WO2020080655A1 - 히터 내장형 습도센서 및 그 제조방법 - Google Patents
히터 내장형 습도센서 및 그 제조방법 Download PDFInfo
- Publication number
- WO2020080655A1 WO2020080655A1 PCT/KR2019/009767 KR2019009767W WO2020080655A1 WO 2020080655 A1 WO2020080655 A1 WO 2020080655A1 KR 2019009767 W KR2019009767 W KR 2019009767W WO 2020080655 A1 WO2020080655 A1 WO 2020080655A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- humidity sensor
- heater
- electrode
- layer
- built
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/045—Circuits
- G01N27/046—Circuits provided with temperature compensation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/121—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/22—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
- G01N27/223—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
Definitions
- the present invention relates to a humidity sensor with a built-in heater and a method for manufacturing the same, which minimizes the influence of heat or moisture in a high-temperature or high-humidity atmosphere or in harsh environmental conditions where temperature fluctuations are large, thereby increasing the performance of the humidity sensor while increasing reliability and accuracy. It relates to a built-in heater humidity sensor.
- the humidity sensor is applied to various fields in which humidity control devices such as dehumidifiers such as vehicles and buildings are used, as well as various household appliances such as humidifiers, dryers, and refrigerators.
- a thin film type humidity sensor such as a resistance type or capacitive type humidity sensor is mounted on a printed circuit board and widely used.
- a resistance type humidity sensor first and second electrodes spaced apart from each other are formed on a substrate. It consists of a structure for forming a moisture-sensitive layer on the first electrode and the second electrode, and performs a function of sensing humidity using a change in resistance of the moisture-sensitive layer according to humidity.
- the capacitive humidity sensor has a structure in which a lower electrode is formed on an upper portion of a substrate, a moisture sensitive layer is formed on the lower electrode, and an upper electrode is formed on the moisture sensitive layer, and the dielectric constant of the moisture sensitive layer is used. Humidity can be sensed.
- the heat transfer efficiency to the humidity sensor is greatly improved, while reducing the power consumption, while guaranteeing reliability in a high temperature, high humidity atmosphere or harsh environmental conditions with a large temperature change. And a manufacturing method thereof.
- the present invention has been made to solve the problems of the prior art, and has an object to provide a heater-embedded humidity sensor to which a moisture-sensitive material having a high glass transition temperature that can withstand humidity measurement in a high temperature region is applied.
- the present invention provides a built-in humidity sensor that incorporates a micro heater at the bottom of the humidity sensor to restore the humidity sensor characteristics through the micro heater when the humidity sensor saturates due to moisture on the surface, and to increase reliability and accuracy.
- a built-in humidity sensor that incorporates a micro heater at the bottom of the humidity sensor to restore the humidity sensor characteristics through the micro heater when the humidity sensor saturates due to moisture on the surface, and to increase reliability and accuracy.
- the present invention by adopting an under-cut (under-cut) structure on the substrate, by minimizing the effect of heat or moisture in extreme conditions such as high temperature, high humidity, heater-type humidity sensor that can improve the performance of the humidity sensor There is another purpose to provide.
- the substrate 10, the n + diffusion layer 20 and the n-type epitaxial layer 30 are sequentially stacked thereon; A first insulating layer 40 formed on the n-type epitaxial layer 30; A heater electrode 50 and a heater pad electrode 51 formed on a predetermined region of the first insulating layer 40; A second insulating layer 60 formed on the heater electrode 50; A humidity sensor electrode 70 formed on the second insulating layer 60 and a humidity sensor pad electrode 80 formed on the first insulating layer 40; And a moisture sensitive layer 90 formed on the humidity sensor electrode 70; Including, the heater electrode 50, the heater pad electrode 51, the humidity sensor electrode 70 and the humidity sensor pad electrode 80 is formed by removing a portion of the area is not formed opening 110 It provides a humidity sensor with a built-in heater, characterized in that the under-cut (130) formed between the substrate 10 and the n-type epitaxial layer (30).
- the thickness of the n-type epitaxial layer 30 is preferably 5 ⁇ 10 ⁇ m.
- the first insulating layer 40 or the second insulating layer 60 it is preferable to form an insulating film through an oxide film (SiO 2 ), a nitride film (Si 3 N 4 ) or a combination thereof.
- the thickness of the first insulating layer 40 or the second insulating layer 60 is preferably 1 ⁇ m ⁇ 10 ⁇ m.
- the heater electrode 50 is preferably formed of a platinum thin film or polysilicon.
- the humidity sensor electrode 70 is preferably formed of an IDT (Interdigited) structure having a plurality of fine electrode patterns.
- the moisture-sensitive layer 90 is preferably formed of a thermosetting polymer, graphene oxide (Graphene Oxide), polymethyl methacrylate (PMMA), or benzocyclobutene (Benzo-cyclo-Butene, BCB).
- the undercut region 130 it is preferable to form an air cavity (air-cavity) between the substrate 10 and the n-type epitaxial layer 30.
- the opening 110, the heater electrode 50, the heater pad electrode 51, the humidity sensor electrode 70 and the humidity sensor pad electrode 80, the first insulating layer of the region is not formed ( 40), n-type epitaxial layer 30 and n + diffusion layer 20 is preferably formed by patterning and etching.
- the under-cut (under-cut) region 130 is preferably formed by etching the porous layer 120 formed through an anodic reaction after the opening 110 is formed.
- the n + diffusion layer 20 is preferably formed in a region supporting the heater pad electrode 51 and the humidity sensor pad electrode 80.
- the heater pad electrode 51 and the humidity sensor pad electrode 80 are each formed in a plurality, it is preferable that the humidity sensor pad electrode 80 is bonded to the upper portion of the heater pad electrode 51.
- the substrate 10 further includes an n + diffusion layer 20 under the substrate.
- the substrate 10 is preferably an n-type silicon substrate.
- the undercut region 130 its length is determined within the range of 38 to 74% of the total length of the substrate 10, the thickness is within the range of 27 to 48% of the thickness of the substrate 10 It is preferably determined in.
- the step of forming the opening 110 in the present invention uses a semiconductor dry etching equipment, but it is preferable that the n + diffusion layer 20 is etched with an etching thickness of more than 0 ⁇ m and less than 1 ⁇ m.
- n + diffusion layer 20 in the present invention, it is preferable to further form an n + diffusion layer 20 in the lower portion of the substrate 10.
- the step of forming the heater electrode 50 is preferably formed by simultaneously patterning the heater electrode 50 and the heater pad electrode 51.
- the humidity sensor electrode 70 and the humidity sensor pad electrode 80 of the IDT structure are simultaneously patterned, but the humidity sensor electrode 70 has a second insulating layer 60 ), And the humidity sensor pad electrode 80 is preferably formed on the first insulating layer 40.
- the humidity sensor pad electrode 80 is formed in a plurality, some of which is preferably formed on the heater pad electrode 51 formed on the first insulating layer 40.
- the electrode protection layer 100 it is preferable to form the electrode protection layer 100 on the humidity sensor pad electrode 80 as well.
- the moisture sensitive layer 90 in the step of forming the moisture sensitive layer 90, it is preferable to form the moisture sensitive layer 90 through a spray or coating method using an aqueous solution of graphene oxide.
- the etching step of the porous layer 120 it is preferable to wet-etch the porous layer 120 using a TMAH aqueous solution or a NaOH aqueous solution.
- the etching process step of the porous layer 120 it is preferable to etch the porous layer 120 to a thickness of less than 1 ⁇ m using a semiconductor dry etching equipment.
- a humidity sensor is applied with a moisture-sensitive material having a high glass transition temperature capable of withstanding humidity measurement in a high temperature region, and a humidity sensor is installed on the surface by embedding a micro heater at the bottom of the humidity sensor.
- saturation, etc. is caused, there is an effect of restoring the humidity sensor characteristics through the micro heater and increasing reliability and accuracy.
- FIG. 1 is a cross-sectional view of a heater built-in humidity sensor according to an embodiment of the present invention.
- FIG. 2 is a top view of a heater-embedded humidity sensor according to an embodiment of the present invention.
- Figure 3 is an exploded view of a heater built-in humidity sensor according to an embodiment of the present invention.
- 4A to 4K are step-by-step process diagrams of a method for manufacturing a heater-embedded humidity sensor according to an embodiment of the present invention.
- Figure 5 is a flow chart of a heater built-in humidity sensor manufacturing method according to an embodiment of the present invention.
- the humidity sensor with a built-in heater includes a substrate on which an n + diffusion layer and an n-type epitaxial layer are sequentially stacked, a first insulating layer formed on the n-type epitaxial layer, and a predetermined region of the first insulating layer A heater electrode and a heater pad electrode formed on, a second insulating layer formed on the heater electrode, a humidity sensor electrode formed on the second insulating layer, and a humidity sensor pad electrode and the humidity formed on the first insulating layer It includes a moisture-sensitive layer formed on the sensor electrode, the substrate and n-type epi through the opening formed by removing a portion of the heater electrode, heater pad electrode, humidity sensor electrode and a portion where the humidity sensor pad electrode is not formed It is characterized by forming an under-cut region between the textural layers.
- the method for manufacturing a heater-embedded humidity sensor according to the present invention includes forming an n + diffusion layer on an upper portion of a substrate, forming an n-type epitaxial layer on the n + diffusion layer, and on the n-type epitaxial layer.
- first insulating layer Forming a first insulating layer, forming a heater electrode on the first insulating layer, forming a second insulating layer on the heater electrode, forming a humidity sensor electrode on the second insulating layer, Forming a moisture sensitive layer on the humidity sensor electrode, forming an electrode protection layer to protect the area where the heater electrode and the humidity sensor electrode are formed, the first insulating layer, n-type epitaxial layer and n + diffusion layer Patterning and etching some regions of the pores to form an opening, an anodic reaction proceeds in an n + diffusion layer by a hydrofluoric acid solution injected through the opening to form a porous layer, and the porous layer A characterized in that it comprises a step of removing through an etching process.
- the present invention relates to a porous silicon micromachining technology, which is one of MEMS technologies, and a humidity sensor in the form of a three-dimensional structure using a micro heater and a method for manufacturing the same, and after forming an n + diffusion layer on an n-type silicon substrate, n It is characterized by using an n / n + / n / n + wafer with a -type epitaxial layer as a substrate.
- the insulating layer and Humidity sensor including a micro heater having a three-dimensional structure by etching the n / n + layer, performing an anodic reaction using a hydrofluoric acid solution to make the n + diffusion layer porous, and then etching the porous silicon using a NaOH aqueous solution and the like. It relates to a manufacturing method.
- FIG. 1 is a cross-sectional view of a humidity sensor with a built-in heater according to an embodiment of the present invention
- FIG. 2 is a top view of a humidity sensor with a built-in heater according to an embodiment of the present invention.
- the cross-sectional view taken along the direction A-A 'of FIG. 2 may be referred to as a cross-sectional view of FIG. 1.
- the present invention is a substrate 10 on which an n + diffusion layer 20 and an n-type epitaxial layer 30 are sequentially stacked on top, a first insulating layer 40 formed on the n-type epitaxial layer 30 ), A heater electrode 50 and a heater pad electrode 51 formed on a predetermined region of the first insulating layer 40, a second insulating layer 60 formed on the heater electrode 50, the agent 2 Humidity sensor electrode 70 formed of insulating layer 60, humidity sensor pad electrode 80 formed on first insulating layer 40, and moisture sensitive layer formed on humidity sensor electrode 70 ( 90).
- the heater electrode 50, the heater pad electrode 51, the humidity sensor electrode 70 and the humidity sensor pad electrode 80 is formed by removing a portion of the area formed by removing the opening 110 Through, an under-cut region 130 may be formed between the substrate 10 and the n-type epitaxial layer 30.
- the substrate 10 is preferably composed of an n-type silicon substrate, and is essentially provided with an n + diffusion layer 20 on the top, but may further include an n + diffusion layer on the bottom of the substrate 10 according to the needs of the invention. .
- the thickness of the n + diffusion layer 20 is 5 to 15 ⁇ m.
- the substrate 10 is not necessarily limited to an n-type silicon substrate, and may be formed of glass, aluminum oxide, or p-type silicon according to the needs of the invention.
- an n-type epitaxial layer 30 is formed on the n + diffusion layer 20 formed on the substrate 10, and accordingly, the substrate structure of the present invention includes an n + diffusion layer 20 on the n-type silicon substrate. ) And then have a structure for forming an n-type epitaxial layer 30 thereon, thereby forming an n / n + / n / n + wafer as a substrate structure.
- the thickness of the n-type epitaxial layer 30 is 5 to 10 ⁇ m.
- the first insulating layer 40 is formed on the n-type epitaxial layer 30.
- the first insulating layer 40 may form an insulating film through an oxide film (SiO 2 ), a nitride film (Si 3 N 4 ), or a combination thereof, and the thickness of the first insulating layer 40 is 1 ⁇ m to It may be formed within the range of 10 ⁇ m.
- a heater electrode 50 and a heater pad electrode 51 are formed on the first insulating layer 40.
- the heater electrode 50 and the heater pad electrode 51 may be formed of a platinum (Pt) thin film or polysilicon to ensure high heating efficiency, but are not limited thereto, and aluminum according to the needs of the invention
- Heater electrode 50 using (Al), nickel (Ni), gold (Au), or a combination of two or more materials of platinum (Pt), polysilicon, aluminum (Al), nickel (Ni), and gold (Au)
- the heater pad electrode 51 is formed of a platinum (Pt) thin film or polysilicon to ensure high heating efficiency, but are not limited thereto, and aluminum according to the needs of the invention
- the heater electrode 50 is thinned through a high-temperature heat treatment process (eg, about 2 to 4 hours at 1,000 ° C) after depositing a corresponding material (eg, platinum (Pt)) to a predetermined thickness using a sputtering method.
- a high-temperature heat treatment process eg, about 2 to 4 hours at 1,000 ° C
- a corresponding material eg, platinum (Pt)
- Pt platinum
- the heater electrode 50 is preferably disposed at the center of the substrate, and the heater pad electrode 51 is preferably disposed at the outer portion of the substrate.
- a second insulating layer 60 is formed on the heater electrode 50 to insulate the humidity sensor electrode 70.
- the second insulating layer 60 may be formed of an insulating layer through an oxide layer (SiO 2 ), a nitride layer (Si 3 N 4 ), or a combination thereof.
- the first insulating layer 40 and the second insulating layer 60 are coated with polyimide instead of an oxide film (SiO 2 ) or a nitride film (Si 3 N 4 ) according to the needs of the invention, and then opened.
- the layer formed through the curing process may be used as an insulating layer.
- the humidity sensor electrode 70 is formed on the second insulating layer 60 covering the heater electrode 50, and the humidity sensor pad electrode 80 is formed on the first insulating layer 40.
- the humidity sensor pad electrode 80 may be formed of four, of which two humidity sensor pad electrodes are formed on the first insulating layer 40, and the other two are heater pads for electrical conduction. It may be configured to be bonded over the electrode (51).
- the humidity sensor electrode 70 of the present invention is preferably formed of an IDT (Interdigited) structure having a plurality of fine electrode patterns, and may be formed by depositing and patterning a metal film such as Au, Cr, Al or Pt.
- the moisture sensitive layer 90 is formed to cover the humidity sensor electrode 70, but may be formed of a thermosetting polymer or graphene oxide, but is not limited thereto, and polyimide according to the needs of the invention It may be formed by a spin coating method using a solution or a dilute photosensitive polyimide.
- the polyimide-based material that enters the polyimide solution is prepared by polymerization by adding dianhydride and diamine to the solvent, but with respect to 100 parts by weight of the solvent, dianhydride 20-30 It may be prepared to polymerize for 2 to 3 hours at 25 to 45 ° C. by adding 10 to 25 parts by weight of diamine and 10 parts by weight of diamine.
- the present invention is the heater electrode 50, the heater pad electrode 51, the humidity sensor electrode 70 and the humidity sensor pad electrode 80, the first insulating layer 40, n-type of the region is not formed
- the epitaxial layer 30 and the n + diffusion layer 20 are patterned and etched to form an opening 110.
- the n + diffusion layer 20 causes an anodic reaction to form a porous layer 120, such that the porous layer 120 is wet-etched or the like.
- an under-cut region 130 may be formed between the substrate 10 and the n-type epitaxial layer 30.
- the n + diffusion layer 20 remains in the region supporting the heater pad electrode 51 and the humidity sensor pad electrode 80 due to the presence of the under-cut region 130.
- the undercut region 130 forms an air-cavity between the substrate 10 and the n-type epitaxial layer 30 to minimize the effect of heat or moisture in extreme conditions such as high temperature and high humidity. It can perform the function to increase the performance of the humidity sensor.
- the undercut region 130 prefferably has a length within the range of 38 to 74% of the total length of the substrate 10, and to have a thickness within the range of 27 to 48% of the thickness of the substrate 10. Do.
- the length and thickness range of the undercut region 130 is out of range, the mechanical and structural strength of the entire humidity sensor is weakened or the amount of air flowing into the air cavity is reduced, thereby affecting heat or moisture. This is because it cannot be minimized, leading to a decrease in the performance of the humidity sensor.
- FIG 3 is an exploded view of a heater built-in humidity sensor according to an embodiment of the present invention.
- an under-cut region 130 is formed on the n + diffusion layer 20 and the n-type epitaxial layer 30 on the substrate 10, and the first insulating layer 40 is formed. It can be seen that the opening 110 is formed.
- the heater electrode 50 may be formed in a shape in which two 'l' characters are partially overlapped, and the thickness may be formed within a range of 1 ⁇ m to 10 ⁇ m and a width of 1 ⁇ m to 10 ⁇ m. However, the thickness of the heater electrode should be formed to be smaller than the thickness of the second insulating layer 60.
- the humidity sensor electrode 70 may be a capacitive type or a resistive type formed of an InterDigiTated (IDT) structure in which the lower electrode and the upper electrode are simultaneously manufactured.
- IDT InterDigiTated
- the thickness of the moisture-sensitive layer should be minimized for quick response characteristics, and the thickness of the thin film of the humidity sensor electrode 70 is kept constant at a thickness of 1 to 2 ⁇ m and patterned.
- the width may be formed in the range of 1 to 3 ⁇ m, and the pattern interval may also be formed in the range of 1 to 3 ⁇ m.
- FIG. 4A to 4K are step-by-step process diagrams of a method for manufacturing a heater-embedded humidity sensor according to an embodiment of the present invention
- FIG. 5 is a flowchart of a method for manufacturing a heater-embedded humidity sensor according to an embodiment of the present invention.
- an n + diffusion layer 20 is formed on an upper portion of the substrate 10 (S11).
- the n + diffusion layer 20 forming step may be subjected to a process to further include an n + diffusion layer 20 in the lower portion of the substrate 10.
- the n + diffusion layer 20 may be formed in a known manner through injection of an n-type dopant or the like.
- a step of forming an n-type epitaxial layer 30 on the n + diffusion layer 20 is performed (S12).
- the thickness of the n-type epitaxial layer 30 is adjusted to be 5 to 10 ⁇ m, which is a semiconductor process to be performed on the n + diffusion layer 20 and the mechanical strength of the under-cut region 130. Is to consider.
- the first insulating layer 40 is formed on the n-type epitaxial layer 30 (S13).
- the first insulating layer 40 is formed through an oxide film (SiO 2 ), a nitride film (Si 3 N 4 ), or a combination thereof, and the thickness may be formed within a range of 1 ⁇ m to 10 ⁇ m.
- a step of forming a heater electrode 50 on the first insulating layer 40 is performed (S14). At this time, in the step of forming the heater electrode 50, it is appropriate to form the heater electrode 50 and the heater pad electrode 51 simultaneously by patterning.
- the heater electrode 50 may be formed in a shape in which two 'l' characters are partially overlapped, the thickness thereof may be formed within a range of 1 ⁇ m to 10 ⁇ m, and a width of 1 ⁇ m to 10 ⁇ m, and a heater pad Two electrodes 51 may also be formed and formed on the first insulating layer 40.
- a step of forming a second insulating layer 60 on the heater electrode is performed (S15).
- the second insulating layer 60 also forms an insulating film through an oxide film (SiO 2 ), a nitride film (Si 3 N 4 ), or a combination thereof, but the thickness is appropriately formed within a range of 1 ⁇ m to 10 ⁇ m. .
- the second insulating layer 60 is formed to cover the heater electrode 50.
- a step of forming a humidity sensor electrode 70 on the second insulating layer 60 is performed (S16).
- the humidity sensor electrode 70 and the humidity sensor pad electrode 80 of the IDT structure are simultaneously patterned, but the humidity sensor electrode 70 is on the second insulating layer 60. And the humidity sensor pad electrode 80 is formed on the first insulating layer 40. At this time, the humidity sensor pad electrode 80 is formed in a plurality, some of which is formed to be bonded to the heater pad electrode 51 formed on the first insulating layer 40 for electrical conduction.
- the humidity sensor electrode 70 may be formed within a thickness range of 1 to 5 ⁇ m, a pattern width of the IDT structure in a range of 1 to 3 ⁇ m, and a pattern spacing within a range of 1 to 3 ⁇ m.
- a step of forming a moisture sensitive layer 90 on the humidity sensor electrode 70 is performed (S17).
- the moisture-sensitive layer 90 may be formed through a spray or coating method using a graphene oxide (Graphene Oxide) aqueous solution, or may have linearity in electrical properties while smoothly absorbing and desorbing moisture on the IDT structure humidity sensor electrode. It is possible to form a thermosetting polymer-based moisture-sensitive layer having a high glass transition temperature.
- a graphene oxide Graphene Oxide
- the moisture-sensitive layer 90 is formed of a thermosetting polymer
- a heat-sensitive layer is formed through a heat treatment, patterning and semiconductor etching process, and then a heat-curing process is performed.
- a pin oxide Graphene Oxide
- a moisture-sensitive layer is formed by performing a heat curing process.
- the moisture absorbing layer 90 may be formed of polyimide, polymethyl methacrylate (PMMA), cellulose or benzocyclobutene (Benzo-cyclo-Butene, BCB) according to the needs of the invention.
- PMMA polymethyl methacrylate
- BCB benzocyclobutene
- the moisture-sensitive layer 90 is also formed by spin-coating a polyimide-based material and curing the polymer through heat treatment for a certain time (about 2-3 hours) at a constant temperature (about 350-400 ° C). This will be possible.
- a step of forming an electrode protection layer 100 for protecting the area where the heater electrode 50 and the humidity sensor electrode 70 are formed is passed (S18).
- the electrode protective layer 100 is intended to protect the electrode during etching to form the opening 110 and means a kind of etching protective layer, and thus, only the area where the heater electrode 50 and the humidity sensor electrode 70 are formed In addition, it is preferable to form the region on which the humidity sensor pad electrode 80 is formed.
- the first insulating layer 40, n-type epitaxial layer 30 and n + diffusion layer 20 patterning and etching some regions to form an opening 110 Rough (S19).
- the opening 110 forming step uses a semiconductor dry etching equipment, but removes all of the first insulating layer 40 and n-type epitaxial layer 30 in the corresponding region, but the n + diffusion layer 20 is 0. It is appropriate to etch with an etching thickness of more than 1 ⁇ m and less than 1 ⁇ m. This can be said to be etched to a thickness of less than 1 ⁇ m in order to minimize an under-etching region to a smooth reaction and side during anodization in etching the n + diffusion layer 20.
- an anodic reaction proceeds in the n + diffusion layer 20 by the hydrofluoric acid solution injected through the opening 110 to form a porous layer 120 (S20).
- the electrode protective layer 100 is naturally removed by the hydrofluoric acid solution.
- the porous layer 120 is removed through an etching process (S21).
- the porous layer 120 may be wet-etched using a TMAH (TetraMethylAmmonium Hydride) solution or a NaOH aqueous solution, and a thickness of less than 1 ⁇ m using a semiconductor dry etching equipment according to the needs of the present invention
- the porous layer 120 may be dry etched to form an under-cut region 130.
- a micro heater and a humidity sensor electrode are protected for a built-in humidity sensor having a three-dimensional under-cut area, and a pattern for anodic reaction is formed, followed by first insulation through an etching process.
- the layer, the n-type epitaxial layer, and the n + diffusion layer are etched one after the other, and the n + diffusion layer is porous through an anodic reaction, followed by removal of the porous silicon using chemical or dry etching equipment. It provides a heater built-in humidity sensor having a (under-cut) three-dimensional structure.
- a humidity sensor is applied with a moisture sensitive material having a high glass transition temperature capable of withstanding humidity measurement in a high temperature region, and a humidity sensor is surfaced by embedding a micro heater at the bottom of the humidity sensor.
- moisture saturation, etc. occurs, the humidity sensor through the micro heater can be restored and the reliability and accuracy can be improved, and by adopting an under-cut structure on the substrate, extreme conditions such as high temperature and high humidity It has the advantage of improving the performance of the humidity sensor by minimizing the effect of heat or moisture.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
본 발명은 히터 내장형 습도센서 및 그 제조방법에 관한 것으로서, 고온 또는 고습 분위기나 온도 변화폭이 큰 가혹한 환경 조건에서 열 또는 수분에 의한 영향을 최소화시켜 습도센서의 성능을 높이면서도 신뢰성 및 정확도를 높일 수 있는 히터 내장형 습도센서에 관한 것이다.
Description
본 발명은 히터 내장형 습도센서 및 그 제조방법에 관한 것으로서, 고온 또는 고습 분위기나 온도 변화폭이 큰 가혹한 환경 조건에서 열 또는 수분에 의한 영향을 최소화시켜 습도센서의 성능을 높이면서도 신뢰성 및 정확도를 높일 수 있는 히터 내장형 습도센서에 관한 것이다.
현대 사회에서 습도 센서는 가습기, 건조기, 냉장고 등의 각종 가전 제품은 물론이고, 차량, 빌딩 등의 제습기 등 습도 조절 기기가 이용되는 다양한 분야에 적용되고 있다.
최근에는 저항형 또는 용량형 습도센서와 같은 박막형 습도 센서가 인쇄회로기판에 실장되어 널리 사용되고 있는데, 저항형 습도 센서의 경우 기판 상에 서로 이격된 제1 전극 및 제2 전극을 형성하고, 이와 같은 제1 전극 및 제2 전극 상에 감습층을 형성하는 구조로 이루어지며, 습도에 따른 감습층의 저항 변화를 이용하여 습도를 센싱하는 기능을 수행하게 된다.
이에 비해 용량형 습도 센서는 기판의 상부에 하부 전극을 형성하고, 상기 하부 전극 상에 감습층을 형성하며, 상기 감습층 상에 상부 전극을 형성하는 구조로 이루어지며, 감습층의 유전율 변화를 이용하여 습도를 센싱할 수 있다.
다만, 이와 같은 저항형 또는 용량형 박막형 습도 센서의 경우 주변 온도가 어는점 이하로 내려갈 경우, 결빙에 의해 감습층에 습기가 침투할 수 없게 되므로 습도 센서의 성능이 크게 저하되고 습도 센싱 데이터에 신뢰성을 확보할 수 없는 문제점이 있었다.
위와 같은 문제점을 해결하기 위해 습도 센서가 장착되는 인쇄회로기판에 히터를 장착하는 방법이 고안되었으나, 이 경우 상기 히터가 습도 센서의 주변부에 장착되므로 열전달 효율이 상대적으로 열악하며 이에 따른 소비 전력 증가 및 히터 장착에 따라 인쇄회로기판에 소요되는 면적이 증가하여 전체적인 습도센서 모듈의 크기가 증가하는 단점이 발생되고 있다.
따라서, 습도센서 모듈에 히터를 장착하더라도 습도센서로의 열전달 효율을 크게 향상시켜 소비전력을 감소시키면서도 특히 고온 고습 분위기나 온도 변화폭이 큰 가혹한 환경 조건에서 신뢰성을 담보하며 장기간 사용이 가능한 히터 내장형 습도센서 및 그 제조방법이 요구되고 있다.
본 발명은 종래 기술의 문제점을 해결하기 위해 안출된 것으로서, 고온 영역에서의 습도 측정을 견딜 수 있는 유리전이 온도가 높은 감습 재료를 적용한 히터내장형 습도센서를 제공하는데 그 목적이 있다.
또한 본 발명은 습도센서 하단에 마이크로 히터를 내장하여 습도센서가 표면에 수분에 의한 포화 등이 발생했을 때 마이크로 히터를 통한 습도센서 특성을 회복하고 신뢰성 및 정확도를 높일 수 있는 히터내장형 습도센서를 제공하는데 또 다른 목적이 있다.
또한 본 발명은, 기판 상에 언더 컷(under-cut) 구조를 채택함으로써, 고온, 고습 등 극한적 상황에서 열 또는 수분에 의한 영향을 최소화시켜 습도센서의 성능을 높일 수 있는 히터내장형 습도센서를 제공하는데 또 다른 목적이 있다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 본 발명의 기재로부터 당해 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
전술한 종래기술의 문제점을 해결하기 위한 본 발명의 일측면에 의하면, 상부에 n+ 확산층(20) 및 n-type 에피텍셜층(30)이 순차적으로 적층된 기판(10); 상기 n-type 에피텍셜층(30)상에 형성되는 제1 절연층(40); 상기 제1 절연층(40)의 소정 영역 상에 형성되는 히터 전극(50) 및 히터 패드 전극(51); 상기 히터 전극(50) 상에 형성되는 제2 절연층(60); 상기 제2 절연층(60)의 형성되는 습도센서 전극(70) 및 상기 제1 절연층(40)상에 형성되는 습도센서 패드 전극(80); 및 상기 습도센서 전극(70) 상에 형성되는 감습층(90); 을 포함하되, 상기 히터 전극(50), 히터 패드 전극(51), 습도센서 전극(70) 및 습도센서 패드 전극(80)이 형성되지 않는 영역의 일부를 제거하여 형성되는 개방구(110)를 통해 기판(10)과 n-type 에피텍셜층(30) 사이에 언더컷(under-cut) 영역(130)을 형성하는 것을 특징으로 하는 히터 내장형 습도센서를 제공한다.
본 발명에서 상기 n-type 에피텍셜층(30)의 두께는 5 ~10㎛인 것이 바람직하다.
본 발명에서 상기 제1 절연층(40) 또는 제2 절연층(60)은, 산화막(SiO
2), 질화막(Si
3N
4) 또는 이들의 조합을 통해 절연막을 형성하는 것이 바람직하다.
본 발명에서 상기 제1 절연층(40) 또는 제2 절연층(60)의 두께는 1㎛ ~ 10㎛인 것이 바람직하다.
본 발명에서 상기 히터 전극(50)은, 백금 박막 또는 폴리실리콘으로 형성하는 것이 바람직하다.
본 발명에서 상기 습도센서 전극(70)은, 다수의 미세 전극 패턴을 갖는 IDT(Interdigited) 구조로 형성하는 것이 바람직하다.
본 발명에서 상기 감습층(90)은 열경화성 폴리머, 그래핀 옥사이드(Graphene Oxide), 폴리메틸메타크릴레이트(PMMA), 또는 벤조시클로부텐(Benzo-cyclo-Butene, BCB)으로 형성하는 것이 바람직하다.
본 발명에서 상기 언더컷 영역(130)은, 기판(10)과 n-type 에피텍셜층(30)사이에 공기공동(air-cavity)을 형성하는 것이 바람직하다.
본 발명에서 상기 개방구(110)는, 상기 히터 전극(50), 히터 패드 전극(51), 습도센서 전극(70) 및 습도센서 패드 전극(80)이 형성되지 않는 영역의 제1 절연층(40), n-type 에피텍셜층(30) 및 n+ 확산층(20)을 패터닝하고 식각하여 형성되는 것이 바람직하다.
본 발명에서 상기 언더컷(under-cut) 영역(130)은, 상기 개방구(110) 형성 후 양극반응을 통해 형성되는 다공질층(120)을 식각하여 형성되는 것이 바람직하다.
본 발명에서 상기 n+ 확산층(20)은, 히터 패드 전극(51) 및 습도센서 패드 전극(80)을 지지하는 영역에 형성되는 것이 바람직하다.
본 발명에서 상기 히터 패드 전극(51) 및 습도센서 패드 전극(80)은 각각 복수로 형성되되, 상기 히터 패드 전극(51)의 상부에 습도센서 패드 전극(80)이 접합되는 것이 바람직하다.
본 발명에서 상기 기판(10)은, 그 하부에 n+ 확산층(20)을 더 구비하는 것이 바람직하다.
본 발명에서 상기 기판(10)은 n-type 실리콘 기판인 것이 바람직하다.
본 발명에서 상기 언더컷 영역(130)은, 그 길이가 기판(10)의 전체 길이 대비 38 ~ 74 %의 범위 내에서 결정되고, 그 뚜께가 기판(10)의 두께 대비 27 ~ 48 %의 범위 내에서 결정되는 것이 바람직하다.
전술한 종래기술의 문제점을 해결하기 위한 본 발명의 타측면에 의하면, 기판(10)의 상부에 n+ 확산층(20)을 형성하는 단계; 상기 n+ 확산층(20)상에 n-type 에피텍셜층(30)을 형성하는 단계; 상기 n-type 에피텍셜층(30) 상에 제1 절연층(40)을 형성하는 단계; 상기 제1 절연층(40)상에 히터 전극(50)을 형성하는 단계; 상기 히터 전극 상에 제2 절연층(60)을 형성하는 단계; 상기 제2 절연층(60)상에 습도센서 전극(70)을 형성하는 단계; 상기 습도센서 전극(70) 상에 감습층(90)을 형성하는 단계; 상기 히터 전극(50) 및 습도센서 전극(70)이 형성된 영역을 보호하기 위한 전극 보호층(100)을 형성하는 단계; 상기 제1 절연층(40), n-type 에피텍셜층(30) 및 n+ 확산층(20)의 일부 영역을 패터닝하고 식각하여 개방구(110)을 형성하는 단계; 상기 개방구(110)를 통해 주입되는 불산용액에 의해 n+ 확산층(20)에서 양극반응이 진행되어 다공질층(120)을 형성하는 단계; 및 상기 다공질층(120)을 식각 공정을 통해 제거하는 단계;를 포함하는 히터 내장형 습도센서의 제조방법을 제공한다.
본 발명에서 상기 개방구(110) 형성단계는, 반도체 건식 식각장비를 이용하되, n+ 확산층(20)은 0㎛ 초과 1㎛ 미만의 식각 두께로 식각하는 것이 바람직하다.
본 발명에서 상기 n+ 확산층(20) 형성단계는, 상기 기판(10)의 하부에도 n+ 확산층(20)을 더 구비하도록 형성하는 것이 바람직하다.
본 발명에서 상기 히터전극(50) 형성단계는, 상기 히터 전극(50) 및 히터 패드 전극(51)을 동시에 패터닝하여 형성하는 것이 바람직하다.
본 발명에서 상기 습도센서 전극(70) 형성단계는, IDT 구조의 습도센서 전극(70) 및 습도센서 패드 전극(80)을 동시에 패터닝하되, 상기 습도센서 전극(70)은 제2 절연층(60) 상에 형성하고, 습도센서 패드 전극(80)은 제1 절연층(40)상에 형성하는 것이 바람직하다.
본 발명에서 상기 습도센서 패드 전극(80)은 다수로 형성하되, 그 중 일부는 제1 절연층(40)상에 형성된 히터 패드 전극(51)상에 형성되는 것이 바람직하다.
본 발명에서 상기 전극 보호층(100) 형성단계는, 상기 전극보호층(100)을 습도센서 패드 전극(80)상에도 형성하는 것이 바람직하다.
본 발명에서 상기 감습층(90) 형성단계는, 그래핀 옥사이드(Graphene Oxide) 수용액을 이용하여 스프레이 또는 코팅 방식을 통해 감습층(90)을 형성하는 것이 바람직하다.
본 발명에서 상기 다공질층(120)의 식각 공정 단계는, TMAH 수용액 또는 NaOH 수용액을 사용하여 다공질층(120)을 습식 식각하는 것이 바람직하다.
본 발명에서 상기 다공질층(120)의 식각 공정 단계는, 반도체 건식 식각 장비를 이용하여 1㎛ 미만의 두께로 다공질층(120)을 식각하는 것이 바람직하다.
본 발명의 히터 내장형 습도센서에 의하면, 고온 영역에서의 습도 측정을 견딜 수 있는 유리전이 온도가 높은 감습 재료를 적용한 습도센서를 제공하고, 습도센서 하단에 마이크로 히터를 내장하여 습도센서가 표면에 수분에 의한 포화 등이 발생했을 때 마이크로 히터를 통한 습도센서 특성을 회복하고 신뢰성 및 정확도를 높일 수 있는 효과가 있다.
또한 본 발명에 의하면, 기판 상에 언더 컷(under-cut) 구조를 채택함으로써, 고온, 고습 등 극한적 상황에서 열 또는 수분에 의한 영향을 최소화 시켜 습도센서의 성능을 높일 수 있는 효과가 있다.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 실시예에 따른 히터 내장형 습도센서의 단면도.
도 2는 본 발명의 실시예에 따른 히터 내장형 습도센서의 상면도.
도 3은 본 발명의 실시예에 따른 히터 내장형 습도센서의 분해도.
도 4a 내지 도 4K는 본 발명의 실시예에 따른 히터 내장형 습도센서 제조방법의 단계별 공정도.
도 5는 본 발명의 실시예에 따른 히터 내장형 습도센서 제조방법의 순서도.
본 발명에 따른 히터 내장형 습도센서는 상부에 n+ 확산층 및 n-type 에피텍셜층이 순차적으로 적층된 기판, 상기 n-type 에피텍셜층상에 형성되는 제1 절연층, 상기 제1 절연층의 소정 영역 상에 형성되는 히터 전극 및 히터 패드 전극, 상기 히터 전극 상에 형성되는 제2 절연층, 상기 제2 절연층의 형성되는 습도센서 전극 및 상기 제1 절연층상에 형성되는 습도센서 패드 전극 및 상기 습도센서 전극 상에 형성되는 감습층을 포함하되, 상기 히터 전극, 히터 패드 전극, 습도센서 전극 및 습도센서 패드 전극이 형성되지 않는 영역의 일부를 제거하여 형성되는 개방구를 통해 기판과 n-type 에피텍셜층 사이에 언더컷(under-cut) 영역을 형성하는 것을 특징으로 한다.
또한, 본 발명에 따른 히터 내장형 습도센서의 제조방법은 기판의 상부에 n+ 확산층을 형성하는 단계, 상기 n+ 확산층상에 n-type 에피텍셜층을 형성하는 단계, 상기 n-type 에피텍셜층 상에 제1 절연층을 형성하는 단계, 상기 제1 절연층상에 히터 전극을 형성하는 단계, 상기 히터 전극 상에 제2 절연층을 형성하는 단계, 상기 제2 절연층상에 습도센서 전극을 형성하는 단계, 상기 습도센서 전극 상에 감습층을 형성하는 단계, 상기 히터 전극 및 습도센서 전극이 형성된 영역을 보호하기 위한 전극 보호층을 형성하는 단계, 상기 제1 절연층, n-type 에피텍셜층 및 n+ 확산층의 일부 영역을 패터닝하고 식각하여 개방구을 형성하는 단계, 상기 개방구를 통해 주입되는 불산용액에 의해 n+ 확산층에서 양극반응이 진행되어 다공질층을 형성하는 단계 및 상기 다공질층을 식각 공정을 통해 제거하는 단계를 포함하는 것을 특징으로 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명은, MEMS 기술 중 하나인 다공질 실리콘 마이크로머시닝 기술과 마이크로 히터를 이용한 3차원 구조체 형태의 습도 센서 및 그 제조 방법에 관한 것으로서, n-type 실리콘 기판 상에 n+ 확산층을 형성한 후 그 위에 n-type 에피택셜층을 형성한 n/n+/n/n+ 웨이퍼를 기판으로 사용하는 것을 특징으로 하며, 기판 상에 절연층 형성 및 마이크로 히터와 습도센서를 제조한 후 식각 장비를 이용하여 절연층과 n/n+층을 식각하고, 불산용액을 이용하여 양극반응을 시켜 n+ 확산층을 다공성화를 시킨 후 NaOH 수용액 등을 이용하여 다공성 실리콘을 식각함으로써 3차원 구조를 갖는 마이크로 히터를 포함하는 습도센서 및 그 제조 방법에 관한 것이다.
도 1은 본 발명의 실시예에 따른 히터 내장형 습도센서의 단면도이고, 도 2는 본 발명의 실시예에 따른 히터 내장형 습도센서의 상면도이다. 참고로 도 2의 A-A'방향으로 자른 단면도가 도 1의 단면도라 할 수 있다.
본 발명은 상부에 n+ 확산층(20) 및 n-type 에피텍셜층(30)이 순차적으로 적층된 기판(10), 상기 n-type 에피텍셜층(30)상에 형성되는 제1 절연층(40), 상기 제1 절연층(40)의 소정 영역 상에 형성되는 히터 전극(50) 및 히터 패드 전극(51), 상기 히터 전극(50) 상에 형성되는 제2 절연층(60), 상기 제2 절연층(60)의 형성되는 습도센서 전극(70), 상기 제1 절연층(40)상에 형성되는 습도센서 패드 전극(80)과 상기 습도센서 전극(70) 상에 형성되는 감습층(90)을 포함하여 형성될 수 있다.
또한, 본 발명은 상기 히터 전극(50), 히터 패드 전극(51), 습도센서 전극(70) 및 습도센서 패드 전극(80)이 형성되지 않는 영역의 일부를 제거하여 형성되는 개방구(110)를 통해 기판(10)과 n-type 에피텍셜층(30) 사이에 언더컷(under-cut) 영역(130)을 형성할 수 있다.
상기 기판(10)은 n-type 실리콘 기판으로 구성되는 것이 바람직하며, 상부에 n+ 확산층(20)을 필수적으로 구비하되, 발명의 필요에 따라 기판(10) 하부에도 n+ 확산층을 더 구비할 수 있다. 본 발명에서 상기 n+ 확산층(20) 두께는 5 ~15㎛로 형성되는 것이 적절하다.
다만, 상기 기판(10)은 반드시 n-type 실리콘 기판으로 제한되지 아니하고, 발명의 필요에 따라 글래스(glass), 산화알루미늄 또는 p-type 실리콘으로 형성될 수도 있을 것이다.
한편, 기판(10)의 상부에 형성되는 n+ 확산층(20) 상에는 n-type 에피텍셜층(30)상이 형성되게 되며, 따라서, 본 발명의 기판 구조는 n-type 실리콘 기판 상에 n+ 확산층(20)을 형성한 후 그 위에 n-type 에피택셜층(30)을 형성하는 구조를 갖게되므로 n/n+/n/n+ 웨이퍼를 기판 구조로 갖게 된다. 상기 n-type 에피텍셜층(30)의 두께는 5 ~10㎛로 형성되는 것이 적절하다.
상기 n-type 에피택셜층(30)상에는 제 1절연층(40)이 형성되게 된다. 상기 제1 절연층(40)은, 산화막(SiO
2), 질화막(Si
3N
4) 또는 이들의 조합을 통해 절연막을 형성할 수 있고, 상기 제1 절연층(40)의 두께는 1㎛ ~ 10㎛의 범위 내에서 형성될 수 있을 것이다.
그리고, 상기 제1절연층(40) 상에는 히터 전극(50) 및 히터 패드 전극(51)이 형성된다. 또한, 상기 히터 전극(50) 및 히터 패드 전극(51)은 높은 히팅 효율을 담보할 수 있도록 백금(Pt) 박막 또는 폴리실리콘으로 형성될 수 있으나, 반드시 이에 한정되는 것은 아니고 발명의 필요에 따라 알루미늄(Al), 니켈(Ni), 금(Au)을 이용하거나 백금(Pt), 폴리실리콘, 알루미늄(Al), 니켈(Ni), 금(Au) 중 어느 둘 이상의 재료를 조합하여 히터 전극(50) 및 히터 패드 전극(51)을 구성할 수 있을 것이다.
상기 히터 전극(50)은 스퍼터링(Sputtering) 방식을 이용하여 해당 소재(예; 백금(Pt))를 소정 두께로 증착한 후 고온 열처리 공정(예; 1,000℃에서 2 ~ 4시간 정도)을 통해 박막을 형성할 수 있다.
상기 히터 전극(50)은 기판의 중심부에 배치하고, 히터 패드 전극(51)은 기판의 외곽부에 배치하는 것이 바람직하다.
상기 히터 전극(50)의 상부에는 습도센서 전극(70)과의 절연을 위해 제2절연층(60)이 형성된다. 상기 제2 절연층(60)도 제1 절연층(40)과 마찬가지로 산화막(SiO
2), 질화막(Si
3N
4) 또는 이들의 조합을 통해 절연막을 형성할 수 있다. 또한 상기 제2 절연층(60)의 두께는 1㎛ ~ 10㎛의 범위내에서 형성하는 것이 적절하다.
본 발명에서 상기 제1절연층(40) 및 제2절연층(60)은 발명의 필요에 따라 산화막(SiO
2), 질화막(Si
3N
4) 대신에 폴리이미드(Polyimid)를 코팅한 후 열경화 과정을 통해 형성되는 층을 절연층으로 이용할 수도 있을 것이다.
한편, 습도센서 전극(70)은 히터전극(50)을 커버하는 제2 절연층(60) 상에 형성되고, 습도센서 패드 전극(80)은 제1 절연층(40)상에 형성된다. 이 때, 상기 습도센서 패드 전극(80)은 4개로 형성될 수 있는데, 이 중 2개의 습도센서 패드 전극은 제 1절연층(40)상에 형성되되, 나머지 2개는 전기적 도통을 위해 히터 패드 전극(51)위에 접합되도록 구성될 수 있다.
본 발명의 습도센서 전극(70)은 다수의 미세 전극 패턴을 갖는 IDT(Interdigited) 구조로 형성되는 것이 바람직하며, Au, Cr, Al 또는 Pt 와 같은 금속막을 증착 및 패터닝하여 형성할 수 있을 것이다.
본 발명에서 상기 감습층(90)은 습도센서 전극(70)을 커버하도록 형성되는데, 열경화성 폴리머 또는 그래핀 옥사이드(Graphene Oxide)로 형성될 수 있으나 반드시 이에 한정되는 것은 아니고 발명의 필요에 따라 폴리이미드 용액 또는 묽은 감광성 폴리이미드를 이용하여 스핀코팅 방식으로 형성할 수도 있을 것이다.
본 발명에서 상기 폴리이미드 용액에 들어가는 폴리이미드계 물질은, 용매에 디언하이드라이드(dianhydride) 및 디아민(diamine)을 첨가하여 중합반응시켜 제조하되, 용매 100 중량부에 대하여, 디언하이드라이드 20~30중량부 및 디아민 10~25 중량부 를 첨가하여 25 ~ 45℃에서 2 ~ 3시간동안 중합반응시켜 고형분 함량이 20~35중량%가 되도록 제조한 것일 수 있다.
한편, 본 발명은 상기 히터 전극(50), 히터 패드 전극(51), 습도센서 전극(70) 및 습도센서 패드 전극(80)이 형성되지 않는 영역의 제1 절연층(40), n-type 에피텍셜층(30) 및 n+ 확산층(20)을 패터닝하고 식각하여 개방구(110)를 형성하게 된다.
상기 개방구(110)를 통해 불산용액 등을 주입하면, n+ 확산층(20)이 양극반응을 일으켜서 다공질층(120; Porous Layer)을 형성하게 되는데, 이와 같은 다공질층(120)을 습식 식각 등으로 제거하게 되면, 기판(10)과 n-type 에피텍셜층(30) 사이에 언더컷(under-cut) 영역(130)을 형성할 수 있다.
이와 같은 언더컷(under-cut) 영역(130)의 존재로 인해 결과적으로 상기 n+ 확산층(20)은, 히터 패드 전극(51) 및 습도센서 패드 전극(80)을 지지하는 영역에 잔존하게 된다.
상기 언더컷 영역(130)은, 기판(10)과 n-type 에피텍셜층(30)사이에 공기공동(air-cavity)을 형성하여 고온, 고습 등 극한적 상황에서 열 또는 수분에 의한 영향을 최소화시켜 습도센서의 성능을 높일 수 있는 기능을 수행할 수 있다.
상기 언더컷 영역(130)은 기판(10)의 전체 길이 대비 38 ~ 74 %의 범위 내에서 길이를 갖는 것이 적절하고, 기판(10) 의 두께 대비 27 ~ 48 %의 범위 내에서 두께를 갖는 것이 적절하다. 상기의 언더컷 영역(130)의 길이 및 두께범위를 벗어나면 습도센서 전체의 기계적·구조적 강도가 약해지거나 또는 공기공동(air-cavity)에 유입되는 공기의 양이 적어져서 열 또는 수분에 의한 영향을 최소화할 수 없어 습도센서의 성능저하를 가져오기 때문이다.
도 3은 본 발명의 실시예에 따른 히터 내장형 습도센서의 분해도이다.
도 3을 참조하면, 기판(10)의 위로 n+ 확산층(20)과 n-type 에피텍셜층(30)에 언더컷(under-cut) 영역(130)이 형성되며, 제1절연층(40)에 개방구(110)이 형성되어 있음을 확인할 수 있다.
상기 히터전극(50)은 2개의 'ㄹ'자가 일부 겹친 형상으로 구성될 수 있으며, 그 두께는 1㎛ ~ 10㎛, 그 너비는 1㎛ ~ 10㎛의 범위 내에서 형성될 수 있다. 다만, 히터전극의 두께는 제2절연층(60)의 두께보다는 작도록 형성되어야 할 것이다.
본 발명에서 습도센서 전극(70)은 하부전극과 상부전극이 동시에 제조되는 IDT(InterDigiTated) 구조로 형성된 정전용량형 또는 저항형일 수 있다.
본 발명에서 적용되는 습도센서 전극이 정전용량형일 경우에는, 빠른 응답 특성을 위해서는 감습층의 두께를 최소화해야 하며, 습도센서 전극(70)의 박막 두께를 1 ~ 2㎛ 두께로 일정하게 유지하고 패턴 폭을 1 ~ 3㎛ 범위로, 패턴 간격 또한 1 ~ 3㎛의 범위내에서 형성할 수 있을 것이다.
도 4a 내지 도 4k는 본 발명의 실시예에 따른 히터 내장형 습도센서 제조방법의 단계별 공정도이고, 도 5는 본 발명의 실시예에 따른 히터 내장형 습도센서 제조방법의 순서도이다.
먼저, 도 4a를 참조하면, 기판(10)의 상부에 n+ 확산층(20)을 형성하는 단계를 거친다(S11). 이 때, 상기 n+ 확산층(20) 형성단계는, 상기 기판(10)의 하부에도 n+ 확산층(20)을 더 구비하도록 공정을 거칠 수 있다. n+ 확산층(20)은 n형 도펀트의 주입 등을 통하여 공지의 방식으로 형성할 수 있다.
이어서, 도 4b를 참조하면, 상기 n+ 확산층(20)상에 n-type 에피텍셜층(30)을 형성하는 단계를 거친다(S12). 상기 n-type 에피텍셜층(30)의 두께는 5 ~10㎛로 형성되도록 조절하는데, 이는 추후 n+ 확산층(20) 상에서 벌어질 반도체 공정 및 언더컷(under-cut) 영역(130)의 기계적인 강도를 고려하기 위함이다.
이후 도 4c를 참조하면, 상기 n-type 에피텍셜층(30) 상에 제1 절연층(40)을 형성하는 단계를 거친다(S13). 상기 제1 절연층(40)은, 산화막(SiO
2), 질화막(Si
3N
4) 또는 이들의 조합을 통해 형성되되, 그 두께는 1㎛ ~ 10㎛의 범위 내에서 형성될 수 있을 것이다.
이후, 도 4d를 참조하면, 상기 제1 절연층(40)상에 히터 전극(50)을 형성하는 단계를 거치게 된다(S14). 이 때, 히터전극(50) 형성단계는, 상기 히터 전극(50) 및 히터 패드 전극(51)을 동시에 패터닝하여 형성하는 것이 적절하다.
상기 히터전극(50)은 2개의 'ㄹ'자가 일부 겹친 형상으로 구성될 수 있으며, 그 두께는 1㎛ ~ 10㎛, 그 너비는 1㎛ ~ 10㎛의 범위 내에서 형성될 수 있고, 히터 패드 전극(51)도 2개로 구성하여 제 1절연층(40) 상에 형성될 수 있다.
이어서, 도 4e를 참조하면, 상기 히터 전극 상에 제2 절연층(60)을 형성하는 단계를 거친다(S15). 상기 제2 절연층(60)도 산화막(SiO
2), 질화막(Si
3N
4) 또는 이들의 조합을 통해 절연막을 형성하되, 그 두께는 1㎛ ~ 10㎛의 범위내에서 형성하는 것이 적절하다. 상기 제2절연층(60)은 히터전극(50)을 커버할 수 있도록 형성된다.
그리고, 도 4f를 참조하면, 상기 제2 절연층(60)상에 습도센서 전극(70)을 형성하는 단계를 거친다(S16).
상기 습도센서 전극(70) 형성단계는, IDT 구조의 습도센서 전극(70) 및 습도센서 패드 전극(80)을 동시에 패터닝하되, 상기 습도센서 전극(70)은 제2 절연층(60) 상에 형성하고, 습도센서 패드 전극(80)은 제1 절연층(40)상에 형성하게 된다. 이 때, 상기 습도센서 패드 전극(80)은 다수로 형성하되, 그 중 일부는 전기적 도통을 위해 제1 절연층(40)상에 형성된 히터 패드 전극(51)상에 접합되도록 형성한다.
상기 습도센서 전극(70)은 그 박막 두께를 1 ~ 5㎛ 범위로, IDT 구조의 패턴 폭을 1 ~ 3㎛ 범위로, 패턴 간격 또한 1 ~ 3㎛의 범위 내에서 형성할 수 있을 것이다.
이어서, 도 4g를 참조하면, 상기 습도센서 전극(70) 상에 감습층(90)을 형성하는 단계를 거치게 된다(S17).
상기 감습층(90)는 그래핀 옥사이드(Graphene Oxide) 수용액을 이용하여 스프레이 또는 코팅 방식을 통해 형성하거나 또는 IDT구조의 습도센서 전극 상에 수분의 흡탈습을 원활하게 하면서 전기적 특성이 선형성을 가질 수 있는 유리전이 온도가 높은 열경화성 폴리머 계열의 감습층을 형성할 수 있다.
즉, 상기 감습층(90)이 열경화성 폴리머로 형성되는 경우에는 폴리머를 코팅한 후, 열처리, 패터닝 및 반도체 식각 공정을 통해 감습막을 형성한 뒤 열경화 공정을 수행하고, 이와 달리 상기 감습층이 그래핀 옥사이드(Graphene Oxide)로 형성되는 경우에는 스프레이 방식 또는 코팅 방식을 이용하여 그래핀 옥사이드로 습도센서 전극 상에 감습막을 형성한 후, 열경화 공정을 수행함으로써 감습층이 형성되게 된다.
한편, 발명의 필요에 따라 상기 감습층(90)은 폴리이미드, 폴리메틸메타크릴레이트(PMMA), 셀룰로오스(cellulose) 또는 벤조시클로부텐(Benzo-cyclo-Butene, BCB)으로 형성될 수도 있는데, 이와 같은 물질들은 재료 자체에 흡습성이 존재하여 습도센서의 특성을 구현하기 용이한 장점을 가진 것이라 할 수 있다.
예컨대, 상기 감습층(90)은 폴리이미드계 물질을 스핀 코팅하고 일정한 온도(약 350~400 ℃에서 일정한 시간(약 2~3시간)동안 열처리를 통해 폴리머(polymer)를 경화시키는 방법으로도 형성이 가능할 것이다.
이후, 도 4h를 참조하면, 상기 히터 전극(50) 및 습도센서 전극(70)이 형성된 영역을 보호하기 위한 전극 보호층(100)을 형성하는 단계를 거친다(S18). 상기 전극 보호층(100)은 개방구(110) 형성을 위한 에칭시 전극을 보호하기 위한 것으로서 일종의 에칭 보호층을 의미하며, 따라서, 히터 전극(50) 및 습도센서 전극(70)이 형성된 영역뿐만 아니라 습도센서 패드 전극(80)이 형성된 영역상에도 형성하는 것이 바람직하다.
그리고, 도 4i를 참조하면, 상기 제1 절연층(40), n-type 에피텍셜층(30) 및 n+ 확산층(20)의 일부 영역을 패터닝하고 식각하여 개방구(110)을 형성하는 단계를 거친다(S19).
상기 개방구(110) 형성단계는 반도체 건식 식각장비를 이용하되, 해당 영역의 제1 절연층(40), n-type 에피텍셜층(30)은 모두 제거하고, 다만 n+ 확산층(20)은 0㎛ 초과 1㎛ 미만의 식각 두께로 식각하는 것이 적절하다. 이는 n+ 확산층(20)을 식각함에 있어 양극 반응 시 원활한 반응과 측면으로의 언더에칭(under Etching) 영역을 최소화 하기 위해 1㎛ 미만의 두께로 식각한다고 할 수 있다.
이후, 도 4j를 참조하면, 상기 개방구(110)를 통해 주입되는 불산 용액에 의해 n+ 확산층(20)에서 양극반응이 진행되어 다공질층(120)을 형성하는 단계를 거치게 된다(S20). 이와 동시에 상기 불산 용액에 의해 상기 전극 보호층(100)도 자연스럽게 제거되게 된다.
마지막으로 도 4k를 참조하면, 상기 다공질층(120)을 식각 공정을 통해 제거하는 단계를 거친다(S21).
본 발명에서는 TMAH(TetraMethylAmmonium Hydride; 테트라 메틸 암모늄 하이드로옥사이드) 수용액 또는 NaOH 수용액을 사용하여 다공질층(120)을 습식 식각할 수 있으며, 발명의 필요에 따라 반도체 건식 식각 장비를 이용하여 1㎛ 미만의 두께로 다공질층(120)을 건식 식각하여 언더컷(under-cut) 영역(130)을 형성할 수도 있다.
위와 같이 본 발명에서는 3차원 구조의 언더컷(under-cut) 영역을 갖는 히터 내장형 습도센서를 위해 마이크로 히터와 습도 센서 전극을 보호하고, 양극반응을 위한 패턴을 형성한 후 식각 공정을 통해 제 1절연층, n-type 에피텍셜층, n+ 확산층을 차례로 식각한 후, 양극반응을 통해 n+ 확산층을 다공(Porous)화한 후 화학 약품 또는 건식 식각 장비를 이용하여 다공질 실리콘(Porous Silicon)을 제거함으로써, 언더컷(under-cut)의 3차원 구조를 구비하는 히터 내장형 습도센서를 제공하게 된다.
즉, 본 발명의 히터 내장형 습도센서에 의하면, 고온 영역에서의 습도 측정을 견딜 수 있는 유리전이 온도가 높은 감습 재료를 적용한 습도센서를 제공하고, 습도센서 하단에 마이크로 히터를 내장하여 습도센서가 표면에 수분에 의한 포화 등이 발생했을 때 마이크로 히터를 통한 습도센서 특성을 회복하고 신뢰성 및 정확도를 높일 수 있으며, 기판 상에 언더 컷(under-cut) 구조를 채택함으로써, 고온, 고습 등 극한적 상황에서 열 또는 수분에 의한 영향을 최소화 시켜 습도센서의 성능을 높일 수 있는 장점이 있다.
이상 본 발명의 구체적 실시형태와 관련하여 본 발명을 설명하였으나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 범위를 벗어나지 않고 설명된 실시형태를 변경 또는 변형할 수 있으며, 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능하다.
Claims (24)
- 상부에 n+ 확산층(20) 및 n-type 에피텍셜층(30)이 순차적으로 적층된 기판(10);상기 n-type 에피텍셜층(30)상에 형성되는 제1 절연층(40);상기 제1 절연층(40)의 소정 영역 상에 형성되는 히터 전극(50) 및 히터 패드 전극(51);상기 히터 전극(50) 상에 형성되는 제2 절연층(60);상기 제2 절연층(60)의 형성되는 습도센서 전극(70) 및 상기 제1 절연층(40)상에 형성되는 습도센서 패드 전극(80); 및상기 습도센서 전극(70) 상에 형성되는 감습층(90); 을 포함하되,상기 히터 전극(50), 히터 패드 전극(51), 습도센서 전극(70) 및 습도센서 패드 전극(80)이 형성되지 않는 영역의 일부를 제거하여 형성되는 개방구(110)를 통해 기판(10)과 n-type 에피텍셜층(30) 사이에 언더컷(under-cut) 영역(130)을 형성하는 것을 특징으로 하는 히터 내장형 습도센서.
- 제1항에 있어서,상기 n-type 에피텍셜층(30)의 두께는 5 ~10㎛인 것을 특징으로 하는 히터 내장형 습도센서.
- 제1항에 있어서, 상기 제1 절연층(40) 또는 제2 절연층(60)은,산화막(SiO 2), 질화막(Si 3N 4) 또는 이들의 조합을 통해 절연막을 형성하는 것을 특징으로 하는 히터 내장형 습도센서.
- 제 1항에 있어서,상기 제1 절연층(40) 또는 제2 절연층(60)의 두께는 1㎛ ~ 10㎛인 것을 특징으로 하는 히터 내장형 습도센서.
- 제1항에 있어서, 상기 히터 전극(50)은,백금 박막 또는 폴리실리콘으로 형성하는 것을 특징으로 하는 히터 내장형 습도센서.
- 제1항에 있어서, 상기 습도센서 전극(70)은,다수의 미세 전극 패턴을 갖는 IDT(Interdigited) 구조로 형성하는 것을 특징으로 하는 히터 내장형 습도센서.
- 제 1항에 있어서,상기 감습층(90)은 열경화성 폴리머, 그래핀 옥사이드(Graphene Oxide), 폴리메틸메타크릴레이트(PMMA), 또는 벤조시클로부텐(Benzo-cyclo-Butene, BCB)으로 형성하는 것을 특징으로 하는 히터 내장형 습도센서.
- 제1항에 있어서,상기 언더컷 영역(130)은, 기판(10)과 n-type 에피텍셜층(30)사이에 공기공동(air-cavity)을 형성하는 것을 특징으로 하는 히터 내장형 습도센서.
- 제1항에 있어서, 상기 개방구(110)는,상기 히터 전극(50), 히터 패드 전극(51), 습도센서 전극(70) 및 습도센서 패드 전극(80)이 형성되지 않는 영역의 제1 절연층(40), n-type 에피텍셜층(30) 및 n+ 확산층(20)을 패터닝하고 식각하여 형성되는 것을 특징으로 하는 히터 내장형 습도센서.
- 제1항에 있어서, 상기 언더컷(under-cut) 영역(130)은,상기 개방구(110) 형성 후 양극반응을 통해 형성되는 다공질층(120)을 식각하여 형성되는 것을 특징으로 하는 히터 내장형 습도센서.
- 제1항에 있어서, 상기 n+ 확산층(20)은,히터 패드 전극(51) 및 습도센서 패드 전극(80)을 지지하는 영역에 형성되는 것을 특징으로 하는 히터 내장형 습도센서.
- 제1항에 있어서,상기 히터 패드 전극(51) 및 습도센서 패드 전극(80)은 각각 복수로 형성되되, 상기 히터 패드 전극(51)의 상부에 습도센서 패드 전극(80)이 접합되는 것을 특징으로 하는 히터 내장형 습도센서.
- 제1항에 있어서, 상기 기판(10)은,그 하부에 n+ 확산층(20)을 더 구비하는 것을 특징으로 하는 히터 내장형 습도센서.
- 제1항에 있어서, 상기 언더컷 영역(130)은,그 길이가 기판(10)의 전체 길이 대비 38 ~ 74 %의 범위 내에서 결정되고, 그 뚜께가 기판(10)의 두께 대비 27 ~ 48 %의 범위 내에서 결정되는 것을 특징으로 하는 히터 내장형 습도센서.
- 기판(10)의 상부에 n+ 확산층(20)을 형성하는 단계;상기 n+ 확산층(20)상에 n-type 에피텍셜층(30)을 형성하는 단계;상기 n-type 에피텍셜층(30) 상에 제1 절연층(40)을 형성하는 단계;상기 제1 절연층(40)상에 히터 전극(50)을 형성하는 단계;상기 히터 전극 상에 제2 절연층(60)을 형성하는 단계;상기 제2 절연층(60)상에 습도센서 전극(70)을 형성하는 단계;상기 습도센서 전극(70) 상에 감습층(90)을 형성하는 단계;상기 히터 전극(50) 및 습도센서 전극(70)이 형성된 영역을 보호하기 위한 전극 보호층(100)을 형성하는 단계;상기 제1 절연층(40), n-type 에피텍셜층(30) 및 n+ 확산층(20)의 일부 영역을 패터닝하고 식각하여 개방구(110)을 형성하는 단계;상기 개방구(110)를 통해 주입되는 불산용액에 의해 n+ 확산층(20)에서 양극반응이 진행되어 다공질층(120)을 형성하는 단계; 및상기 다공질층(120)을 식각 공정을 통해 제거하는 단계;를 포함하는 히터 내장형 습도센서의 제조방법.
- 제15항에 있어서, 상기 개방구(110) 형성단계는,반도체 건식 식각장비를 이용하되, n+ 확산층(20)은 0㎛ 초과 1㎛ 미만의 식각 두께로 식각하는 것을 특징으로 하는 히터 내장형 습도센서의 제조방법.
- 제15항에 있어서, 상기 n+ 확산층(20) 형성단계는,상기 기판(10)의 하부에도 n+ 확산층(20)을 더 구비하도록 형성하는 것을 특징으로 하는 히터 내장형 습도센서의 제조방법.
- 제15항에 있어서, 상기 히터전극(50) 형성단계는,상기 히터 전극(50) 및 히터 패드 전극(51)을 동시에 패터닝하여 형성하는 것을 특징으로 하는 히터 내장형 습도센서의 제조방법.
- 제15항 있어서, 상기 습도센서 전극(70) 형성단계는,IDT 구조의 습도센서 전극(70) 및 습도센서 패드 전극(80)을 동시에 패터닝하되, 상기 습도센서 전극(70)은 제2 절연층(60) 상에 형성하고, 습도센서 패드 전극(80)은 제1 절연층(40)상에 형성하는 것을 특징으로 하는 히터 내장형 습도센서의 제조방법.
- 제19항에 있어서,상기 습도센서 패드 전극(80)은 다수로 형성하되, 그 중 일부는 제1 절연층(40)상에 형성된 히터 패드 전극(51)상에 형성되는 것을 특징으로 하는 히터 내장형 습도센서의 제조방법.
- 제15항에 있어서, 상기 전극 보호층(100) 형성단계는,상기 전극보호층(100)을 습도센서 패드 전극(80)상에도 형성하는 것을 특징으로 하는 히터 내장형 습도센서의 제조방법.
- 제15항에 있어서, 상기 감습층(90) 형성단계는,그래핀 옥사이드(Graphene Oxide) 수용액을 이용하여 스프레이 또는 코팅 방식을 통해 감습층(90)을 형성하는 것을 특징으로 하는 히터 내장형 습도센서의 제조방법.
- 제15항에 있어서, 상기 다공질층(120)의 식각 공정 단계는,TMAH 수용액 또는 NaOH 수용액을 사용하여 다공질층(120)을 습식 식각하는 것을 특징으로 하는 히터 내장형 습도센서의 제조방법.
- 제15항에 있어서, 상기 다공질층(120)의 식각 공정 단계는,반도체 건식 식각 장비를 이용하여 1㎛ 미만의 두께로 다공질층(120)을 식각하는 것을 특징으로 하는 히터 내장형 습도센서의 제조방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180123710A KR102035089B1 (ko) | 2018-10-17 | 2018-10-17 | 히터 내장형 습도센서 및 그 제조방법 |
KR10-2018-0123710 | 2018-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020080655A1 true WO2020080655A1 (ko) | 2020-04-23 |
Family
ID=68460868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/009767 WO2020080655A1 (ko) | 2018-10-17 | 2019-08-06 | 히터 내장형 습도센서 및 그 제조방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102035089B1 (ko) |
WO (1) | WO2020080655A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112666236A (zh) * | 2020-04-17 | 2021-04-16 | 华中科技大学 | 一种传感器集成芯片及其制备 |
KR102428905B1 (ko) * | 2020-10-19 | 2022-08-03 | (주)멤스칩 | 차단층을 구비하는 일체형 온습도 복합센서 및 그 제조방법 |
EP4012393A1 (en) * | 2020-12-09 | 2022-06-15 | Vaisala Oyj | Fast humidity sensor and a method for calibrating the fast humidity sensor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007192628A (ja) * | 2006-01-18 | 2007-08-02 | Canon Inc | ガスセンサ |
JP3994975B2 (ja) * | 2004-02-27 | 2007-10-24 | 株式会社デンソー | 容量式湿度センサ |
JP2008039550A (ja) * | 2006-08-04 | 2008-02-21 | Denso Corp | 湿度センサ |
KR20100070220A (ko) * | 2008-12-17 | 2010-06-25 | 한국전자통신연구원 | 습도 센서 및 이의 제조 방법 |
KR20110126466A (ko) * | 2010-05-17 | 2011-11-23 | (주)미코엠에스티 | 히터와 판독 회로 소자가 내장된 습도 센서 |
-
2018
- 2018-10-17 KR KR1020180123710A patent/KR102035089B1/ko active IP Right Grant
-
2019
- 2019-08-06 WO PCT/KR2019/009767 patent/WO2020080655A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3994975B2 (ja) * | 2004-02-27 | 2007-10-24 | 株式会社デンソー | 容量式湿度センサ |
JP2007192628A (ja) * | 2006-01-18 | 2007-08-02 | Canon Inc | ガスセンサ |
JP2008039550A (ja) * | 2006-08-04 | 2008-02-21 | Denso Corp | 湿度センサ |
KR20100070220A (ko) * | 2008-12-17 | 2010-06-25 | 한국전자통신연구원 | 습도 센서 및 이의 제조 방법 |
KR20110126466A (ko) * | 2010-05-17 | 2011-11-23 | (주)미코엠에스티 | 히터와 판독 회로 소자가 내장된 습도 센서 |
Also Published As
Publication number | Publication date |
---|---|
KR102035089B1 (ko) | 2019-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010056049A2 (ko) | 정전용량형 습도센서 및 그 제조방법 | |
WO2020080655A1 (ko) | 히터 내장형 습도센서 및 그 제조방법 | |
KR101094870B1 (ko) | 습도 센서 및 이의 제조 방법 | |
WO2019052037A1 (zh) | 一种电容式传感器及其制备方法 | |
WO2013172604A1 (ko) | 지문센서 패키지 및 그 제조방법 | |
WO2011142637A2 (ko) | 그라핀 맴브레인을 이용한 mems 마이크로폰과 그 제조방법 | |
WO2013162173A1 (ko) | 집적 회로 소자 패키지들 및 집적 회로 소자 패키지들의 제조 방법들 | |
WO2016085179A1 (ko) | 가스 센서 패키지 | |
KR20130104985A (ko) | 정전용량형 습도센서 | |
WO2011115321A1 (ko) | 마이크로 가스센서 어레이 | |
WO2017063207A1 (zh) | 阵列基板及其制造方法 | |
WO2024117545A1 (ko) | 다단구조 접촉팁이 형성된 프로브 시트 및 그 제조 방법 | |
WO2019103328A1 (ko) | 수직 적층된 온습도 복합 센서 및 그 제조방법 | |
WO2016076469A1 (ko) | 각도 및 휨 검출 센서 제조방법 및 그 센서 | |
WO2018066752A1 (ko) | 센서 | |
WO2011078595A2 (ko) | 플렉서블 기판을 이용한 압력센서 및 이를 이용한 5.1 채널 마이크로폰 제조방법 | |
WO2022030932A1 (ko) | 가스 센서 | |
WO2022270810A1 (ko) | 일체 구조를 갖는 기체 열전도 방식의 수소 센서 | |
WO2010140719A1 (ko) | 정확도가 향상된 마이크로칼로리미터 소자 | |
WO2019212198A1 (ko) | 전계 효과를 이용한 압력 센서 및 이의 제조 방법 | |
WO2012053802A2 (ko) | 나노 갭 패턴 형성 방법, 나노 갭 패턴을 갖는 바이오 센서 및 바이오 센서 제조 방법 | |
WO2016072557A1 (ko) | 게이팅 히스테리시스를 제거하는 탄소나노튜브 센서의 제조방법 | |
WO2010047503A2 (ko) | 박형 수지보호 센서 소자 | |
WO2020222374A1 (ko) | 난수생성장치 및 그 생성방법 | |
WO2022169316A1 (ko) | 센서 어레이 및 이를 포함하는 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19874622 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19874622 Country of ref document: EP Kind code of ref document: A1 |