WO2016158971A1 - 潤滑油組成物及び内燃機関の摩擦低減方法 - Google Patents

潤滑油組成物及び内燃機関の摩擦低減方法 Download PDF

Info

Publication number
WO2016158971A1
WO2016158971A1 PCT/JP2016/060168 JP2016060168W WO2016158971A1 WO 2016158971 A1 WO2016158971 A1 WO 2016158971A1 JP 2016060168 W JP2016060168 W JP 2016060168W WO 2016158971 A1 WO2016158971 A1 WO 2016158971A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
friction modifier
ashless friction
oil composition
lubricating oil
Prior art date
Application number
PCT/JP2016/060168
Other languages
English (en)
French (fr)
Inventor
幾子 中谷
和志 田村
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020177018254A priority Critical patent/KR20170134965A/ko
Priority to CN201680001679.3A priority patent/CN106459809A/zh
Priority to EP16772852.6A priority patent/EP3279292B1/en
Priority to US15/318,559 priority patent/US20170121626A1/en
Publication of WO2016158971A1 publication Critical patent/WO2016158971A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/76Esters containing free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/066Organic compounds derived from inorganic acids or metal salts derived from Mo or W
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/68Shear stability
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to a lubricating oil composition and a friction reducing method for an internal combustion engine.
  • Molybdenum compounds such as MoDTC exhibit a friction reducing effect in a relatively high temperature range of 80 ° C. or higher.
  • An example of a lubricating oil composition containing a molybdenum compound is Patent Document 1.
  • ashless friction modifiers such as ester and amine are also used for reducing friction (for example, Patent Document 2). These ashless friction modifiers are excellent in the friction reducing effect in a relatively low temperature range of less than 80 ° C.
  • An object of this invention is to provide the lubricating oil composition excellent in the friction reduction effect and excellent in fuel-saving property.
  • an embodiment of the present invention is a lubricating oil composition
  • a lubricating oil composition comprising (A) a lubricating base oil, (B) a molybdenum compound, and (C) an ashless friction modifier
  • the (B) molybdenum compound includes a dinuclear organic molybdenum compound represented by the following general formula (I), and the molybdenum atom content of the dinuclear organic molybdenum compound is 0.030 based on the total amount of the lubricating oil composition.
  • the (C) ashless friction modifier includes (C1) an ester ashless friction modifier and / or (C2) an amine ashless friction modifier, and (C1) the ester ashless friction modifier and (C2) Provided is a lubricating oil composition in which the total content of amine-based ashless friction modifier is more than 0.1% by mass and 1.8% by mass or less based on the total amount of the lubricating oil composition.
  • R 1 to R 4 represent a hydrocarbon group having 4 to 22 carbon atoms, and R 1 to R 4 may be the same or different.
  • X 1 to X 4 each represents a sulfur atom or an oxygen atom.
  • the lubricating oil composition of the present invention enables the combined use of a molybdenum compound and an ashless friction modifier without hindering the friction reducing effect of the molybdenum compound, it has an excellent friction reducing effect and good fuel economy. Can be.
  • the lubricating oil composition of this embodiment is a lubricating oil composition comprising (A) a lubricating base oil, (B) a molybdenum compound, and (C) an ashless friction modifier,
  • the (B) molybdenum compound includes a dinuclear organic molybdenum compound represented by the following general formula (I), and the molybdenum atom content of the dinuclear organic molybdenum compound is 0.030 based on the total amount of the lubricating oil composition.
  • the (C) ashless friction modifier includes (C1) an ester ashless friction modifier and / or (C2) an amine ashless friction modifier, and (C1) the ester ashless friction modifier and (C2)
  • the total content of the amine-based ashless friction modifier is more than 0.1% by mass and 1.8% by mass or less based on the total amount of the lubricating oil composition.
  • R 1 to R 4 represent a hydrocarbon group having 4 to 22 carbon atoms, and R 1 to R 4 may be the same or different.
  • X 1 to X 4 each represents a sulfur atom or an oxygen atom.
  • the lubricating oil composition of this embodiment contains (A) a lubricating base oil.
  • a lubricating base oil examples include mineral oil and / or synthetic oil.
  • Mineral oils include paraffin-based mineral oils, intermediate-based mineral oils and naphthenic-based mineral oils obtained by ordinary refining methods such as solvent refining and hydrogenation refining; wax produced by the Fischer-Tropsch process (gas-tri-liquid wax) And wax isomerate oil produced by isomerizing wax such as mineral oil wax.
  • synthetic oils include hydrocarbon synthetic oils and ether synthetic oils.
  • hydrocarbon-based synthetic oil examples include polybutene, polyisobutylene, 1-octene oligomer, 1-decene oligomer, ⁇ -olefin oligomer such as ethylene-propylene copolymer or the hydride thereof, alkylbenzene, alkylnaphthalene and the like.
  • ether synthetic oils include polyoxyalkylene glycol and polyphenyl ether.
  • the lubricating base oil may be a single system using one of the above-described mineral oils and synthetic oils, but is a mixture of two or more mineral oils, or a mixture of two or more synthetic oils. Or a mixture of one or more of mineral oil and synthetic oil.
  • the (A) lubricating oil base oil it is preferable to use one or more selected from mineral oils or synthetic oils classified into Group 3 and Group 4 in the base oil classification of the American Petroleum Institute.
  • the content of the lubricating base oil is preferably 60% by mass or more, more preferably 65% by mass or more and 95% by mass or less, and more preferably 70% by mass or more and 85% by mass based on the total amount of the lubricating oil composition. More preferably, it is% or less.
  • the lubricating oil composition of this embodiment contains (B) a molybdenum compound. Further, the lubricating oil composition of the present embodiment includes a binuclear organic molybdenum compound represented by the following general formula (I) as the molybdenum compound of the component (B), and converted to molybdenum atoms of the dinuclear organic molybdenum compound. Is 0.030% by mass or more and 0.140% by mass or less based on the total amount of the lubricating oil composition.
  • I 0.030% by mass or more and 0.140% by mass or less based on the total amount of the lubricating oil composition.
  • R 1 to R 4 represent a hydrocarbon group having 4 to 22 carbon atoms, and R 1 to R 4 may be the same or different.
  • the carbon number is 3 or less, the oil solubility is poor, and when it is 23 or more, the melting point becomes high, handling becomes worse, and the friction reducing ability is lowered.
  • the carbon number is preferably 4 to 18 carbon atoms, more preferably 8 to 13 carbon atoms.
  • an alkyl group, an alkenyl group, alkylaryl group, cycloalkyl group includes a cycloalkenyl group, an alkyl group or an alkenyl group of branched or straight chain is preferred, branched A chain or straight chain alkyl group is more preferred.
  • Examples of the branched or straight chain alkyl group include n-octyl group, 2-ethylhexyl group, isononyl group, n-decyl group, isodecyl group, dodecyl group, tridecyl group, isotridecyl group and the like.
  • the binuclear organomolybdenum compound represented by the general formula (I) is an alkyl group in which R 1 and R 2 are the same, R 3 and R It is preferable that 4 is the same alkyl group, and the alkyl groups of R 1 and R 2 are different from the alkyl groups of R 3 and R 4 .
  • X 1 to X 4 represent a sulfur atom or an oxygen atom, and X 1 to X 4 may be the same or different.
  • all of X 1 to X 4 may be sulfur atoms or oxygen atoms.
  • the lubricating oil composition of this embodiment requires that the content of the dinuclear organic molybdenum compound in terms of molybdenum atoms is 0.030% by mass or more and 0.140% by mass or less based on the total amount of the lubricating oil composition. .
  • the content of the dinuclear organic molybdenum compound in terms of molybdenum atom is less than 0.030% by mass, the friction reduction effect in the high temperature region cannot be improved, and the fuel economy cannot be satisfied. Further, when the content of the dinuclear organic molybdenum compound in terms of molybdenum atom is more than 0.140% by mass, the cleanliness deteriorates.
  • the content of the dinuclear organic molybdenum compound in terms of molybdenum atom is preferably 0.050 to 0.120% by mass, and 0.060 to 0.100% by mass based on the total amount of the lubricating oil composition. Is more preferable.
  • the lubricating oil composition of the present embodiment may further contain a mononuclear organic molybdenum compound and / or a trinuclear organic molybdenum compound as the molybdenum compound.
  • the lubricating oil composition of this embodiment contains (C) an ashless friction modifier. Further, the lubricating oil composition of the present embodiment includes (C1) an ester-based ashless friction modifier and / or (C2) an amine-based ashless friction modifier as the ashless friction modifier of component (C), And the total content of the (C1) ester-based ashless friction modifier and the (C2) amine-based ashless friction modifier is more than 0.1% by mass and less than 1.8% by mass based on the total amount of the lubricating oil composition. is there.
  • the lubricating oil composition of the present embodiment uses (C1) an ester-based ashless friction modifier and / or (C2) an amine-based ashless friction modifier as the ashless friction modifier of component (C). And by making the total of these content into the said range, a friction reduction effect can be made favorable and fuel-saving property can be made favorable.
  • the total content of (C1) ester-based ashless friction modifier and (C2) amine-based ashless friction modifier is preferably 0.2% by mass or more and 1.7% by mass or less based on the total amount of the lubricating oil composition. 0.4 mass% or more and 1.6 mass% or less are more preferable.
  • ester Ashless Friction Modifier (C1) As the ester ashless friction modifier of component (C1), various ester compounds can be used, but ester compounds having one or more hydroxyl groups in the molecule are preferred, An ester compound having two or more hydroxyl groups in the molecule is more preferred. Further, the ester compound having one or more hydroxyl groups in the molecule preferably has 2 to 24 carbon atoms, more preferably 10 to 24, and still more preferably 16 to 22.
  • the ester compound having one or more hydroxyl groups in the molecule is, for example, an ester compound having one hydroxyl group in the molecule as shown in the following general formula (II), or 2 in the molecule as shown in the following general formula (III). And compounds having two hydroxyl groups. Among these, the compound represented by the general formula (III) is preferable.
  • R 5 and R 10 are each a hydrocarbon group having 1 to 32 carbon atoms.
  • the number of carbon atoms of the hydrocarbon group of R 5 and R 10 is preferably 8 to 32, more preferably 12 to 24, and still more preferably 16 to 20.
  • Examples of the hydrocarbon group for R 5 and R 10 include an alkyl group, an alkenyl group, an alkylaryl group, a cycloalkyl group, and a cycloalkenyl group. Among these, an alkyl group or an alkenyl group is preferable, and an alkenyl group is preferable among them.
  • alkyl group in R 5 and R 10 examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, Examples include tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, heicosyl group, docosyl group, tricosyl group, and tetracosyl group, which are linear, branched, or cyclic.
  • alkenyl group for R 5, R 10 vinyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tetradecenyl Group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group, heneicosenyl group, dococenyl group, tricocenyl group, tetracocenyl group, which are linear, branched or cyclic.
  • the position of the double bond may be arbitrary.
  • R 6 to R 9 and R 11 to R 15 are each a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms, and may be the same or different.
  • R 6 to R 9 are hydrogen atoms, or that R 6 to R 8 are all hydrogen atoms and R 9 is a hydrocarbon group.
  • R 11 to R 15 are hydrogen atoms.
  • (C1) as an ester-based ashless friction modifier if using a compound represented by the above formula (II), to R 5 ⁇ R 9 may be used any single species are the same, R 5 ⁇ R Two or more different kinds of 9 different in part (for example, different in the number of carbon atoms of R 5 and the presence or absence of a double bond) may be used in combination.
  • ester-based ashless friction modifier (C1) when the compound represented by the general formula (III) is used as the ester-based ashless friction modifier (C1), a single species in which R 10 to R 15 are all the same may be used, or R 10 to Two or more different types of R 15 which are partially different (for example, those having different numbers of carbon atoms in R 10 and the presence or absence of double bonds, or those having different R 11 to R 15 ) may be used.
  • R 6 ⁇ R 9, R 11 ⁇ R 15 is a hydrocarbon group
  • the hydrocarbon group may be saturated or unsaturated, may be aliphatic or aromatic, or cyclic also be straight-chain or branched.
  • a represents an integer of 1 to 20, preferably 1 to 12, and more preferably 1 to 10.
  • the compound represented by the general formula (II) is obtained, for example, by a reaction between a fatty acid and an alkylene oxide.
  • the fatty acid for obtaining the compound represented by the general formula (II) include lauric acid, myristic acid, palmitic acid, oleic acid, beef tallow fatty acid, coconut oil fatty acid and the like.
  • the alkylene oxide include alkylene oxides having 2 to 12 carbon atoms, such as ethylene oxide, propylene oxide, butylene oxide, hexylene oxide, octylene oxide, decylene oxide, dodecylene oxide and the like. Is mentioned.
  • Examples of the compound of the general formula (II) include polyoxyethylene monolaurate, polyoxyethylene monostearate, and polyoxyethylene monooleate.
  • Examples of the compound represented by the general formula (III) include glycerol fatty acid monoesters such as glycerol monolaurate, glycerol monostearate, glycerol monomysterate, and glycerol monooleate. Of these, glycerin monooleate is preferred.
  • (C2) Amine-based ashless friction modifier (C2) As the amine-based ashless friction modifier, an aliphatic amine compound is suitable, and an aliphatic amine having one or more hydroxyl groups in the molecule System compounds are more preferred.
  • the (C2) amine-based ashless friction modifier may be any of primary amines, secondary amines, and tertiary amines, but tertiary amines are preferred.
  • (C2) Amine-based ashless friction modifier that is an aliphatic amine compound having one or more hydroxyl groups in the molecule and is a tertiary amine includes the following general formulas (IV) and (V) And a compound represented by the general formula (IV) is preferable.
  • R 16 , R 25 and R 26 are each a hydrocarbon group having 1 to 32 carbon atoms, and R 25 and R 26 may be the same as or different from each other.
  • the hydrocarbon group of R 16 , R 25 and R 26 has a carbon number of preferably 8 to 32, more preferably 10 to 24, and still more preferably 12 to 20.
  • hydrocarbon group R 16, R 25 and R 26 an alkyl group, an alkenyl group, an alkylaryl group, a cycloalkyl group and cycloalkenyl group.
  • an alkyl group or an alkenyl group is preferable.
  • alkyl group in R 16 , R 25 and R 26 examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, Examples include tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, heicosyl group, docosyl group, tricosyl group and tetracosyl group, which are linear, branched, cyclic Either may be sufficient.
  • alkenyl group in R 16 , R 25 and R 26 examples include vinyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl.
  • R 17 to R 24 and R 27 to R 30 are a hydrogen atom, a hydrocarbon group having 1 to 18 carbon atoms, or an oxygen-containing hydrocarbon group containing an ether bond or an ester bond, and may be the same or different from each other. However, a hydrogen atom or a hydrocarbon group is preferable.
  • the hydrocarbon group for R 17 to R 24 and R 27 to R 30 may be saturated or unsaturated, may be aliphatic or aromatic, may be linear, branched or cyclic, and is, for example, an alkyl group or alkenyl An aliphatic hydrocarbon group such as a group, or an aromatic hydrocarbon group.
  • oxygen-containing hydrocarbon group containing an ether bond or an ester bond examples are those having 1 to 18 carbon atoms, such as a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, an isopropoxymethyl group, an n-butoxymethyl group, t-butoxymethyl group, hexyloxymethyl group, octyloxymethyl group, 2-ethylhexyloxymethyl group, decyloxymethyl group, dodecyloxymethyl group, 2-butyloctyloxymethyl group, tetradecyloxymethyl group, hexadecyloxy group Methyl group, 2-hexyldecyloxymethyl group, allyloxymethyl group, phenoxy group, benzyloxy group, methoxyethyl group, methoxypropyl group, 1,1-bismethoxypropyl group, 1,2-bismethoxypropyl group, ethoxy Propyl group, (2-meth Cie
  • B to d each represent an integer of 0 to 20.
  • b + c is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 4, and most preferably 2.
  • R 17 to R 24 are hydrogen atoms.
  • R 27 to R 30 are hydrogen atoms.
  • R 16 may be the same, or a naturally occurring hydrocarbon group such as beef tallow As described above, those having different R 16 (for example, those having different numbers of carbon atoms and different double bonds) may be used in combination.
  • R 25 and R 26 may be the same, or R 25 and R Those having different 26 (for example, different in the number of carbon atoms and the presence or absence of a double bond) may be mixed and used.
  • Specific compounds of the general formula (IV) include octylethanolamine, decylethanolamine, dodecylethanolamine, tetradecylethanolamine, hexadecylethanolamine, stearylethanolamine, oleylethanolamine, coconut oil ethanolamine, palm oil
  • An amine compound having one 2-hydroxyalkyl group such as hydroxyethyl group exemplified by ethanolamine, rapeseed oil ethanolamine, beef tallow ethanolamine, etc .
  • Specific compounds of the general formula (V) include N-methyl-octylethanolamine, N-methyl-decylethanolamine, N-methyl-dodecylethanolamine, N-methyl-tetradecylethanolamine, N-methyl- Hexadecylethanolamine, N-methyl-stearylethanolamine, N-methyl-oleylethanolamine, N-methyl-coconut oil ethanolamine, N-methyl-palm oil ethanolamine, N-methyl-rapeseed oil ethanolamine, N- Alkylamine compounds having one 2-hydroxyalkyl group such as hydroxyethyl group exemplified by methyl-tallow ethanolamine; polyoxyethylene N-methyl-decylamine, polyoxyethylene N-methyl-dodecylamine, polyoxyethylene N-Me An alkylamine compound having a polyalkylene oxide structure exemplified by ru-tetradecylamine, polyoxyethylene N-methyl-hexadecylamine, polyoxy
  • the lubricating oil composition of the present embodiment may include (C1) an ester-based ashless friction modifier and (C2) an amine-based ashless friction modifier as the ashless friction modifier of component (C).
  • (C1) an ester-based ashless friction modifier and (C2) an amine-based ashless friction modifier in combination it is preferable to use (C1) an ester-based ashless friction modifier and (C2) an amine-based ashless friction modifier in combination.
  • the friction reduction effect based on the (B) molybdenum compound can be more easily maintained.
  • the content of (C2) amine-based ashless friction modifier and (C1) Mass ratio to content of ester ashless friction modifier is 1 Preferably it is less than 0.00.
  • the ratio is more preferably 0.10 or more and 0.80 or less, and further preferably 0.15 or more and 0.60 or less.
  • the mass ratio of the total content of (C1) ester-based ashless friction modifier and (C2) amine-based ashless friction modifier to the content in terms of molybdenum atom of (B) molybdenum compound is 4.0 to 30.0.
  • 5.0 to 25.0 is more preferable, and 6.5 to 23.0 is still more preferable.
  • the ashless friction modifier is a component that does not impair the effects of the lubricating oil composition of the present embodiment, except for (C1) ester-based ashless friction modifier and (C2) amine-based ashless friction modifier. Ash-based friction modifiers (other ashless friction modifiers) may be included. However, the total content of (C1) ester-based ashless friction modifier and (C2) amine-based ashless friction modifier with respect to the total amount of (C) ashless friction modifier is preferably 80% by mass or more, It is more preferably 90% by mass or more, and further preferably 100% by mass.
  • the lubricating oil composition of this embodiment preferably further comprises (D) a boron-modified product of succinimide.
  • (D) a boron-modified product of (S) succinimide together with (B) a molybdenum compound and (C1) an ester-based ashless friction modifier and / or (C2) an amine-based ashless friction modifier, (B)
  • the friction reduction effect based on the molybdenum compound can be more easily maintained.
  • the synergistic effect of (B) the molybdenum compound and (C1) the ester-based ashless friction modifier and / or (C2) the amine-based ashless friction modifier The effect is easily exhibited, the friction reduction effect is improved, and the fuel saving performance can be improved.
  • Examples of the boron-modified succinimide component (D) include alkenyl or alkyl succinic acid monoimides, or alkenyl or alkyl succinic acid bisimides that are boronated.
  • Examples of the alkenyl or alkyl succinic acid monoimide include compounds represented by the following general formula (VI).
  • Examples of the alkenyl or alkyl succinic acid bisimide include compounds represented by the following general formula (VII).
  • R 31 , R 33 and R 34 are alkenyl groups or alkyl groups, and the weight average molecular weights are each preferably 500 to 3,000, more preferably 1, 000 to 3,000.
  • the weight average molecular weight of R 31 , R 33 and R 34 is 500 or more, the solubility in the lubricating base oil can be improved.
  • R 33 and R 34 may be the same or different.
  • R 32 , R 35 and R 36 are each an alkylene group having 2 to 5 carbon atoms, and R 35 and R 36 may be the same or different.
  • e represents an integer of 1 to 10, and f represents 0 or an integer of 1 to 10.
  • e is preferably 2 to 5, more preferably 2 to 4.
  • e is 2 or more, it is expected that the effect obtained by the boron-modified succinimide is easily obtained.
  • e is 5 or less, the solubility in the lubricating base oil becomes even better.
  • f is preferably 1 to 6, and more preferably 2 to 6. When f is 1 or more, it is expected that the effect obtained by the present compound is appropriately exhibited.
  • f is 6 or less, the solubility in the lubricating base oil becomes even better.
  • alkenyl group examples include a polybutenyl group, a polyisobutenyl group, and an ethylene-propylene copolymer
  • examples of the alkyl group include hydrogenated groups thereof.
  • Suitable alkenyl groups include polybutenyl or polyisobutenyl groups.
  • the polybutenyl group a mixture of 1-butene and isobutene or a polymer obtained by polymerizing high-purity isobutene is preferably used.
  • a representative example of a suitable alkyl group is a hydrogenated polybutenyl group or polyisobutenyl group.
  • the boron-modified product of succinimide is obtained, for example, by reacting polyolefin with maleic anhydride to obtain alkenyl succinic anhydride (x), and further reacting polyamine with a boron compound to obtain an intermediate ( After obtaining y), it can be obtained by reacting alkenyl succinic anhydride (x) with intermediate (y) to imidize.
  • Monoimides or bisimides can be made by changing the ratio of alkenyl succinic anhydride or alkyl succinic anhydride to polyamine.
  • the boron-modified succinimide (D) can also be produced by treating boron-free alkenyl or alkyl succinic monoimide or alkenyl or alkyl succinic bisimide with the boron compound.
  • ⁇ -olefins having 2 to 8 carbon atoms can be mixed and used, but a mixture of isobutene and 1-butene is preferably used. be able to.
  • polyamines include ethylenediamine, propylenediamine, butylenediamine, pentylenediamine, and other single diamines, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, di (methylethylene) triamine, dibutylenetriamine, triethylene
  • polyalkylene polyamines such as butylenetetramine and pentapentylenehexamine, and piperazine derivatives such as aminoethylpiperazine.
  • Examples of the boron compound include boric acid, borates, and borate esters.
  • Examples of boric acid include orthoboric acid, metaboric acid, and paraboric acid.
  • Examples of the borate include ammonium borate such as ammonium metaborate, ammonium tetraborate, ammonium pentaborate, and ammonium octaborate.
  • As borate esters monomethyl borate, dimethyl borate, trimethyl borate, monoethyl borate, diethyl borate, triethyl borate, monopropyl borate, dipropyl borate, tripropyl borate, monobutyl borate, Examples thereof include dibutyl borate and tributyl borate.
  • the ratio (B / N ratio) of the amount of boron atoms to the amount of nitrogen atoms contained in the boron-modified succinimide is preferably 0.6 or more on a mass basis from the viewpoint of friction reduction. It is more preferably 7 or more, and further preferably 0.8 or more.
  • the B / N ratio is not particularly limited, but is preferably 2.0 or less, more preferably 1.5 or less, and further preferably 1.3 or less.
  • the boron-modified succinimide preferably contains a large amount of tri-coordinated boron-modified succinimide, specifically boron of 3-coordinate succinimide.
  • the modified product is preferably contained in a molar ratio of 0.50 or more, more preferably 0.60 or more, with respect to the total amount of the three-coordinate and tetracoordinate boron-modified succinimide. More preferably, it is 0.65 or more.
  • the ratio of the boron-modified 3-coordinate succinimide and the boron-modified 4-coordinated succinimide can be measured, for example, by 11 B-NMR measurement as a BF 3 ⁇ OEt 2 standard (0 ppm).
  • the boron-modified content of the boron-modified succinimide is preferably 0.050% by mass or less based on the total amount of the lubricating oil composition, The content is more preferably 0.001 to 0.050% by mass, further preferably 0.005 to 0.040% by mass, and still more preferably 0.015 to 0.035% by mass.
  • the lubricating oil composition of the present embodiment includes (C1) an ester-based ashless friction modifier and (C2) an amine-based ashless to the content in terms of boron atom in the boron-modified succinimide (D).
  • Mass ratio of total content of friction modifiers [(D) Boron-modified content of boron-modified succinimide / ((C1) content of ester-based ashless friction adjustment + (C2) amine-based content
  • the content of the ash friction modifier]] is preferably 0.011 or more, more preferably 0.013 or more and 0.100 or less, and further preferably 0.015 or more and 0.070 or less.
  • the lubricating oil composition of this embodiment preferably further contains (E) poly (meth) acrylate as a viscosity index improver. (E) By containing poly (meth) acrylate, fuel-saving property can be improved further.
  • the monomer constituting the poly (meth) acrylate is an alkyl (meth) acrylate, preferably an alkyl (meth) acrylate having a linear alkyl group having 1 to 18 carbon atoms or a branched alkyl group having 3 to 34 carbon atoms. is there.
  • (E) As a preferable monomer constituting poly (meth) acrylate, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) ) Acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, tetra (meth) acrylate, hexa (meth) acrylate , Octadecyl (meth) acrylate, and the like.
  • the alkyl group of these monomers may be linear or branched.
  • Examples of the alkyl (meth) acrylate having a branched alkyl group having 3 to 34 carbon atoms include isopropyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 3,5,5-trimethylhexyl (meth) acrylate, 2- Butyloctyl (meth) acrylate, 2-hexyldecyl (meth) acrylate, 2-octyldodecyl (meth) acrylate, 2-decyltetradecyl (meth) acrylate, 2-dodecylhexadecyl (meth) acrylate, 2-tetradecyloctadecyl (Meth) acrylate is mentioned.
  • the poly (meth) acrylate preferably has a weight average molecular weight of 100,000 to 600,000, more preferably 15,000 to 400,000.
  • weight average molecular weight refers to a molecular weight in terms of polystyrene determined by gel permeation chromatography (GPC) measurement.
  • the poly (meth) acrylate preferably has an SSI of 50 or less, more preferably 1-30. By setting the weight average molecular weight within the above range, the SSI can be 30 or less.
  • SSI means the shear stability index (Shear Stability Index), and indicates the ability to resist the decomposition of poly (meth) acrylate. The higher the SSI, the more unstable the polymer is to shear and the easier it is to degrade.
  • Kv 0 is a value of 100 ° C. kinematic viscosity of a mixture obtained by adding poly (meth) acrylate to base oil.
  • Kv 1 is the value of 100 ° C. kinematic viscosity after passing a mixture of base oil plus poly (meth) acrylate through a 30 cycle high shear Bosch diesel injector according to the procedure of ASTM D6278.
  • Kv oil is the value of the 100 ° C. kinematic viscosity of the base oil.
  • a base oil a Group II base oil having a kinematic viscosity of 100 ° C. of 5.35 mm 2 / s and a viscosity index of 105 is used.
  • the content of (E) poly (meth) acrylate is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass, based on the total amount of the lubricating oil composition, from the viewpoint of fuel economy. Preferably, it is 1 to 8% by mass.
  • the content of poly (meth) acrylate means the content of only the resin component composed of poly (meth) acrylate, and does not include the mass of diluent oil or the like contained together with the poly (meth) acrylate, for example. Content based on solid content.
  • the lubricating oil composition of the present embodiment further contains (F) a metallic detergent.
  • a metal-based detergent By containing a metal-based detergent, the generation of deposits inside the engine during high-temperature operation is suppressed, sludge accumulation is prevented and the engine interior is kept clean, and due to deterioration of engine oil, etc. The generated acidic substance can be neutralized to prevent corrosive wear.
  • the metal detergent include alkali metal detergents and alkaline earth metal detergents.
  • Specific examples include one or more metal detergents selected from alkali metal sulfonates or alkaline earth metal sulfonates, alkali metal phenates or alkaline earth metal phenates, alkali metal salicylates, alkaline earth metal salicylates, and the like. It is done.
  • the alkali metal include sodium and potassium
  • examples of the alkaline earth metal include magnesium and calcium. Among these, sodium which is an alkali metal, magnesium and calcium which are alkaline earth metals are preferable, and calcium is more preferable.
  • the metallic detergent may be neutral, basic, or overbased, but is preferably basic or overbased. Further, the total base number of the metal detergent (F) is preferably 10 to 500 mgKOH / g, more preferably 150 to 450 mgKOH / g. The total base number is measured according to the perchloric acid method of JIS K2501.
  • the lubricating oil composition of the present embodiment is based on the total amount of the lubricating oil composition in terms of the amount of metal equivalent of (E) metal-based detergent. It is preferably 0.05 to 0.50% by mass, and more preferably 0.10 to 0.30% by mass.
  • the lubricating oil composition of the present embodiment further contains (G) zinc dithiophosphate.
  • the friction reduction effect can be made better.
  • the alkyl group or alkenyl group of R 37 to R 40 in the general formula (VIII) preferably has 8 to 18 carbon atoms, and more preferably 10 to 14 carbon atoms.
  • R 37 to R 40 in the general formula (VIII) are preferably alkyl groups.
  • alkyl group in R 37 to R 40 examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, Examples include tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, heicosyl group, docosyl group, tricosyl group, and tetracosyl group, which are linear, branched, or cyclic.
  • alkenyl groups include vinyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl Group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group, henecocenyl group, dococenyl group, tricocenyl group, tetracocenyl group, but these may be linear, branched or cyclic, and double The position of the bond is also arbitrary.
  • R 37 to R 40 may be the same or different, but are preferably the same from the viewpoint of ease of production.
  • dodecyl groups such as lauryl group, octadecyl groups such as tetradecyl group, hexadecyl group and stearyl group, and octadecenyl groups such as icosyl group and oleyl group are preferable, but lauryl group is most preferable.
  • the content of (G) zinc dithiophosphate is preferably 0.01 to 3.00% by mass, based on the total amount of the lubricating oil composition, from the viewpoint of the balance between friction reduction and wear resistance, and is preferably 0.10 to It is more preferable that it is 1.50 mass%. Further, the content of (G) zinc dithiophosphate in terms of phosphorus atom is preferably 100 to 2,000 ppm, more preferably 300 to 1,500 ppm, and even more preferably 500 to 1,000 ppm, based on the total amount of the lubricating oil composition. 600 to 840 ppm is even more preferable.
  • the lubricating oil composition of the present embodiment includes optional additives such as boron-free succinimide, antioxidant, rust inhibitor, metal deactivator, pour point depressant and antifoam as optional additives. You may contain.
  • the content of these optional additives is about 0.01 to 5.00% by mass based on the total amount of the lubricating oil composition.
  • the lubricating oil composition of this embodiment preferably has a 40 ° C. kinematic viscosity, a 100 ° C. kinematic viscosity, and a 150 ° C. HTHS viscosity in the following ranges from the viewpoint of reducing friction in a wide temperature range from low to high temperatures.
  • the 40 ° C. kinematic viscosity is preferably 20 to 40 mm 2 / s, and more preferably 20 to 35 mm 2 / s.
  • 100 ° C. kinematic viscosity is preferably 3.0 ⁇ 12.5mm 2 / s, and more preferably 4.0 ⁇ 9.3mm 2 / s.
  • the 150 ° C. HTHS viscosity is preferably 1.4 to 2.9 mPa ⁇ s, and more preferably 1.7 to 2.9 mPa ⁇ s.
  • the kinematic viscosity was measured according to JIS K2283.
  • the HTHS viscosity was measured according to ASTM D4683 using a TBS viscometer (Tapered Bearing Simulator Viscometer), oil temperature 100 ° C., shear rate 10 6 / s, rotation speed (motor) 3000 rpm, interval (rotor and stator The interval was measured under the condition of 3 ⁇ m.
  • lubricating oil composition of the present embodiment is not particularly limited, it can be suitably used for various internal combustion engines such as four-wheeled vehicles and two-wheeled vehicles. Moreover, among internal combustion engines, it can be particularly suitably used for gasoline engines.
  • the friction reducing method for an internal combustion engine according to the present embodiment is to add the above-described lubricating oil composition according to the present embodiment to the internal combustion engine.
  • (B) a molybdenum compound and (C1) an ester-based ashless friction modifier are suppressed while inhibiting the loss of the friction reduction effect based on the (B) molybdenum compound.
  • / or (C2) By the synergistic action with the amine-based ashless friction modifier, it is possible to improve the friction reduction effect and improve the fuel economy.
  • the internal combustion engine is a gasoline engine, the effect can be made particularly good.
  • Lubricating oil compositions of Examples and Comparative Examples were prepared with the compositions shown in Tables 1 to 3. The following materials were used for preparing the lubricating oil composition.
  • Molybdenum compound Binuclear organomolybdenum compound of general formula (I) (MoDTC with Mo content of 10% by mass) ⁇ (C1) ester-based ashless friction modifier> Glycerol monooleate (number of hydroxyl groups in one molecule: 2) ⁇ (C2) Amine-based ashless friction modifier> Alkyldiethanolamine (mixture of alkyl group with 12-20 carbon atoms) ⁇ (D) Boron modified product of succinimide> Boron modified polybutenyl succinic acid bisimide (boron content: 1.3% by mass, nitrogen content: 1.2% by mass, boron atom weight / nitrogen atom weight: 1.1)
  • Friction coefficient (HFRR test) Using a HFRR tester (manufactured by PCS Instruments), the friction coefficient of the lubricating oil composition was measured under the following conditions. It can be said that the lower the friction coefficient, the better the friction reducing effect and the better the fuel economy.
  • [mass% Mo] represents the content in terms of molybdenum atoms of the (B) molybdenum compound relative to the total amount of the lubricating oil composition
  • [mass% B] represents (D) relative to the total amount of the lubricating oil composition.
  • the boron atom equivalent content of the boron-modified succinimide is shown
  • [mass% Metal] represents the metal atom (calcium atom) equivalent content of the (F) metal detergent relative to the total amount of the lubricating oil composition. .
  • Examples 1 to 4 containing (B) a molybdenum compound and a specific amount of (C1) an ester-based ashless friction modifier and / or (C2) an amine-based ashless friction modifier.
  • the lubricating oil composition of No. 2 has a friction reducing effect with respect to the lubricating oil composition of Comparative Example 1 that does not contain (C1) an ester-based ashless friction modifier and / or (C2) an amine-based ashless friction modifier. It can confirm that it is favorable.
  • the lubricating oil composition of this embodiment has a good friction reducing effect and can improve fuel economy. For this reason, the lubricating oil composition of the present embodiment can be suitably used for various internal combustion engines such as four-wheeled vehicles and two-wheeled vehicles. Moreover, among internal combustion engines, it can be particularly suitably used for gasoline engines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

 摩擦低減効果に優れ、省燃費性に優れた潤滑油組成物を提供する。 (A)潤滑油基油、(B)モリブデン化合物、及び(C)無灰摩擦調整剤を含む潤滑油組成物であって、前記(B)モリブデン化合物として下記一般式(I)に示す二核の有機モリブデン化合物を含み、かつ該二核の有機モリブデン化合物のモリブデン原子換算の含有量が、潤滑油組成物全量基準で0.030質量%以上0.140質量%以下であり、前記(C)無灰摩擦調整剤として、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤を含み、かつ該(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の含有量の合計が潤滑油組成物全量基準で0.1質量%超1.8質量%以下である潤滑油組成物。 [式(I)中、R~Rは炭素数4~22の炭化水素基を表し、R~Rは、同一であってもよいし、異なっていてもよい。X1~X4は、硫黄原子又は酸素原子を表す。]

Description

潤滑油組成物及び内燃機関の摩擦低減方法
 本発明は、潤滑油組成物及び内燃機関の摩擦低減方法に関する。
 近年、環境規制の強化に伴い、高い省燃費性がエンジンオイルに要求されている。このため、潤滑油組成物中にモリブデンジチオカーバメート(MoDTC)等のモリブデン化合物を配合し、金属間摩擦係数を低減する取り組みがなされてきた。
 MoDTC等のモリブデン化合物は、80℃以上の比較的高い温度領域で摩擦低減効果を発揮するものである。モリブデン化合物を配合した潤滑油組成物としては、例えば特許文献1が挙げられる。
 一方、エステル系、アミン系等の無灰摩擦調整剤も摩擦低減のために用いられている(例えば、特許文献2)。
 これら無灰摩擦調整剤は、80℃未満の比較的低い温度領域における摩擦低減効果に優れている。
 モリブデン化合物の高温領域における摩擦低減特性、及び無灰摩擦調整剤の低温領域における摩擦低減特性を考慮すると、モリブデン化合物及び無灰摩擦調整剤を併用することにより、幅広い温度領域での摩擦低減効果の発揮が期待できる。
特開2015-010177号公報 国際公開2011/062282
 しかし、モリブデン化合物及び無灰摩擦調整剤を併用した場合、無灰摩擦調整剤がモリブデン化合物の摩擦低減効果を阻害し、結果的に省燃費性を損なってしまうという問題があった。
 本発明は、摩擦低減効果に優れ、省燃費性に優れた潤滑油組成物を提供することを目的とする。
 上記課題を解決すべく、本発明の実施形態は、(A)潤滑油基油、(B)モリブデン化合物、及び(C)無灰摩擦調整剤を含む潤滑油組成物であって、
 前記(B)モリブデン化合物として下記一般式(I)に示す二核の有機モリブデン化合物を含み、かつ該二核の有機モリブデン化合物のモリブデン原子換算の含有量が潤滑油組成物全量基準で0.030質量%以上0.140質量%以下であり、
 前記(C)無灰摩擦調整剤として、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤を含み、かつ該(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の含有量の合計が潤滑油組成物全量基準で0.1質量%超1.8質量%以下である潤滑油組成物を提供する。
Figure JPOXMLDOC01-appb-C000002

[式(I)中、R~Rは炭素数4~22の炭化水素基を表し、R~Rは、同一であってもよいし、異なっていてもよい。X1~X4は、各々硫黄原子又は酸素原子を表す。]
 本発明の潤滑油組成物は、モリブデン化合物の摩擦低減効果を阻害することなく、モリブデン化合物と無灰摩擦調整剤との併用を可能とすることから、摩擦低減効果に優れ、省燃費性を良好にすることができる。
 以下、本発明の実施形態を説明する。
[潤滑油組成物]
 本実施形態の潤滑油組成物は、(A)潤滑油基油、(B)モリブデン化合物、及び(C)無灰摩擦調整剤を含む潤滑油組成物であって、
 前記(B)モリブデン化合物として下記一般式(I)に示す二核の有機モリブデン化合物を含み、かつ該二核の有機モリブデン化合物のモリブデン原子換算の含有量が潤滑油組成物全量基準で0.030質量%以上0.140質量%以下であり、
 前記(C)無灰摩擦調整剤として、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤を含み、かつ該(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の含有量の合計が潤滑油組成物全量基準で0.1質量%超1.8質量%以下であるものである。
Figure JPOXMLDOC01-appb-C000003

[式(I)中、R~Rは炭素数4~22の炭化水素基を表し、R~Rは、同一であってもよいし、異なっていてもよい。X1~X4は、各々硫黄原子又は酸素原子を表す。]
<(A)潤滑油基油>
 本実施形態の潤滑油組成物は、(A)潤滑油基油を含む。(A)成分の潤滑油基油としては、鉱油及び/又は合成油が挙げられる。
 鉱油としては、溶剤精製、水添精製等の通常の精製法により得られるパラフィン基系鉱油、中間基系鉱油及びナフテン基系鉱油等;フィッシャートロプシュプロセス等により製造されるワックス(ガストゥリキッドワックス)、鉱油系ワックス等のワックスを異性化することによって製造されるワックス異性化系油;等が挙げられる。
 合成油としては、炭化水素系合成油、エーテル系合成油等が挙げられる。炭化水素系合成油としては、ポリブテン、ポリイソブチレン、1-オクテンオリゴマー、1-デセンオリゴマー、エチレン-プロピレン共重合体等のα-オレフィンオリゴマー又はその水素化物、アルキルベンゼン、アルキルナフタレン等を挙げることができる。エーテル系合成油としては、ポリオキシアルキレングリコール、ポリフェニルエーテル等が挙げられる。
 (A)潤滑油基油は、上述の鉱油及び合成油のうちの一種を用いた単一系でも良いが、鉱油の二種以上を混合してなるもの、合成油の二種以上を混合してなるもの、鉱油及び合成油のそれぞれの一種又は二種以上を混合してなるもののように、混合系であってもよい。
 特に、(A)潤滑油基油としては、米国石油協会の基油分類において、グループ3及びグループ4に分類される鉱油又は合成油から選ばれる1種以上を用いることが好ましい。
 (A)潤滑油基油の含有量は、潤滑油組成物全量基準で60質量%以上であることが好ましく、65質量%以上95質量%以下であることがより好ましく、70質量%以上85質量%以下であることがさらに好ましい。
<(B)モリブデン化合物>
 本実施形態の潤滑油組成物は、(B)モリブデン化合物を含む。また、本実施形態の潤滑油組成物は、(B)成分のモリブデン化合物として、下記一般式(I)に示す二核の有機モリブデン化合物を含み、かつ該二核の有機モリブデン化合物のモリブデン原子換算の含有量が潤滑油組成物全量基準で0.030質量%以上0.140質量%以下である。
Figure JPOXMLDOC01-appb-C000004
 一般式(I)において、R~Rは炭素数4~22の炭化水素基を表し、R~Rは、同一であってもよいし、異なっていてもよい。炭素数が3以下になると油溶性が悪く、23以上になると融点が高くなりハンドリングが悪くなるとともに摩擦低減能が低くなる。上記観点からその炭素数は好ましくは炭素数4~18、さらに好ましくは炭素数8~13である。
 R~Rの炭化水素基としては、アルキル基、アルケニル基、アルキルアリール基、シクロアルキル基、シクロアルケニル基が挙げられ、分枝鎖または直鎖のアルキル基又はアルケニル基が好ましく、分枝鎖または直鎖のアルキル基がより好ましい。分枝鎖または直鎖のアルキル基としては、n-オクチル基、2-エチルヘキシル基、イソノニル基、n-デシル基、イソデシル基、ドデシル基、トリデシル基、イソトリデシル基等が挙げられる。
 また、基油への溶解性、貯蔵安定性及び摩擦低減能の観点から、一般式(I)に示す二核の有機モリブデン化合物は、R及びRが同一のアルキル基、R及びRが同一のアルキル基であって、R及びRのアルキル基とR及びRのアルキル基が異なることが好ましい。
 また、一般式(I)において、X~Xは硫黄原子又は酸素原子を表し、X~Xは同一であってもよいし、異なっていてもよい。好ましくは硫黄原子と酸素原子の比が、硫黄原子/酸素原子=1/3~3/1、より好ましくは1.5/2.5~3/1である。上記範囲内であれば、耐腐食性や、潤滑油基油に対する溶解性の面で良好な性能が得られる。また、X~Xの全てが硫黄原子又は酸素原子であってもよい。
 本実施形態の潤滑油組成物は、上記二核の有機モリブデン化合物のモリブデン原子換算の含有量が、潤滑油組成物全量基準で0.030質量%以上0.140質量%以下であることを要する。
 上記二核の有機モリブデン化合物のモリブデン原子換算の含有量が0.030質量%未満の場合、高温領域での摩擦低減効果を良好にすることができず、省燃費性を満足できない。また、上記二核の有機モリブデン化合物のモリブデン原子換算の含有量が0.140質量%超の場合、清浄性が悪化する。
 上記二核の有機モリブデン化合物のモリブデン原子換算の含有量は、潤滑油組成物全量基準で0.050~0.120質量%であることが好ましく、0.060~0.100質量%であることがより好ましい。
 なお、本実施形態の潤滑油組成物は、モリブデン化合物として、さらに、一核の有機モリブデン化合物及び/又は三核の有機モリブデン化合物を含有していてもよい。
<(C)無灰摩擦調整剤>
 本実施形態の潤滑油組成物は、(C)無灰摩擦調整剤を含む。また、本実施形態の潤滑油組成物は、(C)成分の無灰摩擦調整剤として、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤を含み、かつ該(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の含有量の合計が、潤滑油組成物全量基準で0.1質量%超1.8質量%以下である。
 なお、本実施形態において、(C1)エステル系無灰摩擦調整剤を含まず、(C2)アミン系無灰摩擦調整剤のみを含む場合、(C2)アミン系無灰摩擦調整剤の含有量が上記範囲を満たすものとする。また、本実施形態において、(C2)アミン系無灰摩擦調整剤を含まず、(C1)エステル系無灰摩擦調整剤のみを含む場合、(C1)エステル系無灰摩擦調整剤の含有量が上記範囲を満たすものとする。また、後述する各種の好適な実施形態においても、(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤のいずれか一方のみを含む場合、当該一方の無灰摩擦調製剤が各種の好適な実施形態を満たすものとする。
 (C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の含有量の合計が、潤滑油組成物全量基準で0.1質量%以下の場合、(C1)成分及び/又は(C2)成分に基づく摩擦低減効果を付与できない。また、(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の含有量の合計が、潤滑油組成物全量基準で1.8質量%を超える場合、(B)モリブデン化合物に基づく摩擦低減効果が損なわれ、摩擦係数が上昇に転じてしまう。
 一方、本実施形態の潤滑油組成物は、(C)成分の無灰摩擦調整剤として、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤を用い、かつ、これらの含有量の合計を上記範囲とすることにより、摩擦低減効果を良好にして、省燃費性を良好にできる。
 (C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の含有量の合計は、潤滑油組成物全量基準で0.2質量%以上1.7質量%以下が好ましく、0.4質量%以上1.6質量%以下がさらに好ましい。
(C1)エステル系無灰摩擦調整剤
 (C1)成分のエステル系無灰摩擦調整剤としては、各種エステル化合物を用いることができるが、分子中に1以上のヒドロキシル基を有するエステル化合物が好ましく、分子中に2以上のヒドロキシル基を有するエステル化合物がより好ましい。
 また、分子中に1以上のヒドロキシル基を有するエステル化合物は、炭素数が2~24であることが好ましく、10~24であることがより好ましく、16~22であることがさらに好ましい。
 分子中に1以上のヒドロキシル基を有するエステル化合物は、例えば、下記一般式(II)のように分子中に1つのヒドロキシル基を有するエステル化合物、下記一般式(III)のように分子中に2つのヒドロキシル基を有する化合物が挙げられる。これらの中でも一般式(III)に示す化合物が好適である。
Figure JPOXMLDOC01-appb-C000005
 一般式(II)及び一般式(III)において、R及びR10は、それぞれ炭素数1~32の炭化水素基である。
 R及びR10の炭化水素基の炭素数は、8~32が好ましく、12~24がより好ましく、16~20がさらに好ましい。
 R及びR10の炭化水素基としては、アルキル基、アルケニル基、アルキルアリール基、シクロアルキル基及びシクロアルケニル基が挙げられる。これらの中でも、アルキル基又はアルケニル基が好ましく、その中でもアルケニル基が好ましい。
 R及びR10におけるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基及びテトラコシル基が挙げられ、これらは直鎖状、分岐状、環状のいずれであってもよい。
 また、R、R10におけるアルケニル基としては、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基,トリデセニル基,テトラデセニル基,ペンタデセニル基,ヘキサデセニル基,ヘプタデセニル基,オクタデセニル基,ノナデセニル基,イコセニル基,ヘンイコセニル基,ドコセニル基,トリコセニル基,テトラコセニル基が挙げられるが、これらは直鎖状、分岐状、環状のいずれであってもよく、二重結合の位置も任意である。
 R~R、R11~R15は、それぞれ水素原子又は炭素数1~18の炭化水素基であり、互いに同一でも異なってもよい。
 一般式(II)においては、R~Rの全てが水素原子であり、又はR~Rがいずれも水素原子であるとともにRが炭化水素基であることが好ましい。また、一般式(III)においては、R11~R15の全てが水素原子であることが好ましい。
 なお、(C1)エステル系無灰摩擦調整剤として、上記一般式(II)に示す化合物を用いる場合、R~Rが全て同一である単一種を用いてもよいし、R~Rの一部が異なる異種のもの(例えば、Rの炭素数や二重結合の有無が異なるもの)を二種以上混合して用いてもよい。同様に、(C1)エステル系無灰摩擦調整剤として、上記一般式(III)に示す化合物を用いる場合、R10~R15が全て同一である単一種を用いてもよいし、R10~R15の一部が異なる異種のもの(例えば、R10の炭素数や二重結合の有無が異なるものや、R11~R15が異なるもの)を二種以上混合して用いてもよい。
 R~R、R11~R15が炭化水素基の場合、該炭化水素基は、飽和でも不飽和でもよく、脂肪族でも芳香族でもよく、直鎖状でも分岐状でも環状でもよい。
 また、一般式(II)のaは、1~20の整数を示すが、好ましくは1~12、より好ましくは1~10である。
 一般式(II)で示される化合物は、例えば、脂肪酸とアルキレンオキシドとの反応により得られるものである。
 ここで、一般式(II)で示される化合物を得るための脂肪酸としては、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、牛脂脂肪酸、ヤシ油脂肪酸等が挙げられる。また、アルキレンアキシドとしては、炭素数2~12のアルキレンオキシドが挙げられ、具体的には、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、ヘキシレンオキシド、オクチレンオキシド、デシレンオキシド、ドデシレンオキシド等が挙げられる。
 一般式(II)の化合物としては、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノオレレートが挙げられる。
 一般式(III)で示される化合物としては、グリセリンモノラウレート、グリセリンモノステアレート、グリセリンモノミステレート、グリセリンモノオレエート等のグリセリン脂肪酸モノエステルが挙げられる。この中でもグリセリンモノオレエートが好適である。
(C2)アミン系無灰摩擦調整剤
 (C2)アミン系無灰摩擦調整剤としては、脂肪族系のアミン系化合物が好適であり、分子中に1以上のヒドロキシル基を有する脂肪族系のアミン系化合物がより好適である。また、(C2)アミン系無灰摩擦調整剤は、第1級アミン、第2級アミン、第3級アミンの何れであってもよいが、第3級アミンが好適である。
 分子中に1以上のヒドロキシル基を有する脂肪族系のアミン系化合物であって、第3級アミンである(C2)アミン系無灰摩擦調整剤としては、下記一般式(IV)、(V)に示す化合物が挙げられ、一般式(IV)に示す化合物が好適である。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(IV)及び(V)において、R16、R25及びR26は、それぞれ炭素数1~32の炭化水素基であり、R25及びR26は互いに同一でも異なってもよい。
 R16、R25及びR26の炭化水素基の炭素数は、8~32が好ましく、10~24がより好ましく、12~20がさらに好ましい。
 R16、R25及びR26の炭化水素基としては、アルキル基、アルケニル基、アルキルアリール基、シクロアルキル基及びシクロアルケニル基が挙げられる。これらの中でも、アルキル基又はアルケニル基が好ましい。
 R16、R25及びR26におけるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基及びテトラコシル基が挙げられ、これらは直鎖状、分岐状、環状のいずれであってもよい。
 また、R16、R25及びR26におけるアルケニル基としては、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基,トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ヘンイコセニル基、ドコセニル基、トリコセニル基、テトラコセニル基が挙げられるが、これらは直鎖状、分岐状、環状のいずれであってもよく、二重結合の位置も任意である。
 R17~R24及びR27~R30は、水素原子、炭素数1~18の炭化水素基、又はエーテル結合若しくはエステル結合を含有する酸素含有炭化水素基であり、互いに同一でも異なってもよいが、水素原子又は炭化水素基が好ましい。
 R17~R24及びR27~R30の炭化水素基としては、飽和でも不飽和でもよく、脂肪族でも芳香族でもよく、直鎖状でも分岐状でも環状でもよく、例えば、アルキル基またはアルケニル基等の脂肪族炭化水素基、又は芳香族炭化水素基が挙げられる。より具体的には、メチル基、エチル基、プロピル基、ブチル基、ブテニル基、ヘキシル基、ヘキセニル基、オクチル基、オクテニル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、デセニル基、ドデシル基、ドデセニル基、トリデシル基、テトラデシル基、テトラデセニル基、ペンタデシル基、ヘキサデシル基、ヘキサデセニル基、ヘプタデシル基、オクタデシル基、オクタデセニル基、ステアリル基、イソステアリル基、オレイル基、リノール基、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、エチルシクロヘキシル基、プロピルシクロヘキシル基、ジメチルシクロヘキシル基、トリメチルシクロヘキシル基等の脂肪族炭化水素基、フェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、トリメチルフェニル基、ブチルフェニル基、ナフチル基などの芳香族炭化水素基等が挙げられる。
 この炭化水素基としては、炭素数1~18のものが好ましく、炭素数1~12のものがより好ましくは、炭素数1~4のものがよりさらに好ましく、炭素数2のものが最も好ましい。
 エーテル結合又はエステル結合を含有する酸素含有炭化水素基としては、例えば炭素数1~18のものであり、メトキシメチル基、エトキシメチル基、プロポキシメチル基、イソプロポキシメチル基、n-ブトキシメチル基、t-ブトキシメチル基、ヘキシルオキシメチル基、オクチルオキシメチル基、2-エチルヘキシルオキシメチル基、デシルオキシメチル基、ドデシルオキシメチル基、2-ブチルオクチルオキシメチル基、テトラデシルオキシメチル基、ヘキサデシルオキシメチル基、2-ヘキシルドデシルオキシメチル基、アリルオキシメチル基、フェノキシ基、ベンジルオキシ基、メトキシエチル基、メトキシプロピル基、1,1-ビスメトキシプロピル基、1,2-ビスメトキシプロピル基、エトキシプロピル基、(2-メトキシエトキシ)プロピル基、(1-メチル-2-メトキシ)プロピル基、アセチルオキシメチル基、プロパノイルオキシメチル基、ブタノイルオキシメチル基、ヘキサノイルオキシメチル基、オクタノイルオキシメチル基、2-エチルヘキサノイルオキシメチル基、デカノイルオキシメチル基、ドデカノイルオキシメチル基、2-ブチルオクタノイルオキシメチル基、テトラデカノイルオキシメチル基、ヘキサデカノイルオキシメチル基、2-ヘキシルドデカノイルオキシメチル基、ベンゾイルオキシメチル基等が挙げられる。
 また、b~dは、それぞれ0~20の整数を示す。
 b+cは1~20であることが好ましく、1~10であることがより好ましく、1~4であることがさらに好ましく、2であることが最も好ましい。
 一般式(IV)においては、R17~R24の全てが水素原子であることが好ましい。また、一般式(V)においては、R27~R30の全てが水素原子であることが好ましい。
 (C2)アミン系無灰摩擦調整剤として、一般式(IV)の脂肪族アミン化合物を用いる場合、R16が全て同一のものを用いてもよいし、牛脂等の天然由来の炭化水素基のように、R16が異なるもの(例えば、炭素数や二重結合の有無が異なるもの)を混合して用いてもよい。同様に、(C2)アミン系無灰摩擦調整剤として、一般式(V)の脂肪族アミン化合物を用いる場合、R25及びR26が全て同一のものを用いてもよいし、R25及びR26が異なるもの(例えば、炭素数や二重結合の有無が異なるもの)を混合して用いてもよい。
 一般式(IV)の具体的な化合物としては、オクチルエタノールアミン、デシルエタノールアミン、ドデシルエタノールアミン、テトラデシルエタノールアミン、ヘキサデシルエタノールアミン、ステアリルエタノールアミン、オレイルエタノールアミン、ヤシ油エタノールアミン、パーム油エタノールアミン、ナタネ油エタノールアミン、牛脂エタノールアミン等で例示されるヒドロキシエチル基等の2-ヒドロキシアルキル基を1つ有するアミン化合物;オクチルジエタノールアミン、デシルジエタノールアミン、ドデシルジエタノールアミン、テトラデシルジエタノールアミン、ヘキサデシルジエタノールアミン、ステアリルジエタノールアミン、オレイルジエタノールアミン、ヤシ油ジエタノールアミン、パーム油ジエタノールアミン、ナタネ油ジエタノールアミン、牛脂ジエタノールアミン、等で例示される2-ヒドロキシアルキル基を2つ有するアミン化合物;ポリオキシエチレンオクチルアミン、ポリオキシエチレンデシルアミン、ポリオキシエチレンドデシルアミン、ポリオキシエチレンテトラデシルアミン、ポリオキシエチレンヘキサデシルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレン牛脂アミン、ポリオキシエチレンヤシ油アミン、ポリオキシエチレンパーム油アミン、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、エチレンオキシドプロピレンオキシドステアリルアミン等のポリアルキレンオキサイド構造を有するアミン化合物;が挙げられる。
 一般式(V)の具体的な化合物としては、N-メチル-オクチルエタノールアミン、N-メチル-デシルエタノールアミン、N-メチル-ドデシルエタノールアミン、N-メチル-テトラデシルエタノールアミン、N-メチル-ヘキサデシルエタノールアミン、N-メチル-ステアリルエタノールアミン、N-メチル-オレイルエタノールアミン、N-メチル-ヤシ油エタノールアミン、N-メチル-パーム油エタノールアミン、N-メチル-ナタネ油エタノールアミン、N-メチル-牛脂エタノールアミン等で例示されるヒドロキシエチル基等の2-ヒドロキシアルキル基を1つ有するアルキルアミン化合物;ポリオキシエチレンN-メチル-デシルアミン、ポリオキシエチレンN-メチル-ドデシルアミン、ポリオキシエチレンN-メチル-テトラデシルアミン、ポリオキシエチレンN-メチル-ヘキサデシルアミン、ポリオキシエチレンN-メチル-ステアリルアミン、ポリオキシエチレンN-メチル-オレイルアミン等で例示されるポリアルキレンオキサイド構造を有するアルキルアミン化合物が挙げられる。
 本実施形態の潤滑油組成物は、(C)成分の無灰摩擦調整剤として、(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤のいずれかを含めばよいが、(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤を併用することが好ましい。
 (C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤を併用することにより、(B)モリブデン化合物に基づく摩擦低減効果をより維持しやすくできる。すなわち、(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤を併用することにより、(B)モリブデン化合物、(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の3成分に基づく摩擦低減効果を付与することができ、省燃費性をより向上できる。
 また、(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の併用による上記効果を発揮しやすくする観点から、(C2)アミン系無灰摩擦調整剤の含有量と、(C1)エステル系無灰摩擦調整剤の含有量との質量比[(C2)アミン系無灰摩擦調整剤の含有量/(C1)エステル系無灰摩擦調整剤の含有量]は、1.00未満であることが好ましい。
 該比は、0.10以上0.80以下がより好ましく、0.15以上0.60以下がさらに好ましい。
 また、(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の含有量の合計と、(B)モリブデン化合物のモリブデン原子換算の含有量との質量比[((C1)エステル系無灰摩擦調整剤の含有量+(C2)アミン系無灰摩擦調整剤の含有量)/(B)モリブデン化合物のモリブデン原子換算の含有量]は、4.0~30.0が好ましく、5.0~25.0がより好ましく、6.5~23.0がさらに好ましい。
 (C)無灰摩擦調整剤は、本実施形態の潤滑油組成物の効果を損なわない範囲で、(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤以外の無灰系摩擦調整剤(その他の無灰系摩擦調整剤)を含有してもよい。ただし、(C)無灰摩擦調整剤の全量に対する(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の含有量の合計は80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることがさらに好ましい。
<(D)コハク酸イミドのホウ素変性体>
 本実施形態の潤滑油組成物は、さらに、(D)コハク酸イミドのホウ素変性体を含むことが好ましい。
 (B)モリブデン化合物と、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤とともに、(D)コハク酸イミドのホウ素変性体を用いることにより、(B)モリブデン化合物に基づく摩擦低減効果をより維持しやすくでき、この結果、(B)モリブデン化合物と、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤との相乗作用が発揮されやすくなり、摩擦低減効果をより良好にして、省燃費性を良好にできる。
 (D)成分のコハク酸イミドのホウ素変性体としては、アルケニル又はアルキルコハク酸モノイミド、あるいは、アルケニル又はアルキルコハク酸ビスイミドをホウ素化したものが挙げられる。
 アルケニル又はアルキルコハク酸モノイミドとしては、下記一般式(VI)で示される化合物が挙げられる。また、アルケニル又はアルキルコハク酸ビスイミドとしては、下記一般式(VII)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 一般式(VI)及び式(V)において、R31、R33及びR34は、アルケニル基又はアルキル基であり、重量平均分子量が、それぞれ、好ましくは500~3,000、より好ましくは1,000~3,000である。
 R31、R33及びR34の重量平均分子量が500以上であると、潤滑油基油への溶解性を良好にできる。また、3,000以下であると、本化合物により得られる効果を適切に発揮することが期待される。R33及びR34は同一でも異なっていてもよい。
 R32、R35及びR36は、それぞれ炭素数2~5のアルキレン基であり、R35及びR36は同一でも異なっていてもよい。eは1~10の整数を示し、fは0又は1~10の整数を示す。
 ここで、eは、好ましくは2~5、より好ましくは2~4である。eが2以上であると、コハク酸イミドのホウ素変性体により得られる効果が得やすくなることが期待される。eが5以下であると、潤滑油基油に対する溶解性がより一層良好となる。
 また、fは好ましくは1~6であり、より好ましくは2~6である。fが1以上であると、本化合物により得られる効果を適切に発揮することが期待される。fが6以下であると、潤滑油基油に対する溶解性がより一層良好となる。
 アルケニル基としては、ポリブテニル基、ポリイソブテニル基、エチレン-プロピレン共重合体を挙げることができ、アルキル基としてはこれらを水添したものが挙げられる。好適なアルケニル基としては、ポリブテニル基又はポリイソブテニル基が挙げられる。ポリブテニル基は、1-ブテンとイソブテンの混合物あるいは高純度のイソブテンを重合させたものが好適に用いられる。また、好適なアルキル基の代表例としては、ポリブテニル基又はポリイソブテニル基を水添したものが挙げられる。
 (D)コハク酸イミドのホウ素変性体は、例えば、ポリオレフィンを無水マレイン酸と反応させてアルケニルコハク酸無水物(x)を得て、さらに、ポリアミンと、ホウ素化合物とを反応させて中間体(y)を得た後、アルケニルコハク酸無水物(x)と中間体(y)とを反応させてイミド化することにより得ることができる。モノイミド又はビスイミドは、アルケニルコハク酸無水物若しくはアルキルコハク酸無水物とポリアミンとの比率を変えることによって製造することが可能である。
 また、(D)コハク酸イミドのホウ素変性体は、ホウ素未含有のアルケニル又はアルキルコハク酸モノイミドや、アルケニル又はアルキルコハク酸ビスイミドを、上記ホウ素化合物で処理しても製造できる。
 上記したポリオレフィンを形成するオレフィン単量体としては、炭素数2~8のα-オレフィンの1種又は2種以上を混合して用いることができるが、イソブテンと1-ブテンの混合物を好適に用いることができる。
 一方、ポリアミンとしては、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ペンチレンジアミン等の単一ジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ジ(メチルエチレン)トリアミン、ジブチレントリアミン、トリブチレンテトラミン、及びペンタペンチレンヘキサミン等のポリアルキレンポリアミン、アミノエチルピペラジン等のピペラジン誘導体を挙げることができる。
 上記ホウ素化合物としては、ホウ酸、ホウ酸塩及びホウ酸エステル等が挙げられる。
 ホウ酸としては、オルトホウ酸、メタホウ酸及びパラホウ酸等が挙げられる。また、ホウ酸塩としては、メタホウ酸アンモニウム、四ホウ酸アンモニウム、五ホウ酸アンモニウム及び八ホウ酸アンモニウム等のホウ酸アンモニウム等が挙げられる。また、ホウ酸エステルとしては、ホウ酸モノメチル、ホウ酸ジメチル、ホウ酸トリメチル、ホウ酸モノエチル、ホウ酸ジエチル、ホウ酸トリエチル、ホウ酸モノプロピル、ホウ酸ジプロピル、ホウ酸トリプロピル、ホウ酸モノブチル、ホウ酸ジブチル及びホウ酸トリブチル等が挙げられる。
 (D)コハク酸イミドのホウ素変性体に含有される窒素原子量に対するホウ素原子量の比(B/N比)は、摩擦低減の観点から、質量基準で0.6以上であることが好ましく、0.7以上であることがより好ましく、0.8以上であることがさらに好ましい。また、B/N比は、特に限定されないが、2.0以下であることが好ましく、1.5以下であることがより好ましく、1.3以下であることがさらに好ましい。
 (D)コハク酸イミドのホウ素変性体は、摩擦低減の観点から、3配位のコハク酸イミドのホウ素変性体を多く含むことが好ましく、具体的には、3配位のコハク酸イミドのホウ素変性体を、3配位と4配位のコハク酸イミドのホウ素変性体の合計量に対して、モル比で0.50以上含有することが好ましく、0.60以上とすることがより好ましく、0.65以上とすることがさらに好ましい。
 3配位のコハク酸イミドのホウ素変性体及び4配位のコハク酸イミドのホウ素変性体の割合は、例えば、BF・OEt標準(0ppm)として11B-NMR測定により測定可能である。この11B-NMR測定では、3配位のコハク酸イミドのホウ素変性体のピークが5~25ppmに出現し、4配位のコハク酸イミドのホウ素変性体のピークが-10~5ppmに出現するため、各ピークの積分値を算出することにより上記割合を算出することが可能である。
 また、本実施形態の潤滑油組成物は、(D)コハク酸イミドのホウ素変性体のホウ素原子換算の含有量が、潤滑油組成物全量基準で0.050質量%以下であることが好ましく、0.001~0.050質量%であることがより好ましく、0.005~0.040質量%であることがさらに好ましく、0.015~0.035質量%であることがよりさらに好ましい。
 (D)コハク酸イミドのホウ素変性体のホウ素原子換算の含有量を上記範囲とすることにより、(B)モリブデン化合物に基づく摩擦低減効果が損なわれることをより抑制でき、その結果、(B)モリブデン化合物と、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤との相乗作用をより発揮することができ、摩擦低減効果をより良好にして、省燃費性をより良好にできる。
 また、本実施形態の潤滑油組成物は、(D)コハク酸イミドのホウ素変性体のホウ素原子換算の含有量に対する、(C1)エステル系無灰摩擦調整剤及び前記(C2)アミン系無灰摩擦調整剤を合計した含有量の質量比[(D)コハク酸イミドのホウ素変性体のホウ素原子換算の含有量/((C1)エステル系無灰摩擦調整の含有量+(C2)アミン系無灰摩擦調整剤の含有量)]が0.011以上であることが好ましく、0.013以上0.100以下であることがより好ましく、0.015以上0.070以下であることがさらに好ましい。
 該比を上記範囲とすることにより、(B)モリブデン化合物に基づく摩擦低減効果が損なわれることをより抑制でき、(B)モリブデン化合物及び(C1)エステル系無灰摩擦調整剤との相乗作用により、摩擦低減効果をより良好にして、省燃費性をより良好にできる。
<(E)ポリ(メタ)アクリレート>
 本実施形態の潤滑油組成物は、さらに、粘度指数向上剤として、(E)ポリ(メタ)アクリレートを含有することが好ましい。(E)ポリ(メタ)アクリレートを含有することにより、さらに省燃費性を向上することができる。
 (E)ポリ(メタ)アクリレートを構成するモノマーはアルキル(メタ)アクリレートであり、好ましくは炭素数1~18の直鎖アルキル基または炭素数3~34の分岐アルキル基のアルキル(メタ)アクリレートである。
 (E)ポリ(メタ)アクリレートを構成する好ましいモノマーとして、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、テトラ(メタ)アクリレート、ヘキサ(メタ)アクリレート、オクタデシル(メタ)アクリレートなどが挙げられ、これらモノマーを2種類以上使用してコポリマーとしてもよい。これらモノマーのアルキル基は直鎖状でもよいし、分岐鎖状のものでもよい。
 また、炭素数3~34の分岐アルキル基を有するアルキル(メタ)アクリレートとしては、イソプロピル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、3,5,5-トリメチルヘキシル(メタ)アクリレート、2-ブチルオクチル(メタ)アクリレート、2-ヘキシルデシル(メタ)アクリレート、2-オクチルドデシル(メタ)アクリレート、2-デシルテトラデシル(メタ)アクリレート、2-ドデシルヘキサデシル(メタ)アクリレート、2-テトラデシルオクタデシル(メタ)アクリレートが挙げられる。
 (E)ポリ(メタ)アクリレートは、重量平均分子量が100,000~600,000のものが好ましく、15,000~400,000のものがより好ましい。
 なお、本実施形態において「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)測定によって求めたポリスチレン換算の分子量をいうものとする。
 (E)ポリ(メタ)アクリレートは、SSIが50以下であることが好ましく、1~30であることがより好ましい。重量平均分子量を上記範囲とすることにより、SSIを30以下とすることができる。
 ここで、SSIとは、せん断安定性指数(Shear Stability Index)を意味し、ポリ(メタ)アクリレートの分解に抵抗する能力を示す。SSIが大きいほど、ポリマーはせん断に対して不安定で、より分解されやすい。
Figure JPOXMLDOC01-appb-M000008

 SSIは、ポリマーに由来するせん断による粘度低下を示すもので、上記計算式により算出される。式中、Kvは、基油にポリ(メタ)アクリレートを加えた混合物の100℃動粘度の値である。Kv1は、基油にポリ(メタ)アクリレートを加えた混合物を、ASTM D6278の手順にしたがって、30サイクル高剪断ボッシュ・ディーゼルインジェクターに通過させた後の100℃動粘度の値である。また、Kvoilは、基油の100℃動粘度の値である。なお、基油としては、100℃動粘度5.35mm/s、粘度指数105のGroup II基油を使用する。
 (E)ポリ(メタ)アクリレートの含有量は、省燃費性の観点から、潤滑油組成物全量基準で0.5~15質量%であることが好ましく、1~10質量%であることがより好ましく、1~8質量%であることがさらに好ましい。
 ここで、ポリ(メタ)アクリレートの含有量は、ポリ(メタ)アクリレートからなる樹脂分のみの含有量を意味し、例えば該ポリ(メタ)アクリレートとともに含有する希釈油等の質量は含まれない、固形分基準の含有量である。
<(F)金属系清浄剤>
 本実施形態の潤滑油組成物は、さらに、(F)金属系清浄剤を含有することが好ましい。(F)金属系清浄剤を含有することで、高温運転時のエンジン内部のデポジットの生成を抑制し、スラッジの堆積を防止してエンジン内部を清浄に保つとともに、エンジン油の劣化等を原因として生じる酸性物質を中和し、腐食摩耗を防止することができる。
 (F)金属系清浄剤としては、アルカリ金属系清浄剤又はアルカリ土類金属系清浄剤が挙げられる。具体的には、アルカリ金属スルホネート又はアルカリ土類金属スルホネート、アルカリ金属フェネート又はアルカリ土類金属フェネート、アルカリ金属サリシレート又はアルカリ土類金属サリシレート等の中から選ばれる1種以上の金属系清浄剤が挙げられる。また、アルカリ金属としてはナトリウム、カリウム、アルカリ土類金属としてはマグネシウム、カルシウムが挙げられ、これらの中でもアルカリ金属であるナトリウム、アルカリ土類金属であるマグネシウム、カルシウムが好ましく、カルシウムがさらに好ましい。
 (F)金属系清浄剤は、中性、塩基性、過塩基性のいずれであってもよいが、塩基性や過塩基性のものが好ましい。また、(F)金属系清浄剤の全塩基価は10~500mgKOH/gが好ましく、150~450mgKOH/gがより好ましい。なお、全塩基価は、JIS K2501の過塩素酸法に従って測定したものである。
 本実施形態の潤滑油組成物は、上述した(F)金属系清浄剤に基づく効果を発現する観点から、(E)金属系清浄剤の金属量換算の含有量が、潤滑油組成物全量基準で0.05~0.50質量%であることが好ましく、0.10~0.30質量%であることがより好ましい。
<(G)ジチオリン酸亜鉛>
 本実施形態の潤滑油組成物は、さらに、(G)ジチオリン酸亜鉛を含有することが好ましい。(G)成分のジチオリン酸亜鉛を含有することで、摩擦低減効果をより良好にすることができる。
 (G)ジチオリン酸亜鉛としては、下記一般式(VIII)に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000009

(式中、R37~R40は、それぞれ独立に、炭素数6~20の直鎖状、分岐状又は環状のアルキル基、及び炭素数6~20の直鎖状、分岐状又は環状のアルケニル基から選ばれる何れか一種を示す。)
 一般式(VIII)のR37~R40の炭素数を6~20とすることにより、潤滑油基油への溶解性、及び摩擦低減のバランスを良好にすることができる。
 一般式(VIII)のR37~R40のアルキル基又はアルケニル基の炭素数は、8~18であることが好ましく、10~14であることがより好ましい。また、一般式(VIII)のR37~R40は、アルキル基であることが好ましい。
 R37~R40におけるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基及びテトラコシル基が挙げられ、これらは直鎖状、分岐状、環状のいずれであってもよい。また、アルケニル基としては、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ヘンイコセニル基、ドコセニル基、トリコセニル基、テトラコセニル基が挙げられるが、これらは直鎖状、分岐状、環状のいずれであってもよく、二重結合の位置も任意である。
 上記一般式(VIII)において、R37~R40は、たがいに同じであってもよいし、異なっていてもよいが、製造上の容易さの観点から、同一であるものが好ましい。
 これらの中ではラウリル基等のドデシル基、テトラデシル基、ヘキサデシル基、ステアリル基等のオクタデシル基、イコシル基、オレイル基等のオクタデセニル基が好ましいが、ラウリル基が最も好ましい。
 (G)ジチオリン酸亜鉛の含有量は、摩擦低減及び耐磨耗性のバランスの観点から、潤滑油組成物全量基準で0.01~3.00質量%であることが好ましく、0.10~1.50質量%であることがより好ましい。
 また、(G)ジチオリン酸亜鉛のリン原子換算の含有量は、潤滑油組成物全量基準で、100~2,000ppmが好ましく、300~1,500ppmがより好ましく、500~1,000ppmがさらに好ましく、600~840ppmがよりさらに好ましい。
<任意添加成分>
 本実施形態の潤滑油組成物は、任意添加成分として、ホウ素未含有のコハク酸イミド、酸化防止剤、錆止め剤、金属不活性化剤、流動点降下剤及び消泡剤等の任意添加成分を含有してもよい。
 これら任意添加成分の含有量は、潤滑油組成物全量基準で0.01~5.00質量%程度である。
<潤滑油組成物の物性>
 本実施形態の潤滑油組成物は、低温~高温の広い温度範囲の摩擦低減の観点から、40℃動粘度、100℃動粘度及び150℃HTHS粘度が以下の範囲であることが好ましい。
 40℃動粘度は、20~40mm/sであることが好ましく、20~35mm/sであることがより好ましい。
 100℃動粘度は、3.0~12.5mm/sであることが好ましく、4.0~9.3mm/sであることがより好ましい。
 150℃HTHS粘度は、1.4~2.9mPa・sであることが好ましく、1.7~2.9mPa・sであることがより好ましい。
 なお、動粘度はJIS K2283に準拠して測定した。また、HTHS粘度は、ASTMD4683に準拠して、TBS粘度計(Tapered Bearing Simulator Viscometer)を用い、油温100℃、せん断速度10/s、回転数(モーター)3000rpm、間隔(ローターとステーターとの間隔)3μmの条件で測定した。
<潤滑油組成物の用途>
 本実施形態の潤滑油組成物の用途は特に限定されないが、四輪自動車、二輪自動車等の各種の内燃機関用に好適に使用できる。また、内燃機関の中でも、ガソリンエンジン用に特に好適に使用できる。
[内燃機関の摩擦低減方法]
 本実施形態の内燃機関の摩擦低減方法は、内燃機関に、上述した本実施形態の潤滑油組成物を添加するものである。
 本実施形態の内燃機関の摩擦低減方法によれば、(B)モリブデン化合物に基づく摩擦低減効果が損なわれることを抑制するとともに、(B)モリブデン化合物と、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤との相乗作用により、摩擦低減効果を良好にして、省燃費性を良好にすることができる。内燃機関がガソリンエンジンである場合、前記効果を特に良好にできる。
 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
1.実施例及び比較例の潤滑油組成物の調製
 表1~3の組成で実施例及び比較例の潤滑油組成物を調製した。なお、潤滑油組成物の調製には以下の材料を用いた。
<(A)潤滑油基油>
 100℃動粘度が4.07mm/sの鉱油、粘度指数:131、%C:-0.4、%C:12.8、%C:87.6
<(B)モリブデン化合物>
 一般式(I)の二核の有機モリブデン化合物(Mo含有率10質量%のMoDTC)
<(C1)エステル系無灰摩擦調整剤>
 グリセリンモノオレエート(1分子中の水酸基数:2)
<(C2)アミン系無灰摩擦調整剤>
 アルキルジエタノールアミン(アルキル基の炭素数は12~20の混合)
<(D)コハク酸イミドのホウ素変性体>
 ポリブテニルコハク酸ビスイミドのホウ素変性体(ホウ素含量:1.3質量%、窒素含量:1.2質量%、ホウ素原子量/窒素原子量:1.1)
<(E)ポリ(メタ)アクリレート>
 ポリメタクリレート(重量平均分子量44万、樹脂分含有量17%、SSI30)
<(F)金属系清浄剤>
 カルシウム系清浄剤(カルシウム含有量:12.1質量%、過塩基性、全塩基価350mgKOH/g)
<(G)ジチオリン酸亜鉛>
 ZnDTP(リン含有量:7.0質量%、亜鉛含有量:8.0質量%、硫黄含有量:14.0質量%)
<その他の成分>
 ホウ素変性体でないポリブテニルコハク酸ビスイミド、ヒンダードフェノール系酸化防止剤、ジフェニルアミン系酸化防止剤、流動点降下剤、金属不活性化剤、消泡剤
2.測定及び評価
 表1~3の組成に調製した実施例及び比較例の潤滑油組成物について、以下の評価を行った。結果を表1~3に示す。
2-1.HTHS粘度
 明細書本文の記載に従い、潤滑油組成物の150℃HTHS粘度を測定した。
2-2.摩擦係数(HFRR試験)
 HFRR試験機(PCS Instruments社製)を用い、下記の条件にて潤滑油組成物の摩擦係数を測定した。摩擦係数が低い程、摩擦低減効果に優れ、省燃費性が良好であるといえる。
 ・テストピース:(A)ボール=HFRR標準テストピース(AISI 52100材)、(B)ディスク=HFRR標準テストピース(AISI 52100材)
 ・振幅:1.0mm
 ・周波数:50Hz
 ・荷重:5g
 ・温度:80℃
 表1~3中、[質量%Mo]は、潤滑油組成物全量に対する(B)モリブデン化合物のモリブデン原子換算の含有量を示し、[質量%B]は、潤滑油組成物全量に対する(D)コハク酸イミドのホウ素変性体のホウ素原子換算の含有量を示し、[質量%Metal]は、潤滑油組成物全量に対する(F)金属系清浄剤の金属原子(カルシウム原子)換算の含有量を示す。
Figure JPOXMLDOC01-appb-T000010
 表1の結果から明らかなように、(B)モリブデン化合物と、特定量の(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤とを含む実施例1~2の潤滑油組成物は、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤を含まない比較例1の潤滑油組成物に対して、摩擦低減効果が良好であることが確認できる。
 また、適量を超える(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤を含む比較例2の潤滑油組成物は、摩擦低減効果が良好でないことが確認できる。この原因は、多量の(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤によって、(B)モリブデン化合物の摩擦低減効果が損なわれたためと考えられる。
Figure JPOXMLDOC01-appb-T000011
 表2の結果から、(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤を併用し、かつ、(C2)アミン系無灰摩擦調整剤の含有量[Y]と、(C1)エステル系無灰摩擦調整剤の含有量[X]との質量比([Y]/[X])を1.0未満とすることにより、摩擦低減効果をより良好にできることが確認できる。特に、[Y]/[X]が0.10を超えて1.00未満である実施例6~8の潤滑油組成物は、摩擦低減効果に極めて優れることが確認できる。
 なお、比較例3は、(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤を併用しているものの、摩擦係数が高くなっている。この原因は、比較例3では、(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の合計量が潤滑油組成物全量基準で1.8質量%を超え、(B)モリブデン化合物の摩擦低減効果が損なわれたためと考えられる。
Figure JPOXMLDOC01-appb-T000012
 表3の結果から、(B)モリブデン化合物と、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤と、(D)コハク酸イミドのホウ素変性体とを含む実施例6の潤滑油組成物は、(B)モリブデン化合物と、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤とを含むものの、(D)コハク酸イミドのホウ素変性体を含まない実施例10の潤滑油組成物に比べて、摩擦低減効果が良好であることが確認できる。この原因は、実施例6の潤滑油組成物では、(B)モリブデン化合物と、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤とともに、(D)コハク酸イミドのホウ素変性体を用いることにより、(B)モリブデン化合物に基づく摩擦低減効果がより維持されやすくなり、(B)モリブデン化合物と、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤との相乗作用により、摩擦低減効果がより良好となったためと考えられる。
 本実施形態の潤滑油組成物は、摩擦低減効果が良好であり、省燃費性を良好にできる。このため、本実施形態の潤滑油組成物は、四輪自動車、二輪自動車等の各種の内燃機関用に好適に使用できる。また、内燃機関の中でも、ガソリンエンジン用に特に好適に使用できる。

Claims (14)

  1.  (A)潤滑油基油、(B)モリブデン化合物、及び(C)無灰摩擦調整剤を含む潤滑油組成物であって、
     前記(B)モリブデン化合物として下記一般式(I)に示す二核の有機モリブデン化合物を含み、かつ該二核の有機モリブデン化合物のモリブデン原子換算の含有量が潤滑油組成物全量基準で0.030質量%以上0.140質量%以下であり、
     前記(C)無灰摩擦調整剤として、(C1)エステル系無灰摩擦調整剤及び/又は(C2)アミン系無灰摩擦調整剤を含み、かつ該(C1)エステル系無灰摩擦調整剤及び(C2)アミン系無灰摩擦調整剤の含有量の合計が潤滑油組成物全量基準で0.1質量%超1.8質量%以下である、潤滑油組成物。
    Figure JPOXMLDOC01-appb-C000001

    [式(I)中、R~Rは炭素数4~22の炭化水素基を表し、R~Rは、同一であってもよいし、異なっていてもよい。X1~X4は、硫黄原子又は酸素原子を表す。]
  2.  前記(C1)エステル系無灰摩擦調整剤が、分子中に1以上のヒドロキシル基を有するエステル化合物である請求項1に記載の潤滑油組成物。
  3.  前記分子中に1以上のヒドロキシル基を有するエステル化合物がグリセリンモノオレエートである請求項2に記載の潤滑油組成物。
  4.  前記(C)無灰摩擦調整剤として、前記(C1)エステル系無灰摩擦調整剤及び前記(C2)アミン系無灰摩擦調整剤を含む請求項1~3のいずれか1項に記載の潤滑油組成物。
  5.  前記(C2)アミン系無灰摩擦調整剤の含有量と、前記(C1)エステル系無灰摩擦調整剤の含有量との質量比[(C2)アミン系無灰摩擦調整剤の含有量/(C1)エステル系無灰摩擦調整剤の含有量]が、1.00未満である請求項4に記載の潤滑油組成物。
  6.  さらに、(D)コハク酸イミドのホウ素変性体を含む請求項1~5のいずれか1項に記載の潤滑油組成物。
  7.  前記(D)コハク酸イミドのホウ素変性体のホウ素原子換算の含有量が、潤滑油組成物全量基準で0.050質量%以下である請求項6に記載の潤滑油組成物。
  8.  前記(D)コハク酸イミドのホウ素変性体のホウ素原子換算の含有量に対する、前記(C1)エステル系無灰摩擦調整剤及び前記(C2)アミン系無灰摩擦調整剤を合計した含有量の質量比[前記(D)コハク酸イミドのホウ素変性体のホウ素原子換算の含有量/(前記(C1)エステル系無灰摩擦調整剤の含有量+前記(C2)アミン系無灰摩擦調整剤の含有量)]が0.011以上である請求項6又は7に記載の潤滑油組成物。
  9.  さらに、(E)ポリ(メタ)アクリレートを含む請求項1~8のいずれか1項に記載の潤滑油組成物。
  10.  さらに、(F)金属系清浄剤を含む請求項1~9のいずれか1項に記載の潤滑油組成物。
  11.  さらに、(G)ジチオリン酸亜鉛を含む請求項1~10のいずれか1項に記載の潤滑油組成物。
  12.  前記(A)潤滑油基油が、米国石油協会の基油分類において、グループ3及びグループ4に分類される鉱油又は合成油から選ばれる1種以上である請求項1~11のいずれか1項に記載の潤滑油組成物。
  13.  内燃機関に用いられる請求項1~12のいずれか1項に記載の潤滑油組成物。
  14.  内燃機関に、請求項1~12のいずれか1項に記載の潤滑油組成物を添加する内燃機関の摩擦低減方法。
PCT/JP2016/060168 2015-03-31 2016-03-29 潤滑油組成物及び内燃機関の摩擦低減方法 WO2016158971A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177018254A KR20170134965A (ko) 2015-03-31 2016-03-29 윤활유 조성물 및 내연 기관의 마찰 저감 방법
CN201680001679.3A CN106459809A (zh) 2015-03-31 2016-03-29 润滑油组合物和内燃机的降摩擦方法
EP16772852.6A EP3279292B1 (en) 2015-03-31 2016-03-29 Lubricant oil composition and internal-combustion-engine friction reduction method
US15/318,559 US20170121626A1 (en) 2015-03-31 2016-03-29 Lubricant oil composition and internal-combustion-engine friction reduction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-074366 2015-03-31
JP2015074366A JP6114330B2 (ja) 2015-03-31 2015-03-31 潤滑油組成物及び内燃機関の摩擦低減方法

Publications (1)

Publication Number Publication Date
WO2016158971A1 true WO2016158971A1 (ja) 2016-10-06

Family

ID=57005899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060168 WO2016158971A1 (ja) 2015-03-31 2016-03-29 潤滑油組成物及び内燃機関の摩擦低減方法

Country Status (6)

Country Link
US (1) US20170121626A1 (ja)
EP (1) EP3279292B1 (ja)
JP (1) JP6114330B2 (ja)
KR (1) KR20170134965A (ja)
CN (1) CN106459809A (ja)
WO (1) WO2016158971A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9869219B2 (en) 2012-11-19 2018-01-16 Castrol Limited Apparatus and method
US9878822B2 (en) 2012-11-19 2018-01-30 Castrol Limited Replaceable fluid container
US9890901B2 (en) 2012-11-19 2018-02-13 Castrol Limited Replaceable fluid container
US9938867B2 (en) 2012-11-19 2018-04-10 Castrol Limited Cartridge and system for replenishing fluid in an apparatus
WO2018070363A1 (ja) * 2016-10-11 2018-04-19 出光興産株式会社 潤滑油組成物
US10167755B2 (en) 2014-05-21 2019-01-01 Castrol Limited Apparatus for identifying fluid of a removable fluid container and method of use
US10358259B2 (en) 2014-05-21 2019-07-23 Castrol Limited Apparatus and method
US10449933B2 (en) 2014-05-21 2019-10-22 Castrol Limited Fluid system and method
US10473006B2 (en) 2014-05-21 2019-11-12 Castrol Limited Method and apparatus
US10480365B2 (en) 2015-09-23 2019-11-19 Castrol Limited Fluid method and system
US10502104B2 (en) 2014-05-21 2019-12-10 Castrol Limited Fluid system
US10533469B2 (en) 2014-05-21 2020-01-14 Castrol Limited Fluid container
US10619533B2 (en) 2014-05-21 2020-04-14 Castrol Limited Fluid system and method
US10647312B2 (en) 2015-12-23 2020-05-12 Castrol Limited Apparatus and method
US10690025B2 (en) 2015-09-23 2020-06-23 Castrol Limited Fluid system
US10697336B2 (en) 2014-05-21 2020-06-30 Castrol Limited Fluid system
US10704451B2 (en) 2015-12-23 2020-07-07 Castrol Limited Heat exchanger for an apparatus
US11022012B2 (en) 2015-09-23 2021-06-01 Castrol Limited Fluid method and system
WO2023054469A1 (ja) * 2021-10-01 2023-04-06 Eneos株式会社 内燃機関用潤滑油組成物
WO2023188839A1 (ja) * 2022-03-31 2023-10-05 出光興産株式会社 二輪車用潤滑油組成物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927488B2 (ja) * 2017-03-30 2021-09-01 出光興産株式会社 二輪車用潤滑油組成物、該潤滑油組成物を用いた二輪車の燃費向上方法、及び該潤滑油組成物の製造方法
JP7080875B2 (ja) * 2017-04-05 2022-06-06 Eneos株式会社 油圧装置及び油圧作動油組成物
JP2019066002A (ja) * 2017-10-03 2019-04-25 株式会社豊田中央研究所 摺動システム
EP3697874A1 (en) * 2017-10-16 2020-08-26 Lanxess Solutions US Inc. Synergy and enhanced performance retention with organic and molybdenum based friction modifier combination
CN108102767A (zh) * 2017-12-08 2018-06-01 锦州新兴石油添加剂有限责任公司 一种高性能gf-5、sn、sm汽油机油复合剂及其制备方法和应用
CN110770330B (zh) * 2018-02-28 2022-07-19 出光兴产株式会社 润滑油组合物
FR3091874A1 (fr) * 2019-01-22 2020-07-24 Total Marketing Services Complexe dinucléaire de molybdène et son utilisation dans des compositions lubrifiantes
EP4083173A4 (en) * 2019-12-27 2024-05-22 Idemitsu Kosan Co LUBRICATING OIL COMPOSITION

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150173A (ja) * 1993-12-02 1995-06-13 Tonen Corp 潤滑油組成物
JP2003073685A (ja) * 2001-09-06 2003-03-12 Nippon Oil Corp 内燃機関用潤滑油組成物
JP2003221588A (ja) * 2002-02-01 2003-08-08 Asahi Denka Kogyo Kk 潤滑性組成物
JP2004277712A (ja) * 2003-02-27 2004-10-07 Nippon Oil Corp 4サイクルエンジン油基油及び組成物
WO2005014763A1 (ja) * 2003-08-06 2005-02-17 Nippon Oil Corporation Dlc接触面を有するシステム、該システムの潤滑方法及び該システム用潤滑油
JP2006182986A (ja) * 2004-12-28 2006-07-13 Chevron Japan Ltd 潤滑油組成物
JP2008106199A (ja) * 2006-10-27 2008-05-08 Idemitsu Kosan Co Ltd 潤滑油組成物
JP2009292998A (ja) * 2008-06-09 2009-12-17 Idemitsu Kosan Co Ltd 内燃機関用潤滑油組成物
WO2010032781A1 (ja) * 2008-09-19 2010-03-25 出光興産株式会社 内燃機関用潤滑油組成物
JP2010100707A (ja) * 2008-10-22 2010-05-06 Idemitsu Kosan Co Ltd 内燃機関用潤滑油組成物
JP2011195774A (ja) * 2010-03-23 2011-10-06 Adeka Corp 内燃機関用潤滑油組成物
WO2014021350A1 (ja) * 2012-07-31 2014-02-06 出光興産株式会社 内燃機関用潤滑油組成物
WO2015022976A1 (ja) * 2013-08-16 2015-02-19 Jx日鉱日石エネルギー株式会社 内燃機関用潤滑油組成物
JP2015140354A (ja) * 2014-01-27 2015-08-03 出光興産株式会社 内燃機関用潤滑油組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197068A (ja) * 1993-12-30 1995-08-01 Tonen Corp 潤滑油組成物
US5906969A (en) * 1998-05-01 1999-05-25 Exxon Research And Engineering Company High fuel economy passenger car engine oil
US6444624B1 (en) * 2000-08-31 2002-09-03 Juliet V. Walker Lubricating oil composition
JP4234979B2 (ja) * 2002-11-06 2009-03-04 新日本石油株式会社 省燃費型内燃機関用潤滑油組成物
US20080119377A1 (en) * 2006-11-22 2008-05-22 Devlin Mark T Lubricant compositions
JP5840222B2 (ja) * 2010-11-24 2016-01-06 シェブロン・オロナイト・カンパニー・エルエルシー 摩擦調節剤ブレンドを含有する潤滑組成物
CN102690711B (zh) * 2011-03-24 2013-12-25 中国石油化工股份有限公司 一种汽油发动机润滑油组合物
JP5828756B2 (ja) * 2011-12-27 2015-12-09 昭和シェル石油株式会社 自動車用エンジンオイル

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150173A (ja) * 1993-12-02 1995-06-13 Tonen Corp 潤滑油組成物
JP2003073685A (ja) * 2001-09-06 2003-03-12 Nippon Oil Corp 内燃機関用潤滑油組成物
JP2003221588A (ja) * 2002-02-01 2003-08-08 Asahi Denka Kogyo Kk 潤滑性組成物
JP2004277712A (ja) * 2003-02-27 2004-10-07 Nippon Oil Corp 4サイクルエンジン油基油及び組成物
WO2005014763A1 (ja) * 2003-08-06 2005-02-17 Nippon Oil Corporation Dlc接触面を有するシステム、該システムの潤滑方法及び該システム用潤滑油
JP2006182986A (ja) * 2004-12-28 2006-07-13 Chevron Japan Ltd 潤滑油組成物
JP2008106199A (ja) * 2006-10-27 2008-05-08 Idemitsu Kosan Co Ltd 潤滑油組成物
JP2009292998A (ja) * 2008-06-09 2009-12-17 Idemitsu Kosan Co Ltd 内燃機関用潤滑油組成物
WO2010032781A1 (ja) * 2008-09-19 2010-03-25 出光興産株式会社 内燃機関用潤滑油組成物
JP2010100707A (ja) * 2008-10-22 2010-05-06 Idemitsu Kosan Co Ltd 内燃機関用潤滑油組成物
JP2011195774A (ja) * 2010-03-23 2011-10-06 Adeka Corp 内燃機関用潤滑油組成物
WO2014021350A1 (ja) * 2012-07-31 2014-02-06 出光興産株式会社 内燃機関用潤滑油組成物
WO2015022976A1 (ja) * 2013-08-16 2015-02-19 Jx日鉱日石エネルギー株式会社 内燃機関用潤滑油組成物
JP2015140354A (ja) * 2014-01-27 2015-08-03 出光興産株式会社 内燃機関用潤滑油組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279292A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9869219B2 (en) 2012-11-19 2018-01-16 Castrol Limited Apparatus and method
US9878822B2 (en) 2012-11-19 2018-01-30 Castrol Limited Replaceable fluid container
US9890901B2 (en) 2012-11-19 2018-02-13 Castrol Limited Replaceable fluid container
US9938867B2 (en) 2012-11-19 2018-04-10 Castrol Limited Cartridge and system for replenishing fluid in an apparatus
US10683139B2 (en) 2012-11-19 2020-06-16 Castrol Limited Replaceable fluid container
US10619533B2 (en) 2014-05-21 2020-04-14 Castrol Limited Fluid system and method
US10662835B2 (en) 2014-05-21 2020-05-26 Castrol Limited Apparatus for identifying fluid of a removable fluid container and method of use
US10449933B2 (en) 2014-05-21 2019-10-22 Castrol Limited Fluid system and method
US10473006B2 (en) 2014-05-21 2019-11-12 Castrol Limited Method and apparatus
US10697336B2 (en) 2014-05-21 2020-06-30 Castrol Limited Fluid system
US10502104B2 (en) 2014-05-21 2019-12-10 Castrol Limited Fluid system
US10533469B2 (en) 2014-05-21 2020-01-14 Castrol Limited Fluid container
US10167755B2 (en) 2014-05-21 2019-01-01 Castrol Limited Apparatus for identifying fluid of a removable fluid container and method of use
US10358259B2 (en) 2014-05-21 2019-07-23 Castrol Limited Apparatus and method
US10690026B2 (en) 2015-09-23 2020-06-23 Castrol Limited Fluid system
US10690025B2 (en) 2015-09-23 2020-06-23 Castrol Limited Fluid system
US10634021B2 (en) 2015-09-23 2020-04-28 Castrol Limited Fluid method and system
US10480365B2 (en) 2015-09-23 2019-11-19 Castrol Limited Fluid method and system
US11022012B2 (en) 2015-09-23 2021-06-01 Castrol Limited Fluid method and system
US10647312B2 (en) 2015-12-23 2020-05-12 Castrol Limited Apparatus and method
US10704451B2 (en) 2015-12-23 2020-07-07 Castrol Limited Heat exchanger for an apparatus
WO2018070363A1 (ja) * 2016-10-11 2018-04-19 出光興産株式会社 潤滑油組成物
WO2023054469A1 (ja) * 2021-10-01 2023-04-06 Eneos株式会社 内燃機関用潤滑油組成物
WO2023188839A1 (ja) * 2022-03-31 2023-10-05 出光興産株式会社 二輪車用潤滑油組成物

Also Published As

Publication number Publication date
KR20170134965A (ko) 2017-12-07
CN106459809A (zh) 2017-02-22
US20170121626A1 (en) 2017-05-04
EP3279292B1 (en) 2024-05-01
EP3279292A1 (en) 2018-02-07
EP3279292A4 (en) 2018-08-22
JP2016193995A (ja) 2016-11-17
JP6114330B2 (ja) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6114330B2 (ja) 潤滑油組成物及び内燃機関の摩擦低減方法
JP6334503B2 (ja) 潤滑油組成物及びその製造方法
JP6572900B2 (ja) 潤滑油組成物、及び当該潤滑油組成物の製造方法
CN106459819B (zh) 润滑油组合物和降低内燃机摩擦的方法
JP6197123B2 (ja) ガソリンエンジン用潤滑油組成物、及びその製造方法
JP5513703B2 (ja) 潤滑油組成物
JP2021143348A (ja) 潤滑油組成物、潤滑方法、及び変速機
JP6302416B2 (ja) 潤滑油組成物
JPWO2019177125A1 (ja) 潤滑油組成物
US20220169946A1 (en) Lubricating oil composition
JP2017155079A (ja) 潤滑油組成物、潤滑方法、及び変速機
WO2015025976A1 (ja) 緩衝器用潤滑油組成物
JP2020164747A (ja) 潤滑油組成物
JP6780826B2 (ja) 潤滑油組成物及び内燃機関の摩擦低減方法
WO2017170401A1 (ja) 潤滑油組成物
WO2020203784A1 (ja) 潤滑油組成物
WO2016152540A1 (ja) 内燃機関用潤滑油組成物及びガソリンエンジンの摩擦低減方法
WO2016170813A1 (ja) 自動変速機油

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15318559

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177018254

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016772852

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE