CN111783171A - 集成电路芯片封装中的用于安全性的物理不可克隆功能 - Google Patents

集成电路芯片封装中的用于安全性的物理不可克隆功能 Download PDF

Info

Publication number
CN111783171A
CN111783171A CN201910272213.2A CN201910272213A CN111783171A CN 111783171 A CN111783171 A CN 111783171A CN 201910272213 A CN201910272213 A CN 201910272213A CN 111783171 A CN111783171 A CN 111783171A
Authority
CN
China
Prior art keywords
magnetized particles
integrated circuit
circuit chip
particles
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910272213.2A
Other languages
English (en)
Inventor
斯蒂芬·P·布什
加里·A·丹顿
卡尔·E·苏里万
詹姆斯·P·德拉蒙德
凯利·安·基利恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lexmark International Inc
Original Assignee
Lexmark International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lexmark International Inc filed Critical Lexmark International Inc
Priority to CN201910272213.2A priority Critical patent/CN111783171A/zh
Publication of CN111783171A publication Critical patent/CN111783171A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/76Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information in application-specific integrated circuits [ASIC] or field-programmable devices, e.g. field-programmable gate arrays [FPGA] or programmable logic devices [PLD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Computer Security & Cryptography (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

本公开涉及但不限于集成电路芯片封装中的用于安全性的物理不可克隆功能。在所描述的本发明中,通过使用由传感器测量的粒子产生的磁场波动来开发利用随机放置的磁化粒子的磁场特性。磁化粒子在集成电路芯片的表面附近生成复杂的磁场,其可用作“指纹”。磁化粒子的定位和定向是不受控制的过程,且因此在传感器和粒子之间的相互作用是复杂的。包含磁性粒子的材料的表面附近的磁场的大小和方向的随机性可用于获得物品的唯一标识符,例如携带PUF的集成电路芯片。

Description

集成电路芯片封装中的用于安全性的物理不可克隆功能
背景
1.公开领域
本公开大体上涉及防伪系统,且更具体地说,涉及物理不可克隆功能。
2.相关技术描述
由于可靠性和安全性问题,假冒集成电路芯片(“ICC”)是电子元器 件供应业的主要问题。这种假冒的ICC正在影响许多工业部门,包括计算 机、印刷、电信、汽车电子、医疗、银行、能源/智能电网、航空航天和军 事系统。当关键系统由于使用假冒或低质量部件而开始出现故障或进行恶 意行为,导致小故障、大故障或任务失败(包括健康或安全问题)时,后 果可能非常严重。
例如,2012年的国防授权法案(NDAA)主要是针对不检查其设备中 的假冒零部件的国防承包商。根据福布斯2012年2月14日的文章“NDAA May Put Defense ContractorsIn Prison For Counterfeit Parts”,不消除军用设 备中的假冒电子零部件的承包商可能要承担民事和刑事责任。
伪造者使用的工具和技术已经变得极其复杂,而且资金充足。反过来, 这也需要更复杂的方法来检测进入市场的假冒电子零部件。硬件固有安全 性是一种基于电子装置的固有属性提供安全性的机制。物理不可克隆功能 (“PUF”)属于硬件固有安全领域。
在打印机行业,包括ICC的假冒打印机供应品对消费者来说是一个问 题。假冒供应品可能性能不佳,并可能损坏打印机。打印机制造商使用认 证系统来阻止伪造者。PUF是实现物理单向功能的一种类型的认证系统。 理想情况下,PUF不能完全复制,并且因此很难伪造。在电子设备封装(包 括ICC)中包括PUF可以阻止伪造者。
概述
在所描述的本发明中,通过使用由诸如霍尔效应传感器的传感器或这 样的传感器阵列测量的粒子产生的磁场波动来开发利用随机放置的磁化 粒子的磁场特性。本发明由被包在包含磁性粒子的基底中或由该基底包覆 成型(over-molded)的ICC组成。磁化粒子在ICC表面附近生成复杂的磁 场,其可以用作“指纹”。磁化粒子的定位和定向是不受控制的过程,且 因此在传感器和粒子之间的相互作用是复杂的。因此,很难复制该装置使 得产生相同的磁性图案和粒子物理位置图案。包含磁性粒子的材料的表面 附近的磁场的大小和方向的随机性可用于获得物品(例如携带PUF的集成 电路芯片)的唯一标识符。此外,将装置放置在集成电路芯片的顶层中保 护了底层电路免受攻击者的检查,例如用于逆向工程。当伪造者试图去除 全部或部分涂层时,磁场分布必须改变,从而破坏原始唯一标识符。
本发明在其一种形式中涉及由包含随机放置的磁性粒子的PUF覆盖 或包封的集成电路芯片。
本发明在其另一种形式中涉及一种用于打印机或打印机供应部件(例 如墨粉盒)中的集成电路芯片,该集成电路芯片被包含随机放置的磁性粒 子的PUF覆盖或包封。
本发明在其又一形式中涉及一种在银行卡上的EMV(欧洲支付、万事 达卡、维萨卡)交易芯片或嵌入式微芯片,该EMV(欧洲支付、万事达卡、 维萨卡)交易芯片或嵌入微芯片被包含随机放置的磁性粒子的PUF覆盖。
本发明在其又一形式中涉及一种具有安装在形成银行卡的主体的基 底上的EMV交易芯片的设备,其中多个磁化粒子被分散在基底中以形成 PUF。
附图说明
并入说明书中并形成说明书的一部分的附图说明了本公开的若干方 面,并与描述一起用于解释本公开的原理。
图1是集成芯片的视图。
图2是具有模制在外壳中的磁化粒子的集成芯片的视图。
图3是集成芯片的视图,其中传感器的阵列形成在芯片上方,以及磁 化粒子被模制在外壳中。
图4是包含磁性和非磁性粒子的基底的正交视图。
图5是PUF和PUF阅读器的侧视图。
图6是带有EMV交易芯片的银行卡的正面的视图。
图7是带有磁条的银行卡的背面的视图。
图8是银行卡芯片阅读器装置。
图9是银行卡芯片阅读器装置的端部视图。
图10是制造安全装置的方法的流程图。
图11是沿限定路径的磁场分布图。
图12A、图12B和图12C是在分解成三个坐标分量Bx、By、和Bz的 区域上测量的磁通量密度的三维表示。
详细描述
在以下描述中,对附图进行了参考,其中相似数字表示相似元件。这 些实施例被充分详细描述,以使得本领域技术人员能够实施本公开内容。 应该理解的是,可利用其它实施例,且可以做出过程的、电气的和机械的 变化等,而不脱离本公开的范围。示例仅仅代表可能的变形。一些实施例 的部分和特性可被包含到其他实施例,或取代其他实施例的部分或特征。 因此,以下描述并非旨在限制性的意义,以及本公开的范围仅由所附权利 要求及其等同物定义。
现在参考附图,且特别是图1,当制造ICC 1001时,通常通过附接到 金属引线框1008来进行封装,金属引线框1008通过引线键合(wire bond) 1004和1005连接到焊盘1002和1003,且然后被封闭在密封剂1006中, 密封剂1006随后被固化。包封的芯片然后被模制在塑料外壳1007中。
现在参考图2,在本发明的一个实施例中,模制塑料外壳1007被模制 塑料外壳或基底2007代替,其中被分散在基底中的是多个磁化粒子4014。 粒子是随机分布的,使得极难重现粒子的精确分布和排列(alignment)。 优选地,粒子在分散到基底中之前被磁化,以进一步增加所得磁场分布的 随机性。因此,基底2007和粒子4014在模制塑料外壳之外形成物理上不 可克隆的功能。
在ICC的表面附近的磁场分布可以通过紧密靠近ICC的顶表面的外部 磁阻传感器(未示出)、霍尔效应传感器(未示出)或这些传感器的阵列 来进行测量。由于感测元件通常在传感装置的表面以下0.3-0.5毫米左右, 使用霍尔效应传感器或磁阻传感器的平均粒径(average particle size diameter)优选大于0.1毫米。注意,非球形粒子的直径是封闭粒子的最小 球体的直径。其他传感器选项包括磁光传感器技术,该磁光传感器技术能 够以较小的磁性粒子尺寸工作,但实施成本更高,并且容易受到污染问题 的影响。
磁场分布测量可以在限定的区域内或沿着限定的路径进行:直的、圆 的或任何任意选择的和限定的路径,并在ICC制造厂进行记录。图11显 示了沿限定的路径的磁场分布,其中磁通量密度已被分解为三个坐标分量 Bx、By、和Bz。图12A-12C显示了在如由覆盖ICC的限定的区域展现的 矩形区域上测量的磁场分布。该分布是在整个区域上测量的磁通量密度的 三维表示。磁通量密度矢量已经被分解成分别在图12A、图12B、和图12C 中示出的三个坐标分量Bx、By、和Bz。磁场分布数据将由私钥签名,并在 编程期间写入ICC的非易失性存储器(“NVM”)。在将ICC安装到电路卡 上之后,磁性“指纹”再次被外部磁阻传感器读取,并且磁性分布与存储 在芯片上的值进行比较以认证ICC。这个系统将使假冒的ICC很难进入高 价值的应用。该系统实现起来相当便宜,几乎可以即时认证PUF包覆成型 的ICC。
现在参考图3,在本发明的第二实施例中,磁化粒子4014的使用产生 了唯一的磁性指纹,该唯一的磁性指纹可以通过将包封的芯片1001与包 含磁化粒子2007的基底包覆成型来应用于ICC的制造。术语“包覆成型” 在这里被广泛用来指在ICC上方添加部分表面层以完全包住ICC的任何内 容。一个或更多个传感器,例如霍尔效应传感器3001,被形成在芯片主体 上方并被包在外壳2007内。在该实施例中,传感器3001可以在沿着基底 的不同位置、在一个、两个或三个坐标方向上记录一系列模拟磁性强度读 数。这种“内部”霍尔效应传感器可以测量小于0.1毫米的平均粒径。由 于这些测量是模拟电压,具有足够的测量次数和足够的模数分辨率,因此 可以从这些测量中得出唯一的值。这些值可用于私钥、种子(seed)等, 它们不被存储在装置的存储器中。相反,它们是由装置“在飞行中”(即 在操作期间)读取和获得的,因此使得伪造者对芯片本身的任何探测攻击 无效。如果伪造者试图从ICC提取私钥,极有可能的是包覆成型的磁性层 会受到干扰且私钥将会丢失。
这些实施例可以例如在打印机或打印机供应部件(例如墨粉盒)上的 集成电路芯片上实现,该集成电路芯片用于出于任何目的来认证墨粉盒, 以及执行其他功能,例如墨粉水平监测、纸张计数等。
本发明的第三实施例是将PUF认证技术应用于具有EMV交易芯片的 银行卡和身份证。例如,银行卡6001不断受到伪造者的攻击。为此,安 装在基底6003上的EMV交易芯片6002取代了容易伪造的磁条7001,如 在图7中银行卡6001的背面所示。为了避免欺诈,EMV交易芯片可以与 个人标识号(“PIN”)一起使用,但是为了方便客户,许多卡缺乏这种额 外的保护以减少交易中的数据需求以及避免PIN操作的软件升级。
带有EMV交易芯片的银行卡大多以基于接触的形式被使用:卡被插 入读卡器,这就产生了允许在卡和支付终端之间握手的电路。产生了涉及 被嵌入在芯片中的加密数据的唯一交易。
对于需要PIN的卡来说,在没有代码(code)的情况下,交易无法完 成,代码不会像借记卡和ATM交易那样远程传输。一些卡配有用于非接 触式EMV交易的近场通信(NFC)无线电,并将与销售点系统一起使用。
模拟磁场强度读数的唯一磁性PUF签名可以取代认证银行卡的PIN需 求。PUF签名将是银行卡的第二认证因素。
银行卡的基底可以被制造,其中被分散在基底中的是多个磁性粒子。 粒子是随机分布的,使得极难重现粒子的精确分布和排列(alignment)。 因此,银行卡的基底和粒子形成了物理上不可克隆的功能。磁场分布可以 被外部传感器测量,例如可以被紧邻银行卡表面的霍尔效应传感器(未示 出)测量。其他传感器选项包括磁光传感器技术。磁场分布测量可以在限 定的区域内或沿着限定的路径进行:直的、圆的或任何任意选择和限定的 路径,并在银行卡制造过程中进行记录。磁场分布数据将被写入EVM交 易芯片的非易失性存储器。
当插入读卡器8001时,读卡器可以将传感器臂(sensor arm)扫过银 行卡的一部分,并且位于传感器臂上的一个或更多个传感器(例如霍尔效 应传感器)将在限定的区域中或沿着限定的路径测量磁场。带有驱动凸轮 的简单机械配置将确定传感器臂扫描的路径。可选地,如图9中所示,当 银行卡插入读卡器插槽8002时,传感器或传感器阵列可以位于银行卡滑 过传感器8003、8004、8005和8006的固定位置。与沿感测路径的磁强度 读数相对应的数据存储在EMV交易芯片的非易失性存储器中,并用于验 证交易时读卡器检测到的磁性“指纹”。本发明不需要用户记住PIN,以及 读卡器可以在本地执行验证。可选地,读卡器可以被配置为当发生高价值 交易时,将磁性“指纹”传输到银行卡公司服务器或云位置以用于远程认 证。存储在云位置的数据被存储在物理存储设备(如计算机服务器和存储网络)上的可访问网络(如互联网)中。
作为附加的安全层,卡上的EMV交易芯片可以包含将引导读卡器读 取银行卡上特定位置中的磁性“指纹”的信息。对于不同的卡,这个位置 可以是不同的,并且会给伪造银行卡的任务增加又一层复杂性。磁性“指 纹”的变化的位置也可以被配置为充当旋转加密密钥(rotating encryption key)。该旋转密钥可以每天、每周或每月改变。旋转密钥可以简单到两个 密钥,在这两个密钥中,以向前或向后的运动从“指纹”中读出数据,这 对于当前的读卡器配置来说是破坏性最小的。已知的算法可以用来确定 “指纹”何时旋转。
在另一个实施例中,安装有EMV交易芯片的银行卡基底可以是磁性 “指纹”的位置,使得EMV交易芯片的移除或改变将扭曲基底,并且从 而改变磁性“指纹”,使得认证不可操作。在另一个实施例中,银行卡可 以被实现成如果芯片被移除则会导致指纹撕裂。
读卡器可以通过向银行卡上的EMV交易芯片发送关于数据的请求来 启动银行卡认证。银行卡EMV交易芯片可以向读卡器发起挑战,并在银 行卡安全芯片向读卡器发送磁性“指纹”认证数据之前等待适当的响应(认 证读卡器)。这种挑战和响应协议使得伪造者更难从银行卡中获取数据。 除了使用银行卡的磁性“指纹”或签名之外,电容感测技术可以被用于检 测银行卡中随机分布的磁化粒子的存在,这可以提供用于验证银行卡的又 一认证步骤。
如果银行卡的至少一个面是不透明的,则可以通过数字相机芯片或通 过光学传感器光学检测磁化粒子的存在。类似于电容感测,这可以为银行 卡提供额外的认证步骤。
该技术也可以以与上述相同的方式来认证安全设施的访问标志 (accessbadges),或者认证其他应用(例如护照、身份证、驾照等)的访 问标志。PUF技术可以独立作为安全装置,或者与身份证上的集成电路芯 片或具有非易失性存储器的其他安全装置相结合。
图4示出了基底4010的区域。分散在基底中的是多个磁化粒子4014。 粒子是随机分布的,使得极难重现粒子的精确分布和排列(alignment)。 因此,基底4010和粒子4014形成PUF。
图5示出了包含磁化粒子4014的基底4010的侧视图。
可以在相对于固定磁场传感器5001、5002、5003移动PUF时或者通 过将磁场传感器5001、5002、5003移动到紧挨着固定PUF等等来测量场 数据。传感器以不同的定向被示出,但是这种不同的定向不是必需的。可 以使用多个传感器来减少测量期望区域上的磁场所需的移动和时间。
图10示出了制造安全装置的方法的示例,例如具有PUF覆盖层的集 成电路芯片或者具有EMV交易芯片和PUF基底的银行卡。
可磁化粒子可以是任何形状,并且可以包含钕和铁以及硼。可选地, 可磁化粒子可以包含钐和钴。优选地,磁化粒子生成足够强的磁场,以便 用低成本检测器来进行检测。
使用合适的基底材料,其允许基底材料和粒子的形成的聚集颗粒 (pellet)被磁化。可磁化粒子通过例如使颗粒经受强磁场来进行磁化。磁 化后,磁性粒子不会聚集在一起,因为颗粒载体材料是固体。在模制过程 中,颗粒在模制前被加热和熔化。
然后,基底载体被固化在银行卡的主体中的或者在银行卡的位于EVM 交易芯片的位置下方的部分中的ICC中,其覆盖ICC、包住ICC。在可选 实施例中,载体可以是例如液体,通过添加化学物质、经受紫外光、提高 其温度等,导致液体变成固体。导致载体变成固体,锁定了粒子的分布和 定向。在这种情况下,高粘度液体是优选的,使得粒子可以在材料被模制 前不久被磁化。当材料处于液态时,高粘度阻碍磁性粒子彼此相向运动, 并使磁化粒子的聚集最小化。聚集会导致包覆成型过程失败。
以颗粒形式磁化粒子产生更随机的磁场图案,并且因此更难克隆。此 外,具有图案化或随机化定向的磁化场的应用可以被应用到具有随机粒子 位置的形成的基底上,以便引起磁场定向的更大多样性。
前述描述示出的是本公开的各方面和示例。前述描述并非旨在穷举。 而是,前述描述其被选择以示出本公开内容的原理以及其实际的应用,以 使得本领域中的普通技术人员能够利用本公开内容,包含其各种自然而得 的修改。所有的修改和变化被认为落入在如由所附权利要求确定的本公开 的范围之内。相对明显的修改包含将各种实施方式的一个或多个特性与其 他实施方式的特性结合。

Claims (18)

1.一种设备,包括:
基底;
随机分散在所述基底中的多个磁化粒子;和
集成电路芯片,
其中,包含所述多个磁化粒子的所述基底形成包封所述集成电路芯片的外壳。
2.根据权利要求1所述的设备,还包括在所述集成电路芯片上的非易失性存储器,其中,所述非易失性存储器包含从所述磁化粒子测量的磁场分布数据。
3.根据权利要求1所述的设备,其中,所述磁化粒子包含钕和铁以及硼。
4.根据权利要求1所述的设备,其中,所述磁化粒子包含钐和钴。
5.根据权利要求1所述的设备,其中,所述磁化粒子的平均粒径大于0.1mm。
6.根据权利要求1所述的设备,其中,所述磁化粒子的平均粒径大于0.001mm。
7.一种设备,包括:
基底;
随机分散在所述基底中的多个磁化粒子;
集成电路芯片;和
被定位成与所述集成电路芯片接触的至少一个传感器,
其中,包含所述多个磁化粒子的所述基底形成包封所述集成电路芯片和所述至少一个传感器的外壳。
8.根据权利要求7所述的设备,还包括在所述集成电路芯片上的非易失性存储器,其中,所述非易失性存储器包含从所述磁化粒子测量的磁场分布数据。
9.根据权利要求7所述的设备,其中,所述磁化粒子包含钕和铁以及硼。
10.根据权利要求7所述的设备,其中,所述磁化粒子包含钐和钴。
11.根据权利要求7所述的设备,其中,所述磁化粒子的平均粒径大于0.1mm。
12.根据权利要求7所述的设备,其中,所述磁化粒子的平均粒径小于0.1mm。
13.一种设备,包括:
基底;
随机分散在所述基底中的多个磁化粒子;和
由模制塑料外壳包封的集成电路芯片;和
在所述集成电路芯片上的非易失性存储器,其中,所述集成电路芯片与包含磁化粒子的所述基底包覆成型,并且所述非易失性存储器包含从所述磁化粒子测量的磁场分布数据。
14.根据权利要求13所述的设备,其中,所述磁化粒子包含钕和铁以及硼。
15.根据权利要求13所述的设备,其中,所述磁化粒子包含钐和钴。
16.根据权利要求13所述的设备,其中,所述磁化粒子的平均粒径大于0.1mm。
17.根据权利要求13所述的设备,其中,所述磁化粒子的平均粒径小于0.1mm。
18.根据权利要求13所述的设备,其中,所述集成电路芯片用于打印机或打印机供应部件,诸如墨粉盒。
CN201910272213.2A 2019-04-04 2019-04-04 集成电路芯片封装中的用于安全性的物理不可克隆功能 Pending CN111783171A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910272213.2A CN111783171A (zh) 2019-04-04 2019-04-04 集成电路芯片封装中的用于安全性的物理不可克隆功能

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910272213.2A CN111783171A (zh) 2019-04-04 2019-04-04 集成电路芯片封装中的用于安全性的物理不可克隆功能

Publications (1)

Publication Number Publication Date
CN111783171A true CN111783171A (zh) 2020-10-16

Family

ID=72754913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910272213.2A Pending CN111783171A (zh) 2019-04-04 2019-04-04 集成电路芯片封装中的用于安全性的物理不可克隆功能

Country Status (1)

Country Link
CN (1) CN111783171A (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451759A (en) * 1993-06-24 1995-09-19 Nhk Spring Co., Ltd. Using high-permeability magnetic elements randomly scattered in the objects
US20010033012A1 (en) * 1999-12-30 2001-10-25 Koemmerling Oliver Anti tamper encapsulation for an integrated circuit
US20030040129A1 (en) * 2001-08-20 2003-02-27 Shah Haresh P. Binding assays using magnetically immobilized arrays
US20050116307A1 (en) * 2002-04-09 2005-06-02 Koninklijke Philips Electronics N.C. Method and arrangement for protecting a chip and checking its authenticity
US20110234346A1 (en) * 2008-12-12 2011-09-29 Yoshinobu Honkura Bonded rare earth magnet
US20120104097A1 (en) * 2009-07-09 2012-05-03 Bilcare Technologies Singapore Pte. Ltd. Reading device able to identify a tag or an object adapted to be identified, related methods and systems
WO2013139536A1 (de) * 2012-03-23 2013-09-26 Siemens Aktiengesellschaft Vorrichtung und verfahren zur authentifizierung eines objekts
US9553582B1 (en) * 2015-10-09 2017-01-24 Lexmark International, Inc. Physical unclonable functions having magnetic and non-magnetic particles
US20170104600A1 (en) * 2015-10-09 2017-04-13 Lexmark International, Inc. Physical Unclonable Function Imaged Through Two Faces
US20170103791A1 (en) * 2015-10-09 2017-04-13 Lexmark International, Inc. Rotating Magnetic Measurements of Physical Unclonable Functions
US20170103834A1 (en) * 2015-10-09 2017-04-13 Lexmark International, Inc. Methods of Making Physical Unclonable Functions Having Magnetic and Non-Magnetic Particles
US20170100862A1 (en) * 2015-10-09 2017-04-13 Lexmark International, Inc. Injection-Molded Physical Unclonable Function

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451759A (en) * 1993-06-24 1995-09-19 Nhk Spring Co., Ltd. Using high-permeability magnetic elements randomly scattered in the objects
US20010033012A1 (en) * 1999-12-30 2001-10-25 Koemmerling Oliver Anti tamper encapsulation for an integrated circuit
US20030040129A1 (en) * 2001-08-20 2003-02-27 Shah Haresh P. Binding assays using magnetically immobilized arrays
US20050116307A1 (en) * 2002-04-09 2005-06-02 Koninklijke Philips Electronics N.C. Method and arrangement for protecting a chip and checking its authenticity
US20110234346A1 (en) * 2008-12-12 2011-09-29 Yoshinobu Honkura Bonded rare earth magnet
US20120104097A1 (en) * 2009-07-09 2012-05-03 Bilcare Technologies Singapore Pte. Ltd. Reading device able to identify a tag or an object adapted to be identified, related methods and systems
WO2013139536A1 (de) * 2012-03-23 2013-09-26 Siemens Aktiengesellschaft Vorrichtung und verfahren zur authentifizierung eines objekts
US9553582B1 (en) * 2015-10-09 2017-01-24 Lexmark International, Inc. Physical unclonable functions having magnetic and non-magnetic particles
US20170104600A1 (en) * 2015-10-09 2017-04-13 Lexmark International, Inc. Physical Unclonable Function Imaged Through Two Faces
US20170103791A1 (en) * 2015-10-09 2017-04-13 Lexmark International, Inc. Rotating Magnetic Measurements of Physical Unclonable Functions
US20170103834A1 (en) * 2015-10-09 2017-04-13 Lexmark International, Inc. Methods of Making Physical Unclonable Functions Having Magnetic and Non-Magnetic Particles
US20170100862A1 (en) * 2015-10-09 2017-04-13 Lexmark International, Inc. Injection-Molded Physical Unclonable Function

Similar Documents

Publication Publication Date Title
US20210242141A1 (en) Physical Unclonable Functions in Integrated Circuit Chip Packaging for Security
Jurgensen et al. Smart cards: the developer's toolkit
US9292717B2 (en) Apparatus for forming and reading an identification feature and method thereof
Guin et al. Anti-counterfeit techniques: From design to resign
US7690580B2 (en) Transaction cards having dynamically reconfigurable data interface and methods for using same
CN110249586B (zh) 用于在智能卡上安全存储敏感数据的方法和智能卡
Drimer et al. Thinking inside the box: system-level failures of tamper proofing
WO2013004292A1 (en) Security casing
US9117126B2 (en) Tamper resistant 3D magnetic stripe reader integrated circuit
US20070174615A1 (en) Method and device for communication using random codes
CN111783919A (zh) 在银行卡或身份证中的用于安全性的物理不可克隆功能
Ferradi et al. When organized crime applies academic results: a forensic analysis of an in-card listening device
AU2019202240A1 (en) Physical Unclonable Functions In Bank Cards Or Identification Cards For Security
US10346603B2 (en) Method, apparatus and system for gesture based security
US20170032153A1 (en) Printable, writeable article for tracking counterfeit and diverted products
CA2645157A1 (en) Method and apparatus for the secure processing of sensitive information
CN111783171A (zh) 集成电路芯片封装中的用于安全性的物理不可克隆功能
EP3720043A1 (en) Physical unclonable functions in integrated circuit chip packaging for security
EP3719705A1 (en) Physical unclonable functions in bank cards or identification cards for security
CA3038543A1 (en) Physical unclonable functions in bank cards or identification cards for security
CA3038545A1 (en) Physical unclonable functions in integrated circuit chip packaging for security
AU2019202239A1 (en) Physical Unclonable Functions In Integrated Circuit Chip Packaging For Security
BR102019006559A2 (pt) Funções físicas não clonáveis em pacote de chip de circuito integrado para segurança
WO2019118711A1 (en) Physical identifiers for authenticating an identity of a semiconductor component
BR102019006593A2 (pt) Funções não clonáveis físicas em cartões de banco ou cartões de identificação para a segurança

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination