CN108376715B - 一种有机-无机电荷转移复合物红外光吸收材料及其制备方法 - Google Patents

一种有机-无机电荷转移复合物红外光吸收材料及其制备方法 Download PDF

Info

Publication number
CN108376715B
CN108376715B CN201810181330.3A CN201810181330A CN108376715B CN 108376715 B CN108376715 B CN 108376715B CN 201810181330 A CN201810181330 A CN 201810181330A CN 108376715 B CN108376715 B CN 108376715B
Authority
CN
China
Prior art keywords
organic
mtdata
infrared
infrared absorption
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810181330.3A
Other languages
English (en)
Other versions
CN108376715A (zh
Inventor
姚博
刘士彦
张芯榕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN201810181330.3A priority Critical patent/CN108376715B/zh
Publication of CN108376715A publication Critical patent/CN108376715A/zh
Application granted granted Critical
Publication of CN108376715B publication Critical patent/CN108376715B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供一种有机‑无机电荷转移复合物红外光吸收材料及其制备方法。本发明采用真空蒸镀法,以有机小分子材料4,4',4”‑三(N‑3‑甲基苯基‑N‑苯基氨基)三苯胺(m‑MTDATA)和三氧化钨WO3为光吸收原材料,在石英玻璃基底上采用体异质结或多层超晶格结构制备得到m‑MTDATA/WO3复合材料。该复合材料对波长1000‑1400nm范围内的红外光有较强的吸收。本发明利用有机‑无机异质结相邻分子间的电荷转移产生较明显的红外吸收增色效应,可以弥补现有大多数有机光敏材料在1000nm以上红外波段吸收弱的不足。表现出该红外光吸收材料在光纤通信和红外探测方面具有潜在的应用价值。且还具有结构简单,制备方法成熟等优点。

Description

一种有机-无机电荷转移复合物红外光吸收材料及其制备 方法
技术领域
本发明涉及一种有机-无机红外光吸收材料的制备方法,具体涉及一种由4,4',4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺m-MTDATA和三氧化钨WO3组成的具有体异质结或多层超晶格结构的电荷转移复合物红外光吸收材料的制备方法。
背景技术
红外探测器广泛用于成像、传感、通讯等技术中,与军事国防和人们的生产生活有密切联系。无机半导体红外探测器发展较早,技术较为成熟,主要有碲镉汞、量子阱、Ⅱ类超晶格和量子点四大类,这些器件通常需要在低温环境下工作。而近几年新发展起来的有机光电探测器能够在常温下工作,并且具有响应度高、响应频谱宽、成本低和制备工艺简单等优点,因此受到越来越多研究者的关注,成为未来红外光电探测器发展的重要方向之一。
在种类繁多的有机小分子和聚合物材料中,仅有少数窄带隙有机半导体材料对红外光响应,且敏感波段多在900nm附近,使得能够用于有机红外探测的光敏材料数量较少,并且工作波段都在1000nm以下,这极大地限制了有机光敏材料在红外波段的应用范围。因此,寻找在1000nm以上红外波段有强吸收的有机光敏材料是研究者们迫切需要解决的问题。
有机小分子材料m-MTDATA是一种空穴传输材料,具有较高的HOMO能级(-5.1eV),在复合体系中常作为电子给体。无机氧化物W03的电负性较高,具有较强的得电子能力,且其导带底较低(-4.8eV)。
因此,由m-MTDATA和W03组成的复合体系中,由于受体WO3的导带底非常靠近给体的HOMO能级,且WO3具有良好的得电子能力,光照后电子获得能量易于从m-MTDATA的HOMO能级跃迁到W03导带中,即在分子间子带隙跃迁,形成电荷转移复合物(Charge-TransferComplex,CTC)。根据起始吸收波长与光学带隙的关系Eg,opt=hc/λon,当给体-受体分子间形成的子带隙在1.24eV以下时,发生电荷转移时吸收的光波长将会在1000nm以上的红外区域。m-MTDATA/W03复合体系分子间的子带隙仅有0.3eV,经实验测试,该复合体系薄膜对波长在1000-1400nm范围内的红外光有较强的吸收,而光纤通信窗口1310nm正是在这个范围内,这表明由m-MTDATA/W03复合体系构成的这种有机-无机电荷转移复合物红外光吸收材料在光纤通信和红外探测方面具有潜在的应用价值。而目前尚没有关于m-MTDATA/W03复合体系薄膜制备方法和应用研究的报道。
发明内容
针对现有技术中的问题,本发明提供
为实现以上技术目的,本发明的技术方案是:
一种有机-无机电荷转移复合物红外光吸收材料,包括基底材料和有机-无机复合薄膜,所述有机-无机复合薄膜采用m-MTDATA/W03多层超晶格或体异质结复合薄膜,所述有机-无机复合薄膜通过真空蒸发法沉积在基底材料。
所述基底材料采用石英玻璃、硅、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯中的一种。
所述体异质结结构的m-MTDATA/W03复合薄膜中的m-MTDATA和W03的质量比为1:3。
所述m-MTDATA/W03体异质结复合薄膜的厚度为60-80nm。
所述多层超晶格结构的m-MTDATA/W03复合薄膜中各周期的m-MTDATA和WO3膜厚分别为5nm和7.5nm。
所述m-MTDATA/WO3多层超晶格复合薄膜具有4-8个超晶格周期。
所述m-MTDATA/WO3多层超晶格复合薄膜具有5-6个超晶格周期。
从以上描述可以看出,本发明具备以下优点:
1.本发明提供的m-MTDATA/W03复合薄膜利用分子间的电荷转移吸收,实现了1000-1400nm范围内红外光的高效吸收,拓宽了有机红外光探测器的材料选择范围,表现出在有机光纤通信和红外探测方面的潜在优势。
2.本发明利用有机-无机异质结相邻分子间的电荷转移产生较明显的红外吸收增色效应,可以弥补现有大多数有机光敏材料在1000nm以上红外波段吸收弱的不足。
3.本发明提供的有机-无机电荷转移复合物红外光吸收材料应用于有机红外探测器可在常温下工作,并且具有结构简单,制备方法成熟,生产成本低等优点。
附图说明
图1所示为本发明实施例一所提供的体异质结结构的有机-无机电荷转移复合物红外光吸收薄膜的剖面结构示意图。
图2所示为本发明实施例一所提供的有机-无机电荷转移复合物红外光吸收薄膜的分子间电荷转移吸收原理图。
图3所示为图2所示的体异质结结构的有机-无机电荷转移复合物红外光吸收薄膜的紫外-可见-近红外吸收光谱。
图4所示为本发明实施例二所提供的多层超晶格结构的有机-无机电荷转移复合物红外光吸收薄膜的剖面结构示意图。
具体实施方式
结合图1至图4,详细说明本发明的具体实施例,但不对本发明的权利要求做任何限定。
实施例1
如图1所示,本发明提供的有机-无机电荷转移复合物红外光吸收薄膜包括基底材料1。为了便于光吸收特性的测试,基体材料1使用透光率优于93%的石英玻璃(Si02)作为其上体异质结结构m-MTDATA/WO3复合薄膜2的支撑。采用真空双源共蒸法在基底材料1上制备体异质结结构m-MTDATA/WO3复合薄膜2。在同一个蒸发室中,通过蒸发源侧的石英晶振膜厚仪精确监控两种材料的共蒸发速率,分别控制调压器使同时沉积的两种分子材料m-MTDATA和WO3的质量比为1:3,基底在蒸镀过程中保持6转/分钟慢速旋转以确保两种分子材料混合均匀。基底材料1根据需要也可以采用硅或聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET)等柔性材料。
基底材料1上沉积的体异质结结构m-MTDATA/WO3复合薄膜2的膜厚度对光子的吸收以及光生载流子的有效输运有直接的影响。体异质结结构m-MTDATA/WO3复合薄膜2必须具有足够的厚度以保证光子的高效吸收,但同时复合薄膜的低迁移率会影响光生载流子的输运。因此,设置体异质结结构m-MTDATA/WO3复合薄膜2的厚度为50-100nm,优选的,设置体异质结结构m-MTDATA/WO3复合薄膜2的厚度为60-80nm。
如图2所示,本发明提供的有机-无机电荷转移复合物红外光吸收薄膜分别采用m-MTDATA和WO3作为电荷转移发生的给体和受体。其分子间电荷转移吸收的原理如图2所示。由于受体WO3的导带底Ec非常靠近给体m-MTDATA的HOMO能级,且WO3电负性较大,具有良好的得电子能力,光照后,处于m-MTDATA HOMO能级的电子获得能量更易于跃迁至WO3的导带底Ec,形成分子间子带隙的电荷转移。
如图3所示,与m-MTDATA和WO3薄膜相比,体异质结结构m-MTDATA/WO3复合薄膜2在1000-1400nm红外光范围内有明显的吸收。而这个吸收并非来源于两种混合原材料自身。根据图2对m-MTDATA/WO3复合体系中分子间电荷转移吸收的描述,体异质结结构m-MTDATA/WO3复合薄膜2在1000-1400nm范围内的吸收正是来自于m-MTDATA和WO3分子间的电荷转移。
于本实施例中,采用真空蒸镀法来制备有机-无机电荷转移复合物红外光吸收材料。
首先,基底材料选取。选择透光率优于93%的石英玻璃作为基底材料1。该基底在光吸收测试中能够尽量消除杂峰,并保证足够的光通过基底。
其次,清洗基底材料1。将基底材料1分别用丙酮、无水乙醇和去离子水超声清洗15分钟。高纯氮气吹干,去除基体材料1表面的污染粒子后送进蒸发室,放入可旋转衬底托中。
最后,进行真空双源共蒸发。蒸发源材料分别为纯度98%的m-MTDATA和纯度99.8%的WO3粉末。基底不加温,在整个蒸发过程中保持6转/分钟的慢速均匀旋转。通过蒸发源侧的石英晶振膜厚仪探头监控蒸发速率及薄膜厚度。
实施例二
如图4所示,本实施例与实施例一及其原理基本相同,区别在于:m-MTDATA/WO3复合薄膜采用多层超晶格结构,即在基底材料1上交替沉积5nm m-MTDATA薄膜2和7.5nm WO3薄膜3。与图3中体异质结结构m-MTDATA/WO3复合薄膜2的膜厚度对光子吸收以及光生载流子输运影响的机制类似。采用多层超晶格结构的m-MTDATA/WO3复合薄膜的周期长度也对光子的吸收以及光生载流子的有效输运有直接的影响。因此,设置多层超晶格结构m-MTDATA/WO3复合薄膜的周期为4-8个,优选的,设置多层超晶格结构m-MTDATA/WO3复合薄膜的周期为5-6个。
综上所述,本发明具有以下优点:
1.本发明提供的m-MTDATA/W03复合薄膜利用分子间的电荷转移吸收,实现了1000-1400nm范围内红外光的高效吸收,拓宽了有机红外光探测器的材料选择范围,表现出在有机光纤通信和红外探测方面的潜在优势。
2.本发明利用有机-无机异质结相邻分子间的电荷转移产生较明显的红外吸收增色效应,可以弥补现有大多数有机光敏材料在1000nm以上红外波段吸收弱的不足。
3.本发明提供的有机-无机电荷转移复合物红外光吸收材料应用于有机红外探测器可在常温下工作,并且具有结构简单,制备方法成熟,生产成本低等优点。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案。本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明的保护范围之内。

Claims (4)

1.一种有机-无机电荷转移复合物红外光吸收材料,其特征在于:它包括基底材料和有机-无机复合薄膜,所述有机-无机复合薄膜采用m-MTDATA/W03多层超晶格或体异质结复合薄膜,所述有机-无机复合薄膜通过真空蒸发法沉积在基底材料;
所述体异质结结构的m-MTDATA/W03复合薄膜中的m-MTDATA和W03的质量比为1:3,所述m-MTDATA/W03体异质结复合薄膜的厚度为60-80nm;
所述多层超晶格结构的m-MTDATA/W03复合薄膜中各周期的m-MTDATA和WO3膜厚分别为5nm和7.5nm,所述m-MTDATA/WO3多层超晶格复合薄膜具有4-8个超晶格周期。
2.根据权利要求1所述的一种有机-无机电荷转移复合物红外光吸收材料,其特征在于:所述基底材料采用石英玻璃、硅、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯中的一种。
3.根据权利要求2所述的一种有机-无机电荷转移复合物红外光吸收材料,其特征在于:所述石英玻璃的透光度不低于93%。
4.根据权利要求1所述的一种有机-无机电荷转移复合物红外光吸收材料,其特征在于:所述m-MTDATA/WO3多层超晶格复合薄膜具有5-6个超晶格周期。
CN201810181330.3A 2018-03-06 2018-03-06 一种有机-无机电荷转移复合物红外光吸收材料及其制备方法 Active CN108376715B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810181330.3A CN108376715B (zh) 2018-03-06 2018-03-06 一种有机-无机电荷转移复合物红外光吸收材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810181330.3A CN108376715B (zh) 2018-03-06 2018-03-06 一种有机-无机电荷转移复合物红外光吸收材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108376715A CN108376715A (zh) 2018-08-07
CN108376715B true CN108376715B (zh) 2019-11-12

Family

ID=63018428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810181330.3A Active CN108376715B (zh) 2018-03-06 2018-03-06 一种有机-无机电荷转移复合物红外光吸收材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108376715B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034233A (zh) * 2019-04-03 2019-07-19 北京工业大学 基于Rubrene:MoO3混合薄膜的红外探测器
CN111799380B (zh) * 2020-07-21 2022-11-22 湘南学院 一种有机-无机复合光电导探测器件及其制备方法和应用
CN113471365B (zh) * 2021-05-13 2023-10-27 中国计量大学 近红外有机范德华异质结光敏场效应晶体管及其制备方法
CN114203914A (zh) * 2021-12-14 2022-03-18 绍兴文理学院 一种双极型近红外光敏场效应管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088060A (zh) * 2010-12-06 2011-06-08 电子科技大学 一种叠层有机薄膜太阳能电池及其制备方法
CN102197504A (zh) * 2008-10-30 2011-09-21 出光兴产株式会社 有机薄膜太阳能电池
CN102197505A (zh) * 2008-10-30 2011-09-21 出光兴产株式会社 有机薄膜太阳能电池
US9349970B2 (en) * 2009-09-29 2016-05-24 Research Triangle Institute Quantum dot-fullerene junction based photodetectors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102197504A (zh) * 2008-10-30 2011-09-21 出光兴产株式会社 有机薄膜太阳能电池
CN102197505A (zh) * 2008-10-30 2011-09-21 出光兴产株式会社 有机薄膜太阳能电池
US9349970B2 (en) * 2009-09-29 2016-05-24 Research Triangle Institute Quantum dot-fullerene junction based photodetectors
CN102088060A (zh) * 2010-12-06 2011-06-08 电子科技大学 一种叠层有机薄膜太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN108376715A (zh) 2018-08-07

Similar Documents

Publication Publication Date Title
CN108376715B (zh) 一种有机-无机电荷转移复合物红外光吸收材料及其制备方法
Li et al. Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system
Cen et al. Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications
CN107919409B (zh) 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法
AU779449B2 (en) Solid state heterojunction and solid state sensitized photovoltaic cell
Tuktarov et al. Optically controlled field effect transistors based on photochromic spiropyran and fullerene C60 films
Li et al. Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices
TWI665813B (zh) 沉積有機材料之方法
Khan et al. Solution processed trilayer structure for high-performance perovskite photodetector
CN107732017B (zh) 一种等离激元结构衬底及其制备和应用
Cho et al. Sustainable hybrid energy harvester based on air stable quantum dot solar cells and triboelectric nanogenerator
Tao et al. Efficient photodiode-type photodetectors with perovskite thin films derived from an MAPbI 3 single-crystal precursor
Xing et al. Waterproof and Flexible Perovskite Photodetector Enabled By P‐type Organic Molecular Rubrene with High Moisture and Mechanical Stability
Gou et al. High-performance and flexible photodetectors based on P3HT/CdS/CdS: SnS 2 superlattice nanowires hybrid films
Boopathi et al. UV-and NIR-protective semitransparent smart windows based on metal halide solar cells
Bazargan et al. High-performance transparent ultraviolet photodetector based on thermally reduced graphene oxide and ZnO thin films
Nath et al. CuPc/C 60 heterojunction for high responsivity zero bias organic red light photodetector
Yuan et al. UV soaking for enhancing the photocurrent and response speed of Cs2AgBiBr6-based all-inorganic perovskite photodetectors
Zhang et al. High‐Performance MAPbI3/PM6: Y6 Perovskite/Organic Hybrid Photodetectors with a Broadband Response
CN112563420A (zh) 一种日盲紫外钙钛矿光电探测器及其制备方法
Zhu et al. A general strategy for ordered carrier transport of quasi-2D and 3D perovskite films for giant self-powered photoresponse and ultrahigh stability
CN104638109A (zh) 一种有机太阳能电池的阴极界面材料及其制备方法
Behera et al. Lead free perovskite based heterojunction photodetectors: A mini review
JP2023540942A (ja) 化合物、オプトエレクトロニクス部品における少なくとも1種のそのような化合物の使用、及び少なくとも1種のそのような化合物を含むオプトエレクトロニクス部品
Li et al. Top-Illuminated Flexible Organic Photodetectors Integrated With Hole Extraction Layers Synthesized With Solution-Processed NiOₓ Films at Room Temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant