WO2010050405A1 - コンタクト形成方法、半導体装置の製造方法、および半導体装置 - Google Patents
コンタクト形成方法、半導体装置の製造方法、および半導体装置 Download PDFInfo
- Publication number
- WO2010050405A1 WO2010050405A1 PCT/JP2009/068233 JP2009068233W WO2010050405A1 WO 2010050405 A1 WO2010050405 A1 WO 2010050405A1 JP 2009068233 W JP2009068233 W JP 2009068233W WO 2010050405 A1 WO2010050405 A1 WO 2010050405A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- metal
- semiconductor device
- region
- type
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 112
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000015572 biosynthetic process Effects 0.000 title claims description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 160
- 239000002184 metal Substances 0.000 claims abstract description 160
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 75
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 75
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000001301 oxygen Substances 0.000 claims abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 12
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 251
- 229910052710 silicon Inorganic materials 0.000 claims description 118
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 117
- 239000010703 silicon Substances 0.000 claims description 117
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 61
- 229910052721 tungsten Inorganic materials 0.000 claims description 58
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 57
- 239000010937 tungsten Substances 0.000 claims description 57
- 229910052689 Holmium Inorganic materials 0.000 claims description 43
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 38
- 229910052763 palladium Inorganic materials 0.000 claims description 31
- 229910052691 Erbium Inorganic materials 0.000 claims description 30
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 28
- 230000005669 field effect Effects 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000009825 accumulation Methods 0.000 claims description 14
- 239000012298 atmosphere Substances 0.000 claims description 13
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 9
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 8
- 150000002910 rare earth metals Chemical class 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 238000013329 compounding Methods 0.000 claims description 2
- 150000002940 palladium Chemical class 0.000 claims 5
- 150000003754 zirconium Chemical class 0.000 claims 4
- 150000000922 Holmium Chemical class 0.000 claims 2
- 239000002356 single layer Substances 0.000 claims 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 239000007769 metal material Substances 0.000 abstract description 14
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 239000000758 substrate Substances 0.000 description 48
- 239000003963 antioxidant agent Substances 0.000 description 30
- 230000003078 antioxidant effect Effects 0.000 description 30
- 238000000137 annealing Methods 0.000 description 16
- 239000012535 impurity Substances 0.000 description 14
- 230000004888 barrier function Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 9
- 229920005591 polysilicon Polymers 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000011229 interlayer Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000003064 anti-oxidating effect Effects 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910052772 Samarium Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000005477 sputtering target Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- -1 n-type silicon Chemical compound 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- H01L21/823814—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28079—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28518—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
-
- H01L21/823835—
-
- H01L27/092—
-
- H01L29/41733—
-
- H01L29/4958—
-
- H01L29/7833—
-
- H01L29/458—
-
- H01L29/66772—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a MIS type semiconductor device widely used for ICs, LSIs, and the like, and more particularly, to a configuration of source / drain electrodes and / or a configuration of gate electrodes.
- Patent Document 1 does not fully elucidate what is practically preferable among these materials. Further, according to the knowledge of the inventors, in heat treatment such as silicide formation at the contact portion, it is inevitable that oxygen is mixed into the silicide and the gate metal, and therefore an increase in resistance of the contact silicide and the gate metal is unavoidable. There was also a problem.
- the present invention is to provide a practical contact forming method.
- Another object of the present invention is to provide a semiconductor device in which oxygen is not mixed into contact silicide or gate electrode metal.
- a method for forming a contact with a metal semiconductor compound in a predetermined region of a semiconductor device wherein the energy of the bottom of the conduction band of the semiconductor when the predetermined region is an n-type semiconductor region.
- the predetermined region is a p-type semiconductor region
- the absolute value of the energy at the top of the valence band of the semiconductor is 0.3 eV.
- a step of providing a first metal layer having a work function having an absolute value larger than a value obtained by subtracting in the predetermined region, and a second metal layer for preventing oxidation of the first metal There is obtained a contact formation method comprising a step of providing on the first metal layer and a step of compounding only the first metal with the semiconductor by heat treatment.
- the semiconductor include Si, Ge, SiGe, and SiC.
- the absolute value of the energy at the bottom of the conduction band of silicon is zero when the contact region is n-type, and the silicon portion to be the p-type or n-type contact region of the semiconductor device.
- the absolute value is less than the value obtained by subtracting 0.3 eV from the absolute value of the energy at the top of the valence band of silicon.
- the absolute value of the energy at the bottom of the conduction band of silicon is applied to the surface of the silicon portion that is the p-type or n-type contact region of the semiconductor device. It has a work function whose absolute value is smaller than the value obtained by adding 0.3 eV.
- the contact region is p-type, the absolute value is obtained by subtracting 0.3 eV from the absolute value of the energy at the top of the valence band of silicon.
- a silicide layer of the first metal having a large work function is provided, and a semiconductor device is obtained in which the amount of oxygen mixed in the silicide layer is 1% by mass or less.
- the present invention it is possible to form a practical contact with a low resistivity at the contact. Further, according to the present invention, it is possible to prevent oxygen from being mixed during silicidation.
- FIG. 1 is a schematic block diagram explaining the structure and manufacturing process for description of this invention. It is a figure which shows the characteristic at the time of using fornium and erbium for the contact part shown by FIG. (A) And (B) is a figure which respectively shows the state before and behind annealing in the laminated body of the erbium layer and tungsten layer which were formed on the silicon substrate. (A) And (B) is a figure which shows the state before and behind annealing in the laminated body of the holmium layer and tungsten layer which were formed on the silicon substrate, respectively. 5 is an XPS image showing a depth direction analysis result when the holnium layer shown in FIG. 4 is silicided.
- (A) And (B) is a figure which shows the temperature dependence characteristic of Schottky barrier height (SBH) of a holmium silicide and an erbium silicide at the time of using a p-type and an n-type silicon substrate.
- (A) And (B) is the schematic explaining the structure and manufacturing process of the semiconductor device which concern on the 1st Example of this invention. It is a schematic block diagram explaining the structure of the semiconductor device which concerns on the 2nd Example of this invention. It is a schematic block diagram explaining the structure of the semiconductor device which concerns on the 3rd Example of this invention.
- FIG. 10 is a diagram illustrating a manufacturing process of the semiconductor device shown in FIG. 9. It is a figure explaining the process performed after the process shown by FIG.
- an insulating film 101 is formed over one surface of a silicon substrate 100.
- a semiconductor-side electrode 120 made of aluminum or the like is formed on the back surface of the silicon substrate 100.
- As the silicon substrate 100 a p-type substrate and an n-type substrate are separately prepared and used.
- the impurity concentration of the silicon substrate 100 is set to a low concentration of 1 ⁇ 10 15 cm ⁇ 3 in all cases. In an actual device, the impurity in the contact region has a higher concentration, but here, such a low concentration is used for measuring the work function of the contact metal silicide.
- an opening 102 is provided in the insulating film 101 formed on the surface of the silicon substrate 100.
- the silicon substrate 100 is selectively exposed at the opening 102.
- the area of this exposed portion (contact region) is 1 ⁇ 10 ⁇ 3 cm 2 .
- the step of exposing the silicon substrate 100 and the step of cleaning are performed in a highly clean nitrogen atmosphere, and are transferred to a metal forming apparatus (not shown) without being exposed to the air.
- a metal forming apparatus not shown
- a low work function metal layer 10 is formed on the silicon substrate 100 using a metal forming apparatus.
- the metal formation method is preferably a sputtering method.
- the metal material forming the low work function metal layer 10 is selected from metal materials that form a metal silicide with the silicon substrate 100 and have a specific work function with respect to the silicon substrate 100.
- FIG. 16 shows a band structure of n-type silicon.
- n-type silicon has energy levels (Ev), 4 at the top of the valence band of 5.17 eV. .05 eV conduction band bottom energy level (Ec), 4.61 eV intrinsic level (Ei), and the energy gap (EG) between the top of the valence band and the bottom of the conductor is 1. 12 eV.
- the work function of n-type silicon is represented by the energy difference between the Fermi level and the vacuum level (Es), and the Fermi level (E F ) of n-type silicon is the energy level at the bottom of the conduction band. It is equal to the order (Ec) and is about 4.05 eV.
- the metal material used in the present invention has a work function whose absolute value is smaller than the value obtained by adding 0.3 eV to the absolute value (4.05 eV) of the bottom energy (Ec) of the conduction band (4.05 eV).
- a metal material is selected. That is, a metal material having a work function in the hatched region of FIG.
- erbium (Er: work function is 3.2 eV), holmium (Ho: work function 3.1 eV), samarium (Sm: work function) Rare earth metals such as 2.7 eV) and ytterbium (Yb: work function 2.6 eV) are selected.
- FIG. 17 shows a band structure of p-type silicon, and p-type silicon, like n-type silicon, has an energy level (Ev) at the top of the 5.17 eV valence band. It has an energy level (Ec) of the bottom of the conduction band of 05 eV and an intrinsic level (Ei) of 4.61 eV, and the energy gap (EG) between the top of the valence band and the bottom of the conductor is 1.12 eV. It is.
- the work function of p-type silicon is represented by the energy difference between the Fermi level and the vacuum level (Es), and the Fermi level (E F ) of p-type silicon is the energy at the top of the valence band.
- the metal material used to form a contact with p-type silicon in the present invention is obtained by subtracting 0.3 eV from the absolute value of the energy at the top of the silicon valence band (5.17 eV) (ie, 4.87 eV). ) It is selected from metal materials having a work function with a larger absolute value. That is, a material having a work function in a region indicated by hatching in FIG. 17, for example, palladium (Pd: 4.9 eV), iridium (Ir: 5.35 eV), or platinum (Pt: 5.65 eV) is selected.
- the absolute value is higher than the value obtained by adding 0.3 eV to the absolute value of the energy at the bottom of the conduction band of silicon.
- the rare earth metal having a work function having a larger absolute value than the value obtained by subtracting 0.3 eV from the absolute value of the energy at the top of the valence band of silicon.
- Silicide can also be used.
- a second metal film forming chamber is formed in an inert gas atmosphere such as reduced pressure nitrogen or argon so that the silicon substrate 100 on which the low work function metal layer 10 is formed is not exposed to the atmosphere.
- an antioxidant metal layer 12 is formed.
- the antioxidant metal layer 12 is preferably made of tungsten (W), but may be another simple metal or a compound such as a metal nitride. In any case, the material must be able to withstand the high temperatures of silicidation.
- the low work function metal layer 10 is solid-phase reacted with the silicon substrate 100 to form the silicide layer 11.
- the low work function metal layer 10 on the insulating film 101 that is not silicided is left unreacted on the insulating film 101.
- the heat treatment for forming the silicide layer 11 may be performed by a clustered heat treatment apparatus including the low work function metal layer 11 film forming apparatus and the metal oxide layer 12 film forming apparatus.
- a clustered heat treatment apparatus including the low work function metal layer 11 film forming apparatus and the metal oxide layer 12 film forming apparatus.
- the effect of the antioxidant metal layer 12 can prevent the lower low work function metal layer 10 from being oxidized even if it is transported in the atmosphere. Can also be processed.
- the atmosphere during the heat treatment is preferably an inert gas atmosphere such as highly clean nitrogen or argon.
- the antioxidant metal layer 12 other than the predetermined pattern and the unreacted low work function metal layer on the insulating film 101 are removed. Thereafter, sintering can be performed in a diluted hydrogen atmosphere.
- the structure shown in FIG. 1 can be used as a contact structure if the contact region of the silicon substrate is a high-concentration n-type region.
- the antioxidant metal layer 12 is formed on the low work function metal layer 10. Therefore, the antioxidant metal layer 12 can be used as it is as the upper electrode of the semiconductor device. That is, the illustrated antioxidant metal layer 12 can also be used as an upper electrode.
- FIG. 2 temperature characteristics of the structure shown in FIG. 1 (also called a Schottky diode) are shown.
- the temperature characteristics when the silicide layer 11 of holmium (Ho) or erbium (Er) and silicon (ie, HoSi 2 , ErSi 2 ) is formed are shown in FIGS. 2 (A) and 2 (B), respectively.
- a tungsten layer is used as the antioxidant metal layer 12, and a p-type silicon substrate and an n-type silicon substrate having an impurity concentration of 1 ⁇ 10 15 cm ⁇ 3 are used.
- holmium (Ho) silicide has a low barrier of 0.301 eV against electrons. It has been found that it has a high (barrier height), and erbium (Er) silicide has a similarly low barrier height (barrier height) of 0.311 eV with respect to electrons. Note that holmium (Ho) has a lower barrier height than erbium (Er).
- the contact resistance to the n-type high concentration region is extremely low of 1 ⁇ 10 ⁇ 9 ⁇ cm 2 or less.
- the contact resistance to the n-type high concentration region is extremely low of 1 ⁇ 10 ⁇ 9 ⁇ cm 2 or less.
- FIGS. 3A and 3B an SEM image of a cross section in a state where an erbium (Er) layer and a tungsten (W) layer are deposited on a silicon substrate, and a cross section in the case of annealing after the W layer is formed.
- a cross section in the case of annealing after the W layer is formed.
- the erbium layer and the tungsten layer each had a thickness of 100 nm.
- FIGS. 4A and 4B a cross section in a state where a holmium (Ho) layer and a tungsten (W) layer are deposited on a silicon substrate, and a cross section in the case where annealing is performed after the W layer is formed. are shown respectively.
- each of the holmium layer and the tungsten layer had a thickness of 100 nm.
- the tungsten layer has an anti-oxidation function for preventing the holmium layer from being oxidized.
- the tungsten layer serves as an antioxidant layer that prevents oxidation of the low work function metal layer formed of rare earth metal.
- XPS analysis results are shown in order to clarify the function of the tungsten layer as an antioxidant layer.
- the analysis result when a 50 nm holmium silicide layer (HoSi 2 ) and a 50 nm tungsten layer (W) are formed on a silicon substrate (Sisub). It is shown.
- This example is a depth direction analysis result when a holmium layer and a tungsten layer are stacked and then annealed at 500 ° C. for 10 minutes.
- FIG. 5 shows the analysis results of tungsten (W), holmium (H), silicon (Si), and oxygen (O). Tungsten is detected only by the tungsten layer, and oxygen is detected only by the outermost surface. Has been. This indicates that tungsten is oxidized only on the outermost surface and does not diffuse into the underlying holmium layer.
- the silicon substrate and the holmium layer silicon diffuses into the holmium layer to form holmium silicide. Therefore, it can be seen that the tungsten layer realizes holmium silicidation in a state where oxidation of the holmium layer of the base layer is prevented. As a result of analysis, the amount of oxygen mixed in the silicide layer formed of holmium silicide was 1% by mass or less.
- FIGS. 6A and 6B the relationship between the Schottky biria height (SBH) and the annealing temperature is shown.
- FIG. 6A shows erbium (Er) and holmium in a p-type silicon substrate. SBH for (Ho) holes is shown, while FIG. 6 (B) shows SBH for erbium (Er) and holmium (Ho) electrons in an n-type silicon substrate.
- the dotted dots are holmium characteristics and the square dots are erbium characteristics, and both exhibit substantially the same characteristics.
- the SBH with respect to the hole is about 0.675 eV at 100 ° C., and increases to 600 ° C. as the annealing temperature rises, reaching 0.75 eV.
- 650 degreeC is exceeded and it becomes 700 degreeC, it turns out that SBH has fallen to 0.60 eV for erbium. This is probably because erbium reacted with tungsten.
- the SBH of holmium is slightly increased.
- a semiconductor device according to the first embodiment of the present invention will be described with reference to FIG.
- MOSFET inversion mode n-channel field effect transistor
- the first embodiment is characterized in that the low resistance contact is formed in the n-type silicon region by applying the present invention when manufacturing a complicated integrated circuit having a multilayer wiring structure.
- the n-channel field effect transistor according to the first embodiment of the present invention is formed in the element region separated by the element isolation region 22 of the silicon substrate 20.
- a p-type silicon substrate is used as the silicon substrate 20.
- a p + well region 24 is formed in the element region, and a gate insulating film 26 formed of a silicon oxide film or the like and a gate electrode 28 formed of polysilicon or the like are formed in the p + well region 24. Is provided.
- shallow implantation regions are formed in regions to be the source / drain.
- a sidewall 30 made of a silicon oxide film or a silicon nitride film is formed on the gate insulating film 26 and the gate electrode 28 in order to ensure insulation from the gate electrode 26.
- an interlayer insulating film 31 formed of BPSG (Boro-Phospho Silicate Glass) is formed on the entire surface, and then selectively etched to open and expose the source / drain regions 32.
- n-type impurities here, arsenic As
- the impurities implanted by the heat treatment are activated. This step can be performed after the metal formation described below.
- the impurity concentration of the source / drain region 32 was 2 ⁇ 10 20 cm ⁇ 3 .
- the silicon surfaces of the source / drain regions 32 after the ion implantation are exposed in a highly clean nitrogen atmosphere as in the case described with reference to FIG.
- a low work function metal layer 34 is formed on the exposed source / drain region 32 surface in a metal forming apparatus.
- a sputtering method is desirable as a method for forming the metal in order to suppress contamination of impurities as much as possible.
- a holmium (Ho) film having a thickness of 10 nm was formed by sputtering in an Ar atmosphere. Note that the sputtering atmosphere may be Xe, or Er instead of Ho.
- holmium (Ho) or erbium (Er) is desirable as the material of the low work function metal layer 34, but other rare earth metals such as samarium (Sm) and ytterbium (Yb) can also be used.
- a rare earth metal silicide can be used as a sputtering target.
- the low work function metal layer 34 forms a metal silicide with the source / drain region 32.
- the absolute value of the energy at the bottom of the conduction band of silicon is 0.3 eV. It may be formed of a metal material having a work function whose absolute value is smaller than the added value.
- the silicon substrate 20 is transferred to the second metal film formation chamber in an inert gas atmosphere such as nitrogen or argon under reduced pressure so that the silicon substrate 20 is not exposed to the atmosphere. Is formed on the entire exposed surface.
- tungsten (W) was used, and W was formed by sputtering in a sputtering chamber in an Ar atmosphere with a thickness of 300 nm.
- the low work function metal layer 34 and the antioxidant metal layer 36 are heat-treated (annealed) at 600 ° C. in the same manner as described with reference to FIG. 1, and as shown in FIG. A silicide layer 34a such as silicide is formed.
- the annealing may be performed in an Ar or N2 atmosphere at 300 to 700 ° C. for 2 to 60 minutes. The optimum value is about 600 ° C. and about 10 minutes for both Ho and Er. This turns the entire thickness of Ho or Er into silicide and minimizes the barrier height. Above 700 ° C., reaction with W occurs and the barrier height increases rapidly.
- the thickness of the antioxidant metal layer 36 may be selected so that the surface of the silicide layer 34a becomes a predetermined flatness.
- the antioxidant metal layer 36 is selectively removed by chemical treatment or plasma etching.
- the antioxidant metal layer 36 is left only on the silicide layer 34a, and the antioxidant metal layer 36 in other regions is removed.
- the surface oxide film of the antioxidant metal layer 36 is removed, and an interlayer insulating film 40 is formed on the entire surface by the CVD method.
- the interlayer insulating film 40 can be formed of various materials.
- the contact hole opening and the wiring formation by Cu, Al, or the like can be performed by the same method as the usual manufacturing method.
- all of the antioxidant layer 36 including the silicide layer 34a may be removed, and wiring may be formed directly on the silicide layer or via a barrier conductive layer.
- a multilayer wiring layer may be further formed thereon.
- an inversion mode n-channel field effect transistor has been described.
- the present invention can be similarly applied to an inversion mode p-channel field effect transistor.
- a contact having a low resistance can be formed as compared with a case where a contact is formed in a p-type silicon region. That is, in the embodiment shown in FIG. 7, a field effect transistor that greatly reduces the series resistance of the silicon layer can be obtained. In this case, the series resistance of the silicon high-concentration layer directly under the sidewall 30 can be reduced.
- a semiconductor device according to a second embodiment of the present invention will be described with reference to FIG.
- the semiconductor device shown in FIG. 8 is a so-called bulk current control type accumulation mode n-channel transistor.
- the illustrated bulk current control type accumulation mode n-channel transistor has an n-type semiconductor layer 54 separated by a buried oxide film 52 having a thickness of about 100 nm on a support substrate 50 formed of p-type silicon. Is formed.
- the semiconductor layer 54 forms a channel region
- the surface of the illustrated channel region has a (100) plane orientation
- the semiconductor layer 54 has a thickness of 50 nm.
- source / drain regions 56 formed of an n + semiconductor having the same conductivity type as the channel region and having a higher impurity atom concentration than the channel region.
- a gate insulating film 58 formed of an oxide film having an electrical equivalent film thickness (EOT) of 7.5 nm is provided on the channel region formed by the semiconductor layer 54.
- P + polysilicon gate electrode 60 is provided on the channel region formed by the semiconductor layer 54.
- the illustrated n-channel transistor has a gate length of 0.6 ⁇ m and a gate width of 20.0 ⁇ m.
- the average impurity atom concentration in the channel region is 2 ⁇ 10 17 cm ⁇ 3
- the source / drain region 56 in contact with the channel region has an impurity concentration of 2 ⁇ 10 20 cm ⁇ 3. It is formed of an n-type semiconductor.
- the source / drain electrodes S and D are subjected to a heat treatment in a state where the low work function metal layer 62 and the antioxidant metal layer 64 are laminated, thereby reducing the low work function.
- a silicide layer formed by siliciding the functional metal layer 64 is provided.
- the material of the low work function metal layer 64 is preferably holmium or erbium, but a value obtained by adding 0.3 eV to the absolute value of the energy at the bottom of the conduction band of n + silicon forming the source / drain region 56. It may be a metal material having a smaller work function, for example, other rare earth metals such as samarium and ytterbium.
- the contact resistance with the semiconductor is suppressed to 1 ⁇ 10 ⁇ 9 ⁇ cm 2 or less, and the series resistance of the transistor is 1 even when combined with the series resistance of the semiconductor portion of the source / drain region. 0.0 ⁇ m.
- the second embodiment of the present invention can be applied to a case where a transistor formed on an SOI (Silicon-On-Insulator) substrate is operated in either an inversion mode or an accumulation mode. .
- SOI Silicon-On-Insulator
- a semiconductor device according to a third embodiment of the present invention will be described with reference to FIG.
- the illustrated semiconductor device is a CMOS using element isolation by shallow trench (STI: Shallow Trench Isolation), two-layer wiring and chemical mechanical polishing (CMP: Chemical Mechanical Polishing).
- STI Shallow Trench Isolation
- CMP Chemical Mechanical Polishing
- FIG. 10 A manufacturing process for obtaining the structure shown in FIG. 9 will be described with reference to FIGS.
- an element isolation region 71 having an STI structure is formed, an n well 72 and a p well 73 are formed, and then activated. Thereafter, a silicon oxide film of 2 nm is formed as the gate insulating film 74.
- a gate electrode 75 is formed of polysilicon on the gate insulating film 74.
- boron is used for the n well 72 and phosphorus is used for the p well 73.
- phosphorus is used for the p well 73.
- FIG. 10 shows a state where ap + region 76 and n + region 77 are formed as high concentration regions in the n well 72 and the p well, respectively.
- heat treatment may be performed to activate the high concentration regions 76 and 77.
- the sidewall 78 is formed as shown in FIG. 11 by depositing an oxide film by CVD (Chemical Vapor Deposition) and performing etching without performing heat treatment.
- CVD Chemical Vapor Deposition
- a low work function metal as a contact metal to the high concentration regions 76 and 77 and the gate electrode 75 (palladium for the p-channel transistor on the n-well, n-channel transistor on the p-well) Holmium) is formed to a thickness of 20 nm, and a low work function metal layer is formed.
- a tungsten layer was further formed as an antioxidant metal layer with the low work function metal layer formed.
- heat treatment is performed at 550 ° C. for 1 hour in a nitrogen atmosphere, and not only silicidation (formation of the contact silicide layer 79) but also the previous step.
- the activation of the high-concentration layers 76 and 77 which were not performed at the same time is realized simultaneously. Due to the heat treatment at a low temperature, diffusion in the high concentration region can be suppressed. At this time, palladium and holmium are silicided by consuming the high-concentration silicon layers 76 and 77 only at the base of 13.6 nm.
- FIG. 1 A schematic diagram in this state is shown in FIG. Thereafter, the unreacted metal portion 80 is removed, formation of interlayer insulating films 81 and 82, formation of contact holes and electrodes 83, and wiring 84 are formed of aluminum to complete the CMOS having the structure shown in FIG. I let you.
- a metal is formed without performing a heat treatment for impurity activation, and then a high-concentration Si layer is formed by activating the impurities by performing a heat treatment.
- a metal silicide it was possible to realize a transistor having a work function difference of 0.3 eV or less and a contact resistivity of 8.0 ⁇ 10 ⁇ 10 ⁇ cm 2 .
- FIG. 12 there is shown a semiconductor device according to a fourth embodiment of the present invention.
- the illustrated semiconductor device is an n-channel inversion mode field effect transistor, and an n + -type source / drain region 32 is formed in the p-well region 24 as in FIG.
- a low work function metal layer formed of fornium and an antioxidant metal layer 36 formed of tungsten are formed on 32.
- the low work function metal layer is annealed at a temperature of about 600 ° C. with the anti-oxidation metal layer 36 formed, and between the source / drain regions 32, a silicide layer 34 a (fornium silicide (HoSi 2)). ) Layer) is formed.
- the amount of oxygen mixed in the silicide layer 34a formed in this way is 1% by mass or less.
- the semiconductor device shown in the figure is characterized in that the gate electrode 28 formed on the gate insulating film 26 is formed of a zirconium (Zr) layer 28a and a tungsten (W) layer 28b.
- Zr zirconium
- W tungsten
- the gate electrode 28 formed on the gate insulating film 26 is formed of a zirconium (Zr) layer 28a and a tungsten (W) layer 28b.
- Zr constituting the zirconium layer 28a has the same work function as n + polysilicon.
- the gate electrode 28 shown in the figure covers the zirconium layer 28a with a tungsten layer 28b having an anti-oxidation function (preferably formed simultaneously with the tungsten layer 36 on the source / drain regions), the gate electrode 28 is annealed. Oxidation of the zirconium layer 28a can be prevented.
- the gate electrode is formed of n + polysilicon
- the depletion layer formed on the surface of the channel region becomes thick, resulting in the same inconvenience as the gate insulating film becomes thick.
- the gate electrode 28 is formed of a layer, there is an effect that the depletion layer on the surface of the channel region can be thinned.
- a semiconductor device in which a p-channel inversion mode field effect transistor is shown.
- a p + source / drain region 32a is formed in an n-well region 24a, and a contact region provided in each source / drain region 32a includes a palladium silicide (Pd 2 Si) layer 34b, tungsten It is constituted by the layer 36.
- the palladium that forms the palladium silicide (Pd 2 Si) layer 34b has an absolute value greater than the absolute value of the energy at the top of the valence band of the p-type semiconductor forming the p + source silicon region 32a minus 0.3 eV.
- the metal has a large work function, a low-resistance contact region can be formed. Further, since the palladium / silicide layer 34b is covered with the tungsten layer 36 having a function as an antioxidant metal layer, the amount of mixed oxygen is 1 mass% or less.
- the gate electrode 28 of the illustrated p-channel transistor has a configuration in which a palladium layer 28 c and a tungsten layer 28 d are provided on the gate insulating film 26, and the side surfaces of the gate insulating film 26 and the gate electrode 28 are formed on the sidewall 30. Covered by.
- the palladium layer 28c which is a metal having a lower work resistance and the same work function as that of the p + polysilicon, as the gate electrode 28, the resistance is reduced as compared with the case where the gate electrode is formed of the p + polysilicon. The thickness of the depletion layer can be reduced.
- a semiconductor device in which an n-channel accumulation mode field effect transistor is shown.
- the illustrated transistor has an n-type semiconductor layer (specifically, an n-type silicon layer) 54 separated by a buried oxide film (SiO 2 ) 52 formed on a support substrate 50 such as p-type silicon. is doing.
- the semiconductor layer 54 forms a channel region.
- source / drain regions 56 formed of an n + semiconductor having the same conductivity type as the channel region and a higher impurity atom concentration than the channel region are provided.
- a contact region is provided on the surface of the source / drain region 56.
- the contact region is constituted by a holnium silicide layer 62 and a tungsten layer 64. This configuration is obtained by annealing in the state where the holnium layer, which is a low work function metal layer, is covered with the tungsten layer, which is an antioxidant metal layer, as in the other embodiments.
- a gate insulating film 58 and a gate electrode 60 are provided on an n-type semiconductor layer 54 forming a channel region, and the gate electrode 60 is formed by a palladium layer 60a and a tungsten layer 60b.
- the gate electrode 60 shown in FIG. 14 includes the palladium layer 60a that has the same work function as p + silicon and has a lower resistance than p + silicon, the depletion layer on the surface of the channel region is thickened. Thus, normally-off can be realized. Moreover, since the palladium layer 60a is covered with the tungsten layer 60b which is an antioxidant metal layer, the oxidation of the palladium layer 60a can be prevented.
- a semiconductor device according to a seventh embodiment of the present invention is shown, and the illustrated example is a p-channel accumulation mode field effect transistor.
- a buried oxide film (SiO 2 ) 52 is provided on a silicon substrate which is the support substrate 50.
- a p-type semiconductor layer 54a is provided on the buried oxide film 52, and p + source / drain regions 56a are provided on both sides of the p-type semiconductor layer 54a.
- the contact region in this example is formed by a palladium silicide (Pd 2 Si) layer 62 a and a tungsten layer 64.
- the contact region shown in the figure can also be obtained by annealing the palladium layer, which is a low work function metal layer, covered with a tungsten layer, as described above. With this configuration, the resistance of the contact region can be significantly reduced, as in the other embodiments.
- a gate insulating film 58 is formed on the channel region, and a gate electrode 60 made of a zirconium layer 60c and a tungsten layer 60d is provided on the gate insulating film 58.
- the resistance of the gate electrode 60 can be reduced as compared with the case where polysilicon is used, and the thickness of the depletion layer in the channel region can be increased as in FIG.
- fornium (Ho) is used as the low work function metal layer to form the contact region with the n + semiconductor
- palladium (Pd) is used as the low work function metal layer to form the contact region with the p + semiconductor.
- the metal of the low work function metal layer forming the silicide layer in the contact region can be selected.
- the gate electrode zirconium is used in FIGS. 12 and 15, while palladium is used in FIGS. 13 and 14.
- the metal constituting the gate electrode can be selected according to the difference in work function with the semiconductor forming the channel region.
- the present invention can form a silicide layer with extremely low resistance by annealing in a state where the low work function metal layer is covered with the antioxidant metal layer, so that a semiconductor device with high performance can be configured.
- the present invention can be applied not only to MOSFETs but also to various other semiconductor devices having contact regions.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
120 半導体側電極
10 低仕事関数金属層
12 酸化防止金属層
101 絶縁膜
102 開口部
20 シリコン基板
22 素子分離領域
24 ウェル
26 ゲート絶縁膜
28 ゲート電極
30 サイドウォール
31 層間絶縁膜
32 ソース・ドレイン領域
34 低仕事関数金属層
34a シリサイド層
36 酸化防止金属層
40 層間絶縁膜
50 シリコン基板
52 埋込絶縁層
54 半導体層
56 ソース・ドレイン領域
58 ゲート絶縁膜
62 低仕事関数金属層
64 酸化防止金属層
71 素子分離領域
72 nウェル
73 pウェル
74 ゲート絶縁膜
75 ゲート電極
76 高濃度領域(p+領域)
77 高濃度領域(n+領域)
78 サイドウォール
80 未反応金属部分
79 シリサイド層
81、82 層間絶縁膜
83 電極
84 配線
Claims (47)
- 半導体装置の所定領域へ金属半導体化合物によるコンタクトを形成する方法であって、第1の金属の層を前記所定領域に設ける工程と、前記第1の金属の酸化を防止するための第2の金属の層を前記第1の金属の層上に設ける工程と、熱処理によって前記第1の金属のみを前記半導体との化合物化する工程とを含み、前記第1の金属は、前記所定領域がn型半導体領域の場合、当該半導体の伝導帯の底のエネルギーの絶対値に0.3eVを加えた値よりも絶対値の小さな仕事関数をもち、前記所定領域がp型半導体領域の場合、当該半導体の価電子帯の頂上のエネルギーの絶対値から0.3eVを引いた値よりも絶対値の大きな仕事関数をもつ金属である
ことを特徴とするコンタクト形成方法。 - 半導体装置のp型またはn型コンタクト領域となるべきシリコン部分へ第1の金属の層を設ける工程と、前記第1の金属の酸化を防止するための第2の金属の層を前記第1の金属の層上に設ける工程と、前記第1の金属のみを前記シリコン部分と反応させ前記第1の金属のシリサイドを形成する工程とを含み、前記第1の金属としては、前記コンタクト領域がn型の場合はシリコンの伝導帯の底のエネルギーの絶対値に0.3eVを加えた値よりも絶対値の小さな仕事関数をもち、前記コンタクト領域がp型の場合はシリコンの価電子帯の頂上のエネルギーの絶対値から0.3eVを引いた値よりも絶対値の大きな仕事関数をもつような金属を選択して用いることを特徴とする半導体装置の製造方法。
- 前記第2の金属の層に接して導電材料の層を設ける工程をさらに含むことを特徴とする請求項2に記載の半導体装置の製造方法。
- 前記第1の金属のシリサイドを形成する工程の後に、前記第2の金属の層の少なくとも一部を除去する工程をさらに含むことを特徴とする請求項2に記載の半導体装置の製造方法。
- 前記除去工程の後に前記第1の金属のシリサイドの層に接して導電材料の層を設ける工程をさらに含むことを特徴とする請求項4に記載の半導体装置の製造方法。
- 前記コンタクト領域が電界効果トランジスタのソースまたはドレイン領域であることを特徴とする請求項2乃至5の一つに記載の半導体装置の製造方法。
- 前記第1の金属が希土類金属であることを特徴とする請求項2乃至6の一つに記載の半導体装置の製造方法。
- 前記コンタクト領域がn型領域であり、前記第1の金属がホルミウム又はエルビウムであることを特徴とする請求項7に記載の半導体装置の製造方法。
- 前記コンタクト領域がp型領域であり、前記第1の金属がパラジウムであることを特徴とする請求項2乃至6の一つに記載の半導体装置の製造方法。
- 前記シリサイドと前記シリコン部分との界面が所定の粗さになるように、前記第2の金属の厚さが選択されることを特徴とする請求項2乃至9の一つに記載の半導体装置の製造方法。
- 前記第2の金属がタングステンであることを特徴とする請求項2乃至10の一つに記載の半導体装置の製造方法。
- 前記コンタクト領域となるシリコン部分の表面をクリーニングする工程を有し、前記第1の金属の層を第1の金属成膜装置で設け、前記第2の金属の層を第2の金属成膜装置で設け、前記クリーニング工程で前記コンタクト領域となるシリコン部分の表面を清浄化した後に前記第1の金属成膜装置に搬入する工程および前記第1の金属成膜装置で前記第1の金属の層を設けた後に前記第2の金属成膜装置に搬入する工程を大気に曝さないで行うことを特徴とする請求項2乃至11の一つに記載の半導体装置の製造方法。
- 前記クリーニング工程で前記コンタクト領域となるシリコン部分の表面を清浄化した後に、前記第1の金属成膜装置に搬入する工程および前記第1の金属成膜装置で前記第1の金属の層を設けた後に、前記第2の金属成膜装置に搬入する工程を窒素ガスまたは不活性ガス雰囲気中で行うことを特徴とする請求項12に記載の半導体装置の製造方法。
- 半導体装置のp型またはn型コンタクト領域であるシリコン部分の表面に、前記コンタクト領域がn型の場合はシリコンの伝導帯の底のエネルギーの絶対値に0.3eVを加えた値よりも絶対値の小さな仕事関数をもち、前記コンタクト領域がp型の場合はシリコンの価電子帯の頂上のエネルギーの絶対値から0.3eVを引いた値よりも絶対値の大きな仕事関数をもつような第1の金属のシリサイドの層が設けられ、前記第1の金属の酸化を防止するための第2の金属の層が前記シリサイドの層上に設けられていることを特徴とする半導体装置。
- 前記第2の金属の層に接して導電材料の層が設けられていることを特徴とする請求項14に記載の半導体装置。
- 前記シリサイドの層の酸素混入量が1質量%以下であることを特徴とする請求項14または15に記載の半導体装置。
- 半導体装置のp型またはn型コンタクト領域であるシリコン部分の表面に、前記コンタクト領域がn型の場合はシリコンの伝導帯の底のエネルギーの絶対値に0.3eVを加えた値よりも絶対値の小さな仕事関数をもち、前記コンタクト領域がp型の場合はシリコンの価電子帯の頂上のエネルギーの絶対値から0.3eVを引いた値よりも絶対値の大きな仕事関数をもつような第1の金属のシリサイドの層が設けられており、前記シリサイドの層の酸素混入量が1質量%以下であることを特徴とする半導体装置。
- 前記シリサイドの層に接して導電材料の層が設けられていることを特徴とする請求項17に記載の半導体装置。
- 前記コンタクト領域が電界効果トランジスタのソースおよびドレイン領域の一方または両方であることを特徴とする請求項14乃至18の一つに記載の半導体装置。
- 前記電界効果トランジスタのゲート電極は、第三の金属の層と前記第三の金属の層上の前記第2の金属からなる層とを含んで構成されていることを特徴とする請求項19に記載の半導体装置。
- 前記第1の金属が希土類金属であることを特徴とする請求項14乃至20の一つに記載の半導体装置。
- 前記コンタクト領域がn型領域であり、前記第1の金属がホルミウムであることを特徴とする請求項14乃至21の一つに記載の半導体装置。
- 前記コンタクト領域がn型領域であり、前記第1の金属がエルビウムであることを特徴とする請求項14乃至21の一つに記載の半導体装置。
- 前記コンタクト領域がp型領域であり、前記第1の金属がパラジウムであることを特徴とする請求項14乃至23の一つに記載の半導体装置。
- 前記電界効果トランジスタがインバーション・モードnチャネル・トランジスタであることを特徴とする請求項19乃至23の一つに記載の半導体装置。
- 前記電界効果トランジスタがアキュミュレーション・モードnチャネル・トランジスタであることを特徴とする請求項19乃至23の一つに記載の半導体装置。
- 前記電界効果トランジスタがインバーション・モードpチャネル・トランジスタであることを特徴とする請求項19乃至21の一つ又は24に記載の半導体装置。
- 前記電界効果トランジスタがアキュミュレーション・モードpチャネル・トランジスタであることを特徴とする請求項19乃至21の一つ又は24に記載の半導体装置。
- 前記シリサイドと前記シリコン部分との界面が所定の粗さになるように、前記第2の金属の厚さが選択されていることを特徴とする請求項14乃至28の一つに記載の半導体装置。
- 前記第2の金属がタングステンであることを特徴とする請求項14乃至29の一つに記載の半導体装置。
- 前記第三の金属がジルコニウムであることを特徴とする請求項25又は28に記載の半導体装置。
- 前記第三の金属がパラジウムであることを特徴とする請求項26又は27に記載の半導体装置。
- ホルミウム・シリサイドの層とその上に設けられたタングステンの層との積層構造をそれぞれ含むソース電極およびドレイン電極がn型シリコン領域にそれぞれ設けられていることを特徴とするn型MOSトランジスタ。
- パラジウム・シリサイドの層とその上に設けられたタングステンの層との積層構造をそれぞれ含むソース電極およびドレイン電極がp型シリコン領域にそれぞれ設けられていることを特徴とするp型MOSトランジスタ。
- ホルミウム・シリサイドの層とその上に設けられたタングステンの層との積層構造をそれぞれ含むソース電極およびドレイン電極がn型シリコン領域にそれぞれ設けられているn型MOSトランジスタと、パラジウム・シリサイドの層をそれぞれ含むソース電極およびドレイン電極がp型シリコン領域にそれぞれ設けられているp型MOSトランジスタとを含むことを特徴とするCMOS半導体装置。
- 請求項33に記載のn型MOSトランジスタと、請求項34に記載のp型MOSトランジスタとを含むことを特徴とするCMOS半導体装置。
- ジルコニウムの層とその上に設けられたタングステンの層との積層構造を含むゲート電極がゲート絶縁膜上に設けられていることを特徴とするインバーション・モードn型MOSトランジスタ。
- ジルコニウムの層とその上に設けられたタングステンの層との積層構造を含むゲート電極がゲート絶縁膜上に設けられていることを特徴とするアキュミュレーション・モードp型MOSトランジスタ。
- パラジウムの層とその上に設けられたタングステンの層との積層構造を含むゲート電極がゲート絶縁膜上に設けられていることを特徴とするインバーション・モードp型MOSトランジスタ。
- パラジウムの層とその上に設けられたタングステンの層との積層構造を含むゲート電極がゲート絶縁膜上に設けられていることを特徴とするアキュミュレーション・モードn型MOSトランジスタ。
- 請求項37または40に記載のn型MOSトランジスタと、請求項38または39に記載のp型MOSトランジスタとを含むことを特徴とするCMOS半導体装置。
- ジルコニウムの層とその上に設けられたタングステンの層との積層構造を含むゲート電極がゲート絶縁膜上に設けられ、ホルミウム・シリサイドの層とその上に設けられたタングステンの層との積層構造をそれぞれ含むソース電極およびドレイン電極がn型シリコン領域にそれぞれ設けられていることを特徴とするインバーション・モードn型MOSトランジスタ。
- ジルコニウムの層とその上に設けられたタングステンの層との積層構造を含むゲート電極がゲート絶縁膜上に設けられ、パラジウム・シリサイドの単層構造またはパラジウム・シリサイドの層とその上に設けられたタングステンの層との積層構造をそれぞれ含むソース電極およびドレイン電極がp型シリコン領域にそれぞれ設けられていることを特徴とするアキュミュレーション・モードp型MOSトランジスタ。
- パラジウムの層とその上に設けられたタングステンの層との積層構造を含むゲート電極がゲート絶縁膜上に設けられており、パラジウム・シリサイドの単層構造またはパラジウム・シリサイドの層とその上に設けられたタングステンの層との積層構造をそれぞれ含むソース電極およびドレイン電極がp型シリコン領域にそれぞれ設けられていることを特徴とするインバーション・モードp型MOSトランジスタ。
- パラジウムの層とその上に設けられたタングステンの層との積層構造を含むゲート電極がゲート絶縁膜上に設けられており、ホルミウム・シリサイドの層とその上に設けられたタングステンの層との積層構造をそれぞれ含むソース電極およびドレイン電極がn型シリコン領域にそれぞれ設けられていることを特徴とするアキュミュレーション・モードn型MOSトランジスタ。
- 請求項42または45に記載のn型MOSトランジスタと、請求項43または44に記載のp型MOSトランジスタとを含むことを特徴とするCMOS半導体装置。
- 前記n型MOSトランジスタと、前記p型MOSトランジスタとが直列接続されていることを特徴とする請求項35、36、41または46に記載のCMOS半導体装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127024359A KR101288645B1 (ko) | 2008-10-30 | 2009-10-23 | 콘택트 형성 방법, 반도체 장치의 제조 방법, 및 반도체 장치 |
US13/126,249 US8575023B2 (en) | 2008-10-30 | 2009-10-23 | Contact formation method, semiconductor device manufacturing method, and semiconductor device |
DE112009002611T DE112009002611T5 (de) | 2008-10-30 | 2009-10-23 | Kontaktbildungsverfahren, Verfahren zum Herstellen einer Halbleitervorrichtung, und Halbleitervorrichtung |
KR1020117009210A KR101278119B1 (ko) | 2008-10-30 | 2009-10-23 | 콘택트 형성 방법, 반도체 장치의 제조 방법, 및 반도체 장치 |
CN2009801429011A CN102197461A (zh) | 2008-10-30 | 2009-10-23 | 接触形成方法、半导体装置的制造方法和半导体装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-279536 | 2008-10-30 | ||
JP2008279536A JP5769160B2 (ja) | 2008-10-30 | 2008-10-30 | コンタクト形成方法、半導体装置の製造方法、および半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010050405A1 true WO2010050405A1 (ja) | 2010-05-06 |
Family
ID=42128768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068233 WO2010050405A1 (ja) | 2008-10-30 | 2009-10-23 | コンタクト形成方法、半導体装置の製造方法、および半導体装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8575023B2 (ja) |
JP (1) | JP5769160B2 (ja) |
KR (2) | KR101288645B1 (ja) |
CN (1) | CN102197461A (ja) |
DE (1) | DE112009002611T5 (ja) |
TW (1) | TWI489553B (ja) |
WO (1) | WO2010050405A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013150571A1 (ja) * | 2012-04-06 | 2013-10-10 | 国立大学法人東北大学 | 半導体装置 |
WO2014064737A1 (ja) * | 2012-10-25 | 2014-05-01 | 国立大学法人東北大学 | Accumulation型MOSFET |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103137475B (zh) * | 2011-11-23 | 2015-09-16 | 中国科学院微电子研究所 | 一种半导体结构及其制造方法 |
US9917158B2 (en) | 2013-07-30 | 2018-03-13 | Samsung Electronics Co., Ltd. | Device contact structures including heterojunctions for low contact resistance |
US9685509B2 (en) | 2013-07-30 | 2017-06-20 | Samsung Electronics Co., Ltd. | Finfet devices including high mobility channel materials with materials of graded composition in recessed source/drain regions |
US10671701B2 (en) * | 2014-11-26 | 2020-06-02 | General Electric Company | Radiology desktop interaction and behavior framework |
CN106206579B (zh) * | 2015-05-08 | 2019-09-27 | 中芯国际集成电路制造(上海)有限公司 | 一种半导体器件及其制造方法 |
JP6086550B2 (ja) * | 2015-06-26 | 2017-03-01 | 国立大学法人東京工業大学 | 半導体デバイス電極の製造方法 |
KR102337459B1 (ko) * | 2015-12-10 | 2021-12-08 | 삼성전자주식회사 | 반도체 장치 제조 방법 |
KR102600998B1 (ko) | 2016-09-28 | 2023-11-13 | 삼성전자주식회사 | 반도체 장치 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1126397A (ja) * | 1997-07-01 | 1999-01-29 | Sony Corp | 半導体装置の製造方法 |
JP2000252370A (ja) * | 1999-03-01 | 2000-09-14 | Nec Corp | 相補型集積回路とその製造方法 |
JP2001015453A (ja) * | 1999-06-29 | 2001-01-19 | Oki Electric Ind Co Ltd | 金属シリサイド層の形成方法 |
JP2003332259A (ja) * | 2002-05-08 | 2003-11-21 | Fujitsu Ltd | 半導体装置及びその製造方法 |
JP2007067225A (ja) * | 2005-08-31 | 2007-03-15 | Toshiba Corp | 半導体装置およびその製造方法 |
WO2008007748A1 (fr) * | 2006-07-13 | 2008-01-17 | National University Corporation Tohoku University | dispositif semi-conducteur |
JP2008529302A (ja) * | 2005-01-27 | 2008-07-31 | インターナショナル・ビジネス・マシーンズ・コーポレーション | デバイス性能を改善するためのデュアル・シリサイド・プロセス |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7245018B1 (en) * | 1999-06-22 | 2007-07-17 | Semiconductor Energy Laboratory Co., Ltd. | Wiring material, semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof |
US7405112B2 (en) * | 2000-08-25 | 2008-07-29 | Advanced Micro Devices, Inc. | Low contact resistance CMOS circuits and methods for their fabrication |
US20030045098A1 (en) * | 2001-08-31 | 2003-03-06 | Applied Materials, Inc. | Method and apparatus for processing a wafer |
JP4093072B2 (ja) * | 2003-02-03 | 2008-05-28 | 日本電気株式会社 | 半導体装置およびその製造方法 |
WO2004070833A1 (en) * | 2003-02-03 | 2004-08-19 | Koninklijke Philips Electronics N.V. | Method of manufacturing a semiconductor device with mos transistors comprising gate electrodes formed in a packet of metal layers deposited upon one another |
KR20050009447A (ko) | 2003-07-16 | 2005-01-25 | 한국항공우주산업 주식회사 | 암나사 가공용 탭 |
JP4085051B2 (ja) | 2003-12-26 | 2008-04-30 | 株式会社東芝 | 半導体装置およびその製造方法 |
US7153769B2 (en) * | 2004-04-08 | 2006-12-26 | Micron Technology, Inc. | Methods of forming a reaction product and methods of forming a conductive metal silicide by reaction of metal with silicon |
US7489164B2 (en) * | 2004-05-17 | 2009-02-10 | Raminda Udaya Madurawe | Multi-port memory devices |
US7544610B2 (en) * | 2004-09-07 | 2009-06-09 | International Business Machines Corporation | Method and process for forming a self-aligned silicide contact |
JP2006100600A (ja) * | 2004-09-29 | 2006-04-13 | Toshiba Corp | 半導体装置およびその製造方法 |
US7344983B2 (en) * | 2005-03-18 | 2008-03-18 | International Business Machines Corporation | Clustered surface preparation for silicide and metal contacts |
US7176537B2 (en) * | 2005-05-23 | 2007-02-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | High performance CMOS with metal-gate and Schottky source/drain |
US7595248B2 (en) * | 2005-12-01 | 2009-09-29 | Intel Corporation | Angled implantation for removal of thin film layers |
US20080191285A1 (en) * | 2007-02-09 | 2008-08-14 | Chih-Hsin Ko | CMOS devices with schottky source and drain regions |
US7635988B2 (en) * | 2007-11-19 | 2009-12-22 | Tier Logic, Inc. | Multi-port thin-film memory devices |
-
2008
- 2008-10-30 JP JP2008279536A patent/JP5769160B2/ja not_active Expired - Fee Related
-
2009
- 2009-10-23 DE DE112009002611T patent/DE112009002611T5/de not_active Withdrawn
- 2009-10-23 KR KR1020127024359A patent/KR101288645B1/ko not_active IP Right Cessation
- 2009-10-23 WO PCT/JP2009/068233 patent/WO2010050405A1/ja active Application Filing
- 2009-10-23 CN CN2009801429011A patent/CN102197461A/zh active Pending
- 2009-10-23 US US13/126,249 patent/US8575023B2/en active Active
- 2009-10-23 KR KR1020117009210A patent/KR101278119B1/ko active IP Right Grant
- 2009-10-28 TW TW098136484A patent/TWI489553B/zh not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1126397A (ja) * | 1997-07-01 | 1999-01-29 | Sony Corp | 半導体装置の製造方法 |
JP2000252370A (ja) * | 1999-03-01 | 2000-09-14 | Nec Corp | 相補型集積回路とその製造方法 |
JP2001015453A (ja) * | 1999-06-29 | 2001-01-19 | Oki Electric Ind Co Ltd | 金属シリサイド層の形成方法 |
JP2003332259A (ja) * | 2002-05-08 | 2003-11-21 | Fujitsu Ltd | 半導体装置及びその製造方法 |
JP2008529302A (ja) * | 2005-01-27 | 2008-07-31 | インターナショナル・ビジネス・マシーンズ・コーポレーション | デバイス性能を改善するためのデュアル・シリサイド・プロセス |
JP2007067225A (ja) * | 2005-08-31 | 2007-03-15 | Toshiba Corp | 半導体装置およびその製造方法 |
WO2008007748A1 (fr) * | 2006-07-13 | 2008-01-17 | National University Corporation Tohoku University | dispositif semi-conducteur |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013150571A1 (ja) * | 2012-04-06 | 2013-10-10 | 国立大学法人東北大学 | 半導体装置 |
JPWO2013150571A1 (ja) * | 2012-04-06 | 2015-12-14 | 国立大学法人東北大学 | 半導体装置 |
WO2014064737A1 (ja) * | 2012-10-25 | 2014-05-01 | 国立大学法人東北大学 | Accumulation型MOSFET |
JP5704586B2 (ja) * | 2012-10-25 | 2015-04-22 | 国立大学法人東北大学 | Accumulation型MOSFET |
KR101529023B1 (ko) * | 2012-10-25 | 2015-06-15 | 도호쿠 다이가쿠 | Accumulation형 MOSFET |
TWI503986B (zh) * | 2012-10-25 | 2015-10-11 | Univ Tohoku | Polarization of gold and oxygen halide effect transistor |
US9299844B2 (en) | 2012-10-25 | 2016-03-29 | Tohoku University | Accumulation-mode MOSFET and driving method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5769160B2 (ja) | 2015-08-26 |
KR20110081998A (ko) | 2011-07-15 |
US20110198702A1 (en) | 2011-08-18 |
KR20120107534A (ko) | 2012-10-02 |
CN102197461A (zh) | 2011-09-21 |
US8575023B2 (en) | 2013-11-05 |
TWI489553B (zh) | 2015-06-21 |
JP2010109143A (ja) | 2010-05-13 |
DE112009002611T5 (de) | 2012-08-02 |
KR101288645B1 (ko) | 2013-07-22 |
KR101278119B1 (ko) | 2013-06-24 |
TW201025452A (en) | 2010-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5769160B2 (ja) | コンタクト形成方法、半導体装置の製造方法、および半導体装置 | |
US8551832B2 (en) | Method for manufacturing semiconductor device | |
WO2003079444A1 (fr) | Dispositif a semi-conducteurs et procede de fabrication | |
JP5157450B2 (ja) | 半導体装置およびその製造方法 | |
US20070221970A1 (en) | Manufacturing method of semiconductor device and semiconductor device | |
US9076857B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2012044013A (ja) | 半導体装置の製造方法 | |
JP2007324240A (ja) | 半導体装置およびその製造方法 | |
JP2009295621A (ja) | 半導体装置及びその製造方法 | |
WO2007148600A1 (ja) | 半導体装置およびその製造方法 | |
JP4058022B2 (ja) | 半導体装置の製造方法 | |
US8168522B2 (en) | Method for fabricating semiconductor device | |
JP4287421B2 (ja) | 半導体装置の製造方法 | |
JP2008117842A (ja) | 半導体装置、およびその製造方法 | |
JP4744413B2 (ja) | 半導体装置の製造方法 | |
US7011734B2 (en) | Method of manufacturing semiconductor device having silicide layer | |
JP2005294422A (ja) | 半導体装置およびその製造方法 | |
JP2011014690A (ja) | 半導体装置およびその製造方法 | |
JP2006032712A (ja) | 半導体装置及びその製造方法 | |
JP5601069B2 (ja) | 半導体装置及びその製造方法 | |
JP2010034323A (ja) | 半導体基板の製造方法および半導体装置の製造方法 | |
JP2008235711A (ja) | 半導体装置およびその製造方法 | |
JP2012004587A (ja) | 半導体装置の製造方法 | |
JP2012109339A (ja) | 半導体装置の製造方法 | |
JP2011249603A (ja) | 半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980142901.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09823516 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117009210 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13126249 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120090026117 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09823516 Country of ref document: EP Kind code of ref document: A1 |