WO2010035572A1 - 車両の減速支援装置 - Google Patents

車両の減速支援装置 Download PDF

Info

Publication number
WO2010035572A1
WO2010035572A1 PCT/JP2009/063385 JP2009063385W WO2010035572A1 WO 2010035572 A1 WO2010035572 A1 WO 2010035572A1 JP 2009063385 W JP2009063385 W JP 2009063385W WO 2010035572 A1 WO2010035572 A1 WO 2010035572A1
Authority
WO
WIPO (PCT)
Prior art keywords
deceleration
vehicle
curve
road
target
Prior art date
Application number
PCT/JP2009/063385
Other languages
English (en)
French (fr)
Inventor
横山篤
齋藤真二郎
吉田龍也
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP09815989A priority Critical patent/EP2332794A1/en
Priority to US12/920,255 priority patent/US20110087415A1/en
Priority to CN2009801058651A priority patent/CN101945786B/zh
Publication of WO2010035572A1 publication Critical patent/WO2010035572A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/16Curve braking control, e.g. turn control within ABS control algorithm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/20Road shapes
    • B60T2210/24Curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/36Global Positioning System [GPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • the present invention relates to a deceleration support device for supporting deceleration of a running vehicle, and more particularly to a vehicle deceleration support device capable of suitably performing deceleration control when the vehicle enters a curved road.
  • a technique for acquiring vehicle information in front of a traveling vehicle and performing vehicle deceleration control when the vehicle approaches a curved road is generally known.
  • the vehicle is controlled based on the curvature radius of the curved road ahead of the vehicle and the traveling state of the host vehicle.
  • a deceleration control for the vehicle for example, there is a method of controlling the deceleration rate uniformly according to the radius of curvature of the curved road ahead of the vehicle, but when the vehicle deceleration control is simply performed by this method, In some cases, the driver's intention to perform acceleration / deceleration on the vehicle cannot be sufficiently reflected, and the driver may feel uncomfortable during deceleration.
  • the vehicle in order to perform deceleration control that reflects the driver's intention to operate, the vehicle is not based on uniform deceleration, but based on the road curvature (curvature radius) of a curved road.
  • Calculates the target vehicle speed when the vehicle travels on a curved road and detects the driver's accelerator pedal operation during the operation of deceleration control, and the position of the accelerator pedal operation and the amount of accelerator pedal operation Based on the above, there has been proposed a control device that corrects the target vehicle speed and performs deceleration control (see, for example, Patent Document 1). JP 2007-230440 A
  • the control device corrects the target vehicle speed so that the deceleration of the running vehicle becomes smaller at the timing when the deceleration control is started as the distance from the vehicle to the entrance position of the curved road is shorter.
  • the change in the vehicle speed until the vehicle enters the curved road becomes gentle, but the vehicle speed immediately after entering the curved road becomes higher than that in the normal deceleration control.
  • the vehicle speed cannot be sufficiently reduced immediately after the vehicle enters the curved road, and the vehicle tends to exceed the road surface friction coefficient in the direction due to the lateral acceleration acting on the vehicle after entering the curved road. It is in.
  • the present invention has been made to solve such problems, and according to the driver's intention to decelerate, reflects the driver's intention more faithfully, and at the same time, the deceleration that does not easily exceed the road surface friction coefficient.
  • An object of the present invention is to provide a deceleration support device capable of realizing control.
  • the deceleration support device acquires information on a curved road ahead of the vehicle, and based on the acquired information on the curved road, a section distance from the vehicle to the entrance position of the curved road
  • the start timing for starting the deceleration control of the vehicle is determined according to the driving state of the vehicle, and based on the interval distance and the vehicle speed at the start timing, the shorter the interval distance, Calculate the target deceleration so that the deceleration increases, or the shorter the section distance, the greater the deceleration during deceleration control and the lateral acceleration of the vehicle when driving on a curved road. Based on this, the vehicle is decelerated and controlled.
  • the vehicle is decelerated before entering the curved road, thereby reflecting the driver's intention more faithfully, and at the same time, when the vehicle enters the curved road, the vehicle Therefore, it is possible to perform deceleration control that can pass through a curved road in a state that does not easily exceed the road friction coefficient and is highly robust to changes in the friction coefficient of the road surface.
  • FIG. 4A is a diagram for explaining the relationship between a vehicle and a curve road during deceleration control
  • FIG. 4A is a diagram for explaining deceleration control when the section distance L is long
  • FIG. 5A is a diagram showing changes in vehicle speed, deceleration, and lateral acceleration when deceleration control according to the present embodiment is performed
  • FIG. 5A is a diagram showing changes in vehicle speed, deceleration, and lateral acceleration when deceleration control according to the present embodiment is performed
  • FIG. 5A is a diagram illustrating deceleration control when the section distance L is long. It is the figure which showed the change, (b) is the figure which showed the change at the time of deceleration control when the section distance L is short compared with (a).
  • FIG. 6A is a diagram showing changes in the vehicle speed, deceleration, and lateral acceleration when the target deceleration is fixed regardless of the section distance.
  • FIG. 6A is a diagram illustrating the deceleration control when the section distance L is long.
  • FIG. 6B is a diagram showing changes, and FIG. 6B is a diagram showing changes during deceleration control when the section distance L is shorter than that shown in FIG. The figure for demonstrating the relationship between the vehicle at the time of deceleration control, and a curve road.
  • FIG. 1 shows an overall configuration diagram of a vehicle equipped with a deceleration support apparatus according to the present embodiment.
  • the vehicle 1 of the deceleration support apparatus is a steering angle sensor 22 for a steering wheel, a direction indicator lever 23, and an accelerator pedal operation amount sensor (accelerator opening detection means) as a device for detecting a driver's operation of the vehicle. 24, a brake pedal operation amount sensor 25 is provided, and these devices are connected to the controller 10.
  • the detection signals detected by these sensors are transmitted to the controller 10 including the deceleration support device according to the operation amount of the driver. For example, from the detection signal obtained by the steering angle sensor 22, it is possible to detect the intention of the driver in which direction the vehicle 1 wants to travel. From the detection signal obtained by the accelerator pedal operation amount sensor 24 or the brake pedal operation amount sensor 25, the driver's intention to accelerate / decelerate and brake the vehicle can be detected.
  • the operation amount (the amount of depression by the driver) detected by the accelerator pedal operation amount sensor 24 corresponds to the accelerator opening, and the accelerator opening is fully closed when the driver does not depress the accelerator pedal. . Further, the driver's intention to change the route can be detected from the operation of the direction indicator lever 23.
  • the vehicle 1 includes a navigation device 26 as a device for acquiring road information, and the navigation device 26 is connected to the controller 10.
  • the navigation device 26 has a map database, estimates the vehicle position from GPS (Global Positioning System) information and other sensor information, and calculates the distance between a specific point in the map data and the position of the vehicle 1. can do.
  • GPS Global Positioning System
  • a map database (not shown) includes feature information such as road points, temporary stop lines in road sections, intersection sections, tunnels, and other speed limit information.
  • Other sensor information includes acceleration sensors, There are gyro sensors.
  • the navigation device 26 uses the map database and the sensor information, and the surrounding road information including information on the set route, map information, the position of the host vehicle on the map, the direction of the host vehicle, and the curve road ahead of the vehicle ( Lane width, number of lanes, lane curve information, lane marker width, number of lane markers, lane marker curve information, speed limit, distinction between motorway and ordinary roads, presence of branch roads, etc.) Information is transmitted to the controller 10, and the controller 10 acquires these information.
  • the vehicle 1 includes wheel speed sensors 27fL, 27fR, 27rL, 27rR, and a vehicle behavior sensor 28 as a detection unit that detects a traveling state (motion state) of the vehicle, and these sensors are also connected to the controller 10.
  • the wheel speed sensors 27fL, 27fR, 27rL, and 27rR detect the rotational speeds of the front, rear, left and right wheels of the vehicle 1, and these detection signals are transmitted to the controller 10, and the controller 10 determines the speed (vehicle speed) of the vehicle 1. Calculated.
  • the vehicle behavior sensor 28 detects longitudinal acceleration, lateral acceleration, and yaw rate, and transmits the detected signals to the controller 10.
  • the vehicle 1 includes a front camera 30f, a front radar 31f, a rear camera 30r, and a rear radar 31r as devices for detecting an external environment around the host vehicle. These devices are connected to the controller 10 and are connected to the host vehicle. Information on peripheral lane markers and obstacles is transmitted to the controller 10.
  • the front camera 30f and the rear camera 30r have the function of lane recognition that acquires the surrounding information of the vehicle (own vehicle) 1 as an image and recognizes the lane based on the lane marker or road surface boundary in the acquired image. ing.
  • the front camera 30f recognizes a road surface boundary such as a lane marker such as a white line and a road shoulder, a positional relationship with the vehicle 1, a width between lane markers of the own lane or an adjacent lane, a width between left and right road surface boundaries, a lane marker, Outputs road boundary type.
  • the road information regarding the lane marker and the road surface boundary includes information at a plurality of positions in front of the vehicle 1. Furthermore, road information at a plurality of positions is also provided for the rear and side of the vehicle 1.
  • the types of lane markers include types such as lines, cat's eyes, and botsdots, line colors, line types (solid lines, broken lines, dotted lines, and hatching).
  • the types of road boundary are road shoulder edges, gutters, curbs, guardrails, walls, banks, and the like. Further, the front camera 30f recognizes obstacles such as other vehicles and pedestrians and outputs a positional relationship with the vehicle 1.
  • the front radar 31f and the rear radar 31r recognize obstacles such as other vehicles and pedestrians and output a positional relationship with the vehicle 1.
  • the front radar 31f has a feature that it can accurately recognize obstacles farther than the front camera 30f.
  • the front camera 30f has a feature that the detection angle is wider than that of the front radar 31f, and the type of the obstacle can be determined. According to these features, information around the vehicle 1 can be detected with high accuracy according to the distance and direction from the vehicle 1.
  • the vehicle 1 includes driving devices such as an engine 41 and an electronic control brake 42 in order to drive and brake the vehicle 1.
  • the engine 41 is mounted on the vehicle 1 as a prime mover, and is connected to the controller 10. Specifically, the engine 41 drives the vehicle 1 based on the driver's operation amount and the external environment.
  • the controller 10 outputs a control signal to the throttle valve provided with the intake passage to adjust the amount of air taken into the combustion chamber, and outputs a control signal to the injector to adjust the fuel injected from the injector. Adjust the fuel supplied to the combustion chamber. Then, the controller 10 burns an air-fuel mixture in which the supplied fuel and intake air are mixed in the combustion chamber, thereby transmitting this combustion energy to the vehicle 1 as power and driving the vehicle 1.
  • the controller 10 adjusts the intake air amount and the fuel injection amount of the engine 41 based on the detection signal of the accelerator pedal operation amount sensor 24 detected according to the operation amount of the driver's pedal, and performs acceleration / deceleration control on the vehicle. I do.
  • the controller 10 determines that the vehicle should be accelerated or decelerated based on a detection signal from a sensor attached to the vehicle 1, the acceleration / deceleration control for the vehicle is similarly performed.
  • the controller 10 may decrease the intake air amount and the fuel injection amount, and perform the deceleration control by so-called engine brake together with the brake control described later.
  • the electronically controlled brake 42 is a device that brakes the rotation of the axle 43 and decelerates or brakes the vehicle 1 by pressing a brake disc 45 attached to the axle 43 with a brake pad 46, and is connected to the controller 10. Yes.
  • the electronically controlled brake 42 is actuated by a detection signal of the brake pedal operation amount sensor 25 detected according to the operation amount of the driver's pedal, or by a control signal from the controller 10 during vehicle deceleration control to be described later.
  • the electronically controlled brake 42 can include, for example, a hydraulic brake device that can control the braking force independently for each wheel. When a braking request is received, the braking force is applied to the vehicle 1 while balancing the braking force of each wheel. . When a turn request is received, a brake is applied on either the left or right side to apply a yaw moment to the vehicle.
  • the vehicle 1 is provided with an information providing unit 48 for providing information to the driver, and provides support information by image display, sound, warning light, etc. according to the type of driving support.
  • the information providing unit 48 is, for example, a monitor device with a built-in speaker, and may be installed not only at one place but at a plurality of places.
  • the controller 10 connected to each device and sensor is constituted by hardware such as an ECU, a RAM, and a ROM (not shown), and the ECU is a vehicle running control stored in the RAM and ROM. Using the data, etc., calculations for performing travel control including acceleration / deceleration of the vehicle are performed, and control signals are output to the engine 41 and the electronic control brake 42.
  • FIG. 2 is a control block diagram of the deceleration support apparatus (controller 10) according to the present embodiment shown in FIG.
  • the deceleration support device 10 includes a road information acquisition unit 51, a curve information calculation unit 52, a driver intention acquisition unit 53, a deceleration intention determination unit 54, a target deceleration calculation unit 55, and a vehicle motion control unit. (Deceleration control unit) 56 is provided.
  • the road information acquisition unit 51 receives information on a curve road (curve) ahead of the vehicle, lane position, lane curvature, lane width from at least one of the front camera 30f, the front radar 31f, and the navigation device 26 shown in FIG.
  • the acquisition unit acquires information such as the number of lanes.
  • the curve information calculation unit 52 is based on information from the road information acquisition unit 51 (particularly, the position of the lane, the curvature of the lane), and the distance from the position of the traveling vehicle to the entrance position of the curve road ahead of the vehicle (hereinafter, And the curvature (curvature radius) of the curved road.
  • the curved road is a combination of a relaxation curve portion that gradually changes from a straight line to a curvature of a predetermined arc curve (arc portion), and an arc portion of a curve with a minimum radius of curvature so that the vehicle can make a steady turn. It is composed of a plurality of continuous arc portions.
  • the curve information calculation unit 52 calculates the radius of curvature of a plurality of continuous arc portions constituting a curved road (curve) located in front of the vehicle. Next, of the calculated curvature radii, the entrance position of the curved road having the minimum curvature radius, that is, the curved road on which the vehicle normally turns is calculated. Then, the section distance from the position of the traveling vehicle to the entrance position of the curved road is calculated.
  • the driver intention acquisition unit 53 is an acquisition unit that acquires information related to the operation of the driver based on information from the accelerator pedal operation amount sensor 24, the brake pedal operation amount sensor 25, and a travel mode setting switch (not shown).
  • the driver intention acquisition unit 53 also acquires vehicle motion information such as the vehicle speed obtained by the wheel speed sensor, the acceleration detected by the vehicle behavior sensor 28, and the lateral acceleration.
  • the deceleration intention determination unit 54 is a calculation unit that determines whether or not the driver has an intention to decelerate based on information from the driver intention acquisition unit 53. Specifically, the deceleration intention determination unit (start timing determination unit) 54 determines that the accelerator opening is fully closed based on the accelerator pedal operation amount sensor 24 as the driving state of the vehicle (the driver is stepping on). The start timing for starting the deceleration control of the vehicle is determined according to the timing at which the accelerator pedal is released. For example, when the accelerator opening is fully closed (the foot is released from the accelerator pedal), it is determined that the driver intends to decelerate.
  • the target deceleration calculation unit 55 determines the time until the vehicle enters the entrance position of the curve road ahead based on the section distance at the start timing of deceleration control by the driver's intention to decelerate, the minimum curvature radius of the curve road, and the vehicle speed.
  • the target deceleration and the target lateral acceleration acting on the vehicle when traveling on a curved road (passing through a curved road) are calculated.
  • the target deceleration calculation unit 55 determines that the deceleration control control time is shorter as the section distance at the start timing of the deceleration control is shorter from the section distance at the start timing of the deceleration control, the vehicle speed, the minimum curvature radius of the curved road, and the like.
  • the target deceleration is increased so that the deceleration of the vehicle increases, or the shorter the section distance, the greater the deceleration of the vehicle during deceleration control and the lateral acceleration of the vehicle when traveling on a curved road. Perform the operation.
  • the vehicle motion control unit (deceleration control unit) 56 controls the vehicle motion based on the target deceleration calculated by the target deceleration calculation unit 55. Specifically, in the present embodiment, the deceleration control unit 56 determines whether or not deceleration control is necessary, and if it determines that deceleration control is necessary, drives the electronic control brake 42 to the vehicle. Vehicle deceleration control is performed by brake control that applies braking force. As another aspect, the deceleration control unit may perform the deceleration control together with the engine control for reducing the fuel injection amount and the intake air amount to the engine 41.
  • FIG. 3 is a control flowchart for performing deceleration control based on the control block diagram of the deceleration support apparatus (controller 10) shown in FIG. 2, and FIG. 4 shows the relationship between the vehicle and the curve road during deceleration control.
  • FIG. 4A is a diagram for explaining the deceleration control when the section distance L is long
  • FIG. 4B is a diagram when the section distance L is shorter than FIG. It is a figure for demonstrating this deceleration control.
  • step s1 the road information acquisition unit 51 performs road information such as the lane position and curvature from various sensors such as the front camera 30f, the front radar 31f, and the navigation device 26. Further, the driver intention acquisition unit 53 performs driving. Vehicle movement information such as a person's operation information and speed is acquired.
  • step s2 based on the lane information, the curve information calculation unit 52 performs the section distance L to the curve road with the host vehicle 1 and the minimum curvature of the curve road as shown in FIGS. 4 (a) and 4 (b).
  • the radius R is obtained.
  • the curve information calculation unit 52 calculates the radius of curvature of a plurality of arcs constituting a curve (curve) of a series of curved roads located in front of the vehicle, and becomes the minimum curvature radius of the series of curved roads.
  • the radius of curvature R of the curved road is used.
  • the entrance position (point) P of the curved road having the minimum radius of curvature R is calculated, and the distance L from the position S of the vehicle 1 that is traveling to the entrance position of the curved road is calculated. If the minimum curvature radius R of the curved road cannot be detected due to the performance limitations of the front camera 30f and the navigation device 26, the curvature radius of the curved road such as the entrance position of the curved road constituted by the relaxation curve The minimum radius of curvature and the section distance to the curve may be estimated.
  • step s3 the deceleration intention determination unit 54 determines whether or not the driver permits the automatic deceleration intervention based on the operation amount information of the driver. If the driver releases the accelerator pedal, the accelerator opening is fully closed, so it is determined that there is an intention to permit automatic deceleration, and this timing is determined as the vehicle deceleration control start timing. Proceed to step s4. If it is determined that the driver does not intend to permit, the vehicle is terminated without performing deceleration control of the vehicle.
  • step s4 the target deceleration calculation unit 55 causes a section distance L between the position S of the vehicle 1 and the entrance position P of the curve road at the vehicle deceleration control start timing.
  • Minimum curvature radius R of curve road current vehicle speed (vehicle speed at vehicle deceleration control start timing) Vo to target deceleration (corresponding to maximum value of deceleration during actual driving) from curve road to Gx,
  • a target lateral acceleration (corresponding to the maximum value of the lateral acceleration during actual traveling) Gy when passing a curved road (during traveling on a curved road) is calculated.
  • the target deceleration is calculated so that the target deceleration Gx and the target lateral acceleration Gy have a constant ratio.
  • the target deceleration Gx calculated from equation (3) is substantially equal to the actual deceleration Gx acting on the vehicle before entering the curved road, and the actual deceleration is As the section distance L calculated at the start timing is shorter, the target deceleration Gx is calculated to be larger. Conversely, as the section distance L calculated at the start timing is longer, the target deceleration Gx is larger. In addition, the target deceleration Gx is calculated based on the curvature radius (minimum curvature radius) of the curved road, the section distance L, and the vehicle speed Vo.
  • the target lateral acceleration Gy calculated from the equation (3) is substantially equal to the lateral acceleration Gy at the time of execution that acts on the vehicle while traveling on a curved road, and the actual lateral acceleration Gy is controlled by deceleration control using the calculated target deceleration Gx.
  • the lateral acceleration increases as the section distance L calculated at the start timing decreases, and conversely decreases as the section distance L calculated at the start timing increases.
  • the target deceleration calculating unit 55 increases the deceleration as the section distance L calculated at the start timing is shorter, and the vehicle travels on a curved road.
  • the target deceleration is calculated on the basis of the section distance L at the start timing and the vehicle speed Vo so that the lateral acceleration increases.
  • the deceleration may be calculated only by equation (2) without considering the energy due to the centripetal force of the lateral acceleration Gy.
  • the target deceleration calculating unit 55 is based on the start timing section distance L and the vehicle speed Vo so that the target deceleration increases as the section distance L calculated at least at the start timing decreases. The target deceleration is calculated.
  • the target lateral acceleration Gy is set to N times the target deceleration Gx so that the actual lateral acceleration and the maximum value of the deceleration are different, and the following equation (4) is applied as a constraint condition. Also good.
  • the target deceleration Gx and the target lateral acceleration Gy are not equal, but the target value can be limited so that the maximum value of the actual deceleration Gx and the lateral acceleration Gy becomes a constant ratio N, and the friction coefficient change of the road surface In contrast, it is possible to realize a deceleration control that is robust.
  • ratio N may be input by the driver through the input device 29 shown in FIG. 1, and the ratio may be changed in the deceleration support device 10 (ratio changing unit) by the input ratio N.
  • the ratio may be changed in the deceleration support device 10 (ratio changing unit) in accordance with the control.
  • step s5 the deceleration control unit 56 first determines whether brake control is necessary. If the target deceleration Gx obtained in step s4 is larger than this value compared with the predetermined lower limit deceleration Gxmin, or if the target lateral acceleration Gy is larger than the predetermined lower limit deceleration Gymin, It is determined that deceleration by brake control is necessary, and the process proceeds to step s6. On the other hand, if it is equal to or less than the lower limit deceleration Gxmin, it is determined that deceleration by only the engine brake or deceleration by running resistance is sufficient, and the control is terminated without performing brake control (deceleration control). Further, if it is equal to or lower than the lower limit lateral acceleration Gymin, it is determined that the vehicle may pass the curved road with the current speed V, and the control is terminated without executing the brake control.
  • step s6 specifically, the electronic control brake 42 is driven so that the target deceleration Gx derived in step s5 can be generated for the vehicle 1, and the braking force corresponding to the target deceleration Gx is applied to the vehicle 1. give.
  • FIG. 5 is a diagram illustrating changes in the vehicle speed, deceleration, and lateral acceleration when the deceleration control according to the present embodiment is performed.
  • FIG. 5A illustrates a case where the section distance L is long. It is the figure which showed the change at the time of deceleration control, (b) is a figure which showed the change at the time of deceleration control when the section distance L is short compared with (a), This will be described below in association with FIGS. 4 (a) and 4 (b).
  • the target deceleration Gx depends on the section distance L1, the minimum curvature radius R of the curved road, and the vehicle speed Vo.
  • the target lateral acceleration Gy is calculated, and deceleration control is performed by this target deceleration Gx.
  • the target deceleration Gx and the target lateral acceleration Gy when the section distance is L1 are both 2 m / s 2 , and in the deceleration control, the vehicle 1 has the deceleration Gx as shown in FIG.
  • the lateral acceleration Gy is obtained.
  • the target deceleration Gx is calculated from R and the vehicle speed Vo at the start timing of starting the deceleration control so that the calculated target deceleration Gx and the target lateral acceleration Gy are larger than in the case of the section distance L1.
  • the deceleration control is performed based on the target deceleration.
  • both the target deceleration Gx and the target lateral acceleration Gy are 3 m / s 2
  • the vehicle 1 has the deceleration Gx and the lateral acceleration Gy as shown in FIG.
  • the vehicle can pass the curved road without losing steering stability.
  • the deceleration and the lateral acceleration are actually the same size, the vehicle motion does not get jerky, and it is possible to realize a deceleration control that is less uncomfortable for the driver.
  • the entrance position P of the curved road for calculating the section distance L is set as the entrance position of the curved road having the minimum radius of curvature R, even if such deceleration control is performed, the driver further feels uncomfortable. Can enter. Further, as shown in FIG. 5B, when the driver releases the accelerator pedal at a vehicle position closer to the curved road, the driver is willing to pass through the curved road quickly. In this embodiment, since the start timing of the deceleration control is late (that is, the section distance is short), the deceleration control is performed so that the lateral acceleration Gy when passing the curved road (during traveling on the curved road) becomes large. It is possible to pass a curved road at a higher vehicle speed than shown in FIG. 5 (a), and to reflect the driver's intention.
  • FIG. 6 is a diagram showing changes in the vehicle speed, deceleration, and lateral acceleration when the target deceleration is fixed regardless of the section distance.
  • FIG. 6A shows the case where the section distance L is long.
  • FIG. 6B is a diagram showing changes during deceleration control when the section distance L is shorter than (a).
  • the entrance of the curved road having the minimum curvature radius R is shown in FIG. After reaching position P, deceleration is terminated. In this case, the same result as in FIG.
  • FIG. 7 is a diagram for explaining the relationship between the vehicle and the curve road during the deceleration control
  • FIG. 8 shows the vehicle speed and deceleration when the deceleration control is performed using the deceleration support device according to the present embodiment
  • FIG. 9 shows vehicle speed, deceleration, and lateral acceleration when deceleration control is performed using a conventional control device.
  • the accelerator pedal is released at the timings of the three section distances 108m, 72m, and 36m, and the vehicle speed at the deceleration control timing (timing when the accelerator pedal is released) 22. Assume a case of 2 m / s (80 km / h).
  • the ratio of the target deceleration Gx and the target lateral acceleration Gy is set to 1: 3, and the target deceleration Gx is calculated based on the above conditions and equation (5). This is the value when deceleration control is performed based on the calculation result.
  • the accelerator opening is T1a, T2a, T3a
  • the vehicle speed is V1a, V2a, V3a
  • the deceleration is Gx1a, Gx2a, Gx3a
  • the lateral acceleration is Gy1a, Gy2a, Gy3a in order of early release timing of the accelerator pedal. Show.
  • the deceleration before entering the entrance position of the curve road is increased in the deceleration control. Since the vehicle is controlled to decelerate, the actual deceleration peaks increase in the order of Gx1a ⁇ Gx2a ⁇ Gx3a. Further, the deceleration control time becomes shorter as the distance of the curved road is shorter. Further, the actual lateral acceleration peaks increase in the order of Gy1a ⁇ Gy2a ⁇ Gy3a, and the vehicle speed during traveling on a curved road also increases in the order of V1a ⁇ V2a ⁇ V3a.
  • the deceleration control is performed up to the entrance position P of the curve road having the minimum radius of curvature, the deceleration control is completed until the peak of the lateral acceleration occurs, and the vehicle speed can be sufficiently reduced, so that the lateral acceleration monotonously increases. That is, it is possible to realize deceleration control in which the lateral acceleration does not show a maximum value and hardly exceeds the road surface friction coefficient.
  • the start timing of the deceleration control is the same as the start timing of the present embodiment. Further, it is assumed that deceleration control is performed so that the vehicle speed and the lateral acceleration when passing through a final curved road (during traveling on a curved road) are the same as those in FIG.
  • the accelerator opening is set to T1b, T2b, T3b
  • the vehicle speed is set to V1b, V2b, V3b
  • the deceleration is set to Gx1b, Gx2b, Gx3b
  • the lateral acceleration is set to Gy1b, Gy2b, Gy3b in order of earlier release timing of the accelerator pedal. It showed in.
  • the section distance L and the minimum curvature radius R of the curved road are obtained using the point of the minimum curvature radius of the curved road as a reference position.
  • the target deceleration Gx and the target lateral acceleration Gy may be obtained for the reference position.
  • the target deceleration Gxa and the target lateral acceleration Gya are obtained for the section distance La of one reference position and the radius Ra of the curved road. Further, the target deceleration Gxb and the target lateral acceleration Gyb are obtained for the section distance Lb and the curve road radius Rb of another reference position.
  • the curve information calculation unit 52 calculates the radius of curvature of a plurality of arcs constituting the curved road based on the information on the curved road. Then, the position of the curved road where each curvature radius is calculated is set as the entrance position of the curved road so far, and the section distances La and Lb from the vehicle to the entrance position of the curved road are calculated as the section distance.
  • the target deceleration calculating unit 55 calculates the target deceleration Gxa, Gxb... At each section distance using the above-described formula. Then, the target decelerations Gxa, Gxb,... Are compared, and the largest target deceleration is selected as the final target deceleration Gx.
  • the deceleration control unit 56 performs deceleration control of the vehicle based on the largest target deceleration among the target decelerations. As a result, it is possible to realize deceleration control that does not easily exceed the road surface friction coefficient even for complex curved roads such as curved roads having complex shapes or S-curve roads.
  • the start timing of the deceleration control is determined according to the operation state of the driver, and the section distance from the position of the own vehicle to the entrance position of the curve road at the start timing of the deceleration control is determined. As the vehicle is closer, the vehicle is decelerated so that the deceleration before entering the curved road becomes larger, so that the intention of the driver can be reflected more faithfully, and at the same time, the deceleration control that does not easily exceed the road surface friction coefficient can be realized.
  • the above-described series of deceleration control may be performed by setting the entrance position of the curved road to the entrance position of the relaxation curve portion. In this case, the deceleration control that does not easily exceed the road surface friction coefficient can be realized.
  • the start timing determination unit determines the start timing according to the timing at which the driver releases the accelerator pedal, that is, the timing at which the accelerator opening is fully closed, as the driving state of the vehicle.
  • the start timing may be determined according to a control signal to be decelerated from the controller to the electronic control brake.
  • the target deceleration calculation unit uses the energy conservation law formula to calculate the deceleration control start timing from the section distance at the start timing of the deceleration control, the vehicle speed, the minimum curvature radius of the curved road, and the like. By calculating the target deceleration so that the deceleration of the vehicle at the time of deceleration control increases as the time section distance is shorter, the target deceleration can be calculated more simply.
  • a deceleration is set as a reference, and the deceleration control is started for this reference deceleration You may calculate (correct

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 運転者の減速意思に応じて、運転者の意図をより忠実に反映すると同時に、路面摩擦係数を越え難い減速制御を実現することができる減速支援装置を提供する減速支援装置は、車両前方のカーブ路の情報を取得する道路情報取得部(51)と、カーブ路の情報に基づいて、車両からカーブ路の入口位置までの区間距離を演算するカーブ情報演算部(52)と、車両の運転状態に応じて、車両の減速制御を開始する開始タイミングを判断する開始タイミング判断部(54)と、減速制御時の目標減速度を演算する目標減速度演算部(55)と、目標減速度に基づいて車両を減速制御する減速制御部(56)と、を備え、目標減速度演算部(55)は、開始タイミング時の区間距離と車速とに基づいて、区間距離が短いほど、減速制御時の車両の減速度とカーブ路走行時の車両の横加速度とが大きくなるように、目標減速度の演算を行う。

Description

車両の減速支援装置
 本発明は、走行中の車両の減速を支援するための減速支援装置にかかり、特に、車両がカーブ路に進入する際に、好適に減速制御をすることができる車両の減速支援装置に関する。
 従来から、走行中の車両前方の道路の情報を取得して、車両がカーブ路に差し掛かったときに、車両の減速制御を行う技術は一般的に知られており、減速制御は、走行中の車両前方のカーブ路の曲率半径と、自車両の走行状態と、に基づいて車両を制御するものである。
 車両に対する減速制御として、たとえば、車両前方のカーブ路の曲率半径に応じて、減速度合を一律に抑制するように制御する方法もあるが、この方法で単に車両の減速制御を行った場合には、車両に対して加減速の操作を行う運転者の操作意図を十分に反映させることができず、運転者に減速時の違和感を持たる場合もあった。
このような点を鑑みて、たとえば、運転者の操作意図を反映した減速制御を行うために、減速度合を一律に抑制するのではなく、カーブ路の道路曲率(曲率半径)に基づいて、車両がカーブ路を走行する際の目標車速を算出するとともに、減速制御の作動中に、運転者のアクセルペダル操作を検出するときに、アクセルペダル操作が行われた車両位置、および、アクセルペダル操作量に基づいて、目標車速を修正し、減速制御を行う制御装置が提案されている(例えば、特許文献1参照)。
特開2007-230440号公報
 ところで、特許文献1に記載のような制御装置を用いて車両の走行を制御した場合には、カーブ路に車両が進入する前に、運転者のアクセルペダル操作量が大きいほど、減速制御時の減速度が小さくなるように、車両の目標車速が修正される。
 具体的には、制御装置は、車両とカーブ路の入口位置までの距離が近いほど、減速制御が開始されるタイミングにおいて、走行中の車両の減速度が小さくなるように目標車速を修正する。この場合、車両がカーブ路に進入までの車速変化が緩やかになるが、通常の減速制御に比べて、カーブ路進入直後の車速が高くなってしまう。この結果として、車両がカーブ路に進入する直後までに十分に車速を下げられず、カーブ路進入後の車両に対して作用する横加速度により、車両は、その方向において路面摩擦係数を超えやすい傾向にある。
 本発明は、このような問題点を解決することを課題としてなされたものであり、運転者の減速意思に応じて、運転者の意図をより忠実に反映すると同時に、路面摩擦係数を越えにくい減速制御を実現することができる減速支援装置を提供することを目的とする。
 このような課題を解決すべく、本発明に係る減速支援装置は、車両前方のカーブ路の情報を取得し、取得したカーブ路の情報に基づいて、車両からカーブ路の入口位置までの区間距離を演算し、車両の運転状態に応じて、車両の減速制御を開始する開始タイミングを判断し、開始タイミング時の区間距離と車速とに基づいて、区間距離が短いほど、減速制御時の車両の減速度が大きくなるように、もしくは、区間距離が短いほど、減速制御時の減速度とカーブ路走行時の車両の横加速度とが大きくなるように、目標減速度を演算し、目標減速度に基づいて、車両を減速制御することを特徴とするものである。
 本発明によれば、運転者の減速意思に応じて、カーブ路進入前に車両を減速し、これにより、運転者の意図をより忠実に反映すると同時に、カーブ路進入時において車両が路面に対して路面摩擦係数を越え難く、路面の摩擦係数の変化に対してロバスト性の高い状態で、カーブ路を通過することができる減速制御を行うことが可能となる。
本実施形態に係る減速支援装置を搭載した車両の全体構成図。 図1に示す本実施形態に係る減速支援装置の制御ブロック図。 図2に示す減速支援装置の制御ブロック図に基づいて、減速制御を行うための制御フロー図。 減速制御時の車両とカーブ路との関係を説明するための図であり、図4(a)は、区間距離Lが長い場合の減速制御を説明するための図であり、(b)は、区間距離Lが(a)に比べて短い場合の減速制御を説明するための図。 本実施形態に係る減速制御を行った場合の、車両の速度、減速度、および横加速度の変化を示した図であり、図5(a)は、区間距離Lが長い場合の減速制御時の変化を示した図であり、(b)は、区間距離Lが(a)に比べて短い場合の減速制御時の変化を示した図。 区間距離に拘らず目標減速度を固定した場合の車両の速度、減速度、および横加速度の変化を示した図であり、図6(a)は、区間距離Lが長い場合の減速制御時の変化を示した図であり、図6(b)は、区間距離Lが(a)に比べて短い場合の減速制御時の変化を示した図。 減速制御時の車両とカーブ路との関係を説明するための図。 本実施形態に係る減速支援装置を用いて減速制御を行ったときの車速、減速度、及び横加速度を示した図。 従来の制御装置を用いて減速制御を行ったときの車速、減速度、及び横加速度を示した図。 本実施形態の別の態様における目標減速度の算出方法を説明するための図。
10…コントローラ(減速支援装置)、22…操舵角センサ、23…方向指示器レバー、24…アクセルペダル操作量センサ(アクセル開度検出手段)、25…ブレーキペダル操作量センサ、26…ナビゲーション装置、27fL…車輪速センサ、28…車両挙動センサ、29…入力装置、30f,30r…カメラ、31f,31r…レーダ、41…エンジン、42…電子制御ブレーキ、43…車軸、45…ブレーキディスク、46…ブレーキバッド、48…情報提供部、51…道路情報取得部、52…カーブ情報演算部、53…運転者意思取得部、54…減速意思判断部、55…目標減速度演算部、56…減速制御部
 以下、本発明に係る車両の減速支援装置の一実施形態について、以下の図面に基づいて詳細に説明する。
 図1は、本実施形態に係る減速支援装置を搭載した車両の全体構成図を示している。
本実施形態に係る減速支援装置の車両1は、運転者の車両の操作を検出する装置として、ステアリングの操舵角センサ22、方向指示器レバー23、アクセルペダル操作量センサ(アクセル開度検出手段)24、ブレーキペダル操作量センサ25を備えており、これらの装置は、コントローラ10に接続されている。
 運転者の操作量に応じて、これらのセンサにより検出された検出信号は、減速支援装置を含むコントローラ10へ伝送される。例えば、操舵角センサ22により得られた検出信号からは、運転者がどのような方向に向かって車両1を走行させたいか、その意思を検出することができる。アクセルペダル操作量センサ24又はブレーキペダル操作量センサ25により得られた検出信号からは、運転者の車両に対する加減速及び制動の意思を検出することができる。なお、アクセルペダル操作量センサ24により検出された操作量(運転者の踏込み量)は、アクセル開度に相当し、運転者がアクセルペダルを踏み込んでいないときは、アクセル開度が全閉となる。さらに、方向指示器レバー23の操作からは、運転者の経路変更の意思を検出できる。
 また、車両1は、道路の情報を取得する装置として、ナビゲーション装置26を備えており、ナビゲーション装置26は、コントローラ10に接続されている。ナビゲーション装置26は、地図データベースを有し、GPS(Global Positioning System)情報や他のセンサ情報から自車位置を推定し、地図データ中の特定の地点と車両1の位置との間の距離を算出することができる。
 具体的には、図示しない地図データベースは、各道路地点、道路区間における一時停止線、交差点区間、トンネル、その他の制限速度情報などの地物情報を含み、他のセンサ情報としては、加速度センサやジャイロセンサなどがある。そして、ナビゲーション装置26は、地図データベースとこれらセンサ情報から、設定された経路、地図情報、地図上の自車両位置、自車両の向き、車両前方のカーブ路の情報を含むその周囲の道路情報(車線の幅、車線の数、車線の曲線情報、レーンマーカの幅、レーンマーカの数、レーンマーカの曲線情報、制限速度、自動車専用道と一般道の区別、分岐路の有無など)を検出し、これらの情報をコントローラ10に送信し、コントローラ10は、これらの情報を取得する。
 また、車両1は、車両の走行状態(運動状態)を検出する検出部として、車輪速センサ27fL、27fR、27rL、27rR、及び車両挙動センサ28を備えており、これらのセンサもコントローラ10に接続されている。車輪速センサ27fL、27fR、27rL、27rRは、車両1の前後左右の車輪の回転速度を検出し、これらの検出信号は、コントローラ10に伝送され、コントローラ10により、車両1の速度(車速)が算出される。また、車両挙動センサ28は、前後加速度、横加速度、ヨーレートを検出し、この検出した信号をコントローラ10へ伝送する。
 車両1は、自車両周辺の外界環境を検出する装置として、前方カメラ30f、前方レーダ31f、後方カメラ30r、及び後方レーダ31r、を備えており、これらの装置はコントローラ10に接続され、自車両周辺のレーンマーカや障害物などの情報をコントローラ10へ伝送する。例えば、前方カメラ30f及び後方カメラ30rは、車両(自車両)1の周辺情報を画像として取得し、取得した画像に中のレーンマーカまたは路面境界に基づいて車線を認識する車線認識の機能を有している。さらに、前方カメラ30fは、白線などのレーンマーカ、路肩などの路面境界を認識し、車両1との位置関係や、自車線または隣接車線のレーンマーカ間の幅、左右の路面境界間の幅、レーンマーカと路面境界の種類を出力する。レーンマーカと路面境界に関する道路情報は、車両1の前方の複数の位置での情報を有する。さらに、車両1の後方と側方に関しても、複数の位置での道路情報を有する。ここで、レーンマーカの種類とは、線、キャッツアイ、ボッツドッツなどの種類、線の色、線の種類(実線・破線・点線・ハッチング)などのである。路面境界の種別とは、路肩の端部、側溝、縁石、ガードレール、壁、土手などである。また、前方カメラ30fは他車両や歩行者などの障害物を認識し、車両1との位置関係を出力する。
 前方レーダ31f及び後方レーダ31rは、他車両や歩行者などの障害物を認識し、車両1との位置関係を出力する。前方レーダ31fは、前方カメラ30fよりも遠方の障害物を精度良く認識できるという特徴をもつ。一方、前方カメラ30fは、前方レーダ31fよりも検出角度が広く、障害物の種類を判別できるという特徴をもつ。これらの特徴に応じて、車両1からの距離及び方向に応じて、車両1の周りの情報を精度良く検出することができる。
 車両1は、車両1の駆動及び制動をすべく、エンジン41、電子制御ブレーキ42等の駆動装置を備えている。エンジン41は、車両1に原動機として搭載されており、コントローラ10に接続されている。具体的には、エンジン41は、運転者の操作量と外界環境に基づいて車両1を駆動する。コントローラ10は、吸気通路の設けられたスロットルバルブに制御信号を出力し、燃焼室に吸気される空気量を調整するとともに、インジェクタに制御信号を出力して、インジェクタから噴射する燃料を調整して、燃焼室に供給する燃料を調整する。そして、コントローラ10は、燃焼室内において、供給された燃料と吸入空気とが混合された混合気を燃焼させることにより、この燃焼エネルギーを動力として車両1に伝達し、車両1は駆動する。
 例えば、運転者のペダルの操作量に応じて検出されたアクセルペダル操作量センサ24の検出信号により、コントローラ10は、エンジン41の吸入空気量と燃料噴射量を調整し、車両への加減速制御を行う。また、車両1に取り付けられたセンサからの検出信号により、コントローラ10が、車両を加減速すべきと判断した場合も、同様に、車両への加減速制御を行う。例えば、コントローラ10は、後述する車両1の減速制御を行う場合には、吸入空気量と燃料噴射量を減少させて、いわゆるエンジンブレーキによる減速制御を後述するブレーキ制御と合わせて行ってもよい。
 電子制御ブレーキ42は、車軸43に取り付けられたブレーキディスク45をブレーキバッド46により押圧することにより、車軸43の回転を制動させ、車両1を減速又は制動させる装置であり、コントローラ10に接続されている。この電子制御ブレーキ42は、運転者のペダルの操作量に応じて検出されたブレーキペダル操作量センサ25の検出信号、又は、後述する車両の減速制御時に、コントローラ10からの制御信号により、作動するものである。電子制御ブレーキ42は、例えば、各輪独立にブレーキ力を制御可能な油圧式ブレーキ装置を挙げることができ、制動要求を受けると各輪のブレーキ力をバランスさせながら、車両1に制動力を加える。また、旋回要求を受けると左右何れか一方にブレーキを掛け車両にヨーモーメントを加える。
 また、車両1は、運転者への情報提供を行うための情報提供部48が備わり、走行支援の種類に応じて、画像表示、音、警告灯などによって支援の情報を提供する。情報提供部48は、例えばスピーカを内蔵したモニタ装置であり、1ヶ所だけでなく、複数箇所へ設置しても良い。
 このようにして、各装置及びセンサに接続されたコントローラ10は、ECU,RAM,及びROM等(図示せず)のハードウエアから構成され、ECUは、RAM、ROMに格納された車両の走行制御等のデータを用いて、車両の加減速を含む走行制御等を行うための演算を行い、エンジン41、電子制御ブレーキ42に制御信号を出力する。
 図2は、図1に示す本実施形態に係る減速支援装置(コントローラ10)の制御ブロック図である。図2に示すように、減速支援装置10は、道路情報取得部51、カーブ情報演算部52、運転者意思取得部53、減速意思判断部54、目標減速度演算部55、及び車両運動制御部(減速制御部)56を備えている。
 道路情報取得部51は、図1に示す前方カメラ30f、前方レーダ31f、ナビゲーション装置26の少なくとも一つから、車両前方のカーブ路(カーブ)の情報、車線の位置、車線の曲率、車線の幅、車線の数などの情報を取得する取得部である。
 カーブ情報演算部52は、道路情報取得部51からの情報(特に、車線の位置、車線の曲率)に基づき、走行中の車両の位置から車両前方のカーブ路の入口位置までの距離(以下、区間距離と呼ぶ)と、そのカーブ路の曲率(曲率半径)を演算する。具体的には、カーブ路は、直線から所定の円弧曲線(円弧部分)の曲率へ徐々に変化する緩和曲線部分と、車両を定常旋回させるべく最小曲率半径の曲線の円弧部分と、の組み合わせた複数の連続した円弧部分から構成されている。本実施形態では、カーブ情報演算部52は、車両前方に位置するカーブ路(曲線)を構成する複数の連続した円弧部分の曲率半径を演算する。次に、この演算した曲率半径のうち、最小曲率半径となるカーブ路、すなわち車両が定常旋回するカーブ路の入口位置を演算する。そして、走行中の車両位置からカーブ路の入口位置までの区間距離を演算する。
 運転者意思取得部53は、アクセルペダル操作量センサ24、ブレーキペダル操作量センサ25や、図示しない走行モード設定スイッチからの情報によって、運転者の操作に関わる情報を取得する取得部である。また、この運転者意思取得部53では、車輪速センサにより得られた車速、車両挙動センサ28で検出された加速度、横加速度等の車両運動情報も取得する。
 減速意思判断部54は、運転者意思取得部53からの情報に基づき、運転者に減速の意思があるか否かを判断する演算部である。具体的には、減速意思判断部(開始タイミング判断部)54は、車両の運転状態として、アクセルペダル操作量センサ24に基づいて、アクセル開度が全閉となった(運転者が踏込んでいるアクセルペダルを離した)タイミングに応じて、車両の減速制御を開始する開始タイミングを判断する。例えば、このアクセル開度が全閉となった(アクセルペダルから足が離れた)ときには、運転者に減速意思があると判断する。
 目標減速度演算部55は、運転者の減速意思による減速制御の開始タイミング時の区間距離、カーブ路の最小曲率半径、車速に基づいて、前方のカーブ路の入口位置へ車両が進入するまでの目標減速度と、カーブ路走行時(カーブ路を通過中)の車両に作用する目標横加速度を演算する。具体的には、目標減速度演算部55は、減速制御の開始タイミング時の区間距離、車速、カーブ路の最小曲率半径等から、減速制御の開始タイミング時の区間距離が短いほど、減速制御時の車両の減速度が大きくなるように、若しくは、前記区間距離が短いほど、減速制御時の車両の減速度とカーブ路走行時の車両の横加速度とが大きくなるように、前記目標減速度の演算を行う。
 車両運動制御部(減速制御部)56は、目標減速度演算部55で演算された目標減速度に基づいて車両運動を制御する。具体的には、本実施形態では、減速制御部56は、減速制御の要否を判断すると共に、減速制御が必要であると判断した場合には、電子制御ブレーキ42を駆動して、車両に制動力を与えるブレーキ制御により車両の減速制御を行う。なお、別の態様としては、減速制御部が、エンジン41への燃料噴射量と吸入空気量を減少させるエンジン制御と合わせて減速制御を行ってもよい。
 図3は、図2に示す減速支援装置(コントローラ10)の制御ブロック図に基づいて、減速制御を行うための制御フローチャートであり、図4は、減速制御時の車両とカーブ路との関係を説明するための図であり、図4(a)は、区間距離Lが長い場合の減速制御を説明するための図であり、(b)は、区間距離Lが(a)に比べて短い場合の減速制御を説明するための図である。
 ステップs1では、道路情報取得部51により、前方カメラ30f、前方レーダ31f、ナビゲーション装置26などの各種センサから、車線の位置や曲率などの道路情報、さらには、運転者意思取得部53により、運転者の操作情報、速度などの車両運動情報を取得する。
 ステップs2では、車線の情報に基づいて、カーブ情報演算部52により、図4(a)、(b)に示すような、自車両1とのカーブ路までの区間距離L、カーブ路の最小曲率半径Rを求める。具体的には、カーブ情報演算部52により、車両前方に位置する一連のカーブ路のカーブ(曲線)を構成する複数の円弧の曲率半径を演算し、一連のカーブ路のうち最小曲率半径となるカーブ路の曲率半径Rを用いる。さらに、最小曲率半径Rとなるカーブ路の入口位置(地点)Pを演算し、走行中の車両1の位置Sからカーブ路の入口位置までの距離Lを演算する。仮に、前方カメラ30fやナビゲーション装置26の性能の制約で、最小となるカーブ路の曲率半径Rを検出できない場合は、緩和曲線により構成されるカーブ路の入口位置などのカーブ路の曲率半径から、最小曲率半径とカーブまでの区間距離を推定してもよい。
 ステップs3では、減速意思判断部54により、運転者の操作量情報によって、運転者が自動減速の介入を許可している否かの判断を行う。運転者がアクセルペダルを離していれば、アクセル開度が全閉となるので、自動減速の許可意思があると判断し、このタイミングを、車両の減速制御開始タイミングと判断する。ステップs4へ進む。運転者の許可意思がないと判断すれば、車両の減速制御を行わずに終了する。
 ステップs4では、目標減速度演算部55により、図4(a)、(b)に示すように、車両の減速制御開始タイミングにおける車両1の位置Sとカーブ路の入口位置Pとの区間距離L、カーブ路の最小曲率半径R、現在の車速(車両の減速制御開始タイミングにおける車速)Voから、カーブ路進入までの目標減速度(実際の走行時の減速度の最大値に相当)Gxと、カーブ路通過時(カーブ路走行中)の目標横加速度(実際の走行時の横加速度の最大値に相当)Gyを演算する。目標減速度Gxと目標横加速度Gyとが、一定比率となるように、目標減速度の演算を行う。
 具体的には、目標減速度Gxと目標横加速度Gyが等しくなるための拘束条件は、以下の式(1)で表すことができ、
Gx=Gy  …(1)
 となる。また、区間距離Lを減速度Gxで走行した場合、カーブ路走行中の横加速度Gyは、エネルギー保存の法則から、以下の式(2)で表すことができ、
Vo/2=LGx+RGy/2 …(2)
となる。これら(1)及び(2)の2つの式から、目標減速度Gxと目標横加速度Gyを以下の式(3)で表すことができ、
Gx=Gy=Vo/(2L+R)…(3)
となる。このように、目標減速度Gxと目標横加速度Gyが等しくなるように制御することで、水平面内の加速度ベクトルの大きさ(Gx2+Gy2)1/2があまり変化せず、路面の摩擦係数変化に対してロバストで、かつ運転者にとって違和感の少ない減速制御を実現できる。
 特に、式(3)からも明らかなように、式(3)から演算される目標減速度Gxは、カーブ路進入前の車両に作用する実際の減速度Gxに略等しく、実際の減速度が、開始タイミングにおいて演算された区間距離Lが短いほど、目標減速度Gxが大きくなるように演算され、逆に、開始タイミングにおいて演算された区間距離Lが長いほど、目標減速度Gxが大きくなるように、目標減速度Gxは、カーブ路の曲率半径(最小曲率半径)と区間距離Lと車速Voに基づいて演算されることになる。
 さらに式(3)から演算される目標横加速度Gyは、カーブ路走行中に車両に作用する実施際の横加速度Gyに略等しく、演算された目標減速度Gxにより減速制御することにより、実際の横加速度は、開始タイミングにおいて演算された区間距離Lが短いほど、大きくなり、逆に、開始タイミングにおいて演算された区間距離Lが長いほど、小さくなる。
 すなわち、ステップs4において、式(3)を用いることにより、目標減速度演算部55は、開始タイミングにおいて演算された区間距離Lが短いほど、減速度が大きくなり、かつ、カーブ路を走行する車両の横加速度が大きくなるように、開始タイミングの区間距離Lと車速Voとに基づいて、目標減速度の演算を行うことになる。
 なお、本実施形態では、式(2)において、横加速度Gyの向心力によるエネルギーを考慮せずに、式(2)のみで、減速度を演算してもよい。この場合には、目標減速度演算部55は、少なくとも開始タイミングにおいて演算された区間距離Lが短いほど、目標減速度が大きくなるように、開始タイミングの区間距離Lと車速Voとに基づいて、目標減速度の演算を行うことになる。
 また、実際の横加速度と減速度の最大値が異なる値となるよう、例えば目標横加速度Gyを目標減速度GxのN倍に設定して、以下の式(4)を拘束条件として適用してもよい。
 N×Gx=Gy  …(4)
この場合、式(4)と式(2)から、目標減速度Gxと目標横加速度Gyは次式(5)で求めることができる。
Gx=Gy/N=Vo/(2L+N×R)  …(5)
 このとき、目標減速度Gxと目標横加速度Gyが等しくならないが、実際の減速度Gxと横加速度Gyの最大値を一定の比率Nとなるように、目標値を制限でき、路面の摩擦係数変化に対してロバストな減速制御を実現できる。
 また、このような比率Nは、運転者によって、図1に示す入力装置29によって入力し、入力された比率Nにより、減速支援装置10(比率変更部)内において、比率を変更してもよく、自動走行制御時などには、その制御に合わせて減速支援装置10(比率変更部)内において、比率を変更してもよい。
 ステップs5では、減速制御部56により、まず、ブレーキ制御の要否を判断する。ステップs4で求めた目標減速度Gxが、所定の下限減速度Gxminと比較して、この値よりも大きければ、または、目標横加速度Gyが、所定の下限減速度Gyminと比較して大きければ、ブレーキ制御による減速が必要と判断し、ステップs6へ進む。一方、下限減速度Gxmin以下であれば、エンジンブレーキのみの減速や走行抵抗による減速で十分と判断し、ブレーキ制御(減速制御)を実施せずに制御を終了する。また、下限横加速度Gymin以下であれば、現在の速度Vのままカーブ路を通過しても良いと判断し、ブレーキ制御を実施せずに制御を終了する。
 ステップs6では、ステップs5で導出した目標減速度Gxを車両1に対して発生できるように、具体的には、電子制御ブレーキ42を駆動して、車両1に目標減速度Gxに応じた制動力を与える。
 図5は、本実施形態に係る減速制御を行った場合の、車両の速度、減速度、および横加速度の変化を示した図であり、図5(a)は、区間距離Lが長い場合の減速制御時の変化を示した図であり、(b)は、区間距離Lが(a)に比べて短い場合の減速制御時の変化を示した図であり、それぞれの図に対して、上述した図4(a),(b)と対応付けて以下に説明する。
 図4(a)と図5(a)のように、区間距離L1のタイミングでアクセルペダルが離されると、区間距離L1、カーブ路の最小曲率半径R、車速Voに応じて、目標減速度Gxと目標横加速度Gyが演算され、この目標減速度Gxにより減速制御が行われる。本実施形態では、区間距離がL1のときの目標減速度Gxと目標横加速度Gyがともに2m/sとなり、減速制御において、車両1は、図5(a)に示すような減速度Gxおよび横加速度Gyとなる。
 また、同じカーブ路を、図4(b)と図5(b)のように区間距離L1よりも短い区間距離L2でアクセルペダルが離されると、この区間距離L2と、カーブ路の最小曲率半径Rと、減速制御を開始する開始タイミングにおける車速がVoとから、演算される目標減速度Gxと目標横加速度Gyが、区間距離L1の場合に比べて大きくなるように目標減速度Gxが演算され、この目標減速度に基づいて減速制御される。なお、本実施形態では、目標減速度Gxと目標横加速度Gyともに3m/sとなり、減速制御において、車両1は、図5(b)に示すような減速度Gxおよび横加速度Gyとなる。
 このとき、路面の摩擦係数が3.5m/s相当であれば、車両は操縦安定性を失うこと無くカーブ路を通過できる。また、実際に減速度と横加速度が同じ大きさになるので、車両運動がギクシャクせず、運転者にとって違和感の少ない減速制御を実現できる。
 また、区間距離Lを算出するためのカーブ路の入口位置Pを最小曲率半径Rのカーブ路の入口位置としたので、このような減速制御を行っても、さらに運転者は、違和感なくカーブ路に進入することができる。また、図5(b)に示すように、運転者がカーブ路により近い車両位置で、アクセルペダルを離した場合には、運転者がカーブ路を速く通過したいとの意思が窺え、この場合には、本実施形態では、減速制御の開始タイミングが遅い(すなわち、区間距離が短い)ので、カーブ路通過時(カーブ路走行中)の横加速度Gyが大きくなるように減速制御されるので、図5(a)に示すよりも、より速い車速でカーブ路を通過することができ、運転者の意図を反映することができる。
 図6は、区間距離に拘らず目標減速度を固定した場合の車両の速度、減速度、および横加速度の変化を示した図であり、図6(a)は、区間距離Lが長い場合の減速制御時の変化を示した図であり、図6(b)は、区間距離Lが(a)に比べて短い場合の減速制御時の変化を示した図である。
 図6(a)は、区間距離L1で、アクセルペダルを離して、目標減速度Gx=2m/sでカーブ路の入口位置まで減速制御したものであり、最小曲率半径Rのカーブ路の入口位置Pに到達後は、減速を終了させる。この場合は、図5(a)と同じような結果となる。
 しかし、より短い区間距離L2でアクセルペダルが離される場合、目標減速度Gx=2m/sで減速制御した場合には、減速距離が短くなるため、カーブ路通過速度が高くなり、横加速度は4m/sに達する。路面の摩擦係数が3.5m/s相当であれば、横加速度4m/sにてカーブ路を通過できず、走行軌跡が膨らむおそれがある。
 図7は、減速制御時の車両とカーブ路との関係を説明するための図であり、図8は、本実施形態に係る減速支援装置を用いて減速制御を行ったときの車速、減速度、及び横加速度を示しており、図9は、従来の制御装置を用いて減速制御を行ったときの車速、減速度、及び横加速度を示している。
 図7のように、最小曲率半径R93mカーブ路に接近中に、3つの区間距離108m、72m、36mのタイミングでアクセルペダルが離され、減速制御タイミング(アクセルペダルを離したタイミング)における車速22.2m/s(80km/h)している場合を想定する。
 図8の車速、減速度、横加速度は、目標減速度Gxと目標横加速度Gyの比を1:3に設定し、上記条件と式(5)に基づいて目標減速度Gxを演算し、この演算結果に基づいて減速制御がされたときの値である。図9は、アクセルペダルが離されるタイミングが早い順に、アクセル開度をT1a,T2a,T3a、車速をV1a,V2a,V3a、減速度をGx1a,Gx2a,Gx3a、横加速度をGy1a,Gy2a,Gy3aで示す。
 図8に示すように、本実施形態では、減速制御の開始タイミングにおける自車とカーブ路の距離が近いほど、減速制御において、カーブ路の入口位置の進入前の減速度が大きくなるように、車両が減速制御されるため、実際の減速度のピークがGx1a<Gx2a<Gx3aの順に大きくなる。また、減速制御の時間は、カーブ路の距離が近いほど短くなる。さらに、実際の横加速度のピークは、Gy1a<Gy2a<Gy3aの順に大きくなり、カーブ路走行中の車速も、V1a<V2a<V3aの順に大きくなる。最小曲率半径のカーブ路の入口位置Pまで減速制御を行うので、横加速度のピークが発生するまでに減速制御が終了し、車速を十分低下できるため、横加速度が単調増加する。すなわち、横加速度が極大値を示すことがなく、路面摩擦係数を越えにくい減速制御を実現することができる。
 一方、図9に示すように、減速制御の開始タイミングにおける自車両とカーブ路の入口位置までの区間距離が近いほど、カーブ路進入前の減速度が小さくなるように、車両を減速制御した場合であり、減速制御の開始タイミングは本実施形態の開始タイミングを同じにする。また、最終的なカーブ路通過時(カーブ路走行中)の車速および横加速度は、図8と同じになるように減速制御を行うものとする。本実施形態では、アクセルペダルが離されるタイミングが早い順に、アクセル開度をT1b,T2b,T3b、車速をV1b,V2b,V3b、減速度をGx1b,Gx2b,Gx3b、横加速度をGy1b,Gy2b,Gy3bで示した。
 図9に示すように、これまでのように減速制御を行った場合には、減速制御の開始タイミングにおける自車とカーブ路の距離が近いほど、カーブ路進入前の減速度が大きくなるように、車両を制御するため、実際の減速度のピークがGx3a<Gx2a<Gx1aの順に大きくなる。一方、実際の横加速度のピークはGy1a<Gy2a<Gy3aの順に大きくなる。横加速度のピークが発生するまでには、減速制御を終了しないため、カーブ路進入時に車速を十分低下できない。この結果、横加速度が一時的に本実施形態の減速制御を行った場合に比べて(図8)大きな値を示す。すなわち、これまでの減速制御で車両を走行させた場合には、カーブ路走行中に、車両に作用する横加速度が極大値を示すことがあり、この間に路面摩擦係数を越え、カーブ路を通過できず、走行軌跡が膨らむおそれがある。
 本実施形態では、カーブ路の最小曲率半径の地点を基準位置として、区間距離Lとカーブ路の最小曲率半径Rを求めたが、カーブ路の最小曲率半径の地点を特定せずに、複数の基準位置について目標減速度Gxと目標横加速度Gyを求めても良い。
 例えば、図10に示すように、一つの基準位置の区間距離La,カーブ路の半径Raについて、目標減速度Gxaと目標横加速度Gyaを求める。また、別の基準位置の区間距離Lb,カーブ路半径Rbについて、目標減速度Gxbと目標横加速度Gybを求める。
 具体的は、カーブ情報演算部52が、カーブ路の情報に基づいて、カーブ路を構成する複数円弧の曲率半径を演算する。そして、これまでのカーブ路の入口位置として、各曲率半径が演算されたカーブ路の位置を設定し、区間距離として、車両からカーブ路の入口位置までの各区間距離La,Lbを演算する。
 次に、目標減速度演算部55が、各区間距離における目標減速度Gxa,Gxb…を上述した式を用いて演算する。そして、目標減速度Gxa、Gxb…を比較して、最も大きい目標減速度を最終的な目標減速度Gxとして選択する。減速制御部56は、目標減速度のうち最も大きい目標減速度に基づいて、前記車両の減速制御を行う。これによって、複雑な形状のカーブ路や、S字カーブ路のような複合カーブ路に対しても路面摩擦係数を越えにくい減速制御を実現することができる。
 以上のように、本実施形態によれば、運転者の操作状態に応じて減速制御の開始タイミングを判断し、減速制御の開始タイミングにおける自車両の位置からカーブ路の入口位置までの区間距離が近いほど、カーブ路進入前の減速度が大きくなるように、車両を減速制御するので、運転者の意図をより忠実に反映すると同時に、路面摩擦係数を越えにくい減速制御を実現することができる。
 以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更があっても、それらは本発明に含まれるものである。
 たとえば、本実施形態では、最小曲率半径の円弧部分のカーブ路の入口位置までの区間距離を演算し、この区間距離において減速制御を行うことにより、運転者に違和感のない運転をすることができるが、カーブ路の入口位置を緩和曲線部分の入口位置にして、上述一連の減速制御をしてもよく、この場合は、路面摩擦係数を越えにくい減速制御を実現することができる。
 また、本実施形態では、開始タイミング判断部が、前記車両の運転状態として、運転者がアクセルペダルを離したタイミング、すなわちアクセル開度が全閉となったタイミングに応じて、開始タイミングを判断したが、例えば、自動走行制御等を行っている場合は、コントローラからの電子制御ブレーキへの減速すべき制御信号に応じて、開始タイミングを判断してもよい。
 また、本実施形態では、エネルギー保存の法則の式を用いて、目標減速度演算部が、減速制御の開始タイミング時の区間距離、車速、カーブ路の最小曲率半径等から、減速制御の開始タイミング時の区間距離が短いほど、減速制御時の車両の減速度が大きくなるように、目標減速度の演算を行うことにより、より簡潔に目標減速度を演算することができたが、例えば、予め、区間距離、カーブ路の曲率半径、減速制御の開示タイミング時の車速との関係のマップから、基準となら減速度を設定しておき、この基準となる減速度に対して、減速制御の開始タイミング時の区間距離が短いほど、減速制御時の車両の減速度が大きくなるように、目標減速度を演算(補正)してもよい。
 なお、本明細書は本願の優先権の基礎である日本国特許出願2008-246152号の明細書及び/または図面に記載されている内容を包含する。

Claims (12)

  1.  車両前方のカーブ路の情報を取得する道路情報取得部と、前記カーブ路の情報に基づいて、前記車両から前記カーブ路の入口位置までの区間距離を演算するカーブ情報演算部と、前記車両の運転状態に応じて、前記車両の減速制御を開始する開始タイミングを判断する開始タイミング判断部と、前記減速制御時の目標減速度を演算する目標減速度演算部と、該目標減速度に基づいて前記車両を減速制御する減速制御部と、を備え、
     前記目標減速度演算部は、前記開始タイミング時の前記区間距離と車速とに基づいて、前記区間距離が短いほど、前記減速制御時の車両の減速度が大きくなるように、前記目標減速度の演算を行うことを特徴とする車両の減速支援装置。
  2.  車両前方のカーブ路の情報を取得する道路情報取得部と、前記カーブ路の情報に基づいて、前記車両から前記カーブ路の入口位置までの区間距離を演算するカーブ情報演算部と、前記車両の運転状態に応じて、前記車両の減速制御を開始する開始タイミングを判断する開始タイミング判断部と、前記減速制御時の目標減速度を演算する目標減速度演算部と、該目標減速度に基づいて前記車両を減速制御する減速制御部と、を備え、
     前記目標減速度演算部は、前記開始タイミング時の前記区間距離と車速とに基づいて、前記区間距離が短いほど、前記減速制御時の車両の減速度と前記カーブ路走行時の車両の横加速度とが大きくなるように、前記目標減速度の演算を行うことを特徴とする車両の減速支援装置。
  3.  前記減速制御部は、前記車両が前記カーブ路の入口位置に到達するまで、前記減速制御を行うことを特徴とする請求項1に記載の車両の減速支援装置。
  4.  前記カーブ情報演算部は、前記カーブ路の情報に基づいて、前記カーブ路を構成する複数の連続した円弧部分の曲率半径を演算し、該曲率半径が最小となる円弧部分のカーブ路の入口位置を、前記カーブ路の入口位置として、前記区間距離を演算することを特徴とする請求項1に記載の車両の減速支援装置。
  5.  前記開始タイミング判断部は、前記車両の運転状態として、アクセル開度が全閉となったタイミングに応じて、前記開始タイミングを判断することを特徴とする請求項1に記載の車両の減速支援装置。
  6.  前記横加速度の最大値と、前記カーブ路に前記車両が進入するまでの前記減速度の最大値とが、一定比率になるように、前記目標減速度の演算を行うことを特徴とする請求項2に記載の車両の減速支援装置。
  7.  前記目標減速度演算部は、前記比率を変更する比率変更部を備えることを特徴とする請求項6に記載の車両の減速支援装置。
  8.  前記カーブ情報演算部は、前記カーブ路の情報に基づいて、前記カーブ路を構成する複数の連続した円弧部分の曲率半径を演算し、前記カーブ路の入口位置として、前記各曲率半径が演算されたカーブ路の位置を設定し、前記区間距離として、前記車両から前記各カーブ路の位置までの区間距離を演算し、
     前記目標減速度演算部は、前記区間距離毎に前記目標減速度を演算し、
     前記減速制御部は、前記目標減速度のうち最も大きい目標減速度に基づいて、前記車両の減速制御を行うことを特徴とする請求項1に記載の車両の減速制御装置。
  9.  前記減速制御部は、前記車両が前記カーブ路の入口位置に到達するまで、前記減速制御を行うことを特徴とする請求項2に記載の車両の減速支援装置。
  10.  前記カーブ情報演算部は、前記カーブ路の情報に基づいて、前記カーブ路を構成する複数の連続した円弧部分の曲率半径を演算し、該曲率半径が最小となる円弧部分のカーブ路の入口位置を、前記カーブ路の入口位置として、前記区間距離を演算することを特徴とする請求項2に記載の車両の減速支援装置。
  11.  前記開始タイミング判断部は、前記車両の運転状態として、アクセル開度が全閉となったタイミングに応じて、前記開始タイミングを判断することを特徴とする請求項2に記載の車両の減速支援装置。
  12.  前記カーブ情報演算部は、前記カーブ路の情報に基づいて、前記カーブ路を構成する複数の連続した円弧部分の曲率半径を演算し、前記カーブ路の入口位置として、前記各曲率半径が演算されたカーブ路の位置を設定し、前記区間距離として、前記車両から前記各カーブ路の位置までの区間距離を演算し、
     前記目標減速度演算部は、前記区間距離毎に前記目標減速度を演算し、
     前記減速制御部は、前記目標減速度のうち最も大きい目標減速度に基づいて、前記車両の減速制御を行うことを特徴とする請求項2に記載の車両の減速制御装置。
PCT/JP2009/063385 2008-09-25 2009-07-28 車両の減速支援装置 WO2010035572A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09815989A EP2332794A1 (en) 2008-09-25 2009-07-28 A vehicular deceleration aiding device
US12/920,255 US20110087415A1 (en) 2008-09-25 2009-07-28 Vehicular Deceleration Aiding Device
CN2009801058651A CN101945786B (zh) 2008-09-25 2009-07-28 车辆的减速辅助装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008246152A JP5139939B2 (ja) 2008-09-25 2008-09-25 車両の減速支援装置
JP2008-246152 2008-09-25

Publications (1)

Publication Number Publication Date
WO2010035572A1 true WO2010035572A1 (ja) 2010-04-01

Family

ID=42059579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063385 WO2010035572A1 (ja) 2008-09-25 2009-07-28 車両の減速支援装置

Country Status (5)

Country Link
US (1) US20110087415A1 (ja)
EP (1) EP2332794A1 (ja)
JP (1) JP5139939B2 (ja)
CN (1) CN101945786B (ja)
WO (1) WO2010035572A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113602089A (zh) * 2021-07-29 2021-11-05 岚图汽车科技有限公司 一种控制车辆减速的方法及装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075152B2 (ja) * 2009-03-24 2012-11-14 日立オートモティブシステムズ株式会社 車両制御装置
JP5706698B2 (ja) * 2011-01-20 2015-04-22 本田技研工業株式会社 自動車用自動減速装置
CN103269894B (zh) * 2011-01-20 2016-01-20 本田技研工业株式会社 反作用力控制装置
JP5417386B2 (ja) * 2011-07-01 2014-02-12 日立オートモティブシステムズ株式会社 車両運動制御装置
JP5673597B2 (ja) * 2011-11-18 2015-02-18 株式会社デンソー 車両用挙動制御装置
US9701199B2 (en) * 2013-01-11 2017-07-11 Nissan Motor Co., Ltd. Display control device for vehicle and display control method for vehicle
KR102037036B1 (ko) * 2013-04-11 2019-10-28 현대모비스 주식회사 자동주행 제어시스템
KR102137933B1 (ko) * 2013-11-28 2020-07-27 현대모비스 주식회사 차량 코너링 제어 방법 및 그 장치
EP3092599B1 (en) * 2013-12-04 2019-03-06 Mobileye Vision Technologies Ltd. Systems and methods for mimicking a leading vehicle
JP6553370B2 (ja) * 2015-02-10 2019-07-31 本田技研工業株式会社 車両制御装置及び車両制御方法
CN105083430B (zh) * 2015-07-17 2017-11-14 小米科技有限责任公司 车辆控制方法及装置
JP6314939B2 (ja) * 2015-08-31 2018-04-25 マツダ株式会社 運転支援装置
JP6557560B2 (ja) * 2015-09-07 2019-08-07 本田技研工業株式会社 走行制御装置
US10160437B2 (en) * 2016-02-29 2018-12-25 Magna Electronics Inc. Vehicle control system with reverse assist
DE102016222734A1 (de) 2016-11-18 2018-05-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren, Computer-lesbares Medium, System, und Fahrzeug umfassend das System zum Unterstützen einer energieeffizienten Verzögerung des Fahrzeugs
US10379538B1 (en) * 2017-03-20 2019-08-13 Zoox, Inc. Trajectory generation using motion primitives
CN111226267B (zh) * 2017-08-30 2022-01-04 日产自动车株式会社 驾驶辅助车辆的行驶控制方法及行驶控制装置
CN110641429B (zh) * 2018-06-25 2021-09-21 比亚迪股份有限公司 一种车辆控制方法、系统及车辆
JP7052677B2 (ja) * 2018-11-01 2022-04-12 トヨタ自動車株式会社 車両制御装置
JP2020128106A (ja) * 2019-02-07 2020-08-27 トヨタ自動車株式会社 車両の制動力制御装置
JP7188325B2 (ja) * 2019-08-27 2022-12-13 トヨタ自動車株式会社 運転支援装置
CN112373466A (zh) * 2020-10-12 2021-02-19 上汽通用五菱汽车股份有限公司 一种加入车载导航信息的巡航控制方法
CN114572275A (zh) * 2020-12-02 2022-06-03 晋城三赢精密电子有限公司 车辆行车辅助方法、车载装置、车辆及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329896A (ja) * 2004-05-21 2005-12-02 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP2006256593A (ja) * 2005-02-18 2006-09-28 Toyota Motor Corp 車両の減速制御装置
JP2007127101A (ja) * 2005-11-07 2007-05-24 Nissan Motor Co Ltd 車両用減速制御装置
JP2007230440A (ja) 2006-03-02 2007-09-13 Nissan Motor Co Ltd 車両用走行制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318765A (ja) * 1995-05-25 1996-12-03 Hitachi Ltd 情報化自動車制御装置及び方法
DE69731585T2 (de) * 1996-07-15 2005-12-01 Toyota Jidosha K.K., Toyota Fahrzeugfahrzustandsvorhersagevorrichtung und Warnvorrichtung, welche die Vorrichtung verwendet
JP3485239B2 (ja) * 1997-09-10 2004-01-13 富士重工業株式会社 車両運動制御装置
JP4037506B2 (ja) * 1998-03-12 2008-01-23 富士重工業株式会社 車両運動制御装置
JP3167989B2 (ja) * 1999-08-10 2001-05-21 富士重工業株式会社 カーブ進入制御装置
JP3167990B2 (ja) * 1999-09-14 2001-05-21 富士重工業株式会社 カーブ進入制御装置
JP3391745B2 (ja) * 1999-09-22 2003-03-31 富士重工業株式会社 カーブ進入制御装置
JP4628583B2 (ja) * 2001-04-26 2011-02-09 富士重工業株式会社 カーブ進入制御装置
JP4012730B2 (ja) * 2001-12-25 2007-11-21 アイシン・エィ・ダブリュ株式会社 車両の駆動力制御装置
JP3758586B2 (ja) * 2002-02-27 2006-03-22 日産自動車株式会社 車両用走行制御装置
JP2005226670A (ja) * 2004-02-10 2005-08-25 Toyota Motor Corp 車両の減速制御装置
EP1757486B1 (en) * 2005-08-26 2014-04-30 Nissan Motor Co., Ltd. Device and method for controlling vehicle headlamps
US7792624B2 (en) * 2005-10-05 2010-09-07 Nissan Motor Co., Ltd. Cruise control system
JP4735195B2 (ja) * 2005-11-01 2011-07-27 アイシン・エィ・ダブリュ株式会社 車両制御システム
US7400963B2 (en) * 2005-12-09 2008-07-15 Gm Global Technology Operations, Inc. Speed control method for vehicle approaching and traveling on a curve
JP4867561B2 (ja) * 2005-12-22 2012-02-01 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4169065B2 (ja) * 2006-02-13 2008-10-22 株式会社デンソー 車両制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329896A (ja) * 2004-05-21 2005-12-02 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP2006256593A (ja) * 2005-02-18 2006-09-28 Toyota Motor Corp 車両の減速制御装置
JP2007127101A (ja) * 2005-11-07 2007-05-24 Nissan Motor Co Ltd 車両用減速制御装置
JP2007230440A (ja) 2006-03-02 2007-09-13 Nissan Motor Co Ltd 車両用走行制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113602089A (zh) * 2021-07-29 2021-11-05 岚图汽车科技有限公司 一种控制车辆减速的方法及装置

Also Published As

Publication number Publication date
JP2010076550A (ja) 2010-04-08
JP5139939B2 (ja) 2013-02-06
CN101945786A (zh) 2011-01-12
EP2332794A1 (en) 2011-06-15
CN101945786B (zh) 2013-05-01
US20110087415A1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5139939B2 (ja) 車両の減速支援装置
US11307577B2 (en) Autonomous driving control device
US7433772B2 (en) Target speed control system for a vehicle
US11008039B2 (en) Lane change assist apparatus for vehicle
US10589743B2 (en) Vehicle travel control apparatus
JP6177666B2 (ja) 移動体の駆動制御装置
US8346436B2 (en) Driving support system
CN110654390B (zh) 车辆控制装置
US20180297639A1 (en) Lane change assist apparatus for vehicle
US20150336587A1 (en) Driving assist device
US10759425B2 (en) Autonomous driving system
JP2010076584A (ja) 加減速制御装置
JP2020147178A (ja) 車両走行制御装置
JP2021133826A (ja) 車両制御装置及び車両制御方法
JP2004322764A (ja) 自動速度制御装置
JP3793431B2 (ja) オートクルーズ制御装置
JP7070450B2 (ja) 車両走行制御装置
JP2020121573A (ja) 車両走行制御装置
JP2021008153A (ja) 車両走行制御装置
JP7505840B2 (ja) 車両の運転支援装置
JP7354170B2 (ja) 車両の制御装置及び車両の制御方法
JP2024039134A (ja) 車両制御装置及び車両制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105865.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009815989

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12920255

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE