WO2010053187A1 - 情報記録装置 - Google Patents

情報記録装置 Download PDF

Info

Publication number
WO2010053187A1
WO2010053187A1 PCT/JP2009/069083 JP2009069083W WO2010053187A1 WO 2010053187 A1 WO2010053187 A1 WO 2010053187A1 JP 2009069083 W JP2009069083 W JP 2009069083W WO 2010053187 A1 WO2010053187 A1 WO 2010053187A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
recording
magnetic field
magnetic pole
fgl
Prior art date
Application number
PCT/JP2009/069083
Other languages
English (en)
French (fr)
Inventor
五十嵐万壽和
宮本治一
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US13/128,010 priority Critical patent/US8724260B2/en
Priority to JP2010536817A priority patent/JP5558365B2/ja
Publication of WO2010053187A1 publication Critical patent/WO2010053187A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0024Microwave assisted recording

Definitions

  • the present invention relates to an information recording apparatus having a function of recording information by irradiating a magnetic recording medium with a high frequency magnetic field to excite magnetic resonance and inducing magnetization reversal of the recording medium.
  • Patent Document 1 discloses a recording method in which a magnetic recording medium is subjected to Joule heating or magnetic resonance heating with a high frequency magnetic field to locally reduce the coercive force of the medium.
  • microwave assisted recording a strong microwave band high frequency magnetic field is irradiated to a nanometer order region to locally excite the recording medium and reduce the magnetization reversal magnetic field to record information. Since magnetic resonance is used, a large magnetization reversal magnetic field reduction effect cannot be obtained unless a high-frequency magnetic field having a strong frequency proportional to the anisotropic magnetic field of the recording medium is used.
  • Patent Document 2 Japanese Patent Laying-Open No. 2005-025831
  • Patent Document 2 has a structure in which a laminated film having a structure similar to a GMR element (giant magnetoresistive effect element) is sandwiched between electrodes as a high-frequency oscillation element intended for microwave-assisted recording.
  • An element is disclosed.
  • the element can generate a minute high-frequency oscillating magnetic field by injecting conduction electrons having a spin fluctuation generated in the GMR structure into a magnetic material via a non-magnetic material.
  • Nature 425, 380 (2003) reports microwave oscillation by spin torque.
  • Microwave Assisted Magnetic Recording described in the TMRC2007-B7 lecture draft (Non-patent Document 2) includes a high-speed rotating magnet that rotates at high speed by spin torque in the vicinity of the magnetic recording medium adjacent to the main pole of the perpendicular magnetic head.
  • a technique for recording information on a magnetic recording medium having a large magnetic anisotropy by arranging a field generation layer (hereinafter abbreviated as FGL) to generate a microwave (high frequency magnetic field) is disclosed.
  • the recording density required in magnetic recording has exceeded about 1 Tbit per square inch.
  • a strong high-frequency magnetic field is applied to a nanometer. It is necessary to record the information by irradiating the order region to bring the magnetic recording medium into a local magnetic resonance state and reducing the magnetization reversal field.
  • Patent Documents 1 and 2 or Non-Patent Document 1 it is difficult to achieve a high recording density of 1 Tbit / square inch because the frequency of the oscillating high-frequency magnetic field is too low or the magnetic field strength is too weak. is there.
  • Non-Patent Document 2 If the technique disclosed in Non-Patent Document 2 is used, it is possible to generate a strong magnetic field to some extent, but a magnetization rotating body (FGL) whose magnetization is rotated by spin torque is fixed in the direction of the leakage magnetic field from the main magnetic pole. Therefore, there is a drawback that high frequency oscillation is not sustained in practice. Even if the effect of reducing the leakage magnetic field from the main magnetic pole is devised, the magnetization direction of the spin source is fixed, so the main magnetic pole magnetic field component applied perpendicular to the FGL and the spin torque flowing into the FGL The relationship with the direction depends on the polarity of the main magnetic pole.
  • FGL magnetization rotating body
  • Non-Patent Document 2 Since the optimum drive current value is different, the frequency of the obtained high-frequency magnetic field is different and there is a disadvantage that good writing cannot be performed.
  • the inventors of the present invention as a result of research, have adopted a configuration in which a laminated film constituting an FGL is disposed adjacent to a protrusion (lip) portion provided on the main magnetic pole, so that the high frequency from the main magnetic pole.
  • the inflow magnetic field to the magnetic field generator was found to be perpendicular to the film surface.
  • the main magnetic pole or the counter magnetic pole is used as a spin source, it is not necessary to change the value of the drive current according to the polarity of the main magnetic pole, and to always obtain the maximum strength of the high frequency magnetic field according to the desired frequency. Design became possible.
  • the main magnetic pole or the counter magnetic pole as a spin source, the main magnetic pole magnetic field component applied perpendicularly to the FGL and the direction of the spin torque flowing into the FGL are simultaneously reversed in synchronization with the reversal of the main magnetic pole polarity. The state does not depend on the polarity of the main pole. Therefore, oscillation at an optimum high frequency magnetic field frequency determined according to the recording medium to be used is realized without changing the FGL drive current.
  • the present invention provides an information recording apparatus that performs high-frequency magnetic field generated by FGL and performs the magnetic recording to solve the above-mentioned problems that occur with narrowing of the track and has high recording / reproducing performance. With the goal.
  • the inventors of the present invention analyzed the high-frequency magnetic field generated from the FGL, it was found that not only the magnitude of the magnetic field but also the direction of the magnetic field changed with time. This variation in the direction of the magnetic field is not so much affected when the width of the FGL is larger than the length in the height direction, but cannot be ignored when the width of the FGL is narrowed.
  • the influence of the magnetic field generated from the side surface of the FGL is such that the direction of the magnetic field changes in synchronization with the rotation of the FGL magnetization on the recording medium because the phase of the generated magnetic field from the ABS surface of the FGL is shifted by 90 degrees. Appears. At this time, the high-frequency magnetic field felt by the recording medium loses the balance between the component that contributes to the desired magnetization reversal (rotation direction) and the component that reinverts the reversed magnetization (rotation direction).
  • the high frequency magnetic field felt by the recording medium does not rotate (linearly polarized light), so that the component that contributes to the desired magnetization reversal and the reversed magnetization reversal component are balanced.
  • the write magnetic field from the main magnetic pole is sufficient, it can be biased to a desired magnetization reversal.
  • the rotation direction of the magnetization of the FGL is constant, if the magnetization reversal pattern is formed in a state where the balance between the two is lost, the probability that the reversed magnetization is reversed again increases. Even when the balance between the two is balanced, if the high-frequency magnetic field is too strong compared to the write magnetic field from the main magnetic pole, the effect of re-reversing the reversed magnetization becomes strong.
  • the magnetization transition width of the recording bit (boundary width between the self bit and the adjacent bit) is widened, and for bit pattern media (BPM). It is expected that the probability that the magnetization of the pattern cannot be reversed will increase.
  • a portion that is receded from the air bearing surface (ABS surface: the surface facing the information recording medium of the magnetic head) is the track width of the FGL. It has been found that by providing at the end of the direction, the variation in the direction of the magnetic field and the influence of the magnetic field from the side surface can be reduced.
  • the shape of the receding portion may be a simple step shape or a shape that recedes from the air bearing surface in a tapered shape. Alternatively, other more complicated shapes may be used.
  • An information recording apparatus having a recording density exceeding 1 Tbit per square inch can be realized, and at the same time, the reliability can be improved, and as a result, the cost can be reduced.
  • produces from FGL.
  • the figure of the simulation result which shows the change of the magnetization reversal state of a recording medium by the direction of precession of a high frequency magnetic field (clockwise oscillating magnetic field, one-way oscillating magnetic field, counterclockwise oscillating magnetic field).
  • the figure which shows FGL in which the taper part was formed also in the upper surface side in addition to the taper part on the ABS surface side.
  • FIG. 3 is a schematic cross-sectional view of the recording head and the recording medium of Example 1 as viewed from the track width direction.
  • FIG. 10B is a cross-sectional view of the schematic diagram shown in FIG. 10A as seen from the direction cut by the line segment Z-Z ′. The schematic diagram which looked at the schematic diagram shown to FIG.
  • FIG. 10A from the upper surface side (surface opposite to the ABS surface side).
  • FIG. 10B is a diagram showing a slider and a recording / reproducing head on which the recording head shown in FIG. 10A is mounted.
  • the schematic diagram which shows the relationship between a slider and a head running direction.
  • the schematic diagram which shows the relationship between a slider and a head running direction.
  • FIG. 3 is a diagram illustrating a configuration example of a magnetic head.
  • FIG. 3 is a diagram illustrating a configuration example of a magnetic head.
  • FIG. 3 is a diagram illustrating a configuration example of a magnetic head.
  • FIG. 3 is a diagram illustrating a configuration example of a magnetic head.
  • FIG. 3 is a diagram illustrating a configuration example of a magnetic head.
  • FIG. 6 is a schematic cross-sectional view of the recording head and the recording medium of Example 2 as viewed from the track width direction.
  • the schematic diagram which looked at the schematic diagram shown to FIG. 11A from the upper surface side (surface opposite to the ABS surface side).
  • FIG. 9 is a schematic cross-sectional view of the recording head and the recording medium of Example 3 as viewed from the track width direction.
  • FIG. 12B is a cross-sectional view of the schematic diagram shown in FIG. 12A as seen from the direction cut along line Y-Y ′.
  • FIG. 3 is a plan view showing a basic configuration of a magnetic disk device in Examples 1 to 3.
  • FIG. 13B is a cross-sectional view taken along the line AA ′ of FIG. 13A.
  • FIG. 6 is a configuration diagram of a recording / reproducing element of Example 4.
  • FIG. 6 is a configuration diagram of a recording / reproducing element of Example 4.
  • An example of an electrode pattern for integrating the recording / reproducing elements shown in FIGS. 14A and 14B The figure which shows an example of the electrode pattern for integrating the recording / reproducing element shown to FIG. 14A and 14B.
  • FIG. 1 shows an example of a magnetic field generated from the FGL.
  • the peripheral magnetic field was analyzed assuming that the magnetic field from the FGL has uniform magnetization inside the FGL and magnetization is generated on the end face perpendicular to the magnetization rotation plane.
  • Rectangular surface elements ⁇ (x 1 , y 1 , z 0 ), (x 1 , y 2 , z 0 ), (x 2 , y 1 , z 0 ), (x 2 , y 2 , z 0 ) ⁇ to the origin (A / m) is expressed by the following equation (1)
  • the rotation of the high-frequency oscillating magnetic field at the origin in FIG. 1 is in the yz plane with no x-directional component. Therefore, considering that the effective component of inversion of the magnetic material having the easy magnetization axis in the z-axis direction is only the high-frequency oscillating magnetic field component in the y-direction, the high-frequency oscillating magnetic field at the origin is considered to be substantially linearly polarized light. Since the magnetic field in the magnetization direction does not give torque to the magnetization, it does not affect the magnetization itself.
  • the “linearly polarized light” used in the present invention is defined as a situation where the vibration direction of the high-frequency oscillating magnetic field does not change with time.
  • substantially linearly polarized light is defined as a state in which the vibration direction does not change with time if the vibration magnetic field component in the magnetization direction is ignored when the magnetization direction of the magnetic material to be inverted is taken into consideration. . Further, in the present specification, when there is a magnetic material to be reversed, “substantially” is omitted.
  • R 11 , R 12 , R 21 , and R 22 are distances from the origin to the vertex of the rectangle.
  • the magnetic field distribution generated by the FGL and its change over time were obtained by weighting and adding the contribution from each surface of the FGL with the magnetization direction of the FGL.
  • the FGL magnetic field can be regarded as almost linearly polarized light when the track width is wide and only the magnetic field from the ABS surface needs to be considered.
  • the width w of the FGL is reduced to reduce the track pitch as the recording density is increased, the influence of the magnetic field from the side surface of the FGL cannot be ignored, and the FGL magnetic field becomes elliptically polarized light.
  • the z-axis and the y-axis should be read in Equation (1) and related equations.
  • the “elliptical polarization” used in the present invention is a situation in which the vibration direction and magnitude of the high-frequency oscillating magnetic field change with time, and the locus of the magnetic field vector forms an ellipse.
  • the trajectory of the magnetic field vector forms an ellipse and behaves as if precessing.
  • the plane element of Equation (1) is moved by X p in the x-axis direction. What is necessary is just to calculate the magnetic field to the origin.
  • the ellipticity r is defined by the ratio of the minor axis to the major axis (H ac-y / H ac-x ).
  • the high-frequency magnetic field generated at the recording bit formation position is changed from the ellipse to the circle gradually as the length of the FGL in the track width direction becomes smaller. I knew that I was approaching.
  • An oscillating magnetic field component perpendicular to the magnetization to be reversed contributes to the reversal.
  • the calculation is based on the assumption that magnetic particles having uniaxial magnetic anisotropy are reversed according to the simultaneous rotation model, and the behavior of the magnetization M was calculated using the following LLG equation.
  • the static magnetic field H d considered in this study is a static magnetic field created by the magnetic particles to be calculated, but in reality, it is necessary to consider the influence of adjacent particles and the like.
  • the external magnetic field H ext is a magnetic field applied to the magnetic body from the outside of the magnetic body.
  • FIG. 2 shows the application direction of the effective magnetic field.
  • H ext was applied in the direction opposite to the initial magnetization direction and inclined by ⁇ h from the vertical direction. Magnetization is reversed from the + z direction to the ⁇ z direction while rotating about the z axis.
  • the application direction of the high-frequency magnetic field H ac is shown only in the horizontal direction, z-H and linearly polarized light perpendicular to the linearly polarized light and z-H ext surface of ext plane, in a plane perpendicular to the z-axis
  • FIG. 3 shows the magnetization reversal when a magnetic field H ext and a high-frequency magnetic field H ac from the main pole are applied to a set of 1024 isolated magnetic particles whose easy magnetization axes are perpendicular to the film surface. It is a simulation result which shows a behavior.
  • indicates a state in which magnetization reversal has been completed by 3 ns (95% or more of 1024 are reversed), and ⁇ indicates a state in which magnetization is not reversed (95% or more of 1024 are not reversed).
  • the intermediate color shows a partially inverted state. From the figure, it can be seen that when the AC magnetic field is small, the clockwise oscillating magnetic field component has no inversion to the Stoner-Wohlfarth magnetic field, and the assist effect is not observed.
  • the counterclockwise component is considered to have an effect of assisting magnetization reversal by causing magnetic resonance because the AC magnetic field rotates in the same direction as the precession of magnetization.
  • a point to note when using a linearly polarized oscillating magnetic field is that when the AC magnetic field is too large, the effect of re-inversion due to the clockwise oscillating magnetic field component becomes significant, and recording cannot be performed.
  • the AC magnetic field fixes the H ac-x component and changes the magnitude of the orthogonal H ac-y . In the case of counterclockwise elliptically polarized light, H ac-y is positive, and in the case of clockwise elliptically polarized light, H ac-y is negative.
  • H ac-y is, the larger H ac-x is, the smaller H sw is, and a larger assist effect is obtained.
  • H ac-y is negative, H sw is large even if the oscillating magnetic field component in the down-track direction is the same, and it can be seen that the assist effect is suppressed by H ac-y component. So flip
  • FIG. 5 shows the reversal magnetic field H sw of FIG. 4 with respect to H ac-eff again. From the figure, the reversal magnetic field H sw is on the same curve for various combinations of the H ac-x component and the H ac-y component, and the reversal assist effective AC magnetic field is expressed by equation (4). Is considered effective.
  • FIG. 6 shows the switch AC magnetic field width ⁇ H ac-sw at the plotted points in FIG. 4 with respect to the ellipticity.
  • the width ⁇ H ac-sw is smaller as the ellipticity is larger, and it is possible to form a favorable reversed magnetization pattern having a large ellipticity even with the same inversion assist effective AC magnetic field.
  • the assist effective AC magnetic field H ac-eff is shown.
  • the horizontal axis is 0 immediately below FGL, and the main magnetic pole side is a negative value.
  • the saturation magnetization of FGL is 2.4T.
  • the position where the ellipticity is maximized is 2 nm outside the edge of the FGL, whereas the H ac-eff is maximized 12 nm outside the FGL edge at a distance of 10 nm. If recording is performed at a point where H ac-eff is the maximum, the ellipticity at this time has dropped to 0.6 or less, and there is a possibility that sufficient writing cannot be performed. This is because when the ellipticity at the point where H ac-eff is maximum is 0.6 or less, the probability of magnetization reversal in a certain time is significantly reduced.
  • the FGL having a receding portion from the ABS surface at the track width direction end of the bottom surface specifically, an inverted trapezoid in which the shape of the cross section perpendicular to the current flowing through the FGL shown in FIG. 8A has an upper side on the ABS surface side.
  • the ellipticity and the reversal assist effective AC magnetic field H ac-eff were calculated. The calculation result is shown in FIG. 8B. The position where the ellipticity is maximum and the position where H ac-eff is maximum match in the vicinity of the FGL edge, and good writing can be expected.
  • the maximum value of the reverse assist effective AC magnetic field is 260 kA / m, it is 15% smaller than the maximum value of the reverse assist effective AC magnetic field of 310 kA / m in FIG. It is considered that the magnetic field generated is reduced because the area of the ABS surface of the FGL is reduced.
  • FIGS. 8C, 8D, and 8E show an FGL having a tapered portion formed on the ABS surface side as a receding portion
  • FIG. 8E shows an FGL having a stepped portion formed on the ABS surface side as the receding portion.
  • FIG. 8E shows an FGL having a shape in which a stepped portion is formed on the ABS surface side as a receding portion.
  • the length of the size w that determines the track width does not change during lapping from the ABS surface, so that a highly reliable head can be manufactured.
  • FIGS. 9A to 9F show configuration examples of FGLs having shapes different from those in FIGS. 8A and 8C to 8E.
  • the FGL is disposed between the main magnetic pole and the counter magnetic pole, and a drive current for generating a high frequency magnetic field flows from the main magnetic pole side or the counter magnetic pole side.
  • FIGS. 9A to 9F by using FGLs having different shapes in which the cross-sectional area on the main magnetic pole side is smaller than the cross-sectional area on the opposite magnetic pole side, the ellipticity and the peak position of the inversion assist effective AC magnetic field are used. Can be brought closer to the main magnetic pole side.
  • the cross-sectional area here means the cross-sectional area in the stacking direction of the multilayer film constituting the FGL.
  • FIG. 9A and 9B show a structure in which the difference in the cross-sectional area is formed by a tapered portion from the counter magnetic pole side to the main magnetic pole side (that is, the shape seen from the upper surface side and the ABS surface side is a tapered shape in the track width direction side) FGL of a structure having
  • the FGL having such a structure the ellipticity and the peak position of the inversion assist effective AC magnetic field can be brought closer to the main magnetic pole side, and a larger external (main magnetic pole) magnetic field can be used.
  • the reduction of the maximum value of the reversal assist effective AC magnetic field is about 5%, which is more effective in suppressing the reversal assist effective AC magnetic field decrease than the FGL of the structure shown in FIGS. 8A and 8C to 8E. It is getting bigger.
  • the difference in oscillation characteristics due to the stop timing of the lapping process from the ABS surface side is not so large.
  • the apex angle deletion portion is obtained by cutting two apex angles on the ABS surface side among the four apex angles on the main magnetic pole side with respect to the rectangular parallelepiped FGL shown in FIG.
  • the FGL of the provided structure is shown.
  • the ellipticity and the peak position of the inversion assist effective AC magnetic field almost coincide with each other, and the magnetic field is hardly attenuated.
  • production is difficult.
  • the structure of FIG. 9C and FIG. 9D protruding to the main magnetic pole side is also conceivable.
  • FIGS. 9E and 9F by providing a step structure on the main magnetic pole side (that is, a structure in which the shape seen from the upper surface side and the ABS surface side is a convex shape), the cross-sectional areas on the main magnetic pole side and the counter magnetic pole side are shown.
  • achieved these differences is shown.
  • the FGL shown in FIG. 9F includes a taper portion in the height direction on the ABS surface side in addition to the step structure on the main magnetic pole side.
  • the structures shown in FIGS. 9E and 9F have the advantage that the ellipticity and the peak position of the inversion assist effective AC magnetic field can be matched, and the manufacturing is easier than the FGL having the structure shown in FIGS. 9C and 9D. have. This is because, in order to manufacture the FGL having the structure shown in FIGS. 9E and 9F, the mask pattern used in lithography may be changed once.
  • the cross-sectional shape of the FGL May be a vertically long rectangle whose side on the ABS side is shorter than the side on the FGL side.
  • the shape magnetic anisotropy is generated in the direction of the leakage magnetic field from the main magnetic pole, the FGL is easily fixed in this direction, and there is a problem that oscillation frequency does not fluctuate and oscillation itself does not occur.
  • the cross-sectional shape is an average horizontally long shape, so that the shape magnetic anisotropy is a leakage magnetic field from the main pole. Therefore, the in-plane magnetization rotation of the FGL is smoothly performed.
  • the FGL shape shown in FIGS. 9A and 9B has less demagnetization after recording (a phenomenon in which the previous bit is erased when the next bit is recorded). It is effective for improving the SN ratio.
  • the reversal assist effective AC magnetic field distribution in the track width direction is also steep, so that the track density can be increased by combining with a high-precision positioning mechanism, and the information recording apparatus further increases the recording density. Can be realized, which is extremely advantageous in terms of size and cost.
  • FIG. 10A shows a recording mechanism in which the recording head and the recording medium are cut along a plane perpendicular to the recording medium surface (vertical direction in the figure) and parallel to the head running direction (track direction which is the left or right direction in the figure).
  • the peripheral sectional structure is shown.
  • a magnetic circuit is formed in the upper part of the drawing between the main magnetic pole 5 and the counter magnetic pole 6 (FIGS. 10D and 10G-a to 10G-d).
  • FIG. 10D and 10G-a to 10G-d In the magnetic circuit, the magnetic lines of force form a closed circuit, and it is not necessary to be formed of only a magnetic material.
  • an auxiliary magnetic pole or the like may be arranged on the opposite side of the main magnetic pole 5 from the counter magnetic pole 6 to form a magnetic circuit. In this case, the main magnetic pole 5 and the auxiliary magnetic pole need not be electrically insulated.
  • the recording head 200 is provided with a coil, a copper wire, etc. for exciting these magnetic circuits.
  • the main magnetic pole 5 and the counter magnetic pole 6 are provided with electrodes or means for making electrical contact with the electrodes, and are configured so that a high-frequency excitation current can flow through the FGL 2 from the main magnetic pole 5 side to the counter magnetic pole 6 side or vice versa.
  • the material of the main magnetic pole 5 and the counter magnetic pole 6 was a CoFe alloy having a large saturation magnetization and almost no magnetocrystalline anisotropy.
  • the auxiliary magnetic pole provided on the opposite side of the main magnetic pole 5 to the opposite magnetic pole 6 is slightly closer to the main magnetic pole 5 side. .
  • the lip 8 to the opposing magnetic pole side lip 13 have a columnar structure extending in the left-right direction of the drawing, and the side of the cross section along the ABS surface is a trapezoid shorter than the opposing side (FIG. 10B).
  • the side length w along the trapezoidal ABS surface is an important factor for determining the recording track width, and is set to 15 nm in this embodiment.
  • the thickness (length in the head running direction) can be set large so that a large recording magnetic field can be obtained (FIG. 10C).
  • a recording magnetic field of about 0.9 MA / m is obtained by setting the width to 80 m and the thickness to 100 nm.
  • the lip 8 is made of a material having the same or larger saturation magnetization as the main magnetic pole 5, and the thickness of the lip 8 is designed using 3D magnetic field analysis software so that the magnetic field from the main magnetic pole 5 is as perpendicular as possible to the layer direction of the FGL 2. It was. In this example, a (Co / Ni) n artificial lattice film having relatively weak perpendicular magnetic anisotropy was used as the lip 8 in contact with the metal nonmagnetic spin conductive layer 3. The thickness of the lip 8 in this embodiment was 10 nm, but this value depends on the trapezoidal shape, the distance and the situation to the opposing magnetic pole, the situation of the medium used, and the situation of the magnetic circuit above the drawing. .
  • FGL2 was a CoFe alloy having a thickness of 20 nm with a large saturation magnetization and almost no magnetocrystalline anisotropy.
  • the magnetization rotates at high speed in a plane along the layer, and the leakage magnetic field from the magnetic poles appearing on the ABS surface and the side surface acts as a high-frequency magnetic field.
  • the magnetization rotation driving force of the FGL 2 is a spin torque due to the spin reflected by the lip 8 through the metal nonmagnetic spin conduction layer 3.
  • This spin torque acts in a direction in which the magnetization component parallel to the magnetization rotation axis of the FGL 2 generated by the leakage magnetic field from the main magnetic pole 5 decreases.
  • DC high frequency excitation
  • the rotation direction of the magnetization of the FGL 2 is counterclockwise when viewed from the upstream side of the high frequency excitation (DC) current, and the recording medium is reversed by the magnetic field from the main magnetic pole 5.
  • a rotating magnetic field having the same direction as the direction of magnetization precession can be applied.
  • the rotation direction of the magnetization of the FGL 2 is clockwise when viewed from the upstream side of the high-frequency excitation (DC) current, and the magnetization of the recording medium that is reversed by the magnetic field to the main magnetic pole 5.
  • a rotating magnetic field having the same direction as the differential motion direction can be applied. Therefore, the circularly polarized high-frequency magnetic field of FGL 2 has an effect of assisting the magnetization reversal by the main magnetic pole 5 regardless of the polarity of the main magnetic pole 5.
  • the high-frequency magnetic field generator of the type described in Non-Patent Document 2 cannot obtain such an effect because the direction of the spin torque does not change depending on the polarity of the main magnetic pole 5.
  • the spin torque action increases as the high-frequency excitation current (electron current) increases, and increases when a CoFeB layer having a high polarizability is inserted between the metal nonmagnetic spin conduction layer 3 and the adjacent layer by about 1 nm.
  • 2 nm-Cu is used for the metal nonmagnetic spin conductive layer 3
  • Ru or the like which is a metal nonmagnetic material with high spin conductivity, may be used.
  • the negative perpendicular magnetic anisotropy 11 is such that the c-axis direction of hexagonal CoIr is the left-right direction in the figure, and the magnitude of magnetic anisotropy is 6.0 ⁇ 10 5 J / m 3 Was used.
  • a CoCrPt layer having a thickness of 10 nm and a magnetic anisotropic magnetic field of 1.6 MA / m (20 kOe) was used as the recording layer 16 on the substrate 19.
  • a magnetic pattern having a track direction length of 9 nm and a down track direction of 7 nm was prepared by a nanoimprint technique so as to be arranged with a track pitch of 12.5 nm and a bit pitch of 10.0 nm. .
  • the slider 102 mounted with the recording / reproducing unit 109 incorporating the high-frequency magnetic field generation source 201 of this embodiment was attached to the suspension 106 (FIGS. 10D to 10F) to constitute a head gimbal assembly.
  • the recording / reproducing head is arranged in the trailing part of the slider, and in the structure shown in FIG. 10F, the recording / reproducing head is arranged in the leading part of the slider.
  • FIGS. 10Gb to 10G-d show possible recording / reproducing head structures other than the structure shown in FIG. 10D.
  • FIG. 10G-a is a view of the structure of FIG. 10D from the opposite side. Therefore, in FIGS. 10G-a to 10G-d, the definition of the trailing side and the leading side is that the left side of the paper is the trailing side and the right side of the paper is the leading side.
  • FIG. 10G-b shows a configuration example different from FIG. 10G-a.
  • the exciting coil of the main magnetic pole 5 is wound not horizontally but horizontally.
  • the excitation position is closer to the main magnetic pole air bearing surface than the structure of FIG. 10G-a, so that a stronger magnetic flux is generated from the main magnetic pole 5 than the structure shown in FIG. 10G-a. Can do.
  • FIG. 10G-c shows a configuration example of a magnetic head for microwave assist recording in which the recording head portion is arranged on the leading side and the reproducing head portion is arranged on the trailing side.
  • the main magnetic pole 5 is arranged at the leading end on the leading side
  • the counter magnetic pole 6 is arranged on the trailing side with respect to the main magnetic pole 5.
  • the counter magnetic pole 6 and the reproduction sensor shield are shared, but they may be separated.
  • the stacking order of the high-frequency generator 201 is the same as the stacking order shown in FIG. 5 as in FIG. 10G-a.
  • the winding direction of the exciting coil is the upper winding as in FIG. 10G-a, but it may be laterally wound as shown in FIG. 10G-d.
  • the recording head portion having the structure shown in FIGS. 10G-a to 10G-d can be mounted on the magnetic head slider having either structure shown in FIG. 10E or FIG. 10F.
  • the recorded magnetic head was measured for recording / reproduction characteristics using a spin stand.
  • magnetic recording was performed with a head medium relative speed of 20 m / s, a magnetic spacing of 7 nm, and a track pitch of 12.5 nm, and this was reproduced by a GMR head having a shield interval of 18 nm.
  • the signal / noise ratio at 1250 kFCI was measured while changing the high-frequency excitation current, a maximum of 13.0 dB was obtained, and it was found that recording / reproduction with a recording density exceeding 5 Tbits per square inch was sufficiently achievable.
  • the high frequency frequency at this time was 35.0 GHz.
  • the signal / noise ratio decreases from 14.0 dB to 9.0 dB when the cross section of the FGL2 is rectangular, whereas the inverted trapezoidal cross section of the present invention conversely It rose to 15.0 dB.
  • FIG. 13A is a plan view
  • FIG. 13B is a sectional view taken along the line AA ′.
  • the recording medium 101 is fixed to the rotary bearing 104 and is rotated by the motor 100.
  • FIG. 13B shows an example in which five magnetic disks and ten magnetic heads are installed, and three magnetic disks and four magnetic heads are shown. However, there are one or more magnetic disks and one or more magnetic heads. It ’s fine.
  • the recording medium 101 has a disk shape, and recording layers are formed on both sides thereof.
  • the slider 102 moves in a substantially radial direction on the rotating recording medium surface, and has a magnetic head at the tip.
  • the suspension 106 is supported by the rotor reactor 103 via the arm 105.
  • the suspension 106 has a function of pressing or pulling the slider 102 against the recording medium 101 with a predetermined load.
  • a predetermined electric circuit is required for processing the reproduction signal and inputting / outputting information.
  • a signal processing circuit that is an extension of a PRML (Partial Response Maximum Maximum Likelihood) method that actively uses waveform interference at the time of high density is attached to the housing 108 and the like.
  • PRML Partial Response Maximum Maximum Likelihood
  • the recording head and recording medium described above were incorporated into the magnetic disk device shown in FIGS. 13A and 13B, and performance evaluation was performed. As a result, 2.5 Tbytes ( An information recording / reproducing apparatus using a high-frequency rotating magnetic field having a total recording capacity of 5 Tbytes was obtained.
  • FIGS. 11A and 11B are diagrams showing a second configuration example of the recording head and the recording medium according to the present invention.
  • the main magnetic pole 5, the counter magnetic pole 6, and the upper and left configurations in the drawing are the same as those in the first configuration example.
  • the lip 8 to the opposing magnetic pole side lip 13 are columnar and have a rectangular shape with a long section along the ABS surface. By adopting the rectangular shape, shape anisotropy occurs in the track width direction, so that in-plane magnetization rotation of FGL2 can be smoothly performed even if there is an in-plane component of FGL2 of the leakage magnetic field from the main pole. Thus, the main magnetic pole 5 and the FGL 2 can be brought close to each other.
  • the FGL 2 has a trapezoidal shape in which the shape of the ABS surface is short on the main magnetic pole side, and is columnar in the height direction.
  • the length of the short side of the trapezoid is an important factor for determining the recording track width, and is 28 nm in this embodiment.
  • the thickness (length in the head running direction) can be set large so that a large recording magnetic field can be obtained.
  • a recording magnetic field of about 0.8 MA / m is obtained by setting the width to 120 nm and the thickness to 80 nm.
  • the lip 8 is made of a material having the same or larger saturation magnetization as the main magnetic pole 5, and the thickness of the lip 8 is designed using 3D magnetic field analysis software so that the magnetic field from the main magnetic pole 5 is perpendicular to the layer direction of the FGL 2.
  • the thickness of the lip 8 in this embodiment was 5 nm, but this value depends on the above-mentioned rectangular shape, the distance and situation to the counter magnetic pole, the situation of the medium used, and the situation of the magnetic circuit above the drawing.
  • FGL2 was a CoFe alloy having a thickness of 20 nm with a large saturation magnetization and almost no magnetocrystalline anisotropy.
  • the magnetization rotates at high speed in the plane along the layer, and the leakage magnetic field from the magnetic pole appearing on the ABS surface acts as a high-frequency magnetic field.
  • the magnetization rotation driving force of the FGL 2 is a spin torque due to the spin that is reflected by the opposing magnetic pole side lip 13 via the metal nonmagnetic spin conduction layer 3 and remains in the negative perpendicular magnetic anisotropy 11.
  • This spin torque acts in a direction in which the magnetization component parallel to the rotation axis of the FGL 2 generated by the leakage magnetic field from the main magnetic pole 5 becomes smaller. In order to obtain the effect of this spin torque, it is necessary to flow a high frequency excitation current from the counter magnetic pole 6 side to the main magnetic pole 5 side.
  • This current direction is also from the metal nonmagnetic spin conduction layer 3 side to the FGL2 side.
  • the rotation direction of the magnetization of the FGL 2 is counterclockwise when viewed from the downstream side of the high frequency excitation (DC) current, and the recording medium is reversed by the magnetic field from the main magnetic pole 5.
  • a rotating magnetic field having the same direction as the direction of magnetization precession can be applied.
  • the rotation direction of the magnetization of the FGL 2 is clockwise when viewed from the downstream side of the high-frequency excitation (DC) current, and the magnetization of the recording medium that is reversed by the magnetic field applied to the main magnetic pole 5.
  • a rotating magnetic field having the same direction as the differential motion direction can be applied.
  • the circularly polarized high-frequency magnetic field of FGL 2 has an effect of assisting the magnetization reversal by the main magnetic pole 5 regardless of the polarity of the main magnetic pole 5.
  • the high-frequency magnetic field generator of the type described in Non-Patent Document 2 cannot obtain such an effect because the direction of the spin torque does not change depending on the polarity of the main magnetic pole 5.
  • the configuration of the high-frequency magnetic field generator 201 shown in FIG. 11A is higher than that of the configuration of the high-frequency magnetic field generator 201 shown in FIG. 10A because the spin torque acts on the negative perpendicular magnetic anisotropy 11.
  • the operation is stable and the rise of oscillation tends to be faster.
  • 2 nm-Cu is used for the metal nonmagnetic spin conductive layer 3, Ru or the like, which is a metal nonmagnetic material with high spin conductivity, may be used.
  • the negative perpendicular magnetic anisotropy 11 was such that the 001 plane of hexagonal CoIr was in the horizontal direction in the figure, and the magnitude of magnetic anisotropy was 6.0 ⁇ 10 5 J / m 3 .
  • the FGL magnetization rotation is stabilized.
  • the spin torque increases as the high-frequency excitation current (electron current) increases, and increases when a CoFeB layer having a high polarizability is inserted between the lip 8 and the metal nonmagnetic spin conduction layer 3 by about 1 nm.
  • a 6 nm- (Co / Pt) -SiO x artificial lattice layer of 4 kA / m (17 kOe) was used.
  • the damping constant ⁇ of the upper recording layer 17 and the lower recording layer 18 was 0.20 and 0.02, respectively. If there is a Pt layer or a Pd layer, ⁇ can be increased and the magnetization reversal speed can be increased.
  • a discrete track medium having a length in the track direction of 25 nm and a track pitch of 35 nm was produced by nanoimprint technology.
  • Magnetic recording was performed using a spin stand at a head medium relative speed of 20 m / s, a magnetic spacing of 5 nm, and a track pitch of 35 nm, and this was reproduced by a GMR head having a shield interval of 25 nm.
  • the recording head and the recording medium described above were incorporated into the magnetic disk apparatus shown in FIGS. 13A and 13B and performance evaluation was performed.
  • the information recording / reproducing apparatus used was obtained.
  • the aspect ratio of the cross section perpendicular to the current can be set relatively freely. Therefore, the FGL structure can be designed according to the leakage magnetic field from the main magnetic pole having the optimum structure for the recording medium to be used. is there.
  • FIGS. 12A and 12B are diagrams showing a third configuration example of the recording head and the recording medium according to the present invention.
  • the main magnetic pole 5, the counter magnetic pole 6, and the upper and left configurations in the drawing are the same as those in the first configuration example.
  • Adjacent to the main magnetic pole 5, the lip 8, the metal nonmagnetic spin conduction layer 3, the FGL (magnetization high-speed rotator) 2, the metal nonmagnetic spin scatterer 12, and the counter magnetic pole side lip 13 reach the counter magnetic pole 6. .
  • the lip 8 to the opposite magnetic pole side lip 13 have a columnar structure extending in the left-right direction in the drawing, and the end of the trapezoidal track width direction whose section is along the ABS surface is shorter than the opposite side is perpendicular to the medium surface.
  • the side length w along the hexagonal ABS surface is an important factor for determining the recording track width, and is set to 15 nm in this embodiment.
  • the lip 8 is made of a material having the same or larger saturation magnetization as the main magnetic pole 5, and the thickness of the lip 8 is designed using 3D magnetic field analysis software so that the magnetic field from the main magnetic pole 5 is as perpendicular as possible to the layer direction of the FGL 2. It was.
  • the thickness of the lip 8 in this embodiment was 8 nm, but this value depends on the hexagonal shape, the distance to the opposing magnetic pole and the situation, the situation of the medium used, and the situation of the magnetic circuit above the drawing. .
  • FGL2 was a CoFe alloy having a thickness of 25 nm with a large saturation magnetization and almost no magnetocrystalline anisotropy.
  • FGL2 a (Co / Fe) n artificial lattice film having negative perpendicular magnetic anisotropy
  • the magnetization rotation is stabilized and good oscillation characteristics are obtained. It is done.
  • the magnetization rotates at high speed in a plane along the layer, and the leakage magnetic field from the magnetic poles appearing on the ABS surface and the side surface acts as a high-frequency magnetic field.
  • the magnetization rotation driving force of the FGL 2 is a spin torque due to the spin reflected by the lip 8 through the metal nonmagnetic spin conduction layer 3.
  • This spin torque acts in a direction in which the magnetization component parallel to the rotation axis of the FGL 2 generated by the leakage magnetic field from the main magnetic pole 5 becomes smaller.
  • DC high frequency excitation
  • the rotation direction of the magnetization of the FGL 2 is clockwise when viewed from the upstream side of the high-frequency excitation (DC) current, and the magnetization of the recording medium that is reversed by the magnetic field to the main magnetic pole 5.
  • a rotating magnetic field having the same direction as the differential motion direction can be applied. Therefore, the circularly polarized high-frequency magnetic field of FGL 2 has an effect of assisting the magnetization reversal by the main magnetic pole 5 regardless of the polarity of the main magnetic pole 5.
  • the high-frequency magnetic field generator of the type described in Non-Patent Document 2 cannot obtain such an effect because the direction of the spin torque does not change depending on the polarity of the main magnetic pole 5.
  • the spin torque action increases as the high-frequency excitation current (electron current) increases, and increases when a CoFeB layer having a high polarizability is inserted between the metal nonmagnetic spin conduction layer 3 and the adjacent layer by about 1 nm.
  • metal nonmagnetic spin conductive layer 3 Ru or the like, which is a metal nonmagnetic material with high spin conductivity, may be used.
  • metal nonmagnetic spin scatterer 12 3 nm-Pt was used. Even if Pd is used, the same effect is obtained. A 15 nm CoFe alloy was used for the opposed magnetic pole side lip 13.
  • the recording medium 7 has a 6 nm- (Co / Pt) artificial lattice layer having a magnetic anisotropy field of 2.8 MA / m (34 kOe) as the upper recording layer 17, and the magnetic recording field 4 has a magnetic anisotropy field of 4 in the lower recording layer 18.
  • a 6 nm-FePt layer of .8 MA / m (60 kOe) was used.
  • the damping constant ⁇ of the upper recording layer 17 and the lower recording layer 18 was 0.20 and 0.02, respectively.
  • etching was performed by EB mastering so that a magnetic pattern having a track direction length of 15 nm and a down track direction of 9 nm was disposed at a track pitch of 20 nm and a bit pitch of 12.5 nm. In the gap 21 between the patterns, SiO x was embedded. Magnetic recording was performed using a spin stand with a head medium relative speed of 20 m / s, a magnetic spacing of 5 nm, and a track pitch of 20 nm, and this was reproduced by a GMR head having a shield interval of 20 nm.
  • the recording head and the recording medium described above were incorporated into the magnetic disk device shown in FIGS. 13A and 13B, and performance evaluation was performed. As a result, 1.0 Tbyte ( An information recording / reproducing apparatus using a high-frequency rotating magnetic field having a total recording capacity of 4 Tbytes was obtained. Since the double-layer medium used in this example performs writing at a recording frequency matched to the upper layer portion 17 having a small magnetic anisotropy, the lower layer portion 18 having a large magnetic anisotropy has a larger magnetic anisotropy. Thus, a higher recording density can be achieved. At this time, the width w for determining the track density in FIG. 12B may be reduced and written on a recording medium having a higher density pattern.
  • a perpendicular magnetic anisotropy body A spin injection layer 308, a metal nonmagnetic spin conduction layer 303, an FGL (magnetization high-speed rotator) 302, a metal nonmagnetic spin scatterer 312 and a layer adjacent to the high-frequency drive electrode 322.
  • the magnetic recording layer 316, the nonmagnetic spin transfer layer 313, and the perpendicular magnetic anisotropy B (detection layer) 320 reach the detection electrode 321.
  • the perpendicular magnetic anisotropy A308 to the perpendicular magnetic anisotropy B320 are columnar structures extending in the vertical direction of the drawing and have a substantially square cross section.
  • the length of one side of the square was 10 nm.
  • the perpendicular magnetic anisotropy A (spin injection layer) 308 and the perpendicular magnetic anisotropy B (detection layer) 320 have large perpendicular magnetic anisotropy in the vertical direction of the drawing, and are magnetized in the initial stage. After that, the direction of magnetization does not change.
  • the magnetization directions of the perpendicular magnetic anisotropy body A308 and the perpendicular magnetic anisotropy body B320 are shown in the same direction, but the perpendicular magnetic anisotropy body A308 and the perpendicular magnetic anisotropy body B320 are shown. It is also possible to reverse the direction by changing the magnitude of the magnetic anisotropy magnetic field and controlling the magnetization magnetic field. When the magnetization is reversed, the influence of the magnetic field on the outside by the recording / reproducing apparatus according to the present invention is reduced.
  • CoCrPt alloys having a perpendicular magnetic anisotropy field of 0.8 MA / m (10 kOe) to 1.2 MA / m (15 kOe) were used.
  • FGL302 was a CoFe alloy having a thickness of 25 nm that has a large saturation magnetization and almost no magnetocrystalline anisotropy.
  • the magnetization rotation is stabilized and good oscillation characteristics are obtained. It is done.
  • the magnetization rotates at high speed in a plane along the layer, and the leakage magnetic field from the magnetic pole appearing on the side surface acts on the magnetization recording layer 316 as a high frequency magnetic field.
  • the magnetization rotation driving force of the FGL 302 is a spin torque caused by spins injected or reflected from the perpendicular magnetic anisotropy A (spin injection layer) 308 through the metal nonmagnetic spin conduction layer 303.
  • the injection or reflection of spin depends on the direction of current applied between the high-frequency drive electrode 322 and the metal nonmagnetic spin scatterer 312. As the current increases, the spin torque increases and the oscillation frequency of the FGL 302 increases. Furthermore, since the direction of magnetization rotation of the FGL 302 changes depending on the direction of the current, the direction of rotation of the circularly polarized high-frequency magnetic field changes, and the magnetization switch of the magnetization recording layer 316 can be controlled.
  • the spin torque action increases when a CoFeB layer having a high polarizability is inserted about 1 nm between the metal nonmagnetic spin conductive layer 303 and the adjacent layer.
  • 2 nm-Cu is used for the metal nonmagnetic spin conductive layer 303
  • Ru or the like which is a metal nonmagnetic material with high spin conductivity, may be used.
  • CoIr is used as the negative perpendicular magnetic anisotropy 311
  • the epitaxial growth of the perpendicular magnetic anisotropy A 308, the metal nonmagnetic spin conduction layer 303, and the negative perpendicular magnetic anisotropy 311 is achieved when Ru is used. Can be expected.
  • the metal non-magnetic spin scatterer 312 has a function of blocking the interaction between the FGL 302 and the magnetization recording layer 316 due to the spin, and between the high-frequency drive electrode 322 as a ground electrode and between the write circuit and the detection electrode 321. A detection circuit is formed.
  • the metal nonmagnetic spin scatterer 312 3 nm-Pt was used. Even if Pd is used, the same effect is obtained.
  • the magnetic recording layer 316 is too thick, it is difficult to be affected by the magnetic field of the FGL 302, so it is necessary to suppress the length to one side of a square that is a cross section.
  • the magnetization recording layer 316 needs to keep recording magnetization against thermal fluctuation. Therefore, perpendicular magnetic anisotropy energy equal to or higher than that of the above-described perpendicular magnetic anisotropy A308 and perpendicular magnetic anisotropy B320 is required.
  • a 6 nm- (Co / Pt) artificial lattice layer of 2.8 MA / m (34 kOe) is used, but an FePt or CoPt alloy may be used.
  • the resistance change of the current flowing through the nonmagnetic spin transfer layer 313 to the perpendicular magnetic anisotropy B (detection layer) 308 may be observed as a TMR or GMR effect.
  • TMR effect it is preferable to use MgO as the nonmagnetic spin transfer layer 313, and using the GMR effect as Cu as the nonmagnetic spin transfer layer 313.
  • FIGS. 15A to 15E show a case of 3 ⁇ 3 as an example, but there is no problem in principle even if an arbitrary number of lattices are formed.
  • the patterns of the FGL 302, the metal nonmagnetic spin conduction layer 303, the perpendicular magnetic anisotropy A308, the negative perpendicular magnetic anisotropy 311, the nonmagnetic spin transfer layer 313, the magnetization recording layer 316, and the perpendicular magnetic anisotropy B320 are as follows. As shown in FIG. 15E, a 10 nm square and a 25 nm pitch lattice are assembled, and the recording density is 1 Tbit per square inch.
  • the recording / reproducing element described above was formed in a 0.25 mm ⁇ 0.25 mm area (10000 ⁇ 10000 elements) and performance evaluation was performed. As a result, a 10 Mbyte magnetic memory having an average writing time of 3 ns was obtained.
  • 15B to 15D show electrode patterns of the high-frequency drive electrode 322, the metal nonmagnetic spin scatterer 312, and the detection electrode 321, respectively.
  • the high-frequency drive electrode 322 and the metal nonmagnetic spin scatterer 312 corresponding to the recording bit are selected, and a current is passed in a required direction.
  • the detection electrode 321 corresponding to the recording bit and the metal nonmagnetic spin scatterer 312 are selected, and the magnetization direction is determined by measuring the resistance value that changes depending on the direction of the current.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Record Carriers (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 マイクロ波アシスト記録において磁性記録媒体の良好な磁化反転を促進することにより、信頼性の高い高密度情報記録装置を提供する。  高周波磁界発生用のFGL積層膜の底面のトラック幅方向端部に、ABS面からの後退部を設ける。あるいは、FGL積層膜の断面形状(電流が流れる方向に垂直な面)を逆台形ないしは断面の面積が主磁極側から離れるに従い増大する構造とする。記録媒体上に良好な記録パターンが形成されるため、情報記録装置における記録密度が増大できると同時に信頼性をも向上でき、結果としてコストを低減することが可能となる。

Description

情報記録装置
 本発明は、磁性記録媒体に対して高周波磁界を照射して磁気共鳴を励起し、該記録媒体の磁化反転を誘導して情報を記録する機能を有する情報記録装置に関するものである。
 磁気記録においては、保磁力の大きな磁気記録媒体を使用できることが性能の目安の一つとなっているが、記録時に高周波磁界を磁気記録媒体に印加して記録領域の保磁力を一時的に弱め、その上でヘッド磁界により記録ビットを形成するというアイディアが古くからある。例えば、特開平7-244801号公報(特許文献1)には、高周波磁界により磁気記録媒体をジュール加熱あるいは磁気共鳴加熱し、媒体保磁力を局所的に低減せしめる記録方法が開示されている。
 記録密度の向上に伴い、そのような高周波磁界を併用した記録方式が「マイクロ波アシスト記録」という名称のもとに、近年再び着目されている。マイクロ波アシスト記録では、強力なマイクロ波帯の高周波磁界をナノメートルオーダーの領域に照射して記録媒体を局所的に励起、磁化反転磁界を低減して情報を記録する。磁気共鳴を利用するため、記録媒体の異方性磁界に比例する周波数の強い高周波磁界を用いないと、大きな磁化反転磁界の低減効果は得られない。
 特開2005-025831号公報(特許文献2)には、マイクロ波アシスト記録を意図した高周波発振素子として、GMR素子(巨大磁気抵抗効果素子)に類似する構造の積層膜を電極で挟んだ構造の素子が開示されている。当該素子は、GMR構造に発生するスピン揺らぎをもつ伝導電子を、非磁性体を介して磁性体に注入することにより、微小な高周波振動磁界を発生させることができる。同様に、Nature 425,380(2003)(非特許文献1)には、スピントルクによるマイクロ波発振が報告されている。
 TMRC2007-B7講演予稿に記載された「Microwave Assisted Magnetic Recording」(非特許文献2)には、垂直磁気ヘッドの主磁極に隣接した磁気記録媒体近傍に、スピントルクによって高速回転する磁化高速回転体(Field Generation Layer:以下、FGLと略)を配置してマイクロ波(高周波磁界)を発生せしめ、磁気異方性の大きな磁気記録媒体に情報を記録する技術が開示されている。
特開平7-244801号公報 特開2005-025831号公報
Nature 425, 380(2003) 「Microwave Assisted Magnetic Recording」:TMRC2007-B7講演予稿
 近年、磁気記録において要求される記録密度は、1平方インチあたり1Tビットを超える程度になっており、マイクロ波アシスト記録でこの程度の記録密度を実現する場合には、強力な高周波磁界をナノメートルオーダーの領域に照射して磁性記録媒体を局所的に磁気共鳴状態にし、磁化反転磁界を低減して情報を記録する必要がある。
 特許文献1,2あるいは非特許文献1に開示される技術では、発振する高周波磁界の周波数が低すぎる、あるいは磁界強度が弱すぎるという理由により、1Tビット/平方インチといった高い記録密度は実現困難である。
 非特許文献2に開示された技術を用いれば、ある程度強い磁界を発生することは可能であるが、スピントルクにより磁化が回転する磁化回転体(FGL)が主磁極からの漏れ磁界方向に固定されるため、実際には高周波発振が持続しないという欠点がある。また、主磁極からの漏れ磁界の影響を低減する工夫をしたとしても、スピン源の磁化方向が固定されている為、FGLに垂直に印加される主磁極磁界成分とFGLに流入するスピントルクの向きとの関係が主磁極の極性に依存することになる。高周波磁界の強度を最大限得る為には、FGL面内に磁化が一方向に揃って回転している必要があるが、非特許文献2に開示された技術を用いると、主磁極の極性によって最適な駆動電流値が異なる為、得られる高周波磁界の周波数が異なってしまい良好な書込みができないといった欠点もある。
 これに対し、本発明の発明者らは、研究の結果、主磁極に設けた突起(リップ)部に隣接させてFGLを構成する積層膜を配置した構成を取ることにより、主磁極から当該高周波磁界発生器への流入磁界が膜面に垂直となることを見いだした。
 この構成では、主磁極又は対向磁極をスピン源として用いる為、主磁極の極性に応じて駆動電流の値を変える必要がなく、所望の周波数に応じて常に高周波磁界の強度を最大限得る為の設計が可能となった。主磁極又は対向磁極をスピン源とすることにより、主磁極極性の逆転に同期してFGLに垂直に印加される主磁極磁界成分とFGLに流入するスピントルクの向きとが同時に逆転するので、発振状態が主磁極の極性に依存しないことになる。したがって、FGLの駆動電流変えずに、用いる記録媒体に応じて決まる最適な高周波磁界周波数での発振が実現されることになる。
 しかしながら、上記のようなリップ部を用いた構成の磁気ヘッドであったとしても、トラック幅が狭くなるにつれて、記録が困難になることが明らかとなった。FGLを用いたマイクロ波アシスト記録用ヘッドの場合、トラック幅に応じてFGLの幅を狭小化する必要があるが、FGLの幅が狭くなるに従って、オーバライト特性の悪化あるいはジッターノイズの増大という問題が新たに発生することが判明した。特にFGLの磁化の回転方向を主磁極の極性に応じて変わらないように駆動するとき、この問題は顕著となった。
 本発明は、FGLにより発生する高周波磁界を併用して磁気記録を行う情報記録装置において、狭トラック化に伴い発生する上記問題点を解消し、高い記録再生性能を有する情報記録装置を実現することを目的とする。
 上記の通り、高周波発生器としてFGLを使用する情報記録装置の場合、狭トラック化のためには、FGLのトラック幅方向の長さを小さくする必要がある。トラック幅方向の長さが小さくなれば、FGLの側面から発生する磁界が記録磁界全体に対して及ぼす影響が無視できなくなる。
 一方、本発明の発明者らがFGLより発生する高周波磁界を解析したところ、磁界の大きさだけでなく、磁界の向きも時間と共に変化することが判明した。この磁界の向きの変動は、FGLの幅が高さ方向の長さに比べて大きいときはそれほど影響しないが、FGLの幅が狭くなると無視できなくなる。FGLの側面からの発生磁界の影響は、FGLのABS面からの発生磁界と位相が90度シフトしている為、記録媒体上において、FGL磁化の回転に同期して磁界の向きが変わるという形で表れる。この際、記録媒体が感じる高周波磁界は、所望の磁化反転に寄与する成分(回転方向)と反転した磁化を再逆転させる成分(回転方向)とのバランスが崩れるようになる。
 FGLの側面からの発生磁界の影響が無視できる場合には、記録媒体が感じる高周波磁界は回転しない(直線偏光)ので、所望の磁化反転に寄与する成分と反転した磁化逆転させる成分とが均衡している。ここで、主磁極からの書込み磁界が十分であれば、所望の磁化反転に偏らせることが可能となる。しかし、FGLの磁化の回転方向が一定の場合、両者のバランスが崩れた状態で磁化反転パターンを形成しようとすると、反転した磁化が再逆転する確率が高くなる。また、両者のバランスが均衡している状態でも、主磁極からの書込み磁界に比べて高周波磁界が強すぎれば、反転した磁化を再逆転させる作用が強くなる。
 この結果、グラニュラー媒体などの連続媒体あるいはディスクリートトラック媒体(DTM)に対しては記録ビットの磁化遷移幅(自ビットと隣接ビット間の境界幅)が広くなり、ビットパタン媒体(BPM)に対してはパターンの磁化が反転できない確率が大きくなってしまうことが予想される。
 本発明の発明者らは、磁界解析の結果、浮上面(ABS面:磁気ヘッドの情報記録媒体に対する対向面)側からみて後退している部分(以下、後退部と称する)をFGLのトラック幅方向端部に設けることにより、上記磁界の向きの変動及び側面からの磁界の影響を低減できることを見いだした。後退部の形状は、単純な段差形状であってもよいし、浮上面からテーパ状に後退した形状であっても良い。あるいは他のより複雑な形状であっても良い。
 以上の詳細は、後述の各実施例で説明されるが、本発明に包含されるより下位の発明の課題・作用効果も併せて説明される。
 記録密度が1平方インチあたり1Tビットを超える情報記録装置が実現できると同時に信頼性をも向上でき、結果としてコストを低減することが可能となる。
FGLから発生する磁界の概要を示す図。 シミュレーションモデルの有効磁界の印加方向を示す図。 高周波磁界の歳差運動の方向(時計回り振動磁界、一方向振動磁界、反時計回り振動磁界)による、記録媒体の磁化反転の状態の変化を示すシミュレーション結果の図。 反転磁界の楕円率依存性を示す図。 反転磁界の反転アシスト有効AC磁界依存性を示す図。 反転AC磁界幅の楕円率依存性を示す図。 従来構造のFGLからの磁界の状況を調べた図。 後退部を備えたFGLの形状の一例を示す図。 図8Aに示す形状のFGLが発生する反転アシスト有効AC磁界のトラック長さ方向位置に対する変動と、楕円率のトラック長さ方向位置に対する変化を示す図。 後退部としてABS面側にテーパ部が形成されたFGLを示す図。 ABS面側のテーパ部に加えて、上面側にもテーパ部が形成されたFGLを示す図。 後退部としてABS面側に段差部が形成されたFGLを示す図。 主磁極側の断面積が対向磁極側の断面積よりも小さい形状のFGLの一例を示す図。 主磁極側の断面積が対向磁極側の断面積よりも小さい形状のFGLの一例を示す図。 主磁極側の断面積が対向磁極側の断面積よりも小さい形状のFGLの一例を示す図。 主磁極側の断面積が対向磁極側の断面積よりも小さい形状のFGLの一例を示す図。 主磁極側の断面積が対向磁極側の断面積よりも小さい形状のFGLの一例を示す図。 主磁極側の断面積が対向磁極側の断面積よりも小さい形状のFGLの一例を示す図。 実施例1の記録ヘッド及び記録媒体をトラック幅方向からみた断面の模式図。 図10Aに示す模式図を、線分Z-Z’で切った方向からみた断面図。 図10Aに示す模式図を上面側(ABS面側とは逆の面)からみた模式図。 図10Aに示す記録ヘッドを搭載したスライダ及び記録再生ヘッドを示す図。 スライダとヘッド走行方向との関係を示す模式図。 スライダとヘッド走行方向との関係を示す模式図。 磁気ヘッドの構成例を示す図。 磁気ヘッドの構成例を示す図。 磁気ヘッドの構成例を示す図。 磁気ヘッドの構成例を示す図。 実施例2の記録ヘッド及び記録媒体をトラック幅方向からみた断面の模式図。 図11Aに示す模式図を上面側(ABS面側とは逆の面)からみた模式図。 実施例3の記録ヘッド及び記録媒体をトラック幅方向からみた断面の模式図。 図12Aに示す模式図を、線分Y-Y’で切った方向からみた断面図。 実施例1~3における磁気ディスク装置の基本構成を示す平面図。 図13AのA-A′断面図。 実施例4の記録再生素子の構成図。 実施例4の記録再生素子の構成図。 図14A及び図14Bに示す記録再生素子を集積化するための電極パターンの一例を示す図。 図14A及び図14Bに示す記録再生素子を集積化するための電極パターンの一例 図14A及び図14Bに示す記録再生素子を集積化するための電極パターンの一例を示す図。 図14A及び図14Bに示す記録再生素子を集積化するための電極パターンの一例を示す図。 図14A及び図14Bに示す記録再生素子を集積化した構造の模式図。
 以下、図面を用いて本発明の具体的な実施形態について詳細に説明するが、具体構成の詳細説明に入る前に、本発明の原理(後退部と側面磁界の影響低減との関係)について図面を用いて説明する。
 図1は、FGLから発生する磁界の一例を示したものである。FGLからの磁界は、FGL内部で磁化が一様で、磁化回転面に垂直な端面に磁化が発生するものとして周辺の磁界を解析した。磁化M(A/m)の長方形の面要素{(x1,y1,z0),(x1,y2,z0),(x2,y1,z0),(x2,y2,z0)}から、原点への磁界(A/m)は、以下の式(1)
Figure JPOXMLDOC01-appb-M000001
で与えられる。
 ここで、図1の原点における高周波振動磁界の回転は、x方向性分が無く、y-z面内である。従って、z軸方向に磁化容易軸がある磁性体の反転の有効成分がy方向の高周波振動磁界成分のみであることを考慮すると、原点における高周波振動磁界は実質的に直線偏光と考えられる。磁化方向の磁界は、磁化にトルクを与えない為、磁化自身には作用を及ぼさない。尚、本発明で用いている「直線偏光」は、高周波振動磁界の振動方向が時間的に変化しない状況と定義する。また、「実質的に直線偏光」は、前述のように、反転対象の磁性体の磁化方向を考慮したとき、磁化方向の振動磁界成分を無視すると振動方向が時間的に変化しない状況と定義する。さらに、本明細書において反転対象の磁性体がある場合には、「実質的に」を省略して表記するものとする。
 R11,R12,R21,R22は、原点から長方形の頂点までの距離である。FGLの各面からの寄与をFGLの磁化方向で重み付けをして足し合わせることにより、FGLの発する磁界分布とその時間変化を求めた。FGL磁界は、トラック幅が広くてABS面からの磁界だけを考慮すればよい場合には、ほぼ直線偏光とみなせる。
 これに対して、高記録密度化に伴いトラックピッチ低減に向けFGLの幅wを小さくしていくと、FGLの側面からの磁界の影響が無視できなくなり、FGL磁界は楕円偏光となる。FGLの側面からの磁界を算出するには、式(1)及び関連の式において、z軸とy軸とを読み替えればよい。本発明で用いている「楕円偏光」は、高周波振動磁界の振動方向と大きさが時間的に変化する状況であり、磁界ベクトルの軌跡が楕円を形成する。
 この場合、FGL自身の磁化の回転に同期してFGL磁界の方向と大きさが時間と共に変化するため、磁界ベクトルの軌跡が楕円を形成しあたかも歳差運動するような挙動を示す。原点と異なる点への磁界、例えば図1中の点(-Xp,0,0)点のへ磁界を求めるには、式(1)の面要素をx軸方向にXpだけ移動させて原点への磁界を算出すればよい。ここで、楕円率rを前記長径に対する短径の比(Hac-y/Hac-x)で定義する。符号は、反時計回り回転のとき正、逆回転(時計周り)の場合は負とする。ここでz方向磁界成分も時間変化するが、磁化と平行な振動磁界成分は反転に寄与しないと仮定して無視した。これは、磁化方向の磁界は、磁化にトルクを与えず、磁化への作用がないためである。
 以上のように、式(1)による磁界解析の結果、記録ビットの形成位置に発生する高周波磁界は、FGLのトラック幅方向の長さが小さくなるに従って、磁界ベクトルの軌跡が次第楕円から円に近づくことが分かった。
 そこで、楕円偏光による磁性体の磁化反転アシスト効果への影響を調べる為に、LLG(Landau Lifschitz Gilbert)方程式を用いた計算機シミュレーションを行い、以下の5点が明らかになった。
(1)反転させようとする磁化に垂直な振動磁界成分(垂直磁化媒体においては面内振動磁界成分)が反転に寄与する。
(2)反転させようとする磁化の歳差運動と同じ回転方向の楕円偏光は磁化反転をアシストする作用があるが、磁化の歳差運動と逆回転の楕円偏光は一旦反転した磁化を元に戻す作用がある。
(3)楕円偏光の長径に短径を加えた(同じ回転方向の場合)、又は、減じた(逆回転)ものの半分の値が、反転アシスト有効AC磁界である。
(4)反転アシスト有効AC磁界が同じとき、磁性粒子が磁化反転する外部磁界の平均値は等しい。
(5)反転アシスト有効AC磁界が同じでも、楕円率r(前記長径に対する短径の比、逆回転の場合は負値とする)が大きいほど、磁性粒子が磁化反転する磁界のばらつきが小さくなり、良好な磁化反転パターンが得られる。
 計算は、一軸磁気異方性を有する磁性粒子が一斉回転モデルにしたがって反転するものと考え、その磁化Mの挙動を次のLLG方程式を用いて計算した。
Figure JPOXMLDOC01-appb-M000002
ここで、γはジヤイロ磁気定数、αはダンピング定数である。有効磁界Hは、磁気異方性磁界Ha(=Hkcosθm、θmは磁化と磁化容易軸のなす角)、静磁界Hd、外部磁界Hext、及び、高周波磁界Hacの4成分の和で構成される。本検討で考慮した静磁界Hdは、計算する磁性粒子自身のつくる静磁界であるが、実際には、隣接する粒子等の影響を考慮する必要がある。外部磁界Hextは、磁性体の外部より磁性体に印加される磁界である。
 図2に有効磁界の印加方向を示す。鉛直方向をz方向として、Haを印加した。Hextは、初期磁化方向と反対で、鉛直方向からθh傾いた方向に印加した。磁化は概ね+z方向から、-z方向に向かってz軸を軸とすると回転運動をしながら反転する。図2では、高周波磁界Hacの印加方向は水平方向のみ示してあるが、z-Hext面内の直線偏光及びz-Hext面に垂直な直線偏光と、z軸に垂直な面内の楕円偏光とについて検討した。磁化反転の判定は、1024個の孤立磁性粒子に分散(Hk分散5%、角度分散3度)を持たせ、統計的取り扱いを行った。
 図3は、磁化容易軸が膜面に対して垂直方向を向いた孤立磁性粒子1024個の集合に対して、主磁極からの磁界Hextと高周波磁界Hacが印加された場合の磁化反転の挙動を示すシミュレーション結果である。印加される高周波磁界Hacは、左から順に、時計回り振動磁界(楕円率r=-1)、直線偏光振動磁界(r=0)、反時計回り振動磁界(r=1)である場合に相当する。図で、□は3ns経過するまでに磁化反転が完了した状態(1024個の中95%以上が反転)、■は磁化反転していない状態(1024個の中95%以上が未反転)を示し、中間色は部分反転している状態を示している。図より、AC磁界が小さい場合には、時計回り振動磁界成分ではStoner-Wohlfarth磁界まで反転が全くなく、アシスト効果が見られないことが分かる。図3におけるStoner-Wohlfarth磁界は、800kA/mで、外部磁界だけ(Hac=0)で反転がおこる磁界となっている。
 一方、AC磁界が大きい場合には、単独で十分反転させられる大きな外部磁界を印加していても、時計回り振動磁界(r=-1)では反転が抑制されている現象が起こっている。これは、時計回り振動磁界が反転した粒子の再反転を促す作用を持っていることを示している。反転した粒子の磁化の回転方向は、時計回りである為と考えられる。このことは、外部磁界があるなしにかかわらず、比較的大きな円偏光高周波振動磁界を与えることにより、その時計回り、反時計回りに応じて、所望の磁化反転が制御できることを示唆している。直線偏光振動磁界、反時計回り振動磁界と楕円率が大きくなると、AC磁界の増加と共に、磁化反転する外部磁界が小さくなっており、アシスト効果が確認できる。反時計回り振動磁界を用いると、直線偏光振動磁界を用いた場合に比べて半分程度の振動磁界の大きさで、同等のアシスト効果が得られている。これは、直線偏光振動磁界が、次式に示すように反時計回り成分と時計回り成分とに分解可能であるためと考えられる。
Figure JPOXMLDOC01-appb-M000003
 このうち、反時計回り成分は、磁化の歳差運動と同じ方向にAC磁界が回転する為、磁気共鳴が起こって磁化反転をアシストする作用があると考えられる。直線偏光振動磁界を用いる場合の注意点は、AC磁界が大きすぎる時、時計回り振動磁界成分による再反転の影響が顕著となり、記録が行えない点である。図3では、AC磁界強度が300kA/mを超えると良好な磁化反転パターンは得られないが、これよりも低いAC磁界強度でも部分的に再反転が起こる可能性がある。反時計回り振動磁界(楕円率r=1)を用いる場合には、このような問題がない。
 図4は、異方性磁界の大きさが1.6MA/mの磁性体に、磁化容易軸から30度傾けて外部磁界を印加した(θh=30度)場合の反転磁界Hswを楕円率に対して示したものである。AC磁界は、Hac-x成分を固定し、直交するHac-yの大きさを変えている。反時計回りの楕円偏光ではHac-yが正、時計回りの楕円偏光の場合はHac-yが負となっている。Hac-yが大きいほど、Hac-xが大きいほどHswが小さくなり、大きなアシスト効果が得られていることが分かる。逆に、Hac-yが負の場合には、ダウントラック方向の振動磁界成分が同じでもHswが大きくなっており、Hac-yが成分によってアシスト効果が抑制されていることがわかる。そこで、反転
Figure JPOXMLDOC01-appb-M000004
を仮定して、Hac-eff対する図4の反転磁界Hswを再度示したのが、図5である。図より、種々のHac-x成分とHac-y成分の組合せに対して、反転磁界Hswがほぼ同一の曲線上に乗っており、反転アシスト有効AC磁界を式(4)で表すのが有効と考えられる。
 図3等において、アシスト効果がある場合、外部磁界を一定としてAC磁界強度を増加させるとき、磁化反転は、徐々に促進される訳ではなく、外部磁界による反転と同様にスイッチ磁界Hac-swが存在する。すなわち、Hacが小さいときは反転せず、スイッチ磁界Hac-swを越えて大きくなると反転する。これは、磁気記録に用いられる磁気異方性の大きな磁性体では共鳴振動数が磁化の方向によって大きく変化するため、振動磁界が弱いと磁化の回転と振動磁界の同期している間(共鳴)に磁化反転が完結しないためと考えられる。
 図6は、図4のプロット点におけるスイッチAC磁界の幅ΔHac-swを楕円率に対して示したものである。幅ΔHac-swは、楕円率が大きいほど小さくなっており、同じ反転アシスト有効AC磁界でも楕円率が大きい良好な反転磁化パターンが形成できる可能性を示している。
 以上のように、マイクロ波アシスト記録において良好な記録パターンを得るためには、高周波磁界強度の面内成分を大きくするだけでなく、楕円率を大きくすることが重要であることが分かった。また、FGLの設計に当たっては、FGL自身の磁化回転の向きに注意する必要がある。
 そこで、FGLより発生する磁界を詳細に解析したところ、高周波磁界発生器の駆動電流に垂直な断面形状が矩形のFGLでは、反転アシスト有効AC磁界が最大となる位置(書込み点)と楕円率が最大となる位置とがずれていることが判明した。これは、書込み点となるFGLの主磁極側端部周辺において、FGLのABS面から発生するダウントラック方向の磁界に比べて、FGLの側面から発生するクロストラック方向の磁界が不足しているためと推察される。
 そこで、反転アシスト有効AC磁界と楕円率が最大となる位置とが一致するべくFGL側面からの磁界を強化するFGL構造を鋭意検討した。
 図7は、w=40nm,h=40nm,t=20nm,s=10nm(図1参照)の条件で、FGLから発生する磁界のトラック中心(y=0)におけるダウントラック方向の楕円率と反転アシスト有効AC磁界Hac-effとを示したものである。横軸は、FGLの直下を0とし、主磁極側を負値とした。FGLの飽和磁化は、2.4Tとしている。図より、楕円率が最大となる位置はFGLのエッジから2nm外側であるのに対して、Hac-effが最大となるのは10nm離れたところでFGLエッジから12nm外側である。Hac-effが最大の点で記録が行われるとすると、このときの楕円率は0.6以下に落ちているため、十分な書き込みが行えない可能性がある。Hac-effが最大の点での楕円率が0.6以下の場合、一定時間に磁化反転する確率が顕著に低下するためである。
 楕円率を向上させるには、FGLの側面からの磁界の影響を増強し、クロストラック方向成分を増やす必要がある。FGLに後退部を設けると、ダウントラック方向のFGL磁界は多少減少するものの、記録位置にFGLの側面を近づけることができる為、ダウントラック方向とクロストラック方向の振動磁界成分がほぼ等しくなって、円偏向とすることが可能となる。本発明で用いている「円偏光」は、高周波振動磁界の大きさが変わらず、振動方向が時間的に変化する状況であり、磁界ベクトルの軌跡がほぼ円を形成する。ただし、反転対象の磁性体の磁化(容易軸)方向の振動磁界成分は無視するものとする。
 反転アシスト有効AC磁界と楕円率が最大となる位置とを一致させる他の方法として、FGLに流れる電流に垂直な断面の形状がABS側の辺が短い縦長の長方形とする方法がある(図1において、w<h)。しかし、この方法では、形状磁気異方性が主磁極からの漏れ磁界の方向に発生するため、FGLがこの方向に固定されやすくなり、発振周波数の変動や、発振自体が起こらなくなる問題がある。尚、斜めのFGLの側面からの磁界を算出するには、式(1)及び関連の式において、座標を適宜変換して読み替えればよい。
 そこで、底面のトラック幅方向端部にABS面からの後退部を有するFGL、具体的には、図8Aに示すFGLに流れる電流に垂直な断面の形状が、ABS面側に上辺を有する逆台形であるFGLについて、楕円率と反転アシスト有効AC磁界Hac-effとを計算した。その計算結果を図8Bに示す。楕円率が最大となる位置とHac-effが最大となる位置とが、FGLエッジ付近で一致しており、良好な書き込みが期待できる。ただし、反転アシスト有効AC磁界の最大値は260kA/mであるので、図7の反転アシスト有効AC磁界の最大値310kA/mに比べて15%小さな値となっている。FGLのABS面の面積を小さくしたため発生する磁界が減少した影響と考えられる。
 図8C及び図8Dは、後退部としてABS面側にテーパ部が形成された形状のFGLを、図8Eには、後退部としてABS面側に段差部が形成された形状のFGLを示す。FGLに流れる電流に垂直な断面の形状が、図8C及び図8D及び図8Eに示す構造である場合には、反転アシスト有効AC磁界の減少量は7%程度に抑制可能である。特に図8Dの構造では、ABS面側のテーパ部に加えて、上面側にもテーパ部が形成されることにより、FGLの磁化回転面内での磁化されやすさにほとんど差が生じない。従って、スムースな高速磁化回転が期待できる。図8Eは、後退部としてABS面側に段差部が形成された形状のFGLを示す。本形状のFGLは、トラック幅を決定するサイズwの長さがABS面からのラッピング加工時に変化しないので、信頼性の高いヘッド製造が可能である。
 図9A~図9Fには、図8A及び図8C~図8Eとは別の形状のFGLの構成例を示す。通常、FGLは主磁極と対向磁極の間に配置され、主磁極側あるいは対向磁極側から高周波磁界を発生させるための駆動電流が流れ込む。図9A~図9Fに示すような、主磁極側の断面積の大きさが対向磁極側の断面積よりも小さい異なる形状のFGLを用いるきことにより、楕円率と反転アシスト有効AC磁界のピーク位置を主磁極側に近づけることが可能となる。なおここでいう断面積とは、FGLを構成する多層膜の積層方向に対する断面積の意味である。
 図9A及び図9Bには、対向磁極側から主磁極側に向かうテーパ部により上記断面積の相違を形成した構造(すなわち、上面側及びABS面側からみた形状が、トラック幅方向側にテーパ形状を有する構造)のFGLを示す。このような構造のFGLを用いることにより、楕円率と反転アシスト有効AC磁界のピーク位置を、主磁極側に近づけることができ、より大きな外部(主磁極)磁界の利用が可能となる。特に、図9Bの構造では、反転アシスト有効AC磁界の最大値の減少が5%程度と、図8A及び図8C~図8Eに示す構造のFGLよりも反転アシスト有効AC磁界減少の抑制効果が更に大きくなっている。図9A及び図9BのFGL構造は、ABS面側からのラッピング工程の停止タイミングによる発振特性の差は、それほど大きくない。
 図9C及び図9Dには、図1に示す直方体形状のFGLに対して、主磁極側の頂角4カ所のうちABS面側の頂角2カ所をカットすることにより、頂角の削除部を設けた構造のFGLを示す。このような構造のFGLでは、楕円率と反転アシスト有効AC磁界のピーク位置がほぼ完全に一致し、磁界の減衰もほとんどないと考えられる。ただし、作製は困難である。主磁極側に張り出す図9C及び図9Dの構造も考えられる。
 図9E及び図9Fには、主磁極側に段差構造を設けることにより(すなわち、上面側及びABS面側からみた形状が凸型形状をなす構造)、主磁極側と対向磁極側での断面積の相違を実現した構造のFGLを示す。図9Fに示すFGLでは、主磁極側の段差構造に加えて、ABS面側に高さ方向のテーパ部も備えている。図9E及び図9Fに示す構造では、楕円率と反転アシスト有効AC磁界のピーク位置を一致させることが可能であるとともに、図9C及び図9Dに示す構造のFGLよりも製造が容易であるという利点を持つ。図9E及び図9Fの構造のFGLを製造するためには、リソグラフィの際に使用するマスクパターンを一回変えればよいためである。
 反転アシスト有効AC磁界と楕円率が最大となる位置とを一致させるためには、図8A及び図8C~図8Eや図9A~図9Fに示す構造のFGLの他に、たとえば、FGLの断面形状をABS面側の辺がFGL側面側の辺よりも短い、縦長の長方形としても良い。しかし、形状磁気異方性が主磁極からの漏れ磁界の方向に発生するため、FGLがこの方向に固定されやすくなり、発振周波数の変動や、発振自体が起こらなくなる問題がある。一方で、図8C及び図8D及び図8E又は、図9A~図9Fに示す構造では、断面形状が平均的に横長の形状となっているため、形状磁気異方性が主磁極からの漏れ磁界の直交方向に発生し、従ってFGLの面内磁化回転が円滑に行われる。また、図9A~図9Fに示したFGL形状の中で、特に、図9A及び図9Bに示すFGL形状は、記録後消磁(次のビットを記録するときに前のビットを消す現象)が少なく、SN比の向上に有効である。
 上記の構成を取ることにより、反転アシスト有効AC磁界が最大となる位置(書込み点)と楕円率が最大となる位置とをほぼ一致させることが可能となるので、連続媒体又はDTMでは記録された隣接ビット境間の磁化遷移幅の急峻化、BPMでは反転できない確率の抑制ができるようになり、信頼性の高い高記録密度情報記録装置の提供が可能となる。また、上記の構成では、トラック幅方向の反転アシスト有効AC磁界分布も急峻化されるため、高精度位置決め機構と組み合わせることによりトラック密度を高めることができ、記録密度を更に増大させた情報記録装置が実現可能となり、サイズ及びコスト等の点できわめて有利となる。
 図10Aは記録ヘッド及び記録媒体を、記録媒体面に垂直(図中の上下方向)かつヘッド走行方向(図中の左又は右方向であるトラック方向)に平行な面で切断した場合における記録機構周辺の断面構造を表している。記録ヘッド200においては、主磁極5と対向磁極6との間で、図面上方にて磁気的な回路を構成している(図10D及び図10G-a~図10G-d)。ただし、図面上方においては電気的にはほぼ絶縁されているものとする。磁気的な回路は、磁力線が閉路を形成するものであり、磁性体のみで形成されている必要はない。また、主磁極5の対向磁極6と反対側に補助磁極等を配置し、磁気回路を形成してもよい。この場合には、主磁極5と補助磁極との間は電気的に絶縁されている必要はない。
 更に、記録ヘッド200は、これらの磁気回路を励磁する為のコイル、銅線等が具備されているものとする。主磁極5と対向磁極6には、電極又は電極に電気的に接触する手段が備わっており、主磁極5側から対向磁極6側、あるいはその逆の高周波励起電流がFGL2を通して流せるように構成されている。主磁極5と対向磁極6の材料は、飽和磁化が大きく、結晶磁気異方性がほとんどないCoFe合金とした。FGL2への漏れ磁界(FGL面内方向成分)を低減して高周波周波数を上げる為には、主磁極5の対向磁極6と反対側に設けた補助磁極を主磁極5側に少し近づけるのがよい。
 主磁極5に隣接して層状に、リップ8、金属非磁性スピン伝導層3、FGL(磁化高速回転体)2、負の垂直磁気異方性体11、金属非磁性スピン散乱体12、対向磁極側リップ13を経て対向磁極6にいたる。尚、リップ8から対向磁極側リップ13までは、図面左右方向に伸びる柱状構造で、断面がABS面に沿った辺が対向辺に比べて短い台形をしている(図10B)。当該台形形状とすることにより、FGL磁界の楕円率と反転アシスト有効AC磁界のピーク位置を一致させることができ、良好な書き込み特性が期待できる。この台形のABS面に沿った辺の長さwは、記録トラック幅を決定する重要な因子であり、本実施例では15nmとした。マイクロ波アシスト記録においては、主磁極5からの記録磁界とFGL2からの高周波磁界とが揃わないと記録できないような磁気異方性の大きい記録媒体を用いることになる為、主磁極5の幅と厚さ(ヘッド走行方向の長さ)は、記録磁界が大きく取れるよう大きめに設定することが可能である(図10C)。本実施例では、幅を80m、厚さを100nmとすることで、約0.9MA/mの記録磁界が得られている。
 リップ8は、主磁極5と飽和磁化が同じ又は大きな材料を用い、主磁極5からの磁界がFGL2の層方向にできるだけ垂直となるよう3D磁界解析ソフトを用いてリップ8の厚さ設計を行った。本実施例では、金属非磁性スピン伝導層3に接するリップ8として、比較的弱い垂直磁気異方性を有する(Co/Ni)n人工格子膜を用いた。本実施例におけるリップ8の厚さは、10nmであったが、この値は、前述の台形の形状、対向磁極までの距離と状況、用いる媒体の状況、図面上方における磁気回路の状況に依存する。FGL2は、飽和磁化が大きく、結晶磁気異方性がほとんどない厚さ20nmのCoFe合金とした。FGL2では、層に沿った面内で磁化が高速回転し、ABS面及び、側面に出現する磁極からの漏れ磁界が、高周波磁界として作用する。
 FGL2の磁化回転駆動力は、金属非磁性スピン伝導層3を介してリップ8に反射されたスピンによるスピントルクである。このスピントルクは、主磁極5からの漏洩磁界によって発生するFGL2の磁化回転軸に平行な磁化成分が小さくなる方向に作用する。このスピントルクの作用を得るには、主磁極5側から対向磁極6側へ高周波励起(直流)電流を流す必要がある。この電流方向はまた、金属非磁性スピン伝導層3側からFGL2側に向かうものである。主磁極5から磁界が流入する場合に、FGL2の磁化の回転方向は高周波励起(直流)電流の上流側から見て反時計周りとなっており、主磁極5からの磁界で反転する記録媒体の磁化の歳差運動方向と同じ向きの回転磁界を印加することができる。
 主磁極5へ磁界が流入する場合には、FGL2の磁化の回転方向は高周波励起(直流)電流の上流側から見て時計周りとなり、主磁極5への磁界で反転する記録媒体の磁化の歳差運動方向と同じ向きの回転磁界を印加することができる。したがって、FGL2の円偏光高周波磁界は、主磁極5の極性によらず、主磁極5による磁化反転をアシストする効果がある。この点、非特許文献2に記載された形式の高周波磁界発生器では主磁極5の極性によってスピントルクの向きが変わらないため、このような効果を得ることはできない。
 スピントルク作用は、高周波励起電流(電子流)が大きくなるほど大きくなり、また、金属非磁性スピン伝導層3と隣接する層との間に分極率の大きなCoFeB層を1nm程度挿入すると大きくなる。金属非磁性スピン伝導層3には、2nm-Cuを用いたが、スピン伝導性の高い金属非磁性体であるRu等を用いても良い。負の垂直磁気異方性体11は、六方晶CoIrのc軸方向が図中の左右方向となるようにし、磁気異方性の大きさは、6.0×105J/m3のものを用いた。負の垂直磁気異方性を有する磁性体をFGL2と隣接させることにより、FGL2の磁化方向を回転軸と垂直方向に留める作用が強化される。この作用により、比較的低い周波数で強い振動磁界が得られる。この作用は、負の垂直磁気異方性を有する磁性体として知られているα’-FeC,dhcpCoFe,NiAs型MnSb等でも同様に期待できる。FGL2にCoFe合金を用いているので、α’-FeCやdhcpCoFeを用いてもCoIrと同様に大きな交換相互作用が働き、磁化方向を回転軸と垂直方向に留める作用が強くなる。また、FGL2として、負の垂直磁気異方性を有する(Co/Fe)n人工格子膜を用いると、CoFe合金と同程度の磁化を有するため、負の垂直磁気異方性体11を設けなくても磁化回転が安定化し、良好な発振特性が得られる。金属非磁性スピン散乱体12には、3nm-Ptを用いた。Pdを用いても同様な作用がある。対向磁極側リップ13には、15nmCoFe合金を用いた。
 記録媒体7には、基板19上に、記録層16として、厚みが10nmで、磁気異方性磁界が1.6MA/m(20kOe)のCoCrPt層を用いた。スパッタリングにより連続膜を形成した後、ナノインプリント技術により、トラック方向の長さが9nmでダウントラック方向が7nmの磁性体パターンを、トラックピッチ12.5nm、ビットピッチ10.0nmで配置するように作製した。
 本実施例の高周波磁界発生源201を組み込んだ記録再生部109を搭載したスライダ102をサスペンション106に取り付け(図10D~図10F)、ヘッドジンバルアッセンブリを構成した。図10Eに示す構造においては、記録再生ヘッドはスライダのトレーリング部に配置されており、図10Fに示す構造においては、記録再生ヘッドはスライダのリーディング部に配置されている。
 図10G-b~図10G-dには、図10Dに示す構造以外に考えられる記録再生ヘッドの構造を示した。図10G-aは、図10Dの構造を反対側からみたものである。したがって、図10G-a~図10G-dにおいて、トレーリング側、リーディング側の定義は、紙面左側がトレーリング側、紙面右側がリーディング側であるものとする。
 図10G-bには、図10G-aとは別の構成例を示す。図10G-bに示す磁気ヘッドにおいては、主磁極5の励磁用コイルが上向きでは無く横向きに巻かれている。本構成の磁気ヘッドの場合、図10G-aの構造に比べて励磁位置がより主磁極浮上面に近いので、図10G-aに示す構造に比べてより強い磁束を主磁極5から発生させることができる。
 図10G-cには、記録ヘッド部をリーディング側に配置し、再生ヘッド部をトレーリング側に配置したマイクロ波アシスト記録用磁気ヘッドの構成例を示す。図10G-cに示す構成の磁気ヘッドにおいては、主磁極5がリーディング側最端部に配置され、対向磁極6は主磁極5に対してトレーリング側に配置される。図10G-cに示す構造の磁気ヘッドの場合、対向磁極6と再生センサ用シールドを共用しているが、分離しても構わない。高周波発生器201の積層順序は、図5に示す積層順序とは逆になっているのは、図10G-aと同様である。励磁コイルの巻線方向は、図10G-aと同様に上巻きであるが、図10G-dに示すように横巻きにしても良い。
 以上の図10G-a~図10G-dに示す構成の記録ヘッド部は、図10E又は図10Fのいずれの構造の磁気ヘッドスライダに実装することも可能である。
 作成した磁気ヘッドは、スピンスタンドを用いて記録再生特性を測定した。測定においては、ヘッド媒体相対速度20m/s、磁気スペーシング7nm、トラックピッチ12.5nmとして磁気記録を行い、さらにこれをシールド間隔18nmのGMRヘッドにより再生した。高周波励起電流を変化させて1250kFCIでの信号/ノイズ比を測定したところ、最大13.0dBが得られ、1平方インチあたり5Tビットを超える記録密度の記録再生が十分達成可能であることがわかった。このときの高周波周波数は35.0GHzであった。磁気スペーシング5nmとした場合には、FGL2の断面が矩形であると信号/ノイズ比が14.0dBから9.0dBと低下したのに対して、本発明の逆台形の断面形状では、逆に15.0dBへと上昇した。
 以上説明した記録ヘッド及び記録媒体を磁気ディスク装置に組み込んで、性能評価を行った。図13A及び図13Bに、本実施例の記録ヘッド及び記録媒体を組み込んだ磁気ディスク装置の基本構成を示す。図13Aは平面図、図13BはそのA-A′での断面図である。記録媒体101は回転軸受け104に固定され、モータ100により回転する。
 図13Bでは5枚の磁気ディスク、10本の磁気ヘッドを搭栽した例において、磁気ディスク3枚分と磁気ヘッド4本について示したが、磁気ディスクは1枚以上、磁気ヘッドは1本以上あれば良い。記録媒体101は、円盤状をしており、その両面に記録層を形成している。スライダ102は、回転する記録媒体面上を略半径方向移動し、先端部に磁気ヘッドを有する。サスペンション106は、アーム105を介してロータリアクチユエータ103に支持される。サスペンション106は、スライダ102を記録媒体101に所定の荷重で押しつける又は引き離そうとする機能を有する。再生信号の処理及び情報の入出力には、所定の電気回路が必要である。高密度化時の波形干渉を積極的に活用したPRML(Partial Response Maximum Likelihood)方式を拡張した信号処理回路が筐体108等に取り付けられる。
 以上説明した記録ヘッド及び記録媒体を図13A及び図13Bに示す磁気ディスク装置に組み込んで、性能評価を行ったところ、1枚の2.5インチ磁気ディスクの各面にそれぞれ、2.5Tバイト(1平方インチあたり4Tビット)、合計記録容量5Tバイトの高周波回転磁界を利用した情報記録再生装置が得られた。
 図11A及び図11Bは、本発明による記録ヘッド及び記録媒体の第2の構成例を示す図である。本構成例で用いる主磁極5、対向磁極6、及びその図面上方と左方の構成は、第1の構成例と同じものを用いるものとする。
 主磁極5に隣接して層状に、リップ8、金属非磁性スピン散乱体12、FGL2、負の垂直磁気異方性体11、金属非磁性スピン伝導層3、対向磁極側リップ13を経て対向磁極6にいたる。尚、リップ8から対向磁極側リップ13までは、柱状で断面がABS面に沿った方向が長い長方形をしている。当該長方形形状とすることにより、トラック幅方向に形状異方性が生じる為、主磁極からの漏れ磁界のFGL2の面内成分があってもFGL2の面内磁化回転を円滑に行わせることが可能となり、主磁極5とFGL2を近づけることができる。また、発振状態にない時にFGL2の磁化がABS面に平行となり、漏洩磁界による不要な磁化反転等を防ぐことができる。FGL2は、ABS面の形状が主磁極側に短い台形をしており、高さ方向に柱状である。当該台形の短い辺の長さは、記録トラック幅を決定する重要な因子であり、本実施例では28nmとした。
 マイクロ波アシスト記録においては、主磁極5からの記録磁界とFGL2からの高周波磁界とが揃わないと記録できないような磁気異方性の大きい記録媒体を用いることになる為、主磁極5の幅と厚さ(ヘッド走行方向の長さ)は、記録磁界が大きく取れるよう大きめに設定することが可能である。本実施例では、幅を120nm、厚さを80nmとすることで、約0.8MA/mの記録磁界が得られている。
 リップ8は、主磁極5と飽和磁化が同じ又は大きな材料を用い、主磁極5からの磁界がFGL2の層方向に垂直となるよう3D磁界解析ソフトを用いてリップ8の厚さ設計を行った。本実施例におけるリップ8の厚さは、5nmであったが、この値は、前述の長方形の形状、対向磁極までの距離と状況、用いる媒体の状況、図面上方における磁気回路の状況に依存する。FGL2は、飽和磁化が大きく、結晶磁気異方性がほとんどない厚さ20nmのCoFe合金とした。
 FGL2では、層に沿った面内で磁化が高遠回転し、ABS面に出現する磁極からの漏れ磁界が、高周波磁界として作用する。FGL2の磁化回転駆動力は、金属非磁性スピン伝導層3を介して対向磁極側リッブ13に反射されて負の垂直磁気異方性体11に留まるスピンによるスピントルクである。このスピントルクは、主磁極5からの漏洩磁界によって発生するFGL2の回転軸に平行な磁化成分が小さくなる方向に作用する。このスピントルクの作用を得るには、対向磁極6側から主磁極5側へ高周波励起電流を流す必要がある。この電流方向はまた、金属非磁性スピン伝導層3側からFGL2側に向かうものである。主磁極5から磁界が流入する場合に、FGL2の磁化の回転方向は高周波励起(直流)電流の下流側から見て反時計周りとなっており、主磁極5からの磁界で反転する記録媒体の磁化の歳差運動方向と同じ向きの回転磁界を印加することができる。主磁極5へ磁界が流入する場合には、FGL2の磁化の回転方向は高周波励起(直流)電流の下流側から見て時計周りとなり、主磁極5への磁界で反転する記録媒体の磁化の歳差運動方向と同じ向きの回転磁界を印加することができる。したがって、FGL2の円偏光高周波磁界は、主磁極5の極性によらず、主磁極5による磁化反転をアシストする効果がある。実施例1と同様、非特許文献2に記載された形式の高周波磁界発生器では主磁極5の極性によってスピントルクの向きが変わらないため、このような効果を得ることはできない。
 図11Aに示す高周波磁界発生器201構成は、図10Aに示された高周波磁界発生器201の構成に比べて、スピントルクが負の垂直磁気異方性体11に作用する為、より高い周波数での動作が安定で、発振の立ち上がりも早くなる傾向がある。金属非磁性スピン伝導層3には、2nm-Cuを用いたが、スピン伝導性の高い金属非磁性体であるRu等を用いても良い。負の垂直磁気異方性体11は、六方晶CoIrの001面が図中の左右方向となるようにし、磁気異方性の大きさは6.0×105J/m3であった。負の垂直磁気異方性を有する磁性体をFGL2と隣接させることにより、FGL2の磁化方向を回転軸と垂直方向に留める作用が強化される。この作用は、負の垂直磁気異方性を有する磁性体として知られているα’-FeC,dhcpCoFe,NiAs型MnSb等でも同様に期待できる。FGL2にCoFe合金を用いているので、α’-FeCやdhcpCoFeを用いてもCoIrと同様大きな交換相互作用が働き、磁化方向を回転軸と垂直方向に留める作用が強くなる。また、FGL2として、負の垂直磁気異方性を有する(Co/Fe)n人工格子膜を用いると、CoFe合金と同程度の磁化を有するため、負の垂直磁気異方性体11を設けなくても磁化回転が安定化し、良好な発振特性が得られる。金属非磁性スピン散乱体12には、3nm-Ptを用いた。Pdを用いても同様な作用がある。対向磁極側リップ13には、10nmCoFe合金を用いた。金属非磁性スピン伝導層3に接する対向磁極側リップ13を(Co/Ni)n人工格子膜のような比較的弱い垂直磁気異方性を有する材料を用いるとFGL磁化回転が安定化する。スピントルクは、高周波励起電流(電子流)が大きくなるほど大きくなり、また、リップ8と金属非磁性スピン伝導層3の間に分極率の大きなCoFeB層を1nm程度挿入すると大きくなる。
 記録媒体7には、基板19上に、下部記録層18として磁気異方性磁界が2.4MA/m(30kOe)の10nmCoCrPt-SiOx層、上部記録層17として磁気異方性磁界が1.4kA/m(17kOe)の6nm-(Co/Pt)-SiOx人工格子層を用いた。強磁性共鳴による吸収線幅の測定の結果、上部記録層17と下部記録層18のダンピングコンスタントαは、それぞれ0.20と0.02であった。Pt層やPd層があるとαを大きくでき、磁化反転速度を速めることができる。スパッタリングにより連続膜を形成した後、ナノインプリント技術により、トラック方向の長さが25nmでトラックピッチが35nmのディスクリートトラック媒体を作製した。スピンスタンドを用い、ヘッド媒体相対速度20m/s、磁気スペーシング5nm、トラックピッチ35nmとして磁気記録を行い、さらにこれをシールド間隔25nmのGMRヘッドにより再生した。
 高周波励起電流を変化させて1250kFCIでの信号/ノイズ比を測定したところ、最大13.0dBが得られ、1平方インチあたり1.8Tビットを超える記録密度の記録再生が十分達成可能であることがわかった。このときの高周波周波数は27.0GHzであった。比較の為に、ディスクリートトラック加工する前の媒体について、ヘッド媒体相対速度20m/s、磁気スペーシング5nm、27.0GHzで記録再生特性を測定した。トラック形成前の状態で、トラックピッチを変えて信号を記録したところ、トラックピッチ40nmのところで、1250kFCIでの信号/ノイズ比が13.0dBよりも大きくなった。この結果から、連続媒体においても、1平方インチあたり1.5Tビットを超える記録密度の記録再生が十分達成可能であることがわかった。
 以上説明した記録ヘッド及び記録媒体を図13A及び図13Bに示す磁気ディスク装置に組み込んで、性能評価を行ったところ、3枚の2.5インチ磁気ディスクの各面にそれぞれ、連続媒体で0.8Tバイト(1平方インチあたり1.3Tビット)、合計記録容量5Tバイト、また、ディスクリートトラック媒体で1.2Tバイト(1平方インチあたり1.7Tビット)、合計記録容量7Tバイトの高周波回転磁界を利用した情報記録再生装置が得られた。本実施例で用いたFGL構造は電流に対して垂直な断面のアスペクト比が比較的自由に設定できる為、用いる記録媒体に最適な構造を有する主磁極からの漏洩磁界に応じた設計が可能である。
 図12A及び図12Bは、本発明による記録ヘッド及び記録媒体の第3の構成例を示す図である。本構成例で用いる主磁極5、対向磁極6、及びその図面上方と左方の構成は、第1の構成例と同じものを用いるものとする。主磁極5に隣接して層状に、リップ8、金属非磁性スピン伝導層3、FGL(磁化高速回転体)2、金属非磁性スピン散乱体12、対向磁極側リップ13を経て対向磁極6にいたる。尚、リップ8から対向磁極側リップ13までは、図面左右方向に伸びる柱状構造で、断面がABS面に沿った辺が対向辺に比べて短い台形のトラック幅方向の端を媒体面に垂直な面で切り落とした6角形状をしている(図12B)。当該6角形状とすることにより、トラック幅方向の形状異方性を維持したまま、FGL磁界の楕円率と反転アシスト有効AC磁界のピーク位置を一致させることができ、良好な書き込み特性が期待できる。
 当該6角形状のABS面に沿った辺の長さwは、記録トラック幅を決定する重要な因子であり、本実施例では15nmとした。リップ8は、主磁極5と飽和磁化が同じ又は大きな材料を用い、主磁極5からの磁界がFGL2の層方向にできるだけ垂直となるよう3D磁界解析ソフトを用いてリップ8の厚さ設計を行った。本実施例におけるリップ8の厚さは、8nmであったが、この値は、前述の6角形状、対向磁極までの距離と状況、用いる媒体の状況、図面上方における磁気回路の状況に依存する。
 FGL2は、飽和磁化が大きく、結晶磁気異方性がほとんどない厚さ25nmのCoFe合金とした。また、FGL2として、負の垂直磁気異方性を有する(Co/Fe)n人工格子膜を用いると、CoFe合金と同程度の磁化を有するため、磁化回転が安定化し、良好な発振特性が得られる。FGL2では、層に沿った面内で磁化が高速回転し、ABS面及び、側面に出現する磁極からの漏れ磁界が、高周波磁界として作用する。FGL2の磁化回転駆動力は、金属非磁性スピン伝導層3を介してリップ8に反射されたスピンによるスピントルクである。このスピントルクは、主磁極5からの漏洩磁界によって発生するFGL2の回転軸に平行な磁化成分が小さくなる方向に作用する。このスピントルクの作用を得るには、主磁極5側から対向磁極6側へ高周波励起(直流)電流を流す必要がある。この電流方向はまた、金属非磁性スピン伝導層3側からFGL2側に向かうものである。主磁極5へ磁界が流入する場合には、FGL2の磁化の回転方向は高周波励起(直流)電流の上流側から見て時計周りとなり、主磁極5への磁界で反転する記録媒体の磁化の歳差運動方向と同じ向きの回転磁界を印加することができる。したがって、FGL2の円偏光高周波磁界は、主磁極5の極性によらず、主磁極5による磁化反転をアシストする効果がある。実施例1と同様に、非特許文献2に記載された形式の高周波磁界発生器本効果では主磁極5の極性によってスピントルクの向きが変わらないため、このような効果を得ることはできない。
 スピントルク作用は、高周波励起電流(電子流)が大きくなるほど大きくなり、また、金属非磁性スピン伝導層3と隣接する層との間に分極率の大きなCoFeB層を1nm程度挿入すると大きくなる。
 金属非磁性スピン伝導層3には、2nm-Cuを用いたが、スピン伝導性の高い金属非磁性体であるRu等を用いても良い。金属非磁性スピン散乱体12には、3nm-Ptを用いた。Pdを用いても同様な作用がある。対向磁極側リップ13には、15nmCoFe合金を用いた。
 記録媒体7には、上部記録層17として磁気異方性磁界が2.8MA/m(34kOe)の6nm-(Co/Pt)人工格子層、下部記録層18には磁気異方性磁界が4.8MA/m(60kOe)の6nm-FePt層を用いた。強磁性共鳴による吸収線幅の測定の結果、上部記録層17と下部記録層18のダンピングコンスタントαは、それぞれ0.20と0.02であった。磁性体にPtやPdのリッチ領域が接触すると、当該領域に磁化が誘導されて磁化の向きの変化を制動するように働くため、ダンピング定数α大きくできる。人工格子構造を用いなくてもPt組成の大きなCoCrPt磁性体では、ダンピング定数αが大きくなっている。書き込みヘッド部200に近い位置に上部記録層17として相対的に磁気異方性が小さく、αが大きな材料を用いることにより、低い周波数で高速反転が可能であり、かつ熱揺らぎに強い記録媒体が実現できる。
 スパッタリングにより連続膜を形成した後、EBマスタリングにより、トラック方向の長さが15nmでダウントラック方向が9nmの磁性体パターンを、トラックピッチ20nm、ビットピッチ12.5nmで配置するようにエッチングした。パターン間の間隙21にはSiOxを埋包した。スピンスタンドを用い、ヘッド媒体相対速度20m/s、磁気スペーシング5nm、トラックピッチ20nmとして磁気記録を行い、さらにこれをシールド間隔20nmのGMRヘッドにより再生した。高周波励起電流を変化させて発振周波数を変え1000kFCIでの信号/ノイズ比を測定したところ、最大15dBが得られ、1平方インチあたり2Tビットを超える記録密度の記録再生が十分達成可能であることがわかった。このときの高周波周波数は28GHzであった。
 以上説明した記録ヘッド及び記録媒体を図13A及び図13Bに示す磁気ディスク装置に組み込んで、性能評価を行ったところ、2枚の2.5インチ磁気ディスクの各面にそれぞれ、1.0Tバイト(1平方インチあたり2Tビット)、合計記録容量4Tバイトの高周波回転磁界を利用した情報記録再生装置が得られた。本実施例で用いた2層媒体は、磁気異方性の小さな上層部17に合わせた記録周波数で書込みを行うため、磁気異方性の大きな下層部18をより大きな磁気異方性とすることにより、さらに高い記録密度が達成可能である。この際には、図12Bのトラック密度を決定する幅wを小さくし、より高密度なパターンの記録媒体に書き込むようにするとよい。
 図14A及び図14Bは、本発明による記録再生装置の第4の構成例を示す図である。高周波駆動電極322に隣接して層状に、垂直磁気異方性体A(スピン注入層)308、金属非磁性スピン伝導層303、FGL(磁化高速回転体)302、金属非磁性スピン散乱体312、磁化記録層316、非磁性スピン伝達層313、垂直磁気異方性体B(検出層)320を経て検出電極321にいたる。尚、垂直磁気異方性体A308から垂直磁気異方性体B320までは、図面上下方向に伸びる柱状構造で、断面がほぼ正方形をしている。当該正方形とすることにより、FGL302から磁化記録層316へ印加される磁界をほぼ楕円率r=1とすることができる。正方形の一辺の長さは10nmとした。金属非磁性スピン伝導層303とFGL(磁化高速回転体)302との間に、負の垂直磁気異方性体311を挿入すると、FGLの磁化回転が安定化する(図14B)。垂直磁気異方性体A(スピン注入層)308及び、垂直磁気異方性体B(検出層)320は、図面上下方向に大きな垂直磁気異方性を有しており、初期段階で磁化した後は、磁化の向きは変化しない。
 図14A及び図14Bにおいて、垂直磁気異方性体A308及び、垂直磁気異方性体B320の磁化方向は同一方向に示してあるが、垂直磁気異方性体A308と垂直磁気異方性体B320との磁気異方性磁界の大きさを変え、着磁磁界を制御することにより、逆向きとすることも可能である。磁化が逆向きの場合、本発明による記録再生装置が外界に及ぼす磁界の影響が低減する。垂直磁気異方性体A308及び、垂直磁気異方性体B320には、垂直磁気異方性磁界が0.8MA/m(10kOe)から1.2MA/m(15kOe)のCoCrPt系合金を用いた。FGL302は、飽和磁化が大きく、結晶磁気異方性がほとんどない厚さ25nmのCoFe合金とした。また、FGL30として、負の垂直磁気異方性を有する(Co/Fe)n人工格子膜を用いると、CoFe合金と同程度の磁化を有するため、磁化回転が安定化し、良好な発振特性が得られる。FGL302では、層に沿った面内で磁化が高速回転し、側面に出現する磁極からの漏れ磁界が、高周波磁界として磁化記録層316に作用する。FGL302の磁化回転駆動力は、金属非磁性スピン伝導層303を介して垂直磁気異方性体A(スピン注入層)308から注入又は反射されたスピンによるスピントルクである。スピンの注入又は反射は、高周波駆動電極322と金属非磁性スピン散乱体312間に印加する電流の向きに依存する。本電流が大きいほどスピントルクが大きくなりFGL302の発振周波数が大きくなる。さらに、本電流の向きによってFGL302の磁化回転方向が変わるため、円偏光高周波磁界の回転方向が変化し、磁化記録層316の磁化のスイッチが制御可能となる。
 スピントルク作用は、金属非磁性スピン伝導層303と隣接する層との間に分極率の大きなCoFeB層を1nm程度挿入すると大きくなる。金属非磁性スピン伝導層303には、2nm-Cuを用いたが、スピン伝導性の高い金属非磁性体であるRu等を用いても良い。特に、負の垂直磁気異方性体311としてCoIrを用いる場合には、Ruを用いると垂直磁気異方性体A308、金属非磁性スピン伝導層303、負の垂直磁気異方性体311のエピタキシャル成長が期待できる。金属非磁性スピン散乱体312は、FGL302と磁化記録層316とのスピンによる相互作用をブロックする作用のほかに、接地電極として高周波駆動電極322との間に書込み回路、検出電極321との間に検出回路を形成している。金属非磁性スピン散乱体312には、3nm-Ptを用いた。Pdを用いても同様な作用がある。
 磁化記録層316は、厚すぎるとFGL302の磁界の影響を受けにくくなるので、断面となる正方形の1辺の長さ程度に抑える必要がある。一方、磁化記録層316は、記録磁化を熱揺らぎに対抗して保持し続ける必要がある。したがって、前述の垂直磁気異方性体A308及び、垂直磁気異方性体B320と同等以上の垂直磁気異方性エネルギーが必要である。本実施例では2.8MA/m(34kOe)の6nm-(Co/Pt)人工格子層を用いたが、FePt,CoPt系合金を用いても良い。磁化記録層316の磁化状態の検出には、非磁性スピン伝達層313を介して垂直磁気異方性体B(検出層)308へ流れる電流の抵抗変化をTMR又はGMR効果として観測すればよい。TMR効果を利用する場合には非磁性スピン伝達層313としてMgO、GMR効果を利用する場合には非磁性スピン伝達層313としてCuを用いるのが良い。
 図14A及び図14Bに示す記録再生素子を集積化する方法を、図15A~図15Eを用いて示す。図15A~図15Eでは、3×3の場合を例にとって示しているが、任意数の格子を形成しても原理的に問題はない。FGL302、金属非磁性スピン伝導層303、垂直磁気異方性体A308、負の垂直磁気異方性体311、非磁性スピン伝達層313、磁化記録層316、垂直磁気異方性体B320のパターンは、図15Eに示すように、10nmの正方形で、25nmピッチの格子を組んでおり、記録密度は、1平方インチあたり1Tビットとなっている。
 以上説明した記録再生素子を0.25mm×0.25mmの領域に作成し(10000×10000素子)、性能評価を行ったところ、平均下記書き込み時間3nsの10Mバイト磁性メモリが得られた。
 図15B~図15Dには、それぞれ高周波駆動電極322、金属非磁性スピン散乱体312、検出電極321の電極パターンを示している。情報の記録時には、記録ビットに対応する高周波駆動電極322と金属非磁性スピン散乱体312とを選択し、必要な向きに電流を流す。情報の再生時には、記録ビットに対応する検出電極321と金属非磁性スピン散乱体312とを選択し、電流の向きによって変化する抵抗値を測定して磁化方向を判定する。1024×1024の素子を試作し電流値を変えてエラーレートを測定したところ、記録時の高周波周波数が20GHzから32GHzの間でエラーは検出されなかった。
1 垂直磁気異方性体A
2 FGL
3 金属非磁性スピン伝導層
4 垂直磁気異方性体B(スピン注入層)
5 主磁極
6 対向磁極
7 記録媒体
8 リップ
11 負の垂直磁気異方性体
12 金属非磁性スピン散乱体
13 対向磁極側リップ
14 サイドシールド
15 金属非磁性スピン伝導層
16 記録層
17 上部記録層
18 下部記録層
19 基板
21 パターン間の間隙
56 第1の上部記録層
57 第2の上部記録層
58 下部記録層
65 第1の上部記録層
66 第2の上部記録層
67 第3の上部記録層
200 記録ヘッド
201 高周波磁界発生器
202 高周波磁界検出器
203 高周波磁界検出器
205 コイル
206 補助磁極
207 GMR素子
208 シールド膜
209 絶縁膜
25 プラス電極
26 マイナス電極
27 プラス電極
28 マイナス電極
31 反強磁性層
32 固定磁性相
33 CoFeB
35 絶縁層(MgO)
36 CoFeB
37 自由層
101 記録媒体
102 スライダ
103 ロータリアクチユエータ
104 回転軸受け
105 アーム
106 サスペンション
108 筐体
109 記録再生部
302 FGL
303 金属非磁性スピン伝導層
312 金属非磁性スピン散乱体
308 垂直磁気異方性体A(スピン注入層)
311 負の垂直磁気異方性体
313 非磁性スピン伝達層
316 磁化記録層
320 垂直磁気異方性体B(検出層)
321 検出電極
322 高周波駆動電極

Claims (8)

  1.  高周波磁界を照射して記録媒体を磁気共鳴状態とし、磁化反転磁界を低減して情報を記録する情報記録装置において、
     当該高周波磁界は、反転させようとする媒体磁化の歳差運動の回転方向と同一である円偏光回転磁界であることを特徴とする情報記録装置。
  2.  ユーザデータが格納される磁気記録媒体と、当該磁気記録媒体に記録動作を行う記録ヘッド部を備えた磁気ヘッドとを有し、高周波磁界と前記ユーザデータに対応する記録磁界とを前記磁気記録媒体に印加することで該磁気記録媒体に磁気共鳴状態を形成して記録を行う情報記録装置において、
     前記記録ヘッドは、
     前記記録磁界を発生する記録磁極と、
     該記録磁極のトレーリング側ないしリーディング側に、該記録磁極から離間して設けられた対向磁極と、
     当該記録磁極と前記対向磁極の間に設けられた、前記高周波磁界を発生する多層膜とを有し、
     当該多層膜は、前記磁気記録媒体に対する対向面側のトラック方向端部に形成された後退部を備えることを特徴とする情報記録装置。
  3.  請求項2に記載の情報記録装置において、
     前記後退部は、前記トラック方向端部に設けられたテーパ部により構成されることを特徴とする情報記録装置。
  4.  請求項2に記載の情報記録装置において、
     前記後退部は、前記トラック方向端部に設けられた段差部により構成されることを特徴とする情報記録装置。
  5.  ユーザデータが格納される磁気記録媒体と、当該磁気記録媒体に記録動作を行う記録ヘッド部を備えた磁気ヘッドとを有し、高周波磁界と前記ユーザデータに対応する記録磁界とを前記磁気記録媒体に印加することで該磁気記録媒体に磁気共鳴状態を形成して記録を行う情報記録装置において、
     前記記録ヘッドは、
     前記記録磁界を発生する記録磁極と、
     該記録磁極のトレーリング側ないしリーディング側に、該記録磁極から離間して設けられた対向磁極と、
     当該記録磁極と前記対向磁極の間に設けられた、前記高周波磁界を発生する多層膜とを有し、
     当該多層膜の浮上面形状が、上辺が前記記録磁極側である台形形状であることを特徴とする情報記録装置。
  6.  請求項1~5のいずれか1項に記載の情報記録装置において、
     前記磁気記録媒体が、ディスクリートトラック媒体であることを特徴とする情報記録装置。
  7.  請求項1~5のいずれか1項に記載の情報記録装置において、
     前記磁気記録媒体が、ビットパタン媒体であることを特徴とする情報記録装置。
  8.  ユーザデータが格納される磁気記録媒体と、当該磁気記録媒体に記録動作を行う記録ヘッド部を備えた磁気ヘッドとを有し、高周波磁界と前記ユーザデータに対応する記録磁界とを前記磁気記録媒体に印加することで該磁気記録媒体に磁気共鳴状態を形成して記録を行う情報記録装置において、
     前記記録ヘッドは、
     前記記録磁界を発生する記録磁極と、
     該記録磁極のトレーリング側ないしリーディング側に、該記録磁極から離間して設けられた対向磁極と、
     当該記録磁極と前記対向磁極の間に設けられた、前記高周波磁界を発生する多層膜とを有し、
     前記多層膜は、FGLとスピン伝導層とスピン注入層を有し、電流は前記スピン注入層から前記FGLの方向に向かって流れるようにされていることを特徴とする情報記録装置。
PCT/JP2009/069083 2008-11-10 2009-11-10 情報記録装置 WO2010053187A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/128,010 US8724260B2 (en) 2008-11-10 2009-11-10 Information recording device having high-frequency field generating multilayer material with a receded section disposed between main and opposing poles
JP2010536817A JP5558365B2 (ja) 2008-11-10 2009-11-10 情報記録装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008287287 2008-11-10
JP2008-287287 2008-11-10

Publications (1)

Publication Number Publication Date
WO2010053187A1 true WO2010053187A1 (ja) 2010-05-14

Family

ID=42152992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069083 WO2010053187A1 (ja) 2008-11-10 2009-11-10 情報記録装置

Country Status (3)

Country Link
US (1) US8724260B2 (ja)
JP (2) JP5558365B2 (ja)
WO (1) WO2010053187A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104191A (ja) * 2010-11-10 2012-05-31 Hitachi Ltd 磁気ヘッド及びそれを用いた磁気記録再生装置
JP2012119629A (ja) * 2010-12-03 2012-06-21 Toshiba Corp スピントルク発振子、その製造方法、磁気記録ヘッド、磁気ヘッドアセンブリ、磁気記録装置
JP2012204682A (ja) * 2011-03-25 2012-10-22 Toshiba Corp 磁気発振素子及びスピン波装置
JP2013047998A (ja) * 2011-08-29 2013-03-07 Hitachi Ltd 高周波磁界アシスト垂直磁気記録ヘッド
JP2013069409A (ja) * 2012-12-25 2013-04-18 Hitachi Ltd 磁気記録ヘッド及び磁気記録装置
US8472135B1 (en) 2012-03-09 2013-06-25 HGST Netherlands B.V. Microwave-assisted magnetic recording head having a current confinement structure
JP2013175250A (ja) * 2012-02-23 2013-09-05 Hitachi Ltd 磁気ヘッド及びその製造方法、及び磁気記録再生装置
JP2013196748A (ja) * 2012-03-22 2013-09-30 Toshiba Corp 磁気記録ヘッド、これを備えたヘッドジンバルアッセンブリ、およびディスク装置
JP2013229084A (ja) * 2012-04-27 2013-11-07 Hitachi Ltd 磁気記録媒体および磁気記憶装置
JP2013232269A (ja) * 2012-05-02 2013-11-14 Hitachi Ltd マイクロ波アシスト記録用磁気記録媒体及びこれを用いた情報記録装置
US8614861B1 (en) 2012-06-29 2013-12-24 Kabushiki Kaisha Toshiba Magnetic recording head including a high-frequency oscillator and disk drive with the same
US8687319B2 (en) 2011-09-20 2014-04-01 Hitachi, Ltd. Magnetic recording apparatus with magnetic recording head capable of recording information on a magnetic recording medium
JP2014123413A (ja) * 2012-12-21 2014-07-03 Toshiba Corp 磁気ヘッド、及び磁気記録再生装置
US20140376129A1 (en) * 2013-06-25 2014-12-25 Kabushiki Kaisha Toshiba Magnetic recording and reproducing apparatus
US9105279B2 (en) 2012-06-18 2015-08-11 Hitachi, Ltd. Microwave assisted magnetic recording and magnetic storage device
US9275672B2 (en) 2012-03-01 2016-03-01 Hitachi, Ltd. Magnetic head, magnetic recording method and apparatus for controlling magnetic head with spin torque oscillator in a disk drive
US9437218B2 (en) 2014-07-25 2016-09-06 Kabushiki Kaisha Toshiba Magnetic recording head and magnetic recording apparatus
US10762917B1 (en) * 2018-05-21 2020-09-01 Western Digital Technologies, Inc. Reversed mode spin torque oscillator with shaped field generation layer

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358127B2 (en) * 2010-04-07 2013-01-22 Tdk Corporation Apparatus for measuring magnetic field of microwave-assisted head
JP5581980B2 (ja) * 2010-11-08 2014-09-03 株式会社日立製作所 磁気記録ヘッドおよび磁気記録装置
JP5902071B2 (ja) 2012-08-29 2016-04-13 株式会社日立製作所 磁気ヘッド及び磁気記憶装置
US8879205B2 (en) 2012-11-13 2014-11-04 HGST Netherlands B.V. High spin-torque efficiency spin-torque oscillator (STO) with dual spin polarization layer
US8908330B1 (en) * 2012-12-21 2014-12-09 Western Digital Technologies, Inc. Spin torque oscillator for microwave assisted magnetic recording with optimal geometries
JP6442978B2 (ja) * 2013-12-18 2018-12-26 Tdk株式会社 磁気記録再生装置
US9064508B1 (en) 2014-03-17 2015-06-23 HGST Netherlands B.V. Pile spin-torque oscillator with AF-mode oscillation for generating high AC-field in microwave-assisted magnetic recording
JP2016012387A (ja) * 2014-06-30 2016-01-21 株式会社東芝 高周波アシスト記録ヘッドおよびこれを備えた磁気記録装置
JP6448316B2 (ja) * 2014-11-10 2019-01-09 株式会社東芝 磁気記録再生装置及び磁気記録再生方法
US9202484B1 (en) * 2015-01-09 2015-12-01 HGST Netherlands B.V. Magnetic head provided spin torque oscillator with low drive voltage for microwave assisted magnetic recording
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US9595917B2 (en) * 2015-08-05 2017-03-14 Qualcomm Incorporated Antiferromagnetically coupled spin-torque oscillator with hard perpendicular polarizer
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
JP6495841B2 (ja) * 2016-02-16 2019-04-03 株式会社東芝 磁気記録ヘッド及び磁気記録再生装置
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10199083B1 (en) 2017-12-29 2019-02-05 Spin Transfer Technologies, Inc. Three-terminal MRAM with ac write-assist for low read disturb
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10255962B1 (en) * 2017-12-30 2019-04-09 Spin Memory, Inc. Microwave write-assist in orthogonal STT-MRAM
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10141499B1 (en) 2017-12-30 2018-11-27 Spin Transfer Technologies, Inc. Perpendicular magnetic tunnel junction device with offset precessional spin current layer
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US10872626B2 (en) 2018-03-06 2020-12-22 Western Digital Technologies, Inc. MAMR stack shape optimization for magnetic recording
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching
US11289118B1 (en) * 2021-01-04 2022-03-29 Western Digital Technologies, Inc. Spintronic device having negative interface spin scattering

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285242A (ja) * 2004-03-30 2005-10-13 Toshiba Corp 磁気記録ヘッド及び磁気記憶装置
JP2008123669A (ja) * 2006-11-14 2008-05-29 Seagate Technology Llc マイクロ波支援磁界を生成するためのスピン運動量伝達駆動発振器を組み込んだwamrライタ
JP2009070541A (ja) * 2007-08-22 2009-04-02 Toshiba Corp 磁気記録ヘッド及び磁気記録装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244801A (ja) 1994-03-07 1995-09-19 Hitachi Ltd スピン加熱記録方法およびその装置
JP2005025831A (ja) 2003-06-30 2005-01-27 Toshiba Corp 高周波発振素子、磁気情報記録用ヘッド及び磁気記憶装置
US7471491B2 (en) 2004-03-30 2008-12-30 Kabushiki Kaisha Toshiba Magnetic sensor having a frequency filter coupled to an output of a magnetoresistance element
US7102145B2 (en) * 2004-10-25 2006-09-05 International Business Machines Corporation System and method for improving spatial resolution of electron holography
JP4677589B2 (ja) * 2005-03-18 2011-04-27 独立行政法人科学技術振興機構 伝送回路一体型マイクロ波発生素子並びにマイクロ波検出方法、マイクロ波検出回路、マイクロ波検出素子及び伝送回路一体型マイクロ波検出素子
US7724469B2 (en) * 2006-12-06 2010-05-25 Seagate Technology Llc High frequency field assisted write device
JP4919901B2 (ja) * 2007-09-04 2012-04-18 株式会社東芝 磁気記録ヘッド及び磁気記録装置
JP2010003353A (ja) * 2008-06-19 2010-01-07 Toshiba Corp 磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP2010040126A (ja) * 2008-08-06 2010-02-18 Toshiba Corp 磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
US8351155B2 (en) * 2009-08-17 2013-01-08 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording system with spin torque oscillator and control circuitry for fast switching of write pole magnetization
US8446690B2 (en) * 2009-08-17 2013-05-21 HGST Netherlands B.V. Perpendicular magnetic recording write head with spin torque oscillator for fast switching of write pole magnetization
US8547661B2 (en) * 2009-10-21 2013-10-01 Headway Technologies, Inc. MAMR head with self-aligned write element and microwave field generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285242A (ja) * 2004-03-30 2005-10-13 Toshiba Corp 磁気記録ヘッド及び磁気記憶装置
JP2008123669A (ja) * 2006-11-14 2008-05-29 Seagate Technology Llc マイクロ波支援磁界を生成するためのスピン運動量伝達駆動発振器を組み込んだwamrライタ
JP2009070541A (ja) * 2007-08-22 2009-04-02 Toshiba Corp 磁気記録ヘッド及び磁気記録装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104191A (ja) * 2010-11-10 2012-05-31 Hitachi Ltd 磁気ヘッド及びそれを用いた磁気記録再生装置
JP2012119629A (ja) * 2010-12-03 2012-06-21 Toshiba Corp スピントルク発振子、その製造方法、磁気記録ヘッド、磁気ヘッドアセンブリ、磁気記録装置
US9721594B2 (en) 2010-12-03 2017-08-01 Kabushiki Kaisha Toshiba Method of manufacturing spin torque oscillator
US8929031B2 (en) 2010-12-03 2015-01-06 Kabushiki Kaisha Toshiba Spin torque oscillator, method of manufacturing the same, magnetic recording head, magnetic head assembly, and magnetic recording apparatus
US8569852B2 (en) 2011-03-25 2013-10-29 Kabushiki Kaisha Toshiba Magnetic oscillation element and spin wave device
JP2012204682A (ja) * 2011-03-25 2012-10-22 Toshiba Corp 磁気発振素子及びスピン波装置
JP2013047998A (ja) * 2011-08-29 2013-03-07 Hitachi Ltd 高周波磁界アシスト垂直磁気記録ヘッド
US8687319B2 (en) 2011-09-20 2014-04-01 Hitachi, Ltd. Magnetic recording apparatus with magnetic recording head capable of recording information on a magnetic recording medium
JP2013175250A (ja) * 2012-02-23 2013-09-05 Hitachi Ltd 磁気ヘッド及びその製造方法、及び磁気記録再生装置
US9275672B2 (en) 2012-03-01 2016-03-01 Hitachi, Ltd. Magnetic head, magnetic recording method and apparatus for controlling magnetic head with spin torque oscillator in a disk drive
US8472135B1 (en) 2012-03-09 2013-06-25 HGST Netherlands B.V. Microwave-assisted magnetic recording head having a current confinement structure
JP2013196748A (ja) * 2012-03-22 2013-09-30 Toshiba Corp 磁気記録ヘッド、これを備えたヘッドジンバルアッセンブリ、およびディスク装置
JP2013229084A (ja) * 2012-04-27 2013-11-07 Hitachi Ltd 磁気記録媒体および磁気記憶装置
JP2013232269A (ja) * 2012-05-02 2013-11-14 Hitachi Ltd マイクロ波アシスト記録用磁気記録媒体及びこれを用いた情報記録装置
US9105279B2 (en) 2012-06-18 2015-08-11 Hitachi, Ltd. Microwave assisted magnetic recording and magnetic storage device
JP2014010871A (ja) * 2012-06-29 2014-01-20 Toshiba Corp 磁気記録ヘッド、これを備えたディスク装置
US8614861B1 (en) 2012-06-29 2013-12-24 Kabushiki Kaisha Toshiba Magnetic recording head including a high-frequency oscillator and disk drive with the same
JP2014123413A (ja) * 2012-12-21 2014-07-03 Toshiba Corp 磁気ヘッド、及び磁気記録再生装置
JP2013069409A (ja) * 2012-12-25 2013-04-18 Hitachi Ltd 磁気記録ヘッド及び磁気記録装置
US20140376129A1 (en) * 2013-06-25 2014-12-25 Kabushiki Kaisha Toshiba Magnetic recording and reproducing apparatus
US9070389B2 (en) * 2013-06-25 2015-06-30 Kabushiki Kaisha Toshiba Magnetic recording and reproducing apparatus
US9437218B2 (en) 2014-07-25 2016-09-06 Kabushiki Kaisha Toshiba Magnetic recording head and magnetic recording apparatus
US10762917B1 (en) * 2018-05-21 2020-09-01 Western Digital Technologies, Inc. Reversed mode spin torque oscillator with shaped field generation layer
US10872627B2 (en) 2018-05-21 2020-12-22 Western Digital Technologies, Inc. Reversed mode spin torque oscillator with shaped field generation layer

Also Published As

Publication number Publication date
JP5760064B2 (ja) 2015-08-05
JP2014006959A (ja) 2014-01-16
US20110216436A1 (en) 2011-09-08
JPWO2010053187A1 (ja) 2012-04-05
JP5558365B2 (ja) 2014-07-23
US8724260B2 (en) 2014-05-13

Similar Documents

Publication Publication Date Title
JP5760064B2 (ja) 情報記録装置
JP5320009B2 (ja) スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP5361259B2 (ja) スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
US8654480B2 (en) Magnetic head with spin torque oscillator and magnetic recording head
JP4960319B2 (ja) 磁気記録装置
JP5173750B2 (ja) スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
US8760806B2 (en) Microwave assisted magnetic recording head and microwave assisted magnetic recording apparatus having a magnetic flux rectifying layer with a magnetic flux rectifying action
US8970996B2 (en) Spin-torque oscillator for microwave assisted magnetic recording
JP4919901B2 (ja) 磁気記録ヘッド及び磁気記録装置
JP4358279B2 (ja) 磁気記録ヘッド及び磁気記録装置
JP5581980B2 (ja) 磁気記録ヘッドおよび磁気記録装置
US9001466B2 (en) Three-dimensional magnetic recording and reproducing apparatus including a plurality of magnetic layers having different resonant frequencies
JP2013251042A (ja) スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
US20100027158A1 (en) Magnetic head for high-frequency field assist recording and magnetic recording apparatus using magnetic head for high-frequency field assist recording
JP2010003351A (ja) 磁気ヘッドアセンブリおよび磁気記録再生装置
JP5570745B2 (ja) 磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP2010257539A (ja) 磁気記録ヘッド及び磁気記録装置
JP5011331B2 (ja) 磁気記録装置
US20150103431A1 (en) Sto with anti-ferromagnetic coupling interlayer
US9336797B2 (en) Extended spin torque oscillator
JP2013235621A (ja) マイクロ波アシスト記録用磁気ヘッド及び磁気記録装置
JP2014149911A (ja) 磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP2013242934A (ja) 磁気ヘッド及び磁気記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010536817

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13128010

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824884

Country of ref document: EP

Kind code of ref document: A1