WO2010056049A9 - 정전용량형 습도센서 및 그 제조방법 - Google Patents

정전용량형 습도센서 및 그 제조방법 Download PDF

Info

Publication number
WO2010056049A9
WO2010056049A9 PCT/KR2009/006654 KR2009006654W WO2010056049A9 WO 2010056049 A9 WO2010056049 A9 WO 2010056049A9 KR 2009006654 W KR2009006654 W KR 2009006654W WO 2010056049 A9 WO2010056049 A9 WO 2010056049A9
Authority
WO
WIPO (PCT)
Prior art keywords
layer
humidity sensor
electrode layer
moisture
lower electrode
Prior art date
Application number
PCT/KR2009/006654
Other languages
English (en)
French (fr)
Other versions
WO2010056049A3 (ko
WO2010056049A2 (ko
Inventor
홍성민
김건년
조영창
김원효
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Priority to JP2011536242A priority Critical patent/JP5425214B2/ja
Priority to US13/128,934 priority patent/US8573052B2/en
Priority to CN2009801452925A priority patent/CN102439430B/zh
Publication of WO2010056049A2 publication Critical patent/WO2010056049A2/ko
Publication of WO2010056049A3 publication Critical patent/WO2010056049A3/ko
Publication of WO2010056049A9 publication Critical patent/WO2010056049A9/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing

Definitions

  • the present invention relates to a capacitive humidity sensor, and more particularly, by forming a sensor unit on the ROIC substrate, the humidity sensor can be made small, and a moisture-sensitive layer of a polymer material having a large surface area is formed between the lower electrode layer and the upper electrode layer.
  • the present invention relates to a capacitive humidity sensor and a method of manufacturing the same, which can increase the reliability of the sensor.
  • a moisture-sensitive polymer layer is formed between electrodes at both ends, and the amount of charge induced at both ends of the electrode depends on the change in dielectric constant and thus the induced charge due to the moisture-sensitized polymer layer. It is manufactured.
  • the capacitive humidity sensor has a relatively complicated manufacturing process and a high manufacturing cost compared to a resistive humidity sensor that measures humidity by applying a voltage at both ends and using a change in resistance changed by humidity.
  • a resistive humidity sensor that measures humidity by applying a voltage at both ends and using a change in resistance changed by humidity.
  • it is widely used for expensive measurements because of its high stability and reliability.
  • FIG. 1 is a perspective view showing the structure of a conventional capacitive humidity sensor.
  • An insulating film 120 made of SiO 2 , Si 3 N 4 , SiO x N y, or the like is formed on the silicon substrate 110.
  • a sensor unit 160 and a readout integrated circuit (ROIC) 170 are formed on the silicon substrate 110 on which the insulating layer 120 is formed.
  • the lower electrode layer 130 is formed by depositing and patterning a metal layer such as aluminum (Al), platinum (Pt) on the insulating film 120. Subsequently, the polyimide (PI) layer is spin-coated and patterned on the lower electrode layer 130 to form a moisture sensitive layer 140, and is heat-treated at a temperature between 200 ° C and 300 ° C.
  • a metal layer such as aluminum (Al), platinum (Pt)
  • PI polyimide
  • the upper electrode layer 150 and the lower electrode layer 130 are formed by depositing and patterning a metal layer of the same material as the lower electrode layer 130 on the polyimide layer 140 to form a comb-shaped upper electrode layer 150.
  • a capacitive humidity sensor having a parallel plate capacitor structure in which the polyimide moisture sensitive layer 140 is formed between the two layers is manufactured.
  • the reason why the upper electrode layer 150 is formed in the shape of a comb unlike the lower electrode layer 130 is to allow the water molecules to smoothly pass into the polyimide moisture sensitive layer 140. That is, the polyimide moisture layer 140 is partially exposed.
  • the ROIC 170 is formed in an upper region of the silicon substrate where the sensor unit 160 does not exist. Since electrical phenomena such as current or voltage generated by the ROIC 170 may affect the humidity sensor, it is preferable to maintain the predetermined distance from the sensor unit 160.
  • the capacitive humidity sensor is characterized by the characteristics of the sensor, such as sensitivity by the unique characteristics of the polymer
  • the conventional capacitive humidity sensor has a sandwich structure in which a polymer, a moisture-sensitive layer is inserted between the two electrodes. There is a problem that it is difficult to improve the sensitivity of the moisture-sensitive layer.
  • the present invention provides a humidity sensor by forming a sensor unit on the ROIC substrate, as well as providing a moisture-sensitive layer of a polymer material having a large surface area between the lower electrode layer and the upper electrode layer. It is an object of the present invention to provide a capacitive humidity sensor and a method for manufacturing the same that can increase the reliability of the sensor by forming.
  • the object of the present invention is a ROIC substrate including an electrode pad; A metal layer formed on the ROIC substrate and patterned to expose a portion of the electrode pad; An insulating layer formed on the metal layer and patterned to expose a portion of the electrode pad; A lower electrode layer formed on the insulating layer; A moisture sensitive layer formed by etching to widen the surface area of the lower electrode layer; An upper electrode layer formed on the moisture sensitive layer; And a connection layer formed on the exposed electrode pad to contact the lower electrode layer and the upper electrode layer with the electrode pad.
  • the upper electrode layer of the present invention is preferably formed on the upper portion of the non-etched region of the moisture sensitive layer.
  • the moisture sensitive layer and the upper electrode layer of the present invention is preferably patterned in the shape of a comb or twig.
  • the moisture-sensitive layer of the present invention is preferably 30% to 70% of the thickness is etched.
  • the moisture-sensitive layer of the present invention is preferably made of a polyimide-based polymer.
  • the lower electrode layer of the present invention is preferably formed on the non-patterned insulating layer.
  • another object of the present invention is to form an insulating layer on the metal layer; Patterning the insulating layer and the metal layer to expose a portion of the electrode pad; Forming a lower electrode layer on the insulating layer; Forming a moisture sensitive layer on the lower electrode layer; Forming and patterning an upper electrode layer on the moisture sensitive layer; And etching the moisture sensitive layer by using the patterned upper electrode layer as a mask.
  • the moisture-sensitive layer of the present invention is preferably formed of a polyimide-based polymer.
  • the upper electrode layer of the present invention is preferably formed by patterning in the shape of a comb or twig.
  • the etched moisture-sensitive layer of the present invention is preferably formed by etching 30% to 70% of the thickness.
  • the lower electrode layer of the present invention is preferably formed on the insulating layer is not patterned.
  • the capacitive humidity sensor of the present invention and the manufacturing method thereof have a remarkable and advantageous effect of miniaturizing the humidity sensor by forming a sensor portion on the ROIC substrate.
  • FIG. 1 is a perspective view of a capacitive humidity sensor according to the prior art
  • FIG. 2 is a cross-sectional view of a capacitive humidity sensor according to the present invention.
  • 3 to 9 is a process flow diagram of a capacitive humidity sensor according to the present invention.
  • 11 to 14 are graphs showing the characteristics of the capacitive humidity sensor according to the present invention.
  • FIG. 2 is a cross-sectional view of a capacitive humidity sensor according to the present invention.
  • the metal layer 220 is formed on the ROIC substrate 210 including the electrode pad (not shown), and the insulating layer 230 is formed on the metal layer 220.
  • the metal layer 220 and the insulating layer 230 are patterned to expose a portion of the electrode pad included in the ROIC substrate 210.
  • the lower electrode layer 240 is formed on the unpatterned insulating layer 230, and the moisture sensitive layer 250 patterned in the shape of a comb or branch is formed on the lower electrode layer 240.
  • the depth where the moisture sensitive layer 250 is etched is preferably 30% to 70% of the thickness of the entire moisture sensitive layer 250.
  • connection layer eg, the lower electrode layer 240 and the upper electrode layer 250 is in electrical contact with the electrode pad formed on the ROIC substrate 210). 270).
  • the humidity sensor can be miniaturized.
  • a greater amount of moisture in the air may be adsorbed onto the moisture sensitive layer 250 to form a humidity sensor having excellent humidity sensitivity.
  • 3 to 9 are process flowcharts of the capacitive humidity sensor according to the present invention.
  • the upper surface of the ROIC substrate 210 is very rough because it is manufactured by a microelectromechanical systems (MEMS) process. Such roughness of the surface increases the specific surface area, which is a good condition for manufacturing a humidity sensor.
  • MEMS microelectromechanical systems
  • an electrode pad (not shown) is formed on the ROIC substrate 210 to connect the ROIC and the upper electrode layer and the lower electrode layer present in the sensor to be described later.
  • the metal layer 220 By forming the metal layer 220 on the ROIC substrate 210 (FIG. 3), it is preferable that the surface roughened by the MEMS process and the electrode pad are flatly covered by the metal layer 220.
  • An insulating layer 230 is formed on the metal layer 220 (FIG. 4).
  • an oxide film or a nitride film such as SiO 2 , Si 3 N 4 , SiO x N y , or the like may be formed. It is desirable to maintain the insulation state.
  • the metal layer 220 and the insulating layer 230 are patterned to partially expose the electrode pads formed on the ROIC substrate 210 (not shown). This is to contact the lower electrode layer 240 and the upper electrode layer 250 to be formed later with the ROIC.
  • the lower electrode layer 240 is formed in the upper region of the non-patterned insulating layer 230 (FIG. 5).
  • the lower electrode layer 240 is formed using any one of physical vapor deposition including vacuum vapor deposition or sputtering.
  • the lower electrode layer 240 is preferably formed of a thin film having a thickness of 500 kV to 1500 kV using a material including a metal having excellent conductivity such as aluminum (Al), gold (Au), platinum (Pt), and the like.
  • the polyimide polymer solution is spin-coated with a micro thickness on the entire surface of the lower electrode layer 240 as the moisture sensitive layer 250.
  • the thickness of the moisture sensitive layer 250 is preferably 0.1 ⁇ m 0.5 ⁇ m (Fig. 6).
  • a polyimide solution is preferably used.
  • pre-heat treatment is performed at about 100 ° C. to 120 ° C. for 100 seconds to 150 seconds in a vacuum to remove the air contained in the film.
  • the post-heat treatment is performed.
  • the temperature is raised from 200 ° C. to 250 ° C. for 100 to 120 minutes in a nitrogen atmosphere.
  • the temperature is maintained at 200 ° C to 250 ° C for 30 to 40 minutes, and then heated to 300 ° C to 350 ° C for 60 to 80 minutes, followed by heat treatment.
  • the heat treatment is completed, due to the evaporation of the solvent, the polymer film is reduced by about 40%, and converted to a very stable thermally and chemically.
  • the upper electrode layer 260 is formed on the polyimide film that is the moisture-sensitive layer 250 (FIG. 7).
  • the upper electrode layer 260 is also formed to have a thickness of 300 ⁇ s to 600 ⁇ m using a material including a metal having excellent conductivity such as aluminum (Al), gold (Au), platinum (Pt), and the like as the lower electrode layer 240.
  • a process of depositing a chromium layer (not shown) with a thickness of 50 kPa to 150 kPa may be added to the buffer layer in order to improve adhesion to the moisture sensitive layer.
  • the upper electrode layer 260 is patterned using a photolithography process (FIG. 8).
  • the patterning may be formed in the shape of a comb or branch, thereby exposing more of the surface area of the upper electrode layer 260 and the surface area of the moisture sensitive layer 250 in contact with moisture.
  • RIE reactive ion etching
  • O 2 plasma oxygen plasma
  • the RIE etches the exposed entire surface of the moisture sensitive layer 250 through the photolithography process of the upper electrode layer 260.
  • the etching depth is preferably about 30% to 70% of the entire thickness of the moisture sensitive layer 250.
  • FIG. 10 is an electron scanning microscope image of a capacitive humidity sensor according to the present invention.
  • 11 to 14 are graphs showing the characteristics of the capacitive humidity sensor according to the present invention.
  • Figure 11 shows the capacitance against the relative humidity of the capacitive humidity sensor according to the presence or absence of etching of the polyimide layer used as the moisture-sensitive layer.
  • the humidity sensor (FIG. 8) before etching the moisture sensitive layer shows a humidity sensor in which only the upper electrode layer is patterned.
  • the humidity sensor (FIG. 9) after etching the moisture sensitive layer shows that the moisture sensitive layer is etched to a predetermined thickness using the patterned upper electrode layer as a mask.
  • the humidity sensitivity of the humidity sensor is 303fF /% RH before the humidity layer is etched, and the humidity sensitivity of the humidity sensor is 350fF /% RH after the humidity layer is etched.
  • the humidity sensitivity of the humidity sensor is 15.5. Notice that the percentage increased.
  • Etching the moisture-sensitive layer exposes the etched side to the outside atmosphere. Therefore, the larger the amount of moisture in the atmosphere is adsorbed to the moisture-sensitive layer, the more the capacitance increases.
  • Figure 12 shows the reaction rate for the moisture of the capacitive humidity sensor according to the present invention.
  • the humidity sensor's response to moisture is 122 seconds before the humidity sensitive layer is etched, and the humidity sensor's response to moisture is 40 seconds after the moisture sensitive layer is etched.
  • the reaction rate with respect to moisture of the humidity sensor is three times faster than otherwise.
  • the moisture-sensitive layer When the moisture-sensitive layer is etched, it is exposed to more moisture, so the moisture-sensing layer detects moisture faster than the humidity sensor that does not etch it.
  • Figure 13 shows the reproducibility of the device according to the relative humidity of the capacitive humidity sensor according to the present invention.
  • Figure 14 shows the capacitance according to the adsorption and desorption of moisture of the capacitive humidity sensor according to the present invention.
  • the capacitance As the amount of water increases or decreases, the capacitance is linearly increased. That is, when the humidity is increased or decreased based on the specific relative humidity, by showing the same capacitance, it can be seen that the capacitive humidity sensor of the present invention has high reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

본 발명은 정전용량형 습도센서에 관한 것으로, 보다 자세하게는 ROIC 기판 상부에 센서부를 형성함으로써 습도센서를 작게 제작할 수 있음은 물론, 하부 전극층과 상부 전극층 사이에 표면적이 큰 고분자 소재의 감습층을 형성함으로써 센서의 신뢰도를 높일 수 있는 정전용량형 습도센서 및 그 제조방법에 관한 것이다. 본 발명의 정전용량형 습도센서는 전극패드를 포함하는 ROIC 기판; 상기 ROIC 기판 상부에 형성되고, 상기 전극패드의 일부가 노출되도록 패터닝된 금속층; 상기 금속층 상부에 형성되고, 상기 전극패드의 일부가 노출되도록 패터닝된 절연층; 상기 절연층 상부에 형성된 하부 전극층; 상기 하부 전극층 상부에 표면적을 넓게하기 위해 식각되어 형성된 감습층; 상기 감습층 상부에 형성된 상부 전극층; 및 노출된 상기 전극패드 상부에 형성되어 상기 하부 전극층과 상부 전극층 각각을 상기 전극패드와 접촉시키기 위한 연결층을 포함함에 특징이 있다.

Description

정전용량형 습도센서 및 그 제조방법
본 발명은 정전용량형 습도센서에 관한 것으로, 보다 자세하게는 ROIC 기판 상부에 센서부를 형성함으로써 습도센서를 작게 제작할 수 있음은 물론, 하부 전극층과 상부 전극층 사이에 표면적이 큰 고분자 소재의 감습층을 형성함으로써 센서의 신뢰도를 높일 수 있는 정전용량형 습도센서 및 그 제조방법에 관한 것이다.
일반적으로 정전용량형 습도센서는 양단의 전극사이에 감습용 폴리머층이 형성되고, 전극 양단에 유도되는 전하량의 변화가 감습용 폴리머층의 감습에 의해 유전율 변화 및 이에 따른 유도전하의 변화에 의존하도록 제조한 것이다.
이러한 정전용량형 습도센서는 양단에 전압을 인가하여 습도에 의해 변화되는 저항의 변화를 이용하여 습도를 측정하는 저항형 습도센서에 비해 제조공정이 상대적으로 복잡하고 제조단가가 비싸다. 그러나 그 특성의 안정성과 신뢰성이 높은 이유로 고가의 측정에 많이 활용되고 있다.
도 1은 종래에 따른 정전용량형 습도센서의 구조를 보여주는 사시도이다.
실리콘 기판(110) 상부에 SiO2, Si3N4, SiOxNy 등으로 이루어진 절연막(120)을 형성한다. 그리고 절연막(120)이 형성된 실리콘 기판(110) 상부에 센서부(160) 및 ROIC(Readout Integrated Circuit, 170)를 형성한다.
센서부(160)의 제조방법을 살펴보면, 절연막(120) 상부에 알루미늄(Al), 백금(Pt)과 같은 금속층을 증착 및 패터닝하여 하부 전극층(130)을 형성한다. 이어, 하부 전극층(130) 상부에 폴리이미드(polyimide, PI)층을 스핀코팅 및 패터닝하여 감습층(140)을 형성하고, 200℃ 내지 300℃ 사이의 온도에서 열처리한다.
그리고 폴리이미드 감습층(140) 상부에 하부 전극층(130)과 같은 재질의 금속층을 증착 및 패터닝하여 빗(comb) 형태의 상부 전극층(150)을 형성함으로써, 상부 전극층(150)과 하부 전극층(130) 사이에 폴리이미드 감습층(140)이 형성된 평행판 커패시터 구조의 정전용량형 습도센서를 제작한다.
이때, 상부 전극층(150)을 하부 전극층(130)과 달리 빗 형태로 형성하는 이유는 물분자가 원활히 폴리이미드 감습층(140) 내부로 통과할 수 있도록 하기 위해서다. 즉, 폴리이미드 감습층(140)이 부분적으로 노출되기 위함이다.
이렇게 센서부(160)를 형성한 후, 센서부(160)가 존재하지 않는 실리콘 기판 상부 영역에 ROIC(170)를 형성한다. ROIC(170)에 의해 발생하는 전류나 전압 등의 전기적 현상이 습도센서에 영향을 미칠 수 있기 때문에 센서부(160)와 일정 거리를 유지하고 형성됨이 바람직하다.
그러나 종래에 따른 정전용량형 습도센서는 하나의 기판 상에 센서부와 ROIC부가 수평으로 위치하고 있으므로, 습도센서의 크기를 작게 제작하는데 한계가 있다는 문제점이 있다.
또한, 정전용량형 습도센서는 폴리머의 고유한 특성에 의하여 민감도 등의 센서의 특성이 결정되는데, 종래에 따른 정전용량형 습도센서는 양 전극 사이에 감습층인 폴리머가 삽입된 샌드위치 구조로 되어 있어 감습층의 민감도를 향상시키기 어렵다는 문제점이 있다.
상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 본 발명은 ROIC 기판 상부에 센서부를 형성함으로써 습도센서를 작게 제작할 수 있음은 물론, 하부 전극층과 상부 전극층 사이에 표면적이 큰 고분자 소재의 감습층을 형성함으로써 센서의 신뢰도를 높일 수 있는 정전용량형 습도센서 및 그 제조방법을 제공함에 본 발명의 목적이 있다.
본 발명의 상기 목적은 전극패드를 포함하는 ROIC 기판; 상기 ROIC 기판 상부에 형성되고, 상기 전극패드의 일부가 노출되도록 패터닝된 금속층; 상기 금속층 상부에 형성되고, 상기 전극패드의 일부가 노출되도록 패터닝된 절연층; 상기 절연층 상부에 형성된 하부 전극층; 상기 하부 전극층 상부에 표면적을 넓게하기 위해 식각되어 형성된 감습층; 상기 감습층 상부에 형성된 상부 전극층; 및 노출된 상기 전극패드 상부에 형성되어 상기 하부 전극층과 상부 전극층 각각을 상기 전극패드와 접촉시키기 위한 연결층을 포함하는 정전용량형 습도센서에 의해 달성된다.
또한, 본 발명의 상기 상부 전극층은 상기 감습층 중에서 식각되지 않은 영역의 상부에 형성됨이 바람직하다.
또한, 본 발명의 상기 감습층과 상기 상부 전극층은 빗 또는 나뭇가지 모양으로 패터닝됨이 바람직하다.
또한, 본 발명의 상기 감습층은 그 두께의 30% 내지 70%가 식각됨이 바람직하다.
또한, 본 발명의 상기 감습층은 폴리이미드계 고분자로 이루어짐이 바람직하다.
또한, 본 발명의 상기 하부 전극층은 패터닝되지 않은 상기 절연층 상부에 형성됨이 바람직하다.
또한, 본 발명의 다른 목적은 상기 금속층 상부에 절연층을 형성하는 단계; 상기 전극패드의 일부가 노출되도록 상기 절연층 및 금속층을 패터닝하는 단계; 상기 절연층 상부에 하부 전극층을 형성하는 단계; 상기 하부 전극층 상부에 감습층을 형성하는 단계; 상기 감습층 상부에 상부 전극층을 형성하고 패터닝하는 단계; 및 패터닝된 상기 상부 전극층을 마스크로 이용하여 상기 감습층을 식각하는 단계를 포함하는 정전용량형 습도센서의 제조방법에 의해 달성된다.
또한, 본 발명의 상기 감습층은 폴리이미드계 고분자로 형성함이 바람직하다.
또한, 본 발명의 상기 상부 전극층은 빗 또는 나뭇가지 모양으로 패터닝되어 형성함이 바람직하다.
또한, 본 발명의 식각된 상기 감습층은 그 두께의 30% 내지 70%를 식각하여 형성함이 바람직하다.
또한, 본 발명의 상기 하부 전극층은 패터닝되지 않은 상기 절연층 상부에 형성함이 바람직하다.
따라서, 본 발명의 정전용량형 습도센서 및 그 제조방법은 ROIC 기판 상부에 센서부를 형성함으로써 습도센서를 소형화할 수 있는 현저하고도 유리한 효과가 있다.
또한, 하부 전극층과 상부 전극층 사이에 표면적이 증가된 고분자 소재의 감습층을 형성함으로써 감도가 향상되어 센서의 신뢰도가 높아지는 현저하고도 유리한 효과가 있다.
도 1은 종래에 따른 정전용량형 습도센서의 사시도,
도 2는 본 발명에 따른 정전용량형 습도센서의 단면도,
도 3 내지 도 9는 본 발명에 따른 정전용량형 습도센서의 공정 흐름도,
도 10은 본 발명에 따른 정전용량형 습도센서의 전자주사현미경 이미지,
도 11 내지 도 14는 본 발명에 따른 정전용량형 습도센서의 특성을 나타낸 그래프.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 2는 본 발명에 따른 정전용량형 습도센서의 단면도이다.
전극패드(미도시)를 포함한 ROIC 기판(210) 상부에 금속층(220)이 형성되고, 금속층(220) 상부에는 절연층(230)이 형성된다. 그리고 ROIC 기판(210)에 포함된 전극패드의 일부가 노출되도록 금속층(220) 및 절연층(230)을 패터닝한다.
패터닝되지 않은 절연층(230) 상부에 하부 전극층(240)이 형성되고, 하부 전극층(240) 상부에는 빗(comb) 또는 나뭇가지(branch) 모양으로 패터닝된 감습층(250)이 형성된다. 이때 감습층(250)이 식각되는 깊이는 전체 감습층(250) 두께의 30% 내지 70% 임이 바람직하다.
마지막으로 식각되지 않은 감습층(250) 상부에 상부 전극층(260)이 형성된 후, 하부 전극층(240)과 상부 전극층(250)이 ROIC 기판(210)에 형성된 전극패드와 전기적으로 접촉되도록 연결층(270) 형성한다.
이렇듯 ROIC 기판(210) 상부에 센서부(240, 250, 260)를 형성함으로써 습도센서의 소형화가 가능해진다. 또한, 감습층(250)을 일부 식각하여 공기 중에 노출시킴으로써 보다 많은 양의 대기 중의 수분이 감습층(250)에 흡착되어 습도 감지도가 우수한 습도센서를 형성할 수 있다.
도 3 내지 도 9는 본 발명에 따른 정전용량형 습도센서의 공정 흐름도이다.
ROIC 기판(210) 상부는 MEMS(MicroElectroMechanical Systems) 공정으로 제작되기 때문에 표면이 매우 거칠다. 이러한 표면의 거칠음은 비표면적을 크게 해주기 때문에 습도센서를 제작하기에는 좋은 조건이다.
그리고 ROIC 기판(210)에는 ROIC와 이후 설명할 센서부에 존재하는 상부 전극층 및 하부 전극층을 연결하기 위한 전극패드(미도시)가 형성되어 있다
이러한 ROIC 기판(210) 상부에 금속층(220)을 형성함으로써(도 3), MEMS 공정에 의해 거칠어진 표면과 전극패드가 금속층(220)에 의해 평평하게 덮힘이 바람직하다.
그리고 금속층(220) 상부에 절연층(230)이 형성된다(도 4). 절연층(230)으로는 SiO2, Si3N4, SiOxNy 등의 산화막 또는 질화막을 형성할 수 있으며, 2000Å 내지 4000Å 두께로 형성하여, 후 공정으로 형성되는 하부 전극층(240)과 전기적으로 절연상태를 유지하는 것이 바람직하다.
그리고 ROIC 기판(210) 상부에 형성된 전극패드가 일부 노출되도록 금속층(220) 및 절연층(230)을 패터닝한다(미도시). 이는 이후 형성될 하부 전극층(240) 및 상부 전극층(250)을 ROIC와 접촉시키기 위함이다.
절연층(230)을 패터닝한 후, 패터닝되지 않은 절연층(230) 상부 영역에 하부 전극층(240)을 형성한다(도 5). 하부 전극층(240)은 진공증기증착법 또는 스퍼터링을 포함하는 물리적 증착법 중 어느 하나를 이용하여 형성한다. 그리고 하부 전극층(240)은 알루미늄(Al), 금(Au), 백금(Pt) 등과 같이 전도성이 우수한 금속을 포함한 소재를 사용하여 500Å 내지 1500Å의 두께를 갖는 박막으로 형성함이 바람직하다.
하부 전극층(240)이 형성되면, 감습층(250)으로 폴리이미드계 고분자 용액이 하부 전극층(240) 전면에 마이크로 두께로 스핀코팅된다. 이때, 감습층(250)의 두께는 0.1㎛ 내지 0.5㎛임이 바람직하다(도 6).
본 발명에 따른 고분자 용액으로는 폴리이미드 용액이 사용되는 것이 바람직하다.
감습층(250)이 도포되면, 진공 내에서 약 100℃ 내지 120℃에서 100초 내지 150초 동안 전 열처리를 하여 필름 내에 포함된 공기를 제거한다. 그리고 전 열처리가 완료되면, 후 열처리를 진행한다. 질소 분위기에서 100분 내지 120분 동안 200℃ 내지 250℃까지 온도를 상승시킨다. 다음으로 30분 내지 40분 동안 200℃ 내지 250℃로 온도를 유지시킨 다음, 60분 내지 80분 동안 300℃ 내지 350℃까지 온도를 상승시키는 후 열처리를 한다. 후 열처리가 완료되면, 용매의 증발로 인하여 고분자 필름은 두께가 40%정도 줄어들고, 열적 및 화학적으로 매우 안정한 상태로 변환된다.
후 열처리가 완료된 감습층(250)인 폴리이미드 필름 상에 상부 전극층(260)이 형성된다(도 7). 상부 전극층(260) 역시 하부 전극층(240)과 동일한 알루미늄(Al), 금(Au), 백금(Pt) 등과 같이 전도성이 우수한 금속을 포함한 소재를 이용하여 300Å 내지 600Å 두께로 형성한다.
또한, 감습층과의 접착력 향상을 위하여 버퍼층으로 크롬층(미도시)을 50Å 내지 150Å의 두께로 증착하는 공정을 추가할 수도 있다.
상부 전극층(260)이 형성되면, 상부 전극층(260)을 사진식각공정을 이용하여 패터닝한다(도 8). 이때, 패터닝의 형태는 빗(comb) 또는 나뭇가지(branch) 모양으로 형성함으로써, 상부 전극층(260)의 표면적 및 수분과 접촉하는 감습층(250)의 표면적을 보다 많이 노출시키는 것이 바람직하다.
그리고 패터닝된 상부 전극층(260)을 마스크로 이용하여 노출된 감습층(250)의 전면을 산소 플라즈마(O2 plasma)로 식각하는 RIE(Reactive Ion Etching) 공정을 진행한다(도 9). RIE는 상부 전극층(260)의 사진식각공정을 통하여 노출된 감습층(250) 전면을 식각한다. 식각 깊이는 감습층(250) 전체 두께의 30% 내지 70% 정도가 바람직하다.
도 10은 본 발명에 따른 정전용량형 습도센서의 전자주사현미경 이미지이다.
도 11 내지 도 14는 본 발명에 따른 정전용량형 습도센서의 특성을 나타낸 그래프이다.
도 11은 감습층으로 사용한 폴리이미드층의 식각 유무에 따른 정전용량형 습도센서의 상대습도에 대한 정전용량을 나타낸 것이다.
감습층을 식각하기 전의 습도센서(도 8)는 상부 전극층만 패터닝된 습도센서를 나타닌다. 그리고 감습층을 식각한 후의 습도센서(도 9)는 패터닝된 상부 전극층을 마스크로 이용하여 감습층을 소정의 두께로 식각한 것을 나타낸 것이다.
감습층을 식각하기 전 습도센서의 습도 감지도는 303fF/%RH이고 감습층을 식각한 후 습도센서의 습도 감지도는 350fF/%RH로, 감습층을 식각한 습도센서의 습도 감지도가 15.5% 증가한 것을 알 수 있다.
감습층을 식각하면 식각된 면이 외부 대기에 더 노출된다. 따라서, 보다 많은 양의 대기 중의 수분이 감습층에 흡착됨으로써 정전용량이 증가하게 된다.
즉, 감습층의 식각 유무에 따라 대기 중에 동일한 양의 수분이 존재하더라도 이를 감지하는 감도가 변하게 되는데, 감습층을 식각할 경우에 보다 습도 감지도가 우수한 습도센서를 형성할 수 있다.
도 12는 본 발명에 따른 정전용량형 습도센서의 수분에 대한 반응속도를 나타낸 것이다.
90%RH 조건에서, 감습층을 식각하기 전 습도센서의 수분에 대한 반응속도는 122초이고 감습층을 식각한 후 습도센서의 수분에 대한 반응속도는 40초이다. 즉, 감습층을 식각한 후에 습도센서의 수분에 대한 반응속도가 그렇지 않은 경우보다 3배 빨라진 것을 알 수 있다.
감습층이 식각되면 더 많은 수분에 노출되므로, 수분 감지층을 식각하지 않은 습도센서보다 빠른 시간 내에 수분을 감지하게 된다.
도 13은 본 발명에 따른 정전용량형 습도센서의 상대습도에 따른 소자의 재현성을 나타낸 것이다.
시간이 지남에 따라 일정한 정전용량을 보이고 있어, 매우 신뢰성이 우수한 습도센서임을 알 수 있다.
도 14는 본 발명에 따른 정전용량형 습도센서의 수분의 흡착과 탈착에 따른 정전용량을 나타낸 것이다.
수분의 양의 증감에 따라 정전용량이 일정하게 증감하는 선형적 특성을 보이고 있다. 즉, 특정 상대습도를 기준으로 습도가 증가하거나 감소하거나 하는 경우, 동일한 정전용량을 보임으로써, 본 발명의 용량형 습도센서가 높은 신뢰성을 갖고 있음을 알 수 있다.
본 발명은 이상에서 살펴본 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.

Claims (11)

  1. 전극패드를 포함하는 ROIC 기판;
    상기 ROIC 기판 상부에 형성되고, 상기 전극패드의 일부가 노출되도록 패터닝된 금속층;
    상기 금속층 상부에 형성되고, 상기 전극패드의 일부가 노출되도록 패터닝된 절연층;
    상기 절연층 상부에 형성된 하부 전극층;
    상기 하부 전극층 상부에 표면적을 넓게하기 위해 식각되어 형성된 감습층;
    상기 감습층 상부에 형성된 상부 전극층; 및
    노출된 상기 전극패드 상부에 형성되어 상기 하부 전극층과 상부 전극층 각각을 상기 전극패드와 접촉시키기 위한 연결층
    을 포함하는 정전용량형 습도센서.
  2. 제 1항에 있어서,
    상기 상부 전극층은 상기 감습층 중에서 식각되지 않은 영역의 상부에 형성된 정전용량형 습도센서.
  3. 제 2항에 있어서,
    상기 감습층과 상기 상부 전극층은 빗 또는 나뭇가지 모양으로 패터닝된 정전용량형 습도센서.
  4. 제 1항에 있어서,
    상기 감습층은 그 두께의 30% 내지 70%가 식각된 정전용량형 습도센서의 제조방법.
  5. 제 1항에 있어서,
    상기 감습층은 폴리이미드계 고분자로 이루어진 정전용량형 습도센서.
  6. 제 1항에 있어서,
    상기 하부 전극층은 패터닝되지 않은 상기 절연층 상부에 형성된 정전용량형 습도센서.
  7. 전극패드를 포함한 ROIC 기판 상부에 금속층을 형성하는 단계;
    상기 금속층 상부에 절연층을 형성하는 단계;
    상기 전극패드의 일부가 노출되도록 상기 절연층 및 금속층을 패터닝하는 단계;
    상기 절연층 상부에 하부 전극층을 형성하는 단계;
    상기 하부 전극층 상부에 감습층을 형성하는 단계;
    상기 감습층 상부에 상부 전극층을 형성하고 패터닝하는 단계; 및
    패터닝된 상기 상부 전극층을 마스크로 이용하여 상기 감습층을 식각하는 단계
    를 포함하는 정전용량형 습도센서의 제조방법.
  8. 제 7항에 있어서,
    상기 감습층은 폴리이미드계 고분자로 형성하는 정전용량형 습도센서의 제조방법.
  9. 제 7항에 있어서,
    상기 상부 전극층은 빗 또는 나뭇가지 모양으로 패터닝되어 형성하는 정전용량형 습도센서의 제조방법.
  10. 제 7항에 있어서,
    식각된 상기 감습층은 그 두께의 30% 내지 70%를 식각하여 형성하는 정전용량형 습도센서의 제조방법.
  11. 제 7항에 있어서,
    상기 하부 전극층은 패터닝되지 않은 상기 절연층 상부에 형성하는 정전용량형 습도센서의 제조방법.
PCT/KR2009/006654 2008-11-12 2009-11-12 정전용량형 습도센서 및 그 제조방법 WO2010056049A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011536242A JP5425214B2 (ja) 2008-11-12 2009-11-12 静電容量型湿度センサおよびその製造方法
US13/128,934 US8573052B2 (en) 2008-11-12 2009-11-12 Capacitive humidity sensor and manufacturing method
CN2009801452925A CN102439430B (zh) 2008-11-12 2009-11-12 静电容量型湿度传感器以及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080112057A KR101093612B1 (ko) 2008-11-12 2008-11-12 정전용량형 습도센서 및 그 제조방법
KR10-2008-0112057 2008-11-12

Publications (3)

Publication Number Publication Date
WO2010056049A2 WO2010056049A2 (ko) 2010-05-20
WO2010056049A3 WO2010056049A3 (ko) 2010-08-26
WO2010056049A9 true WO2010056049A9 (ko) 2011-06-03

Family

ID=42170523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006654 WO2010056049A2 (ko) 2008-11-12 2009-11-12 정전용량형 습도센서 및 그 제조방법

Country Status (5)

Country Link
US (1) US8573052B2 (ko)
JP (1) JP5425214B2 (ko)
KR (1) KR101093612B1 (ko)
CN (1) CN102439430B (ko)
WO (1) WO2010056049A2 (ko)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076124A1 (en) * 2009-12-22 2011-06-30 Nano And Advanced Materials Institute Limited Rapid response relative humidity sensor using anodic aluminum oxide film
MY173981A (en) * 2010-05-26 2020-03-02 Mimos Berhad Capacitive humidity sensor and method of fabricating thereof
CN102313764B (zh) * 2010-07-08 2013-06-19 旺宏电子股份有限公司 半导体生物传感器及其制造方法
WO2014030129A1 (en) 2012-08-22 2014-02-27 Ecole Polytechnique Federale De Lausanne (Epfl) Printed capacitive sensing device
CN103018288B (zh) * 2012-12-18 2014-11-12 哈尔滨理工大学 一种可控加热除霜电容式高空湿度传感器的制备方法
CN103213942B (zh) * 2013-04-08 2016-03-23 东南大学 一种无源无线电容式湿度传感器的制备方法
CA153912S (en) * 2013-06-07 2014-06-27 Rockwool Int Moisture sensor
CA153914S (en) * 2013-06-07 2014-06-27 Rockwool Int Moisture sensor
USD733593S1 (en) * 2013-06-07 2015-07-07 Rockwool International A/S Moisture sensor and controller
DE102013211378B4 (de) * 2013-06-18 2021-05-20 Robert Bosch Gmbh Mikromechanische Feuchtesensorvorrichtung und entsprechendes Herstellungsverfahren sowie mikromechanische Sensoranordnung
KR101499795B1 (ko) * 2013-07-29 2015-03-10 인하대학교 산학협력단 정전기력을 이용한 캔틸레버 습도센서
KR101499650B1 (ko) * 2013-08-13 2015-03-09 인하대학교 산학협력단 압저항 습도센서 및 그 제조방법
JP6098724B2 (ja) 2013-08-13 2017-03-22 株式会社村田製作所 温湿度センサ
KR20150028929A (ko) * 2013-09-06 2015-03-17 매그나칩 반도체 유한회사 정전용량형 습도센서
KR101532151B1 (ko) * 2013-12-26 2015-06-26 삼성전기주식회사 습도센서 및 그 제조방법
CN104849325B (zh) * 2014-02-18 2018-02-27 无锡华润上华科技有限公司 与cmos工艺兼容的mems湿度传感器及其制造方法
KR101647555B1 (ko) * 2014-10-02 2016-08-10 고려대학교 산학협력단 정전 용량성 습도 센서 및 이의 제조 방법
KR101649605B1 (ko) * 2014-10-23 2016-08-22 매그나칩 반도체 유한회사 Cmos 습도 센서 및 그 제조 방법
KR101684094B1 (ko) 2015-04-08 2016-12-08 현대자동차주식회사 Mems습도센서소자
KR101547446B1 (ko) * 2015-06-09 2015-08-26 주식회사 아모텍 입자상 물질 센서 및 그를 이용한 배기가스 정화 시스템
TWI601954B (zh) * 2016-09-09 2017-10-11 長庚大學 電容式感濕元件及其使用方法
US11287395B2 (en) * 2016-09-09 2022-03-29 Hokuriku Electric Industry Co., Ltd. Capacitive gas sensor
WO2018062379A1 (ja) * 2016-09-30 2018-04-05 ミツミ電機株式会社 湿度センサ
KR20180081273A (ko) 2017-01-06 2018-07-16 쌍신전자통신주식회사 플렉시블 습도 센서 및 그 제조방법
CN107748299A (zh) * 2017-10-16 2018-03-02 河南汇纳科技有限公司 一种单芯片集成多环境兼容性传感器
RU2675193C1 (ru) * 2018-03-16 2018-12-17 Владимир Степанович Кондратенко Датчик утечек
WO2020008935A1 (ja) * 2018-07-04 2020-01-09 株式会社村田製作所 湿度センサーおよびそれを備えたrfidタグ
EP3767285A4 (en) * 2018-07-04 2021-12-01 Murata Manufacturing Co., Ltd. COMPOSITE SENSOR
KR102084721B1 (ko) * 2018-08-07 2020-03-04 성백명 정전용량형 누설 감지 센서
CN209326840U (zh) 2018-12-27 2019-08-30 热敏碟公司 压力传感器及压力变送器
JP7096635B2 (ja) * 2019-03-22 2022-07-06 株式会社日立製作所 水分検出素子、呼気ガス検出装置、呼気検査システム及び水分検出素子の製造方法
WO2020261513A1 (ja) * 2019-06-27 2020-12-30 昭和電工マテリアルズ株式会社 絶縁膜付き基体及びその製造方法、並びに、検査センサ
US11322806B2 (en) * 2019-09-13 2022-05-03 Hutchinson Technology Incorporated Sensored battery electrode
US11791521B2 (en) 2019-09-13 2023-10-17 Hutchinson Technology Incorporated Electrode tabs and methods of forming
WO2021241628A1 (ja) * 2020-05-29 2021-12-02 日本碍子株式会社 静電容量式センサ
CN112710706A (zh) * 2020-12-08 2021-04-27 北京智芯微电子科技有限公司 一种湿度传感器
CN113340950A (zh) * 2021-05-28 2021-09-03 苏州锐光科技有限公司 一种电容式湿度传感器及其制作方法
KR20230067096A (ko) 2021-11-09 2023-05-16 온성수 아크릴로 제작한 조립형 발전기키트
KR20230067087A (ko) 2021-11-09 2023-05-16 온성수 아크릴로 제작한 조립형 전동기 키트

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975249A (en) * 1987-07-27 1990-12-04 Elliott Stanley B Optical and capacitance type, phase transition, humidity-responsive devices
JPH04110648A (ja) * 1990-08-31 1992-04-13 Toshiba Corp 集積化感応素子
JP2756749B2 (ja) * 1992-10-08 1998-05-25 山武ハネウエル株式会社 感湿素子の製造方法
JP3220358B2 (ja) 1995-06-30 2001-10-22 信越化学工業株式会社 α,ω−ジアルコキシオリゴシロキサンの製造方法
JP3453962B2 (ja) 1995-10-31 2003-10-06 松下電工株式会社 静電容量型雨センサ
JP3457826B2 (ja) 1997-01-31 2003-10-20 株式会社リコー 薄膜式抵抗体及びその製造方法、流量センサ、湿度センサ、ガスセンサ、温度センサ
DE10134938A1 (de) * 2001-07-18 2003-02-06 Bosch Gmbh Robert Halbleiterbauelement sowie ein Verfahren zur Herstellung des Halbleiterbauelements
KR20050041325A (ko) * 2003-10-30 2005-05-04 기아자동차주식회사 정전 용량형 습도센서
JP2006019589A (ja) * 2004-07-02 2006-01-19 Denso Corp 半導体装置
US20070107500A1 (en) * 2005-11-16 2007-05-17 Neha Patel Sensing moisture uptake of package polymers
JP4804308B2 (ja) * 2005-12-08 2011-11-02 株式会社デンソー 湿度センサ
US7442599B2 (en) * 2006-09-15 2008-10-28 Sharp Laboratories Of America, Inc. Silicon/germanium superlattice thermal sensor
KR100951546B1 (ko) * 2006-12-21 2010-04-09 전자부품연구원 정전 용량형 습도센서 및 그 제조방법
KR100965835B1 (ko) * 2007-09-18 2010-06-28 전자부품연구원 용량형 고분자 습도센서 및 그 제조방법

Also Published As

Publication number Publication date
KR101093612B1 (ko) 2011-12-15
US8573052B2 (en) 2013-11-05
US20110259099A1 (en) 2011-10-27
WO2010056049A3 (ko) 2010-08-26
KR20100053082A (ko) 2010-05-20
JP2012508877A (ja) 2012-04-12
CN102439430A (zh) 2012-05-02
CN102439430B (zh) 2013-08-21
WO2010056049A2 (ko) 2010-05-20
JP5425214B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
WO2010056049A9 (ko) 정전용량형 습도센서 및 그 제조방법
KR100965835B1 (ko) 용량형 고분자 습도센서 및 그 제조방법
US20070209433A1 (en) Thermal mass gas flow sensor and method of forming same
GB2159956A (en) Moisture sensors and method of producing the same
WO2019052037A1 (zh) 一种电容式传感器及其制备方法
JP2002243689A (ja) 容量式湿度センサおよびその製造方法
JP2003004683A (ja) 容量式湿度センサ
JP2000081354A (ja) 少なくとも1層または多重層をもつ電気的温度センサおよび温度センサの製造方法
JP2004271461A (ja) 容量式湿度センサ
WO2020080655A1 (ko) 히터 내장형 습도센서 및 그 제조방법
WO2012138054A9 (ko) 습도 센서, 습도 센싱 방법 및 이를 위한 트랜지스터
WO2011078594A2 (ko) 나노와이어를 이용하는 압저항 방식의 마이크로폰 및 그 제조방법
US20060055502A1 (en) Humidity sensor
WO2011149331A1 (en) Capacitive humidity sensor and method of fabricating thereof
WO1998041853A1 (en) Gas sensor
JP2001004579A (ja) 容量式感湿素子
KR20040024134A (ko) 고정밀 정전용량형 습도센서 및 제조방법
KR101992022B1 (ko) 반도체식 가스센서
US11287395B2 (en) Capacitive gas sensor
JPH06148122A (ja) 湿度検知素子
WO2019103328A1 (ko) 수직 적층된 온습도 복합 센서 및 그 제조방법
JP2601409Y2 (ja) 温湿度センサ
JP3084735B2 (ja) 静電容量式湿度センサ
JP3604246B2 (ja) 静電容量型トランスデューサの製造方法および静電容量型トランスデューサ
Yu et al. A self-packaged capacitive humidity sensor with low leakage loss

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145292.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826281

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011536242

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13128934

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09826281

Country of ref document: EP

Kind code of ref document: A2