WO2010032781A1 - 内燃機関用潤滑油組成物 - Google Patents

内燃機関用潤滑油組成物 Download PDF

Info

Publication number
WO2010032781A1
WO2010032781A1 PCT/JP2009/066242 JP2009066242W WO2010032781A1 WO 2010032781 A1 WO2010032781 A1 WO 2010032781A1 JP 2009066242 W JP2009066242 W JP 2009066242W WO 2010032781 A1 WO2010032781 A1 WO 2010032781A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
internal combustion
groups
composition
mass
Prior art date
Application number
PCT/JP2009/066242
Other languages
English (en)
French (fr)
Inventor
亮 山田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP09814625A priority Critical patent/EP2333037A4/en
Priority to JP2010529789A priority patent/JP5551599B2/ja
Priority to US13/063,765 priority patent/US8445418B2/en
Priority to CN2009801367284A priority patent/CN102149801A/zh
Publication of WO2010032781A1 publication Critical patent/WO2010032781A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M157/00Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/04Specified molecular weight or molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/04Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing aromatic monomers, e.g. styrene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/017Specific gravity or density
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to a lubricating oil composition for an internal combustion engine.
  • a lubricating oil is used for lubricating a sliding portion, but the lubricating oil generally has a lower viscosity as the temperature increases.
  • the viscosity maintaining property at high temperature is also important.
  • SAE Society of Automotive Engineers
  • viscosity grade 30 engine oil is required to maintain a high shear viscosity at 150 ° C. of 2.9 mPa ⁇ s or more. Further, it is said that the viscosity at around 80 ° C.
  • the lubricating oil has a high viscosity index.
  • Most of the lubricating oils are used by blending various additives with the base oil, but in order to increase the viscosity index, a polymer compound called a viscosity index improver is often blended (for example, Patent Document 1). reference).
  • the polymer compound used as the viscosity index improver has a higher ability to improve the viscosity index of the lubricating oil as the molecular weight increases.
  • a polymer molecular chain used as a viscosity index improver is oriented to temporarily reduce the viscosity. Therefore, the conventional lubricating oil for internal combustion engines has to be designed so that the viscosity at the time of low shear is high in order to maintain the high temperature and high shear viscosity, and there is a problem that the fuel saving characteristic is impaired.
  • an object of the present invention is to provide a lubricating oil composition for an internal combustion engine having a high viscosity index, a low viscosity reduction rate at high temperature and high shear, and a low viscosity at low shear.
  • the present invention provides the following lubricating oil composition for internal combustion engines.
  • the blending amount of the polymer compound having a weight average molecular weight of 100,000 or more is less than 0.5% by weight based on the total amount of the composition.
  • a lubricating oil composition for an internal combustion engine wherein the composition has a viscosity index of 130 or more.
  • the polymer compound is at least one selected from polymethacrylate, olefin copolymer, styrene copolymer and polyisobutylene.
  • a lubricating oil composition for an internal combustion engine comprising: (3) The internal combustion engine lubricating oil composition according to (1) or (2), wherein the base oil is at least one of mineral oil and synthetic oil. Lubricating oil composition.
  • a lubricating oil composition for internal combustion engines comprising: (3) The internal combustion engine lubricating oil composition according to (1) or (2), wherein the base oil is at least one of mineral oil and synthetic oil.
  • Lubricating oil composition comprising: (3) The internal combustion engine lubricating oil composition according to (1) or (2), wherein the base oil is at least one of mineral oil and synthetic oil.
  • Lubricating oil composition (4)
  • a lubricating oil composition for an internal combustion engine having a high viscosity index, a low viscosity reduction rate at high temperature and high shear, and a low viscosity at low shear.
  • the lubricating oil composition for internal combustion engines of the present invention (hereinafter also referred to as “the present composition”) is a lubricating oil composition for internal combustion engines containing a base oil having a viscosity index of 120 or more, and has a mass average molecular weight of 100, A polymer compound having a weight average molecular weight of 100,000 or more is blended based on the total amount of the composition. It is less than 0.5% by mass, and the viscosity index of the composition is 130 or more.
  • the composition will be described in detail.
  • the base oil used in the present invention is a lubricating base oil composed of mineral oil, synthetic oil or a mixture thereof, and has a viscosity index of 120 or more.
  • the viscosity index is more preferably 130 or more.
  • lubricating oil fractions obtained by distillation under reduced pressure of atmospheric residual oil obtained by atmospheric distillation of crude oil can be subjected to solvent removal, solvent extraction, solvent dewaxing, catalytic dewaxing, hydrogen Oil refined by performing one or more treatments such as hydrorefining and hydrocracking, or mineral oil produced by isomerizing wax (GTL wax) produced by mineral oil-based wax or Fischer-Tropsch process, etc. Is mentioned.
  • a base oil having a viscosity index of 120 or more in the present invention is preferably produced by solvent dewaxing or hydrodewaxing a product oil obtained by hydroisomerization of wax or hydrocracking of heavy oil.
  • a wax having a boiling range of 300 to 600 ° C. and a carbon number of 20 to 70, such as slack wax and Fischer Wax obtained by Tropsch synthesis was supported on a hydroisomerization catalyst such as alumina or silica-alumina carrier by supporting one or more group 8 metals such as nickel and cobalt and group 6A metals such as molybdenum and tungsten.
  • hydrocracking if necessary, hydrodesulfurization and denitrogenation, a normal pressure distillate having a boiling point in the range of 300 to 600 ° C., a reduced pressure distillate or bright stock, and a hydrocracking catalyst such as In the presence of hydrogen having a hydrogen partial pressure of 7 to 14 MPa, a catalyst in which one or more group 8 metals such as nickel and cobalt and one or more group 6A metals such as molybdenum and tungsten are supported on a silica-alumina support, Contacting at a temperature of ⁇ 450 ° C.
  • group 8 metals such as nickel and cobalt
  • group 6A metals such as molybdenum and tungsten
  • the decomposition rate (100—volume% of the fraction of hydrocracked product of 360 ° C. or higher) is 40 to 90 % Is preferable.
  • a light oil fraction is distilled off from the hydroisomerized product oil or hydrocracked product oil obtained by the above method to obtain a lubricating oil fraction. Since this fraction generally has a high pour point, the dewaxing treatment is performed. And removing the wax component, a lubricating base oil having a% CP of 80 or more and a pour point of ⁇ 10 ° C. or less by ndM ring analysis can be obtained.
  • the light fraction is distilled off using a precision distillation apparatus, and the fraction having a boiling point of 371 ° C. or higher and lower than 491 ° C. by gas chromatography distillation is previously used. Is preferably 70% by volume or more in order to more efficiently perform the solvent dewaxing treatment.
  • a dewaxing solvent such as methyl ethyl ketone / toluene (volume ratio 1/1) is used, and the solvent / oil ratio is in the range of 2/1 to 4/1 at a temperature of ⁇ 15 to ⁇ 40 ° C. Good to do.
  • the distillation of light fractions should be such that it does not interfere with hydrodewaxing.
  • it is distilled using a precision distillation apparatus. It is efficient and preferable to cut the fraction having a boiling point of 371 ° C. or higher and lower than 491 ° C. by gas chromatography distillation method to 70% by volume or more.
  • This hydrodewaxing was brought into contact with a zeolite catalyst in the presence of hydrogen at a hydrogen partial pressure of 3 to 15 MPa at a temperature of 320 to 430 ° C. and an LHSV (liquid space velocity) of 0.2 to 4 hr ⁇ 1.
  • the pour point in the lubricating base oil should be ⁇ 10 ° C. or lower.
  • the lubricating oil fraction obtained by the above method can be further subjected to solvent purification or hydrorefining as desired.
  • various conventionally known oils can be used.
  • poly- ⁇ -olefin including ⁇ -olefin copolymer
  • polybutene polyol ester
  • dibasic acid ester aromatic ester.
  • Phosphate esters polyphenyl ethers
  • alkylbenzenes alkylnaphthalenes
  • polyoxyalkylene glycols polyoxyalkylene glycols
  • neopentyl glycols silicone oils, trimethylolpropane, pentaerythritol, hindered esters, and the like.
  • the base oil used in the present invention may be a mixture of two or more kinds of mineral oils or two or more kinds of synthetic oils, or a mixture of mineral oils and synthetic oils as long as the above properties are satisfied.
  • the mixing ratio of two or more kinds of base oils in the above mixture can be arbitrarily selected.
  • the base oil used in the composition preferably has a kinematic viscosity of 2 to 20 mm 2 / s at 100 ° C., more preferably a kinematic viscosity in the range of 3 to 15 mm 2 / s, and even more preferable kinematic viscosity. Is in the range of 3.5 to 10 mm 2 / s.
  • the kinematic viscosity of the base oil is too high, the agitation resistance is increased when the lubricating oil composition is used, and the coefficient of friction in the fluid lubrication region is increased, so that the fuel saving characteristics are deteriorated.
  • the kinematic viscosity is too low, there is a problem that wear increases in sliding parts such as a valve system of an internal combustion engine, pistons, rings and bearings.
  • the lubricating oil composition for an internal combustion engine of the present invention is 0.01% by mass or more and 10% by mass based on the total amount of the polymer compound having a mass average molecular weight of less than 100,000, based on the above base oil. % Or less, preferably 0.1% by mass or more and 10% by mass or less, and the blending amount of the polymer compound having a mass average molecular weight of 100,000 or more is less than 0.5% by mass based on the total amount of the composition. It is done.
  • the reason why the mass average molecular weight of the polymer compound blended with the base oil is less than 100,000 is that the effect of improving the viscosity index increases as the molecular weight of the polymer compound blended with the base oil increases.
  • the molecular chain of the polymer compound is oriented by shearing, it may cause a temporary decrease in viscosity, and the necessary high temperature and high shear viscosity may not be maintained. It is because there exists a possibility that viscosity may fall and a viscosity may fall. Therefore, it is desirable not to blend a polymer compound having a mass average molecular weight of 100,000 or more, but there are cases where it is unavoidably added to improve the viscosity index. However, even in that case, the lubricating oil composition for an internal combustion engine of the present invention can be obtained by setting it to less than 0.5% by mass. In addition, it is preferable that the mass mean molecular weight of this high molecular compound is 70,000 or less, and it is more preferable that it is 50,000 or less.
  • the polymer compound is at least one selected from polymethacrylate (PMA), olefin copolymer (olefin copolymer), styrene copolymer (for example, styrene-diene hydrogenated copolymer) and polyisobutylene.
  • PMA polymethacrylate
  • olefin copolymer olefin copolymer
  • styrene copolymer for example, styrene-diene hydrogenated copolymer
  • polyisobutylene polyisobutylene.
  • One type is preferred.
  • Polymethacrylate can be used in either a dispersion type or a non-dispersion type.
  • a typical olefin copolymer is an ethylene- ⁇ -olefin copolymer.
  • An ethylene / ⁇ -olefin copolymer is a copolymer of ethylene having 15 to 80 mol% of ethylene units and an ⁇ -olefin having 3 to 20 carbon atoms such as propylene, 1-butene, 1-decene, and the like. It may be a body or a block body.
  • the copolymer is non-dispersible with respect to lubricating oil, but is a dispersion type in which an ethylene- ⁇ -olefin copolymer is grafted with maleic acid, N-vinylpyrrolidone, N-vinylimidazole, glycidyl acrylate, etc. Can also be used. One of these can be used alone or in combination of two or more. More preferably, a polymethacrylate (PMA) and an olefin copolymer (olefin copolymer) are used.
  • PMA polymethacrylate
  • olefin copolymer
  • a molybdenum friction modifier or an ashless friction modifier in order to improve fuel economy characteristics. More preferably, a molybdenum friction modifier and an ashless friction modifier are used in combination.
  • the molybdenum friction modifier at least one selected from molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate (hereinafter also referred to as MoDTP), and an amine salt of molybdic acid (hereinafter also referred to as Mo amine salt) is preferably used.
  • MoDTC molybdenum dithiocarbamate
  • MoDTP molybdenum dithiophosphate
  • Mo amine salt molybdic acid
  • MoDTC is preferable in terms of effects. These can be used singly or in combination of two or more, and the preferred blending amount is preferably 10 to 1000 ppm by mass, more preferably 100 to 800 ppm by mass as the amount of molybdenum based on the total amount of the composition. . If the amount of molybdenum is less than 10 ppm by mass, sufficient low friction cannot be obtained, and if it exceeds 1,000 ppm by weight, the effect of improving the friction characteristics is not seen for that amount. MoDTC is represented by the following general formula (I).
  • R 1 to R 4 are hydrocarbon groups having 5 to 16 carbon atoms, and they may all be the same or different.
  • X is S (sulfur atom) or O (oxygen atom).
  • Examples of the hydrocarbon group represented by R 1 to R 4 include alkyl groups having 5 to 16 carbon atoms, alkenyl groups having 5 to 16 carbon atoms, cycloalkyl groups having 5 to 16 carbon atoms, and 5 to 16 carbon atoms. And an arylalkyl group having 5 to 16 carbon atoms.
  • hydrocarbon having 5 to 16 carbon atoms include various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups, various undecyl groups, various dodecyl groups, various tridecyl groups, Various tetradecyl groups, various pentadecyl groups, various hexadecyl groups, various octenyl groups, various nonenyl groups, various decenyl groups, various undecenyl groups, various dodecenyl groups, various tridecenyl groups, various tetradecenyl groups, various pentadecenyl groups, cyclohexyl groups, dimethylcyclohexyl groups , Ethylcyclohexyl group, methylcyclohexylmethyl group, cyclohexylethyl group, propylcyclohexyl group, buty
  • R 5 to R 8 are hydrocarbon groups having 5 to 16 carbon atoms, and they may all be the same or different.
  • Y is S (sulfur atom) or O (oxygen atom).
  • Examples of the hydrocarbon group represented by R 5 to R 8 include alkyl groups having 5 to 16 carbon atoms, alkenyl groups having 5 to 16 carbon atoms, cycloalkyl groups having 5 to 16 carbon atoms, and 5 to 16 carbon atoms. And an arylalkyl group having 5 to 16 carbon atoms.
  • hydrocarbon having 5 to 16 carbon atoms include various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups, various undecyl groups, various dodecyl groups, various tridecyl groups, Various tetradecyl groups, various pentadecyl groups, various hexadecyl groups, various octenyl groups, various nonenyl groups, various decenyl groups, various undecenyl groups, various dodecenyl groups, various tridecenyl groups, various tetradecenyl groups, various pentadecenyl groups, cyclohexyl groups, dimethylcyclohexyl groups , Ethylcyclohexyl group, methylcyclohexylmethyl group, cyclohexylethyl group, propylcyclohexyl group, buty
  • R is a hydrocarbon group having 5 to 18 carbon atoms, and the four hydrocarbon groups may be the same or different.
  • the hydrocarbon group having 5 to 18 carbon atoms include an alkyl group having 5 to 18 carbon atoms, an alkenyl group having 5 to 18 carbon atoms, a cycloalkyl group having 5 to 18 carbon atoms, and an alkylaryl having 5 to 18 carbon atoms.
  • arylalkyl groups having 5 to 18 carbon atoms.
  • hydrocarbon having 5 to 18 carbon atoms include various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups, various undecyl groups, various dodecyl groups, various tridecyl groups, Various tetradecyl groups, various pentadecyl groups, various hexadecyl groups, various heptadecyl groups, various octadecyl groups, various octenyl groups, various nonenyl groups, various decenyl groups, various undecenyl groups, various dodecenyl groups, various tridecenyl groups, various tetradecenyl groups, various pentadecenyl groups Group, cyclohexyl group, dimethylcyclohexyl group, ethylcyclohexyl group, methylcyclohexylmethyl group,
  • ashless friction modifier examples include fatty acids, higher alcohols, fatty acid esters, fats and oils, amines, amides, sulfurized esters, and the like. These friction modifiers can be contained singly or in any combination of two or more, but the compounding amount is usually in the range of 0.01 to 10% by mass based on the total amount of the composition.
  • the lubricating oil composition for an internal combustion engine of the present invention has the viscosity index of the base oil, the mass average molecular weight of the polymer compound and the blending amount of the polymer compound within the above specified ranges, and the viscosity index of the composition is 130 or more.
  • the viscosity index of the composition is 130 or more.
  • it can be obtained by blending a base oil and a polymer compound.
  • one or two or more compounds arbitrarily selected from the above base oils and polymer compounds can be used.
  • this composition is 3.0% or less with respect to the viscosity at the time of low shear in the viscosity decreasing rate at the time of high shear at 150 degreeC. This is because a lubricating oil for internal combustion engines having a viscosity reduction rate of more than 3.0% during high shear needs to set a high low shear viscosity in anticipation of the viscosity reduction and deteriorates fuel economy.
  • the lubricating oil composition preferably has a kinematic viscosity at 100 ° C. of less than 9.0 mm 2 / s. This is because when it is 9.0 mm 2 / s or more, the kinematic viscosity in the actual operating temperature region (80 ° C.
  • the lubricating oil composition preferably has a kinematic viscosity at 100 ° C. of less than 9.0 mm 2 / s when the high shear viscosity at 150 ° C. is 2.9 mPa ⁇ s or more corresponding to 30 in the SAE viscosity grade,
  • the kinematic viscosity at 100 ° C. is preferably less than 7.8 mm 2 / s.
  • an ashless dispersant in the lubricating oil composition for an internal combustion engine of the present invention, an ashless dispersant, a metal detergent, an extreme pressure agent, a metal deactivator, and a rust preventive agent are within the range in which the object of the present invention is not impaired.
  • Various additives typified by an antifoaming agent, a demulsifier and a coloring agent may be used alone or in combination.
  • Ashless dispersants include polybutenyl succinimide having a polybutenyl group having a number average molecular weight of 900 to 3,500, polybutenylbenzylamine, polybutenylamine, and derivatives thereof such as boric acid-modified products Etc. These ashless dispersants can be contained alone or in any combination of two or more, but the compounding amount is usually in the range of 0.01 to 10% by mass based on the total amount of the composition.
  • metal detergents include sulfonates, phenates, salicylates, and naphthenates of alkali metals (sodium (Na), potassium (K), etc.) or alkaline earth metals (calcium (Ca), magnesium (Mg), etc.). Can be mentioned. These can be used alone or in combination of two or more. What is necessary is just to select suitably the total base number and compounding quantity of these metal type detergents according to the performance of the required lubricating oil.
  • the total base number is usually 0 to 500 mgKOH / g, preferably 10 to 400 mgKOH / g by the perchloric acid method.
  • the blending amount is usually in the range of 0.1 to 10% by mass based on the total amount of the composition.
  • extreme pressure agents include sulfur compounds such as sulfurized olefins, dialkyl polysulfides, diarylalkyl polysulfides, diaryl polysulfides, phosphate esters, thiophosphate esters, phosphite esters, alkyl hydrogen phosphites, phosphate amine amine salts, Phosphorus compounds such as phosphoric acid ester amine salts can be mentioned, and the compounding amount is usually in the range of 0.01 to 10% by mass based on the total amount of the composition.
  • metal deactivator examples include benzotriazole, triazole derivatives, benzotriazole derivatives, thiadiazole derivatives and the like, and the amount thereof is usually in the range of 0.01 to 3% by mass based on the total amount of the composition.
  • rust inhibitor examples include sulfonates, phenates of fatty acids, alkenyl succinic acid half esters, fatty acid soaps, alkyl sulfonates, alkaline earth metals (calcium (Ca), magnesium (Mg), barium (Ba), etc.), Salicylates and naphthenates, polyhydric alcohol fatty acid esters, fatty acid amines, oxidized paraffins, alkyl polyoxyethylene ethers and the like can be mentioned, and the compounding amount is usually in the range of 0.01 to 5% by mass based on the total amount of the composition.
  • liquid silicone is suitable, and for example, methyl silicone, fluorosilicone, polyacrylate and the like can be used.
  • a preferable blending amount of these antifoaming agents is 0.0005 to 0.1% by mass based on the total amount of the composition.
  • demulsifiers ethylene propylene block polymers, sulfonates of alkaline earth metals (calcium (Ca), magnesium (Mg), etc.), phenates, salicylates, naphthenates, etc. can be used. % By mass.
  • As the colorant, dyes, pigments and the like can be used, and the blending amount is usually 0.001 to 1% by mass based on the total amount of the composition.
  • the lubricating oil composition for an internal combustion engine of the present invention thus prepared is blended as described above, so that the viscosity index is high, the viscosity decreasing rate at high temperature and high shear is low, and at low shear. It has the effect that the viscosity can be lowered. Therefore, it can be suitably used as a lubricating oil for internal combustion engines.
  • Example oil The properties of the lubricating oil composition (sample oil) in each example were determined by the following method.
  • Density (15 ° C) It was measured by the method of JIS K 2249.
  • HTHS viscosity (150 ° C) It was measured by the method of ASTM D4683 using a TBS high temperature viscometer (Tapered Bearing Simulator). Test conditions are shown below.
  • Motoring torque measurement value An engine having the following specifications was filled with engine oil of each formulation shown in Table 2, and a motoring torque test was performed to measure torque at a predetermined rotational speed. Test conditions are shown below. ⁇ Engine type: 2.2L inline 4 cylinder DOHC 16 valve engine ⁇ Temperature: 80 °C ⁇ Rotation speed: 800rpm (6) Torque improvement rate The average value of motoring torque measurement values under the above measurement conditions is calculated, and a commercially available engine oil (Comparative Example 1) of 10W-30 in the SAE viscosity classification is compared as a reference oil. The torque improvement rate was calculated.
  • Example 1 to 12 Lubricating oil compositions for internal combustion engines (samples) according to the compositions of Table 2, Table 3, Table 4 and Table 5, using the following various base oils, various polymer compounds and additives (the breakdown is shown in Table 1) Oil) was prepared. The prepared sample oil was evaluated for each property by the method described above, and the results are shown in Table 2, Table 3, Table 4, and Table 5.
  • Base oil In Examples and Comparative Examples, base oils (a) to (h) of GII, GIII, and GIV specified by the following API (American Petroleum Institute, American Petroleum Institute) were used as base oils. In addition, as the base oil of mineral oil type, all paraffin type was used.
  • -Base oil (a) Mineral oil hydrocracked base oil (API classification GIII) 150N, Kinematic viscosity (100 ° C.) 6.20 mm 2 / s, viscosity index 130 ⁇ Base oil (b) Mineral oil-based hydrorefined base oil (API classification GII) 150N, Kinematic viscosity (100 ° C.) 5.35 mm 2 / s, viscosity index 105 ⁇ Base oil (c) Mineral oil based hydrorefined base oil (API classification GII) 150N, Kinematic viscosity (100 ° C.) 10.89 mm 2 / s, viscosity index 107 ⁇ Base oil (d) Mineral oil based hydrorefined base oil (API classification GII) 600N, Kinematic viscosity (100 ° C.) 12.19 mm 2 / s, viscosity index 105 ⁇ Base oil (e) Synthetic oil-based poly- ⁇ -olefin (
  • OCP (a) mass average molecular weight: 4,700 (Lucant HC600 manufactured by Mitsui Chemicals) OCP (b) mass average molecular weight: 7,000 (Mitsui Chemicals company Lucant HC2000) -PMA (a) mass average molecular weight: 26,000 (Sanyo Chemical Industries, Inc. A-1050) -PMA (b) mass average molecular weight: 45,000 (acreve C-728, manufactured by Sanyo Chemical Industries) PMA (c) mass average molecular weight: 100,000 (Paratone 8057 manufactured by Chevron) -PMA (d) mass average molecular weight: 230,000 (Sanyo Chemical Industries, Inc.
  • PMA mass average molecular weight: 370,000 (acoust 915, manufactured by Sanyo Chemical Industries) -PMA (f) mass average molecular weight: 420,000 (Sanyo Chemical Industries, Inc. 702)
  • PMA g) mass average molecular weight: 69,000 (Plexol-162 manufactured by Degussa)
  • Molybdenum friction modifier Molybdenum dialkyldithiocarbamate was used as a molybdenum friction modifier. The molybdenum content is 4.5 wt%.
  • Ashless friction modifier Glycerol monooleate was used as the fatty acid ester.
  • Package additive Diesel engine lubricant additive (DH-1 additive) and gasoline engine lubricant additive (SL additive) were used. The breakdown of package additives is shown in Table 1.
  • the lubricating oil compositions for internal combustion engines of the present invention have a mass average molecular weight of 100 with respect to a base oil having a viscosity index of 120 or more.
  • Less than 1,000 polymer compounds are blended in an amount of 0.01% by mass or more and 10% by mass or less based on the total amount of the composition. Since it is less than 5% by mass and the viscosity index of the composition is 130 or more, the kinematic viscosity in the actual use temperature range (80 ° C. to 100 ° C.) can be lowered while maintaining the high temperature and high shear viscosity high. Excellent fuel economy characteristics.
  • the lubricating oil compositions for internal combustion engines of Comparative Examples 1 to 9 can satisfy both of the characteristics of maintaining a high temperature and high shear viscosity at a high level and reducing the kinematic viscosity in the actual use temperature range. There wasn't. For example, in Comparative Example 2, although the viscosity reduction rate was low, the kinematic viscosity at 100 ° C. was high. As for the torque improvement rate, Examples 1 to 7 and Examples 10 to 12 are superior to Comparative Examples 1 to 7.
  • Example 11 to which an ashless friction modifier was added was excellent, and Example 10 to which a molybdenum friction modifier was added was more excellent, and an ashless friction modifier and a molybdenum friction modifier were used.
  • the combined Example 12 is even better.
  • the lubricating oil composition for an internal combustion engine of the present invention can be suitably used as an engine oil that requires fuel saving characteristics.

Abstract

 内燃機関用潤滑油組成物は、粘度指数が120以上の基油に対し、質量平均分子量が100,000未満の高分子化合物を組成物全量基準で0.01質量%以上、10質量%以下、好ましくは0.1質量%以上、10質量%以下配合してなるとともに、質量平均分子量が100,000以上の高分子化合物の配合量が組成物全量基準で0.5質量%未満であり、該組成物の粘度指数が130以上である。

Description

内燃機関用潤滑油組成物
 本発明は、内燃機関用潤滑油組成物に関する。
 現在、様々な分野で省エネルギーが求められており、自動車等の内燃機関においても省エネルギー化、即ち、低燃費化が強く望まれている。
 内燃機関には、摺動部分の潤滑のために潤滑油が用いられるが、潤滑油は一般に温度が高くなるほど粘度が低くなる。一方、軸受部分の潤滑性や耐摩耗性を維持するには高温における粘度維持特性も重要である。例えば、SAE(Society of Automotive Engineers)粘度グレード30のエンジン油は、150℃における高せん断粘度を2.9mPa・s以上に維持することが必要とされている。
 また、燃費には80℃付近での粘度も影響するといわれており、この粘度が低いほど低燃費化を実現できる。従って潤滑油の粘度指数が高い方が有利である。潤滑油は基油に各種添加剤を配合して使用する例が大半であるが、この粘度指数を上げるために粘度指数向上剤と呼ばれる高分子化合物を配合することが多い(例えば、特許文献1参照)。
特開平8-302378
 粘度指数向上剤として用いる高分子化合物は、分子量が大きいほど潤滑油の粘度指数を向上させる能力が高い。しかし、エンジンの軸受けなど、高せん断力が加わる場所では、粘度指数向上剤として用いられる高分子の分子鎖が配向して一時的な粘度低下を起こすことが知られている。
 そのために、従来の内燃機関用潤滑油では高温高せん断粘度を維持するために、低せん断時の粘度が高くなるように設計しなければならず、省燃費特性を損なうという問題があった。
 そこで、本発明の目的は、粘度指数が高く、高温高せん断時における粘度低下率が低く、かつ低せん断時の粘度が低い内燃機関用潤滑油組成物を提供することにある。
 すなわち、本発明は、下記のような内燃機関用潤滑油組成物を提供するものである。
(1)粘度指数が120以上の基油を含む内燃機関用潤滑油組成物であって、質量平均分子量が100,000未満の高分子化合物を組成物全量基準で0.01質量%以上、10質量%以下、好ましくは0.1質量%以上、10質量%以下配合してなるとともに、質量平均分子量が100,000以上の高分子化合物の配合量が組成物全量基準で0.5質量%未満であり、該組成物の粘度指数が130以上であることを特徴とする内燃機関用潤滑油組成物。
(2)上述の(1)に記載の内燃機関用潤滑油組成物において、前記高分子化合物がポリメタクリレート、オレフィン系共重合体、スチレン系共重合体およびポリイソブチレンから選ばれる少なくともいずれか一種であることを特徴とする内燃機関用潤滑油組成物。
(3)上述の(1)または(2)に記載の内燃機関用潤滑油組成物において、前記基油は、鉱物油および合成油のうち少なくともいずれか一種であることを特徴とする内燃機関用潤滑油組成物。
(4)上述の(1)から(3)までのいずれか一つに記載の内燃機関用潤滑油組成物において、モリブデン系摩擦調整剤および無灰系摩擦調整剤の少なくともいずれか一種を配合してなることを特徴とする内燃機関用潤滑油組成物。
 本発明によれば、粘度指数が高く、高温高せん断時における粘度低下率が低く、かつ低せん断時の粘度が低い内燃機関用潤滑油組成物を提供することができる。
 本発明の内燃機関用潤滑油組成物(以下、「本組成物」ともいう)は、粘度指数が120以上の基油を含む内燃機関用潤滑油組成物であって、質量平均分子量が100,000未満の高分子化合物を組成物全量基準で0.1質量%以上、10質量%以下配合してなるとともに、質量平均分子量が100,000以上の高分子化合物の配合量が組成物全量基準で0.5質量%未満であり、該組成物の粘度指数が130以上であることを特徴とする。以下、本組成物について詳細に説明する。
[基油]
 本発明で用いる基油は、鉱物油、合成油又はそれらの混合物からなる潤滑油基油であり、その粘度指数が120以上である。基油の粘度指数が高いほど、内燃機関用潤滑油組成物の低せん断時の粘度を低くすることができる。そして、この粘度指数は130以上であることがより好ましい。
 鉱物油としては、例えば、原油を常圧蒸留して得られる常圧残油を減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、溶剤脱ろう、接触脱ろう、水素化精製、水素化分解などの1つ以上の処理を行って精製したもの、あるいは鉱油系ワックスやフィッシャートロプシュプロセス等により製造されるワックス(GTLワックス)を異性化することによって製造される鉱物油などが挙げられる。
 特に、本発明における粘度指数が120以上の基油は、ワックスの水素異性化あるいは重質油の水素化分解で得られた生成油を溶剤脱ろうまたは水素化脱ろうすることにより好ましく製造することができる。
 例えば、ワックスの水素異性化であれば、沸点範囲が300~600℃、炭素数として20~70の範囲にあるワックス、例えば、鉱油系潤滑油の溶剤脱ろう工程で得られるスラックワックスやフィッシャー・トロプシュ合成で得られたワックス等を、水素異性化触媒、例えばアルミナ、或いはシリカ-アルミナ担体上にニッケル、コバルト等の8族金属、及びモリブデン、タングステン等の6A族金属の1種以上を担持した触媒やゼオライト触媒もしくはゼオライト含有担体に白金等を担持した触媒と、水素分圧5~14MPaの水素存在下、300~450℃の温度、0.1~2hr-1のLHSV(液空間速度)で接触させ、直鎖状のパラフィンの転化率が80%以上、軽質留分への転化率が40%以下となるようにすることが好ましい。
 また、水素化分解であれば、必要により水素化脱硫及び脱窒素を行った沸点が300~600℃の範囲の常圧留出油、減圧留出油またはブライトストックを、水素化分解触媒、例えばシリカ-アルミナ担体上にニッケル、コバルト等の8族金属の1種以上、及びモリブデン、タングステン等の6A族金属の1種以上を担持した触媒と、水素分圧7~14MPaの水素存在下、350~450℃の温度、0.1~2hr-1のLHSV(液空間速度)で接触させ、分解率(100-水素化分解生成物中の360℃以上の留分の容量%)が40~90%となるようにすることが好ましい。
 上記方法で得られる水素異性化生成油または水素化分解生成油から軽質留分を留去して潤滑油留分を得るが、この留分は、このままでは一般に流動点が高いため、脱ろう処理を行い、ワックス分を除去すると、n-d-M環分析による%CPが80以上、流動点が-10℃以下の潤滑油基油を得ることができる。
 このワックス分の除去を溶剤脱ろう処理で行う場合、上記の軽質留分の留去に際して精密蒸留装置を用いて蒸留分離し、あらかじめガスクロマトグラフィー蒸留法による沸点371℃以上491℃未満の留分が70容量%以上になるようにカットすることが、溶剤脱ろう処理をより効率的に行うために好ましい。この溶剤脱ろう処理は、脱ろう溶剤、例えばメチルエチルケトン/トルエン(容量比1/1)を用い、溶剤/油比が2/1~4/1の範囲で、-15~-40℃の温度下に行うと良い。
 一方、ワックス分の除去を水素化脱ろう法で行う場合は、軽質留分の留去は水素化脱ろうに支障とならない程度とし、水素化脱ろう後に、精密蒸留装置を用いて蒸留分離してガスクロマトグラフィー蒸留法による沸点371℃以上491℃未満の留分が70容量%以上になるようにカットすることが、効率的で好ましい。この水素化脱ろうは、ゼオライト触媒と、水素分圧3~15MPaの水素存在下、320~430℃の温度、0.2~4hr-1のLHSV(液空間速度)で接触させ、最終的な潤滑油基油における流動点が-10℃以下となるようにするとよい。
 以上のような方法で得られた潤滑油留分は、所望により、さらに溶剤精製或いは水素化精製を行うことができる。
 また、合成油としては、従来公知の種々のものが使用可能であり、例えば、ポリ-α-オレフィン(α-オレフィン共重合体を含む)、ポリブテン、ポリオールエステル、二塩基酸エステル、芳香族エステル、リン酸エステル、ポリフェニルエーテル、アルキルベンゼン、アルキルナフタレン、ポリオキシアルキレングリコール、ネオペンチルグリコール、シリコーンオイル、トリメチロールプロパン、ペンタエリスリトール、更にはヒンダードエステルなどを用いることができるが、特にポリ-α-オレフィンは粘度指数が比較的高い点、および、鉱物油に近い組成であるため、従来の鉱物油で使用している添加剤をそのまま使用できる点で好ましい。
 本発明で用いる基油は、上記性状を満たす限り、2種類以上の鉱物油、又は2種類以上の合成油の混合物であっても差し支えなく、鉱物油と合成油の混合物であっても差し支えなく、上記混合物における2種類以上の基油の混合比は、任意に選ぶことができる。
 本組成物に使用される基油は、100℃において、2~20mm/sの動粘度を有することが好ましく、より好ましい動粘度は3~15mm/sの範囲であり、さらに好ましい動粘度は3.5~10mm/sの範囲である。基油の動粘度が高すぎると、潤滑油組成物としたときに攪拌抵抗が大きくなり、また流体潤滑域での摩擦係数が高くなるため、省燃費特性が悪化する。逆に動粘度が低すぎると、内燃機関の動弁系、ピストン、リングや軸受等の摺動部において摩耗が増加するという問題を生じる。
[高分子化合物]
 本発明の内燃機関用潤滑油組成物は、上述の基油に対して、質量平均分子量が100,000未満の高分子化合物の配合量を組成物全量基準で0.01質量%以上、10質量%以下、好ましくは0.1質量%以上、10質量%以下とし、質量平均分子量が100,000以上の高分子化合物の配合量を組成物全量基準で0.5質量%未満とすることで得られる。
 基油に対して配合される高分子化合物の質量平均分子量が100,000未満としたのは、基油に対して配合される高分子化合物の分子量が大きいほど粘度指数を向上させる効果は大きいものの、せん断によって高分子化合物の分子鎖が配向することで、一時的な粘度低下を引き起こし、必要な高温高せん断粘度を維持できなくなる恐れがあり、また使用により高分子化合物の分子鎖の切断によって分子量が低下し、粘度が低下してしまう恐れがあるからである。
 したがって、質量平均分子量が100,000以上の高分子化合物を配合しないことが望ましいのであるが、粘度指数を向上させるために止むを得ず添加する場合もある。ただし、その場合であっても0.5質量%未満とすることで、本発明の内燃機関用潤滑油組成物を得ることができる。
 なお、該高分子化合物の質量平均分子量は70,000以下であることが好ましく、50,000以下であることが、より好ましい。
 該高分子化合物としては、ポリメタクリレート(PMA)、オレフィン系共重合体(オレフィンコポリマー)、スチレン系共重合体(例えば、スチレン-ジエン水素化共重合体など)およびポリイソブチレンから選ばれる少なくともいずれか一種が好ましく挙げられる。ポリメタクリレートは、分散型、非分散型どちらでも使用できる。オレフィンコポリマーとして代表的なものは、エチレン-α-オレフィン共重合体である。エチレン・α-オレフィン共重合体は、エチレン単位が15~80モル%のエチレンと、プロピレン、1-ブテン、1-デセンなどの炭素数3~20のα-オレフィンとの共重合体で、ランダム体でもブロック体でもよい。該共重合体は潤滑油に対して非分散型であるが、エチレン-α-オレフィン共重合体をマレイン酸、N-ビニルピロリドン、N-ビニルイミダゾール、グリシジルアクリレートなどでグラフト化した分散型のものも使用できる。これらのうち一種を単独で、あるいは二種以上組み合わせて使用することができる。より好ましくは、ポリメタクリレート(PMA)、オレフィン系共重合体(オレフィンコポリマー)が挙げられる。
[摩擦調整剤]
 また、本発明の内燃機関用潤滑油組成物においては、省燃費特性を向上させるために、モリブデン系摩擦調整剤や無灰系摩擦調整剤を配合することが好ましい。モリブデン系摩擦調整剤および無灰系摩擦調整剤を併用することが、さらに好ましい。
 モリブデン系摩擦調整剤としては、ジチオカルバミン酸モリブデン(MoDTC)、ジチオリン酸モリブデン(以下、MoDTPともいう)及びモリブデン酸のアミン塩(以下、Moアミン塩ともいう)から選ばれる少なくとも一種が好適に用いられる。モリブデン系摩擦調整剤の中では、効果の点でMoDTCが好ましい。これらは、一種あるいは二種以上組み合わせて使用することができ、その好ましい配合量は、組成物全量に基づきモリブテン量として好ましくは10~1000質量ppm、より好ましくは100~800質量ppmの範囲である。モリブデン量が10質量ppm未満では十分な低摩擦性が得られないし、1000重量ppmを超えるとその量の割には摩擦特性の向上効果がみられない。
 MoDTCは下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)において、R~Rは炭素数5~16の炭化水素基であり、全て同一でも異なっていてもよい。XはS(硫黄原子)又はO(酸素原子)である。R~Rで表される炭化水素基としては、例えば、炭素数5~16のアルキル基、炭素数5~16のアルケニル基、炭素数5~16のシクロアルキル基、炭素数5~16のアルキルアリール基、炭素数5~16のアリールアルキル基などを挙げることができる。炭素数5~16の炭化水素の具体例としては、各種ペンチル基,各種ヘキシル基,各種ヘプチル基,各種オクチル基,各種ノニル基,各種デシル基,各種ウンデシル基,各種ドデシル基,各種トリデシル基,各種テトラデシル基,各種ペンタデシル基,各種ヘキサデシル基,各種オクテニル基,各種ノネニル基,各種デセニル基,各種ウンデセニル基,各種ドデセニル基,各種トリデセニル基,各種テトラデセニル基,各種ペンタデセニル基,シクロヘキシル基,ジメチルシクロヘキシル基,エチルシクロヘキシル基,メチルシクロヘキシルメチル基,シクロヘキシルエチル基,プロピルシクロヘキシル基,ブチルシクロヘキシル基,ヘプチルシクロヘキシル基,フェニル基,トリル基,ジメチルフェニル基,ブチルフェニル基,ノニルフェニル基,メチルベンジル基,フェニルエチル基,ナフチル基,ジメチルナフチル基などを挙げることができる。
 また、MoDTPは下記一般式(II)で表される。
Figure JPOXMLDOC01-appb-C000002
 一般式(II)において、R~Rは炭素数5~16の炭化水素基であり、全て同一でも異なっていてもよい。YはS(硫黄原子)又はO(酸素原子)である。R~Rで表される炭化水素基としては、例えば、炭素数5~16のアルキル基、炭素数5~16のアルケニル基、炭素数5~16のシクロアルキル基、炭素数5~16のアルキルアリール基、炭素数5~16のアリールアルキル基などを挙げることができる。炭素数5~16の炭化水素の具体例としては、各種ペンチル基,各種ヘキシル基,各種ヘプチル基,各種オクチル基,各種ノニル基,各種デシル基,各種ウンデシル基,各種ドデシル基,各種トリデシル基,各種テトラデシル基,各種ペンタデシル基,各種ヘキサデシル基,各種オクテニル基,各種ノネニル基,各種デセニル基,各種ウンデセニル基,各種ドデセニル基,各種トリデセニル基,各種テトラデセニル基,各種ペンタデセニル基,シクロヘキシル基,ジメチルシクロヘキシル基,エチルシクロヘキシル基,メチルシクロヘキシルメチル基,シクロヘキシルエチル基,プロピルシクロヘキシル基,ブチルシクロヘキシル基,ヘプチルシクロヘキシル基,フェニル基,トリル基,ジメチルフェニル基,ブチルフェニル基,ノニルフェニル基,メチルベンジル基,フェニルエチル基,ナフチル基,ジメチルナフチル基などを挙げることができる。
 Moアミン塩は下記一般式(III)で表されるモリブデン酸の第二級アミン塩である。
Figure JPOXMLDOC01-appb-C000003
 一般式(III)において、Rは炭素数5~18の炭化水素基であり、4個の炭化水素基は同一でも、異なっていてもよい。炭素数5~18の炭化水素基としては、例えば、炭素数5~18のアルキル基、炭素数5~18のアルケニル基、炭素数5~18のシクロアルキル基、炭素数5~18のアルキルアリール基、炭素数5~18のアリールアルキル基などを挙げることができる。炭素数5~18の炭化水素の具体例としては、各種ペンチル基,各種ヘキシル基,各種ヘプチル基,各種オクチル基,各種ノニル基,各種デシル基,各種ウンデシル基,各種ドデシル基,各種トリデシル基,各種テトラデシル基,各種ペンタデシル基,各種ヘキサデシル基,各種ヘプタデシル基,各種オクタデシル基,各種オクテニル基,各種ノネニル基,各種デセニル基,各種ウンデセニル基,各種ドデセニル基,各種トリデセニル基,各種テトラデセニル基,各種ペンタデセニル基,シクロヘキシル基,ジメチルシクロヘキシル基,エチルシクロヘキシル基,メチルシクロヘキシルメチル基,シクロヘキシルエチル基,プロピルシクロヘキシル基,ブチルシクロヘキシル基,ヘプチルシクロヘキシル基,フェニル基,トリル基,ジメチルフェニル基,ブチルフェニル基,ノニルフェニル基,メチルベンジル基,フェニルエチル基,ナフチル基,ジメチルナフチル基などを挙げることができる。
 無灰系摩擦調整剤としては、例えば、脂肪酸、高級アルコール、脂肪酸エステル、油脂類、アミン、アミド、硫化エステル等が挙げられる。これらの摩擦調整剤は、単独でまたは複数種を任意に組み合わせて含有させることができるが、通常その配合量は、組成物全量基準で0.01~10質量%の範囲である。
[内燃機関用潤滑油組成物]
 本発明の内燃機関用潤滑油組成物は、基油の粘度指数、高分子化合物の質量平均分子量および高分子化合物の配合量を上記規定範囲とするとともに、本組成物の粘度指数が130以上となるように基油と高分子化合物とを配合することで得ることができる。このような性状となる配合であれば、前記のような基油および高分子化合物のなかから任意に選ばれた1種類あるいは2種類以上の化合物を用いることができる。
 また、本組成物は、150℃における高せん断時の粘度低下率が、低せん断時の粘度に対して3.0%以下であることが好ましい。高せん断時の粘度低下率が3.0%を超える内燃機関用潤滑油は、粘度低下を見越して低せん断粘度を高く設定する必要があり、省燃費性を悪化させてしまうからである。
 さらに、潤滑油組成物は、100℃における動粘度が9.0mm/s未満であることが好ましい。9.0mm/s以上になると、内燃機関用潤滑油の実使用温度領域(80℃~100℃)の動粘度としては高いため、省燃費化を図ることができないからである。
 特に、潤滑油組成物は150℃における高せん断粘度がSAE粘度グレードで30相当の2.9mPa・s以上の場合、100℃おける動粘度が、9.0mm/s未満であることが望ましく、150℃における高せん断粘度がSAE粘度グレードで20相当の2.6mPa・s以上の場合は、100℃おける動粘度が、7.8mm/s未満が望ましい。これらの100℃動粘度を超えると、実使用温度領域(80℃~100℃)における内燃機関用潤滑油の粘性が高くなり過ぎてしまい、従来油と比較して省燃費化を図ることができないからである。
[その他添加剤]
 さらに、本発明の内燃機関用潤滑油組成物においては、本発明の目的が損なわれない範囲で、無灰系分散剤、金属系清浄剤、極圧剤、金属不活性化剤、防錆剤、消泡剤、抗乳化剤および着色剤等に代表される各種添加剤を単独で、または数種組み合わせて配合してもよい。
 無灰系分散剤としては、数平均分子量が900~3,500のポリブテニル基を有するポリブテニルコハク酸イミド、ポリブテニルベンジルアミン、ポリブテニルアミン、およびこれらのホウ酸変性物等の誘導体等が挙げられる。これらの無灰分散剤は、単独でまたは複数種を任意に組み合わせて含有させることができるが、通常その配合量は、組成物全量基準で0.01~10質量%の範囲である。
 金属系清浄剤としては、例えば、アルカリ金属(ナトリウム(Na)、カリウム(K)等)またはアルカリ土類金属(カルシウム(Ca)、マグネシウム(Mg)等)のスルフォネート、フェネート、サリシレートおよびナフテネート等が挙げられる。これらは単独でまたは複数種を組み合わせて使用できる。これらの金属系清浄剤の全塩基価および配合量は、要求される潤滑油の性能に応じて適宜選択すればよい。全塩基価は、過塩素酸法で通常0~500mgKOH/g、望ましくは10~400mgKOH/gである。また、その配合量は、通常、組成物全量基準で0.1~10質量%の範囲である。
 極圧剤としては、例えば硫化オレフィン、ジアルキルポリスルフィド、ジアリールアルキルポリスルフィド、ジアリールポリスルフィドなどの硫黄系化合物、リン酸エステル、チオリン酸エステル、亜リン酸エステル、アルキルハイドロゲンホスファイト、リン酸エステルアミン塩、亜リン酸エステルアミン塩などのリン系化合物等が挙げられ、通常その配合量は、組成物全量基準で0.01~10質量%の範囲である。
 金属不活性化剤としては、ベンゾトリアゾール、トリアゾール誘導体、ベンゾトリアゾール誘導体、チアジアゾール誘導体等が挙げられ、通常その配合量は、組成物全量基準で0.01~3質量%の範囲である。
 防錆剤としては、例えば、脂肪酸、アルケニルコハク酸ハーフエステル、脂肪酸セッケン、アルキルスルホン酸塩、アルカリ土類金属(カルシウム(Ca)、マグネシウム(Mg)、バリウム(Ba)等)のスルフォネート、フェネート、サリシレートおよびナフテネート、多価アルコール脂肪酸エステル、脂肪酸アミン、酸化パラフィン、アルキルポリオキシエチレンエーテル等が挙げられ、通常その配合量は、組成物全量基準で0.01~5質量%の範囲である。
 消泡剤としては、液状シリコーンが適しており、例えば、メチルシリコーン、フルオロシリコーン、およびポリアクリレート等が使用可能である。これら消泡剤の好ましい配合量は、組成物全量基準で0.0005~0.1質量%である。
 抗乳化剤として、エチレンプロピレンブロックポリマー、アルカリ土類金属(カルシウム(Ca)、マグネシウム(Mg)等)のスルフォネート、フェネート、サリシレートおよびナフテネートなどを用いることができ、通常その配合量は0.0005~1質量%である。
 着色剤としては、染料や顔料等を用いることができ、通常その配合量は、組成物全量基準で0.001~1質量%である。
 このようにして調製された本発明の内燃機関用潤滑油組成物は、上述のように配合してなるので、粘度指数を高く、高温高せん断時における粘度低下率を低く、かつ低せん断時の粘度を低くできるという効果を有する。それ故、内燃機関用潤滑油として好適に用いることができる。
 次に、本発明を実施例によりさらに詳しく説明するが、本発明は、以下の実施例によってなんら限定されるものでない。
 なお、各例における潤滑油組成物(試料油)の性状は以下のような方法で求めた。
(1)動粘度(40℃、80℃、100℃)および粘度指数:
 JIS(Japanese Industrial Standards) K 2283の方法により測定した。
(2)密度(15℃)
 JIS K 2249の方法により測定した。
(3)HTHS粘度(150℃)
 ASTM D4683の方法により、TBS高温粘度計(Tapered Bearing Simulator)を用いて測定した。試験条件を以下に示す。
 ・せん断速度         :10sec-1
 ・回転数(モーター)     :3000rpm
 ・間隔(ローター/ステーター):2~3μm
 ・試料量           :20~50ml
 ・測定時間          :校正4~6時間
                :試験15分間
(4)150℃粘度
 40℃における動粘度と、100℃における動粘度の値から、150℃における動粘度を外挿して求めた値に、15℃における密度と80℃における密度から、150℃における密度を外挿して求めた値を掛け合わせることで、150℃における低せん断時の粘度とした。
(5)モータリングトルク計測値
 以下のような仕様のエンジンに表2に示す各処方のエンジン油を充填してモータリングトルク試験を行い、所定回転数におけるトルクを測定した。試験条件を以下に示す。
 ・エンジンタイプ:2.2L 直列4気筒 DOHC 16バルブエンジン
 ・温度     :80℃
 ・回転数    :800rpm
(6)トルク改善率
 上記測定条件におけるモータリングトルク測定値の平均値を算出し、SAE粘度分類で10W-30の市販のエンジンオイル(比較例1)を基準油として比較し、その変化率をトルク改善率として算出した。
〔実施例1~12、比較例1~9〕
 以下に示す各種基油、各種高分子化合物、添加剤(内訳を表1に示す)を用いて、表2、表3、表4および表5の組成にしたがって内燃機関用潤滑油組成物(試料油)を調製した。
 調製した試料油は前記した方法で各性状を評価し、結果を表2、表3、表4および表5に示す。
(基油)
 実施例および比較例では、基油として、以下に示すAPI(American Petroleum Institute、米国石油協会)が規定しているGII、GIII、GIVの基油(a)~(h)を用いた。なお鉱物油系の基油としては、すべてパラフィン系のものを用いた。
・基油(a) 鉱物油系 水素化分解基油(API分類GIII)150N、
       動粘度(100℃)6.20mm/s、粘度指数130
・基油(b) 鉱物油系 水素化精製基油(API分類GII)150N、
       動粘度(100℃)5.35mm/s、粘度指数105
・基油(c) 鉱物油系 水素化精製基油(API分類GII)150N、
       動粘度(100℃)10.89mm/s、粘度指数107
・基油(d) 鉱物油系 水素化精製基油(API分類GII)600N、
       動粘度(100℃)12.19mm/s、粘度指数105
・基油(e) 合成油系 ポリ-α-オレフィン(API分類GIV)
       動粘度(100℃)9.80mm/s、粘度指数139
・基油(f) 鉱物油系 水素化精製基油(API分類GII)70N、
       動粘度(100℃)3.12mm/s、粘度指数109
・基油(g) 鉱物油系 水素化精製基油(API分類GII)100N、
       動粘度(100℃)4.28mm/s、粘度指数116
・基油(h) 鉱物油系 水素化分解基油(API分類GIII)100N、
       動粘度(100℃)4.41mm/s、粘度指数127
(高分子化合物)
 実施例および比較例では、高分子化合物として、以下に示す質量平均分子量を有するオレフィン系共重合体(オレフィンコポリマー:OCP)、またはポリメタクリレート(PMA)を用いた。
・OCP(a)質量平均分子量:4,700 (三井化学社製 ルーカントHC600)
・OCP(b)質量平均分子量:7,000 (三井化学社製 ルーカントHC2000)
・PMA(a)質量平均分子量:26,000 (三洋化成工業社製 アクルーブA-1050)
・PMA(b)質量平均分子量:45,000 (三洋化成工業社製 アクルーブC-728)
・PMA(c)質量平均分子量:100,000 (シェブロン社製 Paratone8057)
・PMA(d)質量平均分子量:230,000 (三洋化成工業社製 アクルーブ740)
・PMA(e)質量平均分子量:370,000 (三洋化成工業社製 アクルーブ915)
・PMA(f)質量平均分子量:420,000 (三洋化成工業社製 アクルーブ702)
・PMA(g)質量平均分子量:69,000 (デグサ社製 PLEXOL-162)
(摩擦調整剤)
・モリブデン系摩擦調整剤:モリブデン系摩擦調整剤としてモリブデンジアルキルジチオカルバメートを用いた。なお、モリブデン量としては4.5wt%である。
・無灰系摩擦調整剤:脂肪酸エステルとして、グリセリンモノオレートを用いた。
(添加剤)
・パッケージ添加剤:ディーゼルエンジン用潤滑油添加剤(DH-1添加剤)およびガソリンエンジン用潤滑油添加剤(SL添加剤)のパッケージ添加剤を用いた。なお、パッケージ添加剤の内訳は表1に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
〔評価結果〕
 表2~表5の結果から明らかなように、本発明の内燃機関用潤滑油組成物(実施例1~実施例12)は、粘度指数が120以上の基油に対して質量平均分子量が100,000未満の高分子化合物を組成物全量基準で0.01質量%以上、10質量%以下配合し、質量平均分子量が100,000以上の高分子化合物の配合量が組成物全量基準で0.5質量%未満であり、該組成物の粘度指数が130以上であるため、高温高せん断粘度を高く維持しつつ、実使用温度領域(80℃~100℃)の動粘度を低くすることができ、省燃費特性に優れている。
 一方、比較例1~比較例9の内燃機関用潤滑油組成物は、高温高せん断粘度を高く維持しつつ、実使用温度領域の動粘度を低くする、といった双方の特性を満足することができなかった。例えば、比較例2では、粘度低下率が低いものの、100℃における動粘度が高くなってしまった。
 また、トルク改善率についても、実施例1~実施例7、実施例10~実施例12は、比較例1~比較例7に比べて、優れている。特に、無灰系摩擦調整剤を添加した実施例11は優れており、モリブデン系摩擦調整剤を添加した実施例10は、より優れており、無灰系摩擦調整剤とモリブデン系摩擦調整剤を併用した実施例12は、さらに優れている。
 本発明の内燃機関用潤滑油組成物は、省燃費特性が要求されるエンジンオイルとして好適に利用できる。

Claims (4)

  1.  粘度指数が120以上の基油を含む内燃機関用潤滑油組成物であって、
     質量平均分子量が100,000未満の高分子化合物を組成物全量基準で0.01質量%以上、10質量%以下、好ましくは0.1質量%以上、10質量%以下配合してなるとともに、
     質量平均分子量が100,000以上の高分子化合物の配合量が組成物全量基準で0.5質量%未満であり、
     該組成物の粘度指数が130以上であることを特徴とする内燃機関用潤滑油組成物。
  2.  請求項1に記載の内燃機関用潤滑油組成物において、
     前記高分子化合物がポリメタクリレート、オレフィン系共重合体、スチレン系共重合体およびポリイソブチレンから選ばれる少なくともいずれか一種であることを特徴とする内燃機関用潤滑油組成物。
  3.  請求項1または請求項2に記載の内燃機関用潤滑油組成物において、
     前記基油は、鉱物油および合成油のうち少なくともいずれか一種であることを特徴とする内燃機関用潤滑油組成物。
  4.  請求項1から請求項3までのいずれか一項に記載の内燃機関用潤滑油組成物において、
     モリブデン系摩擦調整剤および無灰系摩擦調整剤の少なくともいずれか一種を配合してなることを特徴とする内燃機関用潤滑油組成物。
PCT/JP2009/066242 2008-09-19 2009-09-17 内燃機関用潤滑油組成物 WO2010032781A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09814625A EP2333037A4 (en) 2008-09-19 2009-09-17 LUBRICATING OIL COMPOSITION FOR A COMBUSTION ENGINE
JP2010529789A JP5551599B2 (ja) 2008-09-19 2009-09-17 内燃機関用潤滑油組成物
US13/063,765 US8445418B2 (en) 2008-09-19 2009-09-17 Lubricating oil composition for internal combustion engine
CN2009801367284A CN102149801A (zh) 2008-09-19 2009-09-17 内燃机用润滑油组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-241400 2008-09-19
JP2008241400 2008-09-19

Publications (1)

Publication Number Publication Date
WO2010032781A1 true WO2010032781A1 (ja) 2010-03-25

Family

ID=42039603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066242 WO2010032781A1 (ja) 2008-09-19 2009-09-17 内燃機関用潤滑油組成物

Country Status (5)

Country Link
US (1) US8445418B2 (ja)
EP (1) EP2333037A4 (ja)
JP (1) JP5551599B2 (ja)
CN (1) CN102149801A (ja)
WO (1) WO2010032781A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528489A (ja) * 2011-09-29 2014-10-27 トータル・マーケティング・サービシーズ 船舶エンジン用潤滑剤組成物
WO2016158971A1 (ja) * 2015-03-31 2016-10-06 出光興産株式会社 潤滑油組成物及び内燃機関の摩擦低減方法
JPWO2014136643A1 (ja) * 2013-03-04 2017-02-09 出光興産株式会社 潤滑油組成物
JPWO2015152143A1 (ja) * 2014-03-31 2017-04-13 出光興産株式会社 潤滑油組成物
JPWO2016114401A1 (ja) * 2015-01-15 2017-10-19 出光興産株式会社 潤滑油組成物
US11214755B2 (en) 2019-04-10 2022-01-04 Eneos Corporation Lubricating oil composition

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899106B (zh) * 2012-11-12 2014-12-10 陕西宝姜新能源技术研发有限公司 一种低碳甲醇柴油及其添加剂以及其制备方法
CA2843041C (en) 2013-02-22 2017-06-13 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
US11440815B2 (en) 2013-02-22 2022-09-13 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
US9364773B2 (en) 2013-02-22 2016-06-14 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
US9708196B2 (en) 2013-02-22 2017-07-18 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
KR20160087051A (ko) * 2015-01-12 2016-07-21 에스케이이노베이션 주식회사 내연기관용 윤활유 조성물
WO2016159185A1 (ja) * 2015-03-31 2016-10-06 出光興産株式会社 潤滑油組成物及び内燃機関の摩擦低減方法
CN105733773B (zh) * 2016-03-14 2019-04-26 张继德 油气通用内燃机油
CN110869478A (zh) 2017-06-27 2020-03-06 路博润公司 内燃机的润滑组合物和润滑方法
CN109207236A (zh) * 2017-06-29 2019-01-15 中国石油化工股份有限公司 一种重负荷柴油发动机油组合物及其应用
CN110092856B (zh) * 2019-05-14 2021-10-22 香港中文大学(深圳) 液体共聚烯烃、制备方法及用途
WO2021229517A1 (en) * 2020-05-14 2021-11-18 Chevron Japan Ltd. Lubricating oil composition including comb polymethacrylate and ethylene-based olefin copolymer viscosity modifiers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154760A (ja) * 2003-11-04 2005-06-16 Idemitsu Kosan Co Ltd 潤滑油基油及びその製造方法、並びに該基油を含有する潤滑油組成物
WO2007119299A1 (ja) * 2006-03-22 2007-10-25 Nippon Oil Corporation 低灰エンジン油組成物
JP2008088215A (ja) * 2006-09-29 2008-04-17 Sanyo Chem Ind Ltd 粘度指数向上剤および潤滑油組成物
WO2008093446A1 (ja) * 2007-01-31 2008-08-07 Nippon Oil Corporation 潤滑油組成物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3615267B2 (ja) 1995-04-28 2005-02-02 新日本石油株式会社 エンジン油組成物
CA2395106A1 (en) * 1999-12-22 2001-06-28 The Lubrizol Corporation Lubricants with the combination of a molybdenum compound, a phosphorus compounds and dispersants
JP2001181664A (ja) * 1999-12-22 2001-07-03 Nippon Mitsubishi Oil Corp エンジン油組成物
US20040132629A1 (en) * 2002-03-18 2004-07-08 Vinci James N. Lubricants containing olefin copolymer and acrylate copolymer
JP4327519B2 (ja) * 2002-06-28 2009-09-09 新日本石油株式会社 潤滑油組成物
JP2004083746A (ja) * 2002-08-27 2004-03-18 Nippon Oil Corp 内燃機関用潤滑油組成物
JP2004197002A (ja) * 2002-12-19 2004-07-15 Chevron Texaco Japan Ltd 潤滑油組成物
JP2004307551A (ja) * 2003-04-02 2004-11-04 Nippon Nsc Ltd 粘度指数向上剤及びそれを含む潤滑油
EP1508611B1 (en) * 2003-08-22 2019-04-17 Nissan Motor Co., Ltd. Transmission comprising low-friction sliding members and transmission oil therefor
JP4976645B2 (ja) * 2004-07-23 2012-07-18 出光興産株式会社 内燃機関摺動部用潤滑油組成物及び摺動方法
EP1808476B1 (en) 2004-10-22 2011-06-29 Nippon Oil Corporation Lubricant composition for transmission
JP5004237B2 (ja) * 2004-12-22 2012-08-22 ザ ルブリゾル コーポレイション 粘度制御方法
US9012380B2 (en) 2005-01-07 2015-04-21 Nippon Oil Corporation Lubricant base oil, lubricant composition for internal combustion engine and lubricant composition for driving force transmitting device
JP5213310B2 (ja) * 2006-04-20 2013-06-19 Jx日鉱日石エネルギー株式会社 潤滑油組成物
JP5175462B2 (ja) * 2006-09-04 2013-04-03 出光興産株式会社 内燃機関用潤滑油組成物
JP2008189878A (ja) * 2007-02-07 2008-08-21 Nippon Oil Corp 潤滑剤組成物
JP5288861B2 (ja) * 2008-04-07 2013-09-11 Jx日鉱日石エネルギー株式会社 潤滑油組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154760A (ja) * 2003-11-04 2005-06-16 Idemitsu Kosan Co Ltd 潤滑油基油及びその製造方法、並びに該基油を含有する潤滑油組成物
WO2007119299A1 (ja) * 2006-03-22 2007-10-25 Nippon Oil Corporation 低灰エンジン油組成物
JP2008088215A (ja) * 2006-09-29 2008-04-17 Sanyo Chem Ind Ltd 粘度指数向上剤および潤滑油組成物
WO2008093446A1 (ja) * 2007-01-31 2008-08-07 Nippon Oil Corporation 潤滑油組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2333037A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528489A (ja) * 2011-09-29 2014-10-27 トータル・マーケティング・サービシーズ 船舶エンジン用潤滑剤組成物
JPWO2014136643A1 (ja) * 2013-03-04 2017-02-09 出光興産株式会社 潤滑油組成物
JPWO2015152143A1 (ja) * 2014-03-31 2017-04-13 出光興産株式会社 潤滑油組成物
JPWO2016114401A1 (ja) * 2015-01-15 2017-10-19 出光興産株式会社 潤滑油組成物
WO2016158971A1 (ja) * 2015-03-31 2016-10-06 出光興産株式会社 潤滑油組成物及び内燃機関の摩擦低減方法
US11214755B2 (en) 2019-04-10 2022-01-04 Eneos Corporation Lubricating oil composition
DE102020002249B4 (de) 2019-04-10 2022-03-24 Jxtg Nippon Oil & Energy Corporation Schmierölzusammensetzung und deren Verwendung

Also Published As

Publication number Publication date
US8445418B2 (en) 2013-05-21
EP2333037A4 (en) 2012-03-21
US20110166053A1 (en) 2011-07-07
CN102149801A (zh) 2011-08-10
EP2333037A1 (en) 2011-06-15
JPWO2010032781A1 (ja) 2012-02-09
JP5551599B2 (ja) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5551599B2 (ja) 内燃機関用潤滑油組成物
JP5727713B2 (ja) 内燃機関用潤滑油組成物
JP5390737B2 (ja) 潤滑油組成物
EP1920035B1 (en) Gear oil composition
JP5108200B2 (ja) 潤滑油基油及びその製造方法、並びに該基油を含有する潤滑油組成物
US7871966B2 (en) Lubricating oil composition
JP5800931B2 (ja) 潤滑油組成物
JP2693698B2 (ja) 省燃費型潤滑油
WO2016159006A1 (ja) 潤滑油組成物
WO2010041692A1 (ja) 潤滑油組成物及びその製造方法
EP3434756B1 (en) Lubricant oil composition and lubrication method
JP2016020498A (ja) 潤滑油組成物
JP2012211338A (ja) 潤滑油基油及びその製造方法、並びに該基油を含有する潤滑油組成物
JP2004292818A (ja) 二頂のギア潤滑剤配合物
JPH07286190A (ja) 潤滑油組成物
JP2012180535A (ja) 潤滑油基油及びその製造方法、並びに該基油を含有する潤滑油組成物
JPH09328694A (ja) 内燃機関用潤滑油組成物
JP5342138B2 (ja) 潤滑油組成物
WO2022250017A1 (ja) 内燃機関用潤滑油組成物
WO2022189434A1 (en) Lubricating oil composition
JP2000144166A (ja) 内燃機関用潤滑油組成物
JPH09217079A (ja) 省燃費型潤滑油

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136728.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529789

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 988/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13063765

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009814625

Country of ref document: EP