WO2010140719A1 - 정확도가 향상된 마이크로칼로리미터 소자 - Google Patents

정확도가 향상된 마이크로칼로리미터 소자 Download PDF

Info

Publication number
WO2010140719A1
WO2010140719A1 PCT/KR2009/002941 KR2009002941W WO2010140719A1 WO 2010140719 A1 WO2010140719 A1 WO 2010140719A1 KR 2009002941 W KR2009002941 W KR 2009002941W WO 2010140719 A1 WO2010140719 A1 WO 2010140719A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
heater
thin film
microcalorimeter
sensor
Prior art date
Application number
PCT/KR2009/002941
Other languages
English (en)
French (fr)
Inventor
김기훈
박윤
김형준
김재욱
서기성
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to PCT/KR2009/002941 priority Critical patent/WO2010140719A1/ko
Publication of WO2010140719A1 publication Critical patent/WO2010140719A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/006Microcalorimeters, e.g. using silicon microstructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/005Investigating or analyzing materials by the use of thermal means by investigating specific heat

Definitions

  • the present invention relates to a microcalorimeter device based on a silicon nitride thin film platform implemented by microelectromechanical system (NEMS) processing technology. More specifically, the present invention relates to a silicon nitride thin film microcalorimeter device for a non-thermal measurement device of ultrafine materials, in particular, a new structured microstructure in which the specific thermal measurement of microsamples is measured very accurately in a wide temperature range of 20K to 800K. A calorimeter device.
  • NEMS microelectromechanical system
  • the measurement of specific heat in the high temperature region has an important meaning in considering the characteristics of the phase transition.
  • the accuracy of the measurement was inferior due to a problem such that heat change to be limited to the hot junction is dispersed inside the substrate or heat transfer to the low temperature junction occurs due to the characteristics of the substrate itself.
  • silicon or sapphire substrate has a problem that the heat capacity of the tender at a high temperature is relatively high, there has been a need to improve the accuracy of the measurement.
  • the conventional relaxation method due to the high specific heat of the tender itself, there is a problem of lengthening the overall measurement time.
  • the measurement of heat capacity for a particular material provides important basic information about the physical properties of the material, such as the density of electrons and phonons, magnetic interactions, structure and electron phase transition.
  • the accuracy of the heat capacity readings is of utmost importance for obtaining various basic information of the material.
  • the accuracy of the heat capacity depends in particular on the substrate or the heat capacity of the adenda.
  • the heat capacity of the sample to be obtained is obtained by subtracting the adenda heat capacity from the total heat capacity, so if the heat capacity of the adenda is much larger than that of the sample, there is a very large error and uncertainty.
  • the accuracy of heat capacity measurement using a microcalorimeter is a design of a specific microcalorimeter, in particular, a sensor and a heater capable of maintaining a more uniform temperature in the isothermal region by reducing unnecessary heat loss between the isothermal platform and the peripheral substrate.
  • An object of the present invention is to propose a method and a novel device for solving the heat capacity accuracy problem using the microcalorimeter described above.
  • a microcalorimeter structure with a very small heat capacity and a new microcalorimeter capable of highly accurate fine specific heat measurement that dramatically improves the temperature homogeneity of the isothermal platform by adopting the appropriate heater and sensor electric wire width. Its purpose is to present the structure.
  • the present invention includes the first silicon nitride thin films 12a and 12b on the upper surface of the double-side polished silicon frames 11a and 11b, and the second silicon nitride thin film 13 on the lower surface thereof. ), wherein the lower surface of the second silicon nitride thin film 13 includes heaters / sensors 14a and 14b coupled to an electric lead wire, and an upper surface of the second silicon nitride film 13 includes an isothermal layer 15. Presents an improved microcalorimeter device.
  • microheat capacities typically on the order of 10 -6 J / K
  • 10 -6 J / K can be achieved for various nano and micrometer sized materials over a wide temperature range from 20 K to 800 K.
  • Accurate measurements can be made within an error range of less than 5%.
  • 1 is a cross-sectional view of the cut portion of the microcalorimeter according to an embodiment of the present invention.
  • Figure 2 is a plan view of a microcalorimeter package according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an electrical lead wire and a heater / sensor in accordance with one embodiment of the present invention.
  • FIG. 4 is a manufacturing process diagram according to an embodiment of the present invention.
  • FIG. 5 shows a measurement schematic using CFM in (a) and the temperature response of the microcalorimeter to heating power in (b).
  • FIG. 6 shows the measurement data of the microcalorimeter.
  • the parts marked with round and diamonds are the data for conventional microcalorimeters and are represented with rectangles in the present invention.
  • (A) is ⁇ l of several microcalimeters and (b) is the specific heat of copper.
  • the solid line here is the standard data of copper, and (c) shows the percentage of error in which the copper specific heat measurement value using the conventional microcalorimeter including the present invention deviates from the standard data of copper (solid line in (b)). As shown.
  • FIG. 1 is a cross-sectional view of a cut portion of a microcalorimeter according to an embodiment of the present invention
  • Figure 2 shows a plan view of a microcalorimeter package according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention Schematic diagram of the electrical lead wire and heater / sensor according to FIG.
  • the microcalorimeter device 10 having improved accuracy of the present invention includes the first silicon nitride thin films 12a and 12b on the upper surface of the double-side polished silicon frames 11a and 11b. It includes a second silicon nitride thin film 13, the lower surface of the second silicon nitride thin film 13 includes heaters / sensors (14a, 14b) to be engaged with the electric lead wires, the upper surface of the isothermal layer (15) Characterized in that configured to include.
  • the heater / sensor may further include a bottom adhesive layer between the bottom surface of the second silicon nitride thin film 13 and the heater / sensor 14a.14b, if necessary.
  • it can be configured to further include a top adhesive layer between the upper surface of the second silicon nitride thin film 13 and the isothermal layer 15.
  • the first and second silicon nitride thin films 12a, 12b, and 13 are subjected to low stress on the double-side polished silicon wafer by using low pressure chemical vapor deposition (LPCVD).
  • LPCVD low pressure chemical vapor deposition
  • -stress formed by depositing silicon nitride, wherein the heaters / sensors 14a, 14b are formed using photolithography and metallization.
  • the heaters / sensors 14a and 14b may have a predetermined thickness but preferably Au or Pt having a thickness of 50 nm or less, and Cr or Ti may have a predetermined thickness as an adhesive layer, if necessary.
  • it may be configured to further include a thickness of less than 3nm.
  • the isothermal layer 15 is formed by forming an etch mask on opposite surfaces of the heaters / sensors 14a and 14b using reactive ion etching to be etched and deposited on a silicon nitride thin film.
  • the isothermal layer 15 may be formed by further including a top adhesive layer of Cr or Ti, if necessary, the thickness is formed to 200nm or less including the top adhesive layer, it is preferable that Au or Pt is used.
  • the second silicon nitride thin film 13 is located in a predetermined region on the silicon frame, and the heater / sensors 14a and 14b are provided in the predetermined region of the thin film.
  • the isothermal layer is formed in the corresponding area on the opposite surface of the heater / sensor (14a, 14b).
  • the heaters / sensors 14a. 14b are fastened to the electric lead wires 20 to 23 formed by four each above and below.
  • the lead wires are shown in more detail in Figures 2 and 3, which are formed on the silicon frame and have a gradual lead line width from the side area towards the center area, which is a fastening area 16 with the heaters / sensors 14a and 14b. It is formed while decreasing. This is to limit the heat generating region in order to prevent heat generation except for the isothermal layer 15. Therefore, it is preferable that the lead wire has a predetermined line width in the fastening area with the heaters / sensors 14a and 14b while gradually decreasing its width from the side end area thereof, but has a line width of 20 ⁇ m or less.
  • the heaters / sensors 14a and 14b may have a predetermined width in a region opposite to the isothermal layer 15, but preferably have a width of 20 ⁇ m or less and a predetermined thickness, preferably 50 nm or less.
  • the branches are formed to the same thickness and line width.
  • the heaters / sensors 14a and 14b described above are formed by dividing the zone by the sensor when the other is the heater. Therefore, what is indicated as a heater / sensor means that when one side 14a is a heater, the other 14b is a sensor. If the heater and the sensor are crossed or configured in parallel, there is a problem such as interference caused by the capacitive coupling between the two to reduce the measurement accuracy. Fractionated heaters / sensors significantly reduce this capacitive coupling, allowing for more accurate measurements.
  • the lead wire may be formed of Au or Pt as needed.
  • the present invention used a general KOH etching method to fabricate silicon nitride based microcalorimeter devices.
  • low stress silicon nitride was deposited on a silicon wafer using LPCVD.
  • photolithography and metallization were used to characterize heaters and sensors.
  • 50 nm thick Au or Pt was used in the present invention, and Cr (3 nm) was used as the adhesive layer.
  • an etching mask was formed on the opposite side using reactive ion etching. It is then etched at 20 ° C. in a KOH solution at 90 ° C. for 4 hours. After the above process, an isothermal layer is deposited on the silicon nitride thin film. The thickness of the isothermal region is ⁇ 200 nm including the Cr adhesive layer.
  • Both sides of the polished double-sided Si wafer are patterned.
  • the unpolished surface may be attacked during the etching process due to the roughness of the surface.
  • Low stress amorphous silicon nitride Si-N
  • the thickness of the deposited silicon nitride film is 170 nm to 1 ⁇ m.
  • the upper surface silicon nitride is used as a mask of Si in the KOH bulk etching process.
  • the silicon nitride layer deposited on the lower surface serves as a platform for electrically separating the heater / sensor from the sample and fixing the sample.
  • Photolithography is used to form heaters / sensors on the bottom of the wafer.
  • Ti / Au or Ti / Pt films (3 nm / 50 nm) are deposited on the bottom surface via e-beam evaporation or sputtering.
  • Photolithography is used to form a right angled etching mask ( ⁇ 5 nm ⁇ 5 nm) of silicon nitride on the top surface.
  • the wafers are well aligned with the mask within the 1 ° range because highly directional etch is used in the next step.
  • the individual rectangular calorimeters were separated by a 300 ⁇ m line, which was etched with a V-shaped groove during the next etching process. To prevent etching at the corners of the rectangle, individual calorimeters were left at all intersections.
  • the photoresist serves as an etching mask of silicon nitride.
  • the overall etching time depends on the thickness of silicon nitride and is about 5 to 30 minutes.
  • Residual photoresist is removed by acetone.
  • the exposed Si is anisotropically etched in KOH solution (20 wt.%) For 4 hours.
  • the temperature of the etching bath is maintained at 90 to 95 °C.
  • the etching rate is ⁇ 2 ⁇ m / min.
  • the etch rate increased with the temperature of the solution and peaked at a concentration of 20 wt.%.
  • KOH etching has directivity, with an etching ratio of about 400: 1 between the [100] and [111] directions. Therefore, after the etching process, the etching surface is formed with a slope of ⁇ 54.7 ° along the [111] surface.
  • the etching rate of the silicon nitride layer in the KOH solution is negligible compared to the Si region.
  • a special carrier made of Teflon may be used.
  • Teflon As a result of the bulk etching, large ( ⁇ 5 nm ⁇ ⁇ 5 nm) independent thin film structures are produced. Wafers with such thin nitride thin films are carefully cleaned in neutralizing solution for 30 minutes.
  • an Au layer of ⁇ 200 nm is deposited on the backside of the nitride film to improve the thermal conductivity between the calorimeter and the sample and to obtain isothermal properties.
  • a Ti layer is deposited to improve adhesion.
  • a silicon shadow mask using a similar KOH etching process was employed. The shadow mask and silicon nitride thin film maintain a spacing of 100 ⁇ m during deposition.
  • the wafer on which the isothermal layer is formed is carefully cut into pieces.
  • the V-shaped grooves made during the KOH etching process allow the calorimeter to be split without breaking the thin film.
  • the measured heating power and temperature in the isothermal zone are used for the calculation of the heat capacity and other parameters of the sample or the appendage.
  • the heat transfer process is expressed as follows, considering the limited thermal conductivity between the sample of the microcalorimeter and the isothermal region.
  • P , c, T, c ', T', ⁇ l , ⁇ s are the applied heating power, heat capacity, temperature of the sample, heat capacity and temperature of the platform, thermal conductivity between the isothermal zone and the heat source, and It means limited thermal conductivity between platforms.
  • ⁇ (t) can be expressed as a linear combination of H (t), S (t) and Q (t)
  • the coefficients of H (t), S (t) and Q (t) are determined by applying the least square method, which is described above.
  • c , c ', ⁇ l , ⁇ s Value and also provide thermal relaxation time ⁇ One And ⁇ 2 To provide.
  • ⁇ l , ⁇ s , ⁇ One And ⁇ 2 can be measured.
  • ⁇ One And ⁇ 2 Measure the Tau-2 effect ( ⁇ -2 effect), which is an additional consideration because the thermal release time constant is not explained as one when the thermal conductivity is poor between the sample and the isothermal region.
  • a strong compression of a single crystal in an isothermal region in order to achieve reliable and reliable mechanical and thermal contact breaks the silicon nitride thin film. It is placed on a sieve (thermal grease, N-grease, etc.).
  • FIG. 6 shows a comparison of measurement accuracy and the like between the conventional microcalorimeter and the microcalorimeter according to the present invention.
  • the parts indicated by circular and diamond shapes are data on conventional microcalimeters and are represented by rectangles in the present invention.
  • the specific heat of copper was measured.
  • a small amount of copper ( ⁇ 300 ⁇ g) is attached to the calorimeter's isothermal zone using a thermal adhesive.
  • the microcalorimeter is then installed in PPMS. During the measurement, the adenda heat capacity is automatically removed from the data obtained.
  • the measurement error of the conventional microcalorimeter that is, the microcalorimeter of which the line width of the electric lead line is not very large or does not change so that the heating region is not limited to the inside of the isothermal section, is compared with that of the standard copper specific heat. Up to 30% was obtained.
  • the measured error showed similar behavior as the ⁇ l -thermal conductivity between the high temperature isothermal region and the low temperature peripheral substrate of the device, which were measured simultaneously by the CFM method.
  • the specific heat temperature shows a similar behavior to ⁇ l in the temperature range of ⁇ 60 K. From this, it can be inferred that large ⁇ 1 causes large thermal gradient and temperature nonuniformity in the isothermal region, and underestimates the measured temperature of the isothermal region. Due to this parasitic underestimation, the heat capacity of the sample is measured to be larger than the actual heat capacity. This is why the specific heat of copper is measured larger than the standard data.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

본 발명은 나노전자기계시스템 (NEMS) 처리 기술에 의해 구현되는 실리콘 니트라이드 박막 플랫폼 기반의 새로운 디자인을 가진 정확도가 향상된 마이크로칼로리미터 소자에 관한 것이다. 더욱 상세하게는 본 발명은 극미세물질의 비열측정장치를 위한 실리콘니트라이드 박막형 마이크로칼로리미터 소자에 관한 것으로, 특히 20 K 내지 800 K의 넓은 온도 구간에서 미세시료의 비열측정이 가능한 정확도가 향상된 마이크로칼로리미터 소자에 관한 것이다. 이를 위해 본 발명은 양면 연마된 실리콘 프레임(11a,11b)의 상면에 제 1실리콘니트라이드 박막(12a,12b)을 포함하고, 하면에는 제2실리콘니트라이드 박막(13)을 포함하되, 상기 제2실리콘니트라이드 박막(13)의 하면에는 전기인출선과 체결되는 히터/센서(14a, 14b)를 포함하고 그 상면에는 등온층(15)을 포함하여 구성됨을 특징으로 하는 정확도가 향상된 마이크로칼로리미터 소자를 제시한다.

Description

정확도가 향상된 마이크로칼로리미터 소자
본 발명은 미소전자기계시스템(NEMS) 처리 기술에 의해 구현되는 실리콘 니트라이드 박막 플랫폼 기반의 마이크로칼로리미터 소자에 관한 것이다. 더욱 상세하게는 본 발명은 극미세물질의 비열측정장치를 위한 실리콘니트라이드 박막형 마이크로칼로리미터 소자에 관한 것으로, 특히 20K 내지 800K 의 넓은 온도 대역에서 미세시료의 비열측정이 매우 정확하게 측정되는 신구조형 마이크로칼로리미터 소자에 관한 것이다.
통상적으로 미세물질의 열적변화를 검침하는 마이크로칼로리미터는 센서의 감도를 높이기 위해 기판 혹은 어덴다 (addenda)의 영향을 최소화시키는 것이 중요하다. 따라서 이 같은 요구에 부응하기 위해 기판을 박막으로 제작하여 기판의 영향을 최소화하는 수단이 제시된바 있다 (Journal of Korean Physical Society, Vol. 49, No. 4, 1370, (2006)).
상기한 논문에 게재된 바와 같이 상온 이하의 온도에서 미세시료의 비열을 측정할 수 있는 박막형 마이크로칼로리미터가 제안되고 있으나, 이 마이크로 칼로리미터의 초기 구조는 부정확도가 30% 정도로 심해서 표준 시료를 측정하고 이를 이용해 데이터보정을 해야 하는 이유로 측정 시간과 정확도에 모두 문제점을 가지고 있는 것이 현 실정이다. 다만, 상기 논문에서 시료부분에서 외부로의 열전도가 최소화될수록 그 검침의 정확도가 향상됨을 제안된 바 있으나 아직까지 구체적인 구조를 제안하여 정확도가 명확히 향상됨을 증명한 마이크로 칼로리미터가 알려진 바가 없다.
한편, 고온 영역에의 비열의 측정은 상전이의 특성을 고찰함에 있어 중요한 의미를 가진다. 그러나 고온 영역에서는 기판 자체의 특성으로 인해 고온접합부에 한정되어야 할 열변화가 기판 내부로 분산되거나, 저온접합부로의 열전달이 발생하는 등의 문제로 인해 그 측정의 정확도가 떨어지는 문제를 안고 있었다. 특히 실리콘 혹은 사파이어 기판의 경우 고온에서 어덴다의 열용량이 비교적 크다는 문제를 가지는바 측정의 정확도를 개선하기 위한 필요성이 제기되어 왔다. 또한, 종래의 완화법에 의할 경우 어덴다 자체의 높은 비열로 인해 결과적으로 전체적인 측정 시간을 길게 한다는 문제를 내포하고 있었다.
한편, 특정물질에 대한 열용량의 측정은 전자 및 포논의 상태밀도(densities of states), 자기적 상호작용, 구조 및 전자 상전이 등과 같은 물질의 물리적 특성에 관한 중요한 기본정보를 제공한다. 물질의 다양한 기본 정보를 얻어내기 위해서는 열용량 측정값의 정확도가 무엇보다 필수적이다. 그러나 열용량의 정확도는 특히, 기판이나 어덴다 열용량에 크게 의존한다. 일반적으로 구하고자 하는 시료의 열용량은 전체 열용량으로부터 어덴다 열용량을 차감해서 얻어지므로, 만일 어덴다의 열용량이 시료의 그것보다 매우 크다면, 매우 큰 오차와 불확실성을 가지게 된다. 더군다나, 얇은 사파이어 결정 기판으로 된 통상의 칼로리미터 플랫폼은 100 K 이상에서 약 10-3-10-2 J/K 정도의 매우 큰 포논 비열 기여 (phonon specific heat contribution)를 보이므로, 작은 부피의 시료에 대한 열용량의 측정은 고온에서 점점 더 어려운 과제가 되고 있다.
상기한 과제를 해결하기 위한 단순한 방법은 시료의 비열 양을 늘리는 것이었다. 그러나 최근 다양한 나노 물질의 연구 활성화와 함께, 새롭게 발견되는 매우 작은 나노미터나 마이크로 크기 단결정체(single crystalline) 또는 박막 상의 신소재의 열용량 측정은, 많은 연구진들이 매우 관심 있는 물성량임에도 불구하고, 현실적으로 이들의 열용량이 어덴다 열용량보다 극히 작고, 시료의 양을 증가시킬 수 없어, 실질적으로 측정을 할 수 없는 실정이다.
따라서 이 같은 작은 열용량의 정확한 측정은 통상적인 종래의 칼로리미터 기반된 기술로는 매우 어려운 일이다. 대안적인 접근으로써, 어덴다 열용량을 줄이는 것이 큰 도움을 줄 수 있다. 사실상, 어덴다 열용량을 크게 낮춘 획기적인 칼로리미터를 제조하기 위한 수많은 노력이 있어왔다. 비결정질 (amorphous) 실리콘 니트라이드 박막에 기반을 둔 마이크로칼로리미터가 D. W. Denlinger와 그 밖의 사람들에 의해 개발된 이후로, 다양한 종류의 마이크로칼로리미터 기반의 MEMS 구조가 물질의 열용량을 측정하기 위해 제안되어 왔다. 근자의 진전에 의하면, 심지어 10억 분의 1리터의 유기물 용액 (organic liquids)이나 생체적응재료 (bio-materials)의 특정한 열량까지도 특수한 구조를 가지는 플랫폼을 이용함으로써 성공적으로 측정할 수 있다. 그러나 측정에 있어 절대적인 정량적 정확성은, 매우 작은 어덴다를 가지는 칼로리미터를 사용할 경우, 해결해야 할 매우 큰 과제이다. 칼로리미터의 크기가 작아질수록 작은 열용량의 측정은 보다 어려워진다. B. Revaz 등이 보고한 바와 같이, 측정의 정확도는 많은 실험적 매개변수, 예를 들면, 시료 질량, 온도, 등온 조건(isothermal condition) 등에 의해 중대한 영향을 받는다.
매우 작은 시료의 측정을 위한 마이크로칼로리미터를 사용하기 위해서는, 개개의 시료에 대한 조건을 고려한 마이크로칼로리미터의 설계를 포함한 측정설비를 적절하게 조절하여야하는데, 이는 측정의 절대적인 정확도에 중대한 영향을 미칠 수 있기 때문이다.
본 발명은, 마이크로칼로리미터를 이용한 열용량 측정의 정확도는 구체적인 마이크로칼로리미터의 설계, 특히 등온영역 플랫폼과 주변기판 사이의 불필요한 열손실을 줄여 등온 영역의 온도를 더 균일하게 유지할 수 있는 센서 및 히터의 전기인출선 구조 설계에 의해 크게 의존함을 증명하고, 이를 바탕으로 정확도가 매우 개선된 새로운 구조의 정확도가 향상된 마이크로칼로리미터 소자를 제시하고 있다.
본 발명은 전술한 마이크로칼로리미터를 이용한 열용량 정확도 문제를 해결하기 위한 방법 및 새로운 소자를 제시함을 그 목적으로 한다. 이를 위해서, 매우 작은 열용량을 갖는 어덴다를 가진 마이크로칼로리미터 구조를 제시하고, 적절한 히터 및 센서 전기선 선폭을 채용하여 등온플랫폼의 온도 균질성을 획기적으로 향상시킨, 매우 정확한 미세 비열 측정이 가능한 새로운 마이크로칼로리미터 구조를 제시함을 그 목적으로 한다.
본 발명은 상기한 과제를 해결하기 위하여, 양면 연마된 실리콘 프레임(11a,11b)의 상면에 제 1실리리콘니트라이드 박막(12a,12b)을 포함하고, 하면에는 제2 실리콘니트라이드 박막(13)을 포함하되, 상기 제 2 실리콘니트라이드 박막(13)의 하면에는 전기인출선과 체결되는 히터/센서(14a, 14b)를 포함하고 그 상면에는 등온층(15)을 포함하여 구성됨을 특징으로 하는 정확도가 향상된 마이크로칼로리미터 소자를 제시한다.
본 발명에 의한 새로운 구조의 마이크로칼로리미터를 이용할 경우, 20 K에서 800 K 에 이르는 넓은 온도 범위에 대해 다양한 나노 및 마이크로미터 크기의 물질에 대해, 전형적으로 10-6 J/K 정도의 미세 열용량을 5% 미만의 오차 범위 내에서 정확하게 측정할 수 있다.
도 1은 본 발명의 일실시예에 따른 마이크로칼로리미터의 절단부 단면도.
도 2는 본 발명의 일실시예에 따른 마이크로칼로리미터 패키지 평면도.
도 3은 본 발명의 일실시예에 따른 전기인출선 및 히터/센서의 개략도.
도 4는 본 발명의 일실시예에 따른 제조 과정도.
도 5는 (a)에서 CFM을 이용한 측정 개략도를 도시하고 (b)에서 히팅파워에 대한 마이크로칼로리미터의 온도응답을 도시한다.
도 6은 마이크로칼로리미터의 측정데이터를 도시한다. 이 경우 원형 및 다이아몬드형으로 표시된 부분은 종래의 마이크로칼로리미터에 대한 데이터이고 본 발명의 경우 사각형으로 표시함) (a)부분은 여러 마이크로칼로리미터의 λ l 이고 (b)부분은 구리의 비열을 측정한 것이며, 여기의 실선은 구리의 표준데이터이고, (c)부분은 본 발명을 포함한 종래 마이크로칼로리미터를 이용한 구리 비열측정값이 구리의 표준데이터로부터 ((b)의 실선) 벗어난 에러를 백분율로 도시한다.
*도면의 주요부호에 대한 설명*
10 : 정확도가 향상된 마이크로칼로리미터 소자
11a.11b : 실리콘 프레임
12a,12b : 제1실리콘니트라이드 박막
13 : 제2 실리콘니트라이드 박막
14a,14b : 히터/센서
15 : 등온층
20,21,22,23 : 전기인출선
이하 본 발명에 첨부된 도면을 참조하여 본 발명의 바람직한 일실시예를 상세히 설명하기로 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 고안의 요지를 모호하지 않게 하기 위하여 생략한다.
본 발명의 마이크로칼로리미터의 구조는 도1 내지 도3을 통해 설명될 수 있다. 도1은 본 발명의 일실시예에 따른 마이크로칼로리미터의 절단부 단면도를 도시하며, 도2는 본 발명의 일실시예에 따른 마이크로칼로리미터 패키지 평면도를 도시하고, 도3은 본 발명의 일실시예에 따른 전기인출선 및 히터/센서의 개략도를 도시한다.
도1에서 도시된 바와 같이 본 발명의 정확도가 향상된 마이크로칼로리미터 소자(10)는 양면 연마된 실리콘 프레임 (11a,11b)의 상면에 제 1실리콘니트라이드 박막 (12a,12b)을 포함하고, 하면에는 제 2실리콘니트라이드 박막 (13)을 포함하되, 상기 제2실리콘니트라이드 박막 (13)의 하면에는 전기인출선과 체결되는 히터/센서 (14a,14b)를 포함하고 그 상면에는 등온층 (15)을 포함하여 구성됨을 특징으로 한다.
또한, 상기한 히터/센서는 필요에 따라 제2실리콘니트라이드 박막 (13)의 하면과 히터/센서 (14a.14b) 사이에 하면 점착층을 더 포함하여 구성될 수 있으며, 상기한 등온층의 경우에도 필요에 따라 제2실리콘니트라이드 박막 (13)의 상면과 등온층 (15) 사이에 상면 점착층을 더 포함하여 구성될 수 있음은 물론이다.
한편, 상기한 제1 및 제2실리콘니트라이드 박막 (12a,12b,13)은 저압 화학기상증착법 (LPCVD, low pressure chemical vapor deposition)을 이용하여 양면 연마된 실리콘 웨이퍼 상에 스트레스를 적게 받는 (low-stress) 실리콘 니트라이드를 증착함으로써 형성되며, 상기한 히터/센서 (14a,14b)는 사진평판술 (photolithography) 및 금속화 (metallization)를 이용해 형성되어진다. 또한, 상기한 히터/센서(14a,14b)는 소정 두께를 가지되 바림직하게는 50㎚ 이하 두께의 Au 내지는 Pt 가 이용되었고, 필요에 따라 하면 점착층으로 Cr 또는 Ti이 소정 두께를 가지되 바람직하게는 3㎚ 이하 두께로 더 포함되어 구성될 수 있다.
또한, 상기 등온층(15)은 반응성 이온식각 (reactive ion etching)을 이용해 상기히터/센서 (14a,14b)의 반대 면에 식각마스크를 형성하여 식각된 후 실리콘 니트라이드 박막에 증착함으로써 형성된다. 등온층 (15)은 필요에 따라 Cr 또는 Ti으로 된 상면 점착층을 더 포함하여 형성될 수 있으며, 그 두께는 상면 점착층을 포함하여 200㎚ 이하로 형성되되, Au 내지는 Pt가 이용됨이 바람직하다.
한편, 도 2 및 도3에서는 본 발명의 정확도가 향상된 마이크로칼로리미터 소자 (10)의 평면 및 히터/센서 (14a,14b)와 전기인출선 (20,21,22,23)을 도시한다. 도시된 바와 같이 본 발명은 실리콘 프레임 상의 소정영역에 상기한 제2실리콘니트라이드 박막 (13)이 위치하고 그 박막의 소정영역에 히터/센서 (14a,14b)를 구비하여 형성된다.
한편, 상기 히터/센서 (14a,14b)의 반대 면에는 대응되는 영역에 등온층이 형성되어 있음은 전술한 바와 같다.
또한, 상기 히터/센서 (14a.14b)는 상방 및 하방에 각기 4개씩 형성된 전기인출선 (20 내지 23)과 체결된다. 전기인출선은 도2와 도3에서 보다 상세히 도시되는데, 실리콘 프레임 상에 형성되되, 측단 영역에서 히터/센서 (14a,14b)와의 체결영역 (16)인 중심영역으로 향하면서 인출선 폭이 점진적으로 감소면서 형성된다. 이는 등온층 (15)을 제외하고는 발열을 방지하기 위해 발열영역을 제한하기 위함이다. 따라서 전기인출선은 그 측단 영역에서부터 그 폭을 점진적으로 줄여가면서 히터/센서 (14a,14b)와의 체결영역에서는 소정 선폭을 가지되 20㎛ 이하의 선폭으로 형성됨이 바람직하다.
또한, 상기한 히터/센서 (14a,14b)는 등온층(15)의 반대영역에 소정 폭을 가지되 바람직하게는 20㎛ 이하의 폭과 소정두께를 가지되 바림직하게는 50㎚ 이하의 두께를 가지는 동일한 두께 및 선폭으로 형성된다. 한편, 상기한 히터/센서 (14a,14b)는 일방이 히터인 경우 타방은 센서로 그 구역을 분획하여 형성된다. 따라서 히터/센서로 표시한 것은 일방 (14a)이 히터인 경우 타방 (14b)은 센서임을 의미한다. 히터와 센서를 교차시키거나 병행하여 구성하면 양자 간에 전기적인 용량 결합(capacitive coupling)으로 인한 간섭이 일어나 측정 정확도를 떨어뜨리는 등의 문제가 있다. 분획된 히터/센서는 이러한 용량 결합을 현저히 줄어들기 때문에 더욱 정확한 측정이 가능하다. 한편, 상기한 전기인출선은 필요에 따라 Au 내지는 Pt로 형성될 수 있다.
본 발명은 실리콘 니트라이드 기반의 마이크로칼로리미터 소자를 제조하기 위해 일반적인 KOH 식각법을 사용했다. 먼저, LPCVD을 이용하여 실리콘 웨이퍼 상에 스트레스를 적게 받는 실리콘 니트라이드를 증착했다. 한편, 사진평판술 (photolithography) 및 금속화 (metallization)를 사용하여 히터 및 센서를 특징지웠다. 히터 및 센서를 위해, 본 발명에서는 50㎚ 두께의 Au 내지는 Pt 가 이용되었고, Cr (3 ㎚)가 점착층으로 이용되었다.
박리 (lift-off) 후에, 반응성 이온식각 (reactive ion etching)을 이용해 반대면에 식각마스크를 형성했다. 이어서, 20 wt.%의 KOH 용액에서 4시간 동안 90 ℃를 유지하면서 식각된다. 상기한 과정을 거친 후에, 실리콘 니트라이드 박막에 등온층을 증착한다. 등온 영역의 두께는 Cr 접착층을 포함하여 ~ 200㎚이다.
이하에서 도4를 참조하여 본 발명의 마이크로칼로리미터의 제조 과정을 단계적으로 상술하면 다음과 같다.
(a)실리콘니트라이드 증착단계
연마된 양면 Si 웨이퍼의 양면이 패턴된다. 이 경우 일면만이 연마된 Si 웨이퍼를 이용할 경우 연마되지 않은 일면은 그 표면의 거칠기로 인해 식각과정에서 공격받을 수 있다. LPCVD 에 의해 Si 웨이퍼의 양면에 낮은 스트레스를 받는 비결정질 실리콘니트라이드 (Si-N)를 증착한다. 증착되는 실리콘니트라이드 박막의 두께는 170㎚ 내지 1㎛이다. 상면의 실리콘니트라이드는 KOH 벌크식각 과정에서 Si의 마스크로 이용된다. 하면에 증착되는 실리콘니트라이드층은 전기적으로 시료로부터 히터/센서를 분리시키고, 시료를 고정하는 플랫폼으로 작용한다.
(b)히터/센서 패턴단계
웨이퍼 하면에 히터/센서를 형성하기 위해 사진평판술을 이용한다.
(c)히터/센서 증착단계
Ti/Au 또는 Ti/Pt 필름 (3 ㎚/50 ㎚)이 전자선 증착 (e-beam evaporation) 또는 스퍼터링 (sputtering)을 통해 하면에 증착된다.
(d)박리 단계
박리 (lift-off) 과정 후에는, 단지 히터/센서 영역만이 웨이퍼 상에 존재한다.
(e)실리콘니트라이드 식각마스크 형성단계
상면에 실리콘니트라이드의 직각의 식각 마스크 (~5 ㎚ X ~5 ㎚)를 형성하기 위해 사진평판술을 이용한다. 이러한 사진평판술의 단계를 거치는 동안 웨이퍼는 1 °범위 내에서 마스크로 잘 정렬되는데, 이는 비등방성 식각 (highly directional etch)이 다음 단계에서 이용되기 때문이다. 웨이퍼로부터 칼로리미터를 쉽게 잘라내기 위해, 개개의 직사각형의 칼로리미터를 300㎛의 라인에 의해 분리하였는데, 이는 다음 단계의 식각과정 동안에 V형의 홈 (groove)으로써 식각된다. 직사각형의 코너부분에서 식각되는 것을 방지하기 위해, 모든 교차점에서 개개의 칼로리미터의 경계선을 남겼다.
(f)실리콘니트라이드 식각단계
실리콘니트라이드를 식각하기 위해 100 mTorr의 CF4 : O2 = 9 : 1 가스 및 60 Watt 전력에서 반응성 이온 식각을 이용한다. 이러한 식각과정에서 포토레지스터는 실리콘니트라이드의 식각마스크로 작용한다. 전체적인 식각시간은 실리콘니트라이드의 두께에 따라 다르며, 대략 5 내지 30분 정도이다.
(g)잔류 포토레지스터 제거단계
잔류 포토레지스터는 아세톤에 의해 제거된다.
(h)실리콘 식각단계
반응성 이온식각에 의해 실리콘니트라이드의 식각 후에, 노출된 Si는 4시간 동안 KOH 용액(20 wt.%) 내에서 비등방적으로 식각된다. 식각수조의 온도는 90 내지 95 ℃를 유지한다. 식각률은 ~2 ㎛/min 이다. 식각률은 용액의 온도에 따라 증가하고 20 wt.%의 농도에서 최대치를 보였다. KOH 식각은 방향성을 갖는데, [100] 과 [111] 방향 간의 식각비는 약 400 : 1 이다. 따라서 식각과정을 거친 후에는 식각표면은 [111]표면을 따라 ~54.7 °의 경사를 가지고 형성된다. KOH 용액 내에서 실리콘니트라이드 층의 식각률은 Si 영역에 비해 무시할만한 정도이다. 식각과정 동안에 실리콘니트라이드 박막의 결손을 방지하기 위해, 테프론으로 된 특수한 캐리어(carrier)를 이용할 수 있다. 벌크 식각의 결과 큰(~5 ㎚ x ~5 ㎚) 독립된 박막 구조가 제조된다. 이 같은 얇은 니트라이드 박막을 갖는 웨이퍼는 30분 동안 중성화용액에서 조심스럽게 세정된다.
(i)등온층 증착단계
N2 건조 후에, ~200 ㎚의 Au 층은 칼로리미터와 시료간의 열적 전도성을 향상시키고 등온특성을 획득하기 위해 니트라이드 박막의 후면에 증착된다. 우선, Ti 층이 점착력을 개선시키기 위해 증착된다. Au 등온 층을 특성화하기 위해, 유사한 KOH 식각과정을 이용한 실리콘 쉐도우 마스크를 채택했다. 쉐도우 마스크 및 실리콘니트라이드 박막은 증착 동안에 100㎛의 간격을 유지한다.
(j)웨이퍼 분할단계
등온층이 형성된 웨이퍼를 조심스럽게 조각으로 잘라낸다. KOH 식각과정에서 만들어진 V형의 홈은 박막의 파손 없이 칼로리미터를 쪼개어내는 것을 가능하게 한다.
상기한 단계에 따라 형성된 마이크로칼로리미터 소자를 특성화하고 그 효과를 증명하기 위해, CFM (curved fitting method) 기반의 열용량 측정 방법을 사용하였다. 열공급원의 온도는 퀀텀 디자인 사의 PPMS (저온 유지 장치)에 의해 조절되었다. 소스미터를 이용해 마이크로칼로리미터의 발열기 상에 직류 전류를 인가하고, 히팅파워를 관찰했다. 등온영역의 온도편차를 측정하기 위해, AC 록인 증폭기 및 전류 교정기를 사용했다.
측정된 히팅파워 및 등온영역의 온도는 시료 또는 어덴다의 열용량 및 또 다른 매개변수의 계산을 위해 이용된다. 도5에서 보는 바와 같이 마이크로칼로리미터의 시료와 등온영역 간에 한정된 열전도성을 고려하기 때문에 열전달 과정은 다음과 같이 표현된다.
Figure PCTKR2009002941-appb-I000001
여기에서, P, c, T, c', T', λ l , λ s 는 각각 인가된 히팅파워, 열용량, 시료의 온도, 플랫폼의 열용량 및 온도, 등온영역과 열공급원간의 열 전도성 및 시료와 플랫폼간의 한정된 열 전도성을 의미한다.
히팅파워 P(t) 및 등온영역의 온도응답으로부터, Γ(t)≡ΔT'(t), H(t), S(t) 및 Q(t)가 추출된다.
여기에서
Figure PCTKR2009002941-appb-I000002
,
Figure PCTKR2009002941-appb-I000003
Figure PCTKR2009002941-appb-I000004
이다.
Γ(t)는 H(t), S(t) 및 Q(t)의 선형 조합형태로 표현될 수 있으므로
Figure PCTKR2009002941-appb-I000005
이고, 최소제곱법을 적용함으로써 H(t), S(t) 및 Q(t)의 계수가 정해지며, 이 결과는 전술한 c, c', λ l , λ s 값을 제공하며 또한 열풀림 시간 상수 (thermal relaxation time) τ 1 τ 2 를 제공한다.
따라서 본 발명의 경우 동시에 어덴다 및 시료의 열용량, λ l , λ s , τ 1 τ 2 를 측정할 수 있다. τ 1 τ 2 측정을 통해 타우-2 효과 (τ-2 effect)를 고려할 수 있는데, 이는 시료와 등온영역 간에 열 전도성이 나쁜 경우에 열풀림 시간 상수가 하나로 설명되지 않으므로 추가적으로 고려해야하는 항이다. 특히 작은 단결정질 (single crystalline) 시료에 있어서, 견실하고 신뢰할만한 기계적, 열적 접촉을 이루기 위해 단결정을 등온 영역에 강하게 압착하면 실리콘 나이트라이드 박막이 파손되므로, 보통 단결정 시료를 열적 특성을 증가시키는 열접착체 (thermal grease, N-grease 등) 위에 올려놓게 된다. 이렇게 되면 흔히 시료와 나이트라이드 등온층간의 열접촉이 좋지 않고, 만일 좋은 열 전도성을 만족할 수 없다면, 큰 타우-2효과가 나타나게 되고, 일반적인 열적 완화법(thermal relaxation method)은 이용될 수 없다. 이것이 타우-2 효과가 현저한 때에도 사용할 수 있는 CFM을 사용해야 하는 이유이다.
도6에서는 종래의 마이크로칼로리미터와 본 발명에 의한 마이크로칼로리미터간의 측정 정확도 등을 비교하여 도시한다. 여기에서 원형 및 다이아몬드형으로 표시된 부분은 종래의 마이크로칼로리미터에 대한 데이터이고 본 발명의 경우 사각형으로 표시하였다.
마이크로칼로리미터의 절대적인 정확도를 검토하기 위하여, 구리(Cu)의 비열을 측정했다. 작은 분량의 구리(~ 300 ㎍)가 칼로리미터의 등온영역에 열 접착제를 이용해 부착되어진다. 이어서, 마이크로칼로리미터는 PPMS 에 설치된다. 측정 동안에, 어덴다 열용량은 자동적으로 얻어진 데이터로부터 제거된다. 도6에서 도시된 바와 같이 종래의 마이크로칼로리미터-곧, 전기인출선의 선폭이 매우 크거나 변화하지 않아 발열영역이 등온구간내부로 잘 제한되지 않는 마이크로칼로리미터-의 측정 오차는 표준 구리 비열과 비교해 최대 30%까지 얻어졌다. 또, 측정된 오차는 CFM 방법에 의해 동시에 측정된 변수인, 소자의 λ l -고온의 등온영역과 저온의 주변 기판사이의 열전도도-와 유사한 거동을 보였는데, 특히, 도6의 다이아몬드형으로 표시되는 마이크로칼로리미터의 경우 비열의 온도 특성이 < 60 K 온도영역에서 λ l 과 유사한 거동을 보인다. 이로부터 큰 λ l 은 등온 영역내에서 큰 열적 변화(thermal gradient)와 온도 불균일성을 유발하고, 등온영역 측정 온도의 과소추정을 유발함을 추론할 수 있다. 이러한 기생적 (parastic) 온도 과소 추정으로 인해 시료의 열용량이 실제의 열용량보다 크게 측정되는 것이다. 이것이 구리의 비열이 표준 데이터 보다 크게 측정되는 이유이다. 이러한 결과를 통해, λ l 의 역할이 정확한 측정을 위해 결정적임을 알게 되었다.
등온영역에서의 온도 과소추정의 문제를 해결하는 것은 λ l 의 감소 및 등온층의 두께를 증가하는 2가지의 해법이 있다. 후자의 해결 방법은 등온층의 현저한 증가를 필요로하고, 이 경우 후막 증착에 수반되는 장시간 열순환 (thermal cycling)에서 기인한 박막의 스트레스 증가성 파손과 어덴다 열용량 증가라는 큰 단점이 새롭게 제기된다. 전자의 해결 방법은 고온과 저온영역의 열전도가 대부분 일어나는 전기인출선의 선폭을 조절하면 쉽게 이루어질 수 있다. 더구나 이 방법은 후자와 같이 마이크로칼로리미터의 제조수율에 영향을 주지 않으면서도 이루어질 수 있는 장점이 있다. λ l 은 실리콘 니트라이드 박막의 열 전도성의 합이고, 금속성 전기인출선의 열 전도성 및 그들의 λ l 에 대한 기여도와 거의 같기 때문에, 좁은 전기인출선을 가지는 본 발명이 그 측정 정확도에 있어 탁월하다. 본 발명의 마이크로칼로리미터를 가지고 다시금 구리의 비열을 측정하면, 전술한 종래의 마이크로칼로리미터와 비교해 보다 좋은 결과를 보인다(도6의 b부분). 도6에 도시된 바와 같이, 본 발명의 λ l 는 기대한 바대로 종래의 마이크로칼로리미터에 비해 작고, 열용량 측정 정확도는 획기적으로 향상됨을 알 수 있다.

Claims (6)

  1. 마이크로칼로리미터 소자에 있어서,
    양면 연마된 실리콘 프레임(11a,11b)의 상면에 제1 실리콘니트라이드 박막(12a,12b)을 포함하고, 하면에는 제2 실리콘니트라이드 박막(13)을 포함하되, 상기 제 2 실리콘니트라이드 박막(13)의 하면에는 전기인출선과 체결되는 히터/센서(14a, 14b)를 포함하고 그 상면에는 등온층(15)을 포함하여 구성되되,
    상기한 히터/센서(14a,14b)는 일방이 히터인 경우 타방은 센서로 그 구역을 분획하여 형성됨을 특징으로 하는 정확도가 향상된 마이크로칼로리미터 소자.
  2. 제 1항에 있어서,
    상기 히터/센서(14a,14b)는 20㎛ 이하의 폭과 50nm 이하의 두께로 형성되고, 상기 전기인출선은 히터/센서(14a,14b)와의 체결영역에서 소정 선폭을 가지되 20㎛ 이하의 선폭으로 형성됨을 특징으로 하는 정확도가 향상된 마이크로칼로리미터 소자.
  3. 제 1항에 있어서,
    상기 히터/센서(14a,14b) 및 전기인출선은 Au 또는 Pt로 형성됨을 특징으로 하는 정확도가 향상된 마이크로칼로리미터 소자.
  4. 제 1항에 있어서,
    상기 히터/센서(14a,14b)를 분획하여 구성함으로써 히터와 센서간 상호 전기적 간섭을 감소시킴을 특징으로 하는 정확도가 향상된 마이크로칼로리미터 소자.
  5. 제 1항에 있어서,
    상기 등온층(15)은 200nm 이하의 두께로 형성됨을 특징으로 하는 정확도가 향상된 마이크로칼로리미터 소자.
  6. 제 1항에 있어서,
    전기인출선은 측단 영역에서 히터/센서(14a,14b)와의 체결영역인 중심영역으로 향하면서 인출선 폭이 점진적으로 감소하면서 형성됨을 특징으로 하는 정확도가 향상된 마이크로칼로리미터 소자.
PCT/KR2009/002941 2009-06-02 2009-06-02 정확도가 향상된 마이크로칼로리미터 소자 WO2010140719A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/002941 WO2010140719A1 (ko) 2009-06-02 2009-06-02 정확도가 향상된 마이크로칼로리미터 소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/002941 WO2010140719A1 (ko) 2009-06-02 2009-06-02 정확도가 향상된 마이크로칼로리미터 소자

Publications (1)

Publication Number Publication Date
WO2010140719A1 true WO2010140719A1 (ko) 2010-12-09

Family

ID=43297850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002941 WO2010140719A1 (ko) 2009-06-02 2009-06-02 정확도가 향상된 마이크로칼로리미터 소자

Country Status (1)

Country Link
WO (1) WO2010140719A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381495A (zh) * 2017-08-14 2017-11-24 南方科技大学 一种mems微热板及其制造方法
CN110040678A (zh) * 2019-04-18 2019-07-23 中国科学院上海微系统与信息技术研究所 微传感器及其制备方法
KR20200092751A (ko) * 2019-01-25 2020-08-04 서울대학교산학협력단 극저온 환경에서 다중 물성 측정을 하기 위한 극저온 냉동기 및 이를 이용한 비열 측정 방법
CN114031033A (zh) * 2021-11-29 2022-02-11 电子科技大学 基于声子辅助的量子比特三维集成装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634718A (en) * 1994-07-27 1997-06-03 The United States Of America As Represented By The Secretary Of Commerce Particle calorimeter with normal metal base layer
US6079873A (en) * 1997-10-20 2000-06-27 The United States Of America As Represented By The Secretary Of Commerce Micron-scale differential scanning calorimeter on a chip
US20050254547A1 (en) * 2004-05-17 2005-11-17 Anis Zribi Nano-calorimeter device and associated methods of fabrication and use
US20070286254A1 (en) * 2004-04-20 2007-12-13 Chung-Wah Fon Microscale Calorimeter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634718A (en) * 1994-07-27 1997-06-03 The United States Of America As Represented By The Secretary Of Commerce Particle calorimeter with normal metal base layer
US6079873A (en) * 1997-10-20 2000-06-27 The United States Of America As Represented By The Secretary Of Commerce Micron-scale differential scanning calorimeter on a chip
US20070286254A1 (en) * 2004-04-20 2007-12-13 Chung-Wah Fon Microscale Calorimeter
US20050254547A1 (en) * 2004-05-17 2005-11-17 Anis Zribi Nano-calorimeter device and associated methods of fabrication and use

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381495A (zh) * 2017-08-14 2017-11-24 南方科技大学 一种mems微热板及其制造方法
CN107381495B (zh) * 2017-08-14 2023-11-14 南方科技大学 一种mems微热板及其制造方法
KR20200092751A (ko) * 2019-01-25 2020-08-04 서울대학교산학협력단 극저온 환경에서 다중 물성 측정을 하기 위한 극저온 냉동기 및 이를 이용한 비열 측정 방법
KR102149009B1 (ko) 2019-01-25 2020-08-28 서울대학교산학협력단 극저온 환경에서 다중 물성 측정을 하기 위한 극저온 냉동기 및 이를 이용한 비열 측정 방법
CN110040678A (zh) * 2019-04-18 2019-07-23 中国科学院上海微系统与信息技术研究所 微传感器及其制备方法
CN110040678B (zh) * 2019-04-18 2021-06-18 中国科学院上海微系统与信息技术研究所 微传感器及其制备方法
CN114031033A (zh) * 2021-11-29 2022-02-11 电子科技大学 基于声子辅助的量子比特三维集成装置
CN114031033B (zh) * 2021-11-29 2023-04-07 电子科技大学 基于声子辅助的量子比特三维集成装置

Similar Documents

Publication Publication Date Title
US5393351A (en) Multilayer film multijunction thermal converters
Rossi et al. Realization and performance of thin SiO2/SiNx membrane for microheater applications
Sheng et al. A low-power CMOS compatible integrated gas sensor using maskless tin oxide sputtering
US6843596B2 (en) Device and a method for thermal sensing
US9580305B2 (en) Single silicon wafer micromachined thermal conduction sensor
US6380605B1 (en) Device and a method for thermal sensing
Brotzen et al. Thermal conductivity of thin SiO2 films
KR20090064693A (ko) 마이크로 가스 센서 및 그 제작 방법
Hedrich et al. Structuring of membrane sensors using sacrificial porous silicon
KR100911090B1 (ko) 정확도가 향상된 마이크로칼로리미터 소자
WO2010140719A1 (ko) 정확도가 향상된 마이크로칼로리미터 소자
US6203673B1 (en) Method of producing a thin-film platinum temperature-sensitive resistor for a thin-film microstructure sensor
CN112909155A (zh) 一种直接测量微纳材料热电优值的探测器及制备工艺
WO1994016463A1 (en) Multilayer thin film multijunction integrated micropotentiometers
CN1206528C (zh) 导体薄膜热导率的测试装置
CN215812545U (zh) 一种直接测量微纳材料热电优值的探测器
JP3178098B2 (ja) 温度センサとその製法
CN111157573B (zh) 薄膜热导率的测量装置及测量方法
Song et al. A new structure for measuring the thermal conductivity of thin film
KR101070998B1 (ko) 고온에서의 미세 열용량 측정 장치
TWI676025B (zh) 熱膨脹係數檢測系統及方法
CN114487011B (zh) 测试微纳材料热电性能的微型探测器及测试方法
Moser et al. Compact test structure to measure all thermophysical properties for the in-plane figure of merit ZT of thin films
US11480479B2 (en) Microscale thermocouple probe for intracellular temperature measurements
Nowroozi‐Esfahani et al. Electrical properties, stability, and applications of ultrathin porous Pt films on SiO2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845561

Country of ref document: EP

Kind code of ref document: A1