WO2010047007A1 - 電子部品モジュールの製造方法 - Google Patents

電子部品モジュールの製造方法 Download PDF

Info

Publication number
WO2010047007A1
WO2010047007A1 PCT/JP2009/002413 JP2009002413W WO2010047007A1 WO 2010047007 A1 WO2010047007 A1 WO 2010047007A1 JP 2009002413 W JP2009002413 W JP 2009002413W WO 2010047007 A1 WO2010047007 A1 WO 2010047007A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
conductive
conductive resin
resin
component module
Prior art date
Application number
PCT/JP2009/002413
Other languages
English (en)
French (fr)
Inventor
神凉康一
勝部彰夫
北村俊輔
片岡祐治
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2010534652A priority Critical patent/JP5273154B2/ja
Priority to CN2009801418407A priority patent/CN102203926B/zh
Publication of WO2010047007A1 publication Critical patent/WO2010047007A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0052Depaneling, i.e. dividing a panel into circuit boards; Working of the edges of circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components

Definitions

  • the present invention relates to a method for manufacturing an electronic component module in which an electronic component module having a ground electrode inside the aggregate substrate is cut out from the aggregate substrate in which a plurality of electronic component modules are formed by a plurality of electronic components.
  • an electronic component module for example, a ground sheet having a predetermined height is provided on a substrate on which the electronic component is mounted, and a laminated sheet in which a resin film and a conductive film having a shielding effect are laminated on the substrate. After installation, the ground terminal and the conductive film are made conductive by softening the resin film (see Patent Document 1).
  • an active surface side of at least one electronic component is attached to a substrate having a series of via holes and a series of holes that connect electrical contacts on one side and connection pads on the other side, and the opposite side of the active side
  • a conductive deformation film is attached to the surface.
  • transformation film is suck
  • transformation film (refer patent document 2).
  • Patent Document 2 an electrode is formed on a substrate surface to which an active surface of an electronic component is attached.
  • the conductive deformation film is placed on the surface of the substrate along the electronic component. And ground.
  • the electronic component module is cut at the hole portion, and the deformed film filled in the hole comes into contact with the outside, and noise can be prevented from entering the cut hole portion (side surface of the electronic component).
  • Patent Document 3 a method of manufacturing an electronic component by filling a resin film up to the side surface of the electronic functional element is disclosed (see Patent Document 3). Specifically, a substrate and a plurality of electronic functional elements provided on the substrate are mounted on a mounting assembly substrate, and a resin film is pasted on each electronic functional element and placed in a bag having gas barrier properties, Are sealed under reduced pressure. Then, a resin film is infiltrated between the decompressed electronic function elements, and the electronic function elements are sealed with the resin film.
  • a circuit module includes a grounding electrode and a shield layer formed outside the insulating layer and connected to the grounding electrode, and the substrate and the end face of the shield layer are located on the same plane (patent) Reference 4).
  • JP 2000-223647 A Japanese Patent Laid-Open No. 2001-176955 International Publication No. 2005/071731 JP 2004-172176 A
  • Patent Document 2 since the holes are formed in the substrate and the electrodes are formed on the substrate surface, the electronic component module becomes large, the number of electronic component modules cut out from the collective substrate decreases, and the manufacturing cost increases. There was a problem to do.
  • Patent Document 1 it is necessary to form a grounding terminal so as to be grounded with a shield layer (conductive film) formed on the top surface, and the substrate area is increased by the amount corresponding to the grounding terminal. Had.
  • an electrode is formed between a substrate and a mounting assembly substrate, and a space is formed between the substrate and the mounting assembly substrate, so that the presence of the space does not hinder vibration under the substrate. .
  • a space that is, to leave an unfilled space for the resin film
  • the resin film is filled with.
  • reducing the pressure alone is not sufficient to improve the penetration of the resin film into the narrow gap, prevent voids due to air entrainment, and reliably shield the electronic components.
  • a shield layer is provided on the insulating layer, the ground electrode on the substrate and the shield layer are connected, and the shield layer and the side surface of the substrate are formed on the same plane so as to reduce the size of the module plane.
  • the shield layer is formed by applying a conductive paste, an organic solvent or the like contained in the conductive paste is generally used when thermosetting a conductive paste containing a thermosetting resin as a main component.
  • the dilute solution may evaporate and gasify, and voids may be generated inside the shield layer.
  • the reduction in size in the planar direction is an issue, it is not sufficient for realizing a low profile.
  • the present invention has been made in view of such circumstances, and provides an electronic component module manufacturing method capable of reliably shielding an electronic component and realizing downsizing with a low profile. With the goal.
  • a method of manufacturing an electronic component module according to a first aspect of the present invention is to collectively seal a collective substrate on which a plurality of electronic component modules are formed with a plurality of electronic components with a resin. After forming a cut portion from the top surface of the sealed resin to the inside of the sealed resin or the collective substrate at the boundary portion, and covering at least a part of the side surface and the top surface with the conductive resin.
  • the sheet-like conductive resin is placed after the sheet-like conductive resin is placed so as to cover the cut portion and the top surface. Pressure and heat are applied to the aggregate substrate.
  • the electronic component module manufacturing method is the method of manufacturing the electronic component module according to the first aspect, wherein the cut portion is formed up to a position reaching the grounding electrode disposed inside the collective substrate, and the cut portion and After the sheet-like conductive resin is placed so as to cover the top surface, the conductive resin is cut by applying pressure and heat to the collective substrate on which the sheet-like conductive resin is placed. A portion is filled and connected to the grounding electrode.
  • a method for manufacturing the electronic component module according to the first aspect wherein the conductive material is electrically conductive on the collective substrate or the electronic component so as to be connected to an electrode pad disposed on the surface of the collective substrate.
  • a post is formed, the upper surface of the conductive post is exposed, and the collective substrate is collectively sealed with a resin so as to cover the electronic component module, and a ceiling including the cut portion and the upper surface of the conductive post is formed.
  • the conductive resin is cut into the cut portion. And the upper surface of the conductive post and the conductive resin are connected to each other.
  • the method of manufacturing the electronic component module according to the fourth aspect of the present invention may include the step of forming the cut portion and then mounting the sheet-like conductive resin.
  • the conductive resin is filled in a part of the cut portion.
  • a method for manufacturing an electronic component module according to any one of the first to fourth aspects, wherein a vacuum is applied to the collective substrate on which the sheet-like conductive resin is placed by a heater press device. It is characterized by applying pressure and heat under the environment.
  • a method of manufacturing an electronic component module according to any one of the first to fourth aspects of the present invention, wherein the sheet-like device is used to increase the pressure of the fluid filled in the sealed tank. Pressure and heat are applied to the aggregate substrate on which conductive resin is placed.
  • a seventh aspect of the present invention there is provided a method for manufacturing an electronic component module according to any one of the first to fourth aspects, wherein the collective substrate on which the sheet-like conductive resin is placed is formed into a bag having gas barrier properties. Then, the inside of the bag containing the aggregate substrate is decompressed and sealed by a decompression pack device, and heat is applied to the aggregate substrate in the decompressed bag.
  • An electronic component module manufacturing method is the electronic component module manufacturing method according to any one of the first to fourth aspects, wherein the collective substrate on which the sheet-like conductive resin is placed is formed into a bag having gas barrier properties.
  • heat is applied to the collective substrate in the bag while the pressure inside the bag containing the collective substrate is reduced by a decompression pack device.
  • the electronic component module manufacturing method according to the seventh or eighth aspect, wherein the bag is placed in the tank by the device for increasing the pressure of the fluid filled in the sealed tank. Pressure and heat are applied to the collective substrate inside.
  • the conductive post is formed in such a shape that the cross section gradually decreases from the collective substrate or the electronic component toward the top surface. It is characterized by that.
  • the conductive post repeatedly discharges and solidifies the curable conductive solution to be placed on the collective substrate or the electronic component module. It is formed.
  • the cut portion can be sufficiently filled with the conductive resin, not only on the top surface but also on the side surface. Can also form a shield layer.
  • the shield layer can be made thin, voids can be prevented from occurring, and electronic components can be reliably shielded. Furthermore, since the shield layer can be formed on the side surface and the top surface in one processing step, productivity is also improved.
  • by using a sheet-like conductive resin handling becomes easy, and a thin shield layer can be easily formed on the top surface of the sealed resin, thereby reducing the height of the electronic component module. It becomes possible.
  • a shield layer is formed at a cut portion that reaches the grounding electrode disposed inside the collective substrate to form a shield layer on the side surface of the substrate, and the shield layer on the side surface of the substrate contacts the grounding electrode.
  • the conductive post is formed on the collective substrate or the electronic component so as to be connected to the electrode pad disposed on the surface of the collective substrate, thereby forming an electrode on the substrate surface and forming a hole in the substrate. It is possible to reduce the board area per electronic component module without forming the. In particular, when a conductive post is formed on an electronic component, the board area per electronic component module can be further reduced, and the electronic component module can be miniaturized with a reduction in height. Furthermore, when an electrical signal is transmitted through a conductive post in an electronic component module, the transmission path is shortened and resistance is reduced as compared with the case where an electrical signal is transmitted through a conductive resin on the side surface. Is possible.
  • the conductive resin is filled in a part of the cut portion to fill the sheet-like conductive resin. Insufficient filling of the bottom of the cut portion that is difficult to be performed can be compensated, and voids can be prevented from occurring in advance, and the electronic component can be shielded more reliably.
  • the conductive resin can be effectively filled into the cut portion.
  • the thickness of the shield layer formed on the top surface can be easily controlled.
  • the generation of voids can be prevented in advance, so that the cut width can be made narrower and the shield layer can be made thinner.
  • the heater press device by applying pressure and heat to the collective substrate on which the sheet-like conductive resin is placed by means of a device that increases the pressure of the fluid filled in the sealed tank, the heater press device Even when an apparatus having a simple configuration is used, it is possible to reduce the thickness of the shield layer, prevent the generation of voids, and further reduce the manufacturing cost. Further, pressure is not applied in a biased direction, and the pressure can be evenly applied.
  • the assembly substrate on which the sheet-like conductive resin is placed is put in a bag having gas barrier properties, and the inside of the bag containing the assembly substrate is decompressed by a decompression pack device, and the assembly in the decompressed bag is performed.
  • the conductive resin is more easily filled into the cut portion due to a pressure difference between the inside and outside of the bag.
  • the gas generated in the conductive resin and the like due to heating can be discharged out of the conductive resin in a reduced pressure state, so that generation of voids can be prevented in advance. it can.
  • the shield layer can be formed with a simple apparatus and processing steps. Furthermore, by using a bag having gas barrier properties, external pressure is applied uniformly along the shape of the collective substrate, and the collective substrate is evenly pressurized.
  • the collective substrate on which the sheet-like conductive resin is placed is put in a bag having gas barrier properties, and the collective substrate in the bag is decompressed by the decompression pack device while the inside of the bag containing the collective substrate is decompressed.
  • the solvent component contained in the conductive resin filled in a part of the cut portion is increased under atmospheric pressure by applying heat while reducing the pressure inside the bag containing the aggregate substrate. Volatilization can be performed, and generation of voids can be prevented.
  • the sheet-like conductive resin is not completely pressure-bonded to the top surface of the sealed resin. The solvent component contained in the resin can easily evaporate from between the sealed resin and the sheet-like conductive resin.
  • the ninth invention by applying pressure and heat to the collective substrate in the bag placed in the tank by means of a device for increasing the pressure of the fluid filled in the sealed tank, all directions are obtained in a vacuum environment. Therefore, the conductive resin can be more easily filled into the cut portion, and generation of voids can be further suppressed.
  • the conductive post has a so-called taper shape in which the cross-section is gradually reduced from the collective substrate or the electronic component toward the top surface, so that the sheet-like conductive resin is placed thereon.
  • the sealing resin layer can be formed uniformly and flatly without damaging the conductive post. That is, when a sheet-like conductive resin is placed, pressure is applied to the conductive post from above, but the tapered conductive post has high pressure resistance against the pressure from above, and the pressure from above is high. It won't break and break. Further, since the sheet-like conductive resin is placed so as to cover the upper surface of the conductive post exposed from the top surface of the sealed resin, it is placed when the cross section of the exposed conductive post is large. Sheet-like conductive resin is likely to be formed in a convex shape at the top of the conductive post, but when the cross section of the exposed conductive post is small, it is difficult to become convex and a sealing resin layer can be formed flat. it can.
  • the conductive post is formed on the collective substrate or the electronic component by repeatedly discharging and solidifying the curable conductive solution, so that the conductive post has a desired height by an inkjet method, a jet dispenser method, or the like. It is possible to form a conductive post.
  • the cut resin can be sufficiently filled with the conductive resin.
  • a shield layer can be formed.
  • the shield layer can be made thin, voids can be prevented from occurring, and electronic components can be reliably shielded.
  • productivity is also improved.
  • by using a sheet-like conductive resin handling becomes easy, and a thin shield layer can be easily formed on the top surface of the sealed resin, thereby reducing the height of the electronic component module. It becomes possible.
  • FIG. 1 is a cross-sectional view showing a configuration of an electronic component module according to Embodiment 1 of the present invention.
  • the electronic component module 1 according to Embodiment 1 of the present invention has a rectangular parallelepiped shape of 10.0 mm ⁇ 10.0 mm ⁇ 1.2 mm as an example, and a circuit board 11 made of ceramic, glass, epoxy resin, and the like, , 13, 13,..., Such as a semiconductor element, a capacitor, a resistor, and a SAW filter mounted on the surface of the circuit board 11.
  • the circuit board 11 is, for example, a resin board having a rectangular top surface and a thickness of about 0.5 mm.
  • a signal pattern (not shown) that also serves as a bonding pad (electrode pad) with the electronic components 12, 12,.
  • a grounding electrode 16 is provided on the surface of the circuit board 11.
  • the signal pattern of the circuit board 11 and the terminals of the electronic components 12, 12, ..., 13, 13, ... such as semiconductor elements, capacitors, resistors, etc. are connected by bonding wires, solder, and the like.
  • a sealing resin layer 14 made of a synthetic resin is formed on the upper surface of the circuit board 11 so as to cover the circuit board 11 and the electronic components 12, 12,.
  • a shield layer 15 that shields the electronic components 12, 12, ..., 13, 13, ... from electric field noise and electromagnetic wave noise is formed.
  • FIG. 2 is a cross-sectional view for explaining the method for manufacturing the electronic component module 1 according to Embodiment 1 of the present invention.
  • 2A shows a state in which the cut portion 17 is formed after the sealing resin layer 14 is formed
  • FIG. 2B shows a state in which the sheet-like conductive resin 18 is placed.
  • c) shows a state in which pressure and heat are applied to the aggregate substrate 10 by the heater press device 19, and
  • FIG. 2 (d) shows a state in which the aggregate substrate 10 on which the shield layer 15 is formed is divided.
  • a synthetic resin is used so as to cover the upper part of the collective substrate 10 from which a plurality of circuit boards 11 on which a plurality of electronic components 12, 12,..., 13, 13,.
  • the sealing resin layer 14 is formed.
  • the sealing resin layer 14 is collectively resin-sealed by applying a liquid synthetic resin such as an epoxy resin by dispenser application, vacuum printing application, or a transfer molding method.
  • the circuit board 11 and the electronic components 12, 12, ..., 13, 13, ... are sealed to form an insulating layer.
  • the grounding electrode 16 is exposed in the middle of the circuit board 11 at the boundary portion cut out as the electronic component module 1 with the sealing resin layer 14 formed.
  • a groove-shaped cut portion 17 is formed to a depth using a blade or the like.
  • the cut portion 17 has, for example, a width of about 0.3 mm and a depth of about 0.8 mm.
  • a sheet-like conductive resin 18 is placed so as to cover the cut portion 17 and the top surface.
  • the sheet-like conductive resin 18 is in a dry state without stickiness in a normal state (normal temperature or the like), is easy to handle, and is a thin shield layer 15 on the top surface of the sealing resin layer 14 in a later step. Can be easily formed.
  • the conductive component (filler) contained in the sheet-like conductive resin 18 is, for example, Ag, Cu, Ni or the like, and the synthetic resin (binder) containing the conductive component is, for example, an epoxy resin or a polyimide resin. And a resin having heat softening properties such as polyolefin resin.
  • FIG. 2 (c) pressure and heat are applied to the aggregate substrate 10 on which the sheet-like conductive resin 18 is placed using a heater press device 19 in a vacuum environment.
  • the heater press device 19 applies pressure to the collective substrate 10 in the vertical direction with the collective substrate 10 sandwiched from the top surface side and the bottom surface side of the collective substrate 10.
  • the sheet-like conductive resin 18 placed so as to cover the cut portion 17 and the top surface is softened, deformed or flows, and enters the cut portion 17.
  • the conductive resin 18 that has entered the notch 17 contacts and is electrically connected to the grounding electrode 16.
  • the conductive resin 18 On the cut portion 17 and the top surface, the conductive resin 18 is in a thin film state.
  • the conductive resin 18 enters the cut portion 17 and comes into contact with and electrically connects to the grounding electrode 16. After the thin film is formed on the cut portion 17 and the top surface, the collective substrate 10 is cooled and softened. The obtained conductive resin 18 is cured. When the conductive resin 18 is cured, the shield layer 15 having a film thickness of 5 to 15 ⁇ m, for example, is formed.
  • the collective substrate 10 may be cooled by a heater press device with a cooling function, or may be cooled using another cooling device or the like.
  • the aggregate substrate 10 on which the shield layer 15 is formed is divided by a cut portion 17 using a dicer or the like.
  • the collective substrate 10 is divided and separated into electronic component modules 1. Note that a break notch having a depth not connected to the notch 17 in the middle of the circuit board 11 from the bottom surface side may be provided on the bottom of the circuit board 11 in which the notch 17 is formed.
  • FIG. 3 is a cross-sectional view for explaining a state in the vicinity of the break notch in each manufacturing process of the electronic component module 1 according to Embodiment 1 of the present invention.
  • 3A shows a state in which the electronic components 12, 12,... Are placed on the circuit board 11 provided with the cut-out portion 27 for break
  • FIG. 3B shows that the sealing resin layer 14 is formed.
  • 3 (c) shows a state in which the cut portion 17 is formed
  • FIG. 3 (d) shows a state in which the shield layer 15 is formed
  • FIG. 3 (e) shows a collective substrate 10 in which the shield layer 15 is formed.
  • the state which divides each is shown. 3, the electronic components 13, 13,... Are omitted, but the configuration other than the break notch 27 is the same as in FIG.
  • the electronic components 12, 12,... are placed on the circuit board 11 provided with the cut-out portions 27 for breaking from the bottom side of the circuit board 11. Thereafter, as shown in FIGS. 3B to 3D, the cut is made in exactly the same way as in FIGS. 2A to 2C except that the break cut portion 27 is provided on the circuit board 11.
  • the shield layer 15 is formed on the portion 17 and the top surface.
  • the collective substrate 10 can be divided by a so-called break method often used when dividing the collective substrate 10 without using a cutting device such as a dicer.
  • the cut resin can be sufficiently filled with the conductive resin.
  • the shield layer can be formed not only on the top surface but also on the side surface.
  • the shield layer can be made thin, voids can be prevented from occurring, and electronic components can be reliably shielded. Furthermore, since the shield layer can be formed on the side surface and the top surface in one processing step, productivity is also improved.
  • a shield layer is formed at the notch that reaches the grounding electrode disposed inside the collective substrate to form a shield layer on the side surface of the substrate, and the shield layer on the side surface of the substrate comes into contact with the grounding electrode to Therefore, the board area per electronic component module can be reduced, and the electronic component module can be reduced in size with a reduction in height.
  • the conductive resin can be effectively filled into the cut portions, It becomes easy to control the film thickness of the shield layer formed on the top surface.
  • the generation of voids can be prevented in advance, so that the cut width can be made narrower and the shield layer can be made thinner. Since the generation of voids can be prevented, the conductive resin can be effectively filled into narrower and deeper cuts.
  • FIG. 4 is a cross-sectional view for explaining a method of manufacturing the electronic component module 1 according to Embodiment 2 of the present invention.
  • 4A shows a state in which the cut portion 17 is formed after the sealing resin layer 14 is formed
  • FIG. 4B shows a state in which the sheet-like conductive resin 18 is placed.
  • FIG. 4C shows a state in which pressure and heat are applied to the collective substrate 10 by the pressure oven device 21, and
  • FIG. 4D shows a state in which the shield layer 15 is formed.
  • FIGS. 4A and 4B are the same as FIGS. 2A and 2B, respectively.
  • an insulating layer is formed by forming a sealing resin layer 14 made of a synthetic resin so as to cover the upper part of the collective substrate 10. Then, as shown in FIG. 4A, in the state where the sealing resin layer 14 is formed, the depth at which the grounding electrode 16 is exposed in the middle of the circuit board 11 at the boundary portion cut out as the electronic component module 1.
  • the groove-shaped cut portion 17 is formed using a blade or the like.
  • the cut portion 17 has, for example, a width of about 0.6 mm and a depth of about 0.6 mm.
  • a sheet-like conductive resin 18 is placed so as to cover the cut portion 17 and the top surface.
  • the pressurizing oven device 21 is a device that raises the pressure of the fluid filled in a sealed tank, such as an autoclave.
  • the fluid filled in the sealed space in the tank of the apparatus is air, water or the like.
  • an autoclave is used to pressurize at a pressure of about 0.5 MPa at the curing temperature of the sheet-like conductive resin 18 using air. Note that when water is used as the fluid, a more complicated configuration is required than an apparatus using air or the like, but it is possible to pressurize more stably than air or the like.
  • the air filled in the tank of the device can be seen from all directions in three dimensions. Since pressure can be applied evenly to the aggregate substrate 10, pressure can be appropriately applied without escaping pressure from the side surfaces. In addition, since pressure is applied from all three directions, pressure is not applied in a predetermined direction and pressure can be applied evenly. For example, it is possible to prevent warpage, cracking, and the like that occur in the collective substrate 10 when pressure is applied only in the vertical direction (uniaxial direction) due to the step difference of the electrodes on the collective substrate 10.
  • the conductive resin 18 enters the cut portion 17 and comes into contact with and electrically connects to the grounding electrode 16. After the thin film is formed on the cut portion 17 and the top surface, the collective substrate 10 is cooled and softened. The obtained conductive resin 18 is cured. When the conductive resin 18 is cured, the shield layer 15 having a film thickness of 5 to 15 ⁇ m, for example, is formed.
  • the collective substrate 10 may be cooled by being left in the pressure oven device 21 after the pressurization and heat treatment by the pressure oven device 21 is finished, or may be cooled using another cooling device or the like. You may do it.
  • the collective substrate 10 on which the shield layer 15 is formed using a dicer or the like is divided at the notch portion 17 to form an electronic component module. Divide into 1 pieces.
  • the second embodiment by applying pressure and heat to the collective substrate on which the sheet-like conductive resin is placed by the pressurizing oven device, a simpler device than the heater press device can be obtained. Even if it is used, it is possible to reduce the thickness of the shield layer, prevent the generation of voids, and further reduce the manufacturing cost. Further, pressure is not applied in a biased direction, and the pressure can be evenly applied.
  • FIG. 5 is a cross-sectional view for explaining the method for manufacturing the electronic component module 1 according to Embodiment 3 of the present invention.
  • 5A shows a state in which the cut portion 17 is formed after the sealing resin layer 14 is formed
  • FIG. 5B shows a state in which the sheet-like conductive resin 18 is placed.
  • FIG. 5C shows a state where the collective substrate 10 is put in the bag 22 having gas barrier properties and the pressure is reduced
  • FIG. 5D shows a state where the collective substrate 10 in the reduced pressure bag 22 is heated.
  • FIGS. 5A and 5B are the same as FIGS. 2A and 2B, respectively.
  • an insulating layer is formed by forming a sealing resin layer 14 made of a synthetic resin so as to cover the upper part of the collective substrate 10. Then, as shown in FIG. 5A, the depth at which the grounding electrode 16 is exposed in the middle of the circuit board 11 at the boundary portion cut out as the electronic component module 1 in the state where the sealing resin layer 14 is formed.
  • the groove-shaped cut portion 17 is formed using a blade or the like. The cut portion 17 has, for example, a width of about 0.6 mm and a depth of about 0.7 mm.
  • a sheet-like conductive resin 18 is placed so as to cover the cut portion 17 and the top surface.
  • substrate 10 with which the sheet-like conductive resin 18 was mounted in the bag 22 which has gas-blocking property was put, and a decompression pack apparatus (not shown) was used.
  • the inside of the bag 22 is depressurized, and the collective substrate 10 in the depressurized bag 22 is sealed.
  • the decompression pack device is not particularly limited as long as the inside of the bag having gas barrier properties can be decompressed and sealed (decompression pack).
  • the collective substrate 10 decompressed in the bag 22 having gas barrier properties is applied with an external pressure evenly along the shape of the collective substrate 10, and the collective substrate 10 is evenly pressurized.
  • the collective substrate 10 in the bag 22 is kept in a reduced pressure state by the bag 22 having gas barrier properties, it is pressurized for a long time until it is taken out from the bag 22, and the conductive resin 18 is kept for a long time. It can be made to flow.
  • the conductive resin 18 can be sufficiently filled in the cut portion 17 by the long-time flow.
  • the collective substrate 10 packed under reduced pressure in the bag 22 is heated using an oven or the like. Since the outside of the bag 22 is at atmospheric pressure and the inside of the bag 22 is depressurized, the conductive resin 18 heated and fluidized enters the cut portion 17 due to the pressure difference between the inside and outside of the bag 22. Further, by heating in a reduced pressure state, the gas generated in the conductive resin 18, the sealing resin layer 14, the circuit board 11, the electronic components 12, 12,. Since it can be discharged out of the conductive resin 18 or the like in the state, generation of voids can be prevented in advance. In addition, the gas by heating generate
  • the inside of the bag 22 is in a vacuum state by reducing the pressure.
  • the generation of voids can be prevented even if the vacuum is not complete. It is sufficient that the pressure is sufficiently lower than the atmospheric pressure.
  • the conductive resin 18 that has entered the cut portion 17 contacts and is electrically connected to the ground electrode 16, and the conductive resin 18 is in a thin film state on the cut portion 17 and the top surface. Thereafter, the aggregate substrate 10 is cooled, and the softened conductive resin 18 is cured. When the conductive resin 18 is cured, the shield layer 15 having a film thickness of 5 to 15 ⁇ m, for example, is formed.
  • the collective substrate 10 on which the shield layer 15 is formed using a dicer or the like is divided at the notch portion 17 to form an electronic component module. Divide into 1 pieces.
  • the conductive resin 18 is cut into the cut portion 17 only by the pressure difference between the inside and outside of the bag 22. I try to infiltrate.
  • a pressure oven device 21 or the like is used to apply pressure to the collective substrate 10 packed in a bag 22 under reduced pressure together with heat.
  • the conductive resin 18 may be effectively infiltrated into the cut portion 17. Since heating can be performed by applying pressure evenly from all directions in a vacuum environment, the cut resin 17 can be more easily filled with the conductive resin 18 and the generation of voids can be further suppressed.
  • the collective substrate on which the sheet-like conductive resin is placed is placed in a bag having a gas barrier property, and the inside of the bag containing the collective substrate is decompressed by the decompression pack device. Then, by heating the collective substrate in the decompressed bag, the conductive resin is more easily filled into the cut portion due to the pressure difference between the inside and outside of the bag. Further, by heating in a reduced pressure state, the gas generated in the conductive resin or the like by heating can be discharged out of the conductive resin or the like in the reduced pressure state, so that generation of voids can be prevented in advance. .
  • the shield layer can be formed with a simple apparatus and processing steps. Furthermore, by using a bag having gas barrier properties, external pressure is applied uniformly along the shape of the collective substrate, and the collective substrate is evenly pressurized.
  • 6 to 8 are cross-sectional views for explaining a method of manufacturing the electronic component module 1 according to Embodiment 4 of the present invention.
  • 6A shows a state in which the cut portion 17 is formed after the sealing resin layer 14 is formed
  • FIG. 6B shows a state in which the sheet-like conductive resin 18 is placed.
  • FIG. 6C shows a state in which the collective substrate 10 is put in a bag 22 having gas barrier properties
  • FIG. 6D shows a state in which the inside of the bag 22 containing the collective substrate 10 is decompressed.
  • FIG. 7 (e) shows a state where the opening of the bag 22 is heat-sealed in a decompressed and heated state
  • FIG. 7 (f) shows a state where the inside of the decompression pack device is open to the atmosphere
  • 8 (g) shows a state in which the decompressed bag 22 is taken out from the decompression pack device
  • FIG. 8 (h) shows a state in which the collective substrate 10 in the decompressed bag 22 is heated in an oven
  • Fig. 8 (j) shows a state where the collective substrate 10 is taken out from the bag 22 after the conductive resin 18 is cured
  • Fig. 8 (j) shows a state where the collective substrate 10 is divided.
  • 6A and 6B are the same as FIGS. 2A and 2B, respectively.
  • an insulating layer is formed by forming a sealing resin layer 14 made of a synthetic resin so as to cover the upper part of the collective substrate 10. Then, as shown in FIG. 6A, the depth at which the grounding electrode 16 is exposed in the middle of the circuit board 11 at the boundary portion cut out as the electronic component module 1 in the state where the sealing resin layer 14 is formed.
  • the groove-shaped cut portion 17 is formed using a blade or the like. The cut portion 17 has, for example, a width of about 0.6 mm and a depth of about 0.7 mm.
  • a sheet-like conductive resin 18 is placed so as to cover the cut portion 17 and the top surface.
  • the collective substrate 10 on which the sheet-like conductive resin 18 is placed is placed in a bag 22 having gas barrier properties, and the decompression pack apparatus shown in FIG. Then, the inside of the bag 22 is decompressed, and the opening of the decompressed bag 22 is heated with a heat sealing device as shown in FIG. To seal.
  • the decompression pack device is not particularly limited as long as the inside of the bag having gas barrier properties can be decompressed and sealed (decompression pack).
  • the inside of the decompression pack device is opened to the atmosphere so that the assembly substrate 10 decompressed in the bag 22 having gas barrier properties is assembled to the assembly substrate 10.
  • An external pressure is evenly applied along the shape of the substrate 10, and the collective substrate 10 is evenly pressurized.
  • the collective substrate 10 in the bag 22 is kept in a reduced pressure state by the bag 22 having gas barrier properties.
  • Resin 18 can be flowed for a long time. When the conductive resin 18 flows for a long time, the conductive resin 18 can be sufficiently filled up to the bottom of the cut portion 17.
  • the solvent component contained in the sheet-like conductive resin 18 can be evaporated and evaporated by heating under reduced pressure (heating while reducing pressure or reducing pressure while heating). And generation of voids can be prevented.
  • the sheet-like conductive resin 18 contains 0.1 wt% of cyclohexanone (boiling point at atmospheric pressure is 155 ° C.)
  • the bag 22 is sealed without heating under reduced pressure, and then heated for curing (for example, When the temperature is 170 ° C., voids are generated due to volatile evaporation of cyclohexanone during the curing process.
  • FIG. 9 is a graph showing a change in the degree of vacuum when heated at a relatively low temperature (for example, 120 ° C.) equal to or lower than the curing temperature of the conductive resin 18 during pressure reduction in the vacuum pack device.
  • a relatively low temperature for example, 120 ° C.
  • the degree of vacuum is reduced by decompression without causing the resin to cure.
  • cyclohexanone having a boiling point lower than 155 ° C. can be volatilized and the generation of voids can be prevented.
  • the collective substrate 10 packed in the bag 22 under reduced pressure is heated using an oven or the like. Since the outside of the bag 22 is at atmospheric pressure and the inside of the bag 22 is depressurized, the conductive resin 18 heated and fluidized enters the cut portion 17 due to the pressure difference between the inside and outside of the bag 22.
  • FIG. 8I after the conductive resin 18 is cured, the bag 22 is opened and the collective substrate 10 is taken out.
  • the collective substrate 10 on which the shield layer 15 is formed using a dicer or the like is divided at the notch portion 17 to be separated into electronic component modules 1.
  • incision part is formed in the circuit board 11, you may cut
  • the cutout portion is filled with the conductive resin
  • the aggregate substrate on which the sheet-like conductive resin is placed is placed in the bag having gas barrier properties, and the decompression pack
  • the inside of the bag containing the collective substrate is decompressed to fill a part of the cut portion.
  • the solvent component contained in the conductive resin can be evaporated and evaporated more than under atmospheric pressure, and the generation of voids can be prevented.
  • the sheet-like conductive resin is not completely pressure-bonded to the top surface of the sealed resin. The solvent component contained in the conductive resin can easily evaporate from between the sealed resin and the sheet-like conductive resin.
  • FIG. 10 is a cross-sectional view for explaining the method for manufacturing the electronic component module 1 according to Embodiment 5 of the present invention.
  • 10A shows a state in which the cut portion 17 is formed after the sealing resin layer 14 is formed
  • FIG. 10B shows a state in which the cut portion 17 is filled with the conductive resin 23.
  • FIG. ) Shows a state where pressure and heat are applied to the collective substrate 10 on which the sheet-like conductive resin 18 is placed by the heater press device 19, and
  • FIG. 10D shows the collective substrate 10 on which the shield layer 15 is formed. The state which divides is shown, respectively.
  • 10A is the same as FIG. 2A.
  • an insulating layer is formed by forming a sealing resin layer 14 made of a synthetic resin so as to cover the upper part of the collective substrate 10. Then, as shown in FIG. 10A, the depth at which the grounding electrode 16 is exposed in the middle of the circuit board 11 at the boundary portion cut out as the electronic component module 1 with the sealing resin layer 14 formed.
  • the groove-shaped cut portion 17 is formed using a blade or the like. The cut portion 17 has, for example, a width of about 0.2 mm and a depth of about 0.8 mm.
  • a conductive resin 23 is filled in a part of the cut portion 17.
  • a conductive paste is used as the conductive resin 23 in order to fill the cut portions 17 by coating or the like.
  • the conductive component (filler) contained in the conductive resin 23 and the synthetic resin (binder) containing the conductive component are the same as the sheet-like conductive resin 18 and form a shield with uniform effects and strength. Therefore, it is desirable to be the same type as the sheet-like conductive resin 18.
  • a sheet-like conductive resin 18 is placed on the top surface including the cut portion 17. Then, in the same manner as in the first embodiment, pressure and heat are applied to the aggregate substrate 10 on which the sheet-like conductive resin 18 is placed using a heater press device 19 in a vacuum environment.
  • the sheet-like conductive resin 18 placed so as to cover the cut portion 17 and the top surface is softened, deformed, or flows, and enters the cut portion 17. Since the conductive resin 23 is already filled in a part of the cut portion 17, the conductive resin 18, 23 can be quickly connected to the ground simply by entering the conductive resin 23 on the filled conductive resin 23.
  • the electrode 16 contacts and is electrically connected. On the cut portion 17 and the top surface, the conductive resins 18 and 23 are in a thin film state.
  • the conductive resin 18 entered the conductive resin 23 filled in the cut portion 17 and contacted and electrically connected to the grounding electrode 16, and became a thin film state on the cut portion 17 and the top surface. Thereafter, the collective substrate 10 is cooled, and the softened conductive resin 18 is cured. When the conductive resin 18 is cured, the shield layer 15 having a film thickness of 5 to 15 ⁇ m, for example, is formed.
  • the collective substrate 10 on which the shield layer 15 is formed using a dicer or the like is divided at the cut portion 17 to be separated into electronic component modules 1.
  • the cutout portion 17 is filled with the conductive resin 23, and the sheet-like conductive resin 18 is placed on the collective substrate 10 with a gas-blocking bag. It is also possible to pack in a vacuum and heat in 22. Thereby, more solvent components contained in the conductive resin 23 can be evaporated and evaporated than under atmospheric pressure.
  • the sheet-like conductive resin 18 is not completely pressure-bonded to the top surface of the sealing resin layer 14 until the inside of the bag 22 is evacuated by the reduced pressure, so that the conductive material filled in a part of the cut portion 17 is filled.
  • the solvent component contained in the conductive resin 23 can be volatilized easily from between the sealing resin layer 14 and the sheet-like conductive resin 18.
  • the fifth embodiment after forming the cut portion and before placing the sheet-like conductive resin, by filling the conductive resin in a part of the cut portion, it is possible to compensate for insufficient filling of the bottom of the cut portion, which is difficult to be filled with sheet-like conductive resin, such as a narrow and deep cut portion, and to prevent the occurrence of voids, thereby more reliably electronic components Can be shielded.
  • the conductive resin is filled to the vicinity of the top surface of the sealing resin layer before placing the sheet-like conductive resin, for example, in a vacuum environment.
  • the shield layer can be formed on the top and side surfaces by a simple method of placing the sheet-like conductive resin and applying pressure and heat without doing so.
  • FIG. 11 is a cross-sectional view showing a configuration of an electronic component module according to Embodiment 6 of the present invention.
  • the electronic component module 101 according to the sixth embodiment of the present invention is the same as the electronic component module 1 of the first to fifth embodiments except that the conductive post 31 is provided on the electronic components 12, 12,. It is the same composition. The same components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the conductive posts 31 are provided on the electronic components 12, 12,..., But may be provided on the electronic components 13, 13,. .., 13, 13,... May be provided. It is sufficient that at least one conductive post 31 is formed on one electronic component module 101.
  • the conductive post 31 has its upper part including the upper surface exposed from the top surface of the sealing resin layer 14 to electrically connect the electronic components 12, 12,... And the shield layer 15.
  • the electronic components 12, 12,... Have external electrodes 32, and the external electrodes 32 are electrically connected to bonding pads (electrode pads) 33 provided on the circuit board 11 via solder or the like. Further, the bonding pad 33 to which the electronic components 12, 12,... Are connected is connected to the grounding electrode 16 provided inside the circuit board 11 by a via hole or the like. Further, the external electrode 32 is connected to the conductive post 31 on the side opposite to the connection surface with the bonding pad 33. Therefore, the shield layer 15 is electrically connected to the grounding electrode 16 via the bonding pad 33 and the conductive post 31 connected to the electronic components 12, 12,.
  • the shield layer 15 is formed on the surface of the sealing resin layer 14 except for the lower part of the side surface of the electronic component module 101. Since the shield layer 15 is formed even on a part of the side surface, the shielding effect can be sufficiently enhanced as compared with the case where the shield layer 15 is formed only on the top surface of the sealing resin layer 14. Of course, the shield layer 15 may be formed on all side surfaces of the electronic component module 101 as in the first to fifth embodiments.
  • FIG. 12 is a cross-sectional view for explaining the method for manufacturing the electronic component module 101 according to the sixth embodiment of the present invention.
  • 12A shows a state in which the cut portion 17 is formed after the sealing resin layer 14 is formed
  • FIG. 12B shows a state in which the sheet-like conductive resin 18 is placed.
  • c) shows a state in which pressure and heat are applied to the aggregate substrate 10 by the heater press device 19, and
  • FIG. 12 (d) shows a state in which the aggregate substrate 10 on which the shield layer 15 is formed is divided.
  • the conductive post 31 is formed on the electronic components 12, 12,.
  • the conductive post 31 is formed by repeatedly discharging and solidifying a curable conductive solution.
  • the conductive post 31 is formed by an inkjet method, a jet dispenser method, or the like using a conductive solution in which a conductive powder is dispersed in a solvent as a conductive solution having curability.
  • the conductive post 31 having a predetermined height is formed by discharging a conductive solution a plurality of times from a discharge port of a nozzle used in an inkjet method, a jet dispenser method, and the like, and depositing and solidifying a conductive powder.
  • the conductive post 31 may be formed by applying a curable conductive material such as a conductive paste to a predetermined location by a plurality of times by a screen printing method or the like and solidifying it.
  • a curable conductive material such as a conductive paste
  • silver nano paste, copper nano paste, or the like is used as the conductive paste.
  • the same conductive powder such as nano-order silver or copper may be used.
  • the conductive post 31 is preferably a sintered metal obtained by firing stacked conductive materials at a predetermined temperature. Since the sintered metal has high strength and is not easily deformed by the heat at the time of curing of the sealing resin layer 14, it is possible to suppress damage to the conductive posts 31 when the sealing resin layer 14 is formed. Moreover, it is preferable that the electroconductive post 31 is formed in the shape where a cross section becomes small gradually as it goes to the top
  • the sheet-like conductive resin 18 When the sheet-like conductive resin 18 is placed in the next step, pressure is applied to the conductive post 31 from above, but the tapered conductive post 31 has high pressure resistance against pressure from above. There is no breakage due to pressure from above. Further, since the sheet-like conductive resin 18 is placed so as to cover the upper surface of the conductive post 31 exposed from the top surface of the sealing resin layer 14, when the cross section of the exposed conductive post 31 is large, The placed sheet-like conductive resin 18 tends to be convex at the upper part of the conductive post 31, but when the exposed conductive post 31 has a small cross section, it is difficult to become convex and the sealing resin layer is flat. 14 can be formed.
  • the sealing resin layer 14 made of synthetic resin is formed so as to expose the upper surface of the conductive posts 31 and cover the upper part of the collective substrate 10 on which the plurality of electronic component modules 101, 101,.
  • the sealing resin layer 14 is formed by applying a liquid synthetic resin such as an epoxy resin by dispenser, vacuum printing, pressing a sheet-like synthetic resin with a press device, or using a transfer molding method. And sealing with resin.
  • the circuit board 11 and the electronic components 12, 12, ..., 13, 13, ... are sealed to form an insulating layer.
  • the sealing resin layer 14 is formed to a thickness that exposes the upper surface of the conductive post 31.
  • the sealing resin layer 14 may be polished so that the upper surface of the conductive post 31 is reliably exposed from the sealing resin layer 14.
  • the sealing resin layer 14 is formed thicker than the height of the conductive post 31, strictly speaking, the height of the electronic component 12 plus the height of the conductive post 31. Thereafter, by polishing a predetermined thickness of the formed sealing resin layer 14 with a polishing roll or the like, the upper surface of the conductive post 31 can be reliably and easily exposed to the top surface of the sealing resin layer 14. . At the same time, the surface of the sealing resin layer 14 can be flattened.
  • a groove-shaped cut portion is formed to a depth just before reaching the circuit board 11 at the boundary portion cut out as the electronic component module 101.
  • 17 is formed using a blade or the like.
  • the cut portion 17 has a width of about 0.3 mm and a depth of about 0.8 mm, for example.
  • the cut portion 17 may be formed in the middle of the circuit board 11 to a depth at which the grounding electrode 16 is exposed.
  • the shield layer 15 and the bonding pads 33 connected to the electronic components 12, 12,... Are electrically connected via the conductive posts 31, so The conductive resin 18 and the ground electrode 16 need not be conductively connected.
  • the sheet-like conductive resin 18 is placed so as to cover the top surface including the top surfaces of the cut portions 17 and the conductive posts 31. . Since the upper surface of the conductive post 31 is exposed from the sealing resin layer 14, the conductive post 31 comes into contact with the sheet-like conductive resin 18.
  • the pressure and pressure are applied to the collective substrate 10 on which the sheet-like conductive resin 18 is placed in a vacuum environment using a heater press device 19 as in the first embodiment. Add heat. By applying heat together with pressure, the sheet-like conductive resin 18 placed so as to cover the top surface including the top surface of the cut portion 17 and the conductive post 31 is softened and deformed or flows, and the cut portion 17 Infiltrate. On the top surface including the cut portions 17 and the upper surfaces of the conductive posts 31, the conductive resin 18 is in a thin film state. Since the cut portion 17 is formed to a depth before reaching the circuit board 11, the conductive resin 18 that has entered the cut portion 17 is not in contact with the grounding electrode 16 and is not electrically connected.
  • the collective substrate 10 is cooled and the softened conductive resin 18 is cured, for example, a film A shield layer 15 having a thickness of 5 to 15 ⁇ m is formed.
  • the aggregate substrate 10 on which the shield layer 15 is formed is divided by the cut portions 17 using a dicer or the like.
  • the aggregate substrate 10 may be divided by a break method.
  • the collective substrate 10 is divided and separated into electronic component modules 101.
  • the shield layer 15 is formed not on all of the side surfaces of the electronic component module 101 but on a part of the side surface except for the lower portion of the side surface, and the conductive resin 18 of the shield layer 15 does not contact the grounding electrode 16 and Although not connected, the shield layer 15 and the bonding pad 33 connected to the electronic components 12, 12,... Are electrically connected via the conductive posts 31.
  • the cut resin can be sufficiently filled with the conductive resin.
  • the shield layer can be formed not only on the top surface but also on a part of the side surface.
  • the shield layer can be made thin, voids can be prevented from occurring, and electronic components can be reliably shielded.
  • productivity is also improved.
  • the electronic component module can be reduced in size. Furthermore, when an electrical signal is transmitted through a conductive post in an electronic component module, the transmission path is shortened and resistance is reduced as compared with the case where an electrical signal is transmitted through a conductive resin on the side surface. Is possible.
  • the electronic component module 101 according to the sixth embodiment shown in FIG. 11 has the conductive post 31, the sealing resin layer 14, and the cut portion 17 formed as shown in FIG. It can be manufactured in the same manner as in Embodiments 2 to 5.
  • the pressurized oven device 21 is used, after the step shown in FIG. 12 (a), the steps shown in FIGS. 4 (b) to 4 (d) and FIG. 2 (d) are performed in the same manner as in the second embodiment.
  • the component module 101 can be manufactured, and the same effects as those of the second embodiment can be obtained.
  • the embodiment is performed in the steps shown in FIGS. 5B to 5D and FIG. 2D after the step shown in FIG.
  • the electronic component module 101 can be manufactured in the same manner as in the third embodiment, and the same effect as in the third embodiment can be obtained.
  • the electronic component module 101 can be manufactured in the same manner as in the fourth embodiment in the steps shown in FIGS. 6B to 8J. The same effects as in the fourth embodiment can be obtained.
  • the heater press device 19 is used after the cut portion 17 is filled with the conductive resin 23 and the sheet-like conductive resin 18 is placed, after the process shown in FIG.
  • the electronic component module 101 can be manufactured in the same manner as in the fifth embodiment in the steps shown in b) to (d), and the same effects as in the fifth embodiment can be obtained.
  • FIG. 13 is a cross-sectional view showing a configuration of an electronic component module according to Embodiment 7 of the present invention.
  • the electronic component module 201 according to the seventh embodiment of the present invention is provided on the surface of the circuit board 11 instead of providing the conductive posts 31 on the electronic components 12, 12,...
  • the configuration is the same as that of the electronic component module 101 of the sixth embodiment, except that the conductive posts 41 are provided on the collective substrate 10 so as to be connected to the bonded pads (electrode pads) 33.
  • the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the conductive post 41 has its upper surface exposed from the top surface of the sealing resin layer 14 to electrically connect the bonding pad 33 and the shield layer 15.
  • the bonding pad 33 to which the conductive post 41 is connected is connected to the grounding electrode 16 provided inside the circuit board 11 by a via hole or the like. Therefore, the shield layer 15 is electrically connected to the ground electrode 16 via the bonding pad 33 and the conductive post 41.
  • the shield layer 15 is formed on the entire surface of the sealing resin layer 14. In addition, the shield layer 15 does not need to be formed on all the side surfaces of the electronic component module 201 as in the sixth embodiment, and may be formed on a part of the side surfaces as shown in FIG.
  • FIG. 14 is a cross-sectional view for explaining a method for manufacturing the electronic component module 201 according to Embodiment 7 of the present invention.
  • 14A shows a state in which the cut portion 17 is formed after the sealing resin layer 14 is formed
  • FIG. 14B shows a state in which the sheet-like conductive resin 18 is placed.
  • c) shows a state in which pressure and heat are applied to the collective substrate 10 in the pressure oven device 21, and
  • FIG. 14 (d) shows a state in which the shield layer 15 is formed.
  • the conductive posts 41 are formed on the collective substrate 10 so as to be connected to the bonding pads (electrode pads) 33 provided on the surface of the circuit board 11.
  • the conductive post 41 can be formed in the same manner as the method for forming the conductive post 31 described in the fifth embodiment.
  • a conductive post 41 having a predetermined height is formed by discharging a conductive solution a plurality of times from a discharge port of a nozzle used in an inkjet method, and depositing and solidifying a conductive powder.
  • the conductive post 41 is preferably a sintered metal for the same reason as the conductive post 31 and is preferably a so-called tapered shape.
  • the sealing resin layer 14 made of synthetic resin is formed so as to expose the upper surface of the conductive posts 41 and cover the upper part of the collective substrate 10 on which the plurality of electronic component modules 201, 201,.
  • the sealing resin layer 14 is collectively resin-sealed by applying a liquid synthetic resin such as an epoxy resin by dispenser application, vacuum printing application, or a transfer molding method.
  • the circuit board 11 and the electronic components 12, 12, ..., 13, 13, ... are sealed to form an insulating layer. Since the upper surface of the conductive post 41 is exposed from the sealing resin layer 14, it is not completely resin-sealed.
  • the upper surface of the conductive post 41 may be exposed on the top surface of the sealing resin layer 14 by polishing with the above-described polishing roll or the like.
  • the groove-shaped cut portion 17 is formed at the boundary portion cut out as the electronic component module 201 to the position reaching the circuit board 11. It is formed using a blade or the like.
  • the cut portion 17 has, for example, a width of about 0.6 mm and a depth of about 0.6 mm.
  • the shield layer 15 and the bonding pad 33 are electrically connected via the conductive post 41, the conductive resin 18 and the grounding electrode 16 are conductively connected by the cut portion 17. It is not necessary.
  • the sheet-like conductive resin 18 is placed so as to cover the top surface including the cut portions 17 and the top surfaces of the conductive posts 41. . Since the upper surface of the conductive post 41 is exposed from the sealing resin layer 14, the conductive post 41 comes into contact with the sheet-like conductive resin 18.
  • pressure and heat are applied to the collective substrate 10 on which the sheet-like conductive resin 18 is placed using the pressure oven device 21.
  • air filled in the tank of the apparatus can apply pressure uniformly to the collective substrate 10 from all directions in three dimensions, so that pressure can be appropriately applied without escaping from the side surface. Can be pressed.
  • pressure is not applied in a predetermined direction and pressure can be applied evenly.
  • the conductive resin 18 After the conductive resin 18 enters the cut portion 17 and is connected to the circuit board 11 and is in a thin film state on the top surface including the cut portion 17 and the upper surface of the conductive post 41, the collective substrate 10 is cooled, The softened conductive resin 18 is cured. When the conductive resin 18 is cured, the shield layer 15 having a film thickness of 5 to 15 ⁇ m, for example, is formed.
  • the collective substrate 10 on which the shield layer 15 is formed is divided by the cut portion 17 using a dicer or the like, and the electronic component Separated into modules 201.
  • the cut resin can be sufficiently filled with the conductive resin.
  • the shield layer can be formed not only on the top surface but also on a part of the side surface.
  • the shield layer can be made thin, voids can be prevented from occurring, and electronic components can be reliably shielded. Furthermore, since the shield layer can be formed on the side surface and the top surface in one processing step, productivity is also improved.
  • the electronic component module 201 according to the seventh embodiment shown in FIG. 13 has the conductive post 41, the sealing resin layer 14, and the cut portion 17 formed as shown in FIG. It can be manufactured in the same manner as in the first, third, and fourth embodiments.
  • the electronic component module 201 is manufactured in the same manner as in the first embodiment in the steps shown in FIGS. 2B to 2D after the step shown in FIG. And the same effects as those of the first embodiment can be obtained.
  • the embodiment is performed in the steps shown in FIGS. 5B to 5D and FIG. 2D after the step shown in FIG.
  • the electronic component module 201 can be manufactured in the same manner as in the third embodiment, and the same effect as in the third embodiment can be obtained.
  • the electronic component module 201 can be manufactured in the same manner as in the fourth embodiment in the steps shown in FIGS. 6B to 8J. The same effects as in the fourth embodiment can be obtained.
  • the heater press device is used after filling the cut portion 17 with the conductive resin 23, it is carried out in the steps shown in FIGS. 10B to 10D after the step shown in FIG.
  • the electronic component module 201 can be manufactured in the same manner as in the fifth embodiment, and the same effects as in the fifth embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 確実に電子部品をシールドすることができるとともに、小型化を実現することができる電子部品モジュールの製造方法を提供することを目的とする。  複数の電子部品12、13により複数の電子部品モジュール1が形成された集合基板10を樹脂にて一括封止し、電子部品モジュール1の境界部分にて、封止された封止樹脂層14の天面から、集合基板10の内部に配設してある接地用電極16に到達する位置まで切り込み部17を形成し、切り込み部17及び天面を覆うようにシート状の導電性樹脂18を載置した後、シート状の導電性樹脂18が載置された集合基板10に圧力及び熱を加えることにより、導電性樹脂18を切り込み部17に充填して接地用電極16と接続させる。

Description

電子部品モジュールの製造方法
 本発明は、複数の電子部品により複数の電子部品モジュールが形成された集合基板から、集合基板の内部に接地用電極を有する電子部品モジュールを切り出す電子部品モジュールの製造方法に関する。
 従来、電子部品モジュールを製造する場合、例えば、電子部品を搭載した基板上に、所定高さのグランド端子を設け、基板上に樹脂膜とシールド効果を有する導電膜とを積層した積層シートを配設した後、樹脂膜を軟化させることにより、グランド端子と導電膜とを導通させている(特許文献1参照)。
 しかし、特許文献1に開示されている製造方法で製造して切り出した電子部品モジュールでは、側面にシールド層が形成されていないため、電界ノイズ及び電磁波ノイズが側面から侵入することを防ぐことができないという問題があった。
 そこで、電子部品モジュールの側面にシールド層を形成する方法が検討されている。例えば、一方の面の電気接点と他方の面の接続パッドとを接続する一連のバイアホール及び一連の孔を有する基板に、少なくとも1つの電子部品の活性面側を取付け、該活性面の反対側の面に導電性の変形フィルムを付着する。そして、電子部品を鎧装して形成した堅固なアセンブリが変形フィルムと接触するように、他方の面から一連の孔を通じて変形フィルムを吸気する(特許文献2参照)。
 特許文献2では、電極は電子部品の活性面を取り付けた基板表面に形成されており、一連の孔を通じて変形フィルムを吸気することにより、導電性の変形フィルムが電子部品に沿って基板表面の電極と接地する。電子部品モジュールは孔の部分で切断され、孔に充填された変形フィルムが外部と接触することになり、切断された孔の部分(電子部品の側面)へのノイズの侵入を防ぐことができる。
 また、電磁波シールドを必要とする電子部品ではないが、樹脂フィルムを電子機能素子の側面まで充填して電子部品を製造する方法が開示されている(特許文献3参照)。具体的には、基板と、基板に設けられた複数の電子機能素子とを実装集合基板上に実装し、各電子機能素子上に樹脂フィルムを貼付して気体遮断性を有する袋に入れ、内部を減圧して密封する。そして、減圧された各電子機能素子間に樹脂フィルムを浸入させて、各電子機能素子を樹脂フィルムによって封止する。
 さらに、基板上に実装する要素部品が完全にシールドされた電子部品モジュールとして、例えば基板上に配置された複数の部品が絶縁層で被覆され、絶縁層から露呈させた状態で基板上に設けられた接地用電極と、絶縁層の外側に形成され接地用電極に接続されたシールド層とを具備し、基板とシールド層の端面とが同一平面上に位置する回路モジュールが開示されている(特許文献4参照)。
特開2000-223647号公報 特開2001-176995号公報 国際公開第2005/071731号 特開2004-172176号公報
 しかし、特許文献2では、孔を基板に形成するとともに電極を基板表面に形成しているため、電子部品モジュールが大型になり、集合基板から切り出す電子部品モジュール数が少なくなって、製造費用が増大するという問題があった。なお、特許文献1でも、天面に形成されるシールド層(導電膜)と接地するように接地用端子を形成する必要があり、接地用端子分だけ基板面積が大きくなることから、同様の問題を有していた。
 特許文献3では、基板と実装集合基板との間に電極が形成され、空間部が基板と実装集合基板との間に形成され、空間部の存在によって基板下の振動を妨げないようにしている。空間部を形成、すなわち樹脂フィルムの未充填空間を残すため、樹脂フィルムを基板と実装集合基板との狭い間隙に浸入させる必要がなく、袋の内部を減圧して外の大気との圧力差のみで樹脂フィルムを充填している。しかし、樹脂フィルムの狭い間隙への浸入性を高め、空気の巻き込み等によるボイドを防止し、電子部品を確実にシールドするためには、減圧だけでは不充分である。
 特許文献4では、絶縁層上にシールド層が設けられ、基板上の接地用電極とシールド層とを接続し、シールド層と基板側面を同一平面上に形成してモジュール平面方向を小型化するようにしている。しかし、特許文献4では、シールド層を導電性ペーストの塗布によって形成するため、一般に熱硬化性樹脂を主成分として含む導電性ペーストを熱硬化させる際に、導電性ペースト内に含まれる有機溶剤などの希釈液が蒸発してガス化し、シールド層内部にボイドが生じるおそれがある。また、平面方向の小型化を課題としたものであるため、低背化を実現するには不十分である。
 本発明は斯かる事情に鑑みてなされたものであり、確実に電子部品をシールドすることができるとともに、低背化を伴う小型化を実現することができる電子部品モジュールの製造方法を提供することを目的とする。
 上記目的を達成するために第1発明に係る電子部品モジュールの製造方法は、複数の電子部品により複数の電子部品モジュールが形成された集合基板を樹脂にて一括封止し、前記電子部品モジュールの境界部分にて、封止された樹脂の天面から、前記封止された樹脂又は前記集合基板の内部まで切り込み部を形成し、少なくとも側面の一部及び天面を導電性樹脂で被覆した後、前記電子部品モジュールを切り出す電子部品モジュールの製造方法において、前記切り込み部及び天面を覆うようにシート状の前記導電性樹脂を載置した後、シート状の前記導電性樹脂が載置された前記集合基板に圧力及び熱を加えることを特徴とする。
 また、第2発明に係る電子部品モジュールの製造方法は、第1発明において、前記集合基板の内部に配設してある接地用電極に到達する位置まで前記切り込み部を形成し、前記切り込み部及び天面を覆うようにシート状の前記導電性樹脂を載置した後、シート状の前記導電性樹脂が載置された前記集合基板に圧力及び熱を加えることにより、前記導電性樹脂を前記切り込み部に充填して前記接地用電極と接続させることを特徴とする。
 また、第3発明に係る電子部品モジュールの製造方法は、第1発明において、前記集合基板の表面に配設してある電極パッドと接続するように前記集合基板上又は前記電子部品上に導電性ポストを形成し、該導電性ポストの上面を露出させ、かつ前記電子部品モジュールを覆うように、前記集合基板を樹脂にて一括封止し、前記切り込み部及び前記導電性ポストの上面を含む天面を覆うようにシート状の前記導電性樹脂を載置した後、シート状の前記導電性樹脂が載置された前記集合基板に圧力及び熱を加えることにより、前記導電性樹脂を前記切り込み部に充填し、かつ前記導電性ポストの上面と前記導電性樹脂とを接続させることを特徴とする。
 また、第4発明に係る電子部品モジュールの製造方法は、第1乃至第3発明のいずれか1つにおいて、前記切り込み部を形成した後、シート状の前記導電性樹脂を載置する前に、前記切り込み部の一部に前記導電性樹脂を充填しておくことを特徴とする。
 また、第5発明に係る電子部品モジュールの製造方法は、第1乃至第4発明のいずれか1つにおいて、ヒータプレス装置により、シート状の前記導電性樹脂が載置された前記集合基板に真空環境下で圧力及び熱を加えることを特徴とする。
 また、第6発明に係る電子部品モジュールの製造方法は、第1乃至第4発明のいずれか1つにおいて、密閉された槽内に充填された流体の圧力を上昇させる装置により、シート状の前記導電性樹脂が載置された前記集合基板に圧力及び熱を加えることを特徴とする。
 また、第7発明に係る電子部品モジュールの製造方法は、第1乃至第4発明のいずれか1つにおいて、シート状の前記導電性樹脂を載置した前記集合基板を気体遮断性を有する袋に入れ、減圧パック装置により、前記集合基板を入れた前記袋の内部を減圧して密封し、減圧した前記袋内の前記集合基板に熱を加えることを特徴とする。
 また、第8発明に係る電子部品モジュールの製造方法は、第1乃至第4発明のいずれか1つにおいて、シート状の前記導電性樹脂を載置した前記集合基板を気体遮断性を有する袋に入れ、減圧パック装置により、前記集合基板を入れた前記袋の内部を減圧しつつ、前記袋内の前記集合基板に熱を加えることを特徴とする。
 また、第9発明に係る電子部品モジュールの製造方法は、第7又は第8発明において、密閉された槽内に充填された流体の圧力を上昇させる装置により、前記槽内に載置した前記袋内の前記集合基板に圧力及び熱を加えることを特徴とする。
 また、第10発明に係る電子部品モジュールの製造方法は、第3発明において、前記導電性ポストは、前記集合基板又は前記電子部品から前記天面へ向かうにつれて次第に断面が小さくなる形状にて形成されることを特徴とする。
 また、第11発明に係る電子部品モジュールの製造方法は、第3発明において、前記導電性ポストは、硬化性を有する導電性溶液の吐出及び固化を繰り返して前記集合基板又は前記電子部品モジュール上に形成されることを特徴とする。
 第1発明では、シート状の導電性樹脂が載置された集合基板に圧力及び熱を加えることにより、切り込み部にも充分に導電性樹脂を充填することができ、天面だけでなく側面にもシールド層を形成することができる。また、シールド層の薄膜化を図ることができ、ボイドの発生を未然に防止することができ、確実に電子部品をシールドすることが可能となる。さらに、側面及び天面へのシールド層の形成を1つの処理工程にて実施することができるので、生産性も向上する。加えて、シート状の導電性樹脂を用いることにより、取り扱いが容易となり、封止された樹脂の天面に薄膜のシールド層を容易に形成することができるので、電子部品モジュールを低背化することが可能となる。
 第2発明では、集合基板の内部に配設してある接地用電極に到達する切り込み部にシールド層が形成され、基板側面のシールド層を構成し、基板側面のシールド層が接地用電極と接触して電気的に接続するので、電子部品モジュール当たりの基板面積を小さくすることが可能であり、低背化とともに電子部品モジュールを小型化することが可能となる。
 第3発明では、集合基板の表面に配設してある電極パッドと接続するように集合基板上又は電子部品上に導電性ポストを形成することにより、基板表面に電極を形成して基板に孔を形成することなく、電子部品モジュール当たりの基板面積を小さくすることが可能である。特に電子部品上に導電性ポストを形成する場合に、電子部品モジュール当たりの基板面積をより小さくすることが可能であり、低背化とともに電子部品モジュールを小型化することが可能となる。さらに、電子部品モジュールにおいて導電性ポストを介して電気信号が伝達される場合、側面の導電性樹脂を介して電気信号が伝達される場合と比較して電送路が短くなり、抵抗を小さくすることが可能となる。
 第4発明では、切り込み部を形成した後、シート状の導電性樹脂を載置する前に、切り込み部の一部に導電性樹脂を充填しておくことにより、シート状の導電性樹脂が充填され難い切り込み部の底部への充填不足を補うことができるとともにボイドの発生を未然に防止して、より確実に電子部品をシールドすることが可能となる。
 第5発明では、ヒータプレス装置により、シート状の導電性樹脂が載置された集合基板に真空環境下で圧力及び熱を加えることにより、切り込み部へ導電性樹脂を効果的に充填することができるとともに、天面に形成されるシールド層の膜厚を制御することが容易となる。また、真空環境下で圧力及び熱を加えることにより、ボイドの発生を未然に防止することができるので、より切り込み幅を狭くしてシールド層を薄膜化することができる。切り込み部の幅を狭くすることで、集合基板から切り出す電子部品モジュール数を多くすることができ、製造コストを抑制することも可能となる。
 第6発明では、密閉された槽内に充填された流体の圧力を上昇させる装置により、シート状の導電性樹脂が載置された集合基板に圧力及び熱を加えることにより、ヒータプレス装置よりも簡易な構成の装置を用いる場合であってもシールド層の薄膜化を図ることができ、ボイドの発生を未然に防止することができ、より製造コストを抑制することが可能となる。また、所定の方向に偏って圧力が加えられることがなく、均等に加圧することが可能となる。
 第7発明では、シート状の導電性樹脂を載置した集合基板を気体遮断性を有する袋に入れ、減圧パック装置により、集合基板を入れた袋の内部を減圧し、減圧した袋内の集合基板に熱を加えることにより、袋の内外の圧力差により導電性樹脂がより切り込み部に充填され易くなる。また、減圧状態で加熱することにより、加熱によって導電性樹脂等に発生するガス等を減圧状態である導電性樹脂等の外に排出することができるので、ボイドの発生を未然に防止することができる。ヒータプレス装置にて真空環境下で処理する場合と比較し、簡易な装置及び処理工程でシールド層を形成することができる。さらに、気体遮断性を有する袋を使用することにより、集合基板の形状に沿って均等に外圧がかかり、集合基板が均等に加圧されることになる。
 第8発明では、シート状の導電性樹脂を載置した集合基板を気体遮断性を有する袋に入れ、減圧パック装置により、集合基板を入れた袋の内部を減圧しつつ、袋内の集合基板に熱を加えるようにした場合、集合基板を入れた袋の内部を減圧しつつ熱を加えることにより、切り込み部の一部に充填された導電性樹脂に含まれる溶剤成分を大気圧下より多く揮発蒸散させることができ、ボイドの発生を未然に防止することができる。なお、減圧によって袋内が真空状態になるまでは、シート状の導電性樹脂は封止された樹脂の天面に完全には圧着されていないので、切り込み部の一部に充填された導電性樹脂に含まれる溶剤成分は、封止された樹脂とシート状の導電性樹脂との間から容易に揮発蒸散することができる。
 第9発明では、密閉された槽内に充填された流体の圧力を上昇させる装置により、槽内に載置した袋内の集合基板に圧力及び熱を加えることにより、真空環境下にて全方向から均等に圧力を加えて加熱することができるので、切り込み部へ導電性樹脂がより充填され易くなるとともに、よりボイドの発生を抑制することが可能となる。
 第10発明では、導電性ポストは、集合基板又は電子部品から天面へ向かうにつれて次第に断面が小さくなる形状にて形成される、いわゆるテーパ形状を有することにより、シート状の導電性樹脂を載置してシールド層を形成する場合、導電性ポストを破損することなく、均一かつ平坦に封止樹脂層を形成することが可能となる。すなわち、シート状の導電性樹脂を載置する場合、導電性ポストに上方から圧力が加えられるが、テーパ形状の導電性ポストは上方からの圧力に対して耐圧性が高く、上方からの圧力によって折れて破損することがない。また、シート状の導電性樹脂は、封止された樹脂の天面から露出した導電性ポストの上面を覆うように載置されるので、露出した導電性ポストの断面が大きい場合、載置したシート状の導電性樹脂が導電性ポストの上部で凸状に形成されやすいが、露出した導電性ポストの断面が小さい場合には、凸状になり難く平坦に封止樹脂層を形成することができる。
 第11発明では、導電性ポストは、硬化性を有する導電性溶液の吐出及び固化を繰り返して集合基板又は電子部品上に形成されることにより、インクジェット法、ジェットディスペンサー法等によって、所望の高さの導電性ポストを形成することが可能となる。
 上記構成によれば、シート状の導電性樹脂が載置された集合基板に圧力及び熱を加えることにより、切り込み部にも充分に導電性樹脂を充填することができ、天面だけでなく側面にもシールド層を形成することができる。また、シールド層の薄膜化を図ることができ、ボイドの発生を未然に防止することができ、確実に電子部品をシールドすることが可能となる。さらに、側面及び天面へのシールド層の形成を1つの処理工程にて実施することができるので、生産性も向上する。加えて、シート状の導電性樹脂を用いることにより、取り扱いが容易となり、封止された樹脂の天面に薄膜のシールド層を容易に形成することができるので、電子部品モジュールを低背化することが可能となる。
本発明の実施の形態1に係る電子部品モジュールの構成を示す断面図である。 本発明の実施の形態1に係る電子部品モジュールの製造方法を説明するための断面図である。 本発明の実施の形態1に係る電子部品モジュールの各製造工程でのブレイク用切り込み部付近の状態を説明するための断面図である。 本発明の実施の形態2に係る電子部品モジュールの製造方法を説明するための断面図である。 本発明の実施の形態3に係る電子部品モジュールの製造方法を説明するための断面図である。 本発明の実施の形態4に係る電子部品モジュールの製造方法を説明するための断面図である。 本発明の実施の形態4に係る電子部品モジュールの製造方法を説明するための断面図である。 本発明の実施の形態4に係る電子部品モジュールの製造方法を説明するための断面図である。 減圧パック装置での減圧時に導電性樹脂の硬化温度以下の比較的低温で加熱した場合の真空度の変化を示すグラフである。 本発明の実施の形態5に係る電子部品モジュールの製造方法を説明するための断面図である。 本発明の実施の形態6に係る電子部品モジュールの構成を示す断面図である。 本発明の実施の形態6に係る電子部品モジュールの製造方法を説明するための断面図である。 本発明の実施の形態7に係る電子部品モジュールの構成を示す断面図である。 本発明の実施の形態7に係る電子部品モジュールの製造方法を説明するための断面図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る電子部品モジュールの構成を示す断面図である。本発明の実施の形態1に係る電子部品モジュール1は、一例として10.0mm×10.0mm×1.2mmの直方体形状をしており、セラミック、ガラス、エポキシ樹脂等からなる回路基板11と、回路基板11の表面に載置されている半導体素子、コンデンサ、抵抗、SAWフィルタ等の電子部品12、12、・・・、13、13、・・・とを備えている。
 回路基板11は、例えば上面が長方形である厚さ略0.5mmの樹脂基板である。回路基板11の表面には、電子部品12、12、・・・、13、13、・・・との接合パッド(電極パッド)を兼ねた信号パターン(図示せず)と、回路基板11の側方に接地用電極16とが備えてある。回路基板11の信号パターンと各半導体素子、コンデンサ、抵抗等の電子部品12、12、・・・、13、13、・・・の端子とは、ボンディングワイヤ、ハンダ等により接続されている。
 回路基板11及び電子部品12、12、・・・、13、13、・・・を覆うように回路基板11の上面に合成樹脂による封止樹脂層14が形成されている。封止樹脂層14の表面には、電子部品12、12、・・・、13、13、・・・を電界ノイズ及び電磁波ノイズからシールドするシールド層15が形成されている。
 図2は、本発明の実施の形態1に係る電子部品モジュール1の製造方法を説明するための断面図である。図2(a)は封止樹脂層14が形成された後に切り込み部17が形成された状態を、図2(b)はシート状の導電性樹脂18が載置された状態を、図2(c)はヒータプレス装置19にて集合基板10に圧力及び熱を加えている状態を、図2(d)はシールド層15が形成された集合基板10を分断する状態を、それぞれ示している。
 まず、複数の電子部品12、12、・・・、13、13、・・・が載置されている回路基板11を複数切り出すことが可能な集合基板10の上部を覆うように、合成樹脂による封止樹脂層14を形成する。封止樹脂層14は、エポキシ樹脂等の液状の合成樹脂を、ディスペンサー塗布する、真空印刷塗布する、又はトランスファ成型方法等を用いることにより、一括して樹脂封止する。回路基板11及び電子部品12、12、・・・、13、13、・・・が封止されることにより、絶縁層が形成される。
 次に、図2(a)に示すように、封止樹脂層14が形成された状態で、電子部品モジュール1として切り出す境界部分において、回路基板11の途中であって接地用電極16が露出する深さまで溝状の切り込み部17をブレード等を用いて形成する。切り込み部17は例えば幅0.3mm程度、深さ0.8mm程度である。切り込み部17を形成することにより、接地用電極16を確実に露出させることができ、次の工程にて導電性樹脂18と導電接続することができる。
 次に、図2(b)に示すように、切り込み部17及び天面を覆うようにシート状の導電性樹脂18を載置する。シート状の導電性樹脂18は、通常状態(常温等)で粘着性がなく乾いた状態であり、取り扱いが容易で、後の工程にて封止樹脂層14の天面に薄膜のシールド層15を容易に形成することができる。
 シート状の導電性樹脂18に含まれる導電性成分(フィラー)は、例えばAg、Cu、Ni等であり、導電性成分を含有する合成樹脂(バインダー)としては、例えばエポキシ系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂等、熱軟化性を有する樹脂である。
 次に、図2(c)に示すように、ヒータプレス装置19を用いて真空環境下でシート状の導電性樹脂18が載置された集合基板10に圧力及び熱を加える。図2(c)では底面側を図示していないが、ヒータプレス装置19は、集合基板10の天面側及び底面側から集合基板10を挟んで鉛直方向に集合基板10に圧力を加える。そして、圧力とともに熱を加えることにより、切り込み部17及び天面を覆うように載置されたシート状の導電性樹脂18が軟化して変形又は流動し、切り込み部17に浸入する。切り込み部17に浸入した導電性樹脂18は接地用電極16と接触して電気的に接続する。切り込み部17及び天面上では、導電性樹脂18が薄膜状態となる。
 導電性樹脂18が、切り込み部17に浸入して接地用電極16と接触して電気的に接続し、切り込み部17及び天面上で薄膜状態となった後、集合基板10を冷却し、軟化した導電性樹脂18を硬化させる。導電性樹脂18が硬化することにより、例えば膜厚5~15μmのシールド層15が形成される。なお、集合基板10は、冷却機能付きヒータプレス装置にて冷却しても良いし、他の冷却装置等を使用して冷却しても良い。
 最後に、図2(d)に示すように、ダイサー等を用いてシールド層15が形成された集合基板10を切り込み部17にて分断する。集合基板10は、分断されて電子部品モジュール1に個片化される。なお、切り込み部17が形成された回路基板11の底面にも、底面側から回路基板11の途中であって切り込み部17と接続しない深さのブレイク用切り込み部を設けておいても良い。
 図3は、本発明の実施の形態1に係る電子部品モジュール1の各製造工程でのブレイク用切り込み部付近の状態を説明するための断面図である。図3(a)はブレイク用切り込み部27が設けられた回路基板11上に電子部品12、12、・・・が載置されている状態、図3(b)は封止樹脂層14が形成された状態、図3(c)は切り込み部17が形成された状態、図3(d)はシールド層15が形成された状態、図3(e)はシールド層15が形成された集合基板10を分断する状態をそれぞれ示す。なお、図3の例では電子部品13、13、・・・を省略しているが、ブレイク用切り込み部27以外の構成は図2と同様である。
 図3(a)に示すように、回路基板11の底面側からブレイク用切り込み部27が設けられた回路基板11上に、電子部品12、12、・・・を載置する。その後、図3(b)乃至(d)に示すように、ブレイク用切り込み部27が回路基板11に設けられていること以外は、図2(a)乃至(c)と全く同様にして、切り込み部17及び天面上にシールド層15が形成される。
 そして、図3(e)に示すように、ブレイク工法により、シールド層15が形成された集合基板10を割るようにして切り込み部17及びブレイク用切り込み部27にて分断する。これにより、ダイサー等の切断装置を用いることなく、集合基板10を分断する場合に多用されているいわゆるブレイク工法によって集合基板10を分断することができる。
 以上のように本実施の形態1によれば、シート状の導電性樹脂が載置された集合基板に圧力及び熱を加えることにより、切り込み部にも充分に導電性樹脂を充填することができ、天面だけでなく側面にもシールド層を形成することができる。また、シールド層の薄膜化を図ることができ、ボイドの発生を未然に防止することができ、確実に電子部品をシールドすることが可能となる。さらに、側面及び天面へのシールド層の形成を1つの処理工程にて実施することができるので、生産性も向上する。
 加えて、シート状の導電性樹脂を用いることにより、取り扱いが容易となり、封止された樹脂の天面に薄膜のシールド層を容易に形成することができるので、電子部品モジュールを低背化することが可能となる。また、集合基板の内部に配設してある接地用電極に到達する切り込み部にシールド層が形成され、基板側面のシールド層を構成し、基板側面のシールド層が接地用電極と接触して電気的に接続するので、電子部品モジュール当たりの基板面積を小さくすることが可能であり、低背化とともに電子部品モジュールを小型化することが可能となる。
 また、ヒータプレス装置により、シート状の導電性樹脂が載置された集合基板に真空環境下で圧力及び熱を加えることにより、切り込み部へ導電性樹脂を効果的に充填することができるとともに、天面に形成されるシールド層の膜厚を制御することが容易となる。また、真空環境下で圧力及び熱を加えることにより、ボイドの発生を未然に防止することができるので、より切り込み幅を狭くしてシールド層を薄膜化することができる。ボイドの発生を防止することができるので、より狭くて深い切り込み部へも導電性樹脂を効果的に充填することができる。切り込み部の幅を狭くすることにより、集合基板から切り出す電子部品モジュール数を多くすることができ、製造コストを抑制することが可能となる。
 (実施の形態2)
 本発明の実施の形態2に係る電子部品モジュールの構成は、図1に示した実施の形態1に係る電子部品モジュール1の構成と同一であるため、同一の符号を付することで詳細な説明は省略する。
 図4は、本発明の実施の形態2に係る電子部品モジュール1の製造方法を説明するための断面図である。図4(a)は封止樹脂層14が形成された後に切り込み部17が形成された状態を、図4(b)はシート状の導電性樹脂18が載置された状態を、図4(c)は加圧オーブン装置21にて集合基板10に圧力及び熱を加えている状態を、図4(d)はシールド層15が形成された状態を、それぞれ示している。なお、図4(a)及び(b)はそれぞれ図2(a)及び(b)と同様である。
 実施の形態1と同様にして、集合基板10の上部を覆うように、合成樹脂による封止樹脂層14を形成することにより、絶縁層が形成される。そして、図4(a)に示すように、封止樹脂層14が形成された状態で、電子部品モジュール1として切り出す境界部分において、回路基板11の途中であって接地用電極16が露出する深さまで溝状の切り込み部17をブレード等を用いて形成する。切り込み部17は、例えば幅0.6mm程度、深さ0.6mm程度である。次に、図4(b)に示すように、切り込み部17及び天面を覆うようにシート状の導電性樹脂18を載置する。
 次に、図4(c)に示すように、加圧オーブン装置21を用いて、シート状の導電性樹脂18が載置された集合基板10に圧力及び熱を加える。加圧オーブン装置21は、オートクレーブ等、密閉された槽内に充填された流体の圧力を上昇させる装置である。装置の槽内の密閉空間に充填される流体は、空気、水等である。例えば、オートクレーブにより、空気を用いてシート状の導電性樹脂18の硬化温度にて圧力0.5MPa程度で加圧する。なお、流体に水を用いる場合、空気等を用いる装置よりも複雑な構成を要するが、空気等より安定して加圧することが可能となる。
 加圧オーブン装置21を用いて、シート状の導電性樹脂18が載置された集合基板10に圧力及び熱を加えることにより、例えば装置の槽内に充填された空気が3次元の全方向から集合基板10に均等に圧力を加えることができるので、側面から圧が逃れることなく、適切に加圧することができる。また、3次元の全方向から圧力を加えるので、所定の方向に偏って圧力が加えられることがなく、均等に加圧することができる。例えば、集合基板10上での電極の段差等が原因で、鉛直方向(一軸方向)にのみ圧力を加える場合に集合基板10に生じる反り、割れ等を防ぐことができる。
 次に、図4(d)に示すように、集合基板10に加圧オーブン装置21を用いて圧力とともに熱を加えることにより、切り込み部17及び天面を覆うように載置されたシート状の導電性樹脂18が軟化して変形又は流動し、切り込み部17に浸入する。切り込み部17に浸入した導電性樹脂18は接地用電極16と接触して電気的に接続する。切り込み部17及び天面上では、導電性樹脂18が薄膜状態となる。
 導電性樹脂18が、切り込み部17に浸入して接地用電極16と接触して電気的に接続し、切り込み部17及び天面上で薄膜状態となった後、集合基板10を冷却し、軟化した導電性樹脂18を硬化させる。導電性樹脂18が硬化することにより、例えば膜厚5~15μmのシールド層15が形成される。なお、集合基板10は、加圧オーブン装置21による加圧及び加熱処理を終了した後、加圧オーブン装置21内で放置して冷却しても良いし、他の冷却装置等を使用して冷却しても良い。
 冷却後は、実施の形態1と同様にして図2(d)に示したように、ダイサー等を用いてシールド層15が形成された集合基板10を切り込み部17にて分断し、電子部品モジュール1に個片化する。なお、回路基板11にブレイク用切り込み部が形成されている場合には、ブレイク工法により集合基板10を分断しても良い。
 以上のように本実施の形態2によれば、加圧オーブン装置により、シート状の導電性樹脂が載置された集合基板に圧力及び熱を加えることにより、ヒータプレス装置よりも簡易な装置を用いる場合であってもシールド層の薄膜化を図ることができ、ボイドの発生を未然に防止することができ、より製造コストを抑制することが可能となる。また、所定の方向に偏って圧力が加えられることがなく、均等に加圧することが可能となる。
 (実施の形態3)
 本発明の実施の形態3に係る電子部品モジュールの構成は、図1に示した実施の形態1に係る電子部品モジュール1の構成と同一であるため、同一の符号を付することで詳細な説明は省略する。
 図5は、本発明の実施の形態3に係る電子部品モジュール1の製造方法を説明するための断面図である。図5(a)は封止樹脂層14が形成された後に切り込み部17が形成された状態を、図5(b)はシート状の導電性樹脂18が載置された状態を、図5(c)は気体遮断性を有する袋22に集合基板10を入れて減圧した状態を、図5(d)は減圧した袋22内の集合基板10を加熱した状態を、それぞれ示している。なお、図5(a)及び(b)はそれぞれ図2(a)及び(b)と同様である。
 実施の形態1と同様にして、集合基板10の上部を覆うように、合成樹脂による封止樹脂層14を形成することにより、絶縁層が形成される。そして、図5(a)に示すように、封止樹脂層14が形成された状態で、電子部品モジュール1として切り出す境界部分において、回路基板11の途中であって接地用電極16が露出する深さまで溝状の切り込み部17をブレード等を用いて形成する。切り込み部17は、例えば幅0.6mm程度、深さ0.7mm程度である。次に、図5(b)に示すように、切り込み部17及び天面を覆うようにシート状の導電性樹脂18を載置する。
 次に、図5(c)に示すように、気体遮断性を有する袋22にシート状の導電性樹脂18が載置された集合基板10を入れ、減圧パック装置(図示せず)を用いて、袋22内を減圧し、減圧した袋22内の集合基板10を密封する。また減圧パック装置は、例えば気体遮断性を有する袋内を減圧して密封(減圧パック)することができれば特に限定されない。なお、気体遮断性を有する袋22内で減圧された集合基板10には、集合基板10の形状に沿って均等に外圧がかかり、集合基板10が均等に加圧されることになる。そして、袋22内の集合基板10は、気体遮断性を有する袋22によって減圧状態が保たれるので、袋22から取り出されるまで長時間加圧されることになり、導電性樹脂18を長時間流動させることができる。長時間の流動により、切り込み部17に導電性樹脂18を充分に充填することができる。
 次に、図5(d)に示すように、オーブン等を用いて、袋22内に減圧パックされた集合基板10を加熱する。袋22の外は大気圧で袋22内は減圧されているので、袋22の内外の圧力差により、加熱されて流動化した導電性樹脂18が切り込み部17に浸入する。また、減圧状態で加熱することにより、加熱によって導電性樹脂18、封止樹脂層14、回路基板11、電子部品12、12、・・・、13、13、・・・に発生するガスを減圧状態である導電性樹脂18等の外に排出することができるので、ボイドの発生を未然に防止することができる。なお、加熱によるガスは、封止樹脂層14、回路基板11、電子部品12、12、・・・、13、13、・・・にも発生し、導電性樹脂18に発生するガスと同様に排出することができる。
 なお、導電性樹脂18等のボイドの発生を防止する観点から、袋22内は減圧されて真空状態になっていることが好ましいが、完全な真空状態でなくてもボイドの発生を防止できる程度に大気圧より充分低い減圧状態であれば良い。
 切り込み部17に浸入した導電性樹脂18は接地用電極16と接触して電気的に接続し、切り込み部17及び天面上では、導電性樹脂18が薄膜状態となる。その後、集合基板10を冷却し、軟化した導電性樹脂18を硬化させる。導電性樹脂18が硬化することにより、例えば膜厚5~15μmのシールド層15が形成される。
 冷却後は、実施の形態1と同様にして図2(d)に示したように、ダイサー等を用いてシールド層15が形成された集合基板10を切り込み部17にて分断し、電子部品モジュール1に個片化する。なお、回路基板11にブレイク用切り込み部が形成されている場合には、ブレイク工法により集合基板10を分断しても良い。
 なお本実施の形態3では、気体遮断性を有する袋22内に減圧パックされた集合基板10には、熱のみを加え、袋22の内外の圧力差のみにて導電性樹脂18を切り込み部17に浸入させるようにしている。しかし、切り込み部17が狭くて深く、導電性樹脂18が浸入し難い形状である場合には、加圧オーブン装置21等を用い、袋22内に減圧パックされた集合基板10に熱とともに圧力を加えるようにし、導電性樹脂18を切り込み部17に効果的に浸入させるようにしても良い。真空環境下にて全方向から均等に圧力を加えて加熱することができるので、切り込み部17に導電性樹脂18がより充填され易くなるとともに、よりボイドの発生を抑制することが可能となる。
 以上のように本実施の形態3によれば、シート状の導電性樹脂を載置した集合基板を気体遮断性を有する袋に入れ、減圧パック装置により、集合基板を入れた袋の内部を減圧し、減圧した袋内の集合基板に加熱することにより、袋の内外の圧力差により導電性樹脂がより切り込み部に充填され易くなる。また、減圧状態で加熱することにより、加熱によって導電性樹脂等に発生するガスを減圧状態である導電性樹脂等の外に排出することができるので、ボイドの発生を未然に防止することができる。ヒータプレス装置にて真空環境下で処理する場合と比較し、簡易な装置及び処理工程でシールド層を形成することができる。さらに、気体遮断性を有する袋を使用することにより、集合基板の形状に沿って均等に外圧がかかり、集合基板が均等に加圧されることになる。
 (実施の形態4)
 本発明の実施の形態4に係る電子部品モジュールの構成は、図1に示した実施の形態1に係る電子部品モジュール1の構成と同一であるため、同一の符号を付することで詳細な説明は省略する。
 図6乃至図8は、本発明の実施の形態4に係る電子部品モジュール1の製造方法を説明するための断面図である。図6(a)は封止樹脂層14が形成された後に切り込み部17が形成された状態を、図6(b)はシート状の導電性樹脂18が載置された状態を、図6(c)は気体遮断性を有する袋22に集合基板10を入れた状態を、図6(d)は集合基板10を入れた袋22内を減圧している状態を、それぞれ示している。
 また、図7(e)は減圧、加熱した状態で袋22の開口部を加熱シールしている状態を、図7(f)は減圧パック装置内を大気開放している状態を、それぞれ示しており、図8(g)は減圧パック装置から減圧した袋22を取り出した状態を、図8(h)は減圧した袋22内の集合基板10をオーブンで加熱した状態を、図8(i)は導電性樹脂18が硬化した後に袋22から集合基板10を取り出した状態を、図8(j)は集合基板10を分断している状態を、それぞれ示している。なお、図6(a)及び(b)はそれぞれ図2(a)及び(b)と同様である。
 実施の形態1と同様にして、集合基板10の上部を覆うように、合成樹脂による封止樹脂層14を形成することにより、絶縁層が形成される。そして、図6(a)に示すように、封止樹脂層14が形成された状態で、電子部品モジュール1として切り出す境界部分において、回路基板11の途中であって接地用電極16が露出する深さまで溝状の切り込み部17をブレード等を用いて形成する。切り込み部17は、例えば幅0.6mm程度、深さ0.7mm程度である。次に、図6(b)に示すように、切り込み部17及び天面を覆うようにシート状の導電性樹脂18を載置する。
 次に、図6(c)に示すように、気体遮断性を有する袋22にシート状の導電性樹脂18が載置された集合基板10を入れ、図6(d)に示す減圧パック装置を用いて、袋22内を減圧し、図7(e)に示すように減圧した袋22の開口部を加熱シール装置で加熱することで、袋22内にある樹脂により溶着して、集合基板10を密封する。また減圧パック装置は、例えば気体遮断性を有する袋内を減圧して密封(減圧パック)することができれば特に限定されない。
 次に、図7(f)に示すように、袋22を密封した後、減圧パック装置内を大気開放することにより、気体遮断性を有する袋22内で減圧された集合基板10には、集合基板10の形状に沿って均等に外圧がかかり、集合基板10が均等に加圧される。そして、図8(g)に示すように、袋22内の集合基板10は、気体遮断性を有する袋22によって減圧状態が保たれるので、袋22から取り出されるまで長時間加圧され、導電性樹脂18を長時間流動させることができる。導電性樹脂18が長時間流動することにより、切り込み部17の底部にまで導電性樹脂18を十分に充填することができる。
 また、図6(d)に示す工程において、減圧下で加熱する(減圧しながら加熱、又は加熱しながら減圧)ことにより、シート状の導電性樹脂18に含まれる溶剤成分を揮発蒸散させることができ、ボイドの発生を未然に防止することができる。例えばシート状の導電性樹脂18にシクロヘキサノン(大気圧での沸点は155℃)を0.1wt%含む場合、袋22を減圧下で加熱することなく密封し、その後に硬化するための加熱(例えば170℃)したときには、硬化の過程でシクロヘキサノンが揮発蒸散することによりボイドが発生する。
 これに対して、減圧パック装置での減圧時に導電性樹脂18の硬化温度以下の比較的低温(例えば120℃)で加熱する。図9は、減圧パック装置での減圧時に導電性樹脂18の硬化温度以下の比較的低温(例えば120℃)で加熱した場合の真空度の変化を示すグラフである。図9に示すように減圧パック装置での減圧時に導電性樹脂18の硬化温度以下の比較的低温(例えば120℃)で加熱した場合、樹脂の硬化を進行させることなく、減圧により真空度が低くなり沸点が155℃より低下しているシクロヘキサノンを揮発蒸散させることができ、ボイドの発生を防止することが可能となる。
 同様に、封止樹脂層14、回路基板11、電子部品12、12、・・・、13、13、・・・に発生するガスを減圧状態である導電性樹脂18等の外に排出することができるので、ボイドの発生を未然に防止することができる。なお、加熱によるガスは、封止樹脂層14、回路基板11、電子部品12、12、・・・、13、13、・・・にも発生し、導電性樹脂18に発生するガスと同様に排出することができる。
 次に、図8(h)に示すように、オーブン等を用いて、袋22内に減圧パックされた集合基板10を加熱する。袋22の外は大気圧で袋22内は減圧されているので、袋22の内外の圧力差により、加熱されて流動化した導電性樹脂18が切り込み部17に浸入する。次に、図8(i)に示すように、導電性樹脂18が硬化した後に袋22を開封して集合基板10を取り出す。最後に、図8(j)に示すように、ダイサー等を用いてシールド層15が形成された集合基板10を切り込み部17にて分断し、電子部品モジュール1に個片化する。なお、回路基板11にブレイク用切り込み部が形成されている場合には、ブレイク工法により集合基板10を分断しても良い。
 以上のように本実施の形態4によれば、切り込み部の一部に導電性樹脂を充填し、シート状の導電性樹脂を載置した集合基板を気体遮断性を有する袋に入れ、減圧パック装置により、集合基板を入れた袋内を減圧し、減圧した袋内の集合基板に加熱するようにした場合、集合基板を入れた袋内を減圧することにより、切り込み部の一部に充填された導電性樹脂に含まれる溶剤成分を大気圧下より多く揮発蒸散させることができ、ボイドの発生を未然に防止することができる。なお、減圧によって袋内が真空状態になるまでは、シート状の導電性樹脂は封止された樹脂の天面に完全には圧着されていないので、切り込み部の一部に充填されたシート状の導電性樹脂に含まれる溶剤成分は、封止された樹脂とシート状の導電性樹脂との間から容易に揮発蒸散することができる。
 (実施の形態5)
 本発明の実施の形態5に係る電子部品モジュールの構成は、図1に示した実施の形態1に係る電子部品モジュール1の構成と同一であるため、同一の符号を付することで詳細な説明は省略する。
 図10は、本発明の実施の形態5に係る電子部品モジュール1の製造方法を説明するための断面図である。図10(a)は封止樹脂層14が形成された後に切り込み部17が形成された状態を、図10(b)は切り込み部17に導電性樹脂23を充填した状態を、図10(c)はシート状の導電性樹脂18が載置された集合基板10にヒータプレス装置19にて圧力及び熱を加えている状態を、図10(d)はシールド層15が形成された集合基板10を分断する状態を、それぞれ示している。なお、図10(a)は図2(a)と同様である。
 実施の形態1と同様にして、集合基板10の上部を覆うように、合成樹脂による封止樹脂層14を形成することにより、絶縁層が形成される。そして、図10(a)に示すように、封止樹脂層14が形成された状態で、電子部品モジュール1として切り出す境界部分において、回路基板11の途中であって接地用電極16が露出する深さまで溝状の切り込み部17をブレード等を用いて形成する。切り込み部17は、例えば幅0.2mm程度、深さ0.8mm程度である。
 次に、図10(b)に示すように、切り込み部17の一部に導電性樹脂23を充填する。導電性樹脂23としては、シート状の導電性樹脂18とは異なり、塗布等によって切り込み部17に充填するため、例えば導電性ペーストを用いる。導電性樹脂23に含まれる導電性成分(フィラー)、及び導電性成分を含有する合成樹脂(バインダー)は、シート状の導電性樹脂18と同様であり、効果及び強度等が均質なシールドを形成するため、シート状の導電性樹脂18と同種であることが望ましい。
 次に、図10(c)に示すように、切り込み部17も含めて、天面上にシート状の導電性樹脂18を載置する。そして、実施の形態1と同様にして、ヒータプレス装置19を用いて真空環境下でシート状の導電性樹脂18が載置された集合基板10に圧力及び熱を加える。
 集合基板10に圧力とともに熱を加えることにより、切り込み部17及び天面を覆うように載置されたシート状の導電性樹脂18が軟化して変形又は流動し、切り込み部17に浸入する。既に切り込み部17の一部には導電性樹脂23が充填されているので、充填されている導電性樹脂23上に導電性樹脂18が浸入するだけで、素早く導電性樹脂18、23は接地用電極16と接触して電気的に接続する。切り込み部17及び天面上では、導電性樹脂18、23が薄膜状態となる。
 導電性樹脂18が、切り込み部17に充填されている導電性樹脂23上に浸入して接地用電極16と接触して電気的に接続し、切り込み部17及び天面上で薄膜状態となった後、集合基板10を冷却し、軟化した導電性樹脂18を硬化させる。導電性樹脂18が硬化することにより、例えば膜厚5~15μmのシールド層15が形成される。
 最後に、図10(d)に示すように、ダイサー等を用いてシールド層15が形成された集合基板10を切り込み部17にて分断し、電子部品モジュール1に個片化する。なお、回路基板11にブレイク用切り込み部が形成されている場合には、ブレイク工法により集合基板10を分断しても良い。
 なお、図10(b)に示したように切り込み部17に導電性樹脂23を充填しておき、シート状の導電性樹脂18を載置した段階で、集合基板10を気体遮断性を有する袋22に入れて減圧パックし、加熱するようにしても良い。これにより、導電性樹脂23に含まれる溶剤成分を大気圧下より多く揮発蒸散させることができる。減圧によって袋22内が真空状態になるまでは、シート状の導電性樹脂18は封止樹脂層14の天面に完全には圧着されていないので、切り込み部17の一部に充填された導電性樹脂23に含まれる溶剤成分は、封止樹脂層14とシート状の導電性樹脂18との間から容易に揮発蒸散することができる。
 切り込み部17の一部に充填した導電性樹脂23から、より多くの溶剤成分が揮発蒸散されていることにより、後の工程で、シート状の導電性樹脂18を載置した集合基板10に圧力及び熱を加える場合に、充填した導電性樹脂23の溶剤成分が揮発することによるボイドの発生を防止することができる。
 以上のように本実施の形態5によれば、切り込み部を形成した後、シート状の導電性樹脂を載置する前に、切り込み部の一部に導電性樹脂を充填しておくことにより、切り込み部の幅が狭くて深い等、シート状の導電性樹脂が充填され難い切り込み部の底部への充填不足を補うことができるとともに、ボイドの発生を未然に防止して、より確実に電子部品をシールドすることが可能となる。
 なお、切り込み部の幅が広い場合には、シート状の導電性樹脂を載置する前に導電性樹脂を封止樹脂層の天面近くまで充填しておくことにより、例えば、真空環境下にすることなくシート状の導電性樹脂を載置して圧力及び熱を加えるだけの簡易な方法で、天面及び側面にシールド層を形成することができる。
 (実施の形態6)
 図11は、本発明の実施の形態6に係る電子部品モジュールの構成を示す断面図である。本発明の実施の形態6に係る電子部品モジュール101は、電子部品12、12、・・・上に導電性ポスト31を備えている点以外は、実施の形態1乃至5の電子部品モジュール1と同様の構成である。同一の構成は、同一の符号を付することで詳細な説明は省略する。なお、図11の例では、導電性ポスト31を電子部品12、12、・・・上に備えているが、電子部品13、13、・・・上に備えても良いし、電子部品12、12、・・・、13、13、・・・の双方に備えても良い。導電性ポスト31は、1つの電子部品モジュール101に少なくとも1つ形成されていれば良い。
 導電性ポスト31は、その上面を含む上部を封止樹脂層14の天面から露出させて、電子部品12、12、・・・とシールド層15とを電気的に接続している。電子部品12、12、・・・は外部電極32を有し、外部電極32は、ハンダ等を介して回路基板11に設けられた接合パッド(電極パッド)33に電気的に接続される。また、電子部品12、12、・・・が接続された接合パッド33は、ビアホールなどにより回路基板11の内部に設けられている接地用電極16に接続されている。さらに、外部電極32は接合パッド33との接続面とは反対側で導電性ポスト31に接続されている。したがって、シールド層15は電子部品12、12、・・・に接続されている接合パッド33と導電性ポスト31とを介して、接地用電極16と電気的に接続されている。
 シールド層15は、電子部品モジュール101の側面の下部を除いて封止樹脂層14の表面に形成されている。側面の一部でもシールド層15が形成されていることにより、封止樹脂層14の天面のみにシールド層15が形成されている場合と比較して、充分シールド効果を高めることができる。もちろんシールド層15は、実施の形態1乃至5と同様に、電子部品モジュール101の側面すべてに形成しても良い。
 図12は、本発明の実施の形態6に係る電子部品モジュール101の製造方法を説明するための断面図である。図12(a)は封止樹脂層14が形成された後に切り込み部17が形成された状態を、図12(b)はシート状の導電性樹脂18が載置された状態を、図12(c)はヒータプレス装置19にて集合基板10に圧力及び熱を加えている状態を、図12(d)はシールド層15が形成された集合基板10を分断する状態を、それぞれ示している。
 まず、電子部品12、12、・・・上に導電性ポスト31を形成する。導電性ポスト31は、硬化性を有する導電性溶液の吐出及び固化を繰り返すことにより形成する。例えば、硬化性を有する導電性溶液として、導電性粉末を溶剤に分散した導電性溶液を用い、インクジェット法、ジェットディスペンサー法等によって導電性ポスト31を形成する。具体的には、インクジェット法、ジェットディスペンサー法等に用いるノズルの吐出口から、導電性溶液を複数回吐出し、導電性粉末を堆積させて固化することにより、所定の高さの導電性ポスト31を形成する。
 また、導電性ペーストのような硬化性を有する導電性材料を、スクリーン印刷法等で所定箇所に複数回塗り重ねて固化することにより、導電性ポスト31を形成しても良い。導電性ペーストとしては、銀ナノペースト、銅ナノペースト等を用いる。上述した導電性溶液においても、同様のナノオーダーの銀、銅等の導電性粉末を用いても良い。
 導電性ポスト31は、積み重ねた導電性材料を所定温度で焼成して得られた焼結金属であることが好ましい。焼結金属は強度が高く、封止樹脂層14の硬化時の熱に対して変形し難いので、封止樹脂層14形成時等に導電性ポスト31の破損を抑制することができる。また、導電性ポスト31は、電子部品12、12、・・・から天面へ向かうにつれて、次第に断面が小さくなる形状にて形成されることが好ましい。次第に断面が小さくなる形状、いわゆるテーパ形状を有することにより、封止樹脂層14形成時等に導電性ポスト31を破損することなく、均一かつ平坦に封止樹脂層14を形成することできる。
 次の工程でシート状の導電性樹脂18を載置する場合に、導電性ポスト31に上方から圧力が加えられるが、テーパ形状の導電性ポスト31は上方からの圧力に対して耐圧性が高く、上方からの圧力によって折れて破損するようなことがない。また、シート状の導電性樹脂18は、封止樹脂層14の天面から露出した導電性ポスト31の上面を覆うように載置されるので、露出した導電性ポスト31の断面が大きい場合、載置したシート状の導電性樹脂18が導電性ポスト31の上部で凸状になり易いが、露出した導電性ポスト31の断面が小さい場合には、凸状になり難く平坦に封止樹脂層14を形成することができる。
 次に、導電性ポスト31の上面を露出させ、かつ複数の電子部品モジュール101、101、・・・が形成された集合基板10の上部を覆うように、合成樹脂による封止樹脂層14を形成する。封止樹脂層14は、エポキシ樹脂等の液状の合成樹脂を、ディスペンサー塗布する、真空印刷塗布する、シート状の合成樹脂をプレス装置等で圧着する、又はトランスファ成型方法等を用いることにより、一括して樹脂封止する。回路基板11及び電子部品12、12、・・・、13、13、・・・が封止されることにより、絶縁層が形成される。その際、封止樹脂層14は導電性ポスト31の上面が露出する厚みまで形成する。
 なお、導電性ポスト31の上面が確実に封止樹脂層14から露出するように、封止樹脂層14を研磨するようにしても良い。例えば、導電性ポスト31の高さ、厳密には電子部品12の高さに導電性ポスト31の高さを加えた高さより、封止樹脂層14を厚く形成しておく。その後、形成した封止樹脂層14の所定の厚み分を、研磨ロール等で研磨することにより、導電性ポスト31の上面を封止樹脂層14の天面に確実かつ容易に露出させることができる。同時に、封止樹脂層14の表面を平坦化することも可能である。
 次に、図12(a)に示すように、封止樹脂層14が形成された状態で、電子部品モジュール101として切り出す境界部分において、回路基板11に到達する手前の深さまで溝状の切り込み部17をブレード等を用いて形成する。切り込み部17は、例えば幅0.3mm程度、深さ0.8mm程度である。切り込み部17は、実施の形態1乃至5と同様に、回路基板11の途中であって接地用電極16が露出する深さまで形成しても良い。本実施の形態6では、導電性ポスト31を介して、シールド層15と電子部品12、12、・・・に接続されている接合パッド33とが電気的に接続されるため、切り込み部17によって導電性樹脂18と接地用電極16とが導電接続しなくても良い。
 次に、実施の形態1と同様にして図12(b)に示すように、切り込み部17及び導電性ポスト31の上面を含む天面を覆うようにシート状の導電性樹脂18を載置する。導電性ポスト31は、上面が封止樹脂層14から露出しているので、シート状の導電性樹脂18と接触する。
 次に、実施の形態1と同様にして図12(c)に示すように、ヒータプレス装置19を用いて真空環境下でシート状の導電性樹脂18が載置された集合基板10に圧力及び熱を加える。圧力とともに熱を加えることにより、切り込み部17及び導電性ポスト31の上面を含む天面を覆うように載置されたシート状の導電性樹脂18が軟化して変形又は流動し、切り込み部17に浸入する。切り込み部17及び導電性ポスト31の上面を含む天面上では、導電性樹脂18が薄膜状態となる。なお、切り込み部17は回路基板11に到達する手前の深さまで形成されているため、切り込み部17に浸入した導電性樹脂18は接地用電極16とは接触せず、電気的に接続しない。
 導電性樹脂18が、切り込み部17及び導電性ポスト31の上面を含む天面上で薄膜状態となった後、集合基板10を冷却し、軟化した導電性樹脂18を硬化させることにより、例えば膜厚5~15μmのシールド層15を形成する。
 最後に、実施の形態1と同様にして図12(d)に示すように、ダイサー等を用いてシールド層15が形成された集合基板10を切り込み部17にて分断する。回路基板11にブレイク用切り込み部が形成されている場合には、ブレイク工法により集合基板10を分断しても良い。集合基板10は、分断されて電子部品モジュール101に個片化される。なお、シールド層15は、電子部品モジュール101の側面すべてではなく、側面の下部を除く側面の一部に形成され、シールド層15の導電性樹脂18は接地用電極16とは接触せず、電気的に接続しないが、導電性ポスト31を介して、シールド層15と電子部品12、12、・・・に接続されている接合パッド33とが電気的に接続される。
 以上のように本実施の形態6によれば、シート状の導電性樹脂が載置された集合基板に圧力及び熱を加えることにより、切り込み部にも充分に導電性樹脂を充填することができ、天面だけでなく側面の一部にもシールド層を形成することができる。また、シールド層の薄膜化を図ることができ、ボイドの発生を未然に防止することができ、確実に電子部品をシールドすることが可能となる。さらに、側面及び天面へのシールド層の形成を1つの処理工程にて実施することができるので、生産性も向上する。
 加えて、シート状の導電性樹脂を用いることにより、取り扱いが容易となり、封止された樹脂の天面に薄膜のシールド層を容易に形成することができるので、電子部品モジュールを低背化することが可能となる。また、電子部品上に導電性ポストを形成することにより、基板表面に電極を形成して基板に孔を形成することなく、電子部品モジュール当たりの基板面積を小さくすることが可能で、低背化とともに電子部品モジュールを小型化することが可能となる。さらに、電子部品モジュールにおいて導電性ポストを介して電気信号が伝達される場合、側面の導電性樹脂を介して電気信号が伝達される場合と比較して電送路が短くなり、抵抗を小さくすることが可能となる。
 なお、図11に示した本実施の形態6に係る電子部品モジュール101は、図12(a)に示したように導電性ポスト31、封止樹脂層14及び切り込み部17を形成した後は、実施の形態2乃至5と同様にして製造することができる。加圧オーブン装置21を用いる場合、図12(a)に示した工程後、図4(b)~(d)及び図2(d)に示した工程にて実施の形態2と同様にして電子部品モジュール101を製造することができ、実施の形態2と同様の効果を奏することができる。
 気体遮断性を有する袋22及び減圧パック装置を用いる場合、図12(a)に示した工程後、図5(b)~(d)及び図2(d)に示した工程にて実施の形態3と同様にして電子部品モジュール101を製造することができ、実施の形態3と同様の効果を奏することができる。同様に、図12(a)に示した工程後、図6(b)~図8(j)に示した工程にて実施の形態4と同様にして電子部品モジュール101を製造することができ、実施の形態4と同様の効果を奏することができる。また、切り込み部17に導電性樹脂23を充填し、シート状の導電性樹脂18を載置した後にヒータプレス装置19を用いる場合には、図12(a)に示した工程後、図10(b)~(d)に示した工程にて実施の形態5と同様にして電子部品モジュール101を製造することができ、実施の形態5と同様の効果を奏することができる。
 (実施の形態7)
 図13は、本発明の実施の形態7に係る電子部品モジュールの構成を示す断面図である。本発明の実施の形態7に係る電子部品モジュール201は、電子部品12、12、・・・、13、13、・・・上に導電性ポスト31を備える代わりに、回路基板11の表面に設けられた接合パッド(電極パッド)33と接続するようにして集合基板10上に導電性ポスト41を備えている点以外は、実施の形態6の電子部品モジュール101と同様の構成である。同一の構成は、同一の符号を付することで詳細な説明は省略する。
 導電性ポスト41は、その上面を封止樹脂層14の天面から露出させて、接合パッド33とシールド層15とを電気的に接続している。また、導電性ポスト41が接続された接合パッド33は、ビアホールなどにより回路基板11の内部に設けられている接地用電極16に接続されている。したがって、シールド層15は接合パッド33と導電性ポスト41とを介して、接地用電極16と電気的に接続されている。シールド層15は封止樹脂層14の表面全体に形成されている。なお、シールド層15は、実施の形態6と同様、電子部品モジュール201の側面すべてに形成されている必要はなく、図11に示したように側面の一部に形成されていれば良い。
 図14は、本発明の実施の形態7に係る電子部品モジュール201の製造方法を説明するための断面図である。図14(a)は封止樹脂層14が形成された後に切り込み部17が形成された状態を、図14(b)はシート状の導電性樹脂18が載置された状態を、図14(c)は加圧オーブン装置21にて集合基板10に圧力及び熱を加えている状態を、図14(d)はシールド層15が形成された状態を、それぞれ示している。
 まず、回路基板11の表面に設けられた接合パッド(電極パッド)33と接続するようにして集合基板10上に導電性ポスト41を形成する。導電性ポスト41は、実施の形態5で説明した導電性ポスト31の形成方法と全く同様にして形成することができる。例えば、インクジェット法に用いるノズルの吐出口から、導電性溶液を複数回吐出し、導電性粉末を堆積させて固化することにより、所定の高さの導電性ポスト41を形成する。なお、導電性ポスト41は、導電性ポスト31と同様の理由から、焼結金属であることが好ましく、いわゆるテーパ形状であることが好ましい。
 次に、導電性ポスト41の上面を露出させ、かつ複数の電子部品モジュール201、201、・・・が形成された集合基板10の上部を覆うように、合成樹脂による封止樹脂層14を形成する。封止樹脂層14は、エポキシ樹脂等の液状の合成樹脂を、ディスペンサー塗布する、真空印刷塗布する、又はトランスファ成型方法等を用いることにより、一括して樹脂封止する。回路基板11及び電子部品12、12、・・・、13、13、・・・が封止されることにより、絶縁層が形成される。導電性ポスト41は、上面が封止樹脂層14から露出しているので、完全には樹脂封止されていない。なお、上述した研磨ロール等で研磨することにより、導電性ポスト41の上面を封止樹脂層14の天面に露出させるようにしても良い。
 次に、図14(a)に示すように、封止樹脂層14が形成された状態で、電子部品モジュール201として切り出す境界部分において、回路基板11に到達する位置まで溝状の切り込み部17をブレード等を用いて形成する。切り込み部17は、例えば幅0.6mm程度、深さ0.6mm程度である。本実施の形態7では、導電性ポスト41を介して、シールド層15と接合パッド33とが電気的に接続されるため、切り込み部17によって導電性樹脂18と接地用電極16とが導電接続しなくても良い。
 次に、実施の形態2と同様にして図14(b)に示すように、切り込み部17及び導電性ポスト41の上面を含む天面を覆うようにシート状の導電性樹脂18を載置する。導電性ポスト41は、上面が封止樹脂層14から露出しているので、シート状の導電性樹脂18と接触する。
 次に、実施の形態2と同様にして図14(c)に示すように、加圧オーブン装置21を用いてシート状の導電性樹脂18が載置された集合基板10に圧力及び熱を加える。圧力とともに熱を加えることにより、例えば装置の槽内に充填された空気が3次元の全方向から集合基板10に均等に圧力を加えることができるので、側面から圧が逃れることなく、適切に加圧することができる。また、3次元の全方向から圧力を加えるので、所定の方向に偏って圧力が加えられることがなく、均等に加圧することができる。
 次に、実施の形態2と同様にして図14(d)に示すように、集合基板10に圧力とともに熱を加えることにより、切り込み部17及び導電性ポスト41の上面を含む天面を覆うように載置されたシート状の導電性樹脂18が軟化して変形又は流動し、切り込み部17に浸入する。切り込み部17及び導電性ポスト41の上面を含む天面上では、導電性樹脂18が薄膜状態となる。切り込み部17に浸入した導電性樹脂18は回路基板11と接続する。
 導電性樹脂18が、切り込み部17に浸入して回路基板11と接続し、切り込み部17及び導電性ポスト41の上面を含む天面上で薄膜状態となった後、集合基板10を冷却し、軟化した導電性樹脂18を硬化させる。導電性樹脂18が硬化することにより、例えば膜厚5~15μmのシールド層15が形成される。
 冷却後は、実施の形態1と同様にして、図2(d)に示したようにダイサー等を用いて、シールド層15が形成された集合基板10を切り込み部17にて分断し、電子部品モジュール201に個片化する。なお、回路基板11にブレイク用切り込み部が形成されている場合には、ブレイク工法により集合基板10を分断しても良い。
 以上のように本実施の形態7によれば、シート状の導電性樹脂が載置された集合基板に圧力及び熱を加えることにより、切り込み部にも充分に導電性樹脂を充填することができ、天面だけでなく側面の一部にもシールド層を形成することができる。また、シールド層の薄膜化を図ることができ、ボイドの発生を未然に防止することができ、確実に電子部品をシールドすることが可能となる。さらに、側面及び天面へのシールド層の形成を1つの処理工程にて実施することができるので、生産性も向上する。
 加えて、シート状の導電性樹脂を用いることにより、取り扱いが容易となり、封止された樹脂の天面に薄膜のシールド層を容易に形成することができるので、電子部品モジュールを低背化することが可能となる。また、集合基板の表面に配設してある接合パッドと接続するようにして集合基板上に導電性ポストを形成することにより、基板表面に電極を形成して基板に孔を形成することなく、電子部品モジュール当たりの基板面積を小さくすることができ、低背化とともに電子部品モジュールを小型化することが可能となる。さらに、電子部品モジュールにおいて導電性ポストを介して電気信号が伝達される場合、側面の導電性樹脂を介して電気信号が伝達される場合と比較して電送路が短くなり、抵抗を小さくすることが可能となる。
 なお、図13に示した本実施の形態7に係る電子部品モジュール201は、図14(a)に示したように導電性ポスト41、封止樹脂層14及び切り込み部17を形成した後は、実施の形態1、3、4と同様にして製造することができる。ヒータプレス装置19を用いる場合、図14(a)に示した工程後、図2(b)~(d)に示した工程にて実施の形態1と同様にして電子部品モジュール201を製造することができ、実施の形態1と同様の効果を奏することができる。
 気体遮断性を有する袋22及び減圧パック装置を用いる場合、図14(a)に示した工程後、図5(b)~(d)及び図2(d)に示した工程にて実施の形態3と同様にして電子部品モジュール201を製造することができ、実施の形態3と同様の効果を奏することができる。同様に、図14(a)に示した工程後、図6(b)~図8(j)に示した工程にて実施の形態4と同様にして電子部品モジュール201を製造することができ、実施の形態4と同様の効果を奏することができる。また、切り込み部17に導電性樹脂23を充填した後にヒータプレス装置を用いる場合には、図14(a)に示した工程後、図10(b)~(d)に示した工程にて実施の形態5と同様にして電子部品モジュール201を製造することができ、実施の形態5と同様の効果を奏することができる。
 なお、上述した実施の形態1乃至7は、本発明の趣旨を逸脱しない範囲で変更することができることは言うまでもない。
 1、101、201 電子部品モジュール
 12、13 電子部品
 14 封止樹脂層
 15 シールド層
 16 接地用電極(電極パッド)
 17 切り込み部
 18 導電性樹脂
 19 ヒータプレス装置

Claims (11)

  1.  複数の電子部品により複数の電子部品モジュールが形成された集合基板を樹脂にて一括封止し、
     前記電子部品モジュールの境界部分にて、封止された樹脂の天面から、前記封止された樹脂又は前記集合基板の内部まで切り込み部を形成し、
     少なくとも側面の一部及び天面を導電性樹脂で被覆した後、前記電子部品モジュールを切り出す電子部品モジュールの製造方法において、
     前記切り込み部及び天面を覆うようにシート状の前記導電性樹脂を載置した後、シート状の前記導電性樹脂が載置された前記集合基板に圧力及び熱を加えることを特徴とする電子部品モジュールの製造方法。
  2.  前記集合基板の内部に配設してある接地用電極に到達する位置まで前記切り込み部を形成し、
     前記切り込み部及び天面を覆うようにシート状の前記導電性樹脂を載置した後、シート状の前記導電性樹脂が載置された前記集合基板に圧力及び熱を加えることにより、前記導電性樹脂を前記切り込み部に充填して前記接地用電極と接続させることを特徴とする請求項1記載の電子部品モジュールの製造方法。
  3.  前記集合基板の表面に配設してある電極パッドと接続するように前記集合基板上又は前記電子部品上に導電性ポストを形成し、
     該導電性ポストの上面を露出させ、かつ前記電子部品モジュールを覆うように、前記集合基板を樹脂にて一括封止し、
     前記切り込み部及び前記導電性ポストの上面を含む天面を覆うようにシート状の前記導電性樹脂を載置した後、シート状の前記導電性樹脂が載置された前記集合基板に圧力及び熱を加えることにより、前記導電性樹脂を前記切り込み部に充填し、かつ前記導電性ポストの上面と前記導電性樹脂とを接続させることを特徴とする請求項1記載の電子部品モジュールの製造方法。
  4.  前記切り込み部を形成した後、シート状の前記導電性樹脂を載置する前に、前記切り込み部の一部に前記導電性樹脂を充填しておくことを特徴とする請求項1乃至3のいずれか一項に記載の電子部品モジュールの製造方法。
  5.  ヒータプレス装置により、シート状の前記導電性樹脂が載置された前記集合基板に真空環境下で圧力及び熱を加えることを特徴とする請求項1乃至4のいずれか一項に記載の電子部品モジュールの製造方法。
  6.  密閉された槽内に充填された流体の圧力を上昇させる装置により、シート状の前記導電性樹脂が載置された前記集合基板に圧力及び熱を加えることを特徴とする請求項1乃至4のいずれか一項に記載の電子部品モジュールの製造方法。
  7.  シート状の前記導電性樹脂を載置した前記集合基板を気体遮断性を有する袋に入れ、
     減圧パック装置により、前記集合基板を入れた前記袋の内部を減圧して密封し、
     減圧した前記袋内の前記集合基板に熱を加えることを特徴とする請求項1乃至4のいずれか一項に記載の電子部品モジュールの製造方法。
  8.  シート状の前記導電性樹脂を載置した前記集合基板を気体遮断性を有する袋に入れ、
     減圧パック装置により、前記集合基板を入れた前記袋の内部を減圧しつつ、前記袋内の前記集合基板に熱を加えることを特徴とする請求項1乃至4のいずれか一項に記載の電子部品モジュールの製造方法。
  9.  密閉された槽内に充填された流体の圧力を上昇させる装置により、前記槽内に載置した前記袋内の前記集合基板に圧力及び熱を加えることを特徴とする請求項7又は8記載の電子部品モジュールの製造方法。
  10.  前記導電性ポストは、前記集合基板又は前記電子部品から前記天面へ向かうにつれて次第に断面が小さくなる形状にて形成されることを特徴とする請求項3記載の電子部品モジュールの製造方法。
  11.  前記導電性ポストは、硬化性を有する導電性溶液の吐出及び固化を繰り返して前記集合基板又は前記電子部品モジュール上に形成されることを特徴とする請求項3記載の電子部品モジュールの製造方法。
PCT/JP2009/002413 2008-10-23 2009-06-01 電子部品モジュールの製造方法 WO2010047007A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010534652A JP5273154B2 (ja) 2008-10-23 2009-06-01 電子部品モジュールの製造方法
CN2009801418407A CN102203926B (zh) 2008-10-23 2009-06-01 电子元件模块的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-272627 2008-10-23
JP2008272627 2008-10-23
JP2009-009422 2009-01-20
JP2009009422 2009-01-20

Publications (1)

Publication Number Publication Date
WO2010047007A1 true WO2010047007A1 (ja) 2010-04-29

Family

ID=42119066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002413 WO2010047007A1 (ja) 2008-10-23 2009-06-01 電子部品モジュールの製造方法

Country Status (3)

Country Link
JP (1) JP5273154B2 (ja)
CN (1) CN102203926B (ja)
WO (1) WO2010047007A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243922A (ja) * 2010-05-21 2011-12-01 Murata Mfg Co Ltd 電子部品モジュールの製造方法
JP2013534366A (ja) * 2010-08-05 2013-09-02 エプコス アーゲー 電磁シールド及び放熱部を有する電子デバイス集合体の製造方法,並びに電磁シールド及び放熱部を有する電子デバイス
EP2573811A3 (en) * 2011-09-26 2014-03-26 SAE Magnetics (H.K.) Ltd. Electronic component module and its manufacturing method
JP2018093236A (ja) * 2018-03-07 2018-06-14 東洋インキScホールディングス株式会社 電子部品モジュールの製造方法
JP2019091866A (ja) * 2017-11-17 2019-06-13 東洋インキScホールディングス株式会社 電子素子の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666519B2 (en) * 2014-02-24 2017-05-30 Mitsubishi Electric Corporation Power semiconductor module and power unit
US10373917B2 (en) * 2017-12-05 2019-08-06 Tdk Corporation Electronic circuit package using conductive sealing material
WO2020129985A1 (ja) * 2018-12-18 2020-06-25 東洋インキScホールディングス株式会社 電子部品搭載基板および電子機器
CN110808214A (zh) * 2019-11-07 2020-02-18 记忆科技(深圳)有限公司 一种具有电磁屏蔽的芯片加工工艺方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163583A (ja) * 1997-11-25 1999-06-18 Citizen Electronics Co Ltd 電子部品パッケージ及びその製造方法
JP2002280468A (ja) * 2001-03-16 2002-09-27 Matsushita Electric Ind Co Ltd 高周波モジュールおよびその製造方法
JP2004172176A (ja) * 2002-11-18 2004-06-17 Taiyo Yuden Co Ltd 回路モジュール
JP2005109135A (ja) * 2003-09-30 2005-04-21 Matsushita Electric Ind Co Ltd 電子部品内蔵モジュールの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119863A (ja) * 2002-09-27 2004-04-15 Sanyo Electric Co Ltd 回路装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163583A (ja) * 1997-11-25 1999-06-18 Citizen Electronics Co Ltd 電子部品パッケージ及びその製造方法
JP2002280468A (ja) * 2001-03-16 2002-09-27 Matsushita Electric Ind Co Ltd 高周波モジュールおよびその製造方法
JP2004172176A (ja) * 2002-11-18 2004-06-17 Taiyo Yuden Co Ltd 回路モジュール
JP2005109135A (ja) * 2003-09-30 2005-04-21 Matsushita Electric Ind Co Ltd 電子部品内蔵モジュールの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243922A (ja) * 2010-05-21 2011-12-01 Murata Mfg Co Ltd 電子部品モジュールの製造方法
JP2013534366A (ja) * 2010-08-05 2013-09-02 エプコス アーゲー 電磁シールド及び放熱部を有する電子デバイス集合体の製造方法,並びに電磁シールド及び放熱部を有する電子デバイス
US9386734B2 (en) 2010-08-05 2016-07-05 Epcos Ag Method for producing a plurality of electronic devices
EP2573811A3 (en) * 2011-09-26 2014-03-26 SAE Magnetics (H.K.) Ltd. Electronic component module and its manufacturing method
JP2015195398A (ja) * 2011-09-26 2015-11-05 新科實業有限公司SAE Magnetics(H.K.)Ltd. 電子部品モジュール及びその製造方法
JP2019091866A (ja) * 2017-11-17 2019-06-13 東洋インキScホールディングス株式会社 電子素子の製造方法
JP2018093236A (ja) * 2018-03-07 2018-06-14 東洋インキScホールディングス株式会社 電子部品モジュールの製造方法

Also Published As

Publication number Publication date
CN102203926B (zh) 2013-07-31
JP5273154B2 (ja) 2013-08-28
CN102203926A (zh) 2011-09-28
JPWO2010047007A1 (ja) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5273154B2 (ja) 電子部品モジュールの製造方法
JP2011124413A (ja) 電子部品モジュールの製造方法及び電子部品モジュール
JP4530110B2 (ja) 電子部品モジュールの製造方法
KR101642560B1 (ko) 전자 소자 모듈 및 그 제조 방법
JP4186843B2 (ja) 立体的電子回路装置
JP5610064B2 (ja) 部品内蔵樹脂基板およびその製造方法
JP5360425B2 (ja) 回路モジュール、および回路モジュールの製造方法
US9591747B2 (en) Module board
JP2011151372A (ja) 電子部品モジュールの製造方法及び電子部品モジュール
JP5321592B2 (ja) 電子部品モジュールの製造方法
WO2013035819A1 (ja) 電子部品モジュール及び該電子部品モジュールの製造方法
CN110140433B (zh) 电子模块以及电子模块的制造方法
JP2011151226A (ja) 電子部品モジュールの製造方法
JP2010272848A (ja) 電子部品の製造方法
WO2020110578A1 (ja) モジュール
JP6039311B2 (ja) 配線基板、電子装置および電子モジュール
JP2010258137A (ja) 高周波モジュールおよびその製造方法
JP2011119369A (ja) 電子部品モジュールの製造方法及び電子部品モジュール
CN115274464A (zh) 一种线路板制备方法以及线路板
TWI550728B (zh) 封裝結構及其製造方法
JP2000040762A (ja) 電子素子封止用パッケージ及び電子素子封止構体
JP6247106B2 (ja) 半導体装置
US10930573B2 (en) Circuit module and manufacturing method therefor
JP5919860B2 (ja) 電子部品モジュール及び該電子部品モジュールの製造方法
JP2011243922A (ja) 電子部品モジュールの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141840.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821709

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534652

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821709

Country of ref document: EP

Kind code of ref document: A1