WO2010038861A1 - 結合系マルチコアファイバ、結合モード合分波器、マルチコアファイバ伝送システム、およびマルチコアファイバ伝送方法 - Google Patents

結合系マルチコアファイバ、結合モード合分波器、マルチコアファイバ伝送システム、およびマルチコアファイバ伝送方法 Download PDF

Info

Publication number
WO2010038861A1
WO2010038861A1 PCT/JP2009/067234 JP2009067234W WO2010038861A1 WO 2010038861 A1 WO2010038861 A1 WO 2010038861A1 JP 2009067234 W JP2009067234 W JP 2009067234W WO 2010038861 A1 WO2010038861 A1 WO 2010038861A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
coupled
core
fiber
cores
Prior art date
Application number
PCT/JP2009/067234
Other languages
English (en)
French (fr)
Inventor
國分 泰雄
正則 小柴
盛岡 敏夫
Original Assignee
国立大学法人 横浜国立大学
国立大学法人 北海道大学
独立行政法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 横浜国立大学, 国立大学法人 北海道大学, 独立行政法人情報通信研究機構 filed Critical 国立大学法人 横浜国立大学
Priority to CN200980139152.7A priority Critical patent/CN102203648B/zh
Priority to EP09817893.2A priority patent/EP2336813B1/en
Priority to US13/121,465 priority patent/US8811786B2/en
Priority to JP2010531925A priority patent/JPWO2010038861A1/ja
Publication of WO2010038861A1 publication Critical patent/WO2010038861A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/05Spatial multiplexing systems
    • H04J14/052Spatial multiplexing systems using multicore fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers

Definitions

  • the present invention relates to a multi-core fiber suitable for mode multiplex transmission, and in particular, a multi-core fiber coupled with a coupled multi-core fiber and its input and output ends, and a plurality of coupled multi-core groups, in a non-coupled state, and high-density space division.
  • the present invention relates to a multi-core fiber transmission system using both mode division multiplexing and space division multiplexing using a coupled non-coupled hybrid multi-core fiber for multiplexing.
  • Non-patent Document 1 a proposal for electrically equalizing a group delay difference by separating mode groups.
  • Non-Patent Document 2 ⁇ angular ⁇ ⁇ ⁇ ⁇ division multiplexing was proposed because the mode propagation angle almost corresponds to the mode order in the step-index fiber.
  • Non-Patent Document 3 almost the same concept was applied to the distributed index fiber mode group diversity multiplexing has been proposed.
  • Non-Patent Document 4 refers to mode division multiplexing in which each mode of a multimode fiber corresponds to a transmission channel.
  • Non-Patent Document 5 is known as realizing a conventional non-bonded multi-core fiber with the same kind of core with a photonic crystal fiber.
  • Non-Patent Document 6 discloses that the amount of crosstalk between two cores having different propagation constants is suppressed to a certain value or less.
  • the electric field distribution of each eigenmode propagating in the optical fiber can be expressed by the following formula (1).
  • e p is a unit polarization vector
  • omega v carrier angular frequency v is a channel number when wavelength multiplexing or frequency multiplexing
  • a i (r i) and beta i are respectively amplitude distribution i is mode order constant
  • r t is the coordinate position vector in the horizontal direction (other than the z direction).
  • This mode multiplexing utilizes the fact that eigenmodes having different mode orders i of A i (r i ) form an orthogonal function system.
  • mode multiplex transmission is performed using a conventionally known multimode fiber
  • mode multiplexing / demultiplexing is difficult because one transmission channel corresponds to one eigenmode. Therefore, multiplexing is performed not by mode multiplexing but by mode group multiplexing.
  • Non-Patent Document 7 and Non-Patent Document 8 are known as configurations for performing mode multiplexing transmission by using a multi-core fiber in which a plurality of single-mode cores are housed in one optical fiber.
  • the mode division multiplexing disclosed in Non-Patent Document 4 associates each mode of a multimode waveguide with a transmission channel.
  • a difference in propagation angle is used.
  • the diffraction angle determined from the size of the electromagnetic field distribution at the output end is larger than the difference in the propagation angle of the eigenmode, so mode decomposition cannot be performed, and mode multiplexing / demultiplexing is difficult. There is a problem that.
  • Non-Patent Document 5 a conventional non-coupled multi-core fiber with the same kind of core disclosed in Non-Patent Document 5 is realized by a photonic crystal fiber.
  • Non-Patent Document 4 and Non-Patent Document 5 similar cores are brought close to each other. Since the inter-core coupling occurs and crosstalk occurs, there is a problem that the core interval cannot be narrowed.
  • Non-Patent Document 7 and Non-Patent Document 8 an uncoupled multi-core fiber is realized by a conventional homogeneous core.
  • the homogeneous cores are brought close together, inter-core coupling occurs and crosstalk occurs. There is a problem that cannot be narrowed.
  • Non-Patent Document 6 changes the refractive index difference between the core and the clad between the two cores, and avoids coupling even if the cores are brought close to each other by the resulting propagation constant difference.
  • the physical phenomenon already described in textbooks such as Non-Patent Document 8 has only been applied to an optical fiber having a circular core cross section.
  • the present invention solves the above-described problems, and performs mode multiplexing transmission by using a multi-core fiber in which a plurality of single-mode cores are housed in a single optical fiber in place of the multi-mode fiber. For the purpose.
  • ⁇ ave ( ⁇ 1 + ⁇ 2 ) / 2 is an average propagation constant
  • the multi-core fiber according to the present invention has a multi-core fiber configuration corresponding to an operation mode of a “coupling system” that actively uses coupling between cores, so that a plurality of single-mode cores can be densely integrated into one optical fiber. Mode multiplex transmission is performed using the stored multi-core fiber.
  • the multi-core fiber of the present invention intentionally strengthens a plurality of cores as a configuration for performing mode multiplexing transmission by using a multi-core fiber in which a plurality of single-mode cores are housed in one optical fiber. It is possible to form a coupled multi-core fiber in which the coupling modes correspond to the transmission channels on a one-to-one basis.
  • This multi-core fiber can increase the transmission band by the number of cores.
  • the coupled multi-core fiber of the present invention is a multi-core fiber in which a plurality of single-mode cores are housed in a single optical fiber, and mode multiplexing transmission is performed by multiplexing the mode of amplitude distribution in the electric field distribution of the natural mode propagating through the fiber. It is a multi-core fiber forming a system.
  • the present invention includes a coupled multi-core fiber configuration, a coupled mode multiplexer / demultiplexer configuration, and a multi-core fiber transmission system or method configuration.
  • the coupled multi-core fiber according to the present invention is a multi-core fiber in which a plurality of single-mode cores are housed in one optical fiber.
  • This is a multi-core fiber forming a mode-division multiplex transmission system that forms a coupled system mode that is strongly coupled, associates coupled system modes of different orders with signal transmission channels, and multiplexes the mode-divided transmission channels.
  • the multi-core fiber of the present invention includes a plurality of cores having the same fundamental mode propagation constant in a single mode fiber, and the adjacent cores are within the range of the inter-core distance in which the coupling state between the cores is a strong coupling state.
  • the core group is formed by a plurality of cores that are arranged and bonded in this strong coupling state.
  • the core group forms a combined transmission system that is mode-divided by a plurality of types of coupling modes with different propagation constants, and multiplexes each coupling mode in a one-to-one correspondence with the transmission channel to create a mode-division multiplexing transmission system.
  • the multi-core fiber of the present invention forms a core group by arranging a plurality of cores in a straight line, and the arrangement interval between the centers of adjacent cores is larger than the length of the core diameter, and the length of the core diameter And within a distance range smaller than twice, each core in the core group is coupled in a strongly coupled state.
  • the multi-core fiber of the present invention includes a plurality of core groups. Adjacent core groups are arranged between these core groups at a distance between the core groups that brings the core of one core group and the core of the other core group into a non-coupled state.
  • the arrangement interval of each core constituting the core group is a distance that is at least twice the length of the core diameter. Are placed apart from each other, thereby bringing the core groups into a non-bonded state.
  • mode multiplexing transmission is performed using orthogonality between eigencoupled modes, so a mode multiplexer / demultiplexer is required for mutual conversion between individual isolated cores and each coupled mode at the input and output ends.
  • the form of the coupled mode multiplexer / demultiplexer of the present invention is a multiplexer / demultiplexer that multiplexes / demultiplexes a coupled mode signal transmitted by a coupled multicore fiber in a mode division multiplex transmission system.
  • the coupled multi-core fiber is a multi-core fiber in which a plurality of single-mode cores are housed in a single optical fiber, and the natural fundamental mode of the plurality of cores is coupled in the electric field distribution of the natural mode propagating through the fiber.
  • This is a multi-core fiber forming a mode division multiplex transmission system that forms a coupled system mode, associates coupled system modes of different orders with signal transmission channels, and multiplexes the transmission channels by mode division.
  • the multiplexer / demultiplexer includes an arrayed waveguide having a plurality of different optical path lengths, and a slab waveguide provided at one end of the arrayed waveguide grating as a configuration for mutual conversion between individual isolated cores and each coupled mode. And a coupled waveguide provided at the other end of the arrayed waveguide grating.
  • the slab waveguide has a plurality of ports corresponding to the number of coupling modes of the coupled multicore fiber, and converts the optical signal input from the slab waveguide side into a coupling mode of the order corresponding to the position of the input port.
  • the coupling mode is combined and output from the coupling waveguide, and conversely, the coupling mode signal input from the coupling waveguide is demultiplexed from the port on the slab waveguide side corresponding to the coupling mode order and output.
  • the mode of the multi-core fiber transmission system of the present invention comprises a coupled multi-core fiber and a coupled mode multiplexer / demultiplexer in a mode division multiplexing transmission system, and combines a single mode signal in one traveling direction to couple the coupled mode.
  • This is a multi-core fiber transmission system that outputs a signal and demultiplexes the combined mode signal in the other traveling direction to output a single mode signal.
  • a single mode signal is multiplexed and a coupled mode signal is output, and the other traveling A multi-core fiber transmission method that decouples a coupled mode signal and outputs a single mode signal in a direction.
  • the coupled multi-core fiber is a multi-core fiber in which a plurality of single-mode cores are housed in a single optical fiber, and an eigenmode that propagates the fiber.
  • a mode is formed by forming a coupled system in which the eigen fundamental modes of a plurality of cores are strongly coupled, and by combining the coupled system modes having different orders with signal transmission channels and multiplexing the transmission channels by mode division.
  • This is a multi-core fiber forming a multiplex transmission system.
  • the mode multiplexer / demultiplexer includes an arrayed waveguide having a plurality of different optical path lengths, a slab waveguide provided at one end of the arrayed waveguide grating, and a coupled waveguide provided at the other end of the arrayed waveguide grating.
  • the slab waveguide has a plurality of ports corresponding to the number of coupling modes of the coupled multicore fiber, and converts the optical signal input from the slab waveguide side into a coupling mode of the order corresponding to the position of the input port.
  • the coupling mode is combined and output from the coupling waveguide, and conversely, the coupling mode signal input from the coupling waveguide is demultiplexed from the port on the slab waveguide side corresponding to the coupling mode order and output.
  • mode multiplex transmission can be performed by using a multi-core fiber in which a plurality of single-mode cores are housed in one optical fiber instead of the multi-mode fiber.
  • Fibers that are multi-core using the same cores with the same propagation constant are called “Homogeneous Multi-core Fiber (Homogeneous MCF)”, while multiple cores with different propagation constants are used to make them multi-core.
  • This fiber is called “Heterogeneous Multi-core Fiber (Heterogeneous MCF)”. Since the present invention relates to a coupled multi-core fiber, “Homogeneous-Multi-core (Fiber (Homogeneous MCF)” will be described below.
  • Coupled multi-core fiber As the core arrangement of the coupled multi-core fiber, a triangular arrangement as shown in FIG. 1, cores having the same refractive index difference and the same propagation constant and the same propagation constant are densely arranged, and coupling is actively caused between the cores, and each coupling mode between the cores is transmitted. By making it correspond to the channel, a coupled multi-core fiber is configured.
  • a coupled multi-core fiber 10 has a core 11 having the same propagation constant arranged in a close-packed manner, and a periphery of which is a cladding 12.
  • the diameter of each core is 2a, and the interval between adjacent cores is ⁇ .
  • FIG. 2 shows the simplest model of the core of a coupled multicore fiber.
  • the model shown in FIG. 2 shows an example of a two-couple plate waveguide.
  • the bond length L c is It is expressed.
  • the coupling length Lc is increased, the coupling between the cores is reduced. On the contrary, in the strong coupling state, the coupling length Lc is shortened. In order to achieve strong coupling, it is necessary to make the propagation constants of the two cores equal and to make the inter-core distance ⁇ sufficiently closer than the core diameter 2a.
  • FIG. 3 is a diagram for explaining a coupling state depending on the distance between the cores in the two-coupling waveguide.
  • FIG. 3A shows a non-coupled state by an independent waveguide.
  • the core 11A and the core 11B constituting each waveguide are arranged with a distance interval ⁇ (>> 4a) that is at least twice as long as the diameter 2a of each core.
  • the present invention constitutes a mode multiplex transmission system capable of increasing the transmission capacity by actively utilizing the coupling between the cores.
  • FIG. 3B shows a weakly coupled state.
  • an even mode (propagation constant ⁇ e ) and an odd mode (propagation constant ⁇ ) o ) two coupling modes are formed, and a weak coupling state can be created as shown in FIG.
  • This weakly coupled state is an ordinary coupled waveguide system and is used for a directional coupler or the like.
  • the difference in propagation constant ( ⁇ e ⁇ o ) is small, and mode conversion occurs between the even mode and the odd mode with a slight perturbation such as unevenness at the core-cladding interface. This mode conversion interferes with transmission.
  • the core-to-core distance ⁇ between the cores 11A and 11B is brought close to a strong coupling state.
  • FIG. 3 (c) shows a completely coupled state.
  • the complete coupling state is a strong coupling limit state and corresponds to a two-mode state.
  • the propagation constant difference between the eigenmodes is equal to the propagation constant difference between the fundamental mode and the first-order mode, so that the difference between the propagation constants between the modes becomes large and mode conversion hardly occurs.
  • FIG. 4 is a diagram for explaining the propagation constant of the coupling mode when four high refractive index difference cores are strongly coupled.
  • a core group 13A is formed by strongly coupling four cores 11A A to 11D A
  • a core group 13B is formed by strongly coupling four cores 11A B to 11D B. It is configured to be arranged with a distance interval ⁇ (>> 4a) that is at least twice as long as 2a.
  • the propagation constants ⁇ 0 to ⁇ of the coupled mode due to the strong coupling of the four cores 11A A to 11D A and the four cores 11A B to 11D B 3 is a value obtained by dividing between k 0 n 1 and k 0 n 2 by the number of cores.
  • the propagation constant difference in the coupled mode is smaller than the value obtained by dividing the difference between k 0 n 1 and k 0 n 2 by the number of coupled cores.
  • the number of cores that can be coupled is about 4-5.
  • the propagation constant difference in the strong coupling state as shown in FIG. 4 is as follows: And the mode conversion can be suppressed to the same extent.
  • the coupled multi-core fiber of the present invention performs mode multiplexing transmission by causing each coupling mode of the above-described strongly coupled core group to correspond to the transmission channel on a one-to-one basis.
  • FIG. 5 is a diagram for explaining the correspondence between the coupling mode of the core group and the transmission channel in the coupled multicore fiber of the present invention.
  • the coupled multicore fiber 10 includes coupled core groups 13A to 13C, and each coupled core group has a plurality of cores arranged at distances in a strongly coupled state, and the coupled core groups are separated from each other in a non-coupled state.
  • a different value is used between the core groups for the difference in refractive index between the core and the clad that are arranged with the gap open or coupled.
  • the coupling modes formed by the respective coupling core groups are made to correspond one-to-one with the transmission channels 14A0 to 14An (where 0 to n is the coupling mode order and equal to the number of coupling cores). Perform mode multiplex transmission.
  • FIG. 6 is a diagram for explaining a configuration example of the coupled multicore fiber of the present invention.
  • FIG. 6A shows an example in which a ribbon-like fiber is configured by arranging the cores 11A to 11F in a straight line. According to this configuration, consistency with a mode multiplexer / demultiplexer described later can be facilitated.
  • the above configuration example shows a case where the cross-sectional shape of the fiber is not circular.
  • the cores to be coupled can be divided into several coupled core groups (groups).
  • the coupled multicore fiber 10 includes a plurality of coupled core groups 13A to 13H.
  • a plurality of cores are linearly arranged at a distance interval that results in a strong coupling state.
  • the interval between adjacent coupled core groups is arranged at a distance interval that results in an uncoupled state, or a different value is used between the core groups for the refractive index difference between the core and the clad to be coupled.
  • One merit of the method of expanding the transmission capacity by using the multi-core fiber is to increase the effective core area A eff for non-linear resistance and fuse resistance, that is, to increase the total cross-section area of the core.
  • the coupling mode has an electromagnetic field distribution across the coupled cores, contributing to an increase in the total cross-sectional area of the core.
  • the intensity distribution is localized due to interference between coupling modes, and there is a possibility that the power concentrates on one core, which appears periodically. This problem can be avoided by reducing the coherence of the light source of the transmission channel corresponding to the coupled mode, that is, by slightly shifting the frequency or using another light source.
  • the cores are arranged in a straight line, but the arrangement of the cores is not limited to a straight line and may be an arbitrary arrangement pattern.
  • each coupling mode is used as an independent transmission channel. Therefore, a mode multiplexer / demultiplexer that multiplexes / demultiplexes between each coupling mode and the signal is required.
  • FIG. 7 is a diagram for explaining the mode multiplexer / demultiplexer.
  • the mode multiplexer / demultiplexer 15 is an optical circuit that associates the incident port number with the coupling mode order, and is installed between the single mode fibers 16a to 16d and the coupled multicore fiber 10, and single mode fibers 16a to 16d. And the corresponding coupling mode is transmitted to the coupled multi-core fiber 10. Further, it can be used as a mode demultiplexer in the reverse direction because of reversibility, and demultiplexes the coupled mode of the coupled multicore fiber 10 and transmits optical signals to the single mode fibers 16a to 16d.
  • FIG. 7 (a) shows a coupled core group consisting of cores 11A to 11D as coupled modes (in this case, 0th mode) by multiplexing the optical signals of the incident port number # 1 connected to the single mode fiber 16a. Is transmitted to.
  • FIG. 7B shows a combination of the cores 11A to 11D as a corresponding coupling mode (secondary mode here) by multiplexing the optical signal of the incident port number # 3 connected to the single mode fiber 16c. It is transmitted to the core group.
  • Such a mode multiplexing / demultiplexing function is explained by the phase difference between the eigenmodes using a representation in which the coupling mode is superimposed by linear combination of the fundamental modes of the individual independent waveguides as shown in FIG. can do.
  • the coupled mode order corresponds to the phase difference. If the coupling modes of each order are excited by plane waves at the coupling waveguide entrance end face, the coupling modes can be excited almost selectively when excitation is performed by changing the incident angle.
  • FIG. 9 is a diagram for explaining the configuration of the mode multiplexer / demultiplexer of the present invention.
  • the mode multiplexer / demultiplexer 15 can be configured by a slab waveguide 15A, an arrayed waveguide 15B, and a coupling waveguide 15C.
  • the arrayed waveguide 15B has different optical path lengths.
  • the slab waveguide portion at the rear stage of the arrayed waveguide grating filter can be deleted, and the arrayed waveguide portion can be directly transferred to the coupling waveguide.
  • FIG. 9A shows a state in which the optical signal of the single mode fiber 16 is multiplexed and the coupling mode is output to the coupling waveguide 15C
  • FIG. 9B shows the coupling mode of the coupling waveguide 15C.
  • a state in which an optical signal is output to the single mode fiber 16 is shown.
  • a multi-core fiber for high-density mode multiplex transmission can be configured by a coupled multi-core fiber corresponding to transmission channels whose coupling modes are independent from each other.
  • the coupled multi-core fiber of the present invention is characterized in that the space core density is increased and the effective core area is also increased.
  • localization of the electromagnetic field occurs due to interference of coupled modes when the refractive index difference of the core and the diameter of the core are made substantially constant in the propagation direction. This problem can be avoided by reducing the coherence of the light source of the transmission channel corresponding to the coupled mode. Also, mode conversion occurs due to irregularities at the core-cladding interface. This problem can be avoided by increasing the core-cladding refractive index difference, reducing the core spacing, and establishing a strong coupling state.
  • the present invention can be applied to optical communication, optical information processing, optical interconnection, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

コア間の結合を積極的に利用する「結合系」の動作形態に対応したマルチコアファイバの形態によって、単一モードの複数のコアを1本の光ファイバに収納したマルチコアファイバを用いたモード分割多重伝送を行う。本発明のマルチコアファイバは、単一モードの複数のコアを1本の光ファイバに収納したマルチコアファイバを用いることによってモード多重伝送を行う構成として、複数のコアを意図的に強く結合させ、それぞれの結合モードを伝送チャネルに一対一に対応させる結合系マルチコアファイバを形成する。

Description

結合系マルチコアファイバ、結合モード合分波器、マルチコアファイバ伝送システム、およびマルチコアファイバ伝送方法
 本発明は、モード多重伝送に適したマルチコアファイバに関し、特に結合系マルチコアファイバとその入出射端のおけるモード合分波器,および結合系マルチコア群を複数,非結合状態にして高密度に空間分割多重化するための結合系非結合系ハイブリッドマルチコアファイバを用いたモード分割多重と空間分割多重を併用するマルチコアファイバ伝送システムに関する。
 従来、多モードファイバが研究され、モード群遅延差による伝送帯域制限を解消するための様々な工夫が提案されている。その1つに、モード群を分離して群遅延差を電気的に等化する提案がある(非特許文献1)。その後、階段屈折率ファイバではモード伝搬角がモード次数にほぼ対応することから angular division multiplexing が提案され(非特許文献2)、さらに2006年にはほとんど同じコンセプトを分布屈折率ファイバに適用した mode group diversity multiplexing が提案されている(非特許文献3)。これらの文献に記載されるファイバはいずれも、各固有モードを直交関数系で表される独立な伝送チャネルとして利用するのではなく、モード群として伝搬角の差を利用して合分波するものであり、伝送帯域は単一モードファイバに及ばない。つまり、伝送容量を極限まで高める技術ではない。
 また、非特許文献4は、多モードファイバの各モードを伝送チャネルに対応させるモード分割多重化について言及している。
 また、従来の同種コアによる非結合マルチコアファイバをフォトニック結晶ファイバで実現するものとして非特許文献5が知られている。
 また、非特許文献6には、伝搬定数が異なる二つのコア間における漏話量を一定値以下に抑えることが開示されている。 
末松安晴, 古屋一仁, "多姿態誘電体光導波路の屈折率分布と群遅延特性", 電子通信学会論文誌, vol.57-C, no.9, pp.289-296 (1974) R. C. Stearns, C. K. Asawa, S-K Yao, "Angular Division Multiplexing for Fiber Communication Using Graded-Index Rod Lenses", J. Lightwave Technol., vol.LT-4, no.2, pp.358-362 (1984) C. P. Tsekrekos, M. de Boer, A. Martinez, F. M. J. Willems, A. M. J. Koonen, "Temporal Stability of a Transparent Mode Group Diversity Multiplexing Link", Photon. Technol. Lett., vol.18, no.23, pp.2484-2486 (2006) Martin Feldman,Ramachandran,Vaidyanathan, and Ahmed El-AmawyHigh speed, "High Capacity Bused Interconnects Using Optical Slab Waveguides", Lect Notes Comput Sci.Vol.1586 Page.924-937(1999) 今村勝徳,武笠和則,杉崎隆一,味村裕,八木健, "超大容量伝送用マルチホーリーファイバに関する検討", 2008年電子情報通信学会通信ソサエティ大会 吉川浩,山本雄三,大野豊, "加入者線路用非対称2コア形単一モードファイバの数値解析", 電子情報通信学会論文誌C-I Vol.J74-C-I No.9 pp307-312 1991年9月 S. Inao, T. Sato, H. Hondo, M. Ogai, S. Sentsui, A. Otake, K. Yoshizaki, K. Ishihara, and N. Uchida, "High density multi-core-fiber cable", Proceedings of the 28th International Wire & Cable Symposium (IWCS), pp. 370-384, 1979. B. Rosinski, J. W. D. Chi, P. Grasso, and J. L. Bihan, "Multichannel transmission of a multicore fiber coupled with Vertically-Coupled- Surface- Emitting Lasers", J. Lightwave Technol., vol.17, no.5, pp.807-810, 1999.
 光ファイバ中を伝搬する各固有モードの電界分布は以下の式(1)で表すことができる。
Figure JPOXMLDOC01-appb-I000001
 上記式(1)において、eは単位偏波ベクトル、ωはキャリア角周波数(vは波長多重あるいは周波数多重時のチャネル番号)、A(r)とβはそれぞれ振幅分布と伝搬定数でiはモード次数、rtは横方向(z方向以外の)の座標位置ベクトルである。光波を表すこれらのパラメータ(e、ω、A(r)、φ)を組み合わせて多重化する場合、単独ではωを用いる高密度波長多重(あるいは周波数多重)とeを用いる偏波多重があり、また単一モードファイバなのでi=0としてAとφの組み合わせによる4値差動位相変復調(DQPSK)や直交振幅変調(QAM)などの多値伝送がある。
 上記した多重方式に他に、モード多重(mode division multiplexing)伝送がある。このモード多重は、A(r)のモード次数iが異なる固有モードが直交関数系をなすことを利用するものである。
 従来から知られる多モードファイバを用いてモード多重伝送を行う場合には、1つの固有モードに1つの伝送チャネルを対応させるためモード合分波が困難である。そのため、モード多重ではなく、モード群多重によって多重化している。
 したがって、モード多重伝送を行うには、多モードファイバに代えて、単一モードの複数のコアを1本の光ファイバに収納したマルチコアファイバを用いる必要がある。従来、単一モードの複数のコアを1本の光ファイバに収納したマルチコアファイバを用いることによってモード多重伝送を行う構成は、非特許文献7および非特許文献8などが知られている。
 なお、非特許文献4に開示するモード分割多重化は、多モード導波路の各モードを伝送チャネルに対応させるものであるが、多数モードを有する多モード導波路では、伝搬角の差を利用して分波する場合には、出射端での電磁界分布の大きさから定まる回折角は、固有モードの伝搬角の差よりも大きくなるためにモード分解ができず、モードの合分波が困難であるという問題がある。
 また、非特許文献5に開示する、従来の同種コアによる非結合マルチコアファイバをフォトニック結晶ファイバで実現するものであり、非特許文献4と非特許文献5のいずれにおいても、同種コア同士を近づけるとコア間結合が起きてクロストークになるため、コア間隔を狭間隔化できない問題がある。
 さらに,非特許文献7および非特許文献8においても,従来の同種コアによって非結合マルチコアファイバを実現するものであり,同種コア同士を近づけるとコア間結合が起きてクロストークになるため、コア間隔を狭間隔化できない問題がある。
 非特許文献6は2コア間で,コアとクラッド間の屈折率差を変えて,その結果として生じる伝搬定数差によってコア間を近接させても結合を回避するものであるが,2コア間に関する検討であり,すでに非特許文献8などの教科書に書かれている物理現象をコア断面が円形の光ファイバに適用したに過ぎない。
 そこで、本発明は、上記した問題を解決し、多モードファイバに代えて、単一モードの複数のコアを1本の光ファイバに高密度に収納したマルチコアファイバを用いることによってモード多重伝送を行うことを目的とする。
 二つの単一モードファイバを用意し、これらのコアを互いに近づけると、図2に示すようにコア間でモード結合が生じる。二つのコアが単独に存在する非摂動系の個々の基本モードの伝搬定数をそれぞれβ、βとすると、これらのコアを伝搬方向(z方向)に平行に並べた摂動系の結合モードa,bの伝搬定数β、βは、図3に示すようにそれぞれβ=βave+β、β=βave-βで与えられる。ここにβave= (β+β) /2は平均伝搬定数であり、βは、位相不整合量δ= (β-β) /2と結合係数κを用いて、β=(δ+κ))1/2のように表される。
 いま、一方のコアから、その基本モードを入射させると、結合効率に対応する他方のコアにおける規格化光パワーηのz方向依存性は、η=Fsinβzと書ける。ここにF= (κ/β )2 はパワー移行率である。結合効率ηは、結合長L=π/(2β)において最大となり、その値はFとなる。位相整合条件δ=0が満たされている場合には、β=κとなるので、結合効率の最大値は1となる。
 本発明のマルチコアファイバは、コア間の結合を積極的に利用する「結合系」の動作形態に対応したマルチコアファイバの形態によって、単一モードの複数のコアを1本の光ファイバに高密度に収納したマルチコアファイバを用いたモード多重伝送を行う。
 より詳細には、本発明のマルチコアファイバは、単一モードの複数のコアを1本の光ファイバに収納したマルチコアファイバを用いることによってモード多重伝送を行う構成として、複数のコアを意図的に強く結合させ、それぞれの結合モードを伝送チャネルに一対一に対応させる結合系マルチコアファイバの形態とすることができる。
 このマルチコアファイバによれば、伝送帯域をコアの本数分だけ増大させることができる。
 本発明の結合系マルチコアファイバは、複数の単一モードのコアを一本の光ファイバに収納したマルチコアファイバにおいて、ファイバを伝搬する固有モードの電界分布において振幅分布のモードの多重化によりモード多重伝送系を形成するマルチコアファイバである。
 本発明は、結合系マルチコアファイバの形態、結合モード合分波器の形態、およびマルチコアファイバ伝送のシステムあるいは方法の形態を備える。
 本発明の結合系マルチコアファイバの形態は、複数の単一モードのコアを一本の光ファイバに収納したマルチコアファイバにおいて、ファイバを伝搬する固有モードの電界分布において、複数のコアの固有基本モードが強く結合した結合系モードを形成し、個々の次数の異なる結合系モードを信号の伝送チャネルに対応させ、モード分割した伝送チャンネルを多重化するモード分割多重伝送系を形成するマルチコアファイバである。
 本発明のマルチコアファイバは、単一モードファイバにおける基本モードの伝搬定数が同一のコアを複数備え、隣接する各コアを、当該コア間の結合状態を強結合状態とするコア間距離の範囲内に配置して、この強結合状態で結合された複数のコアによってコア群を形成する。コア群は、伝搬定数を異にする複数種の結合モードによってモード分割した結合伝送系を形成し、各結合モードを伝送チャネルに一対一に対応させて多重化することによってモード分割多重伝送系を形成する。
 本発明のマルチコアファイバは、複数のコアを直線状に配置してコア群を形成し、隣接するコアの中心間の配置間隔を、コアの直径の長さよりも大で、コアの直径の長さの2倍よりも小さい距離範囲内とし、コア群内の各コアを強結合状態に結合する。
 本発明のマルチコアファイバは、コア群を複数備える。隣接するコア群は、これらのコア群間において、一方のコア群のコアと他方のコア群のコアとを非結合状態とするコア群間距離に配置する。
 本発明の結合系マルチコアファイバにおいて、複数のコアを直線状に配置してコア群を構成する際、コア群を構成する各コアの配置間隔は、コアの径の2倍の長さ以上の距離を離して配置し、これによって、コア群間を非結合状態とする。
 結合系では、固有結合モード間の直交性を利用してモード多重伝送させるので、入出射端において個々の孤立コアと各結合モード間を相互変換するためのモード合分波器が必要である。
 本発明の結合モード合分波器の形態は、モード分割多重伝送系において、結合系マルチコアファイバが伝送する結合モードの信号を合分波する合分波器である。
 ここで、結合系マルチコアファイバは、複数の単一モードのコアを一本の光ファイバに収納したマルチコアファイバにおいて、ファイバを伝搬する固有モードの電界分布において、複数のコアの固有基本モードが結合した結合系モードを形成し、個々の次数の異なる結合系モードを信号の伝送チャネルに対応させ、モード分割によって伝送チャンネルを多重化するモード分割多重伝送系を形成するマルチコアファイバである。
 合分波器は、個々の孤立コアと各結合モード間を相互変換するための構成として、異なる複数の光路長を有するアレイ導波路と、アレイ導波路格子の一端に設けたスラブ導波路と、アレイ導波路格子の他端に設けた結合導波路とを備える。スラブ導波路は、結合系マルチコアファイバの結合モードの数に対応した複数のポートを有し、スラブ導波路側から入力した光信号を、入力したポートの位置に対応した次数の結合モードに変換し、結合導波路から結合モードを合波させて出力し、逆に、結合導波路から入力した結合モード信号を、結合モード次数に対応したスラブ導波路側のポートから分波させて出力する。
 本発明のマルチコアファイバ伝送システムの形態は、モード分割多重伝送系において、結合系マルチコアファイバと結合モード合分波器とを備え、一方の進行方向において、単一モード信号を合波させて結合モード信号を出力し、他方の進行方向において、結合モード信号を分波して単一モード信号を出力するマルチコアファイバ伝送システムである。
 また、本発明のマルチコアファイバ伝送方法の形態は、結合系マルチコアファイバによるモード分割多重伝送系において、一方の進行方向において、単一モード信号を合波させて結合モード信号を出力し、他方の進行方向おいて、結合モード信号を分波して単一モード信号を出力するマルチコアファイバ伝送方法である。
 このマルチコアファイバ伝送システムの形態、およびマルチコアファイバ伝送方法の形態において、結合系マルチコアファイバは、複数の単一モードのコアを一本の光ファイバに収納したマルチコアファイバにおいて、ファイバを伝搬する固有モードの電界分布において、複数のコアの固有基本モードが強く結合した結合系モードを形成し、個々の次数の異なる結合系モードを信号の伝送チャネルに対応させ、モード分割によって伝送チャンネルを多重化するモード分割多重伝送系を形成するマルチコアファイバである。
 モード合分波器は、異なる複数の光路長を有するアレイ導波路と、アレイ導波路格子の一端に設けたスラブ導波路と、アレイ導波路格子の他端に設けた結合導波路とを備える。スラブ導波路は、結合系マルチコアファイバの結合モードの数に対応した複数のポートを有し、スラブ導波路側から入力した光信号を、入力したポートの位置に対応した次数の結合モードに変換し、結合導波路から結合モードを合波させて出力し、逆に、結合導波路から入力した結合モード信号を、結合モード次数に対応したスラブ導波路側のポートから分波させて出力する。
 また、本発明の態様によれば、結合系によるマルチコアファイバにおいて、結合系と非結合系とを相互変換するモード合分波器を提供することができる。
 以上説明したように、本発明によれば、多モードファイバに代えて、単一モードの複数のコアを1本の光ファイバに収納したマルチコアファイバを用いることによってモード多重伝送を行うことができる。
本発明の結合系マルチコアファイバのコアの三角配置を説明するための図である。 本発明の結合系マルチコアファイバのコアの最も簡単なモデルを示す図である。 本発明の原理である2つのコアにおけるコア間距離に依存した結合モードの伝搬定数差を説明するための図である。 高屈折率差コアを4つ強結合させた場合に結合モードの伝搬定数を説明するための図である。 本発明の結合系マルチコアファイバにおいて、コア群の結合モードと伝送チャネルとの対応を説明するための図である。 本発明の結合系マルチコアファイバの構成例を説明するための図である。 本発明のモード合分波器の機能を説明するための図である。 本発明のモード合分波器の結合導波路部における結合モードとそれを構成する各固有基本モード間の位相差の対応関係を説明するための図である。 本発明のモード合分波器の構成を説明するための図である。
 10  結合系マルチコアファイバ
 11  コア
 11A-11F  コア
 11A-11D  コア
 11A-11D  コア
 12  クラッド
 13,13A-13H  結合コア群
 14A1-14An、14B1-14Bn、14C1-14Cn  伝送チャネル
 15  モード合分波器
 15A  スラブ導波路
 15B  アレイ導波路
 15C  結合導波路
 16,16a-16d  単一モードファイバ
 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。
 以下、本発明のマルチコアファイバにおいて、結合系マルチコアファイバについて図1~図9を用いて説明する。
 マルチコアファイバにおいて、伝搬定数が互いに相等しい同一のコアを用いてマルチコア化したファイバを「Homogeneous Multi-core Fiber(Homogeneous MCF)」と呼び、一方、伝搬定数が互いに異なる複数のコアを用いてマルチコア化したファイバを「Heterogeneous Multi-core Fiber(Heterogeneous MCF)」と呼ぶ。本発明は結合マルチコアファイバに関するものであるので,以下に「Homogeneous Multi-core Fiber(Homogeneous MCF)」について説明する。
[結合系マルチコアファイバ]
 結合系マルチコアファイバのコア配置は、コア密度を最も高められる最密充填配置として、図1のような三角配置が考えられる。図1に示す三角配置において、屈折率差とコアの直径が同一の伝搬定数が同一のコアを密に配置し、コア間において結合を積極的に起こさせ、このコア間の各結合モードを伝送チャネルに対応させることによって、結合系マルチコアファイバを構成する。
 図1において、結合系マルチコアファイバ10は、同一の伝搬定数を備えるコア11を最密充填配置し周囲をクラッド12とする。ここで、各コアの直径を2a、隣接するコア間の間隔をΛとしている。
 図2は結合系マルチコアファイバのコアの最も簡単なモデルを示している。図2に示すモデルは2結合平板導波路の例を示している。それぞれのコア11A,11Bの屈折率がn1 (1)=n1 (2)=n1で等しく,それぞれが孤立して存在する場合の伝搬定数をβ、パラメータγを以下の式(2)により、
Figure JPOXMLDOC01-appb-I000002
 と定義すると、2結合平板導波路のモデルでは、弱結合近似での偶モード(伝搬定数β)と奇モード(伝搬定数β)の2つの結合モードが形成される。
 弱結合近似での偶モードと奇モードの伝搬定数差(β-β)は、近似的に
Figure JPOXMLDOC01-appb-I000003
 と表される。
 また、結合長Lcは、
Figure JPOXMLDOC01-appb-I000004
 と表される。
 ここで、結合長Lを長くするとコア間の結合は低減される。逆に強結合状態では結合長Lが短くなる。強結合にするには、2つのコアの伝搬定数を等しくし,かつコア間距離Λをコアの直径2aに比べて十分に近づける必要がある。
 図3は2結合導波路におけるコア間距離に依存した結合状態を説明するための図である。図3(a)は独立導波路による非結合状態を示している。各導波路を構成するコア11Aとコア11Bは、各コアの直径2aの2倍以上の長さの距離間隔Λ(≫4a)を開けて配置される。伝搬定数が共にβoのコア11A,11Bのコア間距離Λをコアの直径2aに比べて十分に離して配置することで、両コアは非結合状態となり。この構成では、各コアの断面内コア密度が低くなり、伝送容量の増大には不利になる。
 本発明は、逆にコア間結合を積極的に利用することによって、伝送容量の増大が可能なモード多重伝送系を構成するものである。
 図3(b)は弱結合状態を示している。コア11Aとコア11Bのコア間距離Λをコア直径2aの2倍(4a=2×2a)とほぼ同じオーダにすると、弱結合近似の偶モード(伝搬定数β)と奇モード(伝搬定数β)の2つの結合モードが形成され、図3(b)に示すように弱結合状態を作り出せる。この弱結合状態は通常の結合導波路系であり、方向性結合器などに利用される。
 この弱結合状態では伝搬定数の差(β-β)が小さく、コア-クラッド界面での凹凸などの少しの摂動で偶モードと奇モード間にモード変換が起きる。このモード変換は、伝送に支障を与える。ここで、モード変換を避けるために、コア11Aとコア11Bのコア間距離Λを近づけて強結合状態とする。
 図3(c)は完全結合状態を示している。完全結合状態は強結合の極限状態であり、2モード状態に相当する。この完全結合状態では、固有モード間の伝搬定数差は基本モードと1次モードの伝搬定数差に等しくなるため、モード間の伝搬定数差が大きくなり、モード変換は起き難くなる。
 図4は高屈折率差コアを4つ強結合させた場合に結合モードの伝搬定数を説明するための図である。図4に示す例では、4つのコア11A~11Dを強結合させてなる結合コア群13Aと、4つのコア11A~11Dを強結合させてなる結合コア群13Bとを、コア直径2aの2倍以上の長さの距離間隔Λ(≫4a)を開けて配置される構成している。クラッドの屈折率をnとし、コアの屈折率をnとしたとき、4つのコア11A~11Dおよび4つのコア11A~11Dの強結合による結合モードの伝搬定数β~βは、kとkの間をコア数で分割した値となる。
 このように強結合による結合系マルチコアファイバを実現する際、結合するコアの数が多すぎると、結合モード間の伝搬定数差が小さくなってモード変換の問題を避けにくくなる。これは、図4に示すように、結合モードの伝搬定数差は、kとkの差を結合しているコアの数で割った値より小さくなるため、結合モード間の伝搬定数差をある程度大きくするには、コア11の屈折率nとクラッドの屈折率nの屈折率差を大きくし、かつ結合するコア数を余り多くしない工夫が必要になる。
 このような条件では、コアとクラッドの屈折率差をせいぜい1.5%程度と仮定すると、結合させ得るコア数は4~5程度になる。
 この程度の結合コア数とすることによって、図4に示すように強結合状態の伝搬定数差は、従来の比屈折率差0.3%の単一モードファイバの伝搬定数とクラッドモードの伝搬定数の差と同程度とすることができ、モード変換も同程度に抑制できる。
 本発明の結合系マルチコアファイバは、上記した強結合したコア群の各結合モードを伝送チャネルに一対一の対応させることによって、モード多重伝送を行う。
 図5は、本発明の結合系マルチコアファイバにおいて、コア群の結合モードと伝送チャネルとの対応を説明するための図である。図5は、結合系マルチコアファイバ10は、結合コア群13A~13Cを備え、各結合コア群は複数のコアを強結合状態となる距離に配置し、結合コア群間は非結合状態となる距離を開けて配置し,あるいは結合するコアとクラッドの屈折率差にコア群間で異なる値を用いている。各結合コア群13A~13Cにおいて、それぞれの結合コア群で形成される結合モードを、伝送チャネル14A0~14An(0~nは結合モード次数で結合コアの本数に等しい)と一対一に対応させてモード多重伝送を行う。
 図6は本発明の結合系マルチコアファイバの構成例を説明するための図である。図6(a)は、コア11A~11Fを直線状に配置することによってリボン状のファイバを構成する例を示している。この構成によれば、後述するモード合分波器との整合性を容易とすることができる。
 上記した構成例は、ファイバの断面形状が円形でない場合を示している。ファイバの断面形状を従来の円形とする場合には、図6(b)に示すように、結合するコアをいくつかの結合コア群(グループ)に分けた構成とすることができる。
 図6(b)において、結合系マルチコアファイバ10は、複数の結合コア群13A~13Hを備える。各結合コア群13A~13Hにおいて、それぞれ複数のコアを強結合状態となる距離間隔で直線状に配置している。また、隣接する結合コア群の間隔は、非結合状態となる距離間隔で配置し、あるいは結合するコアとクラッドの屈折率差にコア群間で異なる値を用いている。
 マルチコアファイバによる伝送容量拡大法の1つのメリットは、耐非線形性、耐フューズ性のための実効コア断面積Aeffの拡大、すなわちコアの総断面積の拡大にある。
 図6に示した結合系マルチコアファイバ10では、結合モードは結合しているコア間全体にわたって電磁界分布が存在するので、コアの総断面積の拡大に寄与する。しかしながら、結合導波路では結合モード間の干渉によって強度分布が局在し、1つのコアに電力が集中する可能性があり、しかもそれが周期的に現れる。この問題は結合モードに対応させた伝送チャネルの光源のコヒーレンスを落とすことによって、すなわち僅かに周波数をずらしたり、あるいは別の光源を用いるなどの対策で回避することができる。
 前記した図6の構成は、コアを直線状に配置する例であるが、コアの配置は直線状に限らず任意の配置パターンとしてもよい。
 次に、本発明の結合系マルチコアファイバによる伝送について、図7~図9を用いて説明する。
 結合系マルチコアファイバを用いた伝送では、各結合モードを独立した伝送チャネルとして用いる。そのために、各結合モードと信号との間で合分波させるモード合分波器が必要となる。
 図7はモード合分波器を説明するための図である。モード合分波器15は、入射ポート番号と結合モード次数を対応させる光回路であり、単一モードファイバ16a~16dと結合系マルチコアファイバ10との間に設置し、単一モードファイバ16a~16dからの光信号を合波して対応する結合モードを結合系マルチコアファイバ10に伝送する。また、可逆性から逆方向にはモード分波器として用いることができ、結合系マルチコアファイバ10の結合モードを分波して単一モードファイバ16a~16dに光信号を伝送する。
 図7(a)は、単一モードファイバ16aが接続された入射ポート番号#1の光信号を合波して対応する結合モード(ここでは0次モード)としてコア11A~11Dからなる結合コア群に伝送している。
 また、図7(b)は、単一モードファイバ16cが接続された入射ポート番号#3の光信号を合波して対応する結合モード(ここでは2次モード)としてコア11A~11Dからなる結合コア群に伝送している。
 このようなモード合分波機能は、図8に示すように、結合モードを各個別の独立導波路の基本モードを線形結合で重ね合わせた表現を用いて、各固有モード間の位相差によって説明することができる。
 個別の独立導波路の固有モードの線形結合によって結合モードを表現するとき、結合モード次数はちょうど位相差に対応する。結合導波路入射端面にて平面波によって各次数の結合モードを励振しようとすれば、入射角度を変えて励振した場合にほぼ選択的に各結合モードを励振することができる。
 図9は本発明のモード合分波器の構成を説明するための図である。モード合分波器15は、スラブ導波路15A、アレイ導波路15B、および結合導波路15Cによって構成することができる。アレイ導波路15Bは光路長を異ならせている。この構成は、平面回路ではアレイ導波路格子フィルタの後段のスラブ導波路部を削除して、アレイ導波路部から結合導波路にそのまま移行させる構成とすることができる。
 図9(a)は、単一モードファイバ16の光信号を合波して結合導波路15Cに結合モードを出力する状態を示し、図9(b)は、結合導波路15Cの結合モードを分波して単一モードファイバ16に光信号を出力する状態を示している。
 上記したように、本発明は、結合モードがそれぞれ独立な伝送チャネルに対応する結合系マルチコアファイバによって、高密度モード多重伝送のためのマルチコアファイバを構成することができる。
 本発明の結合系マルチコアファイバは、空間コア密度を高めて実効コア断面積も高められるという特徴がある。一方、結合系マルチコアファイバは、コアの屈折率差とコアの直径を伝搬方向にほぼ一定にすると、結合モードの干渉によって電磁界に局在化が起こる。この問題は結合モードに対応させた伝送チャネルの光源のコヒーレンスを落とすことによって回避することができる。また、コア-クラッド界面の不整等によってモード変換が起こる。この問題に対しては、コア-クラッドの屈折率差を大きくして、コア間隔を小さくし、強結合状態にすることによって回避することができる。
 本発明は光通信、光情報処理、光インターコネクション等に適用することができる。

Claims (7)

  1.  複数の単一モードのコアを一本の光ファイバに収納したマルチコアファイバにおいて、
     ファイバを伝搬する固有モードの電界分布において、複数のコアの固有基本モードが強く結合した結合系モードを形成し、個々の次数の異なる結合系モードを信号の伝送チャネルに対応させ、モード分割した伝送チャンネルを多重化するモード分割多重伝送系を形成するマルチコアファイバであり、
     前記マルチコアファイバは、
     単一モードファイバにおける基本モードの伝搬定数が同一のコアを複数備え、
     隣接する各コアを、当該コア間の結合状態を強結合状態とするコア間距離の範囲内に配置して、当該強結合状態で結合された複数のコアによってコア群を形成し、
     前記コア群は、伝搬定数を異にする複数種の結合モードによってモード分割した結合伝送系を形成し、前記各結合モードを伝送チャネルに一対一に対応させて多重化することによってモード分割多重伝送系を形成することを特徴とする結合系マルチコアファイバ。
  2.  前記複数のコアを直線状に配置してコア群を形成し、
     隣接するコアの中心間の配置間隔を、コアの直径の長さよりも大で、コアの直径の長さの2倍よりも小さい距離範囲内とし、前記コア群内の各コアを強結合状態に結合することを特徴とする請求項1の記載の結合系マルチコアファイバ。
  3.  前記コア群を複数備え、
     隣接するコア群は、当該コア群間において、一方のコア群のコアと他方のコア群のコアとを非結合状態とするコア群間距離に配置することを特徴とする請求項1又は2に記載の結合系マルチコアファイバ。
  4.  前記直線状に配置した複数のコアからなるコア群を複数備え、
     前記コア群間距離は、コアの直径の2倍の長さ以上の距離であることを特徴とする請求項3に記載の結合系マルチコアファイバ。
  5.  モード分割多重伝送系において、結合系マルチコアファイバが伝送する結合モードの信号を合分波する合分波器であり、
     前記結合系マルチコアファイバは、
     複数の単一モードのコアを一本の光ファイバに収納したマルチコアファイバにおいて、ファイバを伝搬する固有モードの電界分布において、複数のコアの固有基本モードが強く結合した結合系モードを形成し、個々の次数の異なる結合系モードを信号の伝送チャネルに対応させ、モード分割によって伝送チャンネルを多重化するモード分割多重伝送系を形成するマルチコアファイバであり、
     前記合分波器は、
     異なる複数の光路長を有するアレイ導波路と、
     前記アレイ導波路格子の一端に設けたスラブ導波路と、
     前記アレイ導波路格子の他端に設けた結合導波路とを備え、
     前記スラブ導波路は、前記結合系マルチコアファイバの結合モードの数に対応した複数のポートを有し、
     スラブ導波路側から入力した光信号を、入力した前記ポートの位置に対応した次数の結合モードに変換し、結合導波路から結合モードを合波させて出力し、
     逆に、結合導波路から入力した結合モード信号を、結合モード次数に対応したスラブ導波路側の前記ポートから分波させて出力する、
     ことを特徴とする結合モード合分波器。
  6.  モード分割多重伝送系において、
     結合系マルチコアファイバと結合モード合分波器とを備え、
     一方の進行方向において、単一モード信号を合波させて結合モード信号を出力し、
     他方の進行方向において、結合モード信号を分波して単一モード信号を出力するマルチコアファイバ伝送システムであり、
     前記結合系マルチコアファイバは、
     複数の単一モードのコアを一本の光ファイバに収納したマルチコアファイバにおいて、ファイバを伝搬する固有モードの電界分布において、複数のコアの固有基本モードが強く結合した結合系モードを形成し、個々の次数の異なる結合系モードを信号の伝送チャネルに対応させ、モード分割によって伝送チャンネルを多重化するモード分割多重伝送系を形成するマルチコアファイバであり、
     前記合分波器は、
     異なる複数の光路長を有するアレイ導波路と、
     前記アレイ導波路格子の一端に設けたスラブ導波路と、
     前記アレイ導波路格子の他端に設けた結合導波路とを備え、
     前記スラブ導波路は、前記結合系マルチコアファイバの結合モードの数に対応した複数のポートを有し、
     スラブ導波路側から入力した光信号を、入力した前記ポートの位置に対応した次数の結合モードに変換し、結合導波路から結合モードを合波させて出力し、
     逆に、結合導波路から入力した結合モード信号を、結合モード次数に対応したスラブ導波路側の前記ポートから分波させて出力する、
     ことを特徴とするマルチコアファイバ伝送システム。
  7.  結合系マルチコアファイバによるモード分割多重伝送系において、
     一方の進行方向において、単一モード信号を合波させて結合モード信号を出力し、
     他方の進行方向おいて、結合モード信号を分波して単一モード信号を出力するマルチコアファイバ伝送方法であり、
     前記結合系マルチコアファイバは、
     複数の単一モードのコアを一本の光ファイバに収納したマルチコアファイバにおいて、ファイバを伝搬する固有モードの電界分布において、複数のコアの固有基本モードが強く結合した結合系モードを形成し、個々の次数の異なる結合系モードを信号の伝送チャネルに対応させ、モード分割によって伝送チャンネルを多重化するモード分割多重伝送系を形成し、前記単一モード信号と結合モード信号との間の合波および分波を、
     異なる複数の光路長を有するアレイ導波路と、前記アレイ導波路格子の一端に設けたスラブ導波路と、前記アレイ導波路格子の他端に設けた結合導波路とを備え、前記スラブ導波路は前記結合系マルチコアファイバの結合モードの数に対応した複数のポートを有する合分波器によって行い、
     一方の進行方向において、スラブ導波路側から入力した単一モードの光信号を、入力した前記ポートの位置に対応した次数の結合モードに変換し、結合導波路から結合モードを合波させて出力し、
     他方の進行方向おいて、
     結合導波路から入力した結合モードの光信号を、結合モード次数に対応したスラブ導波路側の前記ポートから分波させて出力する、
     ことを特徴とするマルチコアファイバ伝送方法。
PCT/JP2009/067234 2008-10-03 2009-10-02 結合系マルチコアファイバ、結合モード合分波器、マルチコアファイバ伝送システム、およびマルチコアファイバ伝送方法 WO2010038861A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980139152.7A CN102203648B (zh) 2008-10-03 2009-10-02 耦合多芯光纤、耦合模合波分波器、多芯光纤传输系统、以及多芯光纤传输方法
EP09817893.2A EP2336813B1 (en) 2008-10-03 2009-10-02 System and method for transmission using coupled multi-core fiber and coupling mode (de)multiplexer
US13/121,465 US8811786B2 (en) 2008-10-03 2009-10-02 Coupled system multi-core fiber, coupling mode multiplexer and demultiplexer, system for transmission using multi-core fiber and method for transmission using multi-core fiber
JP2010531925A JPWO2010038861A1 (ja) 2008-10-03 2009-10-02 結合系マルチコアファイバ、結合モード合分波器、マルチコアファイバ伝送システム、およびマルチコアファイバ伝送方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-258286 2008-10-03
JP2008258286 2008-10-03

Publications (1)

Publication Number Publication Date
WO2010038861A1 true WO2010038861A1 (ja) 2010-04-08

Family

ID=42073619

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/067238 WO2010038863A1 (ja) 2008-10-03 2009-10-02 非結合系マルチコアファイバ
PCT/JP2009/067234 WO2010038861A1 (ja) 2008-10-03 2009-10-02 結合系マルチコアファイバ、結合モード合分波器、マルチコアファイバ伝送システム、およびマルチコアファイバ伝送方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067238 WO2010038863A1 (ja) 2008-10-03 2009-10-02 非結合系マルチコアファイバ

Country Status (5)

Country Link
US (2) US8503847B2 (ja)
EP (2) EP2345915A4 (ja)
JP (2) JP5168702B2 (ja)
CN (2) CN102203648B (ja)
WO (2) WO2010038863A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130039627A1 (en) * 2011-08-12 2013-02-14 University Of Central Florida Research Foundation, Inc. Systems And Methods For Optical Transmission Using Supermodes
WO2013161825A1 (ja) * 2012-04-26 2013-10-31 住友電気工業株式会社 マルチコア光ファイバ、マルチコア光ファイバケーブル、および、マルチコア光ファイバ伝送システム
WO2014148253A1 (ja) 2013-03-18 2014-09-25 株式会社オプトクエスト マルチコアファイバ用光接続器
US9891377B2 (en) 2015-02-18 2018-02-13 Fujikura Ltd. Multicore fiber and optical cable
JP2018197874A (ja) * 2012-12-05 2018-12-13 住友電気工業株式会社 光導波路および光ファイバ伝送系
US10365429B2 (en) 2015-08-21 2019-07-30 Fujikura Ltd. Multicore fiber and optical cable
CN110673337A (zh) * 2019-09-27 2020-01-10 南开大学 一种多芯波导传输特性的快速矢量分析方法
JP2022052465A (ja) * 2020-09-23 2022-04-04 日本電信電話株式会社 結合型マルチコア光ファイバ

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024808A1 (ja) * 2009-08-28 2011-03-03 株式会社フジクラ マルチコアファイバ
JP5347989B2 (ja) * 2010-01-21 2013-11-20 住友電気工業株式会社 マルチコア光ファイバ
JP5267481B2 (ja) * 2010-02-18 2013-08-21 住友電気工業株式会社 マルチコア光ファイバ
US9946014B2 (en) 2010-03-16 2018-04-17 Ofs Fitel, Llc Techniques and devices for low-loss coupling to a multicore fiber
CN103069318B (zh) * 2010-08-24 2015-09-02 国立大学法人横滨国立大学 多芯光纤以及多芯光纤的芯的配置方法
JP5855351B2 (ja) 2010-11-08 2016-02-09 株式会社フジクラ マルチコアファイバ
US9120693B2 (en) 2010-11-08 2015-09-01 Corning Incorporated Multi-core optical fiber ribbons and methods for making the same
JP5595888B2 (ja) 2010-12-09 2014-09-24 株式会社フジクラ マルチコアファイバ
CN102096147A (zh) * 2010-12-31 2011-06-15 北京交通大学 一种可熔接的对称结构多芯光纤及其制作方法
US8503845B2 (en) * 2011-01-17 2013-08-06 Alcatel Lucent Multi-core optical fiber and optical communication systems
EP2678722A4 (en) 2011-02-24 2014-08-06 Ofs Fitel Llc INDIVIDUALLY UNIMOIDAL FIBER MODELS FOR INPUT JUMPING FOR SPATIAL MULTIPLEXING
JP5324012B2 (ja) * 2011-08-08 2013-10-23 古河電気工業株式会社 マルチコア光ファイバおよび光伝送システム
CN103765264B (zh) * 2011-08-25 2016-11-02 国立大学法人横滨国立大学 多芯光纤以及多芯光纤的纤芯的配置方法
JP5819682B2 (ja) * 2011-09-05 2015-11-24 株式会社フジクラ 通信用マルチコアファイバ
US9100085B2 (en) 2011-09-21 2015-08-04 Spatial Digital Systems, Inc. High speed multi-mode fiber transmissions via orthogonal wavefronts
US9031419B2 (en) * 2011-09-28 2015-05-12 At&T Intellectual Property I, L.P. Optical networks using multi-spatial mode media
JP5876266B2 (ja) * 2011-10-20 2016-03-02 日本電信電話株式会社 光受信装置、マルチコア光ファイバ及び光伝送システム
JP5916525B2 (ja) 2012-01-19 2016-05-11 株式会社フジクラ マルチコアファイバ
DK2821823T3 (da) 2012-02-29 2020-04-20 Sumitomo Electric Industries Optisk multikernefiber, optisk multikernefiberkabel, og optisk multikernefiber-transmissionssystem
JPWO2013141112A1 (ja) * 2012-03-23 2015-08-03 住友電気工業株式会社 干渉測定装置
JPWO2013157245A1 (ja) * 2012-04-20 2015-12-21 日本電気株式会社 多重光伝送路、光伝送システムおよび光伝送方法
JP5982992B2 (ja) * 2012-04-25 2016-08-31 住友電気工業株式会社 マルチコア光ファイバ
JP5958068B2 (ja) * 2012-05-15 2016-07-27 住友電気工業株式会社 マルチコア光ファイバ実装方法
US8855494B2 (en) * 2012-07-24 2014-10-07 Verizon Patent And Licensing Inc. Multi-band reconfigurable optical add-drop multiplexer (ROADM) system
US9197356B2 (en) * 2012-11-16 2015-11-24 At&T Intellectual Property I, L.P. Distributed spatial mode processing for spatial-mode multiplexed communication systems
EP2944989A4 (en) * 2013-01-10 2016-09-07 Sumitomo Electric Industries OPTICAL COMPONENT AND OPTICAL COMMUNICATION SYSTEM
KR102274413B1 (ko) * 2013-01-15 2021-07-07 매직 립, 인코포레이티드 초고해상도 스캐닝 섬유 디스플레이
CN103439766B (zh) * 2013-06-26 2016-06-29 江苏金迪电子科技有限公司 一种多芯光纤的空分复用方法
US9077450B2 (en) 2013-09-06 2015-07-07 International Business Machines Corporation Wavelength division multiplexing with multi-core fiber
US9362708B2 (en) * 2013-09-20 2016-06-07 Alcatel Lucent Compact two-stage optical amplifier
PL226046B1 (pl) 2013-12-15 2017-06-30 Inphotech Spółka Z Ograniczoną Odpowiedzialnością Mikrostrukturalny swiatlowod wielordzeniowy, urzadzenie do niezaleznego adresowania rdzeni mikrostrukturalnego swiatlowodu wielordzeniowego i sposob wykonania urzadzenia do niezaleznego adresowania rdzeni mikrostrukturalnego swiatlowodu wielordzeniowego
JP6287179B2 (ja) * 2013-12-25 2018-03-07 住友電気工業株式会社 マルチコア光ファイバ及びマルチコア光ファイバコネクタの製造方法
KR20150079039A (ko) * 2013-12-31 2015-07-08 한국전자통신연구원 공전 각운동량 모드들을 동시에 송신 및 수신하는 장치 및 방법
JP6328745B2 (ja) * 2014-02-25 2018-05-23 株式会社フジクラ マルチコアファイバ
JP2015212791A (ja) 2014-05-07 2015-11-26 株式会社フジクラ マルチコアファイバ
US9661986B2 (en) * 2014-07-24 2017-05-30 Z Square Ltd. Multicore fiber endoscopes
EP3211464B1 (en) * 2014-10-22 2021-05-05 Sumitomo Electric Industries, Ltd. Multi-core optical fiber, optical cable, and optical connector
JP6050847B2 (ja) * 2015-02-12 2016-12-21 株式会社フジクラ マルチコアファイバ
KR20180025840A (ko) 2015-02-28 2018-03-09 인포테크 에스피. 제트 오. 오. 광섬유 커플러
CN104698606A (zh) * 2015-03-11 2015-06-10 南京邮电大学 磁光效应的二维三角晶格光子晶体模分复用与解复用器
JP6226905B2 (ja) * 2015-03-30 2017-11-08 株式会社フジクラ マルチコア光ファイバ、及び、マルチコア光ファイバの製造方法
JP5995296B2 (ja) * 2015-04-08 2016-09-21 日本電信電話株式会社 光受信装置、マルチコア光ファイバ及び光伝送システム
US10001597B2 (en) * 2015-09-22 2018-06-19 Corning Incorporated Multicore optical fibers and interconnection methods for the same
JP2017072818A (ja) * 2015-10-08 2017-04-13 住友電気工業株式会社 マルチコア光ファイバ、マルチコア光ファイバケーブルおよび光ファイバ伝送システム
US10094980B2 (en) * 2016-01-12 2018-10-09 King Saud University Three-dimensional space-division Y-splitter for multicore optical fibers
FR3054894A1 (fr) * 2016-08-03 2018-02-09 Stmicroelectronics (Crolles 2) Sas Dispositif integre photonique a compacite amelioree
CN107959528B (zh) * 2017-12-13 2020-05-22 苏州大学 多芯光纤网络流量不对称业务传输的网络规划方法及网络
EP3884319A1 (en) * 2018-11-21 2021-09-29 Corning Incorporated Optical systems comprising multi-core optical fibers for realizing direct core to core coupling
JP7115387B2 (ja) * 2019-03-27 2022-08-09 ウシオ電機株式会社 光測定用光源装置、分光測定装置及び分光測定方法
JP6715372B1 (ja) * 2019-04-25 2020-07-01 日本電信電話株式会社 マルチコア光ファイバ及び設計方法
CN112583516B (zh) * 2020-12-15 2023-03-14 南京信息工程大学 一种正交模式复用光信号的耦合保持方法及装置
IL291189A (en) * 2021-03-16 2022-10-01 Cognifiber Ltd Wavelength multiplexing processor
CN113568089B (zh) * 2021-07-07 2023-02-24 南开大学 一种基于多芯环形光子灯笼的模分复用器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100924A1 (en) * 2006-03-02 2007-09-07 The Board Of Trustees Of The Leland Stanford Junior University Multiple-core photonic-bandgap fiber with coupling between the cores

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932649A (ja) * 1972-07-21 1974-03-25
JPS566202A (en) * 1979-06-29 1981-01-22 Nippon Telegr & Teleph Corp <Ntt> Multicore fiber and its production
JPS5649507U (ja) * 1979-09-25 1981-05-01
JPH06324222A (ja) * 1993-05-13 1994-11-25 Olympus Optical Co Ltd イメージファイバ
JP3225819B2 (ja) * 1995-12-26 2001-11-05 日立電線株式会社 導波路型光分岐素子
EP1002249A1 (en) * 1997-07-25 2000-05-24 Corning Incorporated Multicore glass optical fiber and methods of manufacturing such fibres
US6154594A (en) * 1998-07-15 2000-11-28 Corning Incorporated Multicore glass optical fiber and methods of manufacturing such fibers
CN1359474A (zh) * 1998-09-16 2002-07-17 康宁股份有限公司 多芯和多模色散受控光纤
JP2001033638A (ja) * 1999-07-23 2001-02-09 Fujikura Ltd 光ファイバ型波長フィルタ及びその波長周期調整方法
US6826343B2 (en) * 2001-03-16 2004-11-30 Cidra Corporation Multi-core waveguide
US6611648B2 (en) * 2001-05-09 2003-08-26 Corning Incorporated Optical fibers having cores with different propagation constants, and methods of manufacturing same
GB0129404D0 (en) * 2001-12-07 2002-01-30 Blazephotonics Ltd An arrayed-waveguide grating
US6711333B2 (en) * 2002-04-19 2004-03-23 Corning Incorporated Wideband, multi-core dispersion compensation fiber
JP2006195427A (ja) * 2004-12-14 2006-07-27 National Institute Of Advanced Industrial & Technology フォトニック結晶方向性結合器
CN100456061C (zh) * 2005-04-22 2009-01-28 南开大学 空气传导双芯光子带隙光纤
CN100495093C (zh) * 2007-09-14 2009-06-03 中国科学院上海光学精密机械研究所 强耦合的多芯光纤
JP2011018013A (ja) * 2009-01-20 2011-01-27 Sumitomo Electric Ind Ltd 光通信システム及び配列変換器
JP5267481B2 (ja) * 2010-02-18 2013-08-21 住友電気工業株式会社 マルチコア光ファイバ
WO2011112846A1 (en) * 2010-03-10 2011-09-15 Ofs Fitel Llc. A Delaware Limited Liability Company Multicore fibers and associated structures and techniques
US8503845B2 (en) * 2011-01-17 2013-08-06 Alcatel Lucent Multi-core optical fiber and optical communication systems
US9103961B2 (en) * 2011-08-12 2015-08-11 University Of Central Florida Research Foundation, Inc. Systems and methods for optical transmission using supermodes
WO2013035347A1 (ja) * 2011-09-07 2013-03-14 古河電気工業株式会社 マルチコア光ファイバおよび光伝送方法
DK2821823T3 (da) * 2012-02-29 2020-04-20 Sumitomo Electric Industries Optisk multikernefiber, optisk multikernefiberkabel, og optisk multikernefiber-transmissionssystem

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100924A1 (en) * 2006-03-02 2007-09-07 The Board Of Trustees Of The Leland Stanford Junior University Multiple-core photonic-bandgap fiber with coupling between the cores

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
B. ROSINSKI, J. W. D. CHI, P. GRASSO, J. L. BIHAN: "Multichannel transmission of a multicore fiber coupled with Vertically-Coupled-Surface- Emitting Lasers", J. LIGHTWAVE TECHNOL., vol. 17, no. 5, 1999, pages 807 - 810
C. P. TSEKREKOS, M. DE BOER, A. MARTINEZ, F. M. J. WILLEMS, A. M. J. KOONEN: "Temporal Stability of a Transparent Mode Group Diversity Multiplexing Link", PHOTON. TECHNOL. LETT., vol. 18, no. 23, 2006, pages 2484 - 2486
IMAMURA KATSUNORI, MUKASA KAZUNORI, SUGISAKI RYUICHI, MIURA YU, YAGI TAKESHI: "Multi-core Holey Fibers for Ultra Large Capacity Wide-Band Transmission", IEICE COMMUNICATION SOCIETY CONVENTION, 2008
MARTIN FELDMAN, RAMACHANDRAN, VAIDYANATHAN, AHMED EL-AMAWY: "High Capacity Bused Interconnects Using Optical Slab Waveguides", LECT NOTES COMPUT SCI., vol. 1586, 1999, pages 924 - 937
R. C. STEARNS, C. K. ASAWA, S-K YAO: "Angular Division Multiplexing for Fiber Communication Using Graded-Index Rod Lenses", J. LIGHTWAVE TECHNOL., vol. LT-4, no. 2, 1984, pages 358 - 362
S. INAO, T. SATO, H. HONDO, OGAI, S. SENTSUI, A. OTAKE, K. YOSHIZAKI, K. ISHIHARA, N. UCHIDA: "High density multi-core-fiber cable", PROCEEDINGS OF THE 28TH INTERNATIONAL WIRE & CABLE SYMPOSIUM (IWCS), 1979, pages 370 - 384
See also references of EP2336813A4
SUEMATSU YASUHARU, FURUYA KAZUHITO: "Refractive Index Distribution and Group Delay Characteristics in Multimode Dielectric Optical Waveguides", TRANS. IECE OF JAPAN, vol. 57, no. 9, 1974, pages 289 - 296
W.E.P.PADDEN ET AL.: "Coupling in a twin-core microstructured polymer optical fiber", APPLIED PHYSICS LETTERS, vol. 84, no. 10, 8 March 2004 (2004-03-08), pages 1689 - 1691, XP012060713 *
YASUO KOKUBUN ET AL.: "Kukan Tajuu. Mode Tajuu Denso e Muketa Ishu Hiketsugo Oyobi Doshu Ketsugo Multicore Fiber no Teian", IEICE TECHNICAL REPORT, vol. 109, no. 159, 23 July 2009 (2009-07-23), pages 165 - 170, XP008144763 *
YASUO KOKUBUN ET AL.: "Novel multi- core fibers for mode division multiplexing: proposal and design principle", IEICE ELECTRONICS EXPRESS, vol. 6, no. 8, 25 April 2009 (2009-04-25), pages 522 - 528, XP002635349 *
YOSHIKAWA HIROSHI, YAMAMOTO YUZO, OONO YUTAKA: "Analysis of asymmetric two-core single-mode optical fibers for subscriber lines", TRANS. IECE OF JAPAN, C-I, vol. J74-C-I, no. 9, September 1991 (1991-09-01), pages 307 - 312

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130039627A1 (en) * 2011-08-12 2013-02-14 University Of Central Florida Research Foundation, Inc. Systems And Methods For Optical Transmission Using Supermodes
US9103961B2 (en) * 2011-08-12 2015-08-11 University Of Central Florida Research Foundation, Inc. Systems and methods for optical transmission using supermodes
JP2017223967A (ja) * 2012-04-26 2017-12-21 住友電気工業株式会社 マルチコア光ファイバ、マルチコア光ファイバケーブル、および、マルチコア光ファイバ伝送システム
WO2013161825A1 (ja) * 2012-04-26 2013-10-31 住友電気工業株式会社 マルチコア光ファイバ、マルチコア光ファイバケーブル、および、マルチコア光ファイバ伝送システム
US9031368B2 (en) 2012-04-26 2015-05-12 Sumitomo Electric Industries, Ltd. Multi-core optical fiber, multi-core optical fiber cable, and multi-core optical fiber transmission system
JPWO2013161825A1 (ja) * 2012-04-26 2015-12-24 住友電気工業株式会社 マルチコア光ファイバ、マルチコア光ファイバケーブル、および、マルチコア光ファイバ伝送システム
JP2018197874A (ja) * 2012-12-05 2018-12-13 住友電気工業株式会社 光導波路および光ファイバ伝送系
US9612407B2 (en) 2013-03-18 2017-04-04 Optoquest Co., Ltd. Optical coupler for multicore fiber
WO2014148253A1 (ja) 2013-03-18 2014-09-25 株式会社オプトクエスト マルチコアファイバ用光接続器
US9891377B2 (en) 2015-02-18 2018-02-13 Fujikura Ltd. Multicore fiber and optical cable
US10365429B2 (en) 2015-08-21 2019-07-30 Fujikura Ltd. Multicore fiber and optical cable
CN110673337A (zh) * 2019-09-27 2020-01-10 南开大学 一种多芯波导传输特性的快速矢量分析方法
CN110673337B (zh) * 2019-09-27 2021-08-24 南开大学 一种多芯波导传输特性的快速矢量分析方法
JP2022052465A (ja) * 2020-09-23 2022-04-04 日本電信電話株式会社 結合型マルチコア光ファイバ
JP7320788B2 (ja) 2020-09-23 2023-08-04 日本電信電話株式会社 結合型マルチコア光ファイバ

Also Published As

Publication number Publication date
EP2336813A4 (en) 2012-06-20
EP2345915A1 (en) 2011-07-20
JPWO2010038863A1 (ja) 2012-03-01
JP5168702B2 (ja) 2013-03-27
WO2010038863A1 (ja) 2010-04-08
CN102171596A (zh) 2011-08-31
CN102203648B (zh) 2014-11-05
CN102203648A (zh) 2011-09-28
EP2345915A4 (en) 2012-08-15
EP2336813A1 (en) 2011-06-22
US8811786B2 (en) 2014-08-19
JPWO2010038861A1 (ja) 2012-03-01
US20110188855A1 (en) 2011-08-04
US20110243517A1 (en) 2011-10-06
EP2336813B1 (en) 2016-12-14
US8503847B2 (en) 2013-08-06

Similar Documents

Publication Publication Date Title
WO2010038861A1 (ja) 結合系マルチコアファイバ、結合モード合分波器、マルチコアファイバ伝送システム、およびマルチコアファイバ伝送方法
JP5170909B2 (ja) 光伝送システムおよびマルチコア光ファイバ
Xie et al. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure
CN106249355A (zh) 基于硅基光波导模式匹配的模式复用解复用器
JP2015114548A (ja) 光合分波器および光通信システム
Tervonen et al. A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing
CN103091782B (zh) 一种带有偏振控制的阵列波导光栅模块
JP2022542439A (ja) 応力によって誘発される複屈折を伴う高楕円率コアファイバの偏光維持
JP2013068909A (ja) 光素子
US8630517B2 (en) Optical multiplexer/demultiplexer
CN108833016A (zh) 一种单片集成的波分复用单纤双向数据传输模块
JP6351114B2 (ja) モード合分波器及びモード合分波器の設計方法
JP6631848B2 (ja) モード合分波器及びモード多重伝送システム
JP6699028B2 (ja) モード交換器
CN113346977A (zh) 一种少模光纤模分复用信号四模式循环转换系统
Truong et al. A compact triplexer based on cascaded three tilted MMI couplers using silicon waveguides
JP3966401B2 (ja) 導波路型光合波器とこれを用いた多波長光源
Zhao et al. 84-Channel ultra-dense silicon photonics optical IO
WO2023223478A1 (ja) 光信号処理装置および光信号伝送システム
Takahashi et al. Switching devices and systems enabled by advanced planar lightwave circuits
Minz et al. Design of a Hybrid Mode and Polarization Division Multiplexer
JP6554071B2 (ja) マルチチップ接続用導波路チップ
CN113985523A (zh) 一种宽带宽阵列波导光栅
CN116009147A (zh) 一种高效率光波导芯片-少模光纤耦合器
KR20190115757A (ko) 광 회로 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139152.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531925

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009817893

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009817893

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13121465

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE