WO2010051954A2 - Verfahren und vorrichtung zur schwingungsanalyse sowie musterdatenbank dafür und verwendung einer musterdatenbank - Google Patents
Verfahren und vorrichtung zur schwingungsanalyse sowie musterdatenbank dafür und verwendung einer musterdatenbank Download PDFInfo
- Publication number
- WO2010051954A2 WO2010051954A2 PCT/EP2009/007830 EP2009007830W WO2010051954A2 WO 2010051954 A2 WO2010051954 A2 WO 2010051954A2 EP 2009007830 W EP2009007830 W EP 2009007830W WO 2010051954 A2 WO2010051954 A2 WO 2010051954A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- machining
- vibration
- spectrum
- component
- during
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H1/00—Measuring characteristics of vibrations in solids by using direct conduction to the detector
- G01H1/12—Measuring characteristics of vibrations in solids by using direct conduction to the detector of longitudinal or not specified vibrations
- G01H1/14—Frequency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/09—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
- B23Q17/0952—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
- B23Q17/0971—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring mechanical vibrations of parts of the machine
- B23Q17/0976—Detection or control of chatter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/12—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration
Definitions
- the invention relates to a method and a device for analyzing the vibration spectrum arising during the use of a component, during the testing of a component and / or during the machining of a workpiece by machining, welding, forming, joining and / or separating or the like.
- the invention further relates to a pattern database therefor and to the use thereof.
- DE 44 05 660 A1 also deals with reducing or preventing such rattling, which is recorded via a vibration sensor, and uses a control mechanism for this purpose.
- D 94 03 901 From D 94 03 901 an arrangement of vibration sensors for signal extraction from the machining process is known.
- a structure-borne noise sensor is attached to a sensing arm, which is in contact with the workpiece, so that generated from the machining process sound signals or chatter vibrations are transmitted from the workpiece to the sensor.
- D 94 03 901 speaks in this context of high-frequency sound signals.
- the term "high-frequency” is used in connection with DE 38 29 825 A1, which has a frequency range between 20 kH and 2 MHz of a adding value. Even this frequency range is hardly transferable and recognizable via the probe arm coupling of D 94 03 901.
- optical systems for monitoring a laser process are currently being used, which measure the light reflected by the exposure site and extract it from the spectral range. or derive the intensity as the actual laser process is absorbed by the material. Satisfactory results are therefore not always achievable, since several materials are to be connected to each other and the process of welding through, ie whether the laser energy also causes the required fusion and thermal penetration of all components, can not be tested by laser emission reflected on the surface.
- the prior art does not disclose any reliable sound-based methods for observing components in operation, such as a steel wheel of a railway wagon during operation of the web, or a component of an engine during operation.
- the avoidance of component failures is particularly important in safety-relevant applications, such as in passenger transport by e.g. Railways, airplanes and motor vehicles or in plants with potential dangers such as power plants indispensable and only at high cost by regular inspections outside the operation possible.
- the present invention seeks to provide a method and apparatus for vibration analysis, in particular sound analysis, and a sample database and a use of a sample database for vibration analysis, with which a precise observation and / or assessment of a component, workpiece, tool and / or editing process.
- a method for vibration analysis in which vibrations of a component or workpiece or tool are detected and evaluated, wherein a vibration spectrum at different times or continuously detected and subjected to a multi-dimensional evaluation.
- the vibrations can thereby during use of a component such as a steel wheel or an axle of a railway in operation, in the
- the inventive detection of the vibration spectrum at different times, and preferably continuously or quasi-continuously with an appropriate sample rate allows a multi-dimensional data evaluation, the basis for a precise assessment of a component, workpiece, tool and / or machining.
- the multi-dimensional data evaluation can be illustrated for a preferred embodiment with three dimensions by way of example by a landscape, which can then extend in the example spanned by a frequency, a time and an amplitude axis space.
- the landscape visualises the sound emissions over time and exhibits characteristic features that virtually form a fingerprint. These characteristic features can be determined by suitable methods. Likewise, deviations from these characteristic features can be detected. Also, characteristic features in the multi-dimensional data can be determined for certain errors or error types.
- the quality of machining a piece of work can be detected with high reliability, in particular still during the processing in real time, and universally in a variety of machining processes such as machining, welding, forming, joining, cutting and / or the like. Also can the degree of wear of the tool or a tool defect such as a drill break can be determined and identified on the basis of the corresponding characteristic features. Finally, in a component test, the deviation from expected characteristic features can be determined, and the match with error characteristics can diagnose a particular error or type of error.
- the component test can be carried out even during operation of the component; For example, during operation of a train on the axle or the wheel, a vibration spectrum and in particular a sound emission spectrum can be tapped and checked for characteristic features, for example a wear, a degree of wear, an error such as a fracture or a crack or a standard behavior or to determine a deviation from the standard behavior in general.
- characteristic features for example a wear, a degree of wear, an error such as a fracture or a crack or a standard behavior or to determine a deviation from the standard behavior in general.
- the evaluation is preferably carried out automatically on the basis of pattern recognition.
- suitable algorithms can be used which are computer-based realizable quickly and reliably with adjustable detection parameters and access stored oscillation spectrum data or process the oscillation spectrum data in real time.
- a pattern database of suitable patterns for a particular application is conveniently provided.
- the patterns may be stored in the form of pattern landscape sections, possibly with tolerance ranges, and / or defined by functions. On the one hand, this allows the use of given patterns for a particular application or application class, eg, patterns for a particular drilling operation step.
- data can be collected during a learning phase and saved as a sample and, if necessary, with tolerance values.
- the sound emission spectrum can be recorded and patterns can be extracted from it, based on the evaluation of subsequent processing is feasible.
- the patterns can cover ranges of values in order to define tolerable deviations and / or to simplify the recognizability.
- an envelope of the detected oscillation spectrum or of sections thereof is preferably provided to form an envelope of the detected oscillation spectrum or of sections thereof and to compare it with a comparison envelope.
- the envelope is formed, for example, via a smoothing function, from averaging in the space of adjacent data points, or using appropriate methods for smoothing multidimensional data.
- the deviation between the envelope and the comparative envelope may be used as a yardstick for an assessment of a component, workpiece, tool and / or process, e.g. the quality of a machining process.
- the use of an envelope allows automated identification of process sections, such as workpiece contact or machining.
- pattern recognition is simplified by using an envelope and the recognition rate is improved.
- the oscillation spectrum is preferably recorded and evaluated at high frequency and / or broadband.
- the high-frequency detection advantageously makes it possible to assess even microscopic processes on or in the component or workpiece or tool.
- the cutting can therefore also be understood as a succession of microscopic separations. Each of these small separations sends an impulse through the adjacent materials. These pulses create vibrations. The vibration frequencies depend on the pulse duration and the elasticity of the material.
- Each cut consists of a succession of very many microscopic separations, that is also a sequence of many small impulses. These impulses arise with a temporal sequence. After microscopic separation has taken place, a separation force builds up again on the next still bound material particles on the path of the cutting tool. When the necessary separation force is exceeded, the next pulse is created. This always results in new vibrational excitations whose temporal distribution is related to the cutting speed and the size of the separated material particles. This results in vibration excitation of material and tool whose frequency and amplitude characteristic are characteristic of the respective machining process.
- the detected vibration spectrum is preferably subjected to a frequency-time analysis.
- the recorded vibrations can be assigned to the course of the process over the time axis and, on the other hand, the oscillations of interest can be separated from vibrations of no interest, such as machine vibrations and spurious vibrations, which occupy other frequency ranges.
- the evaluation can therefore focus on the characteristic area for the respective application.
- the oscillation spectrum is preferably detected with a frequency resolution that corresponds to the microscopic graininess of the material of the component or workpiece and possibly other application-dependent factors.
- a frequency resolution e.g. to consider the machining speed as another factor.
- a frequency resolution of 50 MHz is required in order to detect structures of the order of magnitude of 1 ⁇ m by associated cutting vibrations.
- the frequency resolution is preferably 50 MHz to cover all applications, but may also be in the range of 40 MHz, 30 MHz, 20 MHz or 10 MHz.
- the oscillation spectrum can be detected with the coordinates frequency f, time t and amplitude A.
- This detection is suitable for a numerical analysis in the computer, the coordinates also functions a (f), b (t) and / or c (A) of Frequency f, the time t or the amplitude A may be, or a (f, t, A), b (f, t, A) and / or c (f, t, A), so that a three-dimensional array in a given function is dependent on f, t, A, for example (If, mt, nA x ), where I, m, n, x are arbitrary numbers.
- the vibration spectrum with the three coordinates can be graphically displayed.
- a three-dimensional representation can be selected in which the frequency and the time span a plane and an amplitude profile is defined by the amplitude (or a function thereof).
- Such a graphical representation facilitates the recognition of the vibrations relevant for the evaluation, for example, these can be assigned to the machining process by the separation on the time axis and are separated from machine vibrations and other spurious vibrations on the frequency axis.
- a sound sensor in particular a piezo-acoustic sensor, is preferably used.
- Such sound sensors can process the high frequencies required according to the invention, have a large frequency bandwidth, can be produced inexpensively and are maintenance-free.
- the sensor in particular the sound sensor, which can be arranged on the component, workpiece or on the tool or on a component, workpiece and / or tool vibration-coupled component is calibrated after its assembly and preferably also periodically thereafter or before each use. This ensures a consistently high precision of the measurement.
- a calibration is especially useful when the sensor is mounted on a new workpiece or must be loosened and re-attached for maintenance, as attachment may cause a different coupling behavior.
- the sound sensor is subjected to a specific electrical pulse in order to emit a sound signal. Subsequently, the echo of the sound signal is detected and compared with a desired echo.
- the quality of the coupling of the sound sensor to the workpiece or tool or component can be determined and taken into account during the measurement.
- the evaluation is preferably carried out in real time. This eliminates the need to save data. Storage of the data may be expedient in the case of safety-relevant components for the proof of accuracy, or for the proof of an error.
- the data can be stored completely for the entire machining process or the entire monitoring period of a workpiece or component or only in sections in time ranges in which features of interest have been identified.
- Another aspect of the invention relates to the transformation of the vibrational spectrum, or a frequency range of interest thereof, into the audible sound spectrum by means of a suitable, e.g. linear, function or illustration.
- a suitable e.g. linear, function or illustration.
- This allows an acoustic observation or evaluation by a person. Expediently, the acoustic observation is carried out in addition to the multi-dimensional evaluation, but can also replace it.
- typical patterns in the vibration spectrum are recognized for damage.
- a simplification of the evaluation result which is limited to an error detection.
- the invention also makes it possible to detect errors not directly related to the machining of a workpiece. For example, stress cracks caused by temperature fluctuations or generally damage due to external influences can be detected.
- overload and / or fatigue cracks can be detected. This is particularly advantageous when testing a component or when observing a component in operation, e.g. while monitoring a wheel of a railroad car.
- the invention thus provides methods and devices that enable automated monitoring, quality assurance and testing of components, workpieces and machining processes. Further features and embodiments of the invention will become apparent from the following description with reference to the accompanying drawings.
- Fig. 1 schematically illustrates a device for evaluating cutting processes.
- Figs. 2 and 3 show crystallites in a steel structure.
- FIG. 4 illustrates a three-dimensional graphical representation of a vibration spectrum.
- FIG. 5 illustrates a detail of FIG. 4 in a two-dimensional representation.
- Fig. 6 is a section through Fig. 4 parallel to the f-axis.
- FIGS. 7 and 8 show a projection of the total recorded frequency range of FIG. 1 on the time axis for various tools.
- the device 1 shown in FIG. 1 for carrying out a vibration analysis here for the purpose of evaluating a cutting process, comprises a sensor 2 for detecting vibrations, which is arranged, for example, on a tool 3 of a machine tool 4, which can machine a workpiece 5.
- the sensor 2 is connected to an evaluation device 6, z.
- the workpiece is otherwise tig, eg welded, formed, joined and / or separated, or a component is tested or observed during its use in the assembled state.
- the sensor 2 is preferably a structure-borne sound sensor, e.g. a piezoelectric sensor, and preferably can not only record structure-borne sound signals, but also send out.
- the transmission of structure-borne sound signals is particularly useful for the testing of components, since they can be set in vibration.
- Other types of sensors are also usable as long as they can detect vibrations in the frequency range of interest, e.g. Motion sensors.
- Coupled is the sensor 2 either as exemplified on the tool 3 or on the machine tool 4 or the workpiece 5 or a vibration-coupled part so that it can detect vibrations of the workpiece 5 and / or the tool 3.
- the sensor is screwed tight.
- the machine tool 4 e.g. a milling machine performs a machining operation on the tool 5, e.g. a block of steel, with the tool 3, e.g. a cutter, in particular automated from, for example, to form a gear from block steel.
- the sensor 2 is designed such that it can detect frequencies between a lower limit and an upper limit.
- the lower limit is 0 and the upper limit is °° so that the entire spectrum of interest can be captured.
- the actual frequency range of the sensor 2 should be selected based on the material to be machined and the processing speed.
- Fig. 2, 3 show typical crystallites in a steel structure.
- grain sizes vary in size, depending on the cooling process and alloying constituents. If the granularity of the material is e.g. 1 ⁇ m and the processing speed 3000 m / min, the upper limit value should be at least 50 MHz in order to be able to detect the cutting oscillations of interest. At a processing speed of 400 m / min and an average grain size of 1 ⁇ m results in a minimum resolution of 6.66 MHz.
- the tool tip e.g., 1mm
- the crystallites e.g., 1 ⁇ m
- the vibrations detected by the sensor 2 during the machining of the workpiece 5 are evaluated multidimensionally.
- the detected oscillation spectrum can be intermediately stored in the evaluation unit 6, which is preferably a computer with a corresponding interface and suitable storage media.
- a frequency-time analysis can take place in such a way that the oscillation spectrum is still displayed graphically during the acquisition or thereafter and / or is analyzed numerically.
- a representation can take place three-dimensionally with the coordinates time, frequency and amplitude (or maximum amplitude or intensity or the like) or as illustrated in FIG. 5 two-dimensionally, wherein contour lines make the amplitude visible.
- Fig. 5 at low frequencies, the left side is visible on the drive shaft, high-frequency interference is located on the right, and in between, the successive grinding of two teeth of a motor vehicle transmission shaft is visible.
- Fig. 6 shows a typical frequency spectrum.
- Patterns are recognizable, in particular the islands in FIG. 5, which are characteristic of the respective process. Such patterns also arise for errors.
- process steps can be recognized, judged by e.g. A measure of the deviation from a pattern is determined, and errors are detected and identified (drill breakage, no tools, etc.) are detected, at least deviations from the standard behavior during processing.
- the evaluation can be made with reference to FIGS. 4, 5 or 6, which are compared with comparative data or empirical values and from which characteristics can be derived via the machining process. You can use patterns from a sample database for this.
- the patterns may be stored in a pattern database or functionally described characteristic surface sections whose presence is detected in the detected vibration spectrum.
- FIGS. 7 and 8 show a projection of the entire recorded frequency range of FIG. 1 onto the time axis, so that a two-dimensional image is formed. These are records of two immediately consecutive turning processes on a steel component.
- FIG. 7 shows the emission when using a worn-out tool
- FIG. 8 shows the emission after installation of a new tool.
- Figure 8 is apparently smoother and could be used as a reference for the particular turning process, differences to which can be used to assess the tool and / or the workpiece.
- corresponding reference envelopes can be placed around the detected landscape in an automated evaluation of the acquired three-dimensional data sets. As a measure of the quality of the machining, of the tool, etc., differences, averages, scatters, etc. could be used.
- the vibration spectrum depends not only on the tool and the workpiece, but also on the machining speed, the machine tool, the consumable material (eg cooling oil), etc.
- the vibration spectrum information about the machine tool or the consumable material, etc. supply.
- the vibration spectrum is possibly modulated by the vibrations of the machine tool, for example 200 Hz.
- the sensor 2 will have a non-linear frequency response, which depends on the overall system of the machine tool, tool, workpiece.
- the frequency response is individual for each sensor and also dependent on the torque of its attachment, system resonances, machine noise, etc.
- a particular periodic calibration during the measurements is therefore expedient.
- the calibration can be carried out by the sensor 2 emitting a pulse and the pulse response is evaluated.
- the crack detection when loading components such as wheels is made possible by the broadband real-time view of structure-borne sound signals with high reliability.
- Frequency-sensitive observation enables selective filtering of normal working sounds and spontaneous component damage due to overload or fatigue cracks in the microstructure.
- Each structure separation emits a pulse-like structure-borne noise emission, which can be separated from the normal process noise.
- a real-time view of the preferably entire frequency curve over time makes it possible to detect changes in the course of the process and to those Control fluctuations so that preventive damage can be avoided.
- the invention can also be used for welding, in particular for laser welding.
- optical systems are used to monitor a laser process, which measure the light reflected from the exposure site and try to derive it from the spectrum or the intensity, such as the actual laser process of
- the energy absorption by the laser light generates temperature fluctuations in the structure and thus varying compressive stresses, pressure waves and frequencies that allow conclusions about the nature of the thermal changes in the microstructure. It is thus possible to image the welding energy and / or the energy absorbed by the material. In particular, welding defects such as the non-penetration of several components to be connected, the formation of holes due to excessive energy transfer or the absence of the laser beam can be detected by multi-dimensional evaluation of the vibration spectrum according to the invention.
- the vibration sensor or, in particular, the sound sensor can be coupled to the workpieces by means of a device.
- the sensor or sensors can also be placed on holding devices, which come into a vibration-coupling contact with the components or workpieces during clamping of the components or workpieces.
- an in-process monitoring of processing in particular of a laser welding process, is made possible, in which no further measures for monitoring or assessing the quality are required.
- the invention is also suitable for the observation of a forming process. In every forming process of solids, stresses are introduced or broken in the component. These force changes lead to pressure waves that propagate through the component or the tool.
- the frequencies of these pressure waves depend on the dynamics of the forming process, the speed of the force and also the microstructure of the material.
- the inventive method can be applied both during cold forming and during hot or hot forming. Errors such as damaged, broken or missing forming tools can be detected. Varying strengths of the component during forming, absence or altered properties of equipment such as lubricants, in hot forming in particular variations in temperature, can be detected. Even small temperature differences of 1 ° C can lead to significant changes in the forming forces and thus to changed properties in the forming dynamics and the pressure wave emissions.
- the relaxation or cooling and shrinking process and the structural transformation process of the material can also be monitored and evaluated, as well as a statement about the cooling process.
- the invention makes it possible, quite generally, to particularly observe and evaluate almost all machining processes on the basis of the vibration spectra occurring during machining, including any cooling phase or the like, which have characteristic features for standard behavior and deviations thereof as described.
- the invention can also be used for joining and separating.
- the acoustic emission pressure waves provide a measure of the press-in forces. Too much oversize or unfavorable tolerance design produces a very strong sound signal, which may indicate an error in the compression. With the multi-dimensional evaluation of the detected vibration spectrum according to the invention, this error can be detected, for example by comparison with desired patterns. Likewise, different surface properties such as excessive surface roughness or material changes can be recognized, since they have characteristic properties in the vibration spectrum.
- a gland is essentially nothing else dar. Again, surfaces are driven against each other and pressed and the torque used generates typisierbare noise emissions together with the friction properties, which in turn can be used to qualify the gland.
- the machining process is generally completed only when no changes to the component or workpiece occur more. So, for example, during forming or joining or welding, etc., the vibration spectrum is analyzed over a longer period of time, e.g. at temperature changes occurring voltages u.U. lead to damage of the components, even after the immediate conclusion of the action on the component or workpiece to determine.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
Claims
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2011004811A MX2011004811A (es) | 2008-11-07 | 2009-11-02 | Metodo y dispositivo para analisis por vibracion y base de datos de muestra para el mismo y uso de una base de datos de muestra. |
HUE13001942A HUE041330T2 (hu) | 2008-11-07 | 2009-11-02 | Eljárás és berendezés rezgéselemzésre és minta-adatbank, valamint minta-adatbank alkalmazása |
AU2009313070A AU2009313070B2 (en) | 2008-11-07 | 2009-11-02 | Method and device for vibration analyses and sample database therefor and use of a sample database |
CN200980154137XA CN102272562A (zh) | 2008-11-07 | 2009-11-02 | 用于振动分析的方法和装置以及用于其的模式数据库和模式数据库的应用 |
JP2011535039A JP5512691B2 (ja) | 2008-11-07 | 2009-11-02 | 振動解析方法、振動解析装置、振動解析のためのサンプルデータベース、及びその使用 |
DK13001942.5T DK2631616T3 (en) | 2008-11-07 | 2009-11-02 | Method and apparatus for vibration analysis as well as pattern databases and the use of a pattern database |
PT13001942T PT2631616T (pt) | 2008-11-07 | 2009-11-02 | Processo e dispositivo para a análise de vibrações, bem como bancos de dados de padrões para esse fim e utilização de um banco de dados de padrões |
PL09752114T PL2359106T3 (pl) | 2008-11-07 | 2009-11-02 | Sposób i urządzenie do analizy drgań i służąca do tego baza danych wzorów oraz zastosowanie bazy danych wzorów |
PL13001942T PL2631616T3 (pl) | 2008-11-07 | 2009-11-02 | Sposób i urządzenie do analizy drgań i służąca do tego baza danych wzorów oraz zastosowanie bazy danych wzorów |
ES09752114T ES2421535T3 (es) | 2008-11-07 | 2009-11-02 | Procedimiento y dispositivo para el análisis de vibraciones así como base de datos de patrones para ello y utilización de una base de datos de patrones |
DK09752114.0T DK2359106T3 (da) | 2008-11-07 | 2009-11-02 | Fremgangsmåde og indretning til vibrationsanalyse og mønsterdatabase dertil samt anvendelse af en mønsterdatabase |
KR1020117011827A KR101495395B1 (ko) | 2008-11-07 | 2009-11-02 | 진동 분석 방법과 장치, 이를 위한 샘플 데이타베이스 및 샘플 데이타베이스의 용도 |
RU2011122813/28A RU2545501C2 (ru) | 2008-11-07 | 2009-11-02 | Способ и устройство для анализа колебаний, а также база данных образов для них и применение базы данных образов |
EP09752114.0A EP2359106B1 (de) | 2008-11-07 | 2009-11-02 | Verfahren und vorrichtung zur schwingungsanalyse sowie musterdatenbank dafür und verwendung einer musterdatenbank |
EP13001942.5A EP2631616B1 (de) | 2008-11-07 | 2009-11-02 | Verfahren und Vorrichtung zur Schwingungsanalyse sowie Musterdatenbanken dafür und Verwendung einer Musterdatenbank |
LTEP13001942.5T LT2631616T (lt) | 2008-11-07 | 2009-11-02 | Vibracijų tyrimo būdas ir įrenginys bei jų pavyzdžių duomenų bazės ir pavyzdžių duomenų bazių panaudojimas |
US13/127,762 US8720272B2 (en) | 2008-11-07 | 2009-11-02 | Method and device for vibration analyses and sample database therefor and use of a sample database |
BRPI0921218A BRPI0921218B1 (pt) | 2008-11-07 | 2009-11-02 | processo para análise de vibrações e dispositivo para a realização de uma análise de vibrações |
ES13001942T ES2703141T3 (es) | 2008-11-07 | 2009-11-02 | Procedimiento y dispositivo para el análisis de vibraciones así como base de datos de patrones para ello y utilización de una base de datos de patrones |
SI200931913T SI2631616T1 (sl) | 2008-11-07 | 2009-11-02 | Postopek in naprava za analizo vibracij in podatkovne baze vzorcev zanjo in pa uporaba podatkovne baze vzorcev |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202008014792.1 | 2008-11-07 | ||
DE202008014792U DE202008014792U1 (de) | 2008-11-07 | 2008-11-07 | Vorrichtung zum Bewerten von Zerspanungsprozessen |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13001942.5A Previously-Filed-Application EP2631616B1 (de) | 2008-11-07 | 2009-11-02 | Verfahren und Vorrichtung zur Schwingungsanalyse sowie Musterdatenbanken dafür und Verwendung einer Musterdatenbank |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010051954A2 true WO2010051954A2 (de) | 2010-05-14 |
WO2010051954A3 WO2010051954A3 (de) | 2011-03-24 |
Family
ID=42055454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/007830 WO2010051954A2 (de) | 2008-11-07 | 2009-11-02 | Verfahren und vorrichtung zur schwingungsanalyse sowie musterdatenbank dafür und verwendung einer musterdatenbank |
Country Status (19)
Country | Link |
---|---|
US (1) | US8720272B2 (de) |
EP (3) | EP2359106B1 (de) |
JP (1) | JP5512691B2 (de) |
KR (1) | KR101495395B1 (de) |
CN (2) | CN102272562A (de) |
AU (1) | AU2009313070B2 (de) |
BR (1) | BRPI0921218B1 (de) |
DE (1) | DE202008014792U1 (de) |
DK (3) | DK2359106T3 (de) |
ES (3) | ES2496449T3 (de) |
HU (1) | HUE041330T2 (de) |
LT (1) | LT2631616T (de) |
MX (1) | MX2011004811A (de) |
PL (3) | PL2359106T3 (de) |
PT (2) | PT2631616T (de) |
RU (1) | RU2545501C2 (de) |
SI (1) | SI2631616T1 (de) |
TR (1) | TR201104452T1 (de) |
WO (1) | WO2010051954A2 (de) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202010007655U1 (de) | 2010-06-07 | 2011-09-08 | Ulrich Seuthe | Vorrichtung zur Überwachung und Optimierung von Spritzgießprozessen |
DE102011121270A1 (de) | 2011-12-15 | 2013-06-20 | Audi Ag | Verfahren und Vorrichtung zur Beurteilung der akustischen Qualität eines Bauteils |
DE202012009675U1 (de) | 2012-10-10 | 2014-01-13 | Ulrich Seuthe | Vorrichtung zur Erkennung einer Rissbildung bei einem Bauteil infolge Induktionshärtens des Bauteils |
DE102017011368A1 (de) | 2017-12-11 | 2019-06-13 | Qass Gmbh | Verfahren, Vorrichtung, und Komponenten davon, zum Erkennen von Ereignissen in einem Materialbearbeitungs- und/oder Herstellungsprozess unter Verwendung von Ereignismustern |
JP2019188578A (ja) * | 2018-04-27 | 2019-10-31 | ファナック株式会社 | モータ制御装置及び工作機械 |
DE102021103395B3 (de) | 2021-02-12 | 2022-05-19 | Erichsen Gesellschaft mit beschränkter Haftung & Co. Kommanditgesellschaft | Vorrichtung zur Erkennung von Rissen in Materialproben |
WO2023180586A1 (de) * | 2022-03-25 | 2023-09-28 | Qass Gmbh | Verfahren und vorrichtung zum herstellen von rohren, drähten, profilen und dergleichen langmaterial vermittels einer ziehvorrichtung |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009031166A1 (de) * | 2009-03-17 | 2010-09-30 | Heinz Adams | Formgebendes Bearbeitungswerkzeug mit integrierten Vorrichtungen zur optischen Überwachung, akustischen Überwachung, Drucküberwachung und Überwachung der Schwingungen und Vibrationen sowie zur Vermessung des Werkstücks |
DE112010005864T8 (de) * | 2010-09-09 | 2013-08-29 | Bayerische Motoren Werke Aktiengesellschaft | System zur Bestimmung des Schwingungsverhaltens eines Kraftfahrzeugs |
DE102011119719A1 (de) * | 2011-11-30 | 2013-06-06 | GEA CFS Bühl GmbH | Verfahren zum Aufschneiden eines Lebensmittelriegels unter Verwendung eines Schwingungssensors |
DE102014013472A1 (de) * | 2013-09-30 | 2015-04-02 | Hella Kgaa Hueck & Co. | Verfahren zur Erkennung und Klassifikation von Schadensereignissen an Kraftfahrzeugen und Vorrichtung hierfür |
JP6276139B2 (ja) * | 2014-08-26 | 2018-02-07 | オークマ株式会社 | 工作機械 |
DE202015001082U1 (de) * | 2015-02-06 | 2015-02-24 | Deckel Maho Pfronten Gmbh | Spindelvorrichtung für eine programmgesteuerte Werkzeugmaschine |
EP3118593A1 (de) * | 2015-07-17 | 2017-01-18 | Siemens Aktiengesellschaft | Verfahren und erkennungssystem zur erkennung von selbsterregten schwingungen |
DE102015217200A1 (de) * | 2015-09-09 | 2017-03-09 | Sauer Gmbh | Verfahren und Vorrichtung zum Bestimmen einer Schwingungsamplitude eines Werkzeugs |
JP6659384B2 (ja) | 2016-02-02 | 2020-03-04 | 株式会社神戸製鋼所 | 回転機の異常検知装置および回転機の異常検知システム |
JP6573838B2 (ja) * | 2016-02-10 | 2019-09-11 | 株式会社神戸製鋼所 | 回転機の異常検知システム |
DE102016205944A1 (de) * | 2016-04-08 | 2017-10-12 | Zf Friedrichshafen Ag | Verfahren und Vorrichtung zur Erkennung einer Anwesenheit eines Fremdkörpers |
CN106425681A (zh) * | 2016-06-29 | 2017-02-22 | 北京航天控制仪器研究所 | 一种机床刀具微进给测微装置及方法 |
JP6450738B2 (ja) * | 2016-12-14 | 2019-01-09 | ファナック株式会社 | 工作機械における工具のビビり発生の予兆を検知する機械学習装置、cnc装置および機械学習方法 |
DE102016125803A1 (de) * | 2016-12-28 | 2018-06-28 | Fritz Studer Ag | Werkzeugmaschine, insbesondere Schleifmaschine, sowie Verfahren zur Ermittlung eines Ist-Zustandes einer Werkzeugmaschine |
DE102017101581A1 (de) * | 2017-01-26 | 2018-07-26 | Homag Plattenaufteiltechnik Gmbh | Verfahren zum Betreiben einer Werkstückbearbeitungsanlage, sowie Werkstückbearbeitungsanlage |
CN107505232B (zh) | 2017-07-21 | 2019-09-03 | 无锡海斯凯尔医学技术有限公司 | 运动信息获取方法及装置 |
JP6833651B2 (ja) * | 2017-10-12 | 2021-02-24 | シチズン時計株式会社 | 異常検出装置及び異常検出装置を備えた工作機械 |
DE102017010598A1 (de) * | 2017-11-15 | 2019-05-16 | Gleason-Pfauter Maschinenfabrik Gmbh | Verfahren zur Bearbeitung einer Verzahnung und Verzahnungsmaschine |
CN110000162A (zh) * | 2019-03-27 | 2019-07-12 | 四川大学 | 利用振动信号判定激光除漆效果的方法 |
DE102019110137A1 (de) * | 2019-04-17 | 2020-10-22 | Homag Gmbh | Bearbeitungsverfahren |
DE102019003921B4 (de) * | 2019-06-05 | 2021-05-06 | Hufschmied Zerspanungssysteme Gmbh | Werkstückprüfverfahren und Werkstückprüfsystem |
DE102019006878B3 (de) * | 2019-10-02 | 2021-01-21 | Rheinische Fachhochschule Köln gGmbH | Verfahren und Anordnung zum Betreiben von Schleifprozessen |
US11378442B2 (en) | 2020-01-15 | 2022-07-05 | Hitachi, Ltd. | Method for compressing wideband sensor signal |
DE102021104634A1 (de) * | 2021-02-26 | 2022-09-01 | Röhm Gmbh | Spannvorrichtung sowie Futterflansch |
DE102023205425A1 (de) | 2022-06-13 | 2023-12-14 | Hochschule Heilbronn, Körperschaft des öffentlichen Rechts | Computer-implementiertes Verfahren zum Erstellen eines Feedforward Neural Network |
CN118081479B (zh) * | 2024-04-26 | 2024-06-21 | 深圳市海腾达机械设备有限公司 | 一种机床运行故障在线监测方法与系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4901575A (en) * | 1988-11-30 | 1990-02-20 | Gp Taurio, Inc. | Methods and apparatus for monitoring structural members subject to transient loads |
DE4242442A1 (de) * | 1992-12-16 | 1994-06-23 | Daimler Benz Ag | Verfahren zur selbsttätigen, iterativen Prozeßoptimierung von Ziehvorgängen in Pressen |
DE4304170A1 (de) * | 1993-02-12 | 1994-08-18 | Isad Ingenieurbuero Gmbh Fuer | Verfahren und Vorrichtung zur Erkennung von Oberflächenstrukturen |
DE10340697A1 (de) * | 2003-03-26 | 2004-10-07 | GFE-Gesellschaft für Fertigungstechnik und Entwicklung Schmalkalden/Chemnitz mbH | Einrichtung zum Erfassen, Bewerten und Verändern des dynamischen Verhaltens von Rotierenden Zerspanungswerkzeugen |
WO2006114242A1 (de) * | 2005-04-26 | 2006-11-02 | Oerlikon Textile Gmbh & Co. Kg | Faserkabel-schneidvorrichtung |
DE102005034768A1 (de) * | 2005-07-26 | 2007-02-01 | Daimlerchrysler Ag | Verfahren und Einrichtung zum Überwachen des Betriebszustands einer Werkzeugmaschine |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988007911A1 (en) * | 1987-04-06 | 1988-10-20 | Regents Of The University Of Minnesota | Insert with integral sensor |
JPS63261117A (ja) * | 1987-04-17 | 1988-10-27 | Kyushu Keisokki Kk | 機械音監視装置 |
EP0419460A1 (de) * | 1988-06-17 | 1991-04-03 | The Regents Of The University Of Minnesota | Integraler schallemissionsfühler für herstellungsverfahren und mechanische komponenten |
DE3829825A1 (de) | 1988-09-02 | 1990-03-15 | Fraunhofer Ges Forschung | Verfahren und vorrichtung zur ueberwachung der spanabhebenden bearbeitung eines werkstueckes |
US5179860A (en) * | 1989-10-04 | 1993-01-19 | Iwatsu Electric Co., Ltd. | Defect detecting method and apparatus |
US5144838A (en) * | 1989-10-04 | 1992-09-08 | Iwatsu Electric Co., Ltd. | Defect detecting method and apparatus |
JPH03289561A (ja) * | 1990-04-06 | 1991-12-19 | Iwatsu Electric Co Ltd | 欠陥及び異硬度部分の検出方法及び装置 |
JPH06160172A (ja) * | 1992-11-25 | 1994-06-07 | Nkk Corp | 異常検出装置 |
JP3415288B2 (ja) * | 1993-11-09 | 2003-06-09 | 株式会社東芝 | 情報記録再生装置 |
DE4405660A1 (de) | 1994-02-22 | 1995-08-24 | Wagner Maschf Gustav | Verfahren und Anordnung zum Betreiben einer spanabhebenden Werkzeugmaschine, insbesondere Kreissäge-, Fräs-, Schleifmaschine oder dergleichen |
DE9403901U1 (de) | 1994-03-08 | 1994-08-25 | Otto-von-Guericke-Universität Magdeburg, 39104 Magdeburg | Anordnung von Schwingungssensoren zur Signalgewinnung aus dem spanenden Bearbeitungsprozeß, insbesondere für Rundschleifmaschinen |
DE4436445A1 (de) | 1994-10-13 | 1996-04-18 | Widia Heinlein Gmbh | Verfahren zum Bewerten des dynamischen Verhaltens von spanend arbeitenden Werkzeugen |
JP3764233B2 (ja) * | 1996-01-11 | 2006-04-05 | 株式会社東芝 | 異常検査方法及びその装置 |
JP3449194B2 (ja) * | 1997-01-28 | 2003-09-22 | 松下電工株式会社 | 回転機器の異常診断方法およびその装置 |
JP3518838B2 (ja) * | 1997-09-04 | 2004-04-12 | 株式会社東芝 | 音響監視装置 |
US6085121A (en) | 1997-09-22 | 2000-07-04 | Design & Manufacturing Solutions, Inc. | Device and method for recommending dynamically preferred speeds for machining |
JP2000121426A (ja) * | 1998-10-13 | 2000-04-28 | Mazda Motor Corp | ツールの異常状態検出装置 |
JP4262878B2 (ja) * | 2000-09-28 | 2009-05-13 | 石川島運搬機械株式会社 | 回転機械異常音診断処理手法 |
AU2001294237A1 (en) * | 2000-10-13 | 2002-04-22 | Heraeus Electro-Nite Japan, Ltd. | Method for measuring flow velocity of molten metal and its instrument, and measuring rod used for this |
JP2003075246A (ja) * | 2001-09-05 | 2003-03-12 | Sony Corp | サウンドプレッシャレベル測定器 |
US20030088346A1 (en) * | 2001-10-27 | 2003-05-08 | Vetronix Corporation | Noise, vibration and harshness analyzer |
US7132617B2 (en) * | 2002-02-20 | 2006-11-07 | Daimlerchrysler Corporation | Method and system for assessing quality of spot welds |
JP2004117041A (ja) * | 2002-09-24 | 2004-04-15 | Tama Tlo Kk | 弾性波検出方法、その装置および検査方法 |
DE10244426B4 (de) | 2002-09-24 | 2005-02-10 | Siemens Ag | Bearbeitungsmaschine |
JP2005284016A (ja) * | 2004-03-30 | 2005-10-13 | Iwatsu Electric Co Ltd | 音声信号の雑音推定方法およびそれを用いた雑音除去装置 |
DE102005018123B4 (de) * | 2005-04-20 | 2016-10-20 | Hottinger Baldwin Messtechnik Gmbh | Verfahren zur Bewertung von Messwerten zur Erkennung einer Materialermüdung |
JP4882338B2 (ja) * | 2005-10-27 | 2012-02-22 | ヤマハ株式会社 | マルチスピーカシステム |
RU2324566C2 (ru) * | 2006-03-22 | 2008-05-20 | Александр Семенович Сердечный | Пресс-молот |
JP4903683B2 (ja) * | 2006-12-26 | 2012-03-28 | 京セラ株式会社 | 圧電磁器および圧電素子 |
US8186223B2 (en) * | 2009-04-24 | 2012-05-29 | General Electric Company | Structural integrity monitoring system |
DE102009033614B4 (de) * | 2009-07-17 | 2020-01-23 | Wolfgang Klippel | Anordnung und Verfahren zur Erkennung, Ortung und Klassifikation von Defekten |
-
2008
- 2008-11-07 DE DE202008014792U patent/DE202008014792U1/de not_active Expired - Lifetime
-
2009
- 2009-11-02 DK DK09752114.0T patent/DK2359106T3/da active
- 2009-11-02 ES ES12008605.3T patent/ES2496449T3/es active Active
- 2009-11-02 CN CN200980154137XA patent/CN102272562A/zh active Pending
- 2009-11-02 ES ES09752114T patent/ES2421535T3/es active Active
- 2009-11-02 RU RU2011122813/28A patent/RU2545501C2/ru active
- 2009-11-02 BR BRPI0921218A patent/BRPI0921218B1/pt active IP Right Grant
- 2009-11-02 SI SI200931913T patent/SI2631616T1/sl unknown
- 2009-11-02 PL PL09752114T patent/PL2359106T3/pl unknown
- 2009-11-02 LT LTEP13001942.5T patent/LT2631616T/lt unknown
- 2009-11-02 EP EP09752114.0A patent/EP2359106B1/de active Active
- 2009-11-02 PL PL12008605T patent/PL2587230T3/pl unknown
- 2009-11-02 HU HUE13001942A patent/HUE041330T2/hu unknown
- 2009-11-02 DK DK13001942.5T patent/DK2631616T3/en active
- 2009-11-02 JP JP2011535039A patent/JP5512691B2/ja active Active
- 2009-11-02 PT PT13001942T patent/PT2631616T/pt unknown
- 2009-11-02 EP EP13001942.5A patent/EP2631616B1/de active Active
- 2009-11-02 EP EP12008605.3A patent/EP2587230B1/de active Active
- 2009-11-02 DK DK12008605.3T patent/DK2587230T3/da active
- 2009-11-02 PT PT120086053T patent/PT2587230E/pt unknown
- 2009-11-02 MX MX2011004811A patent/MX2011004811A/es active IP Right Grant
- 2009-11-02 KR KR1020117011827A patent/KR101495395B1/ko active IP Right Grant
- 2009-11-02 ES ES13001942T patent/ES2703141T3/es active Active
- 2009-11-02 TR TR2011/04452T patent/TR201104452T1/xx unknown
- 2009-11-02 AU AU2009313070A patent/AU2009313070B2/en active Active
- 2009-11-02 PL PL13001942T patent/PL2631616T3/pl unknown
- 2009-11-02 CN CN201710157882.6A patent/CN107271023B/zh active Active
- 2009-11-02 US US13/127,762 patent/US8720272B2/en active Active
- 2009-11-02 WO PCT/EP2009/007830 patent/WO2010051954A2/de active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4901575A (en) * | 1988-11-30 | 1990-02-20 | Gp Taurio, Inc. | Methods and apparatus for monitoring structural members subject to transient loads |
DE4242442A1 (de) * | 1992-12-16 | 1994-06-23 | Daimler Benz Ag | Verfahren zur selbsttätigen, iterativen Prozeßoptimierung von Ziehvorgängen in Pressen |
DE4304170A1 (de) * | 1993-02-12 | 1994-08-18 | Isad Ingenieurbuero Gmbh Fuer | Verfahren und Vorrichtung zur Erkennung von Oberflächenstrukturen |
DE10340697A1 (de) * | 2003-03-26 | 2004-10-07 | GFE-Gesellschaft für Fertigungstechnik und Entwicklung Schmalkalden/Chemnitz mbH | Einrichtung zum Erfassen, Bewerten und Verändern des dynamischen Verhaltens von Rotierenden Zerspanungswerkzeugen |
WO2006114242A1 (de) * | 2005-04-26 | 2006-11-02 | Oerlikon Textile Gmbh & Co. Kg | Faserkabel-schneidvorrichtung |
DE102005034768A1 (de) * | 2005-07-26 | 2007-02-01 | Daimlerchrysler Ag | Verfahren und Einrichtung zum Überwachen des Betriebszustands einer Werkzeugmaschine |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202010007655U1 (de) | 2010-06-07 | 2011-09-08 | Ulrich Seuthe | Vorrichtung zur Überwachung und Optimierung von Spritzgießprozessen |
WO2011154123A1 (de) | 2010-06-07 | 2011-12-15 | Ulrich Seuthe | Verfahren und vorrichtung zur überwachung und optimierung von spritzgiessprozessen |
JP2013529148A (ja) * | 2010-06-07 | 2013-07-18 | ゾイテ、ウルリッヒ | 射出成形プロセスを監視かつ最適化するための方法および装置 |
DE102011121270A1 (de) | 2011-12-15 | 2013-06-20 | Audi Ag | Verfahren und Vorrichtung zur Beurteilung der akustischen Qualität eines Bauteils |
DE102011121270B4 (de) * | 2011-12-15 | 2017-06-01 | Audi Ag | Verfahren zur Beurteilung der akustischen Qualität einer Bremsscheibe |
DE202012009675U1 (de) | 2012-10-10 | 2014-01-13 | Ulrich Seuthe | Vorrichtung zur Erkennung einer Rissbildung bei einem Bauteil infolge Induktionshärtens des Bauteils |
WO2014056615A1 (de) | 2012-10-10 | 2014-04-17 | Ulrich Seuthe | Verfahren und vorrichtung zum vermeiden und/oder erkennen von spannungsrissen bei einem bauteil infolge härtens oder richtens |
US20150276684A1 (en) * | 2012-10-10 | 2015-10-01 | Ulrich Seuthe | Method and Device for Avoiding and/or Detecting Stress Cracks in a Component as a Result of Hardening or Straightening |
DE102017011368A1 (de) | 2017-12-11 | 2019-06-13 | Qass Gmbh | Verfahren, Vorrichtung, und Komponenten davon, zum Erkennen von Ereignissen in einem Materialbearbeitungs- und/oder Herstellungsprozess unter Verwendung von Ereignismustern |
WO2019115553A2 (de) | 2017-12-11 | 2019-06-20 | Qass Gmbh | Verfahren, (mess-)vorrichtungen, und komponenten davon, zum erkennen von ereignissen in einem materialbearbeitungs- oder -herstellungsprozess unter verwendung von ereignismustern |
WO2019115553A3 (de) * | 2017-12-11 | 2019-09-19 | Qass Gmbh | Verfahren und messvorrichtungen zum erkennen von ereignissen in einem materialbearbeitungs- oder -herstellungsprozess unter verwendung von ereignismustern |
US11931842B2 (en) | 2017-12-11 | 2024-03-19 | Qass Gmbh | Methods, (measuring) devices, and components thereof, for identifying events in a material-processing or material production process using event patterns |
JP2019188578A (ja) * | 2018-04-27 | 2019-10-31 | ファナック株式会社 | モータ制御装置及び工作機械 |
US10759012B2 (en) | 2018-04-27 | 2020-09-01 | Fanuc Corporation | Motor controller and machine tool |
DE102021103395B3 (de) | 2021-02-12 | 2022-05-19 | Erichsen Gesellschaft mit beschränkter Haftung & Co. Kommanditgesellschaft | Vorrichtung zur Erkennung von Rissen in Materialproben |
WO2022171412A1 (de) | 2021-02-12 | 2022-08-18 | Erichsen Gmbh & Co. Kg | Vorrichtung zur erkennung von rissen in materialproben |
WO2023180586A1 (de) * | 2022-03-25 | 2023-09-28 | Qass Gmbh | Verfahren und vorrichtung zum herstellen von rohren, drähten, profilen und dergleichen langmaterial vermittels einer ziehvorrichtung |
DE102022001052A1 (de) | 2022-03-25 | 2023-09-28 | QASS GmbH Qualität Automation Systeme Software | Verfahren und Vorrichtung zum Herstellen von Rohren, Drähten, Profilen und dergleichen Langmaterial |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2631616B1 (de) | Verfahren und Vorrichtung zur Schwingungsanalyse sowie Musterdatenbanken dafür und Verwendung einer Musterdatenbank | |
EP2924526B1 (de) | Verfahren zur einrichtung und/oder überwachung von betriebsparametern einer werkstückbearbeitungsmaschine | |
EP2730906B1 (de) | Vorrichtung und Verfahren zur Zustandsüberwachung eines Wälzlagers | |
DE102006048791A1 (de) | Verfahren zur Prüfung der Qualität von Werkstücken oder Maschinenteilen mittels Schallanalyse | |
EP3636373B1 (de) | Verfahren und vorrichtung zur kontrolle einer stabmessereinspannung und/oder eines messerschachts eines stabmesserkopfs zur kegelradherstellung | |
AT518154B1 (de) | Verfahren und Vorrichtung zum Trennen eines Werkstückes | |
DE4308246C2 (de) | Verfahren und Vorrichtung zur Überwachung und Steuerung von Bearbeitungsmaschinen | |
DE102004030381B3 (de) | Verfahren zur Online-Qualitätsprüfung beim Reibrührschweißen | |
DE102015213433A1 (de) | Verfahren zum Verbinden wenigstens zweier Bauteile mittels einer Stanznietvorrichtung und Fertigungseinrichtung | |
DE102019134555A1 (de) | System zum Überwachen eines Schweißprozesses | |
DE102008055977A1 (de) | Verfahren und Vorrichtung zur Bestimmung der Verformung eines rotierenden spanenden Werkzeugs | |
DE102011121270B4 (de) | Verfahren zur Beurteilung der akustischen Qualität einer Bremsscheibe | |
DE19640859A1 (de) | Verfahren und Vorrichtung zur zerstörungsfreien Feststellung des Werkstoffzustands in Bauteilen | |
DE102018206708A1 (de) | Belastungserfassung eines bearbeiteten Werkstücks auf Grundlage einer Simulation | |
DE102006062126A1 (de) | Rotationswerkzeug, Verfahren zur Schwingungsdämpfung und Vorrichtung zur Durchführung des Verfahrens | |
EP3650152B1 (de) | Verfahren und anordnung zum bearbeiten eines werkstücks | |
WO2000002022A1 (de) | Verfahren und vorrichtung zur laufenden überwachung von elementen oder gesamtheiten jeglicher art auf das auftreten von veränderungen | |
EP3891467B1 (de) | Verfahren zum überprüfen einer qualität eines werkstücks sowie recheneinrichtung | |
DE19504997C2 (de) | Instandsetzungsverfahren für Zylinder | |
EP1429141B1 (de) | Verfahren und Vorrichtung zur zerstörungsfreien Prüfung eines rohrförmigen Bauteiles | |
DE102023202705A1 (de) | Vorrichtung und Verfahren zum Generieren einer Drehzahleinstellung einer Werkzeugmaschine | |
EP3770571A1 (de) | Verfahren zur ermittlung von steifigkeitsinformationen bei bohrprozessen | |
WO2023186208A1 (de) | Zerspanungsmaschine und verfahren zum überwachen einer dynamischen steifigkeit einer zerspanungsmaschine | |
DE10232518A1 (de) | Wellendiagnose mit Piezoanregung | |
WO2018113995A1 (de) | Welle mit ultraschallprüfkopf, verfahren zur in-situ-detektion einer veränderungsstelle einer welle und verwendung einer welle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980154137.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09752114 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13127762 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011535039 Country of ref document: JP Ref document number: 2011/04452 Country of ref document: TR Ref document number: MX/A/2011/004811 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009313070 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 20117011827 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3753/CHENP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2009313070 Country of ref document: AU Date of ref document: 20091102 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011122813 Country of ref document: RU Ref document number: 2009752114 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0921218 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110509 |