WO2010044265A1 - 反射防止膜の成膜方法及び反射防止膜並びに成膜装置 - Google Patents

反射防止膜の成膜方法及び反射防止膜並びに成膜装置 Download PDF

Info

Publication number
WO2010044265A1
WO2010044265A1 PCT/JP2009/005368 JP2009005368W WO2010044265A1 WO 2010044265 A1 WO2010044265 A1 WO 2010044265A1 JP 2009005368 W JP2009005368 W JP 2009005368W WO 2010044265 A1 WO2010044265 A1 WO 2010044265A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
indium oxide
gas
target
forming
Prior art date
Application number
PCT/JP2009/005368
Other languages
English (en)
French (fr)
Inventor
高橋明久
石橋暁
山本治彦
柳坪秀典
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN2009801368588A priority Critical patent/CN102159971A/zh
Priority to KR1020117007308A priority patent/KR101344500B1/ko
Priority to DE112009002574T priority patent/DE112009002574T5/de
Priority to JP2010533830A priority patent/JPWO2010044265A1/ja
Priority to US13/123,624 priority patent/US20110194181A1/en
Publication of WO2010044265A1 publication Critical patent/WO2010044265A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers

Definitions

  • the present invention relates to a method for forming an antireflection film, an antireflection film, and a film forming apparatus, and more specifically, a display surface of a flat panel display (FPD), an operation surface of a touch panel, and a light receiving surface of a solar cell.
  • the present invention relates to a method for forming an antireflection film, an antireflection film, and a film forming apparatus that are preferably used for, for example.
  • an antireflection film desired antireflection performance can be obtained by changing the film thickness and material of the high refractive index layer and the low refractive index layer.
  • Such an antireflection film is formed by forming a low refractive index layer on a transparent substrate by sputtering using a target of a low refractive index material such as SiO 2 , and then forming TiO 2 or the like on the low refractive index layer. It can be obtained by forming a high refractive index layer by sputtering using a target of a high refractive index material such as ZrO 2 .
  • a film is formed by sputtering a TiO 2 target and a SiO 2 target in order, or a film is formed by sputtering a Ti target and a Si target in order while introducing a reactive gas such as oxygen gas.
  • the present invention has been made in order to solve the above-described problem, and the same film formation chamber can be used without carrying the substrate into and out of the film formation chamber where sputtering is performed. It is an object of the present invention to provide a method for forming an antireflection film capable of obtaining an indium oxide-based antireflection film having a desired antireflection performance and also functioning as a transparent conductive film by performing sputtering in To do. It is another object of the present invention to provide an indium oxide antireflection film that has a desired antireflection performance and also functions as a transparent conductive film.
  • An object of the present invention is to provide a film forming apparatus capable of forming a prevention film.
  • the present inventors have used a target made of indium oxide to produce a plurality of refractions having different refractive indexes by sputtering.
  • a target made of indium oxide to produce a plurality of refractions having different refractive indexes by sputtering.
  • each of reactive gases including one, two, or three selected from the group of oxygen gas, hydrogen gas, and water vapor is used. If sputtering is performed by changing the gas ratio, an antireflection film having a desired reflection performance in which a second indium oxide thin film having a different refractive index is laminated on the first indium oxide thin film can be efficiently produced.
  • the inventors have found that a film can be formed and have completed the present invention.
  • a method for forming an antireflection film includes: forming a first indium oxide-based thin film; and a second indium oxide-based thin film stacked on the first indium oxide-based thin film.
  • a method for forming an antireflection film having a first indium oxide system in a first reactive gas containing one, two or three selected from the group consisting of oxygen gas, hydrogen gas and water vapor A first film-forming step of forming a first indium oxide-based thin film by performing sputtering using a target; from the group of oxygen gas, hydrogen gas, and water vapor on the first indium oxide-based thin film; Sputtering using a second indium oxide target in a second reactive gas containing one, two or three selected species and having a composition different from that of the first reactive gas.
  • the first indium oxide is contained in the first reactive gas containing one, two or three selected from the group consisting of oxygen gas, hydrogen gas and water vapor.
  • a first indium oxide thin film is formed by sputtering using a system target.
  • a second reaction having one, two or three selected from the group consisting of oxygen gas, hydrogen gas and water vapor and having a composition different from that of the first reactive gas.
  • a second indium oxide-based thin film is formed by sputtering using a second indium oxide-based target in a reactive gas.
  • the second reactive gas preferably has a different content ratio of the first reactive gas and the hydrogen gas.
  • the second reactive gas preferably has a different content of water vapor than the first reactive gas.
  • the second indium oxide-based target is preferably the same as the first indium oxide-based target.
  • the second film forming step is preferably performed by replacing the first reactive gas with the second reactive gas in the same vacuum chamber as the first film forming step.
  • the first indium oxide target and the second indium oxide target are preferably a tin-added indium oxide target, a titanium-added indium oxide target, or a zinc-added indium oxide target.
  • An antireflection film according to one embodiment of the present invention is an antireflection film obtained by the above-described method for forming an antireflection film, the first indium oxide thin film; and the first indium oxide thin film on the first indium oxide thin film. And a second indium oxide thin film having a refractive index different from that of the first indium oxide thin film.
  • the antireflection film According to the antireflection film, the first indium oxide-based thin film and the second indium oxide-based thin film laminated on the first indium oxide-based thin film and having a refractive index different from that of the first indium oxide-based thin film, Therefore, it is possible to provide an indium oxide antireflection film having a desired antireflection performance by laminating a plurality of refractive index layers having different refractive indexes.
  • At least one of the first indium oxide thin film and the second indium oxide thin film preferably has a specific resistance of 5 ⁇ 10 2 ⁇ ⁇ cm or less.
  • a film forming apparatus is a film forming apparatus used in the method for forming an antireflection film, the vacuum container; target holding means for holding a target in the vacuum container; and the target
  • the vacuum vessel includes two or more of hydrogen gas introducing means, oxygen gas introducing means, and water vapor introducing means.
  • the vacuum container since the vacuum container includes two or more of the hydrogen gas introduction unit, the oxygen gas introduction unit, and the water vapor introduction unit, a sputtering method is performed using a target made of an indium oxide-based material.
  • the atmosphere at the time of laminating a plurality of refractive index layers having different refractive indexes on the substrate can be a water vapor (H 2 O) atmosphere that inhibits bonding of the crystal lattice of In 2 O 3 . Therefore, an antireflection film having a desired antireflection performance can be formed by one apparatus using a target made of an indium oxide-based material.
  • an antireflection film in which a plurality of refractive index layers having different refractive indexes are laminated only by adjusting a partial pressure ratio of oxygen gas, hydrogen gas, or water vapor to be introduced using one type of target made of an indium oxide-based material can be formed easily. Furthermore, it becomes possible to form a film at a speed higher than the conventional film formation speed.
  • the target holding means is provided with a magnetic field generating means for generating a horizontal magnetic field having a maximum intensity of 600 gauss or more on the surface of the target.
  • a rotating body that removably supports a plurality of substrates on its outer peripheral surface, and one of the plurality of substrates supported by the rotating body A plurality of the target holding means facing each of two or more base materials; and performing sputtering using the target held by the target holding means while rotating the rotating body around its axis
  • a plurality of types of films having different compositions may be formed on each of the substrates.
  • the first indium oxide thin film and the second indium oxide thin film stacked on the first indium oxide thin film and having a refractive index different from that of the first indium oxide thin film.
  • an indium oxide-based antireflection film having a desired antireflection performance can be provided by laminating a plurality of refractive index layers having different refractive indexes.
  • the vacuum container includes a vacuum container, a target holding unit that holds the target in the vacuum container, and a power source that applies a sputtering voltage to the target. Since there are two or more of hydrogen gas introducing means, oxygen gas introducing means, and water vapor introducing means, a plurality of refractive index layers having different refractive indexes are formed on the substrate by sputtering using a target made of an indium oxide material. The atmosphere at the time of laminating can be changed. Therefore, an antireflection film having a desired antireflection performance can be formed by one apparatus using a target made of an indium oxide-based material.
  • the film can be easily formed. Furthermore, the film can be formed at a speed higher than the conventional film formation speed.
  • Sectional drawing which shows an example of the anti-reflective film which concerns on 1st Embodiment of this invention. Sectional drawing which shows the modification of the antireflection film concerning the embodiment.
  • the schematic block diagram which shows an example of the sputtering device used for film-forming of the antireflection film concerning the embodiment.
  • Sectional drawing which shows the principal part of the film-forming chamber which comprises the sputtering device of FIG.
  • the graph which shows the simulation result of the reflectance of an antireflection film.
  • Sectional drawing which shows the principal part of the film-forming chamber which comprises the sputtering device used for film-forming of the antireflection film concerning 2nd Embodiment of this invention.
  • the schematic block diagram which shows the sputtering device which concerns on 3rd Embodiment of this invention.
  • Embodiments of an antireflection film forming method, an antireflection film, and a film forming apparatus according to the present invention will be described.
  • this embodiment is specifically described in order to make the gist of the invention better understood, and does not limit the present invention unless otherwise specified.
  • FIG. 1 is a sectional view showing an antireflection film according to the first embodiment of the present invention.
  • the antireflection film 1 is formed on the surface 2a of the transparent substrate 2 and has a laminated structure.
  • a plurality of indium oxide thin films having different refractive indexes such as a transparent film 11 having a high refractive index and a low refractive index, are formed so that the refractive index gradually decreases outward from the surface 2a side of the transparent substrate 2.
  • Rate transparent film 12 is laminated.
  • an indium oxide-based material mainly containing In 2 O 3 —SnO 2 , In 2 O 3 —TiO 2 , In 2 O 3 —ZnO, or the like is preferably used.
  • the transparent film 12 having a low refractive index having a refractive index of, for example, 1.96 is argon (Ar) with tin-added indium oxide (ITO) as a target. It can be obtained by forming a film in a gas atmosphere or an argon (Ar + O 2 ) atmosphere containing oxygen.
  • the transparent film 11 having a high refractive index of, for example, 2.25 or the like has a hydrogen gas (H 2 ) and oxygen gas (O 2 ) atmosphere or water vapor (water vapor) using the tin-added indium oxide (ITO) as a target. It can be obtained by forming a film in an atmosphere of (H 2 O).
  • the specific resistance of at least one of these indium oxide thin films is 5.0 ⁇ 10 2 ⁇ ⁇ cm or less. preferable.
  • the specific resistance of at least one of the transparent films 11 and 12 is 5.0 ⁇ 10 2 ⁇ ⁇ cm or less, the function as a transparent conductive film can be imparted to the transparent film.
  • FIG. 2 is a cross-sectional view showing a modification of the antireflection film according to this embodiment.
  • the transparent films 11 and 12 are used.
  • the resistance can be reduced by the AR design that increases the thickness of the film.
  • the function of a transparent conductive film can be provided to the antireflection film 1.
  • FIG. 3 is a schematic configuration diagram showing a sputtering apparatus (film forming apparatus) used for forming the antireflection film according to this embodiment
  • FIG. 4 is a cross-sectional view showing the main part of the film forming chamber of the sputtering apparatus.
  • the sputtering apparatus 21 is an inter-back type sputtering apparatus.
  • a loading / unloading chamber 22 for loading / unloading a substrate such as a glass substrate (not shown), and an indium oxide antireflection film on the substrate.
  • a film forming chamber (vacuum container) 23 for forming the film.
  • the preparation / removal chamber 22 is provided with roughing exhaust means 24 such as a rotary pump for roughing the chamber.
  • a substrate tray 25 for holding and transporting the substrate is movably disposed in the preparation / removal chamber 22.
  • a heater 31 for heating the substrate 26 is vertically provided on one side surface 23a of the film forming chamber 23, and a desired sputtering voltage is applied to the other side surface 23b by holding a target 27 made of an indium oxide material.
  • a cathode (target holding means) 32 is provided vertically.
  • a high vacuum exhaust means 33 such as a turbo molecular pump for evacuating the chamber, a power source 34 for applying a sputtering voltage to the target 27, and a gas introducing means for introducing a gas into the chamber. 35 is provided.
  • the cathode 32 is made of a plate-like metal plate, and fixes the target 27 by bonding (fixing) with a brazing material or the like.
  • the power source 34 applies a sputtering voltage to the target 27.
  • the power source 34 is not particularly limited, and a direct current (DC) power source, an alternating current (AC) power source, a high frequency (RF) power source, a DC power source + RF power source, or the like can be used as appropriate.
  • a direct current (DC) power supply (not shown) is used as the power supply 34.
  • the gas introduction means 35 includes a sputtering gas introduction means 35a for introducing a sputtering gas such as Ar, a hydrogen gas introduction means 35b for introducing hydrogen gas, an oxygen gas introduction means 35c for introducing oxygen gas, and a water vapor for introducing water vapor. Introduction means 35d.
  • gas introduction means 35 the hydrogen gas introduction means 35b, the oxygen gas introduction means 35c, and the water vapor introduction means 35d may be selectively used as necessary.
  • gas introduction means 35 such as gas introduction means 35 constituted by hydrogen gas introduction means 35b and oxygen gas introduction means 35c, or gas introduction means 35 constituted by hydrogen gas introduction means 35b and water vapor introduction means 35d. 35 may be constituted by two means.
  • the indium oxide-based antireflection film 1 and the transparent conductive film 3 on the transparent substrate 2 using the sputtering apparatus 21 will be described.
  • an alkali-free glass substrate is used as the transparent substrate 2
  • the antireflection film 1 is made of an indium oxide-based material such as In 2 O 3 —SnO 2 , In 2 O 3 —TiO 2 , In 2 O 3 —ZnO.
  • In 2 O 3 —SnO 2 In 2 O 3 —SnO 2
  • In 2 O 3 —TiO 2 In 2 O 3 —ZnO.
  • an indium oxide target 27 is bonded and fixed to the cathode 32 with a brazing material or the like.
  • the target material used here is an indium oxide-based material, for example, tin-added indium oxide (ITO) to which tin oxide (SnO 2) is added at 1.0 to 40.0 wt%, and titanium oxide (TiO 2) at 0.1 to 4%. Examples thereof include titanium-added indium oxide added with 10.0 wt% and zinc-added indium oxide added with 1.0 to 20.0 wt% of zinc oxide (ZnO).
  • the preparation / removal chamber 22 and the film formation chamber 23 are roughly evacuated by the roughing exhaust unit 24.
  • the preparation / removal chamber 22 and the film formation chamber 23 reach a predetermined degree of vacuum, for example, 0.27 Pa (2.0 ⁇ 10 ⁇ 3 Torr)
  • the substrate 26 is carried into the film formation chamber 23 from the preparation / removal chamber 22.
  • the substrate 26 is disposed in front of the heater 31 in a state where the setting is turned off, and the substrate 26 is opposed to the target 27.
  • the substrate 26 is heated by a heater 31 so as to be within a temperature range from room temperature to 600 ° C.
  • the film forming chamber 23 is evacuated by the high vacuum exhaust means 33. After the film forming chamber 23 reaches a predetermined high vacuum, for example, 2.7 ⁇ 10 ⁇ 4 Pa (2.0 ⁇ 10 ⁇ 6 Torr), the following (1) to (1) to the film forming chamber 23 are entered. Gas is introduced according to any of (5).
  • (2) Introduction of H 2 gas by the hydrogen gas introduction means 35b [introduced gas: one type].
  • the film formation chamber 23 is filled with five types of gas atmospheres, that is, an atmosphere of H 2 O gas, an atmosphere of H 2 gas, an atmosphere of H 2 O gas and H 2 gas, and an H 2 O gas.
  • atmosphere of O 2 gas, and H 2 O gas and H 2 gas and an atmosphere of O 2 gas may be any.
  • a sputtering voltage is applied to the target 27 by the power supply 34.
  • This sputtering voltage is preferably 250 V or less.
  • a sputtering voltage obtained by superimposing a high-frequency voltage on a DC voltage may be used.
  • the discharge voltage can be further reduced.
  • an indium oxide material such as In 2 O 3 —SnO 2 , In 2 O 3 —TiO 2 , In 2 O 3 —ZnO are ejected from the target 27, and an indium oxide system is formed on the substrate 26.
  • a transparent film made of a material is formed.
  • the film forming chamber 23 contains the five types of gas atmospheres described above, that is, an atmosphere of H 2 O gas, an atmosphere of H 2 gas, an atmosphere of H 2 O gas and H 2 gas, and H Either an atmosphere of 2 O gas and O 2 gas or an atmosphere of H 2 O gas, H 2 gas, and O 2 gas is used. Therefore, if sputtering is performed in the atmosphere as described above, the number of oxygen vacancies in the indium oxide crystal is controlled, and the desired high refractive index shifted to the high refractive index side (for example, around 2.3), And the transparent film 11 which has desired specific resistance (electric conductivity) is obtained.
  • the refractive index is 2 A transparent film 11 of about 3 is obtained. Further, by satisfying the condition that the H 2 gas partial pressure is 0.5 ⁇ 10 ⁇ 5 Torr or more and the H 2 O gas partial pressure is 0.5 ⁇ 10 ⁇ 5 Torr or more, the refractive index is 2 A transparent film 11 of about 3 is obtained. By satisfying the condition that the H 2 O gas partial pressure is 1.0 ⁇ 10 ⁇ 5 Torr or more, the transparent film 11 having a refractive index of about 2.3 can be obtained.
  • the film forming chamber 23 is filled with the five types of gas atmospheres described above, that is, the atmosphere of H 2 O gas, the atmosphere of H 2 gas, the atmosphere of H 2 O gas and H 2 gas, and the H 2 O gas.
  • the specific resistance (conductivity) of the transparent film 11 to be obtained also changes depending on whether it is an atmosphere of O 2 gas or an atmosphere of H 2 O gas, H 2 gas, and O 2 gas.
  • H 2 O gas partial pressure, H 2 gas and O 2 gas partial pressure, H 2 gas and H 2 O gas partial pressure, O 2 gas and H 2 O gas partial pressure, or O 2 gas By adjusting the partial pressure of H 2 gas and H 2 O gas, the oxygen vacancies are optimized, and the conductive transparent film 11 can be obtained.
  • the film was formed in an atmosphere of H 2 O gas, H 2 gas + O 2 gas, H 2 gas + H 2 O gas, O 2 gas + H 2 O gas, or O 2 gas + H 2 gas + H 2 O.
  • the transparent film 11 having a high refractive index has a low specific resistance and can also serve as a transparent conductive film. In this case, the transparent conductive film 3 becomes unnecessary.
  • the same indium oxide target 27 as the high refractive index transparent film is used, and the atmosphere during the film formation is an Ar gas atmosphere or an Ar gas (Ar + O 2 ) atmosphere containing O 2 gas. And thereby, a desired low refractive index transparent film is formed.
  • the atmosphere in the film formation chamber 23 becomes an Ar gas atmosphere or an Ar gas (Ar + O 2 ) atmosphere containing O 2 gas. If sputtering is performed in this atmosphere, the number of oxygen vacancies in the indium oxide crystal is controlled, and a transparent having a desired low refractive index (for example, around 2.0) and a desired specific resistance (conductivity). A membrane 12 is obtained.
  • the atmosphere during film formation when it is desired to shift the refractive index of the transparent film 12, the atmosphere during film formation, the Ar gas (Ar + O 2) atmosphere containing Ar gas atmosphere or O 2 gas, Ar containing Ar gas or O 2 gas the gas may be the atmosphere plus H 2 gas and / or the H 2 O gas (water vapor).
  • the film forming chamber 23 also contains H 2 gas and / or H 2 O gas, the partial pressure of each of H 2 gas, H 2 O gas (water vapor), and Ar + O 2 gas is controlled.
  • the refractive index and specific resistance (conductivity) of the obtained transparent film can be controlled.
  • the indium oxide-based target 27 is used, and the temperature of the substrate 26 is set within a temperature range of 100 ° C. to 600 ° C., similarly to the antireflection film.
  • a sputtering gas such as Ar is introduced into the film forming chamber 23 by the sputtering gas introduction means 15a, and any one or two of the hydrogen gas introduction means 15b, the oxygen gas introduction means 15c, and the water vapor introduction means 15d are provided.
  • three, one, two, or three gases selected from the group of hydrogen gas, oxygen gas, and water vapor are introduced. In this manner, the substrate 26 on which the indium oxide-based transparent conductive film 3 having a low specific resistance and good transparency to visible light is formed is obtained.
  • Ar gas was introduced into the film forming chamber 23 by the gas introduction means 35 so that the pressure was 5 mTorr, and then the partial pressure of H 2 O gas was introduced so as to be 5 ⁇ 10 ⁇ 5 Torr.
  • Ar gas was introduced into the film forming chamber 23 at a pressure of 5 mTorr, and then O 2 gas was introduced at a partial pressure of 2 ⁇ 10 ⁇ 5 Torr.
  • FIG. 5 is a graph showing the effect of H 2 O gas (water vapor) in an indium oxide-based transparent conductive film that is formed without heating and then annealed in the atmosphere (240 ° C. ⁇ 1 hr).
  • A represents the transmittance of the indium oxide-based transparent conductive film when introduced so that the partial pressure of H 2 O gas is 5 ⁇ 10 ⁇ 5 Torr
  • B represents the partial pressure of O 2 gas is 2 ⁇ .
  • the transmittance of the indium oxide-based transparent conductive film when it is introduced so as to be 10 ⁇ 5 Torr is shown.
  • the film thickness of the transparent conductive film was 100.0 nm, and the specific resistance was 1400 ⁇ cm.
  • the film thickness of the transparent conductive film was 99.1 nm and the specific resistance was 200 ⁇ cm.
  • the peak wavelength of transmittance can be changed without changing the film thickness by introducing water vapor (H 2 O).
  • water vapor H 2 O
  • the specific resistance is high and the resistance deterioration is large, but it has been found that the present invention can be applied to an optical member that does not require low resistance such as an antireflection film.
  • FIG. 6 is a grab showing a simulation result of the reflectance of the antireflection film that is optically designed using the refractive index calculated from the spectra of A and B in FIG.
  • is a wavelength
  • n is a refractive index
  • m is an integer
  • a transparent film having a low refractive index (n) of 1.96 is formed on the glass substrate so that the film thickness (d) is 74.9 nm.
  • a high refractive index transparent film having a refractive index (n) of 2.25 was formed so as to have a film thickness (d) of 55.2 nm.
  • the reflectance of the antireflection film is 0.532% when the wavelength ( ⁇ ) is 550 nm, and the antireflection film having a laminated structure is continuously formed using one target. I found out that I could do it.
  • FIG. 7 is a graph showing the effect of H 2 gas.
  • A is the transmittance of the indium oxide-based conductive film when H 2 gas is introduced at 2 ⁇ 10 ⁇ 5 Torr and O 2 gas is introduced at 5 ⁇ 10 ⁇ 5 Torr
  • B is O 2 gas.
  • the transmittance of the indium oxide-based conductive film in the case where the partial pressure is introduced so as to be 2 ⁇ 10 ⁇ 5 Torr is shown.
  • a parallel plate type cathode to which a direct current (DC) voltage is applied is used.
  • the film thickness of the transparent conductive film was 75.0 nm, and the specific resistance was 1700 ⁇ cm.
  • the film thickness of the transparent conductive film was 74.9 nm and the specific resistance was 240 ⁇ cm. According to FIG. 7, it was found that the same effect as in the case of introducing the H 2 O gas can be obtained even when introducing the H 2 gas + O 2 gas.
  • an antireflection film According to the method for forming an antireflection film according to this embodiment, sputtering is performed in a reactive gas atmosphere containing one, two, or three selected from the group of hydrogen gas, oxygen gas, and water vapor.
  • a reactive gas atmosphere containing one, two, or three selected from the group of hydrogen gas, oxygen gas, and water vapor.
  • the gas introduction unit 35 introduces a sputtering gas introduction unit 35a for introducing a sputtering gas such as Ar, a hydrogen gas introduction unit 35b for introducing hydrogen gas, and an oxygen gas. Since the oxygen gas introducing means 35c and the water vapor introducing means 35d for introducing water vapor are provided, the sputtering gas introducing means 35a, the hydrogen gas introducing means 35b, the oxygen gas introducing means 35c, and the water vapor introducing means 35d are controlled. Thus, it is possible to produce a water vapor atmosphere that inhibits bonding of the crystal lattice of In 2 O 3 when the indium oxide-based antireflection film 1 is formed. Therefore, an indium oxide-based antireflection film can be formed only by improving a part of the conventional film forming apparatus.
  • the antireflection film 1 of the present embodiment has a two-layer structure in which a transparent film 11 having a high refractive index and a transparent film 12 having a low refractive index are sequentially formed on the surface 2a of the transparent substrate 2.
  • the laminated structure of the antireflection film 1 is not limited to the above two-layer structure.
  • a multilayer structure of three or more layers may be used so as to satisfy the required antireflection performance of the antireflection film.
  • a multilayer structure in which a transparent film 11 having a high refractive index and a transparent film 12 having a low refractive index are repeatedly formed a plurality of times may be used.
  • FIG. 8 is a cross-sectional view showing a main part of a film forming chamber of an inter-back magnetron sputtering apparatus (film forming apparatus) used for forming an antireflection film according to the second embodiment of the present invention.
  • the magnetron sputtering apparatus 41 is different from the sputtering apparatus 21 described above in that a sputtering cathode mechanism (target holding means) that holds a target 27 made of an indium oxide material on one side surface 23b of the film forming chamber 23 and generates a desired magnetic field. 42 is a vertical type.
  • the sputter cathode mechanism 42 includes a back plate 43 in which the target 27 is bonded (fixed) with a brazing material or the like, and a magnetic circuit (magnetic field generating means) 44 disposed along the back surface of the back plate 43.
  • the magnetic circuit 44 generates a horizontal magnetic field on the surface of the target 27, and a plurality of magnetic circuit units (two in FIG. 8) 44 a and 44 b are connected and integrated by a bracket 45.
  • Each of the magnetic circuit units 44a and 44b includes a first magnet 46 and a second magnet 47 having different polarities on the surface on the back plate 43 side, and a yoke 48 for mounting them.
  • a magnetic field represented by a line of magnetic force 49 is generated by the first magnet 46 and the second magnet 47 having different polarities on the back plate 43 side.
  • a position 50 where the vertical magnetic field is 0 (the horizontal magnetic field is maximum) is generated. Since high-density plasma is generated at this position 50, the film formation rate can be improved.
  • the maximum value of the horizontal magnetic field strength on the surface of the target 27 is preferably 600 gauss or more. By setting the maximum value of the horizontal magnetic field strength to 600 gauss or more, the discharge voltage can be lowered.
  • the same effect as that of the sputtering apparatus 21 of the first embodiment can be obtained.
  • the sputtering cathode mechanism 42 that generates a desired magnetic field is provided on the one side surface 23b of the film forming chamber 23 in a vertical type, the sputtering voltage is set to 250 V or less, and the maximum horizontal magnetic field strength on the surface of the target 27 is set. By setting it to 600 gauss or more, highly reactive high-density plasma can be produced. As a result, an indium oxide-based antireflection film can be formed by causing the gas to bind to the sputtered particles as intended.
  • FIG. 9 is a schematic configuration diagram showing a carousel type sputtering apparatus (film forming apparatus) according to a third embodiment of the present invention.
  • a rotating body 54 that rotates about the central axis of the film forming chamber 52 is provided.
  • substrate holders 53 On the outer peripheral surface of the rotator 54, there are provided substrate holders 53 (four in FIG. 9) that detachably support the plurality of substrates 26. Further, a plurality of cathodes 32 (two in FIG.
  • the film forming chamber 52 is provided with a partition plate 55 that divides the chamber into two sputter regions S 1 and S 2 .
  • Rough evacuation means 24 and high vacuum evacuation means 33 are provided in each of these two sputter regions S 1 and S 2 .
  • a gas introduction means 35 having a sputtering gas introduction means 35a, a hydrogen gas introduction means 35b, an oxygen gas introduction means 35c, and a water vapor introduction means 35d for introducing water vapor is provided. Is provided.
  • the sputtering region S1 the introduction of the H 2 O gas by the gas introduction means 35 (water vapor), the introduction of the H 2 gas containing O 2 gas (H 2 + O 2), either one of or both, by performing this sputter region S1 is the H 2 gas (H 2 + H 2 O) atmosphere containing H 2 O gas.
  • the high refractive index transparent film 11 having a desired high refractive index is formed on the substrate 26.
  • the rotating body 54 is rotated around its axis, and the substrate 26 on which the high refractive index transparent film 11 is formed is moved to the sputtering region S2.
  • the inside of the sputter region S2 is made an O 2 gas atmosphere.
  • a low refractive index transparent film 12 having a desired low refractive index is formed on the high refractive index transparent film 11.
  • the indium oxide-based antireflection film 1 according to the first embodiment can be formed using the sputtering apparatus 51.
  • a low refractive index transparent film 12 having a desired low refractive index may be formed on the high refractive index transparent film 11.
  • either the introduction of H 2 O gas or the introduction of H 2 gas (H 2 + O 2 ) containing O 2 gas is introduced into the entire sputtering regions S 1 and S 2 by the gas introduction means 35.
  • the substrate 26 is rotated and sputtered in this atmosphere to form the transparent film 11 having a high refractive index on the substrate 26; then, the entire sputtering regions S 1 and S 2
  • the O 2 gas is introduced by the gas introducing means 35; the transparent film 12 having a low refractive index is formed by performing sputtering by rotating the substrate 26 in this changed atmosphere;
  • the indium oxide-based antireflection film 1 according to the first embodiment can be formed.
  • the film forming chamber 52 is provided with a rotating body 64 having a substrate holder 63 that rotates about the central axis of the film forming chamber 52 and detachably supports the plurality of substrates 26. Furthermore, a plurality of cathodes 32 that hold the target 27 of indium oxide-based material are provided on the inner surface of the film forming chamber 52. Therefore, by rotating the rotating body 54 to which the substrate 26 is attached about its axis, a multilayer structure film can be formed under different atmospheres. Therefore, it is suitable when a multilayer film is repeatedly formed.
  • the desired antireflection performance can be obtained. It is possible to provide a method for forming an antireflection film that can provide an indium oxide-based antireflection film that also has a function as a transparent conductive film. In addition, it is possible to provide an indium oxide-based antireflection film that has a desired antireflection performance and also functions as a transparent conductive film. Furthermore, it is possible to provide a film forming apparatus that can form an antireflection film in which a plurality of refractive index layers having different refractive indexes are stacked with one apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 第1の酸化インジウム系薄膜上と、この第1の酸化インジウム系薄膜上に積層された第2の酸化インジウム系薄膜と、を有する反射防止膜の成膜方法であって、酸素ガス、水素ガス、水蒸気の群から選択される1種、2種または3種を含む第1の反応性ガス中にて第1の酸化インジウム系ターゲットを用いたスパッタリングを行うことにより、第1の酸化インジウム系薄膜を成膜する第1の成膜工程と;前記第1の酸化インジウム系薄膜上に、酸素ガス、水素ガス、水蒸気の群から選択される1種、2種または3種を含み、かつ前記第1の反応性ガスとは異なる組成の第2の反応性ガス中にて第2の酸化インジウム系ターゲットを用いたスパッタリングを行うことにより、第2の酸化インジウム系薄膜を成膜する第2の成膜工程と;を備える。

Description

反射防止膜の成膜方法及び反射防止膜並びに成膜装置
 本発明は、反射防止膜の成膜方法及び反射防止膜並びに成膜装置に関し、更に詳しくは、フラットパネルディスプレイ(FPD:Flat Panel Display)の表示面、タッチパネル等の操作面、太陽電池の受光面等に好適に用いられる反射防止膜の成膜方法及び反射防止膜並びに成膜装置に関する。
 本願は、2008年10月17日に、日本に出願された特願2008-268769号に基づき優先権を主張し、その内容をここに援用する。
 近年、フラットパネルディスプレイ(FPD)、タッチパネル、太陽電池等においては、反射防止用に様々な反射防止膜が用いられている。
 従来より用いられている反射防止膜としては、透明基板上に高屈折率層や低屈折率層を順次積層した多層構造の反射防止膜が提案されている。
 このような反射防止膜では、高屈折率層には、例えば、TiO(屈折率:2.3~2.55)やZrO(屈折率:2.05~2.15)等が、また、低屈折率層としては、例えば、SiO(屈折率:1.45~1.46)等が用いられている(特許文献1、2)。
 このような反射防止膜では、高屈折率層や低屈折率層の膜厚や材質を変えることにより、所望の反射防止性能を得ることができる。
 このような反射防止膜は、透明基板上に、SiO等の低屈折率材料のターゲットを用いたスパッタリングにより低屈折率層を成膜し、次いで、この低屈折率層上に、TiOやZrO等の高屈折率材料のターゲットを用いたスパッタリングにより高屈折率層を成膜することにより得ることができる。
特開平7-130307号公報 特開平8-75902号公報
 ところで、従来の多層構造の反射防止膜をスパッタリングで成膜するためには、各層毎に異なるターゲットを用意して成膜を行う必要がある。すなわち、TiOターゲットとSiOターゲットとを順番にスパッタして成膜を行うか、もしくは酸素ガス等の反応性ガスを導入しながらTiターゲットとSiターゲットとを順番にスパッタして成膜を行う必要がある。
 一方、TiターゲットとSiターゲットとを酸素ガス等の反応性ガスを導入しながらスパッタして成膜する場合、多量の酸素ガスを導入する必要があるため、金属酸化物からなる透明導電膜を成膜する雰囲気と同じ雰囲気では成膜することができないという問題点があった。
 本発明は、上記の課題を解決するためになされたものであって、スパッタリングを行う成膜室への基板の搬入及び同成膜室からの基板の搬出を伴うことなく、同一の成膜室においてスパッタリングを行うことにより、所望の反射防止性能を有し、かつ、透明導電膜としても機能する酸化インジウム系の反射防止膜を得ることが可能な反射防止膜の成膜方法の提供を目的とする。
 また、所望の反射防止性能を有し、かつ、透明導電膜としても機能する酸化インジウム系反射防止膜の提供を目的とする。
 また、相互に屈折率の異なる複数の屈折率層が積層された反射防止膜を、1つの装置にて成膜することを可能とする成膜装置の提供を目的とする。さらには、同じ酸化インジウム系のターゲットを使用し、導入する酸素ガス、水素ガスまたは水蒸気の分圧比を調整してスパッタすることにより、相互に屈折率の異なる複数の屈折率層が積層された反射防止膜を成膜することができる成膜装置の提供を目的とする。
 本発明者等は、酸化インジウム系の透明導電膜を用いた反射防止膜の成膜方法について鋭意検討を行った結果、酸化インジウムからなるターゲットを用いて、スパッタ法により屈折率の異なる複数の屈折率層を積層してなる酸化インジウム系反射防止膜を成膜する際に、酸素ガス、水素ガス、水蒸気の群から選択される1種、2種または3種を含む反応性ガス中のそれぞれのガスの比率を変えてスパッタを行うこととすれば、第1の酸化インジウム系薄膜上に屈折率の異なる第2の酸化インジウム系薄膜を積層した所望の反射性能を有する反射防止膜を効率的に成膜することができることを見出し、本発明を完成するに至った。
 すなわち、本発明の一態様に係る反射防止膜の成膜方法は、第1の酸化インジウム系薄膜上と、この第1の酸化インジウム系薄膜上に積層された第2の酸化インジウム系薄膜とを有する反射防止膜の成膜方法であって、酸素ガス、水素ガス、水蒸気の群から選択される1種、2種または3種を含む第1の反応性ガス中にて第1の酸化インジウム系ターゲットを用いたスパッタリングを行うことにより、第1の酸化インジウム系薄膜を成膜する第1の成膜工程と;前記第1の酸化インジウム系薄膜上に、酸素ガス、水素ガス、水蒸気の群から選択される1種、2種または3種を含み、かつ前記第1の反応性ガスとは異なる組成の第2の反応性ガス中にて第2の酸化インジウム系ターゲットを用いたスパッタリングを行うことにより、第2の酸化インジウム系薄膜を成膜する第2の成膜工程と;を備える。
 上記製造方法では、第1の成膜工程において、酸素ガス、水素ガス、水蒸気の群から選択される1種、2種または3種を含む第1の反応性ガス中にて第1の酸化インジウム系ターゲットを用いたスパッタリングを行うことにより、第1の酸化インジウム系薄膜を成膜する。さらに、第2の成膜工程において、酸素ガス、水素ガス、水蒸気の群から選択される1種、2種または3種を含み、かつ前記第1の反応性ガスと異なる組成の第2の反応性ガス中にて第2の酸化インジウム系ターゲットを用いたスパッタリングを行うにより、第2の酸化インジウム系薄膜を成膜する。
 したがって、上記製造方法によれば、酸化インジウム系ターゲットを使用して、屈折率の異なる複数の屈折率層を積層することが可能になり、その結果、所望の反射防止性能を有する反射防止膜を効率的に成膜することが可能になる。
 前記第2の反応性ガスは、前記第1の反応性ガスと水素ガスの含有率が異なることが好ましい。
 前記第2の反応性ガスは、前記第1の反応性ガスと水蒸気の含有率が異なることが好ましい。
 前記第2の酸化インジウム系ターゲットは、前記第1の酸化インジウム系ターゲットと同一であることが好ましい。
 前記第2の成膜工程は、前記第1の成膜工程と同一の真空槽内にて、前記第1の反応性ガスを前記第2の反応性ガスに置換して行うことが好ましい。
 前記第1の酸化インジウム系ターゲット及び前記第2の酸化インジウム系ターゲットは、スズ添加酸化インジウム系ターゲット、チタン添加酸化インジウム系ターゲットまたは亜鉛添加酸化インジウム系ターゲットであることが好ましい。
 本発明の一態様に係る反射防止膜は、上記反射防止膜の成膜方法により得られた反射防止膜であって、第1の酸化インジウム系薄膜と;この第1の酸化インジウム系薄膜上に積層され該第1の酸化インジウム系薄膜とは屈折率が異なる第2の酸化インジウム系薄膜と;を備えている。
 上記反射防止膜によれば、第1の酸化インジウム系薄膜と、この第1の酸化インジウム系薄膜上に積層され該第1の酸化インジウム系薄膜と屈折率が異なる第2の酸化インジウム系薄膜とが設けられているので、屈折率の異なる複数の屈折率層が積層され、所望の反射防止性能を有する酸化インジウム系の反射防止膜を提供することが可能になる。
 前記第1の酸化インジウム系薄膜及び前記第2の酸化インジウム系薄膜のうち少なくとも一方は、比抵抗が5×10μΩ・cm以下であることが好ましい。
 本発明の一態様に係る成膜装置は、上記反射防止膜の成膜方法に用いられる成膜装置であって、真空容器と;この真空容器内にターゲットを保持するターゲット保持手段と;前記ターゲットにスパッタ電圧を印加する電源と;を備え、前記真空容器は、水素ガス導入手段、酸素ガス導入手段、水蒸気導入手段のうち2つ以上を備えている。
 上記成膜装置によれば、真空容器が、水素ガス導入手段、酸素ガス導入手段、水蒸気導入手段のうち2つ以上を備えているため、酸化インジウム系材料からなるターゲットを用いて、スパッタ法により基板上に屈折率の異なる複数の屈折率層を積層する際の雰囲気を、Inの結晶格子の結合を阻害する水蒸気(HO)雰囲気とすることが可能になる。よって、所望の反射防止性能を有する反射防止膜を、酸化インジウム系材料からなるターゲットを用いて1つの装置により成膜することが可能となる。
 また、酸化インジウム系材料からなる一種類のターゲットを使用し、導入する酸素ガス、水素ガスまたは水蒸気の分圧比を調整するのみで、屈折率の異なる複数の屈折率層が積層された反射防止膜を容易に成膜することが可能になる。さらに、従来の成膜速度以上にて成膜することが可能になる。
 前記ターゲット保持手段には、前記ターゲットの表面において強度の最大値が600ガウス以上の水平磁界を発生させる磁界発生手段が設けられていることが好ましい。
 さらに、前記真空容器内には、軸を中心として回転するとともに、その外周面に複数の基材を着脱可能に支持する回転体と、この回転体に支持された前記複数の基材のうち1つ以上の基材各々に対向する複数の前記ターゲット保持手段と、が設けられ;前記回転体をその軸を中心として回転させながら、前記ターゲット保持手段に保持されるターゲットを用いてスパッタリングを行うことにより、前記各基材上に組成の異なる複数種の膜が成膜されてもよい。
 本発明の一態様に係る反射防止膜の成膜方法によれば、酸素ガス、水素ガス、水蒸気の群から選択される1種、2種または3種を含む第1の反応性ガス中にて第1の酸化インジウム系ターゲットを用いたスパッタリングを行うことにより、第1の酸化インジウム系薄膜を成膜する第1の成膜工程と;前記第1の酸化インジウム系薄膜上に、酸素ガス、水素ガス、水蒸気の群から選択される1種、2種または3種を含み前記第1の反応性ガスと異なる組成の第2の反応性ガス中にて第2の酸化インジウム系ターゲットを用いたスパッタリングを行うことにより、第2の酸化インジウム系薄膜を成膜する第2の成膜工程と;を有するので、酸化インジウム系ターゲットを使用して、屈折率の異なる複数の屈折率層を容易に積層することができる。その結果、所望の反射防止性能を有する反射防止膜を効率的に成膜することができる。
 本発明の一態様に係る反射防止膜によれば、第1の酸化インジウム系薄膜と、この第1の酸化インジウム系薄膜上に積層され該第1の酸化インジウム系薄膜と屈折率が異なる第2の酸化インジウム系薄膜と、を備えたので、屈折率の異なる複数の屈折率層が積層され、所望の反射防止性能を有する酸化インジウム系の反射防止膜を提供することができる。
 本発明の一態様に係る成膜装置によれば、真空容器と、この真空容器内にターゲットを保持するターゲット保持手段と、前記ターゲットにスパッタ電圧を印加する電源とを備え、前記真空容器は、水素ガス導入手段、酸素ガス導入手段、水蒸気導入手段のうち2つ以上を備えているので、酸化インジウム系材料からなるターゲットを用いて、スパッタ法により基板上に屈折率の異なる複数の屈折率層を積層する際の雰囲気を変更することができる。したがって、所望の反射防止性能を有する反射防止膜を、酸化インジウム系材料からなるターゲットを用いて1つの装置により成膜することができる。
 また、酸化インジウム系材料からなる一種類のターゲットを使用し、導入する酸素ガス、水素ガスまたは水蒸気の分圧比を調整するのみで、屈折率の異なる複数の屈折率層を積層してなる反射防止膜を、容易に成膜することができる。さらに、従来の成膜速度以上にて成膜することができる。
本発明の第1実施形態に係る反射防止膜の一例を示す断面図。 同実施形態に係る反射防止膜の変形例を示す断面図。 同実施形態に係る反射防止膜の成膜に用いられるスパッタ装置の一例を示す概略構成図。 図3のスパッタ装置を構成する成膜室の主要部を示す断面図。 無加熱成膜におけるHOガス(水蒸気)の効果を示すグラフ。 反射防止膜の反射率のシミュレーション結果を示すグラフ。 加熱成膜におけるHガスの効果を示すグラフ。 本発明の第2実施形態に係る反射防止膜の成膜に用いられるスパッタ装置を構成する成膜室の主要部を示す断面図。 本発明の第3実施形態に係るスパッタ装置を示す概略構成図。
 本発明に係る反射防止膜の成膜方法及び反射防止膜並びに成膜装置の実施形態について説明する。
 なお、この実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
 <第1実施形態>
 図1は、本発明の第1実施形態に係る反射防止膜を示す断面図である。この反射防止膜1は、透明基板2の表面2aに成膜され、積層構造を有する。反射防止膜1では、透明基板2の表面2a側から外方に向かって屈折率が順次小さくなるように、屈折率の異なる複数の酸化インジウム系薄膜、例えば高屈折率の透明膜11及び低屈折率の透明膜12が積層されている。
 これらの酸化インジウム系薄膜としては、例えば、In-SnO、In-TiO、In-ZnO等を主成分とする酸化インジウム系材料が好適に用いられる。
 例えば、スズ添加酸化インジウム(ITO)を用いた積層構造の場合、屈折率が例えば1.96等の低屈折率の透明膜12は、スズ添加酸化インジウム(ITO)をターゲットとして、アルゴン(Ar)ガス雰囲気または酸素を含むアルゴン(Ar+O)雰囲気下にて成膜することにより得られる。
 また、屈折率が例えば2.25等の高屈折率の透明膜11は、上記のスズ添加酸化インジウム(ITO)をターゲットとして、水素ガス(H)と酸素ガス(O)雰囲気または水蒸気(HO)雰囲気下にて成膜することにより得られる。
 これらの酸化インジウム系薄膜のうち少なくとも一方、例えば高屈折率の透明膜11及び低屈折率の透明膜12のうち少なくとも一方の比抵抗は、5.0×10μΩ・cm以下であることが好ましい。
 このように、透明膜11、12のうちの少なくとも一方の比抵抗を5.0×10μΩ・cm以下とすることにより、この透明膜に透明導電膜としての機能を付与することができる。
 図2は本実施形態に係る反射防止膜の変形例を示す断面図であり、高屈折率の透明膜11または低屈折率の透明膜12の比抵抗が高い場合には、透明膜11,12の膜厚を厚くするAR設計により、低抵抗化が可能である。このような構成とすることにより、反射防止膜1に透明導電膜の機能を付与することができる。
 図3は、本実施形態に係る反射防止膜の成膜に用いられるスパッタ装置(成膜装置)を示す概略構成図であり、図4は同スパッタ装置の成膜室の主要部を示す断面図である。
 このスパッタ装置21は、インターバック式のスパッタ装置であり、例えば、ガラス基板(図示せず)等の基板を搬入/搬出する仕込み/取り出し室22と、上記の基板上に酸化インジウム系反射防止膜を成膜する成膜室(真空容器)23と、を備えている。仕込み/取り出し室22には、この室内を粗真空引きするロータリーポンプ等の粗引き排気手段24が設けられている。また、仕込み/取り出し室22の室内には、基板を保持・搬送するための基板トレイ25が移動可能に配置されている。
 成膜室23の一方の側面23aには、基板26を加熱するヒーター31が縦型に設けられ、他方の側面23bには、酸化インジウム系材料のターゲット27を保持し所望のスパッタ電圧を印加するカソード(ターゲット保持手段)32が縦型に設けられている。さらに、成膜室23には、この室内を高真空引きするターボ分子ポンプ等の高真空排気手段33と、ターゲット27にスパッタ電圧を印加する電源34と、この室内にガスを導入するガス導入手段35と、が設けられている。
 カソード32は、板状の金属プレートからなるもので、ターゲット27をロウ材等でボンディング(固定)により固定する。
 電源34は、ターゲット27にスパッタ電圧を印加する。この電源34としては、特に限定されるものではなく、直流(DC)電源、交流(AC)電源、高周波(RF)電源、DC電源+RF電源等を適宜用いることができる。ここでは電源34として直流(DC)電源(図示略)が用いられている。
 ガス導入手段35は、Ar等のスパッタガスを導入するスパッタガス導入手段35aと、水素ガスを導入する水素ガス導入手段35bと、酸素ガスを導入する酸素ガス導入手段35cと、水蒸気を導入する水蒸気導入手段35dと、を備えている。
 なお、このガス導入手段35において、水素ガス導入手段35b、酸素ガス導入手段35c、および水蒸気導入手段35dについては、必要に応じて選択使用すればよい。例えば、水素ガス導入手段35bと酸素ガス導入手段35cとにより構成されるガス導入手段35や、水素ガス導入手段35bと水蒸気導入手段35dとにより構成されるガス導入手段35のように、ガス導入手段35を2つの手段により構成してもよい。
 次に、上記のスパッタ装置21を用いて透明基板2上に酸化インジウム系の反射防止膜1及び透明導電膜3を順次成膜する方法について説明する。
 ここでは、透明基板2として無アルカリガラス基板を用い、反射防止膜1として、In-SnO、In-TiO、In-ZnO等の酸化インジウム系材料からなる2層構造のものを用いた場合について説明する。
  <反射防止膜の成膜>
  (a)高屈折率透明膜の成膜
 高屈折率の透明膜11を成膜するために、酸化インジウム系のターゲット27をカソード32にロウ材等でボンディングして固定する。ここで用いられるターゲット材としては、酸化インジウム系材料、例えば、酸化スズ(SnO2)を1.0~40.0wt%添加したスズ添加酸化インジウム(ITO)、酸化チタン(TiO2)を0.1~10.0wt%添加したチタン添加酸化インジウム、酸化亜鉛(ZnO)を1.0~20.0wt%添加した亜鉛添加酸化インジウム等が挙げられる。
 次いで、基板26を仕込み/取り出し室22の基板トレイ25に収納した状態で、仕込み/取り出し室22及び成膜室23を粗引き排気手段24で粗真空引きする。仕込み/取り出し室22及び成膜室23が所定の真空度、例えば0.27Pa(2.0×10-3Torr)となった後に、基板26を仕込み/取り出し室22から成膜室23に搬入する。この基板26を、設定がオフになった状態のヒーター31の前に配置し、この基板26をターゲット27に対向させる。この基板26を常温から600℃の温度範囲内となるようにヒーター31により加熱する。
 次いで、成膜室23を高真空排気手段33で高真空引きする。成膜室23が所定の高真空度、例えば2.7×10-4P a (2.0×10-6Torr)となった後に、この成膜室23内へ、以下の(1)~(5)のいずれかに従ってガスを導入する。
(1)水蒸気導入手段35dによるHOガス(水蒸気)の導入[導入ガス:1種類]。
(2)水素ガス導入手段35bによるHガスの導入[導入ガス:1種類]。
(3)水蒸気導入手段35dによるHOガス(水蒸気)の導入、及び、水素ガス導入手段35bによるHガスの導入[導入ガス:2種類]。
(4)水蒸気導入手段35dによるHOガス(水蒸気)の導入、及び、酸素ガス導入手段35cによるOガスの導入[導入ガス:2種類]。
(5)水蒸気導入手段35dによるHOガス(水蒸気)の導入、水素ガス導入手段35bによるHガスの導入、及び、酸素ガス導入手段35cによるOガスの導入[導入ガス:3種類]。
 上述したガスの導入により成膜室23内を5種類のガス雰囲気、すなわち、HOガスの雰囲気、Hガスの雰囲気、HOガスとHガスとの雰囲気、HOガスとOガスとの雰囲気、及びHOガスとHガスとOガスとの雰囲気、のいずれかとすることができる。
 次いで、電源34によりターゲット27にスパッタ電圧を印加する。
 このスパッタ電圧は250V以下であることが好ましい。放電電圧を下げることにより、反応性の高い高密度プラズマを作製することができ、ガスをスパッタ粒子に対し意図した結合をさせることが可能になる。
 上記では、直流電圧に高周波電圧を重畳したスパッタ電圧を用いてもよい。直流電圧に高周波電圧を重畳することで、放電電圧をさらに下げることができる。
 スパッタ電圧印加により、基板26上にプラズマが発生し、このプラズマにより励起されたAr等のスパッタガスのイオンがターゲット27に衝突する。この衝突によりターゲット27からIn-SnO、In-TiO、In-ZnO等の酸化インジウム系材料を構成する原子を飛び出させて、基板26上に酸化インジウム系材料からなる透明膜を成膜する。
 この成膜の過程では、成膜室23内が、前述した5種類のガス雰囲気、すなわち、HOガスの雰囲気、Hガスの雰囲気、HOガスとHガスとの雰囲気、HOガスとOガスとの雰囲気、HOガスとHガスとOガスとの雰囲気、の何れかとなる。したがって、上記のような雰囲気下にてスパッタを行えば、酸化インジウム結晶中の酸素空孔の数が制御されて、高屈折率側にシフトした所望の高屈折率(例えば2.3前後)、及び所望の比抵抗(導電率)を有する透明膜11が得られる。
 このとき、Hガス分圧が、0.5×10-5Torr以上であり、Oガス分圧が0.5×10-5Torr以上であるという条件を満たすことで、屈折率が2.3前後の透明膜11が得られる。
 また、Hガス分圧が、0.5×10-5Torr以上であり、HOガス分圧が0.5×10-5Torr以上であるという条件を満たすことで、屈折率が2.3前後の透明膜11が得られる。
 HOガス分圧が1.0×10-5Torr以上であるという条件を満たすことで、屈折率が2.3前後の透明膜11が得られる。
 このように、成膜室23内を、前述した5種類のガス雰囲気、すなわち、HOガスの雰囲気、Hガスの雰囲気、HOガスとHガスの雰囲気、HOガスとOガスの雰囲気、HOガスとHガスとOガスの雰囲気、のいずれにするかによって、得られる透明膜11の比抵抗(導電率)も変化する。HOガスの分圧、HガスとOガスとの分圧、HガスとHOガスとの分圧、OガスとHOガスとの分圧、又はOガスとHガスとHOガスとの分圧、を調整することで、酸素空孔が最適化されて、導電性を有する透明膜11を得ることができる。導電性を必要としない場合は、他の条件を満たせばいずれであってもよい。
 このように、HOガス、Hガス+Oガス、Hガス+HOガス、Oガス+HOガス、又はOガス+Hガス+HOの雰囲気下で成膜された高屈折率の透明膜11は、比抵抗が低いので透明導電膜を兼ねることができる。この場合、透明導電膜3は不要になる。
  (b)低屈折率透明膜の成膜
 成膜室23内に酸化インジウム系のターゲット27を残したままの状態で、この成膜室23に、スパッタガス導入手段35aによりArガスを導入するか、あるいは、スパッタガス導入手段35a及び酸素ガス導入手段35cによりArガス及びOガスを導入することにより、この成膜室23内をArガス雰囲気またはOガスを含むArガス(Ar+O)雰囲気とする。
 低屈折率透明膜を成膜する際、高屈折率透明膜と同一の酸化インジウム系のターゲット27を用い、成膜時の雰囲気をArガス雰囲気またはOガスを含むArガス(Ar+O)雰囲気とする。これにより、所望の低屈折率透明膜が成膜される。
 この成膜の過程では、成膜室23内の雰囲気がArガス雰囲気またはOガスを含むArガス(Ar+O)雰囲気となる。この雰囲気下にてスパッタを行えば、酸化インジウム結晶中の酸素空孔の数が制御されて、所望の低屈折率(例えば2.0前後)、及び所望の比抵抗(導電率)を有する透明膜12が得られる。
 なお、この透明膜12の屈折率をシフトさせたい場合、成膜の際の雰囲気を、Arガス雰囲気またはOガスを含むArガス(Ar+O)雰囲気から、ArガスまたはOガスを含むArガスに、Hガスおよび/またはHOガス(水蒸気)を加えた雰囲気とすればよい。
 これは、成膜室23への、水素ガス導入手段35bによるHガスの導入、及び水蒸気導入手段35dによるHOガス(水蒸気)の導入、のいずれかー方、あるいは双方を行うことにより、実現することができる。
 なお、この成膜室23内には、Hガスおよび/またはHOガスも含まれているので、Hガス、HOガス(水蒸気)、Ar+Oガス各々の分圧を制御することで、得られる透明膜の屈折率や比抵抗(導電率)を制御することができる。
 次に、高比抵抗かつ低屈折率の透明膜12上に透明導電膜3を成膜する方法について説明する。
  <透明導電膜の成膜>
 透明導電膜3の成膜においては、上記の酸化インジウム系のターゲット27を用い、上記の反射防止膜と同様に、基板26の温度を100℃~600℃の温度範囲内とする。また、成膜室23には、スパッタガス導入手段15aによりAr等のスパッタガスを導入するとともに、水素ガス導入手段15b、酸素ガス導入手段15c、水蒸気導入手段15dのうちいずれか1つ、2つまたは3つを用いて、水素ガス、酸素ガス、水蒸気の群から選択される1種、2種または3種のガスを導入する。
 このようにして、比抵抗が低くかつ可視光線に対する透明性が良好な酸化インジウム系の透明導電膜3が形成された基板26が得られる。
 次に、本実施形態に係る酸化インジウム系の透明導電膜及び反射防止膜の製造方法について、本発明者等が行った実験結果について説明する。
 5インチ×16インチの大きさのIn-10wt%SnO(ITO)ターゲットを、直流(DC)電圧を印加する平行平板型のカソード32にロウ材で固定した。次いで、仕込み/取り出し室22に無アルカリガラス基板を入れて仕込み/取り出し室22内を粗引き排気手段24で粗真空引きした。次いで、この無アルカリガラス基板を、高真空排気手段33で高真空引きした成膜室23に搬入し、ITOターゲットに対向配置させた。
 次いで、ガス導入手段35により、成膜室23に、Arガスを5mTorrの圧力になるよう導入した後、HOガスの分圧が5×10-5Torrになるように導入した。また、他の例では、成膜室23に、Arガスを5mTorrの圧力になるよう導入した後、Oガスの分圧が2×10-5Torrになるように導入した。上記HOガスを導入した場合及びOガスを導入した場合それぞれについて、カソード32に電源34により1kWの電力を印加することにより、カソード32に取り付けたITOターゲットをスパッタし、無アルカリガラス基板上にITO膜を堆積させた。
 図5は、無加熱で成膜された後に大気でアニール(240℃×1hr)された酸化インジウム系透明導電膜における、HOガス(水蒸気)の効果を示すグラフである。同グラフにおいて、AはHOガスの分圧が5×10-5Torrになるように導入した場合の酸化インジウム系透明導電膜の透過率を、BはOガスの分圧が2×10-5Torrになるように導入した場合の酸化インジウム系透明導電膜の透過率を、それぞれ示している。
 HOガスを導入した場合、透明導電膜の膜厚は100.0nm、比抵抗は1400μΩcmであった。
 また、Oガスを導入した場合、透明導電膜の膜厚は99.1nm、比抵抗は200μΩcmであった。
 図5によれば、水蒸気(HO)を導入したことにより、透過率のピーク波長を、膜厚を変えずに変更することができることが分かった。
 また、水蒸気を多量に導入した場合、比抵抗が高く、抵抗劣化が大きくなるが、反射防止膜等のような低抵抗が要求されない光学部材に適用可能であることが分かった。
 さらに、水蒸気の無導入と導入もしくは導入量を変化させながら成膜を繰り返し行うことで、互いに屈折率の異なる複数の層が積層された構造を有する光デバイスを1枚のターゲットで得られることが分かった。
 図6は、図5中のA及びBのスペクトルから算出した屈折率を用いて光学設計を行った反射防止膜の反射率のシミュレーション結果を示すグラブである。
 ここで、図5中のBのスペクトルから求められたピーク波長(λ)388nmと、膜厚(d)99.1nmの各値を、簡易的に式2nd=mλ(式中、dは膜厚、λは波長、nは屈折率,mは整数)に代入し、m=1として算出された低屈折率透明膜の屈折率(n)は、1.96であった。
 一方、図5中のAのスペクトルから求められたピーク波長(λ)450nmと、膜厚(d)100.0nmの各値を、簡易的に式「2nd=mλ」(式中、dは膜厚、λは波長、nは屈折率,mは整数)に代入し、m=1として算出された高屈折率透明膜の屈折率(n)は、2.25であった。
 次いで、ガラス基板上に、屈折率(n)が1.96の低屈折率の透明膜を、膜厚(d)が74.9nmになるように成膜し、この低屈折率の透明膜上に屈折率(n)が2.25の高屈折率の透明膜を、膜厚(d)が55.2nmになるように成膜した。
 図6によれば、波長(λ)が550nmにおいて反射防止膜の反射率が0.532%となることが分かり、積層構造を有する反射防止膜を1つのターゲットを用いて連続して成膜することができることが分かった。
 次いで、上記と同様にして無アルカリガラス基板上にITO膜を堆積させた。
 図7は、Hガスの効果を示すグラフである。同図中、AはHガスが2×10-5Torr、Oガスが5×10-5Torrになるように導入した場合の酸化インジウム系導電膜の透過率を、BはOガスの分圧が2×10-5Torrになるように導入した場合の酸化インジウム系導電膜の透過率を、それぞれ示している。なお、上記では、直流(DC)電圧を印加する平行平板型のカソードを用いた。
 Hガス+Oガスを導入した場合、透明導電膜の膜厚は75.0nm、比抵抗は1700μΩcmであった。
 また、Oガスを導入した場合、透明導電膜の膜厚は74.9nm、比抵抗は240μΩcmであった。
 図7によれば、Hガス+Oガス導入においても、HOガス導入の場合と同様の効果が得られることがわかった。
 本実施形態に係る反射防止膜の成膜方法によれば、水素ガス、酸素ガス、水蒸気の群から選択された1種、2種または3種を含む反応性ガス雰囲気中にてスパッタを行うので、可視光線に対する透明性に優れた酸化インジウム系の反射防止膜を容易に成膜することができる。
 本実施形態に係る成膜装置によれば、ガス導入手段35が、Ar等のスパッタガスを導入するスパッタガス導入手段35aと、水素ガスを導入する水素ガス導入手段35bと、酸素ガスを導入する酸素ガス導入手段35cと、水蒸気を導入する水蒸気導入手段35dとを有しているので、これらスパッタガス導入手段35a、水素ガス導入手段35b、酸素ガス導入手段35c、および水蒸気導入手段35dを制御することにより、酸化インジウム系の反射防止膜1を成膜する際の、Inの結晶格子の結合を阻害する水蒸気雰囲気を作製することができる。
 したがって、従来の成膜装置の一部を改良するだけで、酸化インジウム系の反射防止膜を成膜することができる。
 なお、本実施形態の反射防止膜1では、透明基板2の表面2aに、高屈折率の透明膜11及び低屈折率の透明膜12を順次成膜した2層構造の反射防止膜としたが、反射防止膜1の積層構造は上記の2層構造に限定されない。要求される反射防止膜の反射防止性能を満たすように3層構造以上の多層構造としてもよい。例えば、高屈折率の透明膜11及び低屈折率の透明膜12を複数回、繰り返し成膜した多層構造としてもよい。
 <第2実施形態>
 図8は、本発明の第2実施形態に係る反射防止膜の成膜に用いられるインターバック式のマグネトロンスパッタ装置(成膜装置)の成膜室の主要部を示す断面図である。
 このマグネトロンスパッタ装置41が上記のスパッタ装置21と異なる点は、成膜室23の一方の側面23bに酸化インジウム系材料のターゲット27を保持し所望の磁界を発生するスパッタカソード機構(ターゲット保持手段)42を縦型に設けられた点である。
 スパッタカソード機構42は、ターゲット27をロウ材等でボンディング(固定)した背面プレート43と、背面プレート43の裏面に沿って配置された磁気回路(磁界発生手段)44と、を備えている。磁気回路44は、ターゲット27の表面に水平磁界を発生させるもので、複数の磁気回路ユニット(図8では2つ)44a、44bがブラケット45により連結されて一体化されている。磁気回路ユニット44a、44bそれぞれは、背面プレート43側の表面の極性が相互に異なる第1磁石46および第2磁石47とこれらを装着するヨーク48とを備えている。
 この磁気回路44では、背面プレート43側の極性が相互に異なる第1磁石46および第2磁石47により、磁力線49で表される磁界が発生する。これにより、第1磁石46と第2磁石47との間におけるターゲット27の表面においては、垂直磁界が0(水平磁界が最大)となる位置50が発生する。この位置50に高密度プラズマが生成するため、成膜速度を向上することができる。
 ターゲット27の表面における水平磁界の強度の最大値は、600ガウス以上であることが好ましい。水平磁界の強度の最大値を600ガウス以上とすることで、放電電圧を下げることができる。
 本実施形態に係るマグネトロンスパッタ装置41においても、第1実施形態のスパッタ装置21と同様の効果を得ることができる。
 しかも、成膜室23の一方の側面23bに所望の磁界を発生するスパッタカソード機構42が縦型に設けられているため、スパッタ電圧を250V以下とし、ターゲット27表面における水平磁界強度の最大値を600ガウス以上とすることにより、反応性の高い高密度プラズマを作製することができる。その結果、ガスをスパッタ粒子に対し意図した結合をさせ、酸化インジウム系の反射防止膜を成膜することができる。
 <第3実施形態>
 図9は、本発明の第3実施形態に係るカルーセル式のスパッタ装置(成膜装置)を示す概略構成図である。
 スパッタ装置51の成膜室(真空容器)52内には、この成膜室52の中心軸を中心として回転する回転体54が設けられている。回転体54の外周面には、複数の基板26を着脱可能に支持する基板ホルダ53(図9では4個)が設けられている。さらに、成膜室52の内側面には、酸化インジウム系材料のターゲット27を保持し所望のスパッタ電圧を印加する複数のカソード32(図9では2個)が設けられている。回転体54をその軸を中心として回転させ、基板ホルダ53がカソード32に対向する位置で停止させた際に、回転体54の基板ホルダ53に支持された基板26が、カソード32に保持されるターゲット27と対向する。
 成膜室52には、この室内を2つのスパッタ領域S、Sに区画する仕切板55が設けられている。これら2つのスパッタ領域S、S各々には、粗引き排気手段24及び高真空排気手段33が設けられている。さらに、2つのスパッタ領域S、S各々には、スパッタガス導入手段35aと水素ガス導入手段35bと酸素ガス導入手段35cと水蒸気を導入する水蒸気導入手段35dとを備えたガス導入手段35が設けられている。
 成膜室52では、スパッタ領域S1に、ガス導入手段35によりHOガス(水蒸気)の導入、Oガスを含むHガス(H+O)の導入、のいずれか一方、あるいは双方を行うことにより、このスパッタ領域S1内は、HOガスを含むHガス(H+HO)雰囲気とされる。この雰囲気下にてスパッタリングを行うことにより、基板26上に所望の高屈折率を有する高屈折率透明膜11を成膜する。
 次いで、回転体54をその軸を中心として回転させて、この高屈折率透明膜11が成膜された基板26をスパッタ領域S2に移動させる。このスパッタ領域S2に、ガス導入手段35によりOガスの導入を行うことにより、このスパッタ領域S2内はOガス雰囲気とされる。この雰囲気下にてスパッタリングを行うことにより、高屈折率の透明膜11上に所望の低屈折率を有する低屈折率透明膜12を成膜する。
 以上により、上記のスパッタ装置51を用いて、上記第1実施形態に係る酸化インジウム系の反射防止膜1を成膜することができる。
 なお、ガラス面から光が入射するようなデバイスの場合は、高屈折率透明膜11上に所望の低屈折率を有する低屈折率の透明膜12を成膜するとよい。
 また、この成膜室52では、スパッタ領域S、S全体に、ガス導入手段35によりHOガスの導入、Oガスを含むH2ガス(H+O)の導入、のいずれか一方、あるいは双方を行い、この雰囲気下にて基板26を回転させてスパッタリングを行うことにより、基板26上に高屈折率の透明膜11を成膜し;次いで、スパッタ領域S、S全体に、ガス導入手段35によりOガスの導入を行い;この変更された雰囲気下にて基板26を回転させてスパッタリングを行うことにより低屈折率の透明膜12を成膜する;ことによっても、第1実施形態に係る酸化インジウム系の反射防止膜1を成膜することができる。
 本実施形態のスパッタ装置51を用いても第1実施形態に係るスパッタ装置21と同様の効果を得ることができる。
 しかも、成膜室52内には、この成膜室52の中心軸を中心として回転し複数の基板26を着脱可能に支持する基板ホルダ63を有する回転体64を設けられている。さらに、成膜室52の内側面には、酸化インジウム系材料のターゲット27を保持する複数のカソード32が設けられている。したがって、基板26が取り付けられた回転体54をその軸を中心として回転させることにより、異なる雰囲気下にて多層構造の膜を成膜することができる。したがって、多層膜を繰り返し成膜する場合に好適である。
 本発明によれば、スパッタリングを行う成膜室への基板の搬入及び同成膜室からの基板の搬出を伴うことなく、同一の成膜室においてスパッタリングを行うことにより、所望の反射防止性能を有し、かつ、透明導電膜としても機能する酸化インジウム系の反射防止膜を得ることが可能な反射防止膜の成膜方法を提供することができる。また、所望の反射防止性能を有し、かつ、透明導電膜としても機能する酸化インジウム系反射防止膜を提供することができる。
 さらに、相互に屈折率の異なる複数の屈折率層が積層された反射防止膜を、1つの装置にて成膜することを可能とする成膜装置を提供することができる。
 1 反射防止膜
 2 透明基板
 2a 表面
 3 透明導電膜
 11 高屈折率の透明膜
 12 低屈折率の透明膜
 21 スパッタ装置
 22 仕込み/取り出し室
 23 成膜室
 24 粗引き排気手段
 25 基板トレイ
 26 基板
 27 ターゲット
 31 ヒーター
 32 カソード
 33 高真空排気手段

Claims (11)

  1.  第1の酸化インジウム系薄膜上と、この第1の酸化インジウム系薄膜上に積層された第2の酸化インジウム系薄膜と、を有する反射防止膜の成膜方法であって、
     酸素ガス、水素ガス、水蒸気の群から選択される1種、2種または3種を含む第1の反応性ガス中にて第1の酸化インジウム系ターゲットを用いたスパッタリングを行うことにより、第1の酸化インジウム系薄膜を成膜する第1の成膜工程と;
     前記第1の酸化インジウム系薄膜上に、酸素ガス、水素ガス、水蒸気の群から選択される1種、2種または3種を含み、かつ前記第1の反応性ガスとは異なる組成の第2の反応性ガス中にて第2の酸化インジウム系ターゲットを用いたスパッタリングを行うことにより、第2の酸化インジウム系薄膜を成膜する第2の成膜工程と;
    を備えることを特徴とする反射防止膜の成膜方法。
  2.  前記第2の反応性ガスは、前記第1の反応性ガスと水素ガスの含有率が異なることを特徴とする請求項1に記載の反射防止膜の成膜方法。
  3.  前記第2の反応性ガスは、前記第1の反応性ガスと水蒸気の含有率が異なることを特徴とする請求項1に記載の反射防止膜の成膜方法。
  4.  前記第2の酸化インジウム系ターゲットは、前記第1の酸化インジウム系ターゲットと同一であることを特徴とする請求項1ないし3のいずれか1項に記載の反射防止膜の成膜方法。
  5.  前記第2の成膜工程は、前記第1の成膜工程と同一の真空槽内にて、前記第1の反応性ガスを前記第2の反応性ガスに置換して行うことを特徴とする請求項1に記載の反射防止膜の成膜方法。
  6.  前記第1の酸化インジウム系ターゲット及び前記第2の酸化インジウム系ターゲットは、スズ添加酸化インジウム系ターゲット、チタン添加酸化インジウム系ターゲットまたは亜鉛添加酸化インジウム系ターゲットであることを特徴とする請求項1ないし5のいずれか1項に記載の反射防止膜の成膜方法。
  7.  請求項1ないし6のいずれか1項に記載の反射防止膜の成膜方法により得られた反射防止膜であって、
     第1の酸化インジウム系薄膜と;
     この第1の酸化インジウム系薄膜上に積層され該第1の酸化インジウム系薄膜とは屈折率が異なる第2の酸化インジウム系薄膜と;
    を備えていることを特徴とする反射防止膜。
  8.  前記第1の酸化インジウム系薄膜及び前記第2の酸化インジウム系薄膜のうち少なくとも一方は、比抵抗が5×10μΩ・cm以下であることを特徴とする請求項7に記載の反射防止膜。
  9.  請求項1ないし6のいずれか1項に記載の反射防止膜の成膜方法に用いられる成膜装置であって、
     真空容器と;
     この真空容器内にターゲットを保持するターゲット保持手段と;
     前記ターゲットにスパッタ電圧を印加する電源と;
    を備え、
     前記真空容器は、水素ガス導入手段、酸素ガス導入手段、水蒸気導入手段のうち2つ以上を備えていることを特徴とする成膜装置。
  10.  前記ターゲット保持手段には、前記ターゲットの表面において強度の最大値が600ガウス以上の水平磁界を発生させる磁界発生手段が設けられていることを特徴とする請求項9記載の成膜装置。
  11.  前記真空容器内には、軸を中心として回転するとともに、その外周面に複数の基材を着脱可能に支持する回転体と、この回転体に支持された前記複数の基材のうち1つ以上の基材各々に対向する複数の前記ターゲット保持手段と、が設けられ;
     前記回転体をその軸を中心として回転させながら、前記ターゲット保持手段に保持されるターゲットを用いてスパッタリングを行うことにより、前記各基材上に組成の異なる複数種の膜が成膜されることを特徴とする請求項9または10の1項に記載の成膜装置。
PCT/JP2009/005368 2008-10-17 2009-10-14 反射防止膜の成膜方法及び反射防止膜並びに成膜装置 WO2010044265A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801368588A CN102159971A (zh) 2008-10-17 2009-10-14 防反射膜的成膜方法、防反射膜和成膜装置
KR1020117007308A KR101344500B1 (ko) 2008-10-17 2009-10-14 반사 방지막의 성막 방법 및 반사 방지막
DE112009002574T DE112009002574T5 (de) 2008-10-17 2009-10-14 Filmbildendes Verfahren für einen Antireflex-Film, Antireflex-Film und filmbildende Vorrichtung
JP2010533830A JPWO2010044265A1 (ja) 2008-10-17 2009-10-14 反射防止膜の成膜方法及び反射防止膜並びに成膜装置
US13/123,624 US20110194181A1 (en) 2008-10-17 2009-10-14 Film forming method for antireflection film, antireflection film, and film forming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-268769 2008-10-17
JP2008268769 2008-10-17

Publications (1)

Publication Number Publication Date
WO2010044265A1 true WO2010044265A1 (ja) 2010-04-22

Family

ID=42106435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005368 WO2010044265A1 (ja) 2008-10-17 2009-10-14 反射防止膜の成膜方法及び反射防止膜並びに成膜装置

Country Status (7)

Country Link
US (1) US20110194181A1 (ja)
JP (1) JPWO2010044265A1 (ja)
KR (1) KR101344500B1 (ja)
CN (1) CN102159971A (ja)
DE (1) DE112009002574T5 (ja)
TW (1) TW201022463A (ja)
WO (1) WO2010044265A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147041A (zh) * 2013-02-17 2013-06-12 英利集团有限公司 透明导电氧化物薄膜的制备方法
WO2018220907A1 (ja) * 2017-05-31 2018-12-06 株式会社アルバック 成膜装置及び成膜方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105210A1 (ja) * 2012-01-10 2013-07-18 ナルックス株式会社 光学多層膜
EP2669952B1 (en) 2012-06-01 2015-03-25 Roth & Rau AG Photovoltaic device and method of manufacturing same
KR101474743B1 (ko) * 2013-01-22 2014-12-22 (주)에스엔텍 다층 반사 방지 박막을 포함하는 투명 전도성 기판 제조장치
WO2015071708A1 (en) 2013-11-18 2015-05-21 Roth & Rau Ag Photovoltaic device and method of manufacturing same
JP6418631B2 (ja) * 2014-06-17 2018-11-07 株式会社アルバック 透明導電性基板およびその製造方法、並びにタッチパネル
CN114892129A (zh) * 2015-05-08 2022-08-12 应用材料公司 使用水蒸汽制造用于显示器制造的层的方法和所述方法的设备
WO2016180447A1 (en) * 2015-05-08 2016-11-17 Applied Materials, Inc. Method of manufacturing a layer for display manufacturing using hydrogen and apparatus therefore
WO2016180448A1 (en) * 2015-05-08 2016-11-17 Applied Materials, Inc. Method of manufacturing a layer stack for display manufacturing and apparatus therefore
WO2018006944A1 (en) * 2016-07-05 2018-01-11 Applied Materials, Inc. Method of forming a light emitting structure and apparatus therefor
US10103282B2 (en) * 2016-09-16 2018-10-16 Nano And Advanced Materials Institute Limited Direct texture transparent conductive oxide served as electrode or intermediate layer for photovoltaic and display applications
JP6970637B2 (ja) 2018-03-27 2021-11-24 日東電工株式会社 フィルム製造装置および両面積層フィルムの製造方法
CN111647853B (zh) * 2020-06-10 2022-11-08 邢义志 一种高透明高导电超薄氢掺杂氧化铟薄膜的制备方法
CN117766595A (zh) * 2021-08-20 2024-03-26 上海晶科绿能企业管理有限公司 太阳能电池及光伏组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541959A (en) * 1978-09-18 1980-03-25 Sanyo Shinku Kogyo Kk Production of indium oxide transparent conductive film through sputtering
JPH0364450A (ja) * 1989-07-31 1991-03-19 Kyocera Corp 透明導電膜の形成方法
JPH0950712A (ja) * 1995-08-07 1997-02-18 Hitachi Ltd 透明導電膜及びその形成方法
JP2001116919A (ja) * 1999-10-19 2001-04-27 Asahi Glass Co Ltd 透明導電膜付きカラーフィルタおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759747B2 (ja) * 1988-03-09 1995-06-28 日本真空技術株式会社 透明導電膜の製造方法
JP2809068B2 (ja) 1993-10-29 1998-10-08 双葉電子工業株式会社 反射防止膜付基板
JPH0875902A (ja) 1994-09-07 1996-03-22 Canon Inc 多層反射防止膜
JP2000294980A (ja) * 1999-04-06 2000-10-20 Nippon Sheet Glass Co Ltd 透光性電磁波フィルタおよびその製造方法
JP2004169138A (ja) * 2002-11-21 2004-06-17 Ulvac Japan Ltd 透明導電膜の製造方法及び製造装置
JP2007119843A (ja) * 2005-10-27 2007-05-17 Optrex Corp スパッタ成膜装置
JP5038010B2 (ja) 2007-04-24 2012-10-03 株式会社ブリヂストン 情報表示用パネルの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541959A (en) * 1978-09-18 1980-03-25 Sanyo Shinku Kogyo Kk Production of indium oxide transparent conductive film through sputtering
JPH0364450A (ja) * 1989-07-31 1991-03-19 Kyocera Corp 透明導電膜の形成方法
JPH0950712A (ja) * 1995-08-07 1997-02-18 Hitachi Ltd 透明導電膜及びその形成方法
JP2001116919A (ja) * 1999-10-19 2001-04-27 Asahi Glass Co Ltd 透明導電膜付きカラーフィルタおよびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147041A (zh) * 2013-02-17 2013-06-12 英利集团有限公司 透明导电氧化物薄膜的制备方法
WO2018220907A1 (ja) * 2017-05-31 2018-12-06 株式会社アルバック 成膜装置及び成膜方法
CN110678575A (zh) * 2017-05-31 2020-01-10 株式会社爱发科 成膜装置和成膜方法

Also Published As

Publication number Publication date
TW201022463A (en) 2010-06-16
US20110194181A1 (en) 2011-08-11
JPWO2010044265A1 (ja) 2012-03-15
KR101344500B1 (ko) 2013-12-24
KR20110059632A (ko) 2011-06-02
CN102159971A (zh) 2011-08-17
DE112009002574T5 (de) 2012-01-19

Similar Documents

Publication Publication Date Title
WO2010044265A1 (ja) 反射防止膜の成膜方法及び反射防止膜並びに成膜装置
WO2009084441A1 (ja) 透明導電膜の成膜方法及び成膜装置
WO2010004937A1 (ja) タッチパネルの製造方法及び成膜装置
JPH0931638A (ja) 薄膜の製造方法および薄膜
WO2015163331A1 (ja) 被膜付きガラス基板および被膜付きガラス基板の製造方法
JPH08111123A (ja) 透明導電膜とその製造方法およびスパッタリングターゲット
JP5123785B2 (ja) 反射防止膜の成膜方法及び反射防止膜
JP2007154242A (ja) 酸化物の混合膜の製造方法
US20100186630A1 (en) Low-refractive-index film, method of depositing the same, and antireflection film
JP2003105533A (ja) 透明導電膜の製造方法及び透明導電膜
JP4793056B2 (ja) 反射防止膜のスパッタ成膜方法
JP2002371355A (ja) 透明薄膜の製造方法
Kim et al. DC reactive magnetron sputtering with Ar ion-beam assistance for titanium oxide films
JP2020180360A (ja) 光学多層膜の成膜方法および光学素子の製造方法
JP5193232B2 (ja) 液晶表示装置の製造方法
JPH0925562A (ja) 反射防止多層薄膜およびその成膜方法並びにその成膜装置
JP7478721B2 (ja) 透明電極付き基板の製造方法
JP2004042412A (ja) 透明ガスバリア性薄膜被覆フィルム
JP2008102272A (ja) エレクトロクロミック素子及びその製造方法
Kim et al. Optical and Structural Properties of Tantalum-Oxide Thin Films Prepared by Using Reactive DC Magnetron Sputtering with Ar and O2 Mixed-Gas Ion-Beam Assistance
JP2001262317A (ja) 光学薄膜及びその製造方法
JPH07267681A (ja) 光学薄膜の製造方法
JP2002275628A (ja) スパッタリング成膜方法
JP2002293971A (ja) 透明水蒸気バリアフィルム
JPH06136161A (ja) ガス及び湿気バリアー膜及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136858.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820443

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010533830

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117007308

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13123624

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090025749

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09820443

Country of ref document: EP

Kind code of ref document: A1