WO2010050326A1 - 焼結軸受 - Google Patents

焼結軸受 Download PDF

Info

Publication number
WO2010050326A1
WO2010050326A1 PCT/JP2009/066878 JP2009066878W WO2010050326A1 WO 2010050326 A1 WO2010050326 A1 WO 2010050326A1 JP 2009066878 W JP2009066878 W JP 2009066878W WO 2010050326 A1 WO2010050326 A1 WO 2010050326A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
dynamic pressure
powder
alloy powder
sintered
Prior art date
Application number
PCT/JP2009/066878
Other languages
English (en)
French (fr)
Inventor
冬木 伊藤
岡村 一男
規義 倉田
Makoto KAWAMURA (川村 誠)
Original Assignee
Ntn株式会社
川村 寛子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 川村 寛子 filed Critical Ntn株式会社
Priority to US13/126,091 priority Critical patent/US20110206305A1/en
Priority to CN2009801434861A priority patent/CN102202819A/zh
Publication of WO2010050326A1 publication Critical patent/WO2010050326A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Definitions

  • the present invention relates to a sintered bearing obtained by compacting a metal powder and then sintering it.
  • the sintered bearing is formed by compacting a metal powder and then sintering at a predetermined temperature.
  • the sintered bearing shown in Patent Document 1 is used for supporting a rotating shaft that supports a rotating shaft inserted in the inner periphery.
  • the oil impregnated in the internal pores of the sintered bearing oozes out from the surface opening, and this oil is supplied to the sliding portion with the shaft, thereby improving the lubricity between the bearing and the shaft. It is done.
  • the sintered bearing of Patent Document 1 is formed by sintering mixed metal powder containing Cu powder and SUS steel (stainless steel, hereinafter the same) powder.
  • SUS steel powder with high hardness, it is possible to improve the wear resistance of the bearing surface, especially the bearing surface that slides with the rotating shaft, and by containing relatively soft Cu powder, sintering is achieved.
  • the formability of the bearing can be improved.
  • the characteristics of each metal may adversely affect the performance of the sintered bearing.
  • a mixed bearing containing SUS steel powder is sintered at a relatively low temperature (about 800 ° C.) to form a sintered bearing
  • an oxide film is formed on the powder surface of the SUS steel powder, and the influence of this oxide film.
  • the bonding force between the powders is weakened, and the strength of the sintered bearing may be insufficient.
  • this bearing is sintered at a relatively high temperature (for example, 1200 ° C.), the formation of an oxide film can be suppressed, but the sintering progresses and the sintered bearing becomes too hard.
  • Patent Document 2 discloses a sintered bearing using copper-coated iron powder.
  • the surface of the iron powder is coated with copper, the formation of an oxide film on the surface of the iron powder can be prevented even when sintered at a relatively low temperature.
  • this copper-coated iron powder is formed by plating copper on the surface of the iron powder, etc., and the adhesion force between the iron powder and copper is not so high, so the iron powder and copper peel off due to impact load This may lead to insufficient strength of the bearing.
  • An object of the present invention is to provide a sintered bearing that is formed of a plurality of different types of metal materials and can be formed without causing problems such as deterioration of workability and strength reduction.
  • the present invention is a sintered bearing formed by sintering a compression molded body of metal powder, each particle having a plurality of regions made of different metal materials, and Provided is a sintered bearing using a metal powder containing a separated alloy powder obtained by alloying at least a part of the interface of each region.
  • the metal powder containing the separated alloy powder since the metal powder containing the separated alloy powder is used, the characteristics of a plurality of kinds of metal materials constituting each particle of the separated alloy powder can be utilized. Moreover, since at least a part of the interface of each region made of different metals is alloyed in the separated alloy powder, the bond strength between the regions is increased, and the strength of the sintered bearing is increased.
  • the wear resistance of the bearing surface can be improved by exposing Fe to the bearing surface. it can.
  • the effect of corrosion resistance can be obtained in addition to wear resistance by Cr contained in SUS steel.
  • the area where Fe is exposed on the powder surface can be reduced. It is possible to prevent a reduction in the bonding force between them, and consequently a reduction in the strength of the sintered bearing.
  • the separated alloy powder has a region made of a Cu-based metal material (a metal material containing Cu as a main component), Cu is softer than SUS steel or the like, so that metal powder compacting, sizing, etc. This improves the workability and improves the dimensional accuracy of the bearing. Further, by exposing relatively soft Cu to the bearing surface, the slidability with the counterpart material (for example, shaft member) can be enhanced.
  • a Cu-based metal material a metal material containing Cu as a main component
  • the above-described separated alloy powder can be produced, for example, by a so-called atomizing method in which various metal materials are mixed in a molten state and the mixed molten metal is sprayed and solidified by cooling. According to the atomization method, different metal materials can be blended evenly, so that the characteristics of each metal material can be easily exhibited.
  • Such a sintered bearing can be used, for example, as a fluid dynamic pressure bearing in which a dynamic pressure generating portion for generating a dynamic pressure action on the fluid is formed on the bearing surface.
  • FIG. 1 shows a bearing sleeve 1 as a sintered bearing according to an embodiment of the present invention.
  • the bearing sleeve 1 is formed in a cylindrical shape having both ends opened, and is incorporated into a fluid dynamic bearing device 100 shown in FIGS.
  • the bearing sleeve 1 is formed by sintering metal powder containing separated alloy powder. Specifically, it is formed by using a metal powder obtained by mixing a separated alloy powder, a pure copper powder, a graphite powder and the like whose surface is covered with a Cu-based metal material.
  • the inner peripheral surface 1a and the lower end surface 1c of the bearing sleeve 1 function as a radial bearing surface and a thrust bearing surface, respectively.
  • herringbone-shaped dynamic pressure grooves 1a1 and 1a2 as shown in FIG. 1A are formed as radial dynamic pressure generating portions in two regions separated in the axial direction of the inner peripheral surface 1a of the bearing sleeve 1. Is done.
  • the upper dynamic pressure groove 1a1 is formed to be axially asymmetric with respect to the belt-like portion at the substantially central portion in the axial direction of the hill portion (cross-hatching region), and the axial dimension X1 of the upper region from the belt-like portion is the lower region. Is larger than the axial dimension X2 (X1> X2).
  • the lower dynamic pressure groove 1a2 is formed symmetrically in the axial direction.
  • FIG. 2 shows a cross-sectional view of one particle of the separated alloy powder 10.
  • This separated alloy powder 10 has a first region 11 made of Fe-based metal material rich in Fe (SUS steel in the present embodiment) and a second region 12 made of Cu-based metal material rich in Cu. . At least a part of the interface between the first region 11 and the second region is alloyed.
  • the first region 11 is generally arranged as a nucleus at the center of the particle, and the surface of the first region 11 is covered with the second region 12.
  • separation alloy powder 10 is substantially comprised with Cu of the 2nd area
  • FIG. 3 shows an enlarged sectional view of the bearing surface A (radial bearing surface or thrust bearing surface) of the bearing sleeve 1.
  • pure copper powder 13 and graphite powder 14 are arranged in the gaps between the particles of the separated alloy powder 10.
  • the adjacent separated alloy powders 10 are directly bonded by melting a part of their surfaces, or are bonded via the pure copper powder 13 between the separated alloy powders 10.
  • the first surface 11 and the second region 12 of the separated alloy powder 10 are exposed on the bearing surface A.
  • the wear resistance of the bearing surface A can be enhanced by exposing the SUS steel (first region 11) to the surface of the bearing sleeve 1, particularly the bearing surface A. Further, by exposing Cu (second region 12) to the bearing surface A, it is possible to improve the slidability of the bearing surface A with the sliding counterpart material (in this embodiment, the shaft member 2, see FIG. 5). . Further, by forming the bearing sleeve 1 with a material containing relatively soft Cu, the workability of the bearing sleeve 1 can be improved and the dimensional accuracy can be increased.
  • the separated alloy powder 10 is formed.
  • the separated alloy powder 10 is produced by, for example, a so-called atomizing method in which each metal material (in this embodiment, Fe, Cr, and Cu) is mixed in a molten state and then cooled and solidified by spraying the mixed molten metal. can do.
  • a gas atomizing method in which a molten metal is sprayed using a gas or a water atomizing method in which a molten metal is sprayed using water can be applied.
  • the separated alloy powder 10 shown in FIG. 2 is manufactured by the gas atomization method, and the outer periphery of the SUS steel (first region 11) gathered mainly in the center is covered with Cu (second region 12). It is almost spherical.
  • any of ferritic, martensitic and austenitic types can be used, and the amount of Cr and Ni in the SUS steel is arbitrarily selected according to the required bearing characteristics.
  • the separation alloy powder 10 When the separation alloy powder 10 is manufactured, by adjusting the blending ratio of each metal material to be mixed in a molten state, a core metal material, a metal material covering the surface layer, and the like can be arbitrarily set. For example, when the mixing ratio of Cu is larger than that of Fe, as shown in FIG. 2, the separated alloy powder whose core is SUS steel (first region 11) and whose surface is coated with Cu (second region 12). 10 is obtained. At this time, if the blending amount of the main component metals (Fe and Cu in the present embodiment) is too small, the metal may be dissolved in another metal, and the separated alloy powder may not be formed. It is necessary to set the amount of the metal to a ratio that does not cause solid solution.
  • the mixed metal powder containing the separated alloy powder 10 is compacted into a predetermined shape by molding.
  • the mixed metal powder appropriately includes, for example, pure copper powder, graphite powder, Sn, and Fe—P mixed powder.
  • Table 1 shows an example of the composition of the mixed metal powder.
  • Table 2 shows an example of the alloy composition of the separated alloy powder 10 manufactured by the gas atomization method.
  • the SUS steel and Cu-based metal aspects of the separated alloy powder 10 are determined by the amount of each molten metal. Therefore, for example, when it is desired to increase the amount of Cu in the sintered material while maintaining the particle mode (the ratio of SUS steel and Cu in the separated alloy powder) as shown in FIG. Can be mixed.
  • the pure copper powder is a dendritic electrolytic copper powder
  • the powders are easily entangled with each other at the time of molding, so that the bonding force between the particles can be further increased and the rigidity of the molded product can be increased.
  • graphite powder by mixing graphite powder with the sintered material, the lubricating effect at the time of processing and at the time of using the bearing can be enhanced.
  • the green compact molded body is sintered at a predetermined sintering temperature to obtain a sintered body approximately in the shape of the bearing sleeve 1.
  • the sintering temperature at this time is preferably equal to or lower than the melting point of the lowest melting point metal among the plurality of metals constituting the separated alloy powder 10.
  • the temperature is equal to or lower than the melting point of Cu (for example, 800 ° C. ).
  • the surface of the particles of the separated alloy powder 10 shown in FIG. 2 is substantially formed of a Cu-based metal (second region 12), and the SUS steel (first region 11) is hardly exposed. Thereby, even when sintered at a relatively low temperature as described above, an oxide film is hardly formed on the surface of the particles, so that a reduction in the bonding force between the metal powders due to the oxide film can be prevented. Strength can be increased.
  • sizing is performed on the sintered body, and dynamic pressure grooves are formed on the inner peripheral surface and the end surface.
  • the sintered body is sintered at a relatively low temperature, the hardness is not excessively increased and processing such as sizing is easily performed.
  • the particle surface of the separated alloy powder 10 is formed of a relatively soft Cu-based alloy (second region 12), the workability of the sintered body is further enhanced. Thereby, a radial bearing surface (inner peripheral surface 1a), a thrust bearing surface (lower end surface 1c), or a dynamic pressure generating portion (dynamic pressure grooves 1a1, 1a2, 1c1) formed on these surfaces are processed with high accuracy. can do.
  • the bearing sleeve 1 formed in this way has high dimensional accuracy, the radial width of the radial bearing gap facing the inner peripheral surface 1a and the width of the thrust bearing gap facing the lower end surface 1c are set with high accuracy, and excellent bearing performance is achieved. Obtainable. Further, since the dynamic pressure grooves 1a1, 1a2, and 1c1 formed in the inner peripheral surface 1a and the lower end surface 1c are processed with high accuracy, the dynamic pressure action generated in the lubricating oil in the radial bearing gap and the thrust bearing gap is enhanced. Therefore, the bearing performance can be further improved.
  • this bearing sleeve 1 removes a part of Cu-type metal (2nd area
  • the SUS steel (first region 11) may be positively exposed. In this way, by exposing a large amount of SUS steel with excellent wear resistance to the inner peripheral surface 1a to become the radial bearing surface, the wear resistance of the radial bearing surface is further improved, and the durability of the bearing sleeve 1 is further increased. It can be further enhanced.
  • the rotational sizing may be performed after sizing the sintered body and before forming the dynamic pressure groove, or after forming the dynamic pressure groove.
  • the present invention is not limited thereto, and a separated alloy powder manufactured by the water atomized method may be used.
  • the first region 21 for example, Fe-based metal
  • the second region 22 for example, Cu-based metal
  • SUS steel and Cu can be more uniformly exposed on the bearing surface as compared with the separated alloy powder 10 in which the outer periphery of the first region 11 serving as a nucleus as shown in FIG. 2 is covered with the second region 12.
  • both characteristics (abrasion resistance and slidability) can be imparted to the entire bearing surface.
  • FIG. 5 shows a configuration example of a spindle motor for information equipment incorporating the fluid dynamic bearing device 100 having the bearing sleeve 1 described above.
  • This spindle motor is used in a disk drive device such as an HDD, and is a fluid dynamic bearing device 100 that supports the shaft member 2 in a non-contact manner in a rotatable manner, a disk hub 3 mounted on the shaft member 2,
  • a bracket 6 attached to the outer periphery of the pressure bearing device 100, and a stator coil 4 and a rotor magnet 5 that are opposed to each other with a radial gap, for example, are provided.
  • the stator coil 4 is attached to the outer peripheral surface of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3.
  • the disk hub 3 holds a plurality of disks D (two in the illustrated example) such as magnetic disks.
  • the stator coil 4 When the stator coil 4 is energized, the rotor magnet 5 is relatively rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the shaft member 2 are rotated together.
  • FIG. 6 shows the fluid dynamic bearing device 100.
  • the fluid dynamic bearing device 100 includes a bottomed cylindrical housing 7 opened in one axial direction, a bearing sleeve 1 as a sintered bearing disposed on the inner periphery of the housing 7, and an inner periphery of the housing 7.
  • the shaft member 2 to be formed and a seal portion 9 provided in the opening portion of the housing 7.
  • the description will be made with the side where the housing 7 is opened in the axial direction as the upper side and the side where the housing 7 is closed as the lower side.
  • the shaft member 2 is made of a metal material such as stainless steel, and includes a shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a.
  • the shaft member 2 can be made of a metal-resin hybrid structure, for example, by forming the entirety of the flange portion 2b or a part thereof (for example, both end faces) with resin, in addition to being formed entirely of metal.
  • the housing 7 is formed of a resin material, for example, in a bottomed cylindrical cup shape. On the inner bottom surface 7b1 of the housing 7, for example, a spiral dynamic pressure groove is formed (not shown).
  • the outer peripheral surface 1d of the bearing sleeve 1 is fixed to the inner peripheral surface 7c of the housing 7 by an appropriate means such as adhesion or press fitting.
  • the housing 7 is not limited to being formed integrally, but may be configured by a cylindrical side portion and a lid portion that closes one opening of the side portion.
  • the seal portion 9 is formed in an annular shape with a resin material, for example.
  • the inner peripheral surface 9a of the seal part 9 is formed in a cylindrical surface shape.
  • a wedge-shaped seal space S is formed between the inner peripheral surface 9a of the seal portion 9 and the tapered outer peripheral surface 2a2 of the shaft portion 2a.
  • a capillary seal that holds the lubricating oil by the capillary force of the seal space S is configured.
  • the volume of the seal space S is set to be larger than the thermal expansion amount of the lubricating oil held inside the bearing device within the operating temperature range of the bearing device, and thus, within the operating temperature range of the bearing device. The lubricating oil does not leak from the seal space S, and the oil level is always held in the seal space S.
  • a radial bearing gap is formed between the inner peripheral surface 1a of the bearing sleeve 1 and the cylindrical outer peripheral surface 2a1 of the shaft member 2, and the lower end surface 1c of the bearing sleeve 1 and the shaft member 2 are formed.
  • Thrust bearing gaps are formed between the upper end surface 2b1 of the flange portion 2b and between the inner bottom surface 7b1 of the housing 7 and the lower end surface 2b2 of the flange portion 2b of the shaft member.
  • the dynamic pressure groove 1c1 on the lower end surface 1c of the bearing sleeve 1 and the dynamic pressure groove on the inner bottom surface 7b1 of the housing 7 generate a dynamic pressure action on the lubricating oil in the thrust bearing gaps, so that the shaft member 2
  • the first thrust bearing portion T1 and the second thrust bearing portion T2 are configured to support the flange portion 2b in a non-contact manner so as to be rotatable in both thrust directions.
  • the lower end of the radial bearing gap is connected to the outer diameter end of the bearing gap of the first thrust bearing portion T1.
  • the dynamic pressure groove 1a1 of the inner peripheral surface 1a of the bearing sleeve 1 is formed axially asymmetric with respect to the belt-like portion of the hill, and the axial dimension X1 in the upper region from the belt-like portion is lower. It is larger than the axial dimension X2 of the region (see FIG. 1A). Therefore, when the shaft member 2 rotates, the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove 1a1 is relatively larger in the upper region than in the lower region.
  • the lubricating oil in the radial bearing gap flows downward, and the thrust bearing gap of the first thrust bearing portion T1 ⁇ the axial groove 1d1 ⁇ the lower end surface 9b of the seal portion 9 and the upper side of the bearing sleeve 1 It circulates through the path
  • the structure in which the lubricating oil flows and circulates in the internal space of the housing 7 prevents a phenomenon in which the pressure of the lubricating oil in the internal space becomes a negative pressure locally, resulting in the generation of negative pressure.
  • the herringbone-shaped dynamic pressure grooves 1a1 and 1a2 are formed as the radial dynamic pressure generating portion.
  • the present invention is not limited to this.
  • a spiral-shaped dynamic pressure groove, a step bearing, or a multi-arc bearing is used. It may be adopted.
  • a so-called circular bearing may be configured in which both the outer peripheral surface 2a1 of the shaft portion 2a and the inner peripheral surface 1a of the bearing sleeve 1 are cylindrical surfaces without providing the dynamic pressure generating portion.
  • the spiral dynamic pressure groove is formed as the thrust dynamic pressure generating portion.
  • the present invention is not limited to this.
  • the herringbone-shaped dynamic pressure groove, the step bearing, or the wave bearing step It is also possible to adopt a wave type).
  • the dynamic pressure generating portion is formed on the inner peripheral surface 1a, the lower end surface 1c, and the housing inner bottom surface 7b1 of the bearing sleeve 1, but the surfaces facing each other through the bearing gap, That is, a dynamic pressure generating portion may be provided on the outer peripheral surface 2a1 of the shaft portion 2a, the upper end surface 2b1 and the lower end surface 2b2 of the flange portion 2b.
  • the radial bearing portions R1 and R2 are provided apart in the axial direction, but these may be provided continuously in the axial direction. Alternatively, only one of these may be provided.
  • the lubricating oil is exemplified as the fluid that fills the fluid dynamic pressure bearing device 100 and generates a dynamic pressure action in the radial bearing gap or the thrust bearing gap.
  • a fluid capable of generating a dynamic pressure action in the gap for example, a gas such as air, a magnetic fluid, or lubricating grease can also be used.
  • the fluid dynamic pressure bearing device is not limited to a spindle motor used in a disk drive device such as an HDD, but is a small motor for information equipment used under high-speed rotation, such as a spindle motor for driving a magneto-optical disk. It can be suitably used for a polygon scanner motor of a laser beam printer or a fan motor of an electric device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

 分離合金粉10を焼結材料として使用することにより、異なる種類の金属材料(例えばSUS鋼とCu)の特性を活かすことができる。また、異なる金属からなる各領域の界面の少なくとも一部が合金化されているため、各領域間の結合強度が高められ、焼結軸受の強度が高められる。

Description

焼結軸受
 本発明は、金属粉末を圧粉成形した後、焼結して得られる焼結軸受に関する。
 焼結軸受は、金属粉末を圧粉成形した後、所定の温度で焼結することにより形成される。例えば特許文献1に示されている焼結軸受は、内周に挿入した回転軸を支持する回転軸支持用として使用されるものである。軸が回転すると、焼結軸受の内部空孔に含浸した油が表面開孔から滲みだし、この油が軸との摺動部に供給され、これにより軸受と軸との間の潤滑性が高められる。
 焼結軸受を形成する金属粉末として、異なる種類の金属粉末を混合したものを使用すれば、各金属粉末の材料特性を活かした軸受が得られる。例えば上記特許文献1の焼結軸受は、Cu粉末とSUS鋼(ステンレス鋼、以下同様)粉末とを含む混合金属粉末を焼結して形成されている。このように、硬度の高いSUS鋼粉末を含むことにより、軸受の表面、特に回転軸と摺動する軸受面の耐摩耗性を高めることができ、比較的軟らかいCu粉末を含むことにより、焼結軸受の成形性を高めることができる。
特開2006-214003号公報 特開2001-279349号公報
 しかし、上記のように異なる種類の金属粉末を混合して焼結すると、各金属の特性により、焼結軸受の性能に悪影響を及ぼすことがある。例えば、SUS鋼粉末を含む混合金属粉末を比較的低温(800℃程度)で焼結して焼結軸受を形成する場合、SUS鋼粉末の粉末表面に酸化膜が形成され、この酸化膜の影響により粉末同士の結合力が弱まって焼結軸受の強度が不足する恐れがある。一方、この軸受を比較的高温(例えば1200℃)で焼結すれば、酸化膜の形成を抑えることはできるものの、焼結が進行して焼結軸受が硬くなりすぎ、その後の焼結軸受のサイジングや動圧溝の形成等が困難となる。また、混合金属粉末にCu粉末を含む場合は、Cuの融点を越える温度で焼結するとCuが完全に溶融して軸受の形状を保持することができず、軸受の寸法精度が低下する恐れがある。
 例えば、特許文献2には、銅被覆鉄粉を用いた焼結軸受が示されている。このように、鉄粉の表面を銅で被覆すれば、比較的低温で焼結した場合でも鉄粉の表面への酸化膜の形成を防止できる。しかし、この銅被覆鉄粉は、鉄粉の表面に銅をメッキすること等により形成されており、鉄粉と銅との固着力はそれ程高くないため、衝撃荷重により鉄粉と銅とが剥離しやすく、軸受の強度不足を招く恐れがある。
 本発明の課題は、異なる種類の複数の金属材料からなり、加工性の悪化や強度低下等の不具合を招くことなく形成できる焼結軸受を提供することにある。
 前記課題を解決するために、本発明は、金属粉末の圧縮成形体を焼結して形成された焼結軸受であって、各粒子が異なる金属材料からなる複数の領域を有し、且つ、各領域の界面の少なくとも一部を合金化した分離合金粉を含む金属粉末を用いた焼結軸受を提供する。
 このように、本発明では、分離合金粉を含む金属粉末を使用しているため、分離合金粉の各粒子を構成する複数種の金属材料の特性を活かすことができる。また、分離合金粉は、異なる金属からなる各領域の界面の少なくとも一部が合金化されているため、各領域間の結合強度が高められ、焼結軸受の強度が高められる。
 例えば、分離合金粉がFe系金属材料(Feを主成分として含む金属材料)からなる領域を有するものである場合、Feを軸受面に露出させることにより、軸受面の耐摩耗性を高めることができる。特に、Fe系金属材料としてSUS鋼を使用すれば、SUS鋼に含まれるCrにより、耐摩耗性に加えて耐食性の効果を得ることができる。このFe系金属材料の表面の少なくとも一部を他の金属材料で被覆すると、粉末表面にFeが露出する面積を低減することができるため、粒子表面における酸化膜の形成を抑え、酸化膜による粉末同士の結合力の低下、ひいては焼結軸受の強度低下を防止することができる。また、酸化膜の形成が抑えられることにより、比較的低温で焼結することが可能となりため、焼結軸受の硬度が過度に高められることがなく、サイジングや動圧溝形成等の加工が容易化される。
 また、分離合金粉がCu系金属材料(Cuを主成分として含む金属材料)からなる領域を有するものである場合、CuはSUS鋼等に比べて軟らかいため、金属粉末の圧粉加工やサイジング等における加工性が向上し、軸受の寸法精度を高めることができる。また、比較的軟らかいCuを軸受面に露出させることで、相手材(例えば軸部材)との摺動性を高めることができる。
 上記のような分離合金粉は、例えば、各種金属材料を溶融状態で混合し、この混合溶融金属を噴霧して冷却固化する、いわゆるアトマイズ法で製造することができる。アトマイズ法によれば、異なる金属材料を万遍なく配合することができるため、各金属材料の特性を発揮させやすくなる。
 このような焼結軸受は、例えば、軸受面に、流体に動圧作用を発生させる動圧発生部を形成した流体動圧軸受として使用することができる。
 以上のように、本発明によれば、異なる種類の複数の金属材料からなり、加工性の悪化や強度低下等の不具合を招くことなく形成できる焼結軸受を得ることができる。
 以下、本発明の実施形態を図面に基づいて説明する。
 図1に、本発明の一実施形態に係る焼結軸受としての軸受スリーブ1を示す。軸受スリーブ1は、両端を開口した円筒状に形成され、図4及び5に示す流体動圧軸受装置100に組み込まれる。軸受スリーブ1は、分離合金粉を含む金属粉末を焼結して形成されたものである。具体的には、SUS鋼の表面をCu系金属材料で被覆した分離合金粉、純銅粉末、黒鉛粉末等を混合した金属粉末を用いて形成される。
 軸受スリーブ1の内周面1a及び下側端面1cは、それぞれラジアル軸受面及びスラスト軸受面として機能する。軸受スリーブ1の内周面1aの軸方向に離隔した2箇所の領域には、ラジアル動圧発生部として、例えば図1(a)に示すようなヘリングボーン形状の動圧溝1a1、1a2が形成される。上側の動圧溝1a1は、丘部(クロスハッチング領域)の軸方向略中央部の帯状部分に対して軸方向非対称に形成されており、帯状部分より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(X1>X2)。下側の動圧溝1a2は、軸方向対称に形成されている。
 軸受スリーブ1の下側端面1cには、スラスト動圧発生部として、例えば図1(b)に示すようなスパイラル形状の動圧溝1c1が形成される。また、軸受スリーブ1の外周面1dには、任意の本数の軸方向溝1d1が軸方向全長に亙って形成され、図示例では3本の軸方向溝1d1を円周等間隔に形成している。
 図2に、分離合金粉10の一粒子の断面図を示す。この分離合金粉10は、Feをリッチに含むFe系金属材料(本実施形態ではSUS鋼)からなる第1領域11と、Cuをリッチに含むCu系金属材料からなる第2領域12とを有する。第1領域11と第2領域の界面は、少なくとも一部が合金化されている。第1領域11は、概ね粒子の中央部に核として配され、この第1領域11の表面を第2領域12で被覆している。これにより、分離合金粉10の粒子表面は、概ね第2領域12のCuで構成され、部分的に第1領域11のSUS鋼が露出している。
 図3に、軸受スリーブ1の軸受面A(ラジアル軸受面あるいはスラスト軸受面)における拡大断面図を示す。図示のように、分離合金粉10の粒子間の隙間に、純銅粉末13や黒鉛粉末14(図中黒点で示す)が配されている。隣接する分離合金粉10は、その表面の一部を溶融させて直接結合され、あるいは、分離合金粉10間の純銅粉末13を介して結合される。軸受面Aには、分離合金粉10の第1領域11及び第2領域12が露出している。このように、軸受スリーブ1を分離合金粉10で形成することで、軸受スリーブ1にSUS鋼とCuの双方の特性を付与することができる。すなわち、図3に示すように、軸受スリーブ1の表面、特に軸受面AにSUS鋼(第1領域11)を露出させることにより、軸受面Aの耐摩耗性を高めることができる。また、軸受面AにCu(第2領域12)を露出させることにより、軸受面Aの摺動相手材(本実施形態では軸部材2、図5参照)との摺動性を高めることができる。また、軸受スリーブ1を比較的軟らかいCuを含む材料で形成することにより、軸受スリーブ1の加工性が向上し、寸法精度を高めることができる。
 次に、軸受スリーブ1の形成方法の一例を示す。
 まず、分離合金粉10を形成する。分離合金粉10は、例えば、各金属材料(本実施形態では、Fe,Cr,及びCu)を溶融状態で混合した後、この混合溶融金属を噴霧することで冷却固化させる、いわゆるアトマイズ法により製造することができる。アトマイズ法としては、ガスを用いて溶融金属を噴霧するガスアトマイズ法や、水を用いて溶融金属を噴霧する水アトマイズ法を適用することが可能である。図2に示す分離合金粉10は、ガスアトマイズ法で製造されたものであり、主に中央部に集まったSUS鋼(第1領域11)の外周がCu(第2領域12)で覆われ、全体としてほぼ球形を成している。尚、SUS鋼としては、フェライト系、マルテンサイト系、オーステナイト系の何れも使用可能であり、SUS鋼中のCrやNiの配合量は、求められる軸受特性に応じて任意に選択される。
 分離合金粉10を製造するに際し、溶融状態で混合される各金属材料の配合割合を調整すれば、核となる金属材料や、その表層を覆う金属材料等を任意に設定することができる。例えば、Cuの混合割合をFeよりも多くすると、図2に示すように、SUS鋼(第1領域11)が核となって、その表面をCu(第2領域12)で被覆した分離合金粉10が得られる。このとき、主成分金属(本実施形態ではFe及びCu)の配合量が少なすぎると、その金属が他の金属内に固溶してしまい、分離合金粉が形成されない恐れがあるため、主成分金属の配合量は互いに固溶しない程度の割合に設定する必要がある。
 次に、上記の分離合金粉10を含んだ混合金属粉末を、型成形により所定形状に圧粉成形する。この混合金属粉末には、分離合金粉10のほか、例えば、純銅粉末、黒鉛粉末、Sn、及びFe-P混合粉が適宜含まれる。混合金属粉末の組成の例を表1に示す。また、ガスアトマイズ法により製造された分離合金粉10の合金組成の例を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上述のように、分離合金粉10のSUS鋼及びCu系金属の態様は、各溶融金属の配合量により決定される。従って、例えば図2に示すような粒子の態様(分離合金粉中のSUS鋼とCuとの比率)を維持したまま焼結材料中のCuの量を多くしたい場合は、上記のように純銅粉末を混合すれば良い。このとき、純銅粉末が樹枝状を成した電解銅粉であれば、成形時に粉末同士が絡み易くなるため、粒子間の結合力をより一層高め、成形品の剛性を高めることができる。また、焼結材料に黒鉛粉末を混合することにより、加工時及び軸受使用時における潤滑効果を高めることができる。
 圧粉成形した成形体を、所定の焼結温度で焼結し、おおよそ軸受スリーブ1の形状を成した焼結体が得られる。このときの焼結温度は、分離合金粉10を構成する複数の金属のうち、最も低融点の金属の融点以下であることが好ましく、本実施形態では、Cuの融点以下の温度(例えば800℃)に設定される。このとき、図2に示す分離合金粉10の粒子の表面は、概ねCu系金属(第2領域12)で形成され、SUS鋼(第1領域11)はほとんど露出していない。これにより、上記のような比較的低温で焼結した場合であっても、粒子表面に酸化膜はほとんど形成されないため、酸化膜による金属粉末同士の結合力の低下を防止でき、軸受スリーブ1の強度を高めることができる。
 その後、焼結体にサイジングを施し、さらに内周面及び端面に動圧溝を形成する。上記のように、焼結体は比較的低温で焼結されているため、硬度が過度に高められることはなく、サイジング等の加工が行いやすい。また、分離合金粉10の粒子表面は比較的柔軟なCu系合金(第2領域12)で形成されているため、焼結体の加工性がより一層高められる。これにより、ラジアル軸受面(内周面1a)やスラスト軸受面(下側端面1c)、あるいはこれらの面に形成される動圧発生部(動圧溝1a1、1a2、1c1)を高精度に加工することができる。
 こうして形成された軸受スリーブ1は、寸法精度が高いため、内周面1aが面するラジアル軸受隙間や下側端面1cが面するスラスト軸受隙間の隙間幅が精度良く設定され、優れた軸受性能を得ることができる。また、内周面1aや下側端面1cに形成される動圧溝1a1、1a2、及び1c1が精度良く加工されるため、ラジアル軸受隙間やスラスト軸受隙間の潤滑油に発生する動圧作用が高められ、より一層軸受性能を高めることができる。さらに、分離合金粉10のSUS鋼(第1領域11)とCu(第2領域12)との界面の少なくとも一部が合金化しているため、衝撃荷重によるSUS鋼とCuとの剥離が防止され、軸受スリーブ1の強度を高めることができる。
 尚、この軸受スリーブ1は、内周面1aに回転サイジング等を施すことにより、内周面1aに面した分離合金粉10の表面のCu系金属(第2領域12)の一部を除去し、SUS鋼(第1領域11)を積極的に露出させてもよい。このように、ラジアル軸受面となるに内周面1aに耐摩耗性に優れたSUS鋼を多く露出させることで、ラジアル軸受面の耐摩耗性がさらに向上し、軸受スリーブ1の耐久性をより一層高めることができる。回転サイジングは、焼結体をサイジングした後、動圧溝を形成する前に行っても良いし、動圧溝を形成した後に行っても良い。
 また、上記ではガスアトマイズ法で製造された分離合金粉10を使用した場合を示しているが、これに限らず、水アトマイズ法で製造された分離合金粉を使用してもよい。水アトマイズ法によれば、図4に示すように、分離合金粉20の第2領域22(例えばCu系金属)中に第1領域21(例えばFe系金属)を万遍なく分散させることができる。これにより、図2に示すような核となる第1領域11の外周を第2領域12で覆った分離合金粉10と比べて、軸受面にSUS鋼及びCuをより均一に露出させることができるため、軸受面全体に万遍なく両者の特性(耐摩耗性及び摺動性)を付与することができる。また、水アトマイズ法によれば、ガスアトマイズ法による分離合金粉10のような球形に近い形状にはなりにくく、図4のように外周面に凹凸を有する形状になりやすいため、圧粉成形あるいはサイジングにより各粒子を変形させやすくなり、焼結軸受の成形性を高めることができる。
 以下に、上記の軸受スリーブ1の適用例を説明する。
 図5は、上記の軸受スリーブ1を有する流体動圧軸受装置100を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する流体動圧軸受装置100と、軸部材2に装着されたディスクハブ3と、流体動圧軸受装置100の外周に取り付けられたブラケット6と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6の外周面に取り付けられ、ロータマグネット5はディスクハブ3の内周に取り付けられる。ディスクハブ3には、磁気ディスク等のディスクDが複数枚(図示例では2枚)保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が相対回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。
 図6は、流体動圧軸受装置100を示している。この流体動圧軸受装置100は、軸方向一方を開口した有底筒状のハウジング7と、ハウジング7の内周に配された焼結軸受としての軸受スリーブ1と、ハウジング7の内周に挿入される軸部材2と、ハウジング7の開口部に設けられたシール部9とで構成される。尚、説明の便宜上、軸方向でハウジング7が開口している側を上側、ハウジング7が閉塞している側を下側として説明を進める。
 軸部材2は、ステンレス鋼等の金属材料で形成され、軸部2aと軸部2aの下端に設けられたフランジ部2bとを備えている。軸部材2は、全体を金属で形成する他、例えばフランジ部2bの全体あるいはその一部(例えば両端面)を樹脂で構成することにより、金属と樹脂のハイブリッド構造とすることもできる。
 ハウジング7は、例えば樹脂材料で有底筒状のコップ状に形成される。ハウジング7の内底面7b1には、例えばスパイラル形状の動圧溝が形成される(図示省略)。ハウジング7の内周面7cに、上記の軸受スリーブ1の外周面1dが接着や圧入等の適宜の手段で固定される。尚、ハウジング7は一体に形成する場合に限らず、筒状の側部と、この側部の一方の開口部を閉塞する蓋部とで構成してもよい。
 シール部9は、例えば樹脂材料で環状に形成される。シール部9の内周面9aは円筒面状に形成される。シール部9の内周面9aと、軸部2aのテーパ状外周面2a2との間には、下方へ向けて半径方向寸法を漸次縮小した楔状のシール空間Sが形成される。このシール空間Sの毛細管力で潤滑油を保持する毛細管シールを構成する。シール空間Sの容積は、軸受装置の使用温度範囲内において、軸受装置の内部に保持された潤滑油の熱膨張量よりも大きくなるように設定され、これにより、軸受装置の使用温度範囲内では、潤滑油がシール空間Sから漏れ出すことはなく、油面が常時シール空間S内に保持される。
 軸部材2が回転すると、軸受スリーブ1の内周面1aと軸部材2の円筒状外周面2a1との間にラジアル軸受隙間が形成されると共に、軸受スリーブ1の下側端面1cと軸部材2のフランジ部2bの上側端面2b1との間、及びハウジング7の内底面7b1と軸部材のフランジ部2bの下側端面2b2との間にそれぞれスラスト軸受隙間が形成される。そして、軸受スリーブ1の内周面1aの動圧溝1a1、1a2が上記ラジアル軸受隙間の潤滑油に動圧作用を発生させることにより、軸部材2の軸部2aをラジアル方向に回転自在に非接触支持するラジアル軸受部R1、R2が構成される。同時に、軸受スリーブ1の下側端面1cの動圧溝1c1、及びハウジング7の内底面7b1の動圧溝が、上記各スラスト軸受隙間の潤滑油に動圧作用を発生させることにより、軸部材2のフランジ部2bを両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1及び第2スラスト軸受部T2が構成される。このとき、ラジアル軸受隙間の下端は、第1スラスト軸受部T1の軸受隙間の外径端につながる。
 前述したように、軸受スリーブ1の内周面1aの動圧溝1a1は、丘部の帯状部分に対して軸方向非対称に形成されており、帯状部分より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(図1(a)参照)。そのため、軸部材2の回転時、動圧溝1a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。この引き込み力の差圧によって、ラジアル軸受隙間の潤滑油が下方に流動し、第1スラスト軸受部T1のスラスト軸受隙間→軸方向溝1d1→シール部9の下側端面9bと軸受スリーブ1の上側端面1bとの間の空間、という経路を循環して、ラジアル軸受隙間に再び引き込まれる。このように、潤滑油がハウジング7の内部空間を流動循環するように構成することで、内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。また、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S内の潤滑油の油面(気液界面)から外気に排出されるので、気泡による悪影響はより一層効果的に防止される。
 以上の実施形態では、ラジアル動圧発生部としてヘリングボーン形状の動圧溝1a1、1a2が形成されているが、これに限らず、例えばスパイラル形状の動圧溝やステップ軸受、あるいは多円弧軸受を採用してもよい。動圧発生部を設けず、軸部2aの外周面2a1及び軸受スリーブ1の内周面1aを共に円筒面としたいわゆる真円軸受を構成してもよい。
 また、以上の実施形態では、スラスト動圧発生部としてスパイラル形状の動圧溝が形成されているが、これに限らず、例えばヘリングボーン形状の動圧溝やステップ軸受、あるいは波型軸受(ステップ型が波型になったもの)等を採用することもできる。
 また、以上の実施形態では、動圧発生部が軸受スリーブ1の内周面1a、下側端面1c、およびハウジング内底面7b1に形成されているが、それぞれと軸受隙間を介して対向する面、すなわち軸部2aの外周面2a1、フランジ部2bの上側端面2b1、および下側端面2b2に動圧発生部を設けてもよい。
 また、以上の実施形態では、ラジアル軸受部R1、R2が軸方向で離隔して設けられているが、これらを軸方向で連続的に設けてもよい。あるいは、これらの何れか一方のみを設けてもよい。
 また、以上の実施形態では、流体動圧軸受装置100の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体、あるいは潤滑グリース等を使用することもできる。
 また、上記の流体動圧軸受装置は、HDD等のディスク駆動装置に用いられるスピンドルモータに限らず、光磁気ディスク駆動用のスピンドルモータ等の高速回転下で使用される情報機器用の小型モータや、レーザビームプリンタのポリゴンスキャナモータ、あるいは電気機器のファンモータ等に好適に使用することができる。
軸受スリーブの断面図である。 軸受スリーブの下面図である。 分離合金粉の粒子の断面図である。 軸受スリーブの軸受面における拡大断面図である。 分離合金粉の粒子の他の例を示す断面図である。 流体動圧軸受装置を組み込んだモータの断面図である。 軸受スリーブを備えた流体動圧軸受装置の断面図である。
1 軸受スリーブ(焼結軸受)
10 分離合金粉
11 第1領域(SUS鋼)
12 第2領域(Cu系金属材料)
A 軸受面
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
9 シール部
100 流体動圧軸受装置
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間

Claims (8)

  1.  金属粉末の圧縮成形体を焼結してなる焼結軸受であって、
     各粒子が異なる金属材料からなる複数の領域を有し、且つ、各領域の界面の少なくとも一部を合金化した分離合金粉を含む金属粉末を用いた焼結軸受。
  2.  分離合金粉がFe系金属材料からなる領域を有する請求項1記載の焼結軸受。
  3.  Fe系金属材料がSUS鋼である請求項2記載の焼結軸受。
  4.  分離合金粉が、Fe系金属材料の表面の少なくとも一部を他の金属材料で被覆したものである請求項2又は3記載の焼結軸受。
  5.  分離合金粉がCu系金属材料からなる領域を有する請求項1~4の何れかに記載の焼結軸受。
  6.  分離合金粉がアトマイズ法で製造されたものである請求項1~5の何れかに記載の焼結軸受。
  7.  流体動圧軸受として使用され、軸受面に、流体に動圧作用を発生させる動圧発生部を形成した請求項1~6の何れかに記載記載の焼結軸受。
  8.  請求項1~7の何れかに記載の焼結軸受と、焼結軸受の内周に挿入された軸部材とを備えた流体動圧軸受装置。
PCT/JP2009/066878 2008-10-29 2009-09-29 焼結軸受 WO2010050326A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/126,091 US20110206305A1 (en) 2008-10-29 2009-09-29 Sintered bearing
CN2009801434861A CN102202819A (zh) 2008-10-29 2009-09-29 烧结轴承

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008278468A JP5384079B2 (ja) 2008-10-29 2008-10-29 焼結軸受
JP2008-278468 2008-10-29

Publications (1)

Publication Number Publication Date
WO2010050326A1 true WO2010050326A1 (ja) 2010-05-06

Family

ID=42128692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066878 WO2010050326A1 (ja) 2008-10-29 2009-09-29 焼結軸受

Country Status (4)

Country Link
US (1) US20110206305A1 (ja)
JP (1) JP5384079B2 (ja)
CN (1) CN102202819A (ja)
WO (1) WO2010050326A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062149A (zh) * 2010-10-18 2011-05-18 浙江长盛滑动轴承有限公司 高性能铁基粉末冶金含油自润滑轴承及其生产工艺
CN102338154A (zh) * 2010-07-16 2012-02-01 三星电机株式会社 多孔液体动压轴承

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558041B2 (ja) * 2009-08-04 2014-07-23 Ntn株式会社 Fe系焼結金属製軸受およびその製造方法
WO2018047765A1 (ja) * 2016-09-06 2018-03-15 Ntn株式会社 すべり軸受

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150309A (en) * 1978-05-16 1979-11-26 Commissariat Energie Atomique Production of alloy parts by powder metallurgy
JPS63297502A (ja) * 1987-05-29 1988-12-05 Kobe Steel Ltd 粉末冶金用高強度合金鋼粉及びその製造方法
JPH06145845A (ja) * 1992-11-02 1994-05-27 Sumitomo Electric Ind Ltd 焼結摩擦材
JPH0892604A (ja) * 1994-09-21 1996-04-09 Dowa Iron Powder Co Ltd 粉末冶金用鉄基銅複合粉末の製造方法
JPH10130748A (ja) * 1996-10-31 1998-05-19 Daido Steel Co Ltd 耐食・耐摩耗性に優れた合金の製造方法および合金製造用材料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553374B2 (ja) * 1988-03-09 1996-11-13 勇 菊池 含油軸受用焼結合金材およびその製造法
JP3537286B2 (ja) * 1997-03-13 2004-06-14 株式会社三協精機製作所 焼結含油軸受およびそれを用いたモータ
US6042949A (en) * 1998-01-21 2000-03-28 Materials Innovation, Inc. High strength steel powder, method for the production thereof and method for producing parts therefrom
JP3774614B2 (ja) * 2000-03-31 2006-05-17 Ntn株式会社 銅被覆鉄粉を用いた焼結含油軸受材及びその製造方法
JP2004520486A (ja) * 2001-01-24 2004-07-08 フェデラル‐モーグル・シンタード・プロダクツ・リミテッド 銅含有焼結鉄材料
WO2005102564A1 (ja) * 2004-04-22 2005-11-03 Jfe Steel Corporation 粉末冶金用混合粉体
JP5085035B2 (ja) * 2005-01-06 2012-11-28 Ntn株式会社 焼結金属材、焼結含油軸受、流体軸受装置、及びモータ
US20090142010A1 (en) * 2005-01-05 2009-06-04 Ntn Corporation Sintered metal material, sintered oil-impregnated bearing formed of the metal material, and fluid lubrication bearing device
WO2008010767A1 (en) * 2006-07-21 2008-01-24 Höganäs Aktiebolag (Publ) Iron-based powder
RU2490352C2 (ru) * 2007-06-14 2013-08-20 Хеганес Аб (Пабл) Порошок на основе железа и его состав

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150309A (en) * 1978-05-16 1979-11-26 Commissariat Energie Atomique Production of alloy parts by powder metallurgy
JPS63297502A (ja) * 1987-05-29 1988-12-05 Kobe Steel Ltd 粉末冶金用高強度合金鋼粉及びその製造方法
JPH06145845A (ja) * 1992-11-02 1994-05-27 Sumitomo Electric Ind Ltd 焼結摩擦材
JPH0892604A (ja) * 1994-09-21 1996-04-09 Dowa Iron Powder Co Ltd 粉末冶金用鉄基銅複合粉末の製造方法
JPH10130748A (ja) * 1996-10-31 1998-05-19 Daido Steel Co Ltd 耐食・耐摩耗性に優れた合金の製造方法および合金製造用材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338154A (zh) * 2010-07-16 2012-02-01 三星电机株式会社 多孔液体动压轴承
CN102062149A (zh) * 2010-10-18 2011-05-18 浙江长盛滑动轴承有限公司 高性能铁基粉末冶金含油自润滑轴承及其生产工艺

Also Published As

Publication number Publication date
CN102202819A (zh) 2011-09-28
JP5384079B2 (ja) 2014-01-08
JP2010106306A (ja) 2010-05-13
US20110206305A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5384014B2 (ja) 焼結軸受
JP5085035B2 (ja) 焼結金属材、焼結含油軸受、流体軸受装置、及びモータ
US8992658B2 (en) Sintered metallic bearing and fluid dynamic bearing device equipped with the bearing
KR101339745B1 (ko) 소결 금속재 및 이 금속재로 형성된 소결 함유 베어링, 및유체 베어링 장치
JP5318619B2 (ja) 焼結金属軸受
JP6100046B2 (ja) 流体動圧軸受装置およびこれを備えるモータ
WO2013141205A1 (ja) 焼結金属軸受
JP5384079B2 (ja) 焼結軸受
JP4954478B2 (ja) 流体軸受装置
JP5881975B2 (ja) 焼結軸受の製造方法
JP5558041B2 (ja) Fe系焼結金属製軸受およびその製造方法
JP2008232230A (ja) 焼結軸受、軸受装置および軸受装置の製造方法
JP5214555B2 (ja) 焼結含油軸受
JP2003336636A (ja) 動圧軸受装置
JP2009103280A (ja) 動圧軸受装置およびその製造方法
JP6026123B2 (ja) 焼結金属軸受
JP2008039104A (ja) 流体軸受装置
JP2011058542A (ja) 焼結金属軸受、およびこの軸受を備えた流体動圧軸受装置
JP2007250095A (ja) 動圧軸受装置
WO2018047923A1 (ja) 焼結軸受及びその製造方法
JP2000192960A (ja) 軸受装置
JP6890405B2 (ja) 動圧軸受及びその製造方法
JP4134058B2 (ja) 情報機器用スピンドルモータ
JP2021001629A (ja) 軸受部材およびこれを備えた流体動圧軸受装置
JP2005273815A (ja) 動圧軸受装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143486.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823439

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13126091

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823439

Country of ref document: EP

Kind code of ref document: A1