WO2010050197A1 - 有機薄膜太陽電池 - Google Patents

有機薄膜太陽電池 Download PDF

Info

Publication number
WO2010050197A1
WO2010050197A1 PCT/JP2009/005693 JP2009005693W WO2010050197A1 WO 2010050197 A1 WO2010050197 A1 WO 2010050197A1 JP 2009005693 W JP2009005693 W JP 2009005693W WO 2010050197 A1 WO2010050197 A1 WO 2010050197A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
solar cell
film solar
organic thin
Prior art date
Application number
PCT/JP2009/005693
Other languages
English (en)
French (fr)
Inventor
松浦正英
池田秀嗣
中村浩昭
岩本伸太郎
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US13/126,584 priority Critical patent/US20110259425A1/en
Priority to EP09823310A priority patent/EP2348556A4/en
Priority to CN2009801431384A priority patent/CN102197504A/zh
Publication of WO2010050197A1 publication Critical patent/WO2010050197A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic thin film solar cell.
  • An organic thin film solar cell is a device that shows an electrical output with respect to light input, as represented by a photodiode or an imaging device that converts an optical signal into an electrical signal, or a solar cell that converts optical energy into electrical energy, It is a device that exhibits a response opposite to that of an electroluminescence (EL) element that exhibits an optical output with respect to an electrical input.
  • solar cells have attracted a great deal of attention as a clean energy source in recent years against the background of fossil fuel depletion and global warming, and research and development have been actively conducted.
  • silicon solar cells represented by single crystal Si, polycrystal Si, amorphous Si, etc. have been put into practical use.
  • Organic solar cells are basically composed of an n layer for transporting electrons and a p layer for transporting holes, and is roughly classified into two types depending on the material constituting each layer.
  • a n-layer in which a sensitizing dye such as ruthenium dye is adsorbed on the surface of an inorganic semiconductor such as titania and an electrolyte solution is used as a p-layer is called a dye-sensitized solar cell (so-called Gretzell cell), and has a conversion efficiency.
  • Gretzell cell dye-sensitized solar cell
  • an organic thin film solar cell In general, the operation process of an organic thin film solar cell consists of (1) light absorption and exciton generation, (2) exciton diffusion, (3) charge separation, (4) carrier movement, and (5) electromotive force generation. ing.
  • organic substances have few absorption characteristics that match the solar spectrum, and many have low carrier mobility, so that high conversion efficiency cannot often be achieved.
  • an organic thin film solar cell is a complete solid-state element, it is affected by the film properties of the organic thin film. Furthermore, there has been a problem affected by the material molecules forming the organic thin film.
  • Patent Document 1 discloses an organic co-deposited film of phthalocyanines and perylene imides.
  • phthalocyanines and perylene imides are extremely difficult to control the deposition rate during vacuum deposition because of their sublimation characteristics, and short circuits are not possible. There was a problem with a high probability of occurring.
  • phthalocyanines have a problem that the deposition temperature is high and the energy required for device fabrication is large.
  • Patent Document 2 discloses an organic solar cell including a hole blocking layer having an ionization potential larger than the ionization potential of compound semiconductor particles contained in an active layer.
  • the ionization potential is a value that reflects the energy level of holes, and does not stipulate the energy level or movement of electrons.
  • An object of the present invention is to provide an organic thin-film solar cell exhibiting highly efficient photoelectric conversion characteristics.
  • the following organic thin film solar cell and the like are provided.
  • the one or more organic layers are two or more organic layers; 2.
  • each of the two or more organic layers is made of any one of the two or more organic compounds. 4).
  • the one or more organic layers include a p-layer; 4.
  • the organic thin-film solar cell according to 4, wherein an energy gap Eg of the main organic compound forming the p layer is Eg ⁇ 3 eV. 6).
  • an organic thin film solar cell exhibiting highly efficient photoelectric conversion characteristics can be provided.
  • the organic thin film solar cell of the present invention includes a pair of electrodes and one or more organic layers (for example, a p layer, an n layer, an i layer, a p material, and n) composed of two or more organic compounds sandwiched between the pair of electrodes.
  • the difference ( ⁇ Af) in the affinity level of two main organic compounds among the two or more organic compounds satisfies the following formula (a). 0.5 eV ⁇ Af ⁇ 2.0 eV (a)
  • the “main two kinds of organic compounds” means the organic compound having the highest composition ratio (molar ratio) and the second highest composition ratio (molar ratio) among all the organic compounds forming the organic layer. ).
  • the p layer and the n layer which are organic layers, are formed of the organic compound X, the organic compound Y, and the organic compound Z, and the organic compound
  • the composition ratio of X, organic compound Y, and organic compound Z is 50%, 30%, and 20%, respectively, the two main organic compounds are organic compound X and organic compound Y.
  • the accuracy of the composition ratio can be 0.1%.
  • any two of the four types of organic compounds may satisfy the formula (a).
  • the two or more organic compounds are preferably not metal complexes.
  • the metal complex include phthalocyanines.
  • the cell structure of the organic thin film solar cell of the present invention is not particularly limited as long as it has a structure having one or more organic layers between a pair of electrodes.
  • a specific cell structure includes a structure having the following configuration on a stable insulating substrate. (1) Lower electrode / p layer / n layer / upper electrode (2) Lower electrode / p layer / i layer (or a mixed layer of p material and n material) / n layer / upper electrode (3) Lower electrode / p material And a mixed layer / upper electrode of n material and a structure in which the p layer and the n layer having the configurations (1) and (2) are reversed. Moreover, you may provide a buffer layer between an electrode and an organic layer as needed.
  • a structure having the following configuration can be given. (4) Lower electrode / buffer layer / p layer / n layer / upper electrode (5) Lower electrode / p layer / n layer / buffer layer / upper electrode (6) Lower electrode / buffer layer / p layer / n layer / buffer Layer / Top electrode
  • the organic thin film solar cell of the present invention is preferably a mixed layer in which any one of the one or more organic layers is a mixture of two or more organic compounds.
  • the organic thin-film solar cell of the present invention preferably has two or more organic layers, and each of the two or more organic layers is composed of any one of two main organic compounds.
  • each of the two or more organic layers is composed of any one of two main organic compounds.
  • one or more organic layers include a p-layer, and at least one of the two main organic compounds is a main organic compound that forms the p-layer.
  • the energy gap Eg of the main organic compound forming the p layer is preferably Eg ⁇ 3 eV, and more preferably Eg ⁇ 2.5 eV. When the energy gap Eg of the organic compound forming the p layer satisfies Eg ⁇ 3 eV, light absorption in the operation process can be further increased.
  • the “main organic compound forming the p layer” refers to an organic compound having the highest composition ratio (molar ratio) among all the organic compounds forming the p layer.
  • the affinity level and energy gap of an organic compound can be measured by the following method.
  • the organic compound to be measured is vacuum-deposited to form an organic compound layer having a thickness of 50 nm, and the measurement result of FIG. 1 is obtained by using an atmospheric photoelectron spectrometer (for example, AC-1 or AC-3 manufactured by Riken Keiki Co., Ltd.).
  • the ionization potential (Ip) of the organic compound can be determined.
  • a spectroscopic device for example, UV-3100 manufactured by Shimadzu Corporation
  • the absorption characteristic of FIG. 2 is obtained, and the energy gap (Eg) of the organic compound is determined from the absorption edge wavelength ( ⁇ edge). can do.
  • it is not limited to the said measuring method.
  • each parameter can be determined separately by an analysis method according to the measuring method.
  • organic thin film solar cell of the present invention known members and materials used in organic thin film solar cells can be used. Hereinafter, each component will be described.
  • the organic compound layer includes a p layer, an i layer, a mixed layer of p material and n material, and an n layer. It is preferable to use an organic compound that functions as an electron donor for the p layer and an organic compound that functions as an electron acceptor for the n layer.
  • the two main organic compounds are preferably a combination of an organic compound that functions as an electron donor and an organic compound that functions as an electron acceptor.
  • Examples of the organic compound that functions as an electron donor include organic compounds having an amino group, a carbazolyl group, or a condensed aromatic polycyclic moiety, such as Japanese Patent Application No. 2006-355358, Japanese Patent Application No. 2007-283102, and Japanese Patent Application No. 2008-121275. And compounds described in 2008-34764 and the like.
  • organic compounds having an amino group, carbazolyl group or condensed aromatic polycyclic moiety By using the organic compound having the amino group, carbazolyl group or condensed aromatic polycyclic moiety in the p layer, it is preferable for hole transport in the carrier transport process of the operation process.
  • organic compound having the amino group, carbazolyl group or condensed aromatic polycyclic moiety are shown below.
  • fullerene derivatives such as C 60, carbon nanotube, perylene derivatives, polycyclic quinone, quinacridone, the polymeric CN- poly (phenylene - vinylene), MEH-CN-PPV
  • Examples include —CN group or CF 3 group-containing polymers, their —CF 3 substituted polymers, poly (fluorene) derivatives, and the like.
  • fullerene derivatives such as C 60 and C 70 , carbon nanotubes, and perylene derivatives are preferably used.
  • the organic compound that functions as an electron acceptor is preferably a material having a high electron mobility or a material having a low electron affinity. By using a material having a small electron affinity for the n layer, a sufficient open-circuit voltage can be realized.
  • an n-type characteristic inorganic semiconductor compound can be used for the n layer, and the hole layer functions as a hole acceptor.
  • Compounds can be used.
  • n-type characteristic inorganic semiconductor compounds include n-Si, GaAs, CdS, PbS, CdSe, InP, Nb 2 O 5 , WO 3 , Fe 2 O 3 and other doped semiconductors and compound semiconductors; titanium dioxide (TiO 2 ), Examples thereof include titanium oxides such as titanium monoxide (TiO) and dititanium trioxide (Ti 2 O 3 ); and conductive oxides such as zinc oxide (ZnO) and tin oxide (SnO 2 ).
  • the n-type characteristic inorganic semiconductor compound may be used alone or in combination of two or more, preferably titanium oxide, particularly preferably titanium dioxide.
  • mTPD N, N′-bis (3-tolyl) -N, N′-diphenylbenzidine
  • N, N′-dinaphthyl-N N Amine compounds represented by '-diphenylbenzidine (NPD), 4,4', 4 "-tris (phenyl-3-tolylamin
  • polymer compound examples include main chain conjugated polymers such as polyhexylthiophene (P3HT) and methoxyethylhexyloxyphenylene vinylene (MEHPPV), and side chain polymers represented by polyvinylcarbazole. .
  • P3HT polyhexylthiophene
  • MEHPPV methoxyethylhexyloxyphenylene vinylene
  • side chain polymers represented by polyvinylcarbazole.
  • the i layer can be formed by mixing the material of the p layer and the material of the n layer.
  • any of the pair of electrodes (upper electrode and lower electrode) of the organic thin film solar cell of the present invention may be any electrode that transmits light.
  • at least one of the pair of electrodes transmits light with a wavelength of 300 to 800 nm.
  • the rate is 10% or more.
  • the transmittance of the electrode can be measured by a transmittance measuring device (for example, a spectroscopic device (UV-3100 manufactured by Shimadzu Corporation)).
  • electrodes made of a known conductive material can be used.
  • an electrode made of a metal such as tin-doped indium oxide (ITO), gold (Au), osmium (Os), palladium (Pd), or the like can be used.
  • an electrode made of a metal such as silver (Ag), aluminum (Al), indium (In), calcium (Ca), platinum (Pt), lithium (Li), Mg: Ag,
  • An electrode made of a binary metal such as Mg: In, Al: Li, and an electrode connected to the P layer can be used.
  • At least one electrode of the solar cell be sufficiently transparent with respect to the sunlight spectrum.
  • the said transparent electrode can be formed by using a well-known electroconductive material and ensuring predetermined translucency by methods, such as vapor deposition and sputtering.
  • one of the electrodes includes a metal having a high work function and the other includes a metal having a low work function.
  • the material used for forming the buffer layer is preferably a compound having sufficiently high carrier mobility so that the short-circuit current does not decrease even when the film thickness is increased.
  • an aromatic cyclic acid anhydride represented by NTCDA shown below for a low molecular compound and poly (3,4-ethylenedioxy) thiophene: polystyrene sulfonate (PEDOT: PSS), polyaniline: camphorsulfonic acid (PANI: CSA), and other known conductive polymers.
  • the buffer layer can also have a role of preventing excitons from diffusing to the electrodes and being deactivated. Inserting a buffer layer as an exciton blocking layer in this way is effective for increasing efficiency.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side, or both can be inserted simultaneously.
  • a material for a hole barrier layer or a material for an electron barrier layer which are known for use in an organic EL device
  • a preferable material for the hole blocking layer is a compound having a sufficiently large ionization potential
  • a preferable material for the electron blocking layer is a compound having a sufficiently small electron affinity.
  • bathocuproin (BCP), bathophenanthroline (BPhen), and the like which are well-known materials for organic EL device applications, can be used as the cathode-side hole barrier layer material.
  • inorganic semiconductor compounds exemplified as the n-layer material may be used as the material for the buffer layer, and C-type inorganic semiconductor compounds such as CdTe, p-Si, SiC, GaAs, and WO 3 may also be used. Can be used.
  • the substrate is preferably a substrate having mechanical and thermal strength and transparency, and examples thereof include a glass substrate and a transparent resin film.
  • the transparent resin film include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, and polyether ether.
  • Ketone polysulfone, polyethersulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene , Polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene, etc. It is below.
  • each layer of the organic thin film solar cell of the present invention is not particularly limited. Specifically, dry film forming methods such as vacuum deposition, sputtering, plasma, and ion plating, and wet film forming methods such as spin coating, dip coating, casting, roll coating, flow coating, and inkjet can be applied.
  • a preferable forming method is a vacuum evaporation method.
  • a known resistance heating method is preferable, and for forming a mixed layer, for example, a film forming method by simultaneous vapor deposition from a plurality of evaporation sources is preferable. More preferably, the substrate temperature is controlled during film formation.
  • a material for forming each layer is dissolved or dispersed in an appropriate solvent to prepare a light-emitting organic solution to form a thin film, and any solvent can be used.
  • the solvent include halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, tetrachloroethane, trichloroethane, chlorobenzene, dichlorobenzene, chlorotoluene, and ethers such as dibutyl ether, tetrahydrofuran, dioxane, and anisole.
  • Solvents such as methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, benzene, toluene, xylene, ethylbenzene, hexane, octane, decane, tetralin, etc.
  • Examples thereof include hydrocarbon solvents, ester solvents such as ethyl acetate, butyl acetate, and amyl acetate. Of these, hydrocarbon solvents or ether solvents are preferable. These solvents may be used alone or in combination. In addition, the solvent which can be used is not limited to these.
  • the thickness of each layer is not particularly limited, but can be set to an appropriate thickness. In general, it is known that the exciton diffusion length of an organic thin film is short, and if the film thickness is too thick, the exciton is deactivated before reaching the heterointerface, which may reduce the photoelectric conversion efficiency. On the other hand, if the film thickness is too thin, pinholes and the like are generated, and sufficient diode characteristics cannot be obtained, so that conversion efficiency may be reduced.
  • the film thickness of each normal layer is suitably in the range of 1 nm to 10 ⁇ m, but more preferably in the range of 5 nm to 0.2 ⁇ m.
  • an appropriate resin or additive may be used in the organic layer of the organic thin-film solar cell for improving film formability and preventing pinholes in the film.
  • Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
  • the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
  • Example 1 A glass substrate with an ITO transparent electrode with a thickness of 25 mm x 75 mm x 0.7 mm (transmittance of 60% or more for light with a wavelength of 300 to 800 nm) is subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning. Conducted for 30 minutes.
  • the glass substrate with the transparent electrode line after the cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and the compound 1 is deposited by resistance heating vapor deposition on the surface on which the transparent electrode line as the lower electrode is formed so as to cover the transparent electrode. Then, a film was formed at 0.5 ⁇ / s to form a p-layer having a thickness of 30 nm.
  • fullerene (C 60 ) was deposited by resistance heating vapor deposition, and a film was formed at 0.5 ⁇ / s to form an n layer having a film thickness of 60 nm on the p layer.
  • BCP was deposited by resistance heating, a 10 nm thick buffer layer was formed on the n layer, and metal Al was deposited on the buffer layer as a 100 nm thick film as an upper electrode to produce an organic thin film solar cell.
  • the area was 0.05 cm 2 .
  • Table 1 shows the composition ratio (molar ratio) of the organic compounds used for forming the organic layers (p layer, n layer, and buffer layer).
  • the IV characteristics of the produced organic thin film solar cell were measured under AM1.5 conditions (incident intensity (Pin) 100 mW / cm 2 ).
  • Table 1 shows the open circuit voltage (Voc), the short circuit current density (Jsc), the fill factor (FF value), and the photoelectric conversion efficiency ( ⁇ ) of the organic thin film solar cell, which are obtained results.
  • the photoelectric conversion efficiency was derived from the following formula.
  • a thin film made of Compound 1 having a thickness of 50 nm was formed, and the ionization potential (Ip) of this film was measured using an atmospheric photoelectron spectrometer (for example, AC-3 manufactured by Riken Keiki Co., Ltd.).
  • the electron affinity Af was calculated in the same manner, and ⁇ Af was calculated. The results are shown in Table 1.
  • Examples 2 to 7 and Comparative Examples 1 to 3 An organic thin-film solar cell was produced in the same manner as in Example 1 except that the p-layer was formed using the organic compound shown in Table 1 instead of Compound 1 and the organic layer was formed at the composition ratio shown in Table 1. evaluated. The results are shown in Table 1.
  • the conversion efficiency greatly changes with ⁇ Af as the boundary between 0.5 eV and 2 eV, and the organic thin film solar cell has a high conversion efficiency in the region of 0.5 ⁇ Af ⁇ 2.0 eV. I understand.
  • Examples 8 to 14 and Comparative Example 4 An organic thin-film solar cell was fabricated in the same manner as in Example 1 except that the compound shown in Table 2 was used instead of Compound 1 and a p-layer was formed at the deposition temperature shown in Table 2 and the area was 0.5 cm 2. Ten of each were prepared. The IV characteristics of the 10 organic thin-film solar cells thus prepared were measured under AM1.5 conditions (incident intensity (Pin) 100 mW / cm 2 ). As a result, when the IV characteristic curve of the obtained organic thin film solar cell has a linear characteristic passing through the origin as shown in FIG. 3, for example, it was defined that the organic thin film solar cell was short-circuited. The results are shown in Table 2.
  • the organic compound constituting the p layer is not a metal complex as compared with the case where the organic compound constituting the p layer is copper phthalocyanine which is a metal complex (Comparative Example 4) (Example 8). It can be seen that the number of short-circuited organic thin-film solar cells is reduced in (14) to (14). That is, an organic solar cell with a high yield can be manufactured by removing a metal complex as an organic compound constituting the p layer.
  • Example 15 An organic thin film solar cell was prepared and evaluated in the same manner as in Example 1 except that the p-layer was formed using compound 11 instead of compound 1.
  • the composition ratio (molar ratio) of the compound 11, fullerene, and BCP was 6: 8: 3.
  • Voc 0.33V
  • Jsc 3.6 mA / cm 2
  • FF 0.44
  • 0.52%
  • ⁇ Af 1.2 eV.
  • the main organic compound forming the p layer is preferably an amino group, a carbazolyl group, or a condensed fragrance. It can be seen that this is an organic compound having a group polycyclic moiety.
  • Example 16 A glass substrate with an ITO transparent electrode having a thickness of 25 mm ⁇ 75 mm ⁇ 0.7 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • the glass substrate with the transparent electrode line after the cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and the compound 4 is resistance-heat-deposited on the surface on which the transparent electrode line as the lower electrode is formed so as to cover the transparent electrode. Then, a film was formed at 1 ⁇ / s to form a 5 nm thick p-layer.
  • Fullerene was deposited by resistance heating, and a film was formed at 1 ⁇ / s to form an n layer having a thickness of 45 nm on the i layer.
  • BCP was deposited by resistance heating, a 10 nm thick buffer layer was formed on the n layer, and metal Al was deposited as an upper electrode on the buffer layer at a thickness of 80 nm to produce an organic thin film solar cell. The area was 0.5 cm 2 .
  • the composition ratio (molar ratio) of compound 4, fullerene and BCP used for forming the organic layer was 2: 3: 1.
  • At least one organic layer is a mixed layer having two or more organic compounds. I understand that.
  • the organic thin film solar cell of the present invention can be used as a power source for watches, mobile phones, mobile personal computers and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 一対の電極と、前記一対の電極間に挟持された2種以上の有機化合物からなる1以上の有機層を有し、前記2種以上の有機化合物のうち、主たる2種類の有機化合物のアフィニティーレベルの差(ΔAf)が下記式(a)を満たす有機薄膜太陽電池。  0.5eV<ΔAf<2.0eV ・・・(a)

Description

有機薄膜太陽電池
 本発明は、有機薄膜太陽電池に関する。
 有機薄膜太陽電池は、光信号を電気信号に変換するフォトダイオードや撮像素子、光エネルギーを電気エネルギーに変換する太陽電池に代表されるように、光入力に対して電気出力を示す装置であり、電気入力に対して光出力を示すエレクトロルミネッセンス(EL)素子とは逆の応答を示す装置である。中でも太陽電池は、化石燃料の枯渇問題や地球温暖化問題を背景に、クリーンエネルギー源として近年大変注目されてきており、研究開発が盛んに行なわれるようになってきた。
 従来、実用化されてきたのは、単結晶Si、多結晶Si、アモルファスSi等に代表されるシリコン系太陽電池であるが、高価であることや原料Siの不足問題等が表面化するにつれて、次世代太陽電池への要求が高まりつつある。このような背景の中で、有機太陽電池は、安価で毒性が低く、原材料不足の懸念もないことから、シリコン系太陽電池に次ぐ次世代の太陽電池として大変注目を集めている。
 有機太陽電池は、基本的には電子を輸送するn層と正孔を輸送するp層からなっており、各層を構成する材料によって大きく2種類に分類される。
 n層としてチタニア等の無機半導体表面にルテニウム色素等の増感色素を単分子吸着させ、p層として電解質溶液を用いたものは、色素増感太陽電池(所謂グレッツエルセル)と呼ばれ、変換効率の高さから、1991年以降精力的に研究されてきたが、溶液を用いるため、長時間の使用に際して液漏れする等の欠点を有していた。そこでこのような欠点を克服するため、電解質溶液を固体化して全固体型の色素増感太陽電池を模索する研究も最近なされているが、多孔質チタニアの細孔に有機物をしみ込ませる技術は難易度が高く、再現性よく高変換効率が発現できるセルは完成していないのが現状である。
 一方、n層、p層ともに有機薄膜からなる有機薄膜太陽電池は、全固体型のため液漏れ等の欠点がなく、作製が容易であり、稀少金属であるルテニウム等を用いないこと等から最近注目を集め、精力的に研究がなされている。
 有機薄膜太陽電池は、最初メロシアニン色素等を用いた単層膜で研究が進められてきたが、p層/n層の多層膜にすることで変換効率が向上することが見出され、それ以降多層膜が主流になってきている。このとき用いられた材料はp層として銅フタロシアニン(CuPc)、n層としてペリレンイミド類(PTCBI)であった。
 その後、p層とn層の間にi層(p材料とn材料の混合層)を挿入して積層を増やすことにより、変換効率が向上することが見出された。しかしこのとき用いられた材料は、依然としてフタロシアニン類とペリレンイミド類であった。またその後、p/i/n層を何層も積層するというスタックセル構成によりさらに変換効率が向上することが見出されたが、このときの材料系はフタロシアニン類とC60であった。
 このように、有機薄膜太陽電池では、セル構成及びモルフォロジーの最適化により変換効率の向上がもたらされてきたが、そこで用いられる材料系は初期の頃からあまり進展がなく、依然としてフタロシアニン類、ペリレンイミド類、C60類が用いられてきた。従って、それらに代わる新たな材料系の開発が熱望されていた。
 一般に有機薄膜太陽電池の動作過程は、(1)光吸収及び励起子生成、(2)励起子拡散、(3)電荷分離、(4)キャリア移動、(5)起電力発生の素過程からなっている。有機物は概して太陽光スペクトルに合致する吸収特性を示すものが少ないうえ、キャリア移動度が低いものが多いため、高い変換効率は達成できないことが多かった。また、有機薄膜太陽電池は完全固体型素子であるため、有機薄膜の膜性の影響を受ける。更には、有機薄膜を形成する材料分子に影響される問題があった。
 特許文献1は、フタロシアニン類及びペリレンイミド類の有機共蒸着膜を開示しているが、フタロシアニン類及びペリレンイミド類はその昇華特性から真空蒸着成膜時の成膜速度制御が極めて困難であり、ショートが発生する確率が高い問題があった。また、高度な成膜制御性が必要となるほか、フタロシアニン類は蒸着温度が高く、素子作製に必要なエネルギーが大きい問題もあった。
 特許文献2は、活性層に含有される化合物半導体粒子のイオン化ポテンシャルより大きなイオン化ポテンシャルを有する正孔阻止層を具備する有機太陽電池を開示している。しかし、イオン化ポテンシャルは正孔のエネルギーレベルを反映した値であり、電子のエネルギーレベルや移動についての規定にはならない。
特開2002-76027号公報 特開2004-165516号公報
 本発明は、高効率な光電変換特性を示す有機薄膜太陽電池を提供することを目的とする。
 本発明によれば、以下の有機薄膜太陽電池等が提供される。
1.一対の電極と、
 前記一対の電極間に挟持された2種以上の有機化合物からなる1以上の有機層を有し、
 前記2種以上の有機化合物のうち、主たる2種類の有機化合物のアフィニティーレベルの差(ΔAf)が下記式(a)を満たす有機薄膜太陽電池。
        0.5eV<ΔAf<2.0eV  ・・・(a)
2.前記1以上の有機層のうち、少なくとも1つの有機層が2種以上の有機化合物が混合してなる混合層である1に記載の有機薄膜太陽電池。
3.前記1以上の有機層が2以上の有機層であり、
 前記2以上の有機層のそれぞれが、前記2種以上の有機化合物のいずれか1つからなる1に記載の有機薄膜太陽電池。
4.前記1以上の有機層がp層を含み、
 前記主たる2種類の有機化合物の少なくとも1つが、p層を形成する主たる有機化合物である1~3のいずれかに記載の有機薄膜太陽電池。
5.前記p層を形成する主たる有機化合物のエネルギーギャップEgがEg≦3eVである4に記載の有機薄膜太陽電池。
6.前記p層を形成する主たる有機化合物が、アミノ基、カルバゾリル基又は縮合芳香族多環部位を有する有機化合物である4又は5に記載の有機薄膜太陽電池。
7.前記2種以上の有機化合物が金属錯体ではない1~6のいずれかに記載の有機薄膜太陽電池。
 本発明によれば、高効率な光電変換特性を示す有機薄膜太陽電池を提供することができる。
大気下光電子分光装置を用いて得られる有機化合物層の大気下光電子分光測定結果の一例を示す図である。 分光装置を用いて得られる有機化合物の吸収特性の一例を示す図である。 ショートした有機薄膜太陽電池のI-V特性曲線を示す図である。
 本発明の有機薄膜太陽電池は、一対の電極と、一対の電極間に挟持された2種以上の有機化合物からなる1以上の有機層(例えばp層、n層、i層及びp材料とn材料の混合層)を有し、上記2種以上の有機化合物のうち、主たる2種類の有機化合物のアフィニティーレベルの差(ΔAf)が下記式(a)を満たす。
        0.5eV<ΔAf<2.0eV  ・・・(a)
 有機薄膜太陽電池では外部からの電圧印加が行われないので、発生した電荷は必ずしも各電極へ移動しない場合がある。このため、電荷の逆方向への移動を防止するため、有機層を形成する材料のエネルギーレベルが重要となる。材料間でのエネルギーレベルが大きくなれば、その障壁を越えて電荷移動することが困難になり、正常な方向への電荷移動が促進される。
 上記式(a)は、正常に電荷が移動するための条件である。
 本発明において、「主たる2種類の有機化合物」とは、有機層を形成する全ての有機化合物のうち、1番高い組成比(モル比)を有する有機化合物及び2番目に高い組成比(モル比)を有する有機化合物をいう。
 例えば、下部電極/p層/n層/上部電極の構成を有する有機薄膜太陽電池において、有機層であるp層及びn層が有機化合物X、有機化合物Y及び有機化合物Zで形成され、有機化合物X、有機化合物Y及び有機化合物Zの組成比が、それぞれ50%、30%及び20%である場合、主たる2種類の有機化合物は有機化合物X及び有機化合物Yとなる。
 上記組成比の精度は0.1%とすることができる。
 尚、1以上の有機層が3種類の有機化合物で形成され、3種類の有機化合物の組成比がそれぞれ34%、33%及び33%である場合、組成比が33%である2つの有機化合物のいずれか一方と組成比が34%である有機化合物とが式(a)を満たせばよい。
 同様に、1以上の有機層が4種類の有機化合物で形成され、4種類の有機化合物の組成比がいずれも25%である場合(均等比率の場合)、4種類の有機化合物のいずれか2つの有機化合物の組合せが式(a)を満たせばよい。
 上記2種以上の有機化合物は、好ましくは金属錯体ではない。この金属錯体としては、例えばフタロシアニン類が挙げられる。
 本発明の有機薄膜太陽電池のセル構造は、一対の電極間に1以上の有機層を有する構造であれば特に限定されない。具体的なセル構造としては、安定な絶縁性基板上に下記の構成を有する構造が挙げられる。
(1)下部電極/p層/n層/上部電極
(2)下部電極/p層/i層(又はp材料とn材料の混合層)/n層/上部電極
(3)下部電極/p材料とn材料の混合層/上部電極
及び上記(1)及び(2)の構成のp層とn層を逆にした構造が挙げられる。
 また、必要に応じて、電極と有機層の間にバッファー層を設けてもよい。例えば、上記構成(1)にバッファー層を設けた場合、下記構成を有する構造が挙げられる。
(4)下部電極/バッファー層/p層/n層/上部電極
(5)下部電極/p層/n層/バッファー層/上部電極
(6)下部電極/バッファー層/p層/n層/バッファー層/上部電極
 本発明の有機薄膜太陽電池は、好ましくは1以上の有機層のいずれか1つが、2種以上の有機化合物が混合してなる混合層である。
 本発明の有機薄膜太陽電池は、好ましくは有機層が2以上の有機層であり、2以上の有機層のそれぞれが、主たる2種類の有機化合物のいずれか1つからなる。2以上の有機層を形成することで、逆方向への電荷パスの形成を抑制でき、より正常な電極方向への電荷移動を生じさせることができる。
 本発明の有機薄膜太陽電池は、好ましくは1以上の有機層がp層を含み、上記主たる2種類の有機化合物の少なくとも1つは、p層を形成する主たる有機化合物である。p層を形成する主たる有機化合物のエネルギーギャップEgは、好ましくはEg≦3eVであり、より好ましくはEg≦2.5eVである。p層を形成する有機化合物のエネルギーギャップEgがEg≦3eVを満たすことにより、動作過程における光吸収をより増加させることができる。
 例えば太陽光は、紫外から可視域、さらには赤外以上の長波長域にわたる広波長域スペクトルであって、特に500~700nm域の強度が強いので、有機薄膜太陽電池が上記要件を満たすことにより、太陽光をより効率的に吸収できる。
 尚、本発明において、「p層を形成する主たる有機化合物」とは、p層を形成する全ての有機化合物のうち、1番高い組成比(モル比)を有する有機化合物をいう。
 本発明において、有機化合物のアフィニティーレベル及びエネルギーギャップは以下の方法により測定することができる。
 測定対象の有機化合物を真空蒸着して膜厚50nmの有機化合物層を形成し、大気下光電子分光装置(例えば理研計器製AC-1又はAC-3)を用いることで、例えば図1の測定結果が得られ、有機化合物のイオン化ポテンシャル(Ip)を決定できる。
 また、上記有機化合物層について分光装置(例えば島津製作所製UV-3100)を用いることで、例えば図2の吸収特性が得られ、吸収端波長(λedge)から有機化合物のエネルギーギャップ(Eg)を決定することができる。このようにして得られたIp及びEgから、有機化合物のアフィニティーレベル(Af=Ip-Eg)を算出することができる。
 但し、本発明では、上記測定法に限定されない。用いる有機化合物が上記測定装置の範囲外の場合は、別途、上記測定法に準じた分析方法により、各パラメータを決定できる。
 本発明の有機薄膜太陽電池は、有機薄膜太陽電池で使用される公知の部材や材料を使用することができる。以下、各構成部材について説明する。
[有機化合物層]
 有機化合物層は、p層、i層、p材料とn材料の混合層及びn層を含む。p層には電子供与体として機能する有機化合物を用い、n層には電子受容体として機能する有機化合物を用いることが好ましい。
 本発明では、主たる2種類の有機化合物が、電子供与体として機能する有機化合物と電子受容体として機能する有機化合物の組み合わせであると好ましい。
 電子供与体として機能する有機化合物としては、アミノ基、カルバゾリル基又は縮合芳香族多環部位を有する有機化合物、例えば、特願2006-355358、特願2007-283102、特願2008-112795、特開2008-34764等に記載されている化合物が挙げられる。
 p層に上記アミノ基、カルバゾリル基又は縮合芳香族多環部位を有する有機化合物を用いることにより、動作過程のキャリア輸送過程における正孔輸送に好ましい。
 上記アミノ基、カルバゾリル基又は縮合芳香族多環部位を有する有機化合物の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000001
 電子受容体として機能する有機化合物としては、C60等のフラーレン誘導体、カーボンナノチューブ、ペリレン誘導体、多環キノン、キナクリドン等、高分子系ではCN-ポリ(フェニレン-ビニレン)、MEH-CN-PPV、-CN基又はCF基含有ポリマー、それらの-CF置換ポリマー、ポリ(フルオレン)誘導体等を挙げることができる。
 上記受容体のうち、好ましくは、C60、C70等のフラーレン誘導体、カーボンナノチューブ、ペリレン誘導体を用いる。
 電子受容体として機能する有機化合物は、好ましくは電子の移動度が高い材料又は電子親和力が小さい材料である。電子親和力の小さい材料をn層に用いることで充分な開放端電圧を実現することができる。
 上記の電子供与体として機能する有機化合物及び電子受容体として機能する有機化合物のほかに、n層にはn型特性無機半導体化合物を用いることができ、p層には正孔受容体として機能する化合物を用いることができる。
 n型特性無機半導体化合物としては、n-Si、GaAs、CdS、PbS、CdSe、InP、Nb,WO,Fe等のドーピング半導体及び化合物半導体;二酸化チタン(TiO)、一酸化チタン(TiO)、三酸化二チタン(Ti)等の酸化チタン;及び酸化亜鉛(ZnO)、酸化スズ(SnO)等の導電性酸化物が挙げられる。
 上記n型特性無機半導体化合物は、1種又は2種以上を組み合わせて用いてもよく、好ましくは酸化チタンを用い、特に好ましくは二酸化チタンを用いる。
 正孔受容体として機能する化合物としては、有機化合物であれば、N,N’-ビス(3-トリル)-N,N’-ジフェニルベンジジン(mTPD)、N,N’-ジナフチル-N,N’-ジフェニルベンジジン(NPD)、4,4’,4’’-トリス(フェニル-3-トリルアミノ)トリフェニルアミン(MTDATA)等に代表されるアミン化合物;及びオクタエチルポルフィリン(OEP)、白金オクタエチルポルフィリン(PtOEP)、亜鉛テトラフェニルポルフィリン(ZnTPP)等に代表されるポルフィリン類が挙げられる。高分子化合物であれば、ポリヘキシルチオフェン(P3HT)、メトキシエチルヘキシロキシフェニレンビニレン(MEHPPV)等の主鎖型共役高分子類、ポリビニルカルバゾール等に代表される側鎖型高分子類等が挙げられる。
 i層は、上記p層の材料及びn層の材料をと混合して形成することができる。
[電極]
 本発明の有機薄膜太陽電池の一対の電極(上部電極及び下部電極)は、いずれか一方が光を透過する電極であればよく、例えば一対の電極の少なくとも一方が波長300~800nmの光に対する透過率が10%以上である。尚、電極の透過率は透過率測定装置(例えば分光装置(島津製作所製UV-3100))により測定することができる。
 上部電極及び下部電極は、公知の導電性材料からなる電極を用いることができる。
 p層と接続する電極としては、例えば錫ドープ酸化インジウム(ITO)、金(Au)、オスミウム(Os)、パラジウム(Pd)等の金属からなる電極が使用できる。
 n層と接続する電極としては、例えば銀(Ag)、アルミニウム(Al)、インジウム(In)、カルシウム(Ca)、白金(Pt)、リチウム(Li)等の金属からなる電極、Mg:Ag、Mg:In、Al:Li等の二成分金属系からなる電極、及び上述のP層と接続する電極が使用できる。
 高効率の光電変換特性を得るためには、太陽電池の少なくとも一方の電極は、太陽光スペクトルに対して充分透明にすることが望ましい。上記透明電極は、公知の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性を確保するようにすることで形成できる。
 一対の電極は、電極の一方が仕事関数の大きな金属を含み、他方が仕事関数の小さな金属を含むと好ましい。
[バッファー層]
 有機薄膜太陽電池は、一般に総膜厚が薄い場合が多いため、上部電極及び下部電極が短絡して、セル作製の歩留まりが低下するおそれがある。当該短絡は、バッファー層を積層することで防止することができる。
 バッファー層の形成に用いる材料としては、膜厚を厚くしても短絡電流が低下しないようにキャリア移動度が充分に高い化合物が好ましい。例えば、低分子化合物であれば下記に示すNTCDAに代表される芳香族環状酸無水物等が挙げられ、高分子化合物であればポリ(3,4-エチレンジオキシ)チオフェン:ポリスチレンスルホネート(PEDOT:PSS)、ポリアニリン:カンファースルホン酸(PANI:CSA)等に代表される公知の導電性高分子等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 バッファー層は、励起子が電極まで拡散して失活してしまうのを防止する役割を持たせることも可能である。このように励起子阻止層としてバッファー層を挿入することは、高効率化のために有効である。励起子阻止層は陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
 励起子阻止層の好ましい材料としては、例えば有機EL素子用途で公知な正孔障壁層用材料又は電子障壁層用材料等が挙げられる。正孔障壁層として好ましい材料は、イオン化ポテンシャルが充分に大きい化合物であり、電子障壁層として好ましい材料は、電子親和力が充分に小さい化合物である。
 具体的には、有機EL素子用途で公知な材料であるバソクプロイン(BCP)、バソフェナントロリン(BPhen)等が陰極側の正孔障壁層材料として挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記化合物のほか、バッファー層の材料として、上記n層材料として例示した無機半導体化合物を用いてもよく、また、p型無機半導体化合物であるCdTe、p-Si、SiC、GaAs、WO等も用いることができる。
[基板]
 基板は、機械的、熱的強度を有し、透明性を有する基板が好ましく、例えばガラス基板及び透明性樹脂フィルムが挙げられる。
 上記透明性樹脂フィルムとしては、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。
[形成方法]
 本発明の有機薄膜太陽電池の各層の形成方法は、特に限定ない。具体的には、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディップコート、キャスティング、ロールコート、フローコーティング、インクジェット等の湿式成膜法を適用することができる。好ましい形成方法は、真空蒸着法である。
 乾式成膜法の場合、公知の抵抗加熱法が好ましく、混合層の形成には、例えば、複数の蒸発源からの同時蒸着による成膜方法が好ましい。さらに好ましくは、成膜時に基板温度を制御する。
 湿式成膜法の場合、各層を形成する材料を、適切な溶媒に溶解又は分散させて発光性有機溶液を調製し、薄膜を形成するが、任意の溶媒を使用できる。
 上記溶媒としては、例えば、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、テトラクロロエタン、トリクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエン等のハロゲン系炭化水素系溶媒や、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶媒、メタノールやエタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール等のアルコール系溶媒、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘキサン、オクタン、デカン、テトラリン等の炭化水素系溶媒、酢酸エチル、酢酸ブチル、酢酸アミル等のエステル系溶媒等が挙げられる。なかでも、炭化水素系溶媒又はエーテル系溶媒が好ましい。また、これらの溶媒は単独で使用しても複数混合して用いてもよい。尚、使用可能な溶媒は、これらに限定されるものではない。
 各層の膜厚は特に限定されないが、適切な膜厚に設定できる。
 一般に有機薄膜の励起子拡散長は短いことが知られており、膜厚が厚すぎると励起子がヘテロ界面に到達する前に失活してしまうため、光電変換効率が低くなるおそれがある。一方、膜厚が薄すぎるとピンホール等が発生して充分なダイオード特性が得られないため、変換効率が低下するおそれがある。通常の各層の膜厚は、それぞれ1nmから10μmの範囲が適しているが、5nmから0.2μmの範囲がさらに好ましい。
 本発明においては、有機薄膜太陽電池の有機層に成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用してもよい。
 使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリ-N-ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げられる。
 また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等が挙げられる。
 以下、本発明の実施例を詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。
実施例1
 25mm×75mm×0.7mm厚のITO透明電極付きガラス基板(波長300~800nmの光に対して透過率60%以上)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間実施した。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、下部電極である透明電極ラインが形成されている側の面上に化合物1を抵抗加熱蒸着し、透明電極を覆うようにして0.5Å/sで成膜して、膜厚30nmのp層を形成した。次に、フラーレン(C60)を抵抗加熱蒸着し、0.5Å/sで成膜してp層上に膜厚60nmのn層を形成した。BCPを抵抗加熱蒸着し、n層上に膜厚10nmのバッファー層を形成し、さらに上部電極として金属Alをバッファー層上に膜厚100nmで蒸着し、有機薄膜太陽電池を作製した。面積は0.05cmであった。
 尚、有機層(p層、n層及びバッファー層)の形成に用いた有機化合物の組成比(モル比)を表1に示す。
Figure JPOXMLDOC01-appb-C000004
 作製した有機薄膜太陽電池をAM1.5条件下(入射強度(Pin)100mW/cm)でI-V特性を測定した。得られた結果である開放端電圧(Voc)、短絡電流密度(Jsc)、曲線因子(FF値)及び有機薄膜太陽電池の光電変換効率(η)を表1に示す。
 尚、光電変換効率は下記式によって導出した。
Figure JPOXMLDOC01-appb-M000001
 化合物1からなる膜厚50nmの薄膜を成膜し、この膜について大気下光電子分光装置(例えば理研計器製AC-3)を用いてイオン化ポテンシャル(Ip)を測定した。また、上記化合物1からなる膜厚50nmの薄膜について、分光装置(島津製作所製UV-3100)を用いて吸収特性の吸収端波長からエネルギーギャップ(Eg)を決定した。得られたIp及びEgから、化合物1の電子親和力Af(Af=Ip-Eg)を算出した。
 化合物Bについても同様にして電子親和力Afを算出し、ΔAfを算出した。結果を表1に示す。
実施例2~7及び比較例1~3
 化合物1の代わりに表1に示す有機化合物を用いてp層を形成し、表1に示す組成比で有機層を形成した他は、実施例1と同様にして有機薄膜太陽電池を作製し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、ΔAfが0.5eV及び2eVを境界にして変換効率が大きく変化し、0.5<ΔAf<2.0eVの領域において、有機薄膜太陽電池は高い変換効率を有することが分かる。
実施例8~14及び比較例4
 化合物1の代わりに表2に示す化合物を用いて、表2に示す蒸着温度でp層を形成し、面積を0.5cmとした他は実施例1と同様にして、有機薄膜太陽電池をそれぞれ10個作製した。
 作製した10個の有機薄膜太陽電池をAM1.5条件下(入射強度(Pin)100mW/cm)でI-V特性を測定した。その結果、得られた有機薄膜太陽電池のI-V特性曲線が、例えば図3に示すように原点を通る線形特性を有する場合を、有機薄膜太陽電池がショートしたと定義した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、p層を構成する有機化合物が金属錯体である銅フタロシアニンである場合(比較例4)と比較して、p層を構成する有機化合物が金属錯体でない場合(実施例8~14)には、有機薄膜太陽電池がショートする数がより少なくなることが分かる。即ち、p層を構成する有機化合物として金属錯体を除くことで、歩留まりの高い有機太陽電池を作製することができる。
実施例15
 化合物1の代わりに化合物11を用いてp層を形成した他は実施例1と同様にして有機薄膜太陽電池を作製し、評価した。
 尚、化合物11、フラーレン及びBCPの組成比(モル比)は、6:8:3であった。
 その結果、Voc=0.33V、Jsc=3.6mA/cm、FF=0.44、η=0.52%及びΔAf=1.2eVであった。
Figure JPOXMLDOC01-appb-C000006
 以上の結果から分かるように、実施例15の光電変換効率と実施例1~7の光電変換効率とを比較すると、p層を形成する主たる有機化合物は、好ましくはアミノ基、カルバゾリル基又は縮合芳香族多環部位を有する有機化合物であるということが分かる。
実施例16
 25mm×75mm×0.7mm厚のITO透明電極付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間実施した。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、下部電極である透明電極ラインが形成されている側の面上に化合物4を抵抗加熱蒸着し、透明電極を覆うようにして1Å/sで成膜して、膜厚5nmのp層を形成した。次に、化合物4を0.2Å/sで及びフラーレンを0.2Å/sで共蒸着し、p層上に膜厚15nmのi層を形成した(混合比:化合物4:フラーレン=2:3(モル比))。フラーレンを抵抗加熱蒸着し、1Å/sで成膜してi層上に膜厚45nmのn層を形成した。BCPを抵抗加熱蒸着し、n層上に膜厚10nmのバッファー層を形成し、さらに上部電極として金属Alをバッファー層上に膜厚80nmで蒸着し、有機薄膜太陽電池を作製した。面積は0.5cmであった。
 尚、有機層の形成に用いた化合物4、フラーレン及びBCPの組成比(モル比)は、2:3:1であった。
 作製した有機薄膜太陽電池を実施例1と同様にして評価した。その結果、Voc=0.91V、Jsc=4.2mA/cm、FF=0.451、η=1.72%及びΔAf=1.5eVであった。
 以上の結果から分かるように、実施例16の光電変換効率と実施例4の光電変換効率とを比較すると、好ましくは、少なくとも1つの有機層が2種以上の有機化合物を有する混合層であるということが分かる。
 本発明の有機薄膜太陽電池は、時計、携帯電話、モバイルパソコン等の電源として使用することができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (7)

  1.  一対の電極と、
     前記一対の電極間に挟持された2種以上の有機化合物からなる1以上の有機層を有し、
     前記2種以上の有機化合物のうち、主たる2種類の有機化合物のアフィニティーレベルの差(ΔAf)が下記式(a)を満たす有機薄膜太陽電池。
            0.5eV<ΔAf<2.0eV  ・・・(a)
  2.  前記1以上の有機層のうち、少なくとも1つの有機層が2種以上の有機化合物が混合してなる混合層である請求項1に記載の有機薄膜太陽電池。
  3.  前記1以上の有機層が2以上の有機層であり、
     前記2以上の有機層のそれぞれが、前記2種以上の有機化合物のいずれか1つからなる請求項1に記載の有機薄膜太陽電池。
  4.  前記1以上の有機層がp層を含み、
     前記主たる2種類の有機化合物の少なくとも1つが、p層を形成する主たる有機化合物である請求項1~3のいずれかに記載の有機薄膜太陽電池。
  5.  前記p層を形成する主たる有機化合物のエネルギーギャップEgがEg≦3eVである請求項4に記載の有機薄膜太陽電池。
  6.  前記p層を形成する主たる有機化合物が、アミノ基、カルバゾリル基又は縮合芳香族多環部位を有する有機化合物である請求項4又は5に記載の有機薄膜太陽電池。
  7.  前記2種以上の有機化合物が金属錯体ではない請求項1~6のいずれかに記載の有機薄膜太陽電池。
PCT/JP2009/005693 2008-10-30 2009-10-28 有機薄膜太陽電池 WO2010050197A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/126,584 US20110259425A1 (en) 2008-10-30 2009-10-28 Organic thin film solar cell
EP09823310A EP2348556A4 (en) 2008-10-30 2009-10-28 ORGANIC THIN-CEREAL SOLAR CELL
CN2009801431384A CN102197504A (zh) 2008-10-30 2009-10-28 有机薄膜太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008279880A JP5580976B2 (ja) 2008-10-30 2008-10-30 有機薄膜太陽電池
JP2008-279880 2008-10-30

Publications (1)

Publication Number Publication Date
WO2010050197A1 true WO2010050197A1 (ja) 2010-05-06

Family

ID=42128568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005693 WO2010050197A1 (ja) 2008-10-30 2009-10-28 有機薄膜太陽電池

Country Status (6)

Country Link
US (1) US20110259425A1 (ja)
EP (1) EP2348556A4 (ja)
JP (1) JP5580976B2 (ja)
KR (1) KR20110079695A (ja)
CN (1) CN102197504A (ja)
WO (1) WO2010050197A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138902A1 (ja) * 2010-05-07 2011-11-10 住友化学株式会社 有機光電変換素子
WO2011138889A1 (ja) * 2010-05-07 2011-11-10 住友化学株式会社 有機光電変換素子
WO2011138935A1 (ja) * 2010-05-07 2011-11-10 住友化学株式会社 有機光電変換素子
WO2013102985A1 (ja) * 2012-01-06 2013-07-11 出光興産株式会社 有機光電変換素子及び有機薄膜太陽電池モジュール
CN103430343A (zh) * 2011-03-31 2013-12-04 出光兴产株式会社 有机薄膜太阳能电池及有机薄膜太阳能电池模块
WO2014203840A1 (ja) * 2013-06-21 2014-12-24 国立大学法人九州大学 赤色発光材料、有機発光素子および化合物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383813A4 (en) * 2009-01-23 2012-08-01 Toray Industries MATERIAL FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING ELEMENT
EP2984690B1 (en) * 2013-04-12 2020-02-19 The Regents of the University of Michigan Organic photosensitive devices with exciton-blocking charge carrier filters
US10276817B2 (en) 2013-04-12 2019-04-30 University Of Southern California Stable organic photosensitive devices with exciton-blocking charge carrier filters utilizing high glass transition temperature materials
WO2016027675A1 (ja) * 2014-08-20 2016-02-25 東レ株式会社 光電変換素子ならびにそれを用いたイメージセンサ、太陽電池、単色検知センサおよびフレキシブルセンサ
EP3306689A4 (en) 2015-05-29 2019-01-16 Sony Semiconductor Solutions Corporation PHOTOELECTRIC CONVERSION ELEMENT AND SOLID STATE IMAGE CAPTURE DEVICE
CN105152122B (zh) * 2015-06-25 2017-06-23 北京科技大学 一种无机/有机半导体纳米复合结构及其制备方法和应用
CN108376715B (zh) * 2018-03-06 2019-11-12 绍兴文理学院 一种有机-无机电荷转移复合物红外光吸收材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023497A1 (fr) * 1999-09-30 2001-04-05 Idemitsu Kosan Co., Ltd. Element electroluminescent organique
JP2002076027A (ja) 2000-09-01 2002-03-15 Japan Science & Technology Corp 有機共蒸着膜の製造方法
JP2004165516A (ja) 2002-11-14 2004-06-10 Matsushita Electric Works Ltd 有機太陽電池
JP2007283102A (ja) 2006-04-17 2007-11-01 General Electric Co <Ge> 心臓医療及び患者監視データ解析のための多層式システム
JP2008034764A (ja) * 2006-08-01 2008-02-14 National Institute Of Advanced Industrial & Technology 有機薄膜太陽電池
JP2008112795A (ja) 2006-10-30 2008-05-15 Victor Co Of Japan Ltd 固体撮像素子
JP2008166561A (ja) * 2006-12-28 2008-07-17 Idemitsu Kosan Co Ltd 光電変換素子用材料及びそれを用いた光電変換素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222741A (ja) * 1995-12-11 1997-08-26 Toyo Ink Mfg Co Ltd 正孔輸送材料およびその用途
US5968675A (en) * 1995-12-11 1999-10-19 Toyo Ink Manufacturing Co., Ltd. Hole-transporting material and use thereof
AU2004221377B2 (en) * 2003-03-19 2009-07-16 Heliatek Gmbh Photoactive component comprising organic layers
JP2007522656A (ja) * 2004-02-09 2007-08-09 ゼネラル・エレクトリック・カンパニイ 大面積光起電装置及びそれを製造する方法
EP2292583A3 (en) * 2004-03-31 2011-08-31 E. I. du Pont de Nemours and Company Triarylamine compounds for use as charge transport materials
CN100448853C (zh) * 2004-05-21 2009-01-07 复旦大学 具有高效、平衡电子空穴传输性能的载流子传输材料
JP2006013097A (ja) * 2004-06-25 2006-01-12 Bridgestone Corp 有機無機複合太陽電池
US7790979B2 (en) * 2004-09-24 2010-09-07 Plextronics, Inc. Heteroatomic regioregular poly(3-substitutedthiophenes) for photovoltaic cells
US7989694B2 (en) * 2004-12-06 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element, solar battery, and photo sensor
DE102005010978A1 (de) * 2005-03-04 2006-09-07 Technische Universität Dresden Photoaktives Bauelement mit organischen Schichten
US7781673B2 (en) * 2005-07-14 2010-08-24 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
JP4783958B2 (ja) * 2006-03-20 2011-09-28 パナソニック電工株式会社 有機薄膜太陽電池
KR100971113B1 (ko) * 2007-11-23 2010-07-20 한국과학기술연구원 소자 면적분할을 통해 광전변환효율이 향상된 유기광전변환소자를 제조하는 방법 및 이 방법에 의해 제조된유기 광전변환소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023497A1 (fr) * 1999-09-30 2001-04-05 Idemitsu Kosan Co., Ltd. Element electroluminescent organique
JP2002076027A (ja) 2000-09-01 2002-03-15 Japan Science & Technology Corp 有機共蒸着膜の製造方法
JP2004165516A (ja) 2002-11-14 2004-06-10 Matsushita Electric Works Ltd 有機太陽電池
JP2007283102A (ja) 2006-04-17 2007-11-01 General Electric Co <Ge> 心臓医療及び患者監視データ解析のための多層式システム
JP2008034764A (ja) * 2006-08-01 2008-02-14 National Institute Of Advanced Industrial & Technology 有機薄膜太陽電池
JP2008112795A (ja) 2006-10-30 2008-05-15 Victor Co Of Japan Ltd 固体撮像素子
JP2008166561A (ja) * 2006-12-28 2008-07-17 Idemitsu Kosan Co Ltd 光電変換素子用材料及びそれを用いた光電変換素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2348556A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138902A1 (ja) * 2010-05-07 2011-11-10 住友化学株式会社 有機光電変換素子
WO2011138889A1 (ja) * 2010-05-07 2011-11-10 住友化学株式会社 有機光電変換素子
WO2011138935A1 (ja) * 2010-05-07 2011-11-10 住友化学株式会社 有機光電変換素子
JP2011254070A (ja) * 2010-05-07 2011-12-15 Sumitomo Chemical Co Ltd 有機光電変換素子
CN103430343A (zh) * 2011-03-31 2013-12-04 出光兴产株式会社 有机薄膜太阳能电池及有机薄膜太阳能电池模块
US20140014183A1 (en) * 2011-03-31 2014-01-16 Idemitsu Kosan Co., Ltd. Organic thin-film solar cell and organic thin-film solar cell module
EP2693504A1 (en) * 2011-03-31 2014-02-05 Idemitsu Kosan Co., Ltd Organic thin-film solar cell and organic thin-film solar cell module
EP2693504A4 (en) * 2011-03-31 2014-10-22 Idemitsu Kosan Co ORGANIC THIN-CEREAL SOLAR CELL AND MODULE WITH ORGANIC THIN-CEREAL SOLAR CELL
WO2013102985A1 (ja) * 2012-01-06 2013-07-11 出光興産株式会社 有機光電変換素子及び有機薄膜太陽電池モジュール
WO2014203840A1 (ja) * 2013-06-21 2014-12-24 国立大学法人九州大学 赤色発光材料、有機発光素子および化合物
JPWO2014203840A1 (ja) * 2013-06-21 2017-02-23 株式会社Kyulux 赤色発光材料、有機発光素子および化合物

Also Published As

Publication number Publication date
EP2348556A4 (en) 2012-08-29
EP2348556A1 (en) 2011-07-27
JP2010109161A (ja) 2010-05-13
US20110259425A1 (en) 2011-10-27
CN102197504A (zh) 2011-09-21
JP5580976B2 (ja) 2014-08-27
KR20110079695A (ko) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5580976B2 (ja) 有機薄膜太陽電池
JP5583809B2 (ja) 有機太陽電池
JP2015222839A (ja) 複数の伝導層システムを備えた光活性素子
JP2013153199A (ja) 逆方向−キャリア励起子阻止層を有する有機ダブルへテロ構造太陽電池
WO2012132447A1 (ja) 有機薄膜太陽電池及び有機薄膜太陽電池モジュール
JP2009132674A (ja) アセナフトフルオランテン化合物からなる光電変換素子用材料及びそれを用いた光電変換素子
WO2013035305A1 (ja) 有機太陽電池
JP5260379B2 (ja) 有機薄膜太陽電池
WO2013102985A1 (ja) 有機光電変換素子及び有機薄膜太陽電池モジュール
JP5469943B2 (ja) 光電変換素子
JP2014090093A (ja) タンデム型有機薄膜太陽電池
JP2011023594A (ja) 光電変換素子
JP2011233692A (ja) 光電変換素子、有機太陽電池及びそれらを用いた光電変換装置
JP2014075476A (ja) 有機太陽電池
JP5463551B2 (ja) 有機薄膜製造法及び該製造法を用いた有機薄膜と同該薄膜を用いた有機光電変換素子
JP5499193B2 (ja) 有機薄膜太陽電池
JP2012033606A (ja) 光電変換素子
JP2014077042A (ja) ジベンゾピロメテン化合物を含む有機薄膜太陽電池材料
JP5560132B2 (ja) 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
JP2013168413A (ja) 光電変換素子、及びその製造方法
JP2014195030A (ja) InClPcを含む有機薄膜太陽電池
JP2014194998A (ja) 有機太陽電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143138.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117009722

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009823310

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13126584

Country of ref document: US