WO2010067592A1 - 希土類系ボンド磁石 - Google Patents

希土類系ボンド磁石 Download PDF

Info

Publication number
WO2010067592A1
WO2010067592A1 PCT/JP2009/006719 JP2009006719W WO2010067592A1 WO 2010067592 A1 WO2010067592 A1 WO 2010067592A1 JP 2009006719 W JP2009006719 W JP 2009006719W WO 2010067592 A1 WO2010067592 A1 WO 2010067592A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
powder
rare earth
resin
film
Prior art date
Application number
PCT/JP2009/006719
Other languages
English (en)
French (fr)
Inventor
本蔵義信
松岡浩
野口健児
内藤憲和
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Priority to US12/998,847 priority Critical patent/US20110234346A1/en
Priority to EP09831699A priority patent/EP2381452A1/en
Priority to JP2009554798A priority patent/JP4623232B2/ja
Priority to CN2009801499442A priority patent/CN102246249A/zh
Publication of WO2010067592A1 publication Critical patent/WO2010067592A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Definitions

  • the present invention relates to a rare earth bond magnet having a coating on its surface.
  • Rare earth magnets are used in a wide range of fields because of their excellent magnetic performance.
  • rare-earth bonded magnets made by combining a magnetic powder and a binder resin (compound) and bonding the magnetic powder with a binder resin have a high degree of freedom in shape and high dimensional accuracy in addition to excellent magnetic properties.
  • a feature that it is good. Therefore, rare earth-based bonded magnets are widely used mainly for automobile electric motors, small motors for home appliances, and the like.
  • small-sized motors using rare earth bonded magnets, particularly anisotropic rare earth bonded magnets have been adopted. With the progress of utilization of these bonded magnets, recently, a rare earth bonded magnet that can be used even at a high temperature of 150 ° C. or higher has been demanded.
  • rare earth bond magnets include Nd—Fe—B bond magnets and Sm—Fe—N bond magnets, but they are easily oxidized because they contain rare earth elements.
  • the use environment becomes high temperature, oxidation is promoted, which causes deterioration of magnetic properties such as a decrease in magnetic force.
  • the liquid when used in a liquid, the liquid may infiltrate with the oxidation by moisture, causing the resin to expand, and the magnetic properties may deteriorate and at the same time the shape may not be maintained.
  • the surface of a rare earth-based bonded magnet is covered with various coatings for protection.
  • Patent Document 2 discloses that an amorphous carbon film is formed on the surface of a rare earth sintered magnet.
  • An amorphous carbon film is suitable as a protective film because it is stable in a high temperature environment and has excellent mechanical resistance as well as corrosion resistance, chemical resistance, and oxygen barrier properties.
  • the resin coating formed by applying a resin coating to a rare earth bond magnet can block the contact between the atmosphere and moisture and the magnet powder to some extent. Therefore, the oxidation resistance of the rare earth bond magnet is improved by forming the resin coating film.
  • the resin coating film easily expands and decomposes as the temperature increases. Therefore, the higher the environment in which the rare earth bond magnet is used, the higher the oxygen permeability of the resin coating film and the lowering of the oxygen blocking effect. is there. Also, the mechanical strength is not sufficient. That is, sufficient oxidation resistance cannot be obtained depending on the application only by applying a resin coating to the rare earth bond magnet.
  • the metal coating has a greater shielding effect between oxygen and magnet powder than the resin coating. Therefore, the oxidation resistance of the rare earth bond magnet described in Patent Document 1 having a metal coating on the surface is improved.
  • the resin coating, the amorphous carbon film, and the metal coating easily pass oxygen in this order, and the amorphous carbon film does not have the oxygen blocking effect as the metal coating. That is, as in Patent Document 1, even if an amorphous carbon film is further formed on the metal film, the wear resistance, which is a weak point of the metal film, is improved, but the effect of further improving the oxidation resistance cannot be expected. . In other words, as long as a good metal film is formed on the surface of the rare earth-based bonded magnet, sufficient oxidation resistance can be obtained, so that it is not necessary to form an amorphous carbon film.
  • the rare earth bond magnet has a relatively large number of pores, when a metal film is formed on the surface of the rare earth bond magnet by plating, the plating aqueous solution penetrates into the pores, and corrosion from the inside of the rare earth bond magnet is likely to occur. Moreover, in electroplating, it is necessary to process the rare earth bond magnet in advance, and the process becomes complicated. Furthermore, if electroplating is performed with the rare earth bond magnet assembled to the metal substrate, the metal substrate is more easily plated than the rare earth bond magnet, so that the metal film is not sufficiently formed on the surface of the rare earth bond magnet. .
  • Another method for forming a metal film is a physical vapor deposition (PVD) method such as ion plating.
  • PVD physical vapor deposition
  • rare earth-based bonded magnets usually have a complicated shape with irregularities on the surface.
  • metal atoms or particles are deposited perpendicularly to the film formation surface, it is difficult to uniformly form a metal film on a rare earth bond magnet having irregularities on the surface.
  • a metal film is formed by a chemical vapor deposition (CVD) method, since a gas containing a very expensive organometallic compound is used as a raw material gas, it is not industrially established. That is, if a metal film can be satisfactorily formed on a rare earth bond magnet, ideal oxidation resistance is imparted to the rare earth bond magnet, but it cannot be established industrially.
  • CVD chemical vapor deposition
  • Patent Document 2 it is said that an amorphous carbon film may be directly formed on the surface of the rare earth sintered magnet. Therefore, the present inventors tried to form an amorphous carbon film directly on the surface of the rare earth bond magnet, but the improvement in oxidation resistance was insufficient.
  • an object of the present invention is to provide a rare earth bond magnet that exhibits excellent magnetic properties over a long period of time by improving the oxidation resistance of a magnet at high temperatures.
  • the inventors of the present invention are that rare earth bond magnets are difficult to improve the oxidation resistance of rare earth bond magnets even when an amorphous carbon film effective as a protective film is formed on the surface of rare earth bond magnets. It was newly found that the surface condition of the slab was affected. In the conventional rare earth-based bonded magnet manufactured by a general method such as compression molding, attention was paid to the fact that both the magnet powder and the resin are exposed on the surface.
  • the surface of conventional rare earth bonded magnets is directly amorphous by a general vapor deposition method.
  • a carbon film was formed, it was difficult to form an amorphous carbon film on the surface of the magnet powder, and it was assumed that oxidation proceeded from there.
  • the inventors have conceived that the magnet powder is buried in a resin holding the magnet powder so that the magnet powder is not exposed on the surface of the rare earth bond magnet before the amorphous carbon film is formed.
  • the rare earth-based bonded magnet of the present invention comprises a magnet body comprising a rare earth element-containing magnet powder and a resin part holding the magnet powder, the magnet powder being buried in the resin part, and the surface of the magnet body An amorphous carbon film formed directly on the resin part, and the resin part includes a binder resin part that holds the magnet powder, and a resin layer that is located on a surface layer of the magnet body and covers the magnet powder. It is characterized by becoming.
  • the magnet powder is buried in the resin portion in the surface layer of the magnet body by having the resin layer on the surface layer of the magnet body. That is, in the rare earth bond magnet of the present invention, the outermost surface of the magnet body is almost made of resin, and an amorphous carbon film is directly formed on the surface. Therefore, a uniform amorphous carbon film is easily formed.
  • the resin constituting the resin layer is soft and greatly differs from the hardness of the amorphous carbon film (about Hv 800 to 3000).
  • the hard material that is hard to deform has a small coefficient of linear expansion
  • the soft material that is easily deformed has a large coefficient of linear expansion. Therefore, it is expected that the difference in linear expansion coefficient or deformability is greatly different between the amorphous carbon film and the resin layer. Therefore, even if an amorphous carbon film can be formed on the resin layer, the amorphous carbon film may crack or peel off due to a difference in linear expansion coefficient at a high temperature or a difference in deformability at a high temperature. It seemed that the oxidation resistance at high temperature was greatly reduced.
  • an amorphous carbon film is directly formed on the surface of the magnet body, that is, the surface of the resin layer, which is mostly a resin.
  • the amorphous carbon film adheres sufficiently to the surface of the magnet body without cracking or peeling off,
  • the amorphous carbon film sufficiently functions as a protective film that imparts oxidation resistance. The mechanism of this unexpected effect is not clear, but it can be considered as follows from the result.
  • the binder resin portion is restrained by the magnet powder.
  • the physical properties of the magnet powder and the resin are averaged.
  • the linear expansion coefficient is a value between the linear expansion coefficient of the resin (about 8 ⁇ 10 ⁇ 5 / K) and the linear expansion coefficient of the magnet powder (about 3 ⁇ 10 ⁇ 6 / K).
  • the linear expansion coefficient of the portion where the binder resin portion is constrained by the magnet powder is closer to the linear expansion coefficient of the magnet powder.
  • the physical characteristic of the part by which the binder resin part is restrained by the magnet powder also affects the resin layer which hardly contains magnet powder.
  • the physical properties of the resin layer also approach the magnet powder, the difference in linear expansion coefficient between the resin layer and the amorphous carbon film is reduced, and the amorphous carbon film is less likely to crack or peel off at high temperatures. It is estimated that the oxidation resistance of the rare earth bonded magnet of the present invention is improved.
  • the deformability of the resin layer at high temperature has approached the deformability of the amorphous carbon film for the same reason as the linear expansion coefficient, the amorphous carbon film is unlikely to crack or peel off at high temperature.
  • the rare-earth bond magnet of the present invention exhibits very excellent oxidation resistance at high temperatures.
  • (1-1) is a magnet body before forming a resin coating
  • (1-2) is a magnet body having a resin coating as a resin layer
  • (1-3) is an amorphous carbon film formed on the magnet body.
  • (2-1) schematically shows the vicinity of the surface of a magnet main body having a skin layer as a resin layer
  • the bonded magnet of the present invention includes a magnet body and an amorphous carbon film.
  • the magnet body is composed of magnet powder and a resin part.
  • the magnet powder contains a rare earth element.
  • the magnet powder may be a general magnet powder used for rare earth bonded magnets. Specifically, rare earth-iron-nitrogen based magnet powder (for example, Sm—Fe—N based alloy powder), rare earth—iron—boron based magnet powder (for example, Nd—Fe—B based alloy powder) and rare earth-cobalt.
  • rare earth magnet powders having a known alloy composition such as Sm—Co alloy powders represented by Sm—Co anisotropic magnet powders such as Sm 2 Co 17 type and SmCo 5 type Can be mentioned.
  • a nanocomposite rare earth magnet powder that is a magnet powder in which a hard magnetic phase and a soft magnetic phase coexist in a nanometer order structure may be used. You may use 1 type of these individually or in mixture of 2 or more types.
  • anisotropic magnet powder is used when high magnetic properties are required, and isotropic magnet powder is used when ease of magnetization is used. Any one of anisotropic magnet powder and isotropic magnet powder may be used alone or a mixture of both may be used. That is, the magnet powder may include not only one kind of magnet powder but also magnet powders having different compositions, and may include both anisotropic magnet powder and isotropic magnet powder.
  • rare earth elements other than yttrium (Y), which are lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium ( Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), and lutetium (Lu).
  • rare earth elements other than yttrium (Y), which are lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium ( Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), and lutetium (Lu).
  • Y yttrium
  • the magnet powder may include two or more kinds of powders having a difference in average particle diameter. That is, the magnet powder may include a fine powder having a small average particle diameter.
  • fine powder in addition to the above-mentioned various alloy powders, ferrite powders, nanocomposite rare earth magnet powders, etc. may be used, and nonmagnetic materials made of metals or metal oxides such as zinc, zinc oxide, silicon oxide, aluminum oxide, etc. It is good also as a powder.
  • the magnet powder preferably contains a coarse magnet powder and a fine magnet powder having different average particle diameters.
  • the magnet coarse powder is Nd—Fe—B alloy powder
  • the magnet fine powder is Sm—Co alloy powder and / or Sm—Fe—N alloy.
  • examples thereof include powder, magnet coarse powder as Sm—Co alloy powder, magnet fine powder as Sm—Fe—N alloy powder, and magnet coarse powder and fine powder as Nd—Fe—B alloy powder.
  • Sm—Co alloy powder it is preferable to use Sm—Co alloy powder as the fine powder. If the fine powder is an Sm—Co alloy powder, the Curie point of the entire magnet powder is raised and the coercive force is improved. As a result, the bonded magnet of the present invention is a magnet having excellent heat resistance and oxidation resistance.
  • the coarse powder such as magnet coarse powder preferably has an average particle diameter of 50 to 150 ⁇ m, more preferably 80 to 130 ⁇ m.
  • the fine powder preferably has an average particle size of 20 ⁇ m or less, more preferably 1 to 10 ⁇ m.
  • the average particle diameter of the magnet powder is a volume median diameter (VMD) measured by laser diffraction.
  • the alloy composition of the magnet powder if it contains at least rare earth-containing magnet particles, the alloy composition of the magnet powder, whether the magnet powder is anisotropic or isotropic, and the average particle diameter of the magnet powder Regardless, a magnetic powder made of a mixture of a plurality of types of powders can be used.
  • the resin portion may be made of either a thermoplastic resin or a thermosetting resin.
  • the thermoplastic resin include nylon 66, nylon 12, polyphenylene sulfide resin, polyamide, polyimide, polyethylene terephthalate, and the like, and one or more of these can be used in combination.
  • the thermosetting resin include an epoxy resin, a phenol resin, a polyimide resin, a polyamideimide resin, a melamine resin, and the like, and one or more of these can be used in combination.
  • the shape of the magnet body there is no particular limitation on the shape of the magnet body, and any shape may be used according to the application of the bond magnet of the present invention.
  • the bonded magnet of the present invention is used in a motor, it has a cylindrical shape.
  • additives such as antioxidant, suitably according to use conditions.
  • the magnet body may contain 50% by volume or more of magnet powder, with the entire magnet body being 100% by volume.
  • the content ratio of the magnet powder is 50% by volume or more, sufficient magnet characteristics as a bonded magnet can be obtained.
  • a binder resin part will not be easily restrained by magnet powder.
  • physical characteristics such as the linear expansion coefficient of the surface of the magnet body (that is, the surface of the resin layer) are equivalent to those of the resin, and the amorphous carbon film is not sufficiently adhered to the surface. Therefore, the bonded magnet does not exhibit excellent oxidation resistance at high temperatures.
  • the magnet body preferably contains 80% by volume or more, and further 85% by volume or more of magnet powder when the whole is 100% by volume.
  • the magnet powder By including the magnet powder at a high density, not only high magnetic properties can be obtained, but also the amorphous carbon film is sufficiently adhered to the surface of the magnet body. That is, it is possible to obtain a rare-earth bonded magnet that exhibits high magnetic properties and excellent oxidation resistance.
  • the magnet powder is buried in the resin part. At this time, it is desired that all the magnet powder is buried in the resin portion, but the exposed area of the magnet powder only needs to be smaller than that of the conventional bonded magnet.
  • the configuration of the resin portion the following two are preferable. (1) It consists of a binder resin part that holds the magnet powder and a resin layer that is located on the surface layer of the magnet body and covers the magnet powder. (2) The binder resin portion and the resin layer are made of the same resin material and are made of a binder resin that is integrally continuous with each other.
  • (1) and (2) will be described.
  • a high-density molded body containing magnet powder in a high volume ratio may be molded by compression molding.
  • compression molding is performed at a high surface pressure of about 9 ton / cm 2 . Since the molded body molded in this way has a relatively small amount of resin, there is not enough resin to ooze out on the surface of the molded body when it is compressed, and a molded body having a surface on which magnet powder is exposed is formed. Easy to be.
  • FIG. 1 (1-1) is a cross-sectional view schematically showing the vicinity of the surface of the molded body after demolding.
  • a molded object consists of the magnet powder 11 comprised with a some magnet particle, and the binder resin part 14 holding it.
  • the magnet body 10 includes the resin layer 13 on the surface 10 s ′ of the molded body, so that the magnet powder 11 is covered with the resin layer 13. That is, in the magnet body 10, the magnet powder 11 is buried in the resin portion 12 including the binder resin portion 14 and the resin layer 13. Then, as shown in FIG. 1 (1-3), by forming an amorphous carbon film 91 on the resin layer 13, the bonded magnet of the present invention can be obtained.
  • the resin layer may be made of the same resin as the binder resin portion constituting the magnet body, or may be made of a different kind of resin.
  • the resin layer can be used by mixing one kind or two or more kinds of resins suitable for the binder resin already described.
  • the resin layer may be any film thickness that can be covered with the magnet powder, and is preferably 50 ⁇ m or less, 20 to 50 ⁇ m, and further 20 to 30 ⁇ m. When the thickness of the resin layer exceeds 50 ⁇ m, the restraining effect of the resin portion by the magnet powder hardly affects the surface of the resin layer, and the physical properties near the surface of the resin layer are the same as the resin, The difference in coefficient of linear expansion from the crystalline carbon film becomes large.
  • the adhesion between the surface of the resin layer and the amorphous carbon film is lowered, and the amorphous carbon film is likely to be cracked or peeled off, which in turn causes a reduction in the oxidation resistance of the bonded magnet of the present invention. .
  • productivity is reduced when a resin layer exceeding 50 ⁇ m is formed.
  • the thickness of the resin layer is the arithmetic average value of the shortest distance from the outermost surface of the magnet body to the surface of the magnet particles when the magnet body is cut perpendicular to the surface.
  • the bonded magnet of the present invention having the resin part of the form (1) includes a preparation step for preparing a mixture made of magnet powder and resin, and a binder resin part for holding the magnet powder and the magnet powder from the mixture.
  • a mixture may be prepared by weighing magnet powder having a predetermined blending ratio and resin.
  • the magnet powder and resin used are as already described.
  • the prepared mixture is molded in the main molding step to obtain a molded body composed of the magnet powder and the binder resin portion that holds the magnet powder.
  • compression molding is preferable in which the resin is softened or melted while applying pressure to the mixture in the mold and then the resin is cured to obtain a molded body.
  • compression molding when the compact is 100% by volume, a compact having a magnet powder ratio of 80% by volume or more can be easily produced, but the magnet powder is easily exposed on the surface of the compact. Therefore, in the next coating film forming step, a resin coating film is formed on the surface of the molded body.
  • the coating film forming step is a step of forming a resin coating film, that is, a resin layer on the surface of the molded body.
  • the method for forming the resin coating film is not particularly limited, and a coating method and curing conditions may be selected according to the resin paint used.
  • the amorphous carbon film forming step is a step of forming an amorphous carbon film on the surface of the resin coating film.
  • the amorphous carbon film forming step will be described in detail later.
  • an orientation step may be performed in which the magnetic powder is oriented by applying an orientation magnetic field to the mixture after the preparation step while the resin is softened or melted.
  • the magnet powder includes anisotropic magnet powder
  • a magnetic field is applied in the orientation step to orient the anisotropic magnet powder in a specific direction, and then the main molding may be performed while the magnetic field is applied.
  • the manufacturing method including an orientation process is generally called forming in a heating magnetic field.
  • the resin film and the amorphous carbon film may be formed after assembling the molded body obtained in this molding process to another member, or the molded body after the formation of the resin coating film is completed.
  • the amorphous carbon film may be formed after the (magnet body) is assembled to another member.
  • a resin coating film and an amorphous carbon film may be formed on the molded body, and then assembled to another member.
  • the resin portion may be made of a continuous binder resin. That is, in (1), the binder resin portion and the resin layer are made of the same resin and are integrated and continuous. Such a configuration can be obtained by forming a skin layer instead of the resin layer on the surface of the magnet body when the magnet body is molded.
  • FIG. 2 (2-1) is a cross section schematically showing, for example, the vicinity of the surface of a magnet body (molded body) 20 having a skin layer when a molded body having a low volume fraction of magnet powder is molded by compression molding.
  • the magnet body 20 includes a magnet powder 21 composed of a plurality of magnet particles and a resin portion 22 that holds the magnet powder 21.
  • the resin portion 22 is made of the resin material (binder resin) already described.
  • the surface layer of the resin portion 22 is a skin layer 23 that does not include the magnet powder 21 and is made of the same binder resin.
  • the magnet powder 21 is covered with the skin layer 23 on the surface 20 s of the magnet body 20, thereby forming the magnet body 20 in which the magnet powder 21 is buried in the resin portion 22.
  • the bonded magnet of the present invention can be obtained.
  • the skin layer 23 is magnetized after the mold is removed from the mold because the binder powder oozes out on the surface of the mold (ie, the surface of the molded body) during molding such as compression molding, so that the magnet powder 21 is buried in the resin portion 22.
  • the powder 21 hardly appears on the surface of the magnet body 20. Even if the magnet powder 21 is slightly exposed, the oxidation resistance is improved.
  • the thickness of the skin layer is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less and 3 ⁇ m or less. It is difficult for the skin layer to have a thickness exceeding 10 ⁇ m in production. If the magnet powder may not be buried in the resin part, a resin layer may be further formed on the skin layer.
  • the thickness of the skin layer is the arithmetic average value of the shortest distance from the outermost surface of the magnet body to the surface of the magnet particles when the magnet body is cut perpendicular to the surface.
  • the bonded magnet of the present invention having the resin part of the form (2) is a surface layer comprising a preparation step for preparing a mixture of magnet powder and resin, and a magnetic part from the mixture and a resin part for holding the magnet powder. Further, it is manufactured through a main molding step for obtaining a molded body having a skin layer made of resin and an amorphous carbon film forming step for forming an amorphous carbon film on the surface of the skin layer. Moreover, you may include said orientation process and / or preforming process as needed.
  • the skin layer is formed in the main forming process. Therefore, the coating film forming step for forming the resin coating film is not essential. That is, if the skin layer is formed in the main forming step, the coating film forming step can be omitted. Below, this shaping
  • the main molding step is a step of obtaining a molded body having a skin layer made of a resin composed of a magnetic powder and a resin part holding the magnetic powder from the mixture.
  • the skin layer is formed with a desired thickness by controlling the mixing ratio of the magnet powder and the resin in the preparation process, the heating temperature and the molding pressure in the main molding process.
  • the resin easily oozes out on the surface of the mold in the main molding step, and a skin layer is easily formed.
  • the skin layer is formed in the same manner even when the magnetic powder containing the fine powder is used.
  • the skin layer is thinner than the resin layer of the bond magnet of the form (1), the adhesion of the amorphous carbon film to the surface of the magnet body in the high temperature region is further improved.
  • the skin layer is formed extremely thin, a decrease in magnetic force due to the magnet powder being covered with the resin layer is suppressed.
  • the output of a motor varies greatly depending on the air gap between the stator and the rotor.
  • the bond magnet of the form (2) is used for the motor, the air gap is substantially reduced because the non-magnetic skin layer is extremely thin. As a result, the output of the motor is improved.
  • the reason why the difference in the adhesion of the amorphous carbon film at a high temperature between the (1) resin layer and the (2) resin layer (that is, the skin layer) is generally considered as follows.
  • the physical characteristics of the portion where the binder resin portion is constrained by the magnet powder also affect the resin layer.
  • the difference in coefficient of linear expansion or the difference in deformability between the resin layer and the amorphous carbon film is reduced, and cracking and peeling of the amorphous carbon film at high temperatures are less likely to occur.
  • the thinner the resin layer the more prominent. Since the resin layer (1) is mainly formed as a resin coating film, the film thickness is 20 ⁇ m or more and is relatively thick.
  • the thickness of the skin layer is about several ⁇ m, and the surface of the skin layer corresponds to the portion where the binder resin portion is constrained by the magnet powder (FIG. 2 (2-1), below the broken line). ). Furthermore, since the skin layer is made of the same resin material as that of the binder resin portion and is continuous with each other, the influence is even more remarkable. In other words, the physical characteristics of the skin layer are very close to the physical characteristics of the magnet powder, and the difference in coefficient of linear expansion between the skin layer and the amorphous carbon film is further reduced, and the amorphous carbon film on the surface of the skin layer is reduced. The adhesion is improved.
  • the magnet powder may include two or more kinds of powders having a difference in average particle diameter, such as a magnet coarse powder and a fine powder.
  • the ratio of the magnetic powder that restrains the binder resin portion can be increased, so the difference in the linear expansion coefficient between the resin layer and the amorphous carbon film or the difference in deformability at high temperatures is greater. It becomes smaller and the peeling and cracking of the amorphous carbon film at a high temperature are further suppressed.
  • the binder resin portion and the resin layer (skin layer) are continuous as in the form of (2), the fine powder can be filled with high density directly under the skin layer. A state in which the fine powder is filled at a high density immediately below the skin layer will be described below with reference to FIG.
  • FIG. 3 is a cross-sectional view schematically showing the vicinity of the surface of the bonded magnet of the present invention when magnet powder containing magnet coarse powder and magnet fine powder is used.
  • the magnet body 30 includes a magnet coarse powder 31, a magnet fine powder 31 ′, and a resin portion 32. Magnet powders 31 and 31 ′ are held in resin portion 32.
  • the surface layer of the resin part 32 is a skin layer 33, and the magnet powders 31 and 31 ′ are covered with the skin layer 33, thereby forming the magnet body 30 in which the magnet powders 31 and 31 ′ are buried in the resin part 32.
  • a layer mainly composed of the magnet fine powder 31 ′ is formed immediately below the skin layer 33.
  • the binder resin exudes from between the magnet coarse powders 31 at the time of compression molding, and the fine powder 31 ′ exudes at the same time, the fine powder 31 ′ is present on the surface of the magnet coarse powder 31 in advance, etc. It is formed by. Due to the formation of the layer mainly composed of the magnet fine powder 31 ′ formed immediately below the skin layer 33, the surface portion of the magnet body 30 has a higher density than the surface portion of the magnet body 20 of FIG. 2 (2-2). Magnet powder is present. The layer mainly composed of the magnet fine powder 31 ′ is closer to the magnet powder in physical properties, and therefore the physical property of the skin layer 33 is closer to the amorphous carbon film. As a result, it is considered that cracking and peeling of the amorphous carbon film at a high temperature are further suppressed, and the oxidation resistance of the bonded magnet of the present invention is improved.
  • the amorphous carbon film is formed directly on the surface of the magnet body.
  • the amorphous carbon film only needs to be formed at least on the surface of the magnet body that needs to be protected.
  • An amorphous carbon (diamond-like carbon: DLC) film is a film made of a carbon material mainly containing carbon and having an amorphous structure.
  • the surface hardness and oxygen barrier properties of the DLC film vary depending on the composition.
  • the oxygen barrier property is affected by the amount of hydrogen contained in the DLC film, and it is difficult for oxygen to permeate when the hydrogen content is smaller. Therefore, the hydrogen content when the entire DLC film is 100 atomic% is preferably 40 atomic% or less, more preferably 20 atomic% or less, so that the oxygen permeation amount is reduced and the acid resistance of the bonded magnet of the present invention is reduced. Improves conversion.
  • the surface hardness of the DLC film tends to decrease as the hydrogen content increases.
  • the DLC film may contain silicon, oxygen, titanium, aluminum, chromium, or the like in addition to hydrogen.
  • the DLC film is formed in the above amorphous carbon film forming process.
  • the DLC film may be formed by a general vacuum deposition method such as a chemical vapor deposition (CVD) method such as a plasma CVD method or a physical vapor deposition (PVD) method such as sputtering or ion plating.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the CVD method is particularly desirable, and a uniform DLC film can be formed even when the surface of the magnet body is uneven or the shape of the magnet body is complicated.
  • a plasma CVD method is used to uniformly form a DLC film on the surface of the bonded magnet. Is preferred. This is because in the plasma CVD method, a bias source corresponding to the shape of the object can be arranged. For example, when the object on which the DLC film is formed has a bottomed cylindrical shape shown in Example 1 (FIG. 4) to be described later, a bias source is produced along the outer shape, and a bias electric field is formed at the time of film formation. Is applied from outside to inside of the object to accelerate the ionized gas material.
  • a DLC film can be formed with sufficient adhesiveness on the whole internal peripheral surface. For example, even if the inner peripheral surface has a surface facing the bottom surface, the DLC film is uniformly formed on the entire inner peripheral surface.
  • the source gas used in the CVD method is a hydrocarbon compound gas that can be described by a chemical formula of C x H y , where x is 1 or more and y is 2 or more.
  • a DLC film containing hydrogen can be obtained.
  • the thickness of the DLC film is not particularly limited, but is preferably in the range of 50 nm to 50 ⁇ m industrially. As the DLC film thickness increases, the oxidation resistance improves. Note that the thickness of the DLC film may be adjusted to a desired thickness by the deposition time.
  • the bonded magnet of the present invention has an amorphous carbon film directly formed on the surface of the magnet body (that is, the surface of the resin layer), and the MC is interposed between the surface of the magnet body and the amorphous carbon film.
  • An intermediate layer made of a compound having a bond, MNC bond, or MOC bond may be provided.
  • M, C, and N each represent an atom
  • M is a metal or silicon
  • C is carbon
  • N is nitrogen
  • O oxygen
  • These intermediate layers may be formed by a general vacuum vapor deposition method, similarly to the DLC film.
  • the intermediate layer is preferably formed with a film thickness of 10 nm to 1 ⁇ m from the viewpoint of adhesion.
  • what is necessary is just to adjust the thickness of an intermediate
  • the bonded magnet of the present invention described above preferably exhibits a magnetic flux amount change rate of 5% or less, more preferably 4% or less.
  • the “magnetic flux amount change rate” is a value calculated from the amount of magnetic flux before and after the endurance test was performed in the air at 150 ° C. for 1000 hours.
  • the magnetic flux amount of the magnet before the endurance test is ⁇ 0
  • the magnetic flux amount of the magnet after the test is ⁇ t
  • it is obtained by ( ⁇ t ⁇ 0 ) ⁇ 100 / ⁇ 0 [%].
  • Example 1 [Production of molded body] NdFeB-based anisotropic magnet powder treated as d-HDDR as magnetic powder (composition: Fe-12.5 at% Nd-6.4 at% B-0.5 at% Dy-0.3 at% Ga-0.2 at% Nb ) And SmCo-based anisotropic magnet powder (composition: Co-19.6 at% Fe-10.9 at% Sm-7.0 at% Cu-2.5 at% Zr) (85 vol%), and novolak excellent in heat resistance The compound which mixed the type epoxy resin powder (15 volume%) was prepared.
  • the average particle size of the prepared NdFeB-based anisotropic magnet powder was 115 ⁇ m (coarse powder), and the average particle size of the SmCo-based anisotropic magnet powder was 12 ⁇ m (fine powder).
  • the volume ratio of the coarse powder to the fine powder was 80:20.
  • the compound was compacted in a mold to obtain a body.
  • an element is placed in a mold of a molding apparatus in a heating magnetic field, and the mold is heated to 135 ° C. so that the epoxy resin powder is in a softened or molten state (that is, a state having a low viscosity).
  • the magnetic powder was oriented by applying a 3T magnetic field. After applying a magnetic field to the body, it was pressurized with a surface pressure of 3.3 ton / cm 2 while maintaining the magnetic field. Thereafter, the epoxy resin was cured by being held at 150 ° C. for 30 minutes to obtain a cylindrical molded body having an outer diameter of 33 mm ⁇ , an inner diameter of 30 mm ⁇ , and a height of 25 mm, to which the magnet powder was bonded by the epoxy resin.
  • the film thickness of the resin coating film was 20 ⁇ m.
  • the film thickness was measured by cutting a cylindrical magnet body in half along the central axis and measuring the shortest distance from the outermost surface of the magnet body to the surface of the magnet particles at the cut surface. The measurement positions were set at three locations, ie, the central portion in the axial direction and both end portions that were 8 mm apart from the central portion in the axial direction. Measure 10 points of the shortest distance from the outermost surface of the magnet body to the surface of each magnet particle in the axial range of 1 mm in each of the central part and both ends to obtain the arithmetic average value, and further calculate the arithmetic average at three places The average value was taken as the film thickness. Moreover, the ratio for which the magnet powder accounted for 100% by volume of the magnet body was 85% by volume, which was equivalent to the volume ratio in the compound.
  • a DLC film was formed inside the motor case including the inner peripheral surface and both end surfaces of the magnet body.
  • a known plasma CVD apparatus is used, methane (CH 4 ) is used as a source gas, the degree of vacuum at the time of film formation (CH 4 gas pressure) is 0.2 Torr (26.7 Pa), and the film formation temperature ( Film formation was performed at a surface temperature of the magnet body of 100 ° C.
  • a DLC film having a thickness of 1.0 ⁇ m was formed by film formation for 1 hour.
  • FIG. 4 schematically shows a cross section of the sample for durability evaluation.
  • the durability evaluation sample 40 includes a substantially bottomed cylindrical motor case 41 and a magnet body 42 press-fitted into the cylindrical portion of the motor case 41.
  • a resin coating is formed on the inner peripheral surface 42 i of the magnet body 42 and the both end surfaces 42 e in the axial direction.
  • a DLC film is formed on the inner peripheral surface 41i of the motor case 41, the inner peripheral surface 42i of the magnet body 42 on which the resin coating film is formed, and both end surfaces 42e in the axial direction.
  • Example 1 a sample for durability evaluation of Example 1 having a rare earth-based bonded magnet # 01 having a resin coating film and a DLC film on the surface of the magnet body was obtained.
  • Example 1 it was confirmed that the DLC film was uniformly formed on the entire inner side of the durability evaluation sample (motor case).
  • Example 2 A sample for durability evaluation having a rare earth-based bonded magnet # C2 having a resin coating on the surface of the magnet body was prepared in the same procedure as in Example 1 except that no DLC film was formed.
  • Example 3 A sample for durability evaluation having a rare-earth bond magnet # C3 having an untreated surface was prepared in the same procedure as in Example 1 except that neither the resin coating film nor the DLC film was formed.
  • # C3 which has neither a resin layer nor a DLC film on the surface of the magnet body, the amount of magnetic flux after 1000 hours decreased by about 8%.
  • the magnet powder containing the rare-earth element was exposed on the surface, and the reason why the magnetic properties were deteriorated was that oxidation proceeded from the surface.
  • # C1 and # C2 having a resin coating film or DLC film on the surface had a lower rate of decrease in the amount of magnetic flux and excellent oxidation resistance than # C3, but the rate of change in magnetic flux exceeded 5% and was not sufficient.
  • # C2 having only the resin coating film, the oxidation resistance effect at high temperature was not maintained.
  • Table 1 summarizes the surface state of the rare earth bonded magnet and the rate of change in the amount of magnetic flux after the durability test (after 1000 hours).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 高温下での耐酸化性を向上させることで、優れた磁気特性を長期にわたって発揮する希土類系ボンド磁石を提供する。  希土類元素を含む磁石粉末11と磁石粉末11を保持する樹脂部12とからなり磁石粉末11が樹脂部12に埋没している磁石本体10と、磁石本体10の表面に直接形成された非晶質炭素膜91と、を備え、樹脂部12は、磁石粉末11を保持するバインダ樹脂部14と、磁石本体10の表層に位置し磁石粉末11を被覆する樹脂層13と、からなることを特徴とする。バインダ樹脂部14および樹脂層13は、同一の樹脂材料からなるとともに互いに一体的に連続していてもよい。

Description

希土類系ボンド磁石
 本発明は、表面に被膜を有する希土類系ボンド磁石に関するものである。
 希土類系の磁石は、優れた磁気性能をもつことから、幅広い分野で利用されている。なかでも、磁石粉末とバインダ樹脂との混合物(コンパウンド)を用い、磁石粉末をバインダ樹脂で結合してなる希土類系ボンド磁石は、優れた磁気特性に加え、形状の自由度が高く、寸法精度もよいという特徴がある。そのため、希土類系ボンド磁石は、自動車電装モータ、家電用小型モータ等を中心に広く利用されている。近年、自動車用電装モータの小型化の要請に応え、希土類系ボンド磁石、特に異方性希土類系ボンド磁石を使用した小型モータが採用されてきている。これらのボンド磁石の活用の進展に伴い、最近では、150℃以上の高温でも使用可能な希土類系ボンド磁石が要求されてきている。
 希土類系ボンド磁石は、Nd-Fe-B系ボンド磁石、Sm-Fe-N系ボンド磁石などが代表的であるが、希土類元素を含むため酸化されやすい。特に、使用環境が高温になると酸化は促進され、磁力の低下など磁気特性の悪化の原因となる。また、液体中で使用される場合には、水分による酸化とともに液体が浸入することで樹脂の膨張が起こり、磁気特性が悪化すると同時に形状が維持できなくなることがある。優れた磁気特性と形状維持とを長期にわたって発揮させるために、希土類系ボンド磁石の表面を各種被膜で被覆して保護することが行われている。
 たとえば、スプレー塗装または電着塗装などにより希土類系ボンド磁石の表面に樹脂塗装を施している。また、特許文献1では希土類系ボンド磁石の表面に金属被膜を成膜してから、さらに非晶質炭素膜を金属被膜に成膜している。また、対象がボンド磁石ではないが、特許文献2では、希土類系焼結磁石の表面に非晶質炭素膜を成膜することが開示されている。非晶質炭素膜は、高温環境下で安定であり、機械的特性のみならず耐食性、耐薬品性および酸素バリア性に優れるため、保護膜として好適である。
特開2005-32845号公報 特開2005-268340号公報
 希土類系ボンド磁石に樹脂塗装を施すことにより形成される樹脂塗膜は、大気および水分と磁石粉末との接触をある程度遮断することができる。そのため、樹脂塗膜の形成により希土類系ボンド磁石の耐酸化性は向上する。しかし、樹脂塗膜は、高温になるほど膨張したり分解したりしやすくなる。したがって、希土類系ボンド磁石の使用環境が高温になるほど、樹脂塗膜の酸素透過性が高くなって酸素の遮断効果が低くなり、酸化が進行して希土類系ボンド磁石の磁気特性が低下する傾向にある。また、機械的強度も十分ではない。つまり、希土類系ボンド磁石に樹脂塗膜を施すだけでは、用途によっては十分な耐酸化性が得られない。
 金属被膜は、酸素と磁石粉末との遮断効果が樹脂塗膜よりも大きい。そのため、表面に金属被膜をもつ特許文献1に記載の希土類系ボンド磁石は、耐酸化性が向上する。しかし、樹脂塗膜、非晶質炭素膜および金属被膜は、この順で酸素を透過しやすく、非晶質炭素膜は金属皮膜ほどの酸素遮断効果をもたない。つまり、特許文献1のように、金属被膜の上にさらに非晶質炭素膜を形成しても、金属被膜の弱点である耐摩耗性は向上するが、耐酸化性のさらなる向上効果は望めない。換言すれば、希土類系ボンド磁石の表面に良好な金属被膜を形成しさえすれば耐酸化性は十分に得られるため、非晶質炭素膜の形成は不要である。
 ところが、希土類系ボンド磁石は比較的気孔を多くもつため、その表面にめっきにより金属被膜を形成すると、めっき用水溶液が気孔に浸透して希土類系ボンド磁石の内部からの腐食が起こりやすい。また、電解めっきでは、あらかじめ希土類系ボンド磁石を導体化処理する必要があり、工程が煩雑となる。さらに、希土類系ボンド磁石を金属基材に組み付けた状態で電解めっきを行うと、希土類系ボンド磁石よりも金属基材にめっきされやすいため、希土類系ボンド磁石の表面に金属被膜が十分に形成されない。また、金属被膜を形成する他の方法として、イオンプレーティング等の物理蒸着(PVD)法がある。しかし、希土類系ボンド磁石は、通常、その表面に凹凸を有する複雑な形状をもつ。PVD法では、金属原子または粒子が被成膜面に垂直に堆積するので、表面に凹凸がある希土類系ボンド磁石に均一に金属被膜を形成することは困難である。希土類系ボンド磁石の表面に金属被膜が形成されていても、金属被膜が不均一であると、高温での使用中に成膜が不十分な部分から酸化が進行するため、磁気特性および耐酸化性が劣化する。また、化学蒸着(CVD)法で金属被膜を形成する場合は、原料ガスとして非常に高価な有機金属化合物を含むガスを使用するため、工業的に成立しない。すなわち、希土類系ボンド磁石に金属被膜を良好に形成できれば、希土類系ボンド磁石に理想的な耐酸化性が付与されるが、工業的に成立しえない。
 また、特許文献2では、希土類系焼結磁石の表面に直接非晶質炭素膜を成膜してもよいとされている。そこで、本発明者等は、希土類系ボンド磁石の表面に直接非晶質炭素膜を成膜してみたが、耐酸化性の向上は不十分であった。
 本発明は、上記問題点に鑑み、高温での磁石の耐酸化性を向上させることにより優れた磁気特性を長期にわたって発揮する希土類系ボンド磁石を提供することを目的とする。
 前述のように、希土類系ボンド磁石の表面に直接非晶質炭素膜を成膜しても、耐酸化性の向上は小さかった。そこで、本発明者等は、保護膜として有効な非晶質炭素膜を希土類系ボンド磁石の表面に成膜しても希土類系ボンド磁石の耐酸化性が向上し難いのは、希土類系ボンド磁石の表面状態が影響していることを新たに見出した。そして、圧縮成形などの一般的な方法で製造される従来の希土類系ボンド磁石では、その表面に磁石粉末と樹脂との両方が表出することに着目した。希土類系ボンド磁石の表面状態に基づき非晶質炭素膜を形成した希土類系ボンド磁石の耐酸化性について鋭意研究した結果、一般的な蒸着法により従来の希土類系ボンド磁石の表面に直接非晶質炭素膜を成膜すると、磁石粉末の表面に非晶質炭素膜を形成し難いところがあり、そこから酸化が進行したのだと推測した。そこで、磁石粉末を保持する樹脂に磁石粉末を埋没させて、非晶質炭素膜を成膜する前の希土類系ボンド磁石の表面に磁石粉末を表出させないようにすることを想到した。
 すなわち、本発明の希土類系ボンド磁石は、希土類元素を含む磁石粉末と該磁石粉末を保持する樹脂部とからなり該磁石粉末が該樹脂部に埋没している磁石本体と、該磁石本体の表面に直接形成された非晶質炭素膜と、を備え、前記樹脂部は、前記磁石粉末を保持するバインダ樹脂部と、前記磁石本体の表層に位置し前記磁石粉末を被覆する樹脂層と、からなることを特徴とする。
 磁石粉末を高い割合で含む従来のボンド磁石では、その表面に磁石粉末と樹脂との両方が表出しやすい。本発明の希土類系ボンド磁石では、磁石本体の表層に樹脂層をもつことで、磁石粉末は磁石本体の表層において樹脂部に埋没している。つまり、本発明の希土類系ボンド磁石では、磁石本体の最表面はほとんど樹脂からなり、その表面に直接に非晶質炭素膜が形成されている。そのため、均一な非晶質炭素膜が形成されやすい。
 ところで、樹脂層を構成する樹脂は、軟質であって、非晶質炭素膜(Hv800~3000程度)の硬さと大きく異なる。通常、変形しにくく硬い材料の線膨張係数は小さく、変形しやすい軟らかい材料の線膨張係数は大きい。そのため、非晶質炭素膜と樹脂層との間でも、線膨張係数差または変形能が大きく異なることが予想される。したがって、樹脂層に非晶質炭素膜が成膜できたとしても、高温での線膨張係数差または高温の変形能の差に起因して非晶質炭素膜が割れたり剥離したりすることで、高温での耐酸化性が大きく低下すると思われた。本発明の希土類系ボンド磁石では、磁石本体の表面、つまり、ほとんどが樹脂である樹脂層の表面に直接非晶質炭素膜が形成されている。ところが、軟質な樹脂層の上に硬質な非晶質炭素膜を形成しても、従来常識に反し、非晶質炭素膜は割れたり剥がれたりすることなく磁石本体の表面に十分に密着し、非晶質炭素膜は耐酸化性を付与する保護膜としての機能を十分に果たす。この予想外の効果のメカニズムは定かではないが、結果から推測すると以下のように考えられる。
 磁石本体では、磁石粉末と樹脂とが共存するため、バインダ樹脂部は磁石粉末に拘束されている。拘束状態においては、磁石粉末と樹脂との物理的特性が平均化される。たとえば、線膨張係数であれば、樹脂の線膨張係数(8×10-5/K程度)と、磁石粉末の線膨張係数(3×10-6/K程度)との間の値となる。磁石粉末が高密度で存在する場合には、バインダ樹脂部が磁石粉末に拘束されている部分の線膨張係数は、磁石粉末の線膨張係数により近い値となる。そして、バインダ樹脂部が磁石粉末に拘束されている部分の物理的特性は、磁石粉末をほとんど含まない樹脂層にも影響する。つまり、樹脂層の物理的特性も磁石粉末に近付き、樹脂層と非晶質炭素膜との線膨張係数の差は小さくなり、高温における非晶質炭素膜の割れや剥離が起こりにくくなって、本発明の希土類系ボンド磁石の耐酸化性が向上すると推測される。もしくは、高温での樹脂層の変形能が、線膨張係数と同様の理由により非晶質炭素膜の変形能に近付いたため、高温における非晶質炭素膜の割れや剥離が起こりにくくなると思われる。その結果、本発明の希土類系ボンド磁石は、非常に優れた高温での耐酸化性を示す。
(1-1)は樹脂塗膜を形成する前の磁石本体、(1-2)は樹脂層として樹脂塗膜をもつ磁石本体、(1-3)は磁石本体に非晶質炭素膜を成膜した本発明の希土類系ボンド磁石、の表面付近を模式的に示す断面図である。 (2-1)は樹脂層としてスキン層をもつ磁石本体、(2-2)は磁石本体に非晶質炭素膜を成膜した本発明の希土類系ボンド磁石、の表面付近を模式的に示す断面図である。 本発明の希土類系ボンド磁石の一例を模式的に示す断面図である。 耐久試験に用いた試料(疑似モータ)を模式的に示す断面図である。 実施例および比較例の希土類系ボンド磁石の耐酸化性を示すグラフである。
   10,20,30:磁石本体
   11,21,31:磁石粉末(磁石粒子) 31’:微粉末
   12,22,32:樹脂部
   13:樹脂層(樹脂塗膜) 14:バインダ樹脂部
   23,33:スキン層
   91,92,93:非晶質炭素膜
 以下に、本発明の希土類系ボンド磁石(以下「本発明のボンド磁石」と略記)を実施するための最良の形態を説明する。本発明のボンド磁石は、磁石本体と非晶質炭素膜とを備える。磁石本体は、磁石粉末と樹脂部とからなる。
 磁石粉末は、希土類元素を含む。磁石粉末には、希土類系ボンド磁石に用いられる一般的な磁石粉末を用いればよい。具体的には、希土類-鉄-窒素系磁石粉末(たとえばSm-Fe-N系の合金粉末)、希土類-鉄-硼素系磁石粉末(たとえばNd-Fe-B系の合金粉末)および希土類-コバルト系磁石粉末(たとえばSmCo17型、SmCo型などのSm-Co系異方性磁石粉末に代表されるSm-Co系の合金粉末)などの公知の合金組成をもつ希土類系磁石粉末が挙げられる。また、それらの組成系の磁石粉末において、硬磁性相と軟磁性相がナノメーターオーダーの組織で共存する磁石粉末であるナノコンポジット系希土類磁石粉末でもよい。これらのうちの一種を単独あるいは二種以上を混合して用いてもよい。また、これらの希土類系磁石粉末において、高い磁気特性を必要とする場合は異方性磁石粉末が利用され、着磁の容易性などを利用する場合には等方性磁石粉末が利用される。異方性磁石粉末および等方性磁石粉末は、いずれか一方を単独あるいは両者を混合して用いてもよい。すなわち、磁石粉末は、一種類の磁石粉末はもちろんのこと、組成の異なる磁石粉末を含んでもよいし、異方性磁石粉末および等方性磁石粉末をともに含んでもよい。
 希土類元素の種類に特に限定はないが、イットリウム(Y)を除く希土類元素であって、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)およびルテチウム(Lu)のうちの少なくとも一種からなるとよい。特に好ましいのは、Nd、Sm、Pr、Dy、Tbである。
 また、磁石粉末は、平均粒径に差がある二種以上の粉末を含んでもよい。つまり、磁石粉末は、平均粒径の小さい微粉末を含んでもよい。微粉末としては、上記の各種合金粉末の他、フェライト粉末やナノコンポジット系希土類磁石粉末等を用いてもよく、亜鉛、酸化亜鉛、酸化ケイ素、酸化アルミニウム等の金属または金属酸化物からなる非磁性粉末としてもよい。高い磁気特性を得るためには、磁石粉末は、平均粒径の異なる磁石粗粉末と磁石微粉末とを含むのが好ましい。磁石粗粉末と磁石微粉末との好ましい組合せの具体例としては、磁石粗粉末がNd-Fe-B系合金粉末で磁石微粉末がSm-Co系合金粉末および/またはSm-Fe-N系合金粉末、磁石粗粉末がSm-Co系合金粉末で磁石微粉末がSm-Fe-N系合金粉末、磁石粗粉末および微粉末のいずれもNd-Fe-B系合金粉末、などが挙げられる。特に、本発明のボンド磁石の耐熱性を向上させるためには、微粉末としてSm-Co系合金粉末を用いるのが好ましい。微粉末がSm-Co系合金粉末であれば、磁石粉末全体のキュリー点が上昇するとともに保磁力が向上する。その結果、本発明のボンド磁石は、耐熱性とともに耐酸化性にも優れた磁石となる。
 ここで、磁石粗粉末などの粗粉末は、その平均粒径が50~150μmさらには80~130μmであるのが好ましい。また、微粉末は、その平均粒径が20μm以下さらには1~10μmであるのが好ましい。なお、本明細書において磁石粉末の平均粒径は、レーザ回折により測定されたボリュームミーディアン径(VMD)とする。
 つまり、本発明のボンド磁石では、少なくとも希土類を含む磁石粒子を含むのであれば、磁石粉末の合金組成、磁石粉末が異方性であるか等方性であるか、および磁石粉末の平均粒径にかかわらず複数種類の粉末の混合物からなる磁石粉末を用いることができる。
 樹脂部は、熱可塑性樹脂、熱硬化性樹脂のいずれからなってもよい。熱可塑性樹脂としては、たとえば、ナイロン66、ナイロン12、ポリフェニレンサルファイド樹脂、ポリアミド、ポリイミド、ポリエチレンテレフタレート等が挙げられ、これらのうちの一種または二種以上を混合して用いることができる。一方、熱硬化性樹脂としては、たとえば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、メラミン樹脂などが挙げられ、これらのうちの一種または二種以上を混合して用いることができる。
 磁石本体の形状に特に限定はなく、本発明のボンド磁石の用途に応じた形状であればよい。たとえば、本発明のボンド磁石をモータに使用するのであれば、円筒形状である。また、使用条件などに応じて酸化防止剤などの添加剤を適宜添加してもよい。
 磁石本体は、磁石本体全体を100体積%としたとき、磁石粉末を50体積%以上含むとよい。磁石粉末の含有割合が50体積%以上であれば、ボンド磁石として十分な磁石特性が得られる。また、50体積%未満では、磁石粉末と樹脂とが共存していてもバインダ樹脂部が磁石粉末に拘束されにくい。その結果、磁石本体の表面(すなわち樹脂層の表面)の線膨張係数などの物理的特性は樹脂と同等になり、その表面に対して非晶質炭素膜が十分に密着しない。そのため、ボンド磁石は、高温において優れた耐酸化性を発揮しない。磁石本体は、全体を100体積%としたとき、磁石粉末を80体積%以上さらには85体積%以上含むとよい。磁石粉末を高密度で含むことで、高い磁気特性が得られるだけでなく、非晶質炭素膜が磁石本体の表面に対して十分に密着する。つまり、高い磁気特性を示すとともに優れた耐酸化性を示す希土類系ボンド磁石が得られる。
 本発明のボンド磁石では、磁石粉末は、樹脂部に埋没した状態にある。このとき、全ての磁石粉末が樹脂部に埋没していることが望まれるが、従来のボンド磁石に比べて、磁石粉末の表出面積が少なくなればよい。樹脂部の構成としては、次の二つが好ましい。(1)磁石粉末を保持するバインダ樹脂部と、磁石本体の表層に位置し磁石粉末を被覆する樹脂層と、からなる。(2)バインダ樹脂部および樹脂層が、同一の樹脂材料からなるとともに互いに一体的に連続するバインダ樹脂からなる。以下に(1)および(2)をそれぞれ説明する。
 (1)たとえば、高い磁気特性を得るために、磁石粉末を高い体積割合で含み高密度の成形体を圧縮成形により成形することがある。通常、このような圧縮成形は9ton/cm程度の高い面圧で行われる。このように成形された成形体は、相対的に樹脂量が少ないため、圧縮されることで成形体の表面に染み出す樹脂が十分でなく、磁石粉末が表出した表面をもつ成形体が形成されやすい。また、リング形状の成形体を後述の加熱磁場中成形する場合、純鉄で構成される磁気回路形成部が成形圧により変形しやすいため、圧縮成形時の面圧を4t/cm以下に抑える必要がある。そのような低い面圧下では、成形体の表面への樹脂の染み出しがさらに困難となり、磁石粉末が表出した表面をもつ成形体が形成されやすい。図1(1-1)は、脱型後の成形体の表面付近を模式的に示す断面図である。成形体は、複数の磁石粒子で構成される磁石粉末11とそれを保持するバインダ樹脂部14とからなる。成形体の表面10s’は、樹脂の染み出しが弱く磁石粉末11が表出し、場合によっては磁石粉末11が表面10s’で突出して存在する。図1(1-2)のように、磁石本体10は、成形体の表面10s’に樹脂層13を備えることで、磁石粉末11が樹脂層13に覆われる。すなわち、磁石本体10において、磁石粉末11は、バインダ樹脂部14および樹脂層13からなる樹脂部12に埋没する。そして、図1(1-3)のように、樹脂層13上に非晶質炭素膜91を成膜することで、本発明のボンド磁石が得られる。
 このとき、樹脂層は、磁石本体を構成するバインダ樹脂部と同じ樹脂からなってもよいし、異なる種類の樹脂からなってもよい。樹脂層は、既に説明したバインダの樹脂に好適な樹脂のうちの一種または二種以上を混合して用いることができる。樹脂層は、磁石粉末が覆われる膜厚であればよく、50μm以下、20~50μmさらには20~30μmであるとよい。樹脂層の厚さが50μmを超えると、磁石粉末による樹脂部の拘束効果が樹脂層の表面にまで影響しにくくなり、樹脂層の表面付近の物理的特性は樹脂と同等となり、樹脂層と非晶質炭素膜との線膨張係数の差は大きくなる。そのため、樹脂層の表面と非晶質炭素膜との密着性が低下し、非晶質炭素膜に割れや剥離が生じやすくなり、ひいては本発明のボンド磁石の耐酸化性を低下させる原因となる。また、一度の工程で形成できる樹脂層の厚さには限界があるため、50μmを超える樹脂層を形成すると、生産性が低下する。一方、樹脂層を20μm未満の厚さで形成するのは難しく不均一になりやすく、樹脂層が十分に形成されない部分が生じるため好ましくない。なお、樹脂層の厚さは、磁石本体を表面に対して垂直に切断したときの、磁石本体の最表面から磁石粒子の表面までの最短距離の算術平均値とする。
 上記(1)の形態の樹脂部を備える本発明のボンド磁石は、磁石粉末と樹脂とからなる混合物を調製する調製工程と、混合物から磁石粉末と該磁石粉末を保持するバインダ樹脂部とからなる成形体を得る本成形工程と、成形体の表面に樹脂塗膜を形成する塗膜形成工程と、樹脂塗膜の表面に非晶質炭素膜を形成する非晶質炭素膜形成工程と、を経て製造される。
 調製工程では、所定の配合比の磁石粉末と樹脂とを秤量して混合物を調製すればよい。用いられる磁石粉末および樹脂は、既に説明した通りである。調製された混合物は、本成形工程にて成形され、磁石粉末とそれを保持するバインダ樹脂部とからなる成形体が得られる。本成形工程にて採用する成形方法に特に限定はないが、成形型内で混合物に圧力を加えつつ樹脂を軟化または溶融させ、その後、樹脂を硬化させて成形体を得る圧縮成形が望ましい。圧縮成形であれば、成形体を100体積%としたとき磁石粉末の割合が80体積%以上の成形体を容易に作製できるが、成形体の表面に磁石粉末が表出しやすい。そこで、次の塗膜形成工程において、成形体の表面に樹脂塗膜を形成する。なお、圧縮成形の他、押出成形、カレンダー成形、射出成形などにより成形体を作製してもよい。
 塗膜形成工程は、成形体の表面に樹脂塗膜、すなわち樹脂層を形成する工程である。樹脂塗膜の形成方法に特に限定はなく、使用する樹脂塗料に応じた塗装方法および硬化条件を選択すればよい。
 非晶質炭素膜形成工程は、樹脂塗膜の表面に非晶質炭素膜を形成する工程である。なお、非晶質炭素膜形成工程については、後に詳説する。
 さらに、調製工程後の混合物に、樹脂が軟化または溶融した状態で配向磁場を印加して磁石粉末を配向させる配向工程を行ってもよい。磁石粉末が異方性磁石粉末を含む場合には、配向工程において磁場を印加して異方性磁石粉末を特定の方向に配向させた後、磁場を印可したまま本成形を行えばよい。なお、配向工程を含む製造方法は、一般に、加熱磁場中成形と呼ばれる。さらに、調製工程後の混合物を成形して素形体を得る予成形工程を含んでもよい。混合物を予め所定の形状の素形体に成形し、その素形体を磁場中にある成形型内で加熱磁場中成形することで、寸法精度のよい成形体が得られる。
 なお、本発明のボンド磁石を他の部材に組み付けて用いる場合には、本成形工程以降に組み付けを行えばよい。すわなち、本成形工程で得られた成形体を他の部材に組み付けてから樹脂塗膜および非晶質炭素膜を形成してもよいし、樹脂塗膜の形成が終了した後の成形体(磁石本体)を他の部材に組み付けてから非晶質炭素膜を形成してもよい。もちろん、非晶質炭素膜形成工程の終了後、すなわち、成形体に樹脂塗膜も非晶質炭素膜も成膜してから他の部材に組み付けてもよい。(2)また、樹脂部は、連続するバインダ樹脂からなってもよい。すなわち、(1)においてバインダ樹脂部と樹脂層とが同じ樹脂からなるとともに一体的で連続している構成である。このような構成は、磁石本体の成形時に、磁石本体の表面に、樹脂層のかわりとなるスキン層が形成されることで得られる。
 図2(2-1)は、例として、磁石粉末の体積割合が低い成形体を圧縮成形により成形する場合において、スキン層をもつ磁石本体(成形体)20の表面付近を模式的に示す断面図である。磁石本体20は、複数の磁石粒子で構成される磁石粉末21とそれを保持する樹脂部22とからなる。樹脂部22は、既に説明した樹脂材料(バインダ樹脂)からなる。樹脂部22の表層は、磁石粉末21を含まず同じバインダ樹脂からなるスキン層23である。磁石本体20の表面20sにおいて、スキン層23で磁石粉末21が覆われることで、磁石粉末21が樹脂部22に埋没した磁石本体20をなす。そして、図2(2-2)のように、スキン層23上に非晶質炭素膜92を成膜することで、本発明のボンド磁石が得られる。スキン層23は、圧縮成形などの成形時に成形型表面(すなわち成形体の表面)にバインダ樹脂が染み出すことで磁石粉末21は樹脂部22に埋もれるため、成形型から脱型した後も、磁石粉末21は磁石本体20の表面にほとんど表出しない。なお、磁石粉末21が若干表出しても、耐酸化性は向上する。
 スキン層の厚さは10μm以下が好ましく、さらに好ましくは5μm以下、3μm以下である。スキン層は、製造上、10μmを超える厚さにするのは困難である。磁石粉末が樹脂部に埋没しないおそれがある場合には、スキン層の上にさらに樹脂層を形成してもよい。なお、スキン層の厚さは、磁石本体を表面に対して垂直に切断したときの、磁石本体の最表面から磁石粒子の表面までの最短距離の算術平均値とする。
 上記(2)の形態の樹脂部を備える本発明のボンド磁石は、磁石粉末と樹脂とからなる混合物を調製する調製工程と、混合物から磁石粉末と該磁石粉末を保持する樹脂部とからなり表層に樹脂からなるスキン層をもつ成形体を得る本成形工程と、スキン層の表面に非晶質炭素膜を形成する非晶質炭素膜形成工程と、を経て製造される。また、必要に応じて、上記の配向工程および/または予成形工程を含んでもよい。スキン層は、本成形工程において形成される。そのため、樹脂塗膜を形成する上記の塗膜形成工程は必須ではない。つまり、本成形工程においてスキン層が形成されれば、塗膜形成工程を省略することができる。以下に、本成形工程について説明する。
 本成形工程は、混合物から磁石粉末と該磁石粉末を保持する樹脂部とからなり表層に樹脂からなるスキン層をもつ成形体を得る工程である。スキン層は、調製工程における磁石粉末と樹脂との混合比、本成形工程における加熱温度および成形圧力を制御することによって所望の厚さで形成される。特に、磁石本体に占めるバインダ樹脂の体積割合が通常よりも多くなるように混合物を調製すると、本成形工程において成形型表面に樹脂が染み出しやすく、スキン層が形成されやすい。なお、スキン層は、上記の微粉末を含む磁石粉末を用いる場合であっても同様に形成される。
 スキン層は、(1)の形態のボンド磁石がもつ樹脂層に比べて薄いため、高温領域での非晶質炭素膜の磁石本体の表面への密着性がさらに向上する。また、スキン層は、極薄く形成されるため、磁石粉末が樹脂層に覆われることによる磁力の低下が抑制される。たとえば、モータは、ステータとロータとの間のエアギャップによってその出力が大きく変わる。モータに(2)の形態のボンド磁石を使用すると、非磁性であるスキン層が極薄いため、エアギャップは実質的に小さくなる。その結果、モータの出力が向上する。
 (1)の樹脂層と(2)の樹脂層(つまりスキン層)とで高温における非晶質炭素膜の密着性に差が生じる理由は、概ね次のように考えられる。バインダ樹脂部が磁石粉末に拘束されている部分の物理的特性が樹脂層にも影響することは、既に述べた通りである。その影響を受けて、樹脂層と非晶質炭素膜との線膨張係数の差もしくは変形能の差が小さくなり、高温における非晶質炭素膜の割れや剥離が起こりにくくなるが、その影響は樹脂層が薄いほど顕著である。(1)の樹脂層は、主として樹脂塗膜として形成されるため、膜厚が20μm以上となり、比較的厚い。これに対し、スキン層の厚さは数μm程度であり、スキン層の表面は、バインダ樹脂部が磁石粉末に拘束されている部分(図2(2-1)、破線よりも下側に相当)の影響をより受けやすい。さらに、スキン層は、バインダ樹脂部と同一の樹脂材料からなり互いに一体的で連続しているため、その影響はより一層顕著である。つまり、スキン層の物理的特性は磁石粉末の物理的特性に大きく近付き、スキン層と非晶質炭素膜との線膨張係数の差はさらに小さくなり、スキン層の表面への非晶質炭素膜の密着性は向上する。
 また、既に説明したように、本発明のボンド磁石において、磁石粉末は、磁石粗粉末および微粉末といったように、平均粒径に差がある二種以上の粉末を含んでもよい。微粉末を含むことにより、バインダ樹脂部を拘束する磁石粉末の割合を増加させることができるため、樹脂層と非晶質炭素膜との線膨張係数の差あるいは高温での変形能の差がより小さくなり、高温での非晶質炭素膜の剥離や割れが一層抑制される。また、(2)の形態のようにバインダ樹脂部と樹脂層(スキン層)とが連続する場合には、スキン層の直下に微粉末を高密度に充填することが出来る。スキン層の直下に微粉末が高密度に充填された状態を、図3を用いて以下に説明する。
 図3は、磁石粗粉末と磁石微粉末とを含む磁石粉末を用いた場合の本発明のボンド磁石の表面付近を模式的に示す断面図である。磁石本体30は、磁石粗粉末31および磁石微粉末31’と樹脂部32とからなる。磁石粉末31および31’は樹脂部32に保持される。樹脂部32の表層はスキン層33であって、スキン層33で磁石粉末31および31’が覆われることで、磁石粉末31および31’が樹脂部32に埋没した磁石本体30をなす。このとき、スキン層33の直下に、主として磁石微粉末31’からなる層が形成される。この層は、圧縮成形の際に磁石粗粉末31の間からバインダ樹脂が染み出すと同時に微粉末31’が染み出すこと、あらかじめ磁石粗粉末31の表面に微粉末31’を存在させること、などにより形成される。スキン層33の直下に形成される主として磁石微粉末31’からなる層の形成により、磁石本体30の表面部には、図2(2-2)の磁石本体20の表面部よりも高密度で磁石粉末が存在する。主として磁石微粉末31’からなる層は、その物理的特性が磁石粉末にさらに近付くため、スキン層33の物理的特性も非晶質炭素膜にさらに近付く。その結果、高温での非晶質炭素膜の割れや剥離がより一層抑制され、本発明のボンド磁石の耐酸化性が向上すると思われる。
 本発明のボンド磁石において、非晶質炭素膜は磁石本体の表面に直接形成されている。なお、非晶質炭素膜は、少なくとも保護が必要な磁石本体の表面に形成されていればよい。
 非晶質炭素(ダイヤモンドライクカーボン:DLC)膜は、主として炭素を含み、非晶質構造をもつ炭素材料からなる被膜である。
 DLC膜は、その組成により表面硬さおよび酸素バリア性が変化する。酸素バリア性は、DLC膜に含まれる水素量に影響され、水素含有量が少ない方が酸素を透過させにくい。そのため、DLC膜全体を100原子%としたときの水素含有量を好ましくは40原子%以下さらに好ましくは20原子%以下とすることで、酸素の透過量が低減され、本発明のボンド磁石の耐酸化性が向上する。一方、DLC膜は、水素含有量が多くなる程、DLC膜の表面硬さが低下する傾向にある。なお、DLC膜は、水素の他、珪素、酸素、チタン、アルミニウム、クロムなどを含んでもよい。
 DLC膜は、上記の非晶質炭素膜形成行程において成膜される。DLC膜は、プラズマCVD法のなどの化学蒸着(CVD)法またはスパッタリングやイオンプレーティングなどの物理蒸着(PVD)法のような一般的な真空蒸着法により成膜すればよい。特に望ましいのはCVD法であり、磁石本体の表面に凹凸があったり、磁石本体の形状が複雑形であったりする場合でも、均一なDLC膜の成膜が可能である。
 なお、ボンド磁石の形状、あるいはボンド磁石を他の部材に組み付けた状態での形状が、複雑な形状である場合、ボンド磁石の表面に均一にDLC膜を成膜するには、プラズマCVD法が好適である。プラズマCVD法では、対象物の形状に応じたバイアス源を配置できるからである。たとえば、DLC膜を成膜する対象物が、後述の実施例1(図4)に示す有底円筒形状の場合、その外形に沿ったバイアス源を作製し、成膜の際には、バイアス電界を対象物の外側から内側に印加して、イオン化したガス原料を加速する。そして、対象物の内側にガス原料を誘導することにより、内周面の形状が複雑な場合であっても、内周面全面に密着性良くDLC膜を形成することができる。たとえば、内周面に底面と対向する面が存在しても、DLC膜は内周面全体に均一に成膜される。
 CVD法に用いられる原料ガスは、Cの化学式で記載できる炭化水素系化合物ガスであり、xは1以上、yは2以上であればよい。たとえば、メタン、アセチレン、トルエン、アダマンタンなどを原料として用いることで、水素を含有するDLC膜が得られる。
 DLC膜の膜厚に特に限定はないが、工業的には50nm~50μmの範囲であるのが好ましい。DLC膜の膜厚が厚くなるほど、耐酸化性は向上する。なお、DLC膜の膜厚は、成膜時間で所望の厚さに調節すればよい。
 本発明のボンド磁石は、磁石本体の表面(つまり樹脂層の表面)に直接形成された非晶質炭素膜を有するが、磁石本体の表面と非晶質炭素膜との間に、M-C結合、M-N-C結合、もしくはM-O-C結合を有する化合物からなる中間層を有してもよい。ここで、M、CおよびNは、それぞれ原子を表し、Mは金属または珪素、Cは炭素、Nは窒素、Oは酸素である。中間層が樹脂層と非晶質炭素膜との間に介在することで、内部応力が緩和され、樹脂層と非晶質炭素膜との密着性がさらに向上する。中間層は、Mとして珪素、チタン、アルミニウム、などを含むのが好ましい。具体的には、SiC膜、SiCN膜、SiCNO膜、TiC膜、TiCN膜、AlC膜、AlCN膜、AlCNO膜などが挙げられるが、特に好ましくは、SiC膜またはSiCN膜である。これらの中間層は、DLC膜と同様に、一般的な真空蒸着法により成膜するとよい。中間層は、密着性の点から、10nm~1μmの膜厚で形成されるのがよい。なお、中間層の厚さは、真空蒸着により成膜するのであれば、成膜時間で所望の厚さに調節すればよい。
 以上説明した本発明のボンド磁石は、好ましくは5%以下さらに好ましくは4%以下の磁束量変化率を示す。なお、「磁束量変化率」は、150℃で1000時間大気中に放置して耐久試験を行った前後の磁束量から算出される値である。耐久試験前の磁石の磁束量をφ、試験後の磁石の磁束量をφとしたとき、(φ-φ)×100/φ[%]で求められる。
 以上、本発明の希土類系ボンド磁石およびその製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、本発明の希土類系ボンド磁石の実施例を挙げて、本発明を具体的に説明する。
 [実施例1]
  [成形体の作製]
 磁石粉末としてd-HDDR処理されたNdFeB系異方性磁石粉末(組成;Fe-12.5at%Nd-6.4at%B-0.5at%Dy-0.3at%Ga-0.2at%Nb)およびSmCo系異方性磁石粉末(組成;Co-19.6at%Fe-10.9at%Sm-7.0at%Cu-2.5at%Zr)(85体積%)と、耐熱性に優れるノボラック型エポキシ樹脂粉末(15体積%)と、を混合したコンパウンドを準備した。なお、準備したNdFeB系異方性磁石粉末の平均粒径は115μm(粗粉末)、SmCo系異方性磁石粉末の平均粒径は12μm(微粉末)であった。粗粉末と微粉末との体積比は80:20とした。NdFeB系異方性磁石粉末にDyを添加することで保磁力が向上し、耐熱性が向上する。上記SmCo系異方性磁石粉末は、Dy入りのNdFeB系異方性磁石粉末と同等の保磁力を有しており、更に、キュリー点が高いため高い耐熱性を有する。
 上記コンパウンドを金型内で圧粉成形して、素形体を得た。次に、加熱磁場中にある成形装置の金型に素形体を配置し、エポキシ樹脂粉末が軟化または溶融状態(つまり粘度の低い状態)となるように金型を135℃に加熱しながら、1.3Tの磁場を印加して磁石粉末を配向させた。素形体に磁場を印加した後、磁場を保持しつつ3.3ton/cmの面圧で加圧した。その後、150℃で30分間保持してエポキシ樹脂を硬化させ、磁石粉末がエポキシ樹脂により結合された外径33mmφ、内径30mmφ、高さ25mmの円筒形の成形体を得た。
  [耐久評価用試料(疑似モータ)の作製]
 得られた成形体を、鋼製で略有底円筒形状のモータケースの円筒部内に圧入した。なお、本実施例では圧入するだけで成形体をケースに固定しているが、成形体をケースに接着してもよい。次に、成形体の表面(内周面および両端面)にエポキシ樹脂塗料を塗装した。塗料を塗装後125℃で40分間焼成して樹脂塗膜を形成し、磁石本体を得た。
 なお、樹脂塗膜の膜厚を測定したところ、膜厚は20μmであった。膜厚の測定は、円筒形の磁石本体を中心軸に沿って半分に切断し、切断面において磁石本体の最表面から磁石粒子の表面までの最短距離を測定して得た。測定位置は、軸方向の中央部および中央部から軸方向に8mm離れた両端部の三箇所とした。中央部および両端部それぞれにおいて軸方向の1mmの範囲で、磁石本体の最表面から個々の磁石粒子の表面までの最短距離を10点測定し算術平均値を求め、さらに、三箇所での算術平均値の平均値を膜厚とした。また、磁石本体を100体積%としたときの磁石粉末の占める割合は、85体積%であって、コンパウンドにおける体積割合と同等であった。
 さらに、磁石本体の内周面および両端面を含むモータケースの内側に、DLC膜を成膜した。DLC膜は、公知のプラズマCVD装置を使用し、原料ガスとしてメタン(CH)を用い、成膜時の真空度(CHのガス圧)0.2Torr(26.7Pa)、成膜温度(磁石本体の表面温度)100℃のもとで成膜を行った。1時間の成膜により膜厚1.0μmのDLC膜が形成された。
 その後、着磁を行い、耐久評価用試料とした。図4に、耐久評価用試料の断面を模式的に示す。耐久評価用試料40は、略有底円筒形状のモータケース41と、モータケース41の円筒部内に圧入された磁石本体42と、を備える。磁石本体42の内周面42iおよび軸方向の両端面42eには、樹脂塗膜が形成される。さらに、モータケース41の内周面41i、樹脂塗膜が形成された磁石本体42の内周面42iおよび軸方向の両端面42eには、DLC膜が成膜されている。
 すなわち、上記手順により、磁石本体の表面に樹脂塗膜およびDLC膜を備える希土類系ボンド磁石#01をもつ実施例1の耐久評価用試料を得た。なお、実施例1では、DLC膜が耐久評価用試料(モータケース)の内側全体に均一に成膜されていることが確認できた。
 [比較例1]
 樹脂塗膜を形成しない他は実施例1と同様の手順で、磁石本体の表面にDLC膜を備える希土類系ボンド磁石#C1をもつ耐久評価用試料を作製した。
 [比較例2]
 DLC膜を成膜しない他は実施例1と同様の手順で、磁石本体の表面に樹脂塗膜を備える希土類系ボンド磁石#C2をもつ耐久評価用試料を作製した。
 [比較例3]
 樹脂塗膜およびDLC膜のいずれも形成しない他は実施例1と同様の手順で、表面が未処理の希土類系ボンド磁石#C3をもつ耐久評価用試料を作製した。
 [評価]
 上記の各耐久評価用試料を、大気中150℃に1000時間放置して、耐久試験を行った。各試料を150℃のドライオーブンに入れてから、所定の時間で取り出し、室温に冷却した後、磁束計により磁束量を測定することで、各試料の耐酸化性を評価した。耐酸化性は、耐久試験前の試料の磁束量をφ、所定時間tで取り出した後の磁束量をφとしたとき、(φ-φ)×100/φ[%]で求められる磁束量変化率で評価した。結果を図5に示す。
 磁石本体の表面に樹脂層もDLC膜もいずれももたない#C3では、1000時間後の磁束量は8%程度低下した。#C3の希土類系ボンド磁石では、希土類元素を含む磁石粉末が表面に表出しており、磁気特性が低下したのは、表面から酸化が進行したからである。表面に樹脂塗膜またはDLC膜をもつ#C1および#C2は、#C3よりも磁束量の低下割合が少なく耐酸化性に優れたが、磁束変化率は5%を超え、十分ではなかった。樹脂塗膜のみの#C2では、高温下での耐酸化効果が保持されなかった。また、#C3の表面にDLC膜を直接成膜した#C1では、表出する磁石粉末の表面がDLC膜で完全に覆われなかった部分が観察された。さらに、#C1では、DLC膜に割れまたは剥がれが観察され、DLC膜による酸素の遮蔽効果が十分でなかったと推測される。樹脂層とDLC膜とをともに備える#01は、磁束量の低下率が5%を大きく下回った。磁石本体の表面に表出する磁石粉末を樹脂塗膜で覆った後でDLC膜を成膜したことで、DLC膜が表面全体に均一に成膜され、高温での耐酸化性が大きく向上した。
 なお、表1に、希土類系ボンド磁石の表面状態と耐久試験後(1000時間後)の磁束量変化率をまとめて示す。
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1.  希土類元素を含む磁石粉末と該磁石粉末を保持する樹脂部とからなり該磁石粉末が該樹脂部に埋没している磁石本体と、
     該磁石本体の表面に直接形成された非晶質炭素膜とを備え、
     前記樹脂部は、前記磁石粉末を保持するバインダ樹脂部と、
     前記磁石本体の表層に位置し前記磁石粉末を被覆する樹脂層と、
     からなることを特徴とする希土類系ボンド磁石。
  2.  前記バインダ樹脂部および前記樹脂層は、同一の樹脂材料からなるとともに互いに一体的に連続してなる請求項1記載の希土類系ボンド磁石。
  3.  前記磁石粉末は、平均粒径の異なる磁石粗粉末と磁石微粉末とを含む請求項1または2記載の希土類系ボンド磁石。
  4.  前記磁石微粉末は、希土類-コバルト系磁石粉末である請求項3記載の希土類系ボンド磁石。
  5.  前記磁石粗粉末はネオジウム-鉄-硼素(Nd-Fe-B)系磁石粉末であって、前記磁石微粉末はサマリウム-コバルト(Sm-Co)系磁石粉末である請求項4記載の希土類系ボンド磁石。
  6.  前記非晶質炭素膜は、炭素を主成分とし、該非晶質炭素膜全体を100原子%としたときに40原子%以下の水素を含む請求項1~5のいずれかに記載の希土類系ボンド磁石。
  7.  さらに、前記磁石本体の表面と前記非晶質炭素膜との間に、Mを金属または珪素、Cを炭素、Nを窒素、Oを酸素、としたとき、M-C、M-N-C、もしくはM-O-Cで表される結合を有する化合物からなる中間層を有する請求項1~6のいずれかに記載の希土類系ボンド磁石。
  8.  前記中間層は、SiC膜またはSiCN膜である請求項7記載の希土類系ボンド磁石。
PCT/JP2009/006719 2008-12-12 2009-12-09 希土類系ボンド磁石 WO2010067592A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/998,847 US20110234346A1 (en) 2008-12-12 2009-12-09 Bonded rare earth magnet
EP09831699A EP2381452A1 (en) 2008-12-12 2009-12-09 Bonded rare earth magnet
JP2009554798A JP4623232B2 (ja) 2008-12-12 2009-12-09 希土類系ボンド磁石
CN2009801499442A CN102246249A (zh) 2008-12-12 2009-12-09 稀土粘结磁铁

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-316767 2008-12-12
JP2008316767 2008-12-12

Publications (1)

Publication Number Publication Date
WO2010067592A1 true WO2010067592A1 (ja) 2010-06-17

Family

ID=42242585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006719 WO2010067592A1 (ja) 2008-12-12 2009-12-09 希土類系ボンド磁石

Country Status (5)

Country Link
US (1) US20110234346A1 (ja)
EP (1) EP2381452A1 (ja)
JP (1) JP4623232B2 (ja)
CN (1) CN102246249A (ja)
WO (1) WO2010067592A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253248A (ja) * 2011-06-03 2012-12-20 Sumitomo Electric Ind Ltd 窒化鉄材及びその製造方法
JP2013229360A (ja) * 2012-04-24 2013-11-07 Tdk Corp フェライト磁石およびその製造方法
WO2015087890A1 (ja) * 2013-12-13 2015-06-18 Ntn株式会社 ケース付き圧縮ボンド磁石およびその製造方法
JP2015115529A (ja) * 2013-12-13 2015-06-22 Ntn株式会社 ケース付き圧縮ボンド磁石
JP2015144209A (ja) * 2014-01-31 2015-08-06 Ntn株式会社 ケース付き圧縮ボンド磁石の製造方法
JP2018064111A (ja) * 2017-12-14 2018-04-19 Ntn株式会社 ケース付き圧縮ボンド磁石の製造方法
JP2018067728A (ja) * 2017-12-07 2018-04-26 Ntn株式会社 ケース付き圧縮ボンド磁石
JP2022104854A (ja) * 2020-12-30 2022-07-12 包頭天和磁気材料科技股▲ふん▼有限公司 プリフォーム、その製造方法、耐食性磁石の生産方法および使用
WO2024028989A1 (ja) * 2022-08-02 2024-02-08 愛知製鋼株式会社 予成形体、予成形方法および圧縮ボンド磁石の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103021610B (zh) * 2011-09-26 2015-12-02 东莞市炫耀电子有限公司 一种新型复合永磁材料及其制备方法
DE102012202687A1 (de) * 2012-02-22 2013-08-22 Robert Bosch Gmbh Korrosionsschutzüberzug für Nd2Fe14B-Magnete
JP6298237B2 (ja) * 2013-02-22 2018-03-20 株式会社荏原製作所 真空ポンプ用モータロータ及びこれを備えるモータ並びに真空ポンプ
CN103667918B (zh) * 2013-11-29 2015-09-02 宁波松科磁材有限公司 一种粘结稀土永磁合金的制备方法
JP6657557B2 (ja) * 2014-09-30 2020-03-04 日亜化学工業株式会社 ボンド磁石
US10410779B2 (en) 2015-10-09 2019-09-10 Lexmark International, Inc. Methods of making physical unclonable functions having magnetic and non-magnetic particles
CN107610927A (zh) * 2017-09-04 2018-01-19 杭州永磁集团有限公司 一种高耐磨粘结钐钴磁体及其制备方法
GB2567222B (en) * 2017-10-06 2021-05-05 Morrish John Method of manufacture
US20190139909A1 (en) * 2017-11-09 2019-05-09 Lexmark International, Inc. Physical Unclonable Functions in Integrated Circuit Chip Packaging for Security
CN108231321A (zh) * 2017-12-20 2018-06-29 横店集团东磁股份有限公司 一种微型电子水泵转子用磁体及其制备方法
CN111783171A (zh) * 2019-04-04 2020-10-16 利盟国际有限公司 集成电路芯片封装中的用于安全性的物理不可克隆功能

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109304A (ja) * 1988-10-18 1990-04-23 Tokin Corp 複合磁石
JP2000052328A (ja) * 1998-08-06 2000-02-22 Ngk Spark Plug Co Ltd 粉末成形体の製造方法及び粉末焼結体の製造方法
WO2001094061A1 (fr) * 2000-06-02 2001-12-13 Citizen Watch Co., Ltd. Procede et dispositif permettant de positionner un outil de coupe et dispositif electrique de positionnement d'outil
JP2003027214A (ja) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd 非晶質炭素被膜と非晶質炭素被膜の製造方法および非晶質炭素被膜の被覆部材
JP2005032845A (ja) 2003-07-09 2005-02-03 Seiko Epson Corp ボンド磁石及びその製造方法
JP2005268340A (ja) 2004-03-16 2005-09-29 Neomax Co Ltd 耐食性希土類系永久磁石およびその製造方法
JP2006147799A (ja) * 2004-11-18 2006-06-08 Daido Electronics Co Ltd ボンド磁石

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6805941B1 (en) * 1992-11-19 2004-10-19 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US5858477A (en) * 1996-12-10 1999-01-12 Akashic Memories Corporation Method for producing recording media having protective overcoats of highly tetrahedral amorphous carbon
JP2001176711A (ja) * 1999-12-16 2001-06-29 Ishizuka Glass Co Ltd ボンド磁石の製造方法、ボンド磁石粉末の製造方法、ボンド磁石及びボンド磁石粉末
FR2898188B1 (fr) * 2006-03-06 2008-07-04 Hutchinson Sa Codeur pour arbre, dispositif comprenant un tel codeur et procede de fabrication d'un tel codeur
JP4823747B2 (ja) * 2006-04-10 2011-11-24 三菱樹脂株式会社 ガスバリア性樹脂成形体及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109304A (ja) * 1988-10-18 1990-04-23 Tokin Corp 複合磁石
JP2000052328A (ja) * 1998-08-06 2000-02-22 Ngk Spark Plug Co Ltd 粉末成形体の製造方法及び粉末焼結体の製造方法
WO2001094061A1 (fr) * 2000-06-02 2001-12-13 Citizen Watch Co., Ltd. Procede et dispositif permettant de positionner un outil de coupe et dispositif electrique de positionnement d'outil
JP2003027214A (ja) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd 非晶質炭素被膜と非晶質炭素被膜の製造方法および非晶質炭素被膜の被覆部材
JP2005032845A (ja) 2003-07-09 2005-02-03 Seiko Epson Corp ボンド磁石及びその製造方法
JP2005268340A (ja) 2004-03-16 2005-09-29 Neomax Co Ltd 耐食性希土類系永久磁石およびその製造方法
JP2006147799A (ja) * 2004-11-18 2006-06-08 Daido Electronics Co Ltd ボンド磁石

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253248A (ja) * 2011-06-03 2012-12-20 Sumitomo Electric Ind Ltd 窒化鉄材及びその製造方法
JP2013229360A (ja) * 2012-04-24 2013-11-07 Tdk Corp フェライト磁石およびその製造方法
WO2015087890A1 (ja) * 2013-12-13 2015-06-18 Ntn株式会社 ケース付き圧縮ボンド磁石およびその製造方法
JP2015115529A (ja) * 2013-12-13 2015-06-22 Ntn株式会社 ケース付き圧縮ボンド磁石
US9818521B2 (en) 2013-12-13 2017-11-14 Ntn Corporation Compression-bonded magnet with case and method for producing the same
JP2015144209A (ja) * 2014-01-31 2015-08-06 Ntn株式会社 ケース付き圧縮ボンド磁石の製造方法
JP2018067728A (ja) * 2017-12-07 2018-04-26 Ntn株式会社 ケース付き圧縮ボンド磁石
JP2018064111A (ja) * 2017-12-14 2018-04-19 Ntn株式会社 ケース付き圧縮ボンド磁石の製造方法
JP2022104854A (ja) * 2020-12-30 2022-07-12 包頭天和磁気材料科技股▲ふん▼有限公司 プリフォーム、その製造方法、耐食性磁石の生産方法および使用
JP7190523B2 (ja) 2020-12-30 2022-12-15 包頭天和磁気材料科技股▲ふん▼有限公司 プリフォーム、その製造方法、耐食性磁石の生産方法および使用
WO2024028989A1 (ja) * 2022-08-02 2024-02-08 愛知製鋼株式会社 予成形体、予成形方法および圧縮ボンド磁石の製造方法

Also Published As

Publication number Publication date
EP2381452A1 (en) 2011-10-26
US20110234346A1 (en) 2011-09-29
CN102246249A (zh) 2011-11-16
JPWO2010067592A1 (ja) 2012-05-17
JP4623232B2 (ja) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4623232B2 (ja) 希土類系ボンド磁石
US5316595A (en) Process for producing magnets having improved corrosion resistance
JP4654709B2 (ja) 希土類磁石
EP1455368B1 (en) Corrosion-resistant rare earth element magnet
WO2009087975A1 (ja) NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
JP5293662B2 (ja) 希土類磁石及び回転機
JP5499738B2 (ja) 表面処理された希土類系磁性粉末、該希土類系磁性粉末を含有するボンド磁石用樹脂組成物並びにボンド磁石
JP2023111957A (ja) 熱硬化性樹脂組成物、磁性コアおよび/または外装部材を備えるコイルおよび成形品の製造方法
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
JP2844269B2 (ja) 耐食性永久磁石及びその製造方法
US5876518A (en) R-T-B-based, permanent magnet, method for producing same, and permanent magnet-type motor and actuator comprising same
KR100607293B1 (ko) 내식성 피막을 갖는 Fe-B-R 계 영구자석 및 그의 제조방법
JP2013161829A (ja) 希土類磁石成形体およびその製造方法、並びに希土類磁石を含む磁石モータ
JP2005325450A (ja) 磁性材料の製造方法、防錆層付き磁性材料粉末及びそれを用いたボンド磁石
JP2010232468A (ja) 希土類ボンド磁石
JP4915349B2 (ja) 希土類磁石およびその製造方法
JP2018174314A (ja) R−t−b系焼結磁石
JP2002105503A (ja) 磁性材料の製造方法、防錆層付き磁性材料粉末及びそれを用いたボンド磁石
JP4784173B2 (ja) 希土類磁石及びその製造方法
JP2012199462A (ja) 希土類ボンド磁石、希土類磁石粉末とその製造方法および希土類ボンド磁石用コンパウンド
JP2005209669A (ja) 希土類磁石及びそれを用いた磁気回路
JP5471678B2 (ja) 希土類磁石及び回転機
EP4040454A1 (en) Resin composition and molded article
JP2003168602A (ja) 異方性希土類ボンド磁石およびその製造方法
JPS62120002A (ja) 耐食性のすぐれた永久磁石

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149944.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009554798

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831699

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12998847

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4628/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009831699

Country of ref document: EP