WO2010060676A1 - Verfahren zur aufreinigung niedermolekularer hydridosilane - Google Patents
Verfahren zur aufreinigung niedermolekularer hydridosilane Download PDFInfo
- Publication number
- WO2010060676A1 WO2010060676A1 PCT/EP2009/063135 EP2009063135W WO2010060676A1 WO 2010060676 A1 WO2010060676 A1 WO 2010060676A1 EP 2009063135 W EP2009063135 W EP 2009063135W WO 2010060676 A1 WO2010060676 A1 WO 2010060676A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- hydridosilanes
- molecular weight
- group
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/04—Hydrides of silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/04—Hydrides of silicon
- C01B33/046—Purification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Definitions
- the present invention relates to a process for the purification of low molecular weight hydridosilanes or their mixtures.
- Hydridosilanes or their mixtures in particular low molecular weight hydridosilanes or their mixtures, are discussed in the literature as possible starting materials for the production of silicon layers. Hydridosilanes are compounds which contain only silicon and hydrogen atoms and which have a linear, branched or (optionally bi- / poly-) cyclic structure with Si-H bonds.
- EP 1 087 428 A1 describes e.g. Process for producing silicon films in which hydridosilanes having at least three silicon atoms are used.
- EP 1 284 306 A2 describes inter alia. Mixtures comprising a hydridosilane compound having at least three silicon atoms and at least one hydridosilane compound selected from cyclopentasilane, cyclohexasilane and silylcyclopentasilane, which can also be used for the production of silicon films.
- low molecular weight hydridosilanes are understood as meaning hydridosilanes having a maximum of 20 silicon atoms.
- Hydridosilanes can e.g. by dehalogenation and polycondensation of halosilanes with alkali metals (GB 2 077 710 A).
- hydridosilanes are based on a dehydropolymerization reaction of hydridosilanes, in which thermal (US Pat. No. 6,027,705 A) or by using catalysts such as hydridic cyclopentadienyl complexes of scandium, yttrium or rare earths (US Pat. No. 4,965,386 A, US Pat. No. 5,252,766 A) and hydridosilane adducts are formed from transition metals or their complexes (JP 02-184513 A) from the hydridosilane starting materials with formal H 2 cleavage.
- thermal US Pat. No. 6,027,705 A
- catalysts such as hydridic cyclopentadienyl complexes of scandium, yttrium or rare earths
- hydridosilane adducts are formed from transition metals or their complexes (JP 02-184513 A) from the hydridosilane starting materials with formal H 2 cleavage
- the synthesis of linear hydridosilanes of the general formula H- (SiH 2 ) n -H (where n> 2) can be carried out by a process in which one or more hydridosilanes, hydrogen and one or more transition metal compounds comprising elements of the 8th, 9th or Group 10 of the Periodic Table (Fe, Co, Ni, Ru, Rh, Pd, Re, Os, Ir, Pt) and the lanthanides (Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho , He, Tm, Yb, Lu), reacted at a pressure of more than 5 bar absolute reaction, subsequently relaxed and the hydridosilanes formed are separated from the resulting reaction mixture (not yet disclosed EP 08158401.3).
- the separation can be carried out by the methods known to those skilled in the art, in particular via distillation or via the use of adsorptive processes.
- the catalyst is generally prepared under protective gas atmosphere in situ in a suitable dried solvent (eg, toluene, reflux over Na, benzophenone) and transferred to a reactor while maintaining a protective gas atmosphere.
- a suitable dried solvent eg, toluene, reflux over Na, benzophenone
- the mixture is then reacted.
- the desired hydridosilanes are then formed.
- the resulting mixture consisting of the hydridosilanes formed, solvents and optionally unreacted educts can after removal of the homogeneous catalyst and relatively high molecular weight secondary components (ie those having more than 20 Si atoms, in particular corresponding polysilins and polysilanes) for use in semiconductor or photovoltaic field are used, since at a given purity of the starting materials no contamination of interfering secondary components are to be expected.
- relatively high molecular weight secondary components ie those having more than 20 Si atoms, in particular corresponding polysilins and polysilanes
- hydridosilanes produced by a thermal dehydropolymerization reaction or by dehalogenation and polycondensation of halosilanes with alkali metals to produce relatively high molecular weight by-products, ie. those having more than 20 Si atoms, in particular corresponding hydridosilanes and polysilins, can be separated from the reaction mixture, since they have the disadvantage, especially at high molecular weights, of leading to inhomogeneities in the production of silicon layers.
- adsorptive purification methods such as separation processes based on zeolites, have the disadvantage that they require a complex purification step of the adsorbent.
- the object of the present invention was a process for the separation of impurities selected from the group of compounds with more than 20 Si atoms, in particular the corresponding hydridosilanes and polysilines, and / or the group of ( to provide at least one metal of the transition metal series or lanthanides and at least one ligand) homogeneous-catalyst systems of low molecular weight hydridosilanes, which does not have the disadvantages of the prior art.
- the present object is achieved by a process for the purification of low molecular weight hydridosilane solutions in which a solution to be purified comprising at least one low molecular weight hydridosilane, at least one solvent and at least one impurity selected from the group of compounds having at least 20 Si.
- Atoms (in particular high molecular weight hydridosilanes and polysilins) and / or the group of homogeneous catalyst systems are subjected to a cross-flow membrane process with at least one membrane separation step using a permeation membrane.
- a pressure-driven membrane process in which the solution to be purified at a pressure p ⁇ is brought into contact with one side of a permeation membrane, and on the other side of the permeation membrane on the the pressure p M prevails, which is smaller than the pressure p ⁇ , a purified solution is removed, ie a solution containing a lower concentration of at least one contaminant compared to the solution to be purified.
- the purified solution after the first purification step is brought into contact with the permeation membrane, and taken on the oth er n S ei te beieinem D ru ckp M p ⁇ at a pressure again.
- the number of h to be added to further purification steps increases accordingly.
- ultra or nanofiltration membranes and reverse osmosis membranes can be used as permeation membranes in such a membrane process.
- These usable membrane types comprise either porous permeable polymer or ceramic layers or permeable polymer or ceramic layers on a porous substructure, whereby reverse osmosis membranes are distinguished by a separation limit of ⁇ 250 g / mol, nanofiltration membranes. Distinguish membranes by a separation limit of 250 - 1000 g / mol and ultrafiltration membranes by a separation limit of 1,000 - 100,000 g / mol.
- organophilic nanofiltration membranes as they are known from the workup of organic solvents, because with this method dissolved impurities in a molecular weight range of 250 to 1000 g / mol can be removed particularly efficiently.
- the inventive method also offers the advantage that it is structurally simple in manufacturing processes for low molecular weight hydridosilanes, in particular Manufacturing method based on the metal I catalyzed dehydropolymerization can be integrated. Particularly in the case of integration into a metal-catalyzed dehydropolymerization setup, the catalyst-containing retentate stream from a downstream membrane separation step may be recycled to the reactor for recycling while the purified product is being removed.
- the purification process according to the invention further offers the surprising advantage that contaminated low molecular weight hydridosilane solutions containing both impurities with more than 20 Si atoms and impurities based on homogeneous catalysts - especially in the case of reaction product solutions of a synthesis of low molecular weight hydridosilanes over metal I catalyzed Dehydropolymerization process - can be removed through a single purification process.
- the impurity or the impurities can be removed particularly well if at least two membrane separation steps, preferably at least three membrane separation steps are carried out.
- Hydridosilanes or polysilines having molecular weights above 600 g / mol, preferably greater than 1000 g / mol, are particularly easily removable via the process according to the invention. It is observed that the larger the molar mass ratio of impurity and product to be purified, the better can be removed impurities.
- impurities selected from the group of homogeneous catalyst systems which contain a metal selected from the 4th, 5th, 6th, 7th, 8th, 9th or 10th group of the group can be removed by the process according to the invention Periodic table, particularly preferably a metal selected from Fe, Co, Ni, Ru, Rh, Pd, Re, Os, Ir, Pt, W and Mo.
- Homogeneous catalyst systems ie a ligand selected from halogen, hydrogen, alkyl, aryl, alkylsilane, arylsilane, olefin, alkylcarboxyl, arylcarboxyl, acetylacetonatoalkoxyl, aryloxy, alkylthio, arylthio, substituted are particularly well removable via the purification process according to the invention or unsubstituted cyclopentadienyl, cyclooctadiene, cyanoalkane, aromatic cyano compounds, CN, CO, NO, alkylamine, arylamine, pyridine, bipyridine, (hetero) -alkylphosphine, (hetero) arylphosphine, (hetero) alkylarylphosphine, (hetero) alkyl phosphite, (Hetero) aryl phosphite, alkylsti
- the inventive method is suitable for the purification of solutions based on a variety of solvents.
- the best compatibility with the conventionally used membranes results when the at least one solvent of the solution to be purified is selected from the group of aprotic nonpolar solvents, ie the alkanes, substituted alkanes, alkenes, alkynes, aromatics without or with aliphatic or aromatic substituents, halogenated hydrocarbons, tetramethylsilane, or the group of aprotic polar solvents, ie the ethers, aromatic ethers, substituted ethers, esters or acid anhydrides, ketones, tertiary amines, nitromethane, DMF (dimethylformamide) DMSO (dimethylsulfoxide) or propylene carbonate is.
- the process according to the invention can particularly preferably be carried out with solutions of toluene, n-hexane or tetradecane.
- Membranes which can preferably be used for the cross-flow membrane process are those which have as a permeable layer a polymer layer of polydimethylsiloxane (PDMS) or other polysiloxanes, polyimide (PI), polyamideimide (PAI), acrylonitrile / glycidyl methacrylate (PANGMA), polyamide ( PA), polyethersulfone (PES), polysulfone (PSU), cellulose acetate (CA), polyetherimide (PEI), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polyetheretherketone (PEEK), polycarbonate (PC), polybenzimidazole (PBI), polyacrylates, Polyetheramide (PIA), polyethylene oxide amide (PEBAX), polyisobutylene (PIB), polyphenylene oxide (PPO), polyvinyl alcohol (PVA), sulfonated polyetheretherketones (SPEEK) or cellulose. Further advantageously us
- Preferred membranes are those based on PET / PAN / PDMS, which are commercially available under the designation oNF2 from GMT, Rheinfelden, or PET / PAN / PI, which are commercially available under the name Starmem, from Grace Davison, Littleton, CO, US.
- the membranes are preferably in the form of membrane modules, in particular in the form of open-channel pillow module systems, in which the membranes are thermally welded to membrane pockets, or in the form of coil modules in which the membrane bonds to membrane covers Feed-s pa ce rn are wound around a Permeatsammelrohr used.
- membranes are those which are permeable to molecules up to a molecular weight of 400 g / mol.
- ne Mem is brantren nsch step of cross-flow membrane process to achieve a particularly good purification, preferably at a temperature from 10 to 120 0 C, particularly preferably at 15 - 45 0 C performed.
- the at least one membrane separation step of the cross-flow membrane process is further preferably carried out at an excess flow rate at the membrane of 0.1 to 15 m / s in order to achieve equally good and rapid purification.
- the purification process according to the invention is particularly well suited for the purification of low molecular weight hydridosilane solutions which can be prepared by a process for the synthesis of linear hydridosilanes of the general formula H- (SiH 2 ) n -H (where n> 2) in which one or more hydridosilanes, hydrogen and one or more transition metal compounds comprising elements of the 8th, 9th or 10th group of the Periodic Table (Fe, Co, Ni, Ru, Rh, Pd, Re, Os, Ir, Pt) and the lanthanides (Ce, Pr, Nd , Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) are reacted at a pressure of more than 5 bar absolute.
- H- (SiH 2 ) n -H where n> 2
- the purification process according to the invention can be advantageously integrated into production processes for low molecular weight hydridosilanes, in particular production processes based on metal-catalyzed dehydropolymerization. Especially in case of Integration in production processes via metal-catalyzed dehydropolymerization can advantageously be fed back from a reactor downstream membrane separation step, catalyst-containing retentate to the reactor for recycling, while the purified product can be removed in the permeate stream.
- FIG. 1 shows a schematic illustration of an experimental setup for an embodiment of the method according to the invention.
- the reactants 1 and a recycle stream 6 are fed to the dehydrogenation reactor R in which the polysilane synthesis takes place.
- the reactor may be a stirred tank or a tubular reactor.
- the reaction mixture 2 is passed directly to the membrane M.
- the retentate stream 3 obtained at the membrane is returned to the reaction.
- the permeate stream 4 obtained on the membrane M is passed into a thermal separation device D, for example into a thin-film evaporator.
- a separation into polysilane product which leaves the thermal separation device as stream 5, and a stream 6, the high boilers, solvents and not separated in the membrane separation complex catalyst, solvent and / or free ligand and is recycled to the reactor R.
- Polymer membranes from PET / PAN / PDMS and PET / PAN / PI are inserted in after completion of a dehydropolymerization obtained from monosilane, not further purified reaction systems consisting of 1) a mixture of lower hydridosilanes having two to ten silicon atoms, 2) den the dehydropolymerization higher molecular weight impurities comprising polysilins and hydridosilanes having more than 20 Si atoms, 3) the solvent toluene and 4) the catalyst system consisting of i) the metal precursor Nickelacetylacetetonat or rhodium acetate and ii) a phosphine or phosphite ligands
- 0.1 mmol of nickel acetylacetonate and a 2.1-fold excess of ( ⁇ ) -2,2'-bis (diphenylphosphino) -1, 1'-binaphthyl are weighed out to obtain a protective gas atmosphere (argon), and in about 30 ml dissolved in dry toluene.
- the catalyst solution is introduced into an inertized stainless steel autoclave equipped with a glass liner, thermocouple, pressure transducer, liquid sampling point, gas feed and gas discharge.
- the reactor is additionally filled with 120 ml of dry toluene.
- the autoclave is charged with monosilane until a pressure of about 60 bar is reached. Subsequently, the reactor is additionally subjected to hydrogen until reaching a pressure of about 70 bar. Subsequently, the reactor is heated to the desired temperature and the stirrer (700 rev / min) started. After a reaction time of 20 h, the reaction is stopped, the reactor is expanded and the liquid phase is analyzed by gas chromatography. Table 1 below shows the results of gas chromatographic studies at 0.5, 1, 2, 3, and 20 hours after the start of the short chain hydridosilane distribution reaction.
- the pump When the valve position is open, the pump is switched on and the reaction mixture is passed directly to the membrane. After reaching a system pressure of 10 bar, the circulation pump is additionally switched on. The pressure is maintained via the built-in pressure relief valve. From the nanofiltration, the permeate is obtained on the membrane, which consists mainly of dissolved hydridosilanes in solvent. The resulting in the nanofiltration retentate contains the catalyst dissolved in the solvent consisting of Metallprecursor and ligands and impurities with more than 20 Si atoms. These are concentrated in the retentate. example 1
- the reaction mixture to be purified reaches the membrane module as a flat membrane test cell from Dauborn Membransysteme, Ratzeburg, with an area of 80 cm 2 .
- this module was a PDMS membrane of the type oNF2 GMT, Rheinfelden, D, which was overflowed with a transmembrane pressure of 15 bar at 100 L / h.
- the permeate flow rate was determined and the system retention was determined based on the catalyst constituents phosphorus and nickel in the mixed permeate and retentate.
- the reaction mixture to be purified enters the membrane module as a flat membrane test cell from Dauborn Membrane Systems, Ratzeburg, with an area of 80 cm 2 .
- This module was a Pl membrane of the type Starmem 240 of the company Grace, Littleton, CO, US, which was overflowed with a transmembrane pressure of 20 bar with 100 L / h. After obtaining 225 ml of permeate, the permeate flow rate was determined and the system retention was determined based on the catalyst constituents phosphorus and nickel in the mixed permeate and retentate.
- the reaction mixture to be purified reaches the membrane module as a flat membrane test cell from Dauborn Membransysteme, Ratzeburg, with an area of 80 cm 2 .
- this module was a Pl membrane of the type Starmem 240 of the company Grace, Littleton, CO, US, which was overflowed with a transmembrane pressure of 15 bar with 100 L / h.
- the permeate flow rate was determined and the system retention was determined based on the catalyst constituents phosphorus and nickel in the mixed permeate and retentate.
- Table 2 The results of the membrane separation of Examples 1, 2 and 3 are shown in Table 2 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Silicon Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP09736896A EP2342163B1 (de) | 2008-11-03 | 2009-10-09 | Verfahren zur aufreinigung niedermolekularer hydridosilane |
| JP2011533657A JP5656851B2 (ja) | 2008-11-03 | 2009-10-09 | 低分子量のヒドリドシランの精製法 |
| US13/123,827 US8889009B2 (en) | 2008-11-03 | 2009-10-09 | Process for purifying low molecular weight hydridosilanes |
| CN2009801435493A CN102203008B (zh) | 2008-11-03 | 2009-10-09 | 低分子量氢化硅烷的纯化方法 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102008043422.1 | 2008-11-03 | ||
| DE102008043422A DE102008043422B3 (de) | 2008-11-03 | 2008-11-03 | Verfahren zur Aufreinigung niedermolekularer Hydridosilane |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2010060676A1 true WO2010060676A1 (de) | 2010-06-03 |
Family
ID=41396957
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2009/063135 Ceased WO2010060676A1 (de) | 2008-11-03 | 2009-10-09 | Verfahren zur aufreinigung niedermolekularer hydridosilane |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US8889009B2 (enExample) |
| EP (1) | EP2342163B1 (enExample) |
| JP (1) | JP5656851B2 (enExample) |
| CN (1) | CN102203008B (enExample) |
| DE (1) | DE102008043422B3 (enExample) |
| TW (1) | TWI458681B (enExample) |
| WO (1) | WO2010060676A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106348303A (zh) * | 2015-07-14 | 2017-01-25 | 天津大学 | 化学分解法提纯硅烷的方法 |
Families Citing this family (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102007054885A1 (de) * | 2007-11-15 | 2009-05-20 | Evonik Degussa Gmbh | Verfahren zur Fraktionierung oxidischer Nanopartikel durch Querstrom-Membranfiltration |
| DE102009001230A1 (de) | 2009-02-27 | 2010-09-02 | Evonik Oxeno Gmbh | Verfahren zur Abtrennung und teilweiser Rückführung von Übergangsmetallen bzw. deren katalytisch wirksamen Komplexverbindungen aus Prozessströmen |
| DE102009001225A1 (de) | 2009-02-27 | 2010-09-02 | Evonik Oxeno Gmbh | Verfahren zur Anreicherung eines Homogenkatalysators aus einem Prozessstrom |
| DE102009002758A1 (de) | 2009-04-30 | 2010-11-11 | Evonik Degussa Gmbh | Bandgap Tailoring von Solarzellen aus Flüssigsilan mittels Germanium-Zugabe |
| DE102009048087A1 (de) | 2009-10-02 | 2011-04-07 | Evonik Degussa Gmbh | Verfahren zur Herstellung höherer Hydridosilane |
| DE102009053804B3 (de) | 2009-11-18 | 2011-03-17 | Evonik Degussa Gmbh | Verfahren zur Herstellung von Hydridosilanen |
| DE102009053806A1 (de) | 2009-11-18 | 2011-05-19 | Evonik Degussa Gmbh | Verfahren zur Herstellung von Siliciumschichten |
| DE102009047351A1 (de) | 2009-12-01 | 2011-06-09 | Evonik Goldschmidt Gmbh | Komposit-Siliconmembranen mit hoher Trennwirkung |
| DE102010002405A1 (de) | 2010-02-26 | 2011-09-01 | Evonik Degussa Gmbh | Verfahren zur Oligomerisierung von Hydridosilanen, die mit dem Verfahren herstellbaren Oligomerisate und ihre Verwendung |
| DE102010040231A1 (de) | 2010-09-03 | 2012-03-08 | Evonik Degussa Gmbh | p-Dotierte Siliciumschichten |
| DE102010041842A1 (de) | 2010-10-01 | 2012-04-05 | Evonik Degussa Gmbh | Verfahren zur Herstellung höherer Hydridosilanverbindungen |
| DE102010062984A1 (de) | 2010-12-14 | 2012-06-14 | Evonik Degussa Gmbh | Verfahren zur Herstellung höherer Halogen- und Hydridosilane |
| DE102010063823A1 (de) | 2010-12-22 | 2012-06-28 | Evonik Degussa Gmbh | Verfahren zur Herstellung von Hydridosilanen |
| US12350627B2 (en) | 2013-02-28 | 2025-07-08 | Aqua Membranes, Inc. | Permeate flow patterns |
| US11376552B2 (en) | 2016-09-20 | 2022-07-05 | Aqua Membranes Inc. | Permeate flow paterns |
| US20190276321A1 (en) * | 2016-10-27 | 2019-09-12 | Showa Denko K.K. | Method for producing oligosilane and apparatus for producing oligosilane |
| WO2018094288A2 (en) | 2016-11-19 | 2018-05-24 | Aqua Membranes Llc | Flow directing devices for spiral-wound elements |
| CN106362438B (zh) * | 2016-11-22 | 2019-02-15 | 新奥生态环境治理有限公司 | 油水分离膜及其应用 |
| JP7086098B2 (ja) | 2017-04-12 | 2022-06-17 | アクア メンブレインズ,インコーポレイテッド | 濾過巻き要素のための段階的なスペーサ |
| US11745143B2 (en) | 2017-04-20 | 2023-09-05 | Aqua Membranes, Inc. | Mixing-promoting spacer patterns for spiral-wound elements |
| EP3612293A4 (en) | 2017-04-20 | 2020-12-30 | Aqua Membranes, Inc. | GROUNDS FOR NON-SNAP AND NON-DEFORMATION FOR SPIRAL-WOUND ELEMENTS |
| JP7167140B2 (ja) | 2017-10-13 | 2022-11-08 | アクア メンブレインズ,インコーポレイテッド | スパイラル型巻線要素用の橋梁支持及び低減した供給スペーサ |
| CN108031301B (zh) * | 2017-12-28 | 2020-12-11 | 三明学院 | Maps改性二氧化硅填充pim-1复合膜及其制备方法 |
| CN110357109B (zh) * | 2018-04-11 | 2022-12-30 | 台湾特品化学股份有限公司 | 硅丙烷合成及过滤纯化的系统 |
| CN108889128A (zh) * | 2018-07-26 | 2018-11-27 | 四川美富特水务有限责任公司 | 一种聚酰胺复合反渗透膜的制备方法 |
| US11401166B2 (en) * | 2018-10-11 | 2022-08-02 | L'Air Liaquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Process for producing isomer enriched higher silanes |
| US12157093B2 (en) | 2019-01-27 | 2024-12-03 | Aqua Membranes, Inc. | Composite membranes |
| CN112213403A (zh) * | 2019-07-11 | 2021-01-12 | 东泰高科装备科技有限公司 | 一种砷烷在线检测装置和检测方法 |
| JP7534383B2 (ja) | 2019-08-06 | 2024-08-14 | アクア メンブレインズ,インコーポレイテッド | スパイラル型エレメントのための好ましい流路 |
| WO2021207256A1 (en) | 2020-04-07 | 2021-10-14 | Aqua Membranes Inc. | Independent spacers and methods |
| EP4457013A1 (en) | 2021-12-28 | 2024-11-06 | Aqua Membranes, Inc. | High rejection spiral wound elements with protective features |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2077710A (en) * | 1980-06-11 | 1981-12-23 | Nat Res Dev | Synthesising a polysilane |
| WO1989001965A1 (fr) * | 1987-08-28 | 1989-03-09 | Bucher-Guyer Ag Maschinenfabrik | Procede d'elimination selective de substances volatiles de liquides et installation pour la mise en oeuvre de ce procede |
| US6027705A (en) * | 1998-01-08 | 2000-02-22 | Showa Denko K.K. | Method for producing a higher silane |
| WO2007085321A1 (de) * | 2006-01-26 | 2007-08-02 | Evonik Oxeno Gmbh | Verfahren zur abtrennung von metall-komplexkatalysatoren aus telomerisationsgemischen |
Family Cites Families (70)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01184513A (ja) * | 1988-01-20 | 1989-07-24 | Natl Space Dev Agency Japan<Nasda> | 自力式圧力調節弁の圧力調整装置 |
| DE3820294C1 (enExample) | 1988-06-15 | 1989-10-05 | Th. Goldschmidt Ag, 4300 Essen, De | |
| US4941893B1 (en) * | 1989-09-19 | 1996-07-30 | Advanced Silicon Materials Inc | Gas separation by semi-permeable membranes |
| DE3933420C1 (enExample) | 1989-10-06 | 1991-03-07 | Th. Goldschmidt Ag, 4300 Essen, De | |
| US4965386A (en) * | 1990-03-26 | 1990-10-23 | E. I. Du Pont De Nemours And Company | Hydrosilation, and dehydrocondensation of silicon hydrides, catalyzed by scandium, yttrium and rare earth metal compounds |
| DE4009889C1 (enExample) | 1990-03-28 | 1991-06-13 | Th. Goldschmidt Ag, 4300 Essen, De | |
| US5260402A (en) | 1990-06-21 | 1993-11-09 | Th. Goldschmidt Ag | Curable organopolysiloxanes with oxyalkylene ether groups linked through SiOC groups, their synthesis and use |
| US5252766A (en) * | 1990-09-14 | 1993-10-12 | Director-General Of Agency Of Industrial Science | Method for producing polysilanes |
| FR2710044B1 (fr) * | 1993-09-17 | 1995-10-13 | Air Liquide | Procédé de séparation d'un hydrure gazeux ou d'un mélange d'hydrures gazeux à l'aide d'une membrane. |
| KR100338136B1 (ko) | 1998-03-03 | 2002-05-24 | 울프 크라스텐센, 스트라쎄 로텐베르그 | 오르가노폴리실록산 및 오르가노폴리실록산의 제조방법 |
| DE19836246A1 (de) | 1998-08-11 | 2000-02-24 | Goldschmidt Ag Th | Strahlenhärtbare Beschichtungsmassen |
| EP1035126A3 (en) * | 1999-03-11 | 2002-05-29 | Crompton Corporation | Promoted hydrosilation reactions |
| WO2000059014A1 (fr) * | 1999-03-30 | 2000-10-05 | Seiko Epson Corporation | cROCEDE PRODUCTION D'UN FILM DE SILICIUM ET COMPOSITION D'ENCRE POUR IMPRIMANTE A JET D'ENCRE |
| US6331329B1 (en) * | 1999-05-17 | 2001-12-18 | University Of Massachusetts | Surface modification using hydridosilanes to prepare monolayers |
| JP4369153B2 (ja) | 2002-05-16 | 2009-11-18 | 株式会社神鋼環境ソリューション | 膜分離装置及び膜分離方法 |
| CN1496990A (zh) * | 2002-10-07 | 2004-05-19 | 通用电气公司 | 制备含环氧乙烷有机硅组合物的方法 |
| DE10248111A1 (de) | 2002-10-15 | 2004-04-29 | Goldschmidt Ag | Verwendung von Photoinitiatoren vom Typ Hydroxyalkylphenon in strahlenhärtbaren Organopolysiloxanen für die Herstellung von abhäsiven Beschichtungen |
| DE10341137A1 (de) | 2003-09-06 | 2005-03-31 | Goldschmidt Ag | Verwendung von hydroxyfunktionellen Polyalkylorganosiloxanen als Lösungsmittel für kationische Photoinitiatoren für die Verwendung in strahlenhärtbaren Siliconen |
| DE10359764A1 (de) | 2003-12-19 | 2005-07-14 | Goldschmidt Ag | Polysiloxane mit über SiOC-Gruppen gebundenen (Meth)acrylsäureestergruppen, Verfahren zu deren Herstellung sowie deren Verwendung als strahlenhärtbare abhäsive Beschichtung |
| DE102005001041A1 (de) | 2005-01-07 | 2006-07-20 | Goldschmidt Gmbh | Neuartige Siloxanblockcopolymere |
| DE102005001039B4 (de) | 2005-01-07 | 2017-11-09 | Evonik Degussa Gmbh | Verfahren zur Herstellung von Äquilibrierungsprodukten von Organosiloxanen und die so erhältlichen Organopolysiloxane |
| US7910371B2 (en) | 2005-01-20 | 2011-03-22 | Nalco Company | Method of monitoring treating agent residuals in water treatment processes |
| DE102005004706A1 (de) | 2005-02-02 | 2006-08-10 | Goldschmidt Gmbh | UV-Licht absorbierende quaternäre Polysiloxane |
| DE102005043742A1 (de) | 2005-09-14 | 2007-03-22 | Goldschmidt Gmbh | Verwendung von Epoxy-funktionellen Silanen als Haftungsadditiv für kationisch strahlenhärtende Silikontrennbeschichtungen |
| DE102005046250B4 (de) | 2005-09-27 | 2020-10-08 | Evonik Operations Gmbh | Anlage zur Abtrennung von organischen Übergangsmetallkomplexkatalysatoren |
| DE102005051939A1 (de) | 2005-10-29 | 2007-05-03 | Goldschmidt Gmbh | Verfahren zur Herstellung von organisch modifizierten Polyorganosiloxanen |
| DE102005056246A1 (de) | 2005-11-25 | 2007-06-06 | Goldschmidt Gmbh | Gepfropfte Polyether-Copolymerisate und deren Verwendung zur Stabilisierung von Schaumstoffen |
| US20070131611A1 (en) | 2005-12-13 | 2007-06-14 | General Electric Company | Membrane-based article and associated method |
| DE102005061782A1 (de) | 2005-12-23 | 2007-06-28 | Goldschmidt Gmbh | Silikonhaltige Pfropfmischpolymere auf Basis styroloxidbasierter Silikonpolyether |
| DE102006005100A1 (de) | 2006-02-04 | 2007-08-09 | Goldschmidt Gmbh | Verfahren zur Herstellung organomodifizierter Siloxane |
| DE102006008387A1 (de) | 2006-02-21 | 2007-08-30 | Goldschmidt Gmbh | Verfahren zur Herstellung von siloxanhaltigen Trennbeschichtungen |
| DE102006027339A1 (de) | 2006-06-13 | 2007-12-20 | Goldschmidt Gmbh | Kationisch strahlenhärtende Controlled Release Beschichtungsmassen |
| DE102007023763A1 (de) | 2006-08-10 | 2008-02-14 | Evonik Degussa Gmbh | Anlage, Reaktor und Verfahren zur kontinuierlichen industriellen Herstellung von Polyetheralkylalkoxysilanen |
| DE102007023759A1 (de) | 2006-08-10 | 2008-02-14 | Evonik Degussa Gmbh | Anlage und Verfahren zur kontinuierlichen industriellen Herstellung von Fluoralkylchlorsilan |
| DE102007023760A1 (de) | 2006-08-10 | 2008-02-14 | Evonik Degussa Gmbh | Anlage, Reaktor und Verfahren zur kontinuierlichen industriellen Herstellung von 3-Methacryloxypropylalkoxysilanen |
| DE102007023762A1 (de) | 2006-08-10 | 2008-02-14 | Evonik Degussa Gmbh | Anlage und Verfahren zur kontinuierlichen industriellen Herstellung von 3-Glycidyloxypropylalkoxysilanen |
| DE102006041089A1 (de) | 2006-09-01 | 2008-03-06 | Evonik Goldschmidt Gmbh | Verwendung von gepfropften Polyethersiloxanmischpolymeren zur Verbesserung der Kältestabilität von Entschäumern in wässrigen Dispersionen |
| DE102006041088A1 (de) | 2006-09-01 | 2008-03-06 | Evonik Goldschmidt Gmbh | Siliconhaltige, blockweise aufgebaute Pfropfmischpolymere |
| DE102006041971A1 (de) | 2006-09-07 | 2008-03-27 | Evonik Goldschmidt Gmbh | Verwendung von partikulären Emulgatoren in abhäsiven siloxanhaltigen Beschichtungsmassen |
| DE102007005508A1 (de) | 2007-02-03 | 2008-08-07 | Evonik Goldschmidt Gmbh | Verfahren zur Reduktion des Trennwert-Anstiegs bei der Herstellung von No-Label-Look-Etiketten |
| DE102007007185A1 (de) | 2007-02-09 | 2008-08-14 | Evonik Degussa Gmbh | Verfahren zur Herstellung von Glycidyloxyalkyltrialkoxysilanen |
| TW200835548A (en) | 2007-02-16 | 2008-09-01 | Bp Corp North America Inc | Separation process using aromatic-selective polymeric membranes |
| DE102007014107A1 (de) | 2007-03-21 | 2008-09-25 | Evonik Degussa Gmbh | Aufarbeitung borhaltiger Chlorsilanströme |
| DE102007041028A1 (de) | 2007-08-29 | 2009-03-05 | Evonik Goldschmidt Gmbh | Verwendung estermodifizierter Organopolysiloxane zur Herstellung kosmetischer oder pharmazeutischer Kompositionen |
| DE102007044148A1 (de) | 2007-09-15 | 2009-03-26 | Evonik Goldschmidt Gmbh | Neuartige siloxanhaltige Blockcopolymere, Verfahren zu deren Herstellung und deren Verwendung für Schmiermittel |
| DE102007054885A1 (de) | 2007-11-15 | 2009-05-20 | Evonik Degussa Gmbh | Verfahren zur Fraktionierung oxidischer Nanopartikel durch Querstrom-Membranfiltration |
| DE102008000243A1 (de) | 2008-02-06 | 2009-08-13 | Evonik Goldschmidt Gmbh | Neuartige Kompatibilisierungsmittel zur Verbesserung der Lagerstabilität von Polyolmischungen |
| DE102008000287A1 (de) | 2008-02-13 | 2009-08-20 | Evonik Goldschmidt Gmbh | Reaktives, flüssiges Keramikbindemittel |
| DE102008001788A1 (de) | 2008-05-15 | 2009-11-26 | Evonik Goldschmidt Gmbh | Verwendung organomodifizierter Siloxanblockcopolymere zur Herstellung kosmetischer oder pharmazeutischer Zusammensetzungen |
| DE102008001786A1 (de) | 2008-05-15 | 2009-11-26 | Evonik Goldschmidt Gmbh | Verwendung organomodifizierter Siloxanblockcopolymere als Pflegewirkstoff zur Pflege von menschlichen oder tierischen Körperteilen |
| DE102008040986A1 (de) | 2008-08-05 | 2010-02-11 | Evonik Goldschmidt Gmbh | Hydrophobierung von Bauelementen aus Mineralfasern |
| DE102008041601A1 (de) | 2008-08-27 | 2010-03-04 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung verzweigter SiH-funtioneller Polysiloxane und deren Verwendung zur Herstellung flüssiger, SiC- oder SiOC-verknüpfter, verzweigter organomodifizierter Polysiloxane |
| DE102008041870A1 (de) | 2008-09-08 | 2010-03-11 | Evonik Degussa Gmbh | Reaktor mit Titansilikat-Rezyklierung |
| DE102008042381A1 (de) | 2008-09-26 | 2010-04-01 | Evonik Goldschmidt Gmbh | Emulgator-Systeme für kosmetische und pharmazeutische Öl-in-Wasser-Emulsionen |
| EP2334172B1 (en) | 2008-10-17 | 2015-01-21 | Evonik Degussa GmbH | Agrochemical oil compositions comprising alkylpolysiloxane adjuvants of high silicone character |
| DE102009001230A1 (de) | 2009-02-27 | 2010-09-02 | Evonik Oxeno Gmbh | Verfahren zur Abtrennung und teilweiser Rückführung von Übergangsmetallen bzw. deren katalytisch wirksamen Komplexverbindungen aus Prozessströmen |
| DE102009001225A1 (de) | 2009-02-27 | 2010-09-02 | Evonik Oxeno Gmbh | Verfahren zur Anreicherung eines Homogenkatalysators aus einem Prozessstrom |
| DE102009015211A1 (de) | 2009-03-31 | 2010-10-14 | Evonik Goldschmidt Gmbh | Selbstvernetzende Polysiloxane in Beschichtungen von Enzymimmobilisaten |
| DE102009002415A1 (de) | 2009-04-16 | 2010-10-21 | Evonik Goldschmidt Gmbh | Emulgator enthaltend glycerinmodifizierte Organopolysiloxane |
| DE102009002758A1 (de) | 2009-04-30 | 2010-11-11 | Evonik Degussa Gmbh | Bandgap Tailoring von Solarzellen aus Flüssigsilan mittels Germanium-Zugabe |
| DE102009003275A1 (de) | 2009-05-20 | 2010-11-25 | Evonik Goldschmidt Gmbh | Verzweigte Polydimethylsiloxan-Polyoxyalkylen Copolymere, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Anti-Vernebelungsadditiv in UV-härtenden Silikonen |
| DE102009028640A1 (de) | 2009-08-19 | 2011-02-24 | Evonik Goldschmidt Gmbh | Härtbare Masse enthaltend Urethangruppen aufweisende silylierte Polymere und deren Verwendung in Dicht- und Klebstoffen, Binde- und/oder Oberflächenmodifizierungsmitteln |
| DE102009028636A1 (de) | 2009-08-19 | 2011-02-24 | Evonik Goldschmidt Gmbh | Neuartige Urethangruppen enthaltende silylierte Präpolymere und Verfahren zu deren Herstellung |
| DE102009053804B3 (de) | 2009-11-18 | 2011-03-17 | Evonik Degussa Gmbh | Verfahren zur Herstellung von Hydridosilanen |
| DE102010000981A1 (de) | 2010-01-18 | 2011-07-21 | Evonik Degussa GmbH, 45128 | Closed loop-Verfahren zur Herstellung von Trichlorsilan aus metallurgischem Silicium |
| DE102010000979A1 (de) | 2010-01-18 | 2011-07-21 | Evonik Degussa GmbH, 45128 | Verwendung eines druckbetriebenen keramischen Wärmetauschers als integraler Bestandteil einer Anlage zur Umsetzung von Siliciumtetrachlorid zu Trichlorsilan |
| DE102010002178A1 (de) | 2010-02-22 | 2011-08-25 | Evonik Goldschmidt GmbH, 45127 | Verfahren zur Herstellung von Amin-Amid-funktionellen Siloxanen |
| DE102010002180A1 (de) | 2010-02-22 | 2011-08-25 | Evonik Goldschmidt GmbH, 45127 | Stickstoffhaltige silizium-organische Pfropfmischpolymere |
| DE102010031087A1 (de) | 2010-07-08 | 2012-01-12 | Evonik Goldschmidt Gmbh | Neuartige polyestermodifizierte Organopolysiloxane |
| DE102010040231A1 (de) | 2010-09-03 | 2012-03-08 | Evonik Degussa Gmbh | p-Dotierte Siliciumschichten |
-
2008
- 2008-11-03 DE DE102008043422A patent/DE102008043422B3/de not_active Expired - Fee Related
-
2009
- 2009-10-09 WO PCT/EP2009/063135 patent/WO2010060676A1/de not_active Ceased
- 2009-10-09 CN CN2009801435493A patent/CN102203008B/zh not_active Expired - Fee Related
- 2009-10-09 US US13/123,827 patent/US8889009B2/en not_active Expired - Fee Related
- 2009-10-09 EP EP09736896A patent/EP2342163B1/de not_active Not-in-force
- 2009-10-09 JP JP2011533657A patent/JP5656851B2/ja not_active Expired - Fee Related
- 2009-10-30 TW TW098136964A patent/TWI458681B/zh not_active IP Right Cessation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2077710A (en) * | 1980-06-11 | 1981-12-23 | Nat Res Dev | Synthesising a polysilane |
| WO1989001965A1 (fr) * | 1987-08-28 | 1989-03-09 | Bucher-Guyer Ag Maschinenfabrik | Procede d'elimination selective de substances volatiles de liquides et installation pour la mise en oeuvre de ce procede |
| US6027705A (en) * | 1998-01-08 | 2000-02-22 | Showa Denko K.K. | Method for producing a higher silane |
| WO2007085321A1 (de) * | 2006-01-26 | 2007-08-02 | Evonik Oxeno Gmbh | Verfahren zur abtrennung von metall-komplexkatalysatoren aus telomerisationsgemischen |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106348303A (zh) * | 2015-07-14 | 2017-01-25 | 天津大学 | 化学分解法提纯硅烷的方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| DE102008043422B3 (de) | 2010-01-07 |
| JP2012507455A (ja) | 2012-03-29 |
| EP2342163B1 (de) | 2012-09-05 |
| TWI458681B (zh) | 2014-11-01 |
| TW201034951A (en) | 2010-10-01 |
| US20110268642A1 (en) | 2011-11-03 |
| EP2342163A1 (de) | 2011-07-13 |
| CN102203008B (zh) | 2013-10-02 |
| US8889009B2 (en) | 2014-11-18 |
| JP5656851B2 (ja) | 2015-01-21 |
| CN102203008A (zh) | 2011-09-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE102008043422B3 (de) | Verfahren zur Aufreinigung niedermolekularer Hydridosilane | |
| DE102009001225A1 (de) | Verfahren zur Anreicherung eines Homogenkatalysators aus einem Prozessstrom | |
| CN103288610B (zh) | 用于工业加氢甲酰基化异丁烯并分离产物混合物的方法和装置 | |
| EP2935187B1 (de) | Steuerung der viskosität von reaktionslösungen in hydroformylierungverfahren | |
| EP3750627B1 (de) | Verfahren zur abtrennung von einer oder mehreren komponente(n) aus einem gemisch | |
| DE102006003618A1 (de) | Verfahren zur Abtrennung von Metall-Komplexkatalysatoren aus Telomerisationsgemischen | |
| WO2010097428A1 (de) | Verfahren zur abtrennung und teilweisen rückführung von rhodium bzw. dessen katalytisch wirksamen komplexverbindungen aus prozessströmen | |
| EP3099700A1 (de) | Reinigung chlorverschmutzter organophosphorverbindungen | |
| DE102014206520B4 (de) | Neue vierzähnige Phosphor-Liganden mit Hostanox O3 Leitstruktur | |
| DE102013201124A1 (de) | Vliese aus thermoplastischen Siliconelastomeren, herstellbar mittels Elektrospinning | |
| EP4139324B1 (en) | Organic solvent nanofiltration of 7-dehydrocholesterol or 25-hydroxy-7-dehydrocholesterol or their oh protected forms | |
| KR101467906B1 (ko) | 금속이온 착화합물을 이용한 투과증발막 제조 방법 | |
| US7910012B2 (en) | Composition, membrane, and associated method | |
| KR102327836B1 (ko) | 분리막 활성층 형성용 조성물, 분리막의 제조 방법, 분리막 및 수처리 모듈 | |
| DE102005060784A1 (de) | Verfahren zur Rückgewinnung eines an Hydroformylierungskatalysator angereicherten Stroms | |
| DE102015213252A1 (de) | Kontinuierliches Verfahren zur Reinigung von bei der Produktion von Siliconen anfallender Prozessabluft | |
| DE102014002103A1 (de) | Verfahren zur Regenerierung gebrauchter Hydroformylierungskatalysatoren sowie mit Imidgruppen modifziertes Siliziumdioxid |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200980143549.3 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09736896 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009736896 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13123827 Country of ref document: US |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011533657 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |