複合基板の製造方法
JP4077805B2 (ja) 共振器の製造方法
JP6036926B2 (ja) 圧電デバイス
JP5817830B2 (ja) 圧電バルク波装置及びその製造方法
JP5152410B2 (ja) 圧電デバイスの製造方法
JP5796316B2 (ja) 圧電デバイスの製造方法
KR20140008286A (ko) 압전물질 주입에 대한 방법
JP5182379B2 (ja) 複合基板の製造方法
JP5682201B2 (ja) 圧電デバイスの製造方法
WO2011074329A1 (ja) 圧電デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829168

Country of ref document: EP

Kind code of ref document: A1