WO2010050270A1 - 石炭ガス化複合発電設備 - Google Patents

石炭ガス化複合発電設備 Download PDF

Info

Publication number
WO2010050270A1
WO2010050270A1 PCT/JP2009/062344 JP2009062344W WO2010050270A1 WO 2010050270 A1 WO2010050270 A1 WO 2010050270A1 JP 2009062344 W JP2009062344 W JP 2009062344W WO 2010050270 A1 WO2010050270 A1 WO 2010050270A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
exhaust gas
oxygen concentration
drying
power generation
Prior art date
Application number
PCT/JP2009/062344
Other languages
English (en)
French (fr)
Inventor
創研 ▲高▼瀬
太田 一広
貴雄 橋本
得志 丸田
弘実 石井
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP09823383A priority Critical patent/EP2341229A4/en
Priority to US13/055,765 priority patent/US20110308230A1/en
Priority to KR1020117002163A priority patent/KR101293321B1/ko
Priority to CN2009801295835A priority patent/CN102112717A/zh
Publication of WO2010050270A1 publication Critical patent/WO2010050270A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/094Char
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1876Heat exchange between at least two process streams with one stream being combustion gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • F05D2220/722Application in combination with a steam turbine as part of an integrated gasification combined cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/001Heating arrangements using waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a combined coal gasification combined power generation facility that performs combined power generation using coal as fuel.
  • IGCC integrated coal gasification combined cycle
  • gas turbine exhaust gas oxygen concentration 12% by volume
  • gas turbine exhaust gas oxygen concentration 12% by volume
  • the denitration apparatus outlet in the exhaust gas boiler and the exhaust gas at the exhaust gas boiler outlet are mixed. That is, a high-temperature exhaust gas introduced from the outlet of the denitration apparatus and a relatively low-temperature exhaust gas introduced from the exhaust gas boiler outlet are mixed and used after adjusting the temperature of the drying gas.
  • FIG. 3 is a configuration diagram showing a conventional example of an air combustion type (air-blown) coal gasification combined power generation facility (hereinafter referred to as “air-blown IGCC system”).
  • air-blown IGCC system coal as a raw material is first introduced into the pulverized coal machine 1 together with the drying gas, and the pulverized coal is produced by drying and pulverizing the coal.
  • the pulverized coal is guided to the cyclone 2, separated from the exhaust gas, and collected in the hopper 3. Thereafter, the pulverized coal in the hopper 3 is conveyed to the gasification furnace 4 and gasified by nitrogen gas for pressurized conveyance supplied from an air separation device 11 described later.
  • the coal gas gasified in the gasification furnace 4 in this way is supplied to the char recovery device 6 through the gas cooler 5.
  • compressed air supplied from a gas turbine 8 described later and oxygen supplied from the air separation device 11 are used as an oxidizing agent.
  • the char recovery device 6 separates the char generated together with coal gas obtained by gasifying pulverized coal.
  • One coal gas becomes the fuel gas of the gas turbine 8 after being refined through the gas purification device 7.
  • This fuel gas (coal gas) By supplying this fuel gas (coal gas) to the combustor of the gas turbine 8 and burning it, high-temperature and high-pressure combustion exhaust gas is generated.
  • the combustion exhaust gas is discharged as exhaust gas after driving the turbine of the gas turbine 8.
  • the main shaft of the gas turbine 8 is connected to a generator (not shown), and power is generated by driving the generator.
  • the high temperature exhaust gas discharged from the gas turbine 8 is supplied to the exhaust gas boiler 9 and used for steam generation.
  • the steam generated in the exhaust gas boiler 9 is supplied to a power generation steam turbine or the like (not shown).
  • the exhaust gas used for steam generation in the exhaust gas boiler 9 is exhausted to the atmosphere after being subjected to necessary treatment by a denitration device 9a and the like.
  • a part of the exhaust gas after denitration that has passed through the denitration device 9a is supplied to the pulverized coal machine 1 as a drying gas.
  • a relatively high temperature exhaust gas introduced from the outlet of the denitration device 9 a and a relatively low temperature exhaust gas introduced from the outlet of the exhaust gas boiler 9 are mixed to obtain a desired drying gas temperature.
  • the drying gas adjusted to 1 is used.
  • pulverized coal is manufactured using low-grade coal, which is generally highly pyrophoric, such as sub-bituminous coal and lignite, for example.
  • the spontaneous combustion is prevented by controlling the oxygen concentration of the drying gas to a specified value (for example, 13% by volume) or less. That is, in a conventional air-blown IGCC system, for example, gas turbine exhaust gas having an oxygen concentration of 12% by volume is used as a drying gas, and in order to adjust the temperature, particularly when there is NOx regulation, exhaust gas from the denitration device in the exhaust gas boiler ( High temperature gas) and exhaust gas boiler exhaust gas (low temperature gas) are mixed.
  • the oxygen concentration of the gas turbine exhaust gas used as the drying gas temporarily increases from a specified value. To do. For this reason, the oxygen concentration of the drying gas may not be controlled to 13% by volume or less that prevents spontaneous combustion of pulverized coal. Therefore, in order to prevent spontaneous combustion of pulverized coal, there has been a problem that the operation of the pulverized coal machine has to be stopped.
  • the reason why the oxygen concentration increases at a low load is that the air amount becomes constant at a certain load or less because there is a limitation on the air amount operation on the gas turbine side.
  • the gas turbine side limits include the metal temperature around the combustor and combustion vibration.
  • the oxygen concentration of the drying gas cannot be controlled below a specified value during low-load operation such as startup, and thus the viewpoint of preventing spontaneous combustion of pulverized coal Therefore, the operation of the pulverized coal machine is restricted.
  • the present invention has been made in view of the above circumstances, and its object is to temporarily increase the oxygen concentration of gas turbine exhaust gas used as a drying gas, such as during low-load operation. Also in this case, the present invention is to provide a combined coal gasification combined power generation apparatus that can operate a pulverized coal machine using gas turbine exhaust gas as a drying gas.
  • a combined coal gasification combined power generation facility uses a combustion exhaust gas of a gas turbine as a drying gas of a pulverized coal machine, and a temperature control of the drying gas is performed in a denitration apparatus installed in an exhaust gas boiler.
  • the drying gas is activated by the generated combustion exhaust gas when the oxygen concentration of the drying gas increases to a predetermined value or more. It is provided with an auxiliary burner installed so as to adjust the oxygen concentration of the working gas.
  • a coal gasification combined power generation facility it is activated when the oxygen concentration of the drying gas increases to a predetermined value or more, and is installed so as to adjust the oxygen concentration of the drying gas by the generated combustion exhaust gas. Since it has an auxiliary burner, the oxygen concentration of the drying gas is below the specified value according to the amount of combustion exhaust gas generated by the auxiliary burner even when the oxygen concentration of the gas turbine exhaust gas increases at low loads. Can be adjusted. For this reason, even when the oxygen concentration of the gas turbine exhaust gas increases, it becomes possible to operate the pulverized coal machine by supplying a drying gas controlled to a specified oxygen concentration or less.
  • the auxiliary burner is installed inside the exhaust gas boiler, thereby increasing the recovered heat amount of the exhaust gas boiler and increasing the output.
  • the auxiliary burner is preferably installed in a drying gas passage for supplying the drying gas to the pulverized coal machine, whereby the oxygen concentration of the drying gas is extracted from the exhaust gas boiler. Since only the gas turbine exhaust gas needs to be adjusted, the fuel consumed by the auxiliary burner can be reduced. That is, since the oxygen concentration of the gas turbine exhaust gas used as the drying gas may be adjusted, the amount of combustion exhaust gas generated by the auxiliary burner can be reduced. In this case, it is desirable to adjust the temperature of the drying gas after adjusting the oxygen concentration with an auxiliary burner.
  • the oxygen concentration in the exhaust gas is preferably measured by an oxygen concentration detection unit installed in the vicinity of the pulverized coal machine inlet of the drying gas flow path, whereby oxygen in the drying gas is measured.
  • the concentration can be accurately grasped and reliably controlled.
  • the coal gasification combined power generation facility in which the auxiliary burner is installed in the exhaust gas boiler or the oxygen concentration detection unit in which the oxygen concentration in the exhaust gas is installed in the vicinity of the pulverized coal machine inlet of the drying gas passage
  • a combustion exhaust gas bypass passage that branches from the combustion exhaust passage connecting between the gas turbine and the exhaust gas boiler and joins the drying gas passage is provided, It is preferable to provide a flow rate adjustment valve whose opening degree can be adjusted in the combustion exhaust gas bypass flow path, and when this causes a pressure fluctuation in the combustion amount of the auxiliary combustion burner, the opening degree of the flow rate adjustment valve is adjusted so that the drying gas The oxygen concentration can be controlled.
  • FIG. 1 It is a block diagram which shows one Embodiment of the coal gasification combined cycle power generation equipment which concerns on this invention. It is a block diagram which shows the modification of the coal gasification combined cycle power plant shown in FIG. It is a block diagram which shows the prior art example of coal gasification combined cycle power generation equipment. It is a figure which shows the relationship between a load (horizontal axis) and the oxygen concentration (vertical axis) contained in exhaust gas about the combustion exhaust gas of a gas turbine.
  • the coal gasification combined power generation facility of the embodiment shown in FIG. 1 employs an air combustion method in which coal gas is generated in a gasification furnace 4 using air as an oxidant, and the coal gas after purification by the gas purification device 7 is used as fuel. Gas is supplied to the gas turbine 8. That is, the coal gasification combined power generation facility shown in FIG. 1 is an air combustion type (air-blown) coal gasification combined power generation facility (hereinafter referred to as “air-blown IGCC system”).
  • air-blown IGCC system air combustion type (air-blown) coal gasification combined power generation facility
  • This air-blown IGCC system introduces a part of exhaust gas worked in a gas turbine 8 and an exhaust gas boiler 9 described later as a drying gas, and supplies coal as a raw material to the pulverized coal machine 1 together with the drying gas.
  • the pulverized coal machine 1 the coal supplied by the drying gas is heated and pulverized into fine particles while removing moisture in the coal to produce pulverized coal.
  • the pulverized coal thus manufactured is conveyed to the cyclone 2 by the drying gas. Inside the cyclone 2, gas components such as drying gas and pulverized coal (particle components) are separated, and the gas components are exhausted from the hopper 3. On the other hand, the pulverized coal of the particle component falls by gravity and is collected in the hopper 3.
  • the pulverized coal recovered in the hopper 3 is transported into the gasification furnace 4 by nitrogen gas (transport gas) introduced from the air separation device 11 to be described later for pressurized transport.
  • the gasifier 4 is supplied with pulverized coal and char which will be described later as a raw material for coal gas.
  • coal gas obtained by gasifying pulverized coal and char is produced using compressed air supplied from the gas turbine 8 and oxygen supplied from the air separation device 11 as an oxidizing agent.
  • the coal gas gasified in the gasification furnace 4 in this way is led from the upper part of the gasification furnace 4 to the gas cooler 5 to be cooled.
  • the coal gas is supplied to the char recovery device 6 after being cooled by the gas cooler 5.
  • the char recovery device 6 the char generated together with the coal gas obtained by gasifying pulverized coal is separated.
  • One coal gas flows out from the upper part of the char recovery device 6 and is supplied to the gas turbine 8 through the gas purification device 7.
  • the fuel gas of the gas turbine 8 is produced by refining the coal gas.
  • the fuel gas (coal gas) produced in this way is supplied to the combustor of the gas turbine 8 and burned, and high-temperature and high-pressure combustion exhaust gas is generated.
  • This combustion exhaust gas is discharged as high temperature exhaust gas after driving the turbine of the gas turbine 8. Since the gas turbine 8 driven in this manner has a main shaft that rotates together with the turbine connected to a gas turbine generator (not shown), the gas turbine generator can be driven to generate electric power.
  • the high-temperature exhaust gas discharged from the gas turbine 8 is supplied to the exhaust gas boiler 9 and used as a heat source for generating steam.
  • the exhaust gas used for steam generation in the exhaust gas boiler 9 is subjected to a necessary treatment by a denitration device 9a or the like and then exhausted to the atmosphere.
  • a part of the exhaust gas used for steam generation in the exhaust gas boiler 9 is extracted as a drying gas for the pulverized coal machine 1.
  • As the drying gas exhaust gas that has been subjected to treatment such as denitration is used.
  • the above-described drying gas includes an outlet gas (high temperature gas) of the denitration device 9a that is relatively high temperature, and an outlet gas (low temperature gas) of the exhaust gas boiler 9 that is lower in temperature than the exit gas of the denitration device 9a.
  • an outlet gas (high temperature gas) of the denitration device 9a that is relatively high temperature
  • an outlet gas (low temperature gas) of the exhaust gas boiler 9 that is lower in temperature than the exit gas of the denitration device 9a.
  • the drying gas whose temperature has been adjusted in this way is supplied to the pulverized coal machine 1 through the drying gas passage G1.
  • the drying gas flow path G1 is formed from the point where the high temperature gas flow path GH for introducing and flowing the outlet gas of the denitration apparatus 9a and the low temperature gas flow path GL for introducing and flowing the outlet gas of the exhaust gas boiler 9 are joined.
  • 2 is a gas flow path of drying gas whose temperature is adjusted to reach the pulverized coal machine 1.
  • the steam generated by the exhaust gas boiler 9 is supplied to a power generation steam turbine or the like (not shown).
  • the char recovered by the above-described char recovery device 6 falls to the hopper 10 due to gravity and is recovered.
  • the char in the hopper 10 uses nitrogen supplied from the air separation device 11 as a transfer gas, is transferred to the nitrogen, and is returned to the gasification furnace 4.
  • the char returned to the gasification furnace 4 is used as a raw material for gasification together with pulverized coal.
  • the pulverized coal obtained by pulverizing coal is gasified in the gasification furnace 4 using air and oxygen as oxidants to generate coal gas and char.
  • One coal gas is used as a fuel gas for the gas turbine 8, and the char separated from the coal gas is supplied again to the gasification furnace 4 and gasified.
  • the combustion exhaust gas of the gas turbine 8 is used as the drying gas of the pulverized coal machine 1, and the outlet gas of the denitration device 9 a in which the temperature control of the drying gas is installed in the exhaust gas boiler 9 and the exhaust gas boiler 9
  • An air-blown IGCC system formed by mixing with an outlet gas is provided with an auxiliary burner 20 that is activated when the oxygen concentration of the drying gas increases to a predetermined value (for example, 12% by volume) or more.
  • the auxiliary burner 20 is installed so as to adjust the oxygen concentration of the drying gas with the combustion exhaust gas generated by burning fuel such as light oil.
  • the illustrated auxiliary combustion burner 20 is installed inside the exhaust gas boiler 9. That is, the auxiliary combustion burner 20 is provided so as to substantially coincide with the inflow position of the exhaust gas introduced from the gas turbine 8 into the exhaust gas boiler 9 so that the exhaust gas and the combustion exhaust gas merge to rise and flow in the exhaust gas boiler 9. It has become. As a result, when the auxiliary combustion burner 20 is started, the oxygen concentration changes according to the amount of the combustion exhaust gas that joins and mixes with the exhaust gas, so that the oxygen concentration in the exhaust gas used as the drying gas can be adjusted.
  • the flow control valve 22 provided in the fuel supply line 21 for supplying fuel to the auxiliary burner 20 is changed from fully closed to fully open, and the auxiliary burner 20 is supplied with fuel. To supply and burn.
  • the opening amount of the flow control valve 22 is adjusted to change the amount of fuel supplied to the auxiliary burner 20, the amount of fuel exhaust gas generated by the auxiliary burner 20 and discharged into the exhaust gas boiler 9 changes. For this reason, if the opening degree adjustment of the flow control valve 22 is performed, the oxygen concentration in the exhaust gas used as the drying gas can be changed according to the amount of the combustion exhaust gas mixed with the exhaust gas.
  • the auxiliary combustion burner 20 since the combustion exhaust gas generated by the auxiliary combustion burner 20 joins the exhaust gas and the combustion exhaust gas and flows up in the exhaust gas boiler 9, the heat amount of the combustion exhaust gas can also be recovered by the exhaust gas boiler 9. .
  • the auxiliary combustion burner 20 installed in the exhaust gas boiler 9 can increase the recovered heat amount of the exhaust gas boiler 9 when the auxiliary combustion burner 20 is driven, and increase the output of the steam turbine or the like.
  • the oxygen concentration in the exhaust gas used as the dry gas increases at a low load such as when the gas turbine 8 is started, so that it exceeds a predetermined value (for example, 12% by volume) and is higher than a specified value (13% by volume). It may become a concentration.
  • a predetermined value for example, 12% by volume
  • a specified value for example, 13% by volume
  • Such an oxygen concentration in the dry gas is measured by an oxygen concentration sensor 30 provided as an oxygen concentration detector at an appropriate position of the drying gas flow path G1.
  • the oxygen concentration sensor 30 is preferably installed and measured near the inlet of the pulverized coal machine 1 in order to accurately grasp the oxygen concentration of the drying gas supplied to the pulverized coal machine 1.
  • the oxygen concentration measured by the oxygen concentration sensor 30 is input to a control unit (not shown).
  • the measured value of the oxygen concentration input to the control unit is used for starting the auxiliary burner 20 and controlling the opening degree of the flow control valve 22. That is, when the oxygen concentration sensor 30 measures the oxygen concentration of the drying gas supplied to the pulverized coal machine 1 and detects a high oxygen concentration higher than a predetermined value, the auxiliary combustion burner 20 is activated to generate combustion exhaust gas. To do. As a result, the combustion exhaust gas mixed with the exhaust gas lowers the oxygen concentration according to the amount of the mixture, and thereafter, the opening degree of the flow control valve 22 is controlled according to the oxygen concentration detected by the oxygen sensor 30 and dried. Feedback control of the combustion exhaust gas generation amount is performed so that the oxygen concentration of the working gas becomes a predetermined value that is not more than a specified value.
  • the feedback control based on the measured value of the oxygen concentration sensor 30 is the flow control.
  • the opening of the valve 22 is gradually reduced to reduce the fuel supply amount, and finally the valve 22 is fully closed to stop the operation of the auxiliary burner 20. That is, when it is determined that the oxygen concentration can be maintained within a predetermined value without mixing the combustion exhaust gas, the flow control valve 22 is fully closed and the operation of the auxiliary burner 20 is stopped.
  • the oxygen concentration of the drying gas can be adjusted within a specified value in accordance with the amount of combustion exhaust gas generated by the auxiliary burner 20. it can. For this reason, even when the oxygen concentration in the exhaust gas discharged from the gas turbine 8 temporarily increases at the time of startup or the like, the exhaust gas is stably supplied as a drying gas controlled to a predetermined oxygen concentration, and the pulverized coal machine The operation of 1 can be continued without stopping.
  • the amount of bypass exhaust gas having a high oxygen concentration that is branched from the upstream side of the exhaust gas boiler 9 and used as drying gas is adjusted by adjusting the opening of the exhaust gas flow rate adjustment valve 41.
  • the oxygen concentration of the drying gas is controlled so as to raise the once-decreased oxygen concentration.
  • the amount of combustion exhaust gas generated by the auxiliary combustion burner 20 is set to be large, and the oxygen concentration which has been reduced from a predetermined value by mixing with the combustion exhaust gas is changed to a high oxygen concentration state before mixing with the combustion exhaust gas.
  • the mixing ratio of a certain amount of bypass exhaust gas is adjusted and raised to control the desired oxygen concentration.
  • an opening / closing valve dedicated to opening / closing operation may be installed instead of the flow rate control valve 22.
  • the auxiliary combustion burner 20 ⁇ / b> A is installed not in the exhaust gas boiler 9 but in the drying gas flow path G ⁇ b> 1 for supplying the pulverized coal machine 1 with the temperature-controlled drying gas obtained by mixing the high temperature gas and the low temperature gas. .
  • the auxiliary burner 20A is installed on the upstream side (the exhaust gas boiler 9 side) from the position where the temperature is adjusted by mixing the low temperature gas.
  • the gas whose temperature is adjusted by mixing the low temperature gas after adjusting the oxygen concentration of the high temperature gas introduced from the exhaust gas boiler 9 with the auxiliary combustion burner 20A is used. Is done.
  • the auxiliary burner 20A when the auxiliary burner 20A is activated to adjust the oxygen concentration of the drying gas, only the exhaust gas actually used as the drying gas is targeted. That is, since the drying gas before temperature adjustment is extracted from the exhaust gas boiler 9 by an amount actually used as the drying gas, it is a small amount compared with the total exhaust gas amount flowing in the exhaust gas boiler 9. For this reason, since the amount of combustion exhaust gas required when adjusting the oxygen concentration of the drying gas is reduced, the auxiliary combustion burner 20A installed in the drying gas flow path G1 can be downsized, and the auxiliary combustion burner 20A. The amount of fuel consumed can be reduced.
  • the auxiliary combustion burner 20A of the modified example only needs to adjust the oxygen concentration of the gas turbine exhaust gas that is actually used as the drying gas, so the oxygen concentration in the exhaust gas exhausted to the atmosphere is also adjusted at the same time.
  • the running cost is reduced by reducing the fuel consumption.
  • the auxiliary combustion burners 20 and 20A are provided.
  • the oxygen concentration of the drying gas gas turbine exhaust gas
  • the gas turbine exhaust gas adjusted to a specified oxygen concentration or less can be used as a drying gas for the pulverized coal machine 1 even when the oxygen concentration is increased.
  • the coal gasification combined cycle power generation apparatus of the present invention can secure the drying gas of the pulverized coal machine 1 even during low load operation such as startup, and can stably operate the pulverized coal machine 1.
  • the coal gasification combined power generation apparatus of the present invention described above is used for adjusting the oxygen concentration of the gas turbine exhaust gas used for the drying gas of the pulverized coal machine 1 (which can also support drying of high-moisture coal), that is,
  • the auxiliary combustion boilers 20 and 20A for generating combustion exhaust gas are provided at appropriate positions for adjusting the oxygen concentration to be mixed in the gas turbine exhaust gas to lower the oxygen concentration to a specified value or less that can prevent spontaneous combustion of pulverized coal.
  • this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can change suitably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

乾燥用ガスとして使用するガスタービン排ガスの酸素濃度が一時的に増加した場合であっても、乾燥用ガスにガスタービン排ガスを使用して微粉炭機を運転可能な石炭ガス化複合発電装置を提供する。ガスタービン(8)の燃焼排ガスを微粉炭機(1)の乾燥用ガスとして使用し、乾燥用ガスの温度調節が排ガスボイラ(9)内に設置された脱硝装置(9a)の出口ガスと排ガスボイラ(9)の出口ガスとを混合してなされる石炭ガス化複合発電設備において、乾燥用ガスの酸素濃度が所定値以上に増加した場合に起動され、生成した燃焼排ガスにより乾燥用ガスの酸素濃度を調整するように設置された助燃バーナ(20)を備えている。

Description

石炭ガス化複合発電設備
 本発明は、石炭を燃料として複合発電を行う石炭ガス化複合発電設備に関する。
 従来、燃料となる石炭をガス化してガスタービンを運転し、ガスタービンの駆動力及びガスタービンの排熱を利用して発電する石炭ガス化複合発電設備(IGCC;Integrated Coal Gasification Combined Cycle)が知られている。
 このような石炭ガス化複合発電設備においては、酸化剤として酸素を使用する酸素燃焼方式や、酸化剤として空気を使用する空気燃焼方式(「空気吹き」とも呼ばれている)が知られている。
 このうち、空気を酸化剤とする空気燃焼方式の石炭ガス化複合発電設備においては、ガスタービン排ガス(酸素濃度12体積%)を乾燥用ガスとして使用し、温度調節のため、特にNOx 規制のある場合、排ガスボイラ内の脱硝装置出口と排ガスボイラ出口の排ガスとを混合している。すなわち、脱硝装置出口から導入した高温の排ガスと、排ガスボイラ出口から導入した比較的低温の排ガスとを混合し、乾燥用ガスの温度調整を行って使用することが行われている。(たとえば、特許文献1参照)
 図3は、空気燃焼方式(空気吹き)の石炭ガス化複合発電設備(以下、「空気吹きIGCCシステム」と呼ぶ)について、従来例を示す構成図である。
 この空気吹きIGCCシステムでは、最初に乾燥用ガスとともに原料となる石炭を微粉炭機1に導入し、石炭を乾燥粉砕することによって微粉炭が製造される。この微粉炭はサイクロン2に導かれ、排気と分離されてホッパ3に回収される。この後、ホッパ3内の微粉炭は、後述する空気分離装置11から供給される加圧搬送用の窒素ガスにより、ガス化炉4に搬送されてガス化される。こうしてガス化炉4でガス化された石炭ガスは、ガス冷却器5を通ってチャー回収装置6に供給される。なお、ガス化炉4で微粉炭をガス化する際には、後述するガスタービン8から供給される圧縮空気と、空気分離装置11から供給される酸素とが酸化剤として使用される。
 チャー回収装置6では、微粉炭をガス化した石炭ガスとともに生成されたチャーを分離する。一方の石炭ガスは、ガス精製装置7を通って精製された後にガスタービン8の燃料ガスとなる。この燃料ガス(石炭ガス)をガスタービン8の燃焼器に供給して燃焼させることにより、高温高圧の燃焼排ガスが生成される。この燃焼排ガスは、ガスタービン8のタービンを駆動した後、排ガスとして排出される。なお、ガスタービン8の主軸は図示しない発電機と連結され、発電機を駆動することにより発電が行われる。
 ガスタービン8から排出された高温の排ガスは、排ガスボイラ9に供給されて蒸気生成に使用される。排ガスボイラ9で生成された蒸気は、図示しない発電用蒸気タービン等に供給される。
 排ガスボイラ9で蒸気生成に使用された排ガスは、脱硝装置9a等により必要な処理を施した後に大気へ排気される。また、脱硝装置9aを通った脱硝後の排ガスについては、その一部が乾燥用ガスとして微粉炭機1へ供給される。図示の構成例では、排ガスボイラ9のうち、脱硝装置9aの出口から導入した比較的高温の排ガスと、排ガスボイラ9の出口から導入した比較的低温の排ガスと混合し、所望の乾燥用ガス温度に調整された乾燥用ガスが用いられている。
特開昭61-175241号公報
 ところで、上述した従来の石炭ガス化複合発電設備(空気吹きIGCCシステム)においては、たとえば亜瀝青炭や褐炭等のように、一般的に自然発火性が高い低品位炭を原料炭として微粉炭を製造する場合、乾燥用ガスの酸素濃度を規定値(たとえば13体積%)以下にコントロールして自然発火を防止している。
 すなわち、従来の空気吹きIGCCシステムでは、たとえば酸素濃度を12体積%のガスタービン排ガスを乾燥用ガスとして使用し、温度調節のため、特にNOx 規制のある場合、排ガスボイラ内の脱硝装置出口排ガス(高温ガス)と排ガスボイラ出口排ガス(低温ガス)とを混合している。
 しかし、空気吹きIGCCシステムの場合、たとえば図4に示すように、定格負荷より低負荷となる起動時等においては、乾燥用ガスとして使用するガスタービン排ガスの酸素濃度が一時的に規定値より増加する。このため、乾燥用ガスの酸素濃度については、微粉炭の自然発火を防止する13体積%以下にコントロールできない場合がある。従って、微粉炭の自然発火を防止するためには、微粉炭機の運転を停止しなければならないという問題があった。
 低負荷時に酸素濃度が増加する理由としては、ガスタービン側の空気量運用に制限があることから、ある負荷以下では空気量が一定になるためである。ここで、ガスタービン側の制限としては、燃焼器周りのメタル温度や燃焼振動がある。
 このように、上述した従来の空気吹きIGCCシステムにおいては、起動時等の低負荷運転時に乾燥用ガスの酸素濃度を規定値以下にコントロールすることができないため、微粉炭の自然発火を防止する観点から微粉炭機の運転が制約される。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、たとえば低負荷運転時等のように、乾燥用ガスとして使用するガスタービン排ガスの酸素濃度が一時的に増加した場合も、乾燥用ガスにガスタービン排ガスを使用して微粉炭機を運転可能にした石炭ガス化複合発電装置を提供することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明の一態様に係る石炭ガス化複合発電設備は、ガスタービンの燃焼排ガスを微粉炭機の乾燥用ガスとして使用し、前記乾燥用ガスの温度調節が排ガスボイラ内に設置された脱硝装置の出口ガスと前記排ガスボイラの出口ガスとを混合してなされる石炭ガス化複合発電設備において、前記乾燥用ガスの酸素濃度が所定値以上に増加した場合に起動され、生成した燃焼排ガスにより前記乾燥用ガスの酸素濃度を調整するように設置された助燃バーナを備えているものである。
 このような石炭ガス化複合発電設備によれば、乾燥用ガスの酸素濃度が所定値以上に増加した場合に起動され、生成した燃焼排ガスにより乾燥用ガスの酸素濃度を調整するように設置された助燃バーナを備えているので、低負荷時等においてガスタービン排ガスの酸素濃度が増加した場合であっても、助燃バーナで生成される燃焼排ガス量に応じて乾燥用ガスの酸素濃度を規定値以下に調整できるようになる。このため、ガスタービン排ガスの酸素濃度が増加した場合においても、規定の酸素濃度以下にコントロールされた乾燥用ガスを供給して微粉炭機を運転することが可能になる。
 上記態様において、前記助燃バーナは、前記排ガスボイラの内部に設置されていることが好ましく、これにより、排ガスボイラの回収熱量が増して出力を増加させることができる。
 上記態様において、前記助燃バーナは、前記乾燥用ガスを前記微粉炭機に供給する乾燥用ガス流路に設置されていることが好ましく、これにより、乾燥用ガスの酸素濃度は、排ガスボイラから抜き出したガスタービン排ガスのみを調節すればよいので、助燃バーナで消費する燃料を低減することができる。すなわち、乾燥用ガスとして使用するガスタービン排ガスの酸素濃度を調整すればよいので、助燃バーナで生成する燃焼排ガス量は少なくてすむ。この場合、乾燥用ガスの温度調整は、助燃バーナで酸素濃度を調節した後に実施することが望ましい。
 前記助燃バーナが前記排ガスボイラの内部に設置されている石炭ガス化複合発電設備または前記助燃バーナが前記乾燥用ガスを前記微粉炭機に供給する乾燥用ガス流路に配置されている石炭ガス化複合発電設備において、前記排ガス中の酸素濃度は、前記乾燥用ガス流路の微粉炭機入口近傍に設置されている酸素濃度検出部により計測されることが好ましく、これにより、乾燥用ガスの酸素濃度を正確に把握して確実にコントロールすることができる。
 前記助燃バーナが前記排ガスボイラの内部に設置されている石炭ガス化複合発電設備または前記排ガス中の酸素濃度が前記乾燥用ガス流路の微粉炭機入口近傍に設置されている酸素濃度検出部により計測される石炭ガス化複合発電設備においては、前記ガスタービンと前記排ガスボイラとの間を連結する燃焼排ガス流路から分岐して前記乾燥用ガス流路に合流する燃焼排ガスバイパス流路を設け、該燃焼排ガスバイパス流路に開度調整可能な流量調整弁を設けることが好ましく、これにより、助燃バーナの燃焼量で圧力変動を生じる場合、流量調整弁の開度調整を行って乾燥用ガスの酸素濃度を制御することができる。
 上述した本発明によれば、低負荷運転時等のように乾燥用ガスとして使用するガスタービン排ガスの酸素濃度が一時的に増加した場合、助燃バーナで生成される燃焼排ガスを混合することにより酸素濃度を調節し、微粉炭機の乾燥用ガスとして規定の酸素濃度以下に調節されたガスタービン排ガスの使用が可能となる。この結果、起動時等の低負荷運転時においても、微粉炭機の乾燥用ガスを確保し、微粉炭機の運転が可能な石炭ガス化複合発電装置となる。
本発明に係る石炭ガス化複合発電設備の一実施形態を示す構成図である。 図1に示す石炭ガス化複合発電設備の変形例を示す構成図である。 石炭ガス化複合発電設備の従来例を示す構成図である。 ガスタービンの燃焼排ガスについて、負荷(横軸)と排ガス中に含まれる酸素濃度(縦軸)との関係を示す図である。
 以下、本発明に係る石炭ガス化複合発電設備の一実施形態を図面に基づいて説明する。
 図1に示す実施形態の石炭ガス化複合発電設備は、空気を酸化剤としてガス化炉4で石炭ガスを生成する空気燃焼方式を採用し、ガス精製装置7で精製した後の石炭ガスを燃料ガスとしてガスタービン8へ供給している。すなわち、図1に示す石炭ガス化複合発電設備は、空気燃焼方式(空気吹き)の石炭ガス化複合発電設備(以下、「空気吹きIGCCシステム」と呼ぶ)である。
 この空気吹きIGCCシステムは、後述するガスタービン8や排ガスボイラ9で仕事をした排ガスの一部を乾燥用ガスとして導入し、この乾燥用ガスとともに原料となる石炭を微粉炭機1に供給する。微粉炭機1では、乾燥用ガスにより供給された石炭を加熱し、石炭中の水分を除去しながら細かい粒子状に粉砕して微粉炭を製造する。
 こうして製造された微粉炭は、乾燥用ガスによりサイクロン2へ搬送される。サイクロン2の内部では、乾燥用ガス等のガス成分と微粉炭(粒子成分)とが分離され、ガス成分はホッパ3から排気される。一方、粒子成分の微粉炭は、重力により落下してホッパ3に回収される。
 ホッパ3内に回収された微粉炭は、後述する空気分離装置11から加圧搬送用として導入した窒素ガス(搬送用ガス)により、ガス化炉4内へ搬送される。
 ガス化炉4には、石炭ガスの原料として微粉炭及び後述するチャーが供給される。ガス化炉4では、ガスタービン8から供給される圧縮空気及び空気分離装置11から供給される酸素を酸化剤として、微粉炭及びチャーをガス化した石炭ガスが製造される。
 こうしてガス化炉4でガス化された石炭ガスは、ガス化炉4の上部からガス冷却器5へ導かれて冷却される。この石炭ガスは、ガス冷却器5で冷却された後にチャー回収装置6へ供給される。
 チャー回収装置6では、微粉炭をガス化した石炭ガスとともに生成されたチャーが分離される。一方の石炭ガスは、チャー回収装置6の上部から流出し、ガス精製装置7を通ってガスタービン8へ供給される。
 ガス精製装置7では、石炭ガスを精製してガスタービン8の燃料ガスが製造される。
 こうして製造された燃料ガス(石炭ガス)は、ガスタービン8の燃焼器に供給されて燃焼し、高温高圧の燃焼排ガスが生成される。
 この燃焼排ガスは、ガスタービン8のタービンを駆動した後、高温の排ガスとして排出される。こうして駆動されたガスタービン8は、タービンとともに回転する主軸が図示しないガスタービン発電機と連結されているので、ガスタービン発電機を駆動して発電を行うことができる。
 ガスタービン8から排出された高温の排ガスは、排ガスボイラ9に供給され、蒸気を生成する熱源として使用される。なお、排ガスボイラ9で蒸気生成に使用された排ガスは、脱硝装置9a等により必要な処理を施した後、大気へ排気される。
 また、排ガスボイラ9で蒸気生成に使用された排ガスは、一部が微粉炭機1の乾燥用ガスとして抽出される。この乾燥用ガスには、脱硝等の処理を施した排ガスが用いられる。具体的に説明すると、上述した乾燥用ガスは、比較的高温となる脱硝装置9aの出口ガス(高温ガス)と、脱硝装置9aの出口ガスより温度の低い排ガスボイラ9の出口ガス(低温ガス)とを適宜混合することにより、排ガスボイラ9の排ガスが所望の温度に調節されている。
 こうして温度調節された乾燥用ガスは、乾燥用ガス流路G1を通って微粉炭機1に供給される。この乾燥用ガス流路G1は、脱硝装置9aの出口ガスを導入して流す高温ガス流路GHと、排ガスボイラ9の出口ガスを導入して流す低温ガス流路GLとが合流した地点から、微粉炭機1に至る温度調節した乾燥用ガスのガス流路である。
 なお、排ガスボイラ9で生成された蒸気は、図示しない発電用の蒸気タービン等に供給される。
 上述したチャー回収装置6で回収されたチャーは、重力によりホッパ10に落下して回収される。ホッパ10内のチャーは、空気分離装置11から供給される窒素を搬送用ガスとして使用し、この窒素に搬送されてガス化炉4へ戻される。ガス化炉4に戻されたチャーは、微粉炭とともにガス化の原料として使用される。
 このように、石炭を粉砕して得られる微粉炭は、空気及び酸素を酸化剤とするガス化炉4でガス化することにより石炭ガス及びチャーが生成される。一方の石炭ガスは、ガスタービン8の燃料ガスとして使用され、石炭ガスから分離したチャーは、再度ガス化炉4に供給されてガス化される。
 このように、ガスタービン8の燃焼排ガスを微粉炭機1の乾燥用ガスとして使用し、乾燥用ガスの温度調節が排ガスボイラ9内に設置された脱硝装置9aの出口ガスと、排ガスボイラ9の出口ガスとを混合してなされる空気吹きIGCCシステムには、乾燥用ガスの酸素濃度が所定値(たとえば12体積%)以上に増加した場合に起動される助燃バーナ20が設けられている。この助燃バーナ20は、軽油等の燃料を燃焼させて生成した燃焼排ガスにより、乾燥用ガスの酸素濃度を調整するように設置されている。
 図示の助燃バーナ20は、排ガスボイラ9の内部に設置されている。すなわち、助燃バーナ20は、ガスタービン8から排ガスボイラ9に導入される排ガスの流入位置と略一致して設けられ、排ガスと燃焼排ガスとが合流して排ガスボイラ9内を上昇して流れるようになっている。この結果、助燃バーナ20の起動時には、排ガスに合流して混合される燃焼排ガス量に応じて酸素濃度が変化するので、乾燥用ガスとして使用する排ガス中の酸素濃度を調整することができる。
 すなわち、乾燥用ガスの酸素濃度が所定値以上に増加した場合には、助燃バーナ20に燃料を供給する燃料供給ライン21に設けた流量制御弁22を全閉から全開とし、助燃バーナ20に燃料を供給して燃焼させる。このとき、流量制御弁22の開度を調整して助燃バーナ20への燃料供給量を変化させれば、助燃バーナ20が生成して排ガスボイラ9内へ排出する燃排ガス量は変化する。このため、流量制御弁22の開度調整を行えば、排ガスと混合される燃焼排ガス量に応じて、乾燥用ガスとなる排ガス中の酸素濃度を変化させることができる。
 また、助燃バーナ20で生成された燃焼排ガスは、排ガスと燃焼排ガスとが合流して排ガスボイラ9内を上昇して流れるため、燃焼排ガスが有する熱量についても、排ガスボイラ9で回収することができる。このため、排ガスボイラ9内に設置された助燃バーナ20は、助燃バーナ20の駆動時に排ガスボイラ9の回収熱量を増し、蒸気タービン等の出力を増加させることができる。
 ところで、乾燥ガスとして使用される排ガス中の酸素濃度は、ガスタービン8の起動時など低負荷時に増加するので、所定値(たとえば12体積%)を超えて規定値(13体積%)以上の高濃度になる場合がある。このような乾燥ガス中の酸素濃度は、乾燥用ガス流路G1の適所に酸素濃度検出部として設けられた酸素濃度センサ30により計測する。この酸素濃度センサ30は、微粉炭機1に供給される乾燥用ガスの酸素濃度を正確に把握するため、微粉炭機1の入口近傍に設置して計測することが望ましい。
 酸素濃度センサ30が計測した酸素濃度は、図示しない制御部に入力される。制御部に入力された酸素濃度の計測値は、助燃バーナ20の起動や流量制御弁22の開度制御に使用される。
 すなわち、酸素濃度センサ30が微粉炭機1に供給される乾燥用ガスの酸素濃度を計測し、所定値以上の高酸素濃度を検出した場合には、助燃バーナ20を起動して燃焼排ガスを生成する。この結果、排ガスに混合された燃焼排ガスは、その混合量に応じて酸素濃度を低下させるので、以後は酸素センサ30で検出した酸素濃度に応じて流量制御弁22の開度制御を行い、乾燥用ガスの酸素濃度が規定値以下の所定値となるように燃焼排ガス生成量のフィードバック制御を実施する。
 このような制御を行えば、乾燥用ガスの酸素濃度を正確に把握し、規定値以上に高酸素濃度となった乾燥用ガスが微粉炭機1に供給されないよう、確実にコントロールすることができる。また、ガスタービン8が定格運転に近づくなどして、ガスタービン8から導入される排ガス中の酸素濃度が規定値近傍まで低下してくると、酸素濃度センサ30の計測値によるフィードバック制御は流量制御弁22の開度を徐々に絞って燃料供給量を減少させ、最終的には全閉にして助燃バーナ20の運転を停止する。すなわち、燃焼排ガスを混合しなくても酸素濃度を所定値以内に維持できると判断された時点において、流量制御弁22を全閉にするとともに助燃バーナ20の運転を停止する。
 従って、低負荷等によりガスタービン排ガスの酸素濃度が増加するような運転状況においても、助燃バーナ20で生成される燃焼排ガス量に応じて乾燥用ガスの酸素濃度を規定値以内に調整することができる。このため、起動時等においてガスタービン8から排出される排ガス中の酸素濃度が一時的に増加した場合でも、この排ガスを所定の酸素濃度にコントロールされた乾燥用ガスとして安定供給し、微粉炭機1の運転を停止することなく継続できる。
 また、助燃バーナ20の燃焼量により排ガスボイラ9内に圧力変動を生じる場合には、ガスタービン8と排ガスボイラ9との間を連結する燃焼排ガス流路G2から分岐して乾燥用ガス流路G1に合流する燃焼排ガスバイパス流路40を設けるとともに、燃焼排ガスバイパス流路40に開度調整可能な排ガス流量調整弁41を設けることが望ましい。
 このような構成を採用すれば、助燃バーナ20への燃料供給量を制御する流量制御弁22の開度を一定とし、排ガス流量調整弁41の開度調整を行って乾燥用ガスの酸素濃度を制御することができる。すなわち、圧力変動を引き起こす燃焼排ガス量を可変制御するのではなく、排ガスボイラ9の上流側から分岐させて乾燥用ガスとする高酸素濃度のバイパス排ガス量を排ガス流量調整弁41の開度調整により変化させ、いったん低下した酸素濃度を引き上げる方向に乾燥用ガスの酸素濃度を制御する。
 この制御では、助燃バーナ20で生成する燃焼排ガス量を多めに設定しておき、この燃焼排ガスとの混合により所定値より低下した酸素濃度を、燃焼排ガスとの混合前で高酸素濃度の状態にあるバイパス排ガス量の混合割合を調整して引き上げ、所望の酸素濃度にコントロールする。なお、このような構成では、流量制御弁22に代えて開閉操作専用の開閉弁を設置してもよい。
 次に、上述した空気吹きIGCCシステムに係る変形例について、図2に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 図示の空気吹きIGCCシステムは、助燃バーナ20Aの配置が異なっている。すなわち、助燃バーナ20Aは、排ガスボイラ9の内部ではなく、高温ガスと低温ガスとを混合した温度調節後の乾燥用ガスを微粉炭機1に供給する乾燥用ガス流路G1に設置されている。図示の構成例では、乾燥用ガスの温度調整を容易にするため、低温ガスを混合して温度調整する位置より上流側(排ガスボイラ9側)に助燃バーナ20Aが設置されている。この結果、微粉炭機1に投入される乾燥用ガスとしては、排ガスボイラ9から導入した高温ガスの酸素濃度を助燃バーナ20Aで調整した後、低温ガスを混合して温度調整されたものが使用される。
 このような構成とすれば、助燃バーナ20Aを起動して乾燥用ガスの酸素濃度を調整する場合、乾燥用ガスとして実際に使用する排ガスのみが対象となる。すなわち、温度調整前の乾燥用ガスは、乾燥用ガスとして実際に使用する量だけ排ガスボイラ9から抜き出したものであるから、排ガスボイラ9内を流れる全排ガス量と比較すれば少量である。
 このため、乾燥用ガスの酸素濃度を引き下げて調整する際に必要となる燃焼排ガス量も少なくてすむから、乾燥用ガス流路G1に設置する助燃バーナ20Aの小型化が可能となり、助燃バーナ20Aの燃料消費量についても低減することができる。換言すれば、変形例の助燃バーナ20Aは、乾燥用ガスとして実際に使用されるガスタービン排ガスの酸素濃度のみを調整すればよいので、大気に排気される排ガス中の酸素濃度も同時に調整している助燃バーナ20と比較した場合、燃料消費量の低減によりランニングコストの低いものとなる。
 このように、上述した本発明によれば、たとえば低負荷運転時等のように、乾燥用ガスとして使用するガスタービン排ガスの酸素濃度が一時的に増加した場合においても、助燃バーナ20,20Aを起動して生成される燃焼排ガスを混合することにより、乾燥用ガス(ガスタービン排ガス)の酸素濃度を低下させる方向に調節することができる。従って、微粉炭機1の乾燥用ガスとして、酸素濃度が上昇する起動時等においても、規定の酸素濃度以下に調節されたガスタービン排ガスの使用が可能となる。この結果、本発明の石炭ガス化複合発電装置は、起動時等の低負荷運転時にも微粉炭機1の乾燥用ガスを確保し、微粉炭機1の安定した運転を行うことができる。
 従って、上述した本発明の石炭ガス化複合発電装置は、微粉炭機1の乾燥用ガスに使用されるガスタービン排ガスの酸素濃度調整用(高水分炭の乾燥にも対応可能)として、すなわち、ガスタービン排ガス中に混合して酸素濃度を微粉炭の自然発火防止可能な規定値以下に引き下げる酸素濃度調整用として、燃焼排ガスを生成する助燃ボイラ20,20Aを適所に設けたものである。
 なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
 1  微粉炭機
 2  サイクロン
 3,10  ホッパ
 4  ガス化炉
 5  ガス冷却器
 6  チャー回収装置
 7  ガス精製装置
 8  ガスタービン
 9  排ガスボイラ
 9a  脱硝装置
11  空気分離装置
20,20A  助燃バーナ
22  流量制御弁
30  酸素濃度センサ
40  燃焼排ガスバイパス流路
41  排ガス流量調整弁
G1  乾燥用ガス流路
G2  燃焼排ガス流路

Claims (5)

  1.  ガスタービンの燃焼排ガスを微粉炭機の乾燥用ガスとして使用し、前記乾燥用ガスの温度調節が排ガスボイラ内に設置された脱硝装置の出口ガスと前記排ガスボイラの出口ガスとを混合してなされる石炭ガス化複合発電設備において、
     前記乾燥用ガスの酸素濃度が所定値以上に増加した場合に起動され、生成した燃焼排ガスにより前記乾燥用ガスの酸素濃度を調整するように設置された助燃バーナを備えている石炭ガス化複合発電設備。
  2.  前記助燃バーナは、前記排ガスボイラの内部に設置されている請求項1に記載の石炭ガス化複合発電設備。
  3.  前記助燃バーナは、前記乾燥用ガスを前記微粉炭機に供給する乾燥用ガス流路に設置されている請求項1に記載の石炭ガス化複合発電設備。
  4.  前記排ガス中の酸素濃度は、前記乾燥用ガス流路の微粉炭機入口近傍に設置されている酸素濃度検出部により計測される請求項2または3に記載の石炭ガス化複合発電設備。
  5.  前記ガスタービンと前記排ガスボイラとの間を連結する燃焼排ガス流路から分岐して前記乾燥用ガス流路に合流する燃焼排ガスバイパス流路を設け、該燃焼排ガスバイパス流路に開度調整可能な流量調整弁を設けた請求項2または4に記載の石炭ガス化複合発電設備。
PCT/JP2009/062344 2008-10-29 2009-07-07 石炭ガス化複合発電設備 WO2010050270A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09823383A EP2341229A4 (en) 2008-10-29 2009-07-07 INTEGRATED COMBINATION CYCLE GASIFICATION AND POWER GENERATION PLANT
US13/055,765 US20110308230A1 (en) 2008-10-29 2009-07-07 Integrated coal gasification combined cycle plant
KR1020117002163A KR101293321B1 (ko) 2008-10-29 2009-07-07 석탄 가스화 복합 발전 설비
CN2009801295835A CN102112717A (zh) 2008-10-29 2009-07-07 煤气化复合发电设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008278555A JP4939511B2 (ja) 2008-10-29 2008-10-29 石炭ガス化複合発電設備
JP2008-278555 2008-10-29

Publications (1)

Publication Number Publication Date
WO2010050270A1 true WO2010050270A1 (ja) 2010-05-06

Family

ID=42128640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062344 WO2010050270A1 (ja) 2008-10-29 2009-07-07 石炭ガス化複合発電設備

Country Status (6)

Country Link
US (1) US20110308230A1 (ja)
EP (1) EP2341229A4 (ja)
JP (1) JP4939511B2 (ja)
KR (1) KR101293321B1 (ja)
CN (1) CN102112717A (ja)
WO (1) WO2010050270A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595143A (zh) * 2020-04-27 2020-08-28 大连欧谱纳透平动力科技有限公司 用于钛白粉干燥的燃气轮机热电联供系统及其方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030750B2 (ja) * 2007-11-30 2012-09-19 三菱重工業株式会社 石炭ガス化複合発電設備
JP5316913B2 (ja) * 2009-10-28 2013-10-16 株式会社Ihi ガス化設備の燃焼炉温度制御方法及び装置
KR101813032B1 (ko) 2011-04-11 2017-12-28 엘지전자 주식회사 이동 단말기 및 이것의 쿠폰 관리 방법
WO2012151625A1 (en) * 2011-05-09 2012-11-15 Hrl Treasury (Idgcc) Pty Ltd Improvements in integrated drying gasification
JP5789146B2 (ja) * 2011-07-13 2015-10-07 株式会社神戸製鋼所 微粉炭焚きボイラ設備の運転方法および微粉炭焚きボイラ設備
JP5840024B2 (ja) * 2012-02-17 2016-01-06 三菱日立パワーシステムズ株式会社 湿潤燃料を用いて複合発電を行うプラント及びその燃料乾燥方法
US9105171B2 (en) * 2013-05-24 2015-08-11 Breathing Systems, Inc. Critical parameter monitoring system for improving the safety of personnel operating in hazardous areas
JP6422689B2 (ja) * 2014-07-09 2018-11-14 三菱日立パワーシステムズ株式会社 ガス化炉設備、ガス化複合発電設備、およびガス化炉設備の起動方法
KR101526959B1 (ko) * 2014-07-10 2015-06-17 한국생산기술연구원 연소기 독립형 유동층 간접 가스화 시스템
AT517644B1 (de) * 2015-08-18 2018-08-15 Gaston Ing Glock Verfahren und Vorrichtung zum Trocknen von Holzschnitzeln
US11215360B2 (en) * 2015-08-18 2022-01-04 Glock Ökoenergie Gmbh Method and device for drying wood chips
JP6763520B2 (ja) * 2016-05-20 2020-09-30 三菱パワー株式会社 炭素含有固体燃料ガス化発電設備及びその炭素含有固体燃料の乾燥用ガスの調整方法
CN107905859A (zh) * 2017-11-08 2018-04-13 中科合肥煤气化技术有限公司 一种高温热煤气余热回收发电装置
CN108180074A (zh) * 2017-12-21 2018-06-19 中国成达工程有限公司 一种天然气燃气电站乏气热量回收工艺
JP7043285B2 (ja) * 2018-02-19 2022-03-29 三菱重工業株式会社 ガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法
US11629301B2 (en) * 2019-07-29 2023-04-18 Ecoremedy Llc Biosolid treatment process and system
JP7434031B2 (ja) * 2020-03-31 2024-02-20 三菱重工業株式会社 ガス化複合発電設備及びその運転方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053714A (ja) * 1983-09-03 1985-03-27 Babcock Hitachi Kk 微粉炭燃焼方法
JPS61175241A (ja) 1985-01-30 1986-08-06 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電装置
JPH05272709A (ja) * 1992-03-25 1993-10-19 Mitsubishi Heavy Ind Ltd 微粉炭燃焼装置
JPH08296835A (ja) * 1995-04-27 1996-11-12 Hitachi Ltd 微粉炭焚火力発電システム
JPH1182991A (ja) * 1997-09-03 1999-03-26 Mitsubishi Heavy Ind Ltd 発電用石炭の乾燥・パージ方法及びその装置
JP2002228129A (ja) * 2001-01-29 2002-08-14 Mitsubishi Heavy Ind Ltd 廃棄物燃焼炉
JP2004077096A (ja) * 2002-08-22 2004-03-11 Babcock Hitachi Kk 助燃バーナ付き排熱回収ボイラ
JP2004347241A (ja) * 2003-05-22 2004-12-09 Mitsubishi Heavy Ind Ltd 石炭・有機物燃料混合粉砕装置
JP2005125265A (ja) * 2003-10-27 2005-05-19 Kawasaki Heavy Ind Ltd 有機性廃棄物の処理方法と処理システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3095699A (en) * 1958-12-18 1963-07-02 Babcock & Wilcox Co Combined gas-steam turbine power plant and method of operating the same
US3818869A (en) * 1973-01-02 1974-06-25 Combustion Eng Method of operating a combined gasification-steam generating plant
JPS609201B2 (ja) * 1975-09-29 1985-03-08 株式会社日立製作所 排熱回収ボイラ装置
US4346302A (en) * 1980-04-28 1982-08-24 Combustion Engineering, Inc. Oxygen blown coal gasifier supplying MHD-steam power plant
US5486998A (en) * 1993-06-14 1996-01-23 Amax Coal West, Inc. Process stabilizing process controller
DE4434526C1 (de) * 1994-09-27 1996-04-04 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
US5685138A (en) * 1995-02-09 1997-11-11 Fluor Corporation Integrated drying of feedstock feed to IGCC plant
CN1162643C (zh) * 2000-07-28 2004-08-18 中国国际工程咨询公司 部分气化空气预热燃煤联合循环发电系统及方法
WO2005033250A2 (en) * 2003-10-02 2005-04-14 Ebara Corporation Gasification method and apparatus
US20080028634A1 (en) * 2006-08-07 2008-02-07 Syntroleum Corporation Method for using heat from combustion turbine exhaust to dry fuel feedstocks
US8001788B2 (en) * 2007-04-06 2011-08-23 Babcock & Wilcox Power Generation Group, Inc. Method and apparatus for preparing pulverized coal used to produce synthesis gas

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053714A (ja) * 1983-09-03 1985-03-27 Babcock Hitachi Kk 微粉炭燃焼方法
JPS61175241A (ja) 1985-01-30 1986-08-06 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電装置
JPH05272709A (ja) * 1992-03-25 1993-10-19 Mitsubishi Heavy Ind Ltd 微粉炭燃焼装置
JPH08296835A (ja) * 1995-04-27 1996-11-12 Hitachi Ltd 微粉炭焚火力発電システム
JPH1182991A (ja) * 1997-09-03 1999-03-26 Mitsubishi Heavy Ind Ltd 発電用石炭の乾燥・パージ方法及びその装置
JP2002228129A (ja) * 2001-01-29 2002-08-14 Mitsubishi Heavy Ind Ltd 廃棄物燃焼炉
JP2004077096A (ja) * 2002-08-22 2004-03-11 Babcock Hitachi Kk 助燃バーナ付き排熱回収ボイラ
JP2004347241A (ja) * 2003-05-22 2004-12-09 Mitsubishi Heavy Ind Ltd 石炭・有機物燃料混合粉砕装置
JP2005125265A (ja) * 2003-10-27 2005-05-19 Kawasaki Heavy Ind Ltd 有機性廃棄物の処理方法と処理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2341229A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595143A (zh) * 2020-04-27 2020-08-28 大连欧谱纳透平动力科技有限公司 用于钛白粉干燥的燃气轮机热电联供系统及其方法

Also Published As

Publication number Publication date
JP4939511B2 (ja) 2012-05-30
US20110308230A1 (en) 2011-12-22
KR20110033255A (ko) 2011-03-30
JP2010106722A (ja) 2010-05-13
KR101293321B1 (ko) 2013-08-05
EP2341229A1 (en) 2011-07-06
EP2341229A4 (en) 2013-03-20
CN102112717A (zh) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4939511B2 (ja) 石炭ガス化複合発電設備
JP4981901B2 (ja) ガス化複合発電プラント
US8627668B2 (en) System for fuel and diluent control
US8408007B2 (en) Integrated gasification combined cycle and operation control method thereof
EP2322781A1 (en) Integrated coal gasification combined cycle power generation apparatus
JP5840024B2 (ja) 湿潤燃料を用いて複合発電を行うプラント及びその燃料乾燥方法
CN109072780B (zh) 含碳固体燃料气化发电设备及其含碳固体燃料的干燥用气体的调整方法
WO2013084735A1 (ja) 燃料ガス化システム、その制御方法及び制御プログラム、並びに、燃料ガス化システムを備える燃料ガス化複合発電システム
JP2017206643A (ja) ガス化複合発電プラント及びその運転方法
CN105143638B (zh) 气化发电设备的控制装置、气化发电设备、及气化发电设备的控制方法
CN108779403B (zh) 含碳原料气化系统及其氧化剂分配比设定方法
JP6033380B2 (ja) 石炭ガス化複合発電設備
JP7434031B2 (ja) ガス化複合発電設備及びその運転方法
JP2005201621A (ja) ごみガス化溶融方法と装置
JP2017110165A (ja) ガス化装置及びガス化装置の制御装置、ガス化複合発電設備
JP2014101838A (ja) 石炭ガス化複合発電設備
JP2004092426A (ja) 熱電併給方法及び熱電併給システム
JP2021161924A5 (ja)
JP5615199B2 (ja) 燃焼装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129583.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009823383

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117002163

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13055765

Country of ref document: US