WO2010032570A1 - 樹脂粒子 - Google Patents

樹脂粒子 Download PDF

Info

Publication number
WO2010032570A1
WO2010032570A1 PCT/JP2009/064286 JP2009064286W WO2010032570A1 WO 2010032570 A1 WO2010032570 A1 WO 2010032570A1 JP 2009064286 W JP2009064286 W JP 2009064286W WO 2010032570 A1 WO2010032570 A1 WO 2010032570A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
cyclic olefin
group
resin particles
far
Prior art date
Application number
PCT/JP2009/064286
Other languages
English (en)
French (fr)
Inventor
川島 直之
岡庭 求樹
六鹿 泰顕
宮木 伸行
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008264640A external-priority patent/JP2010090350A/ja
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2010032570A1 publication Critical patent/WO2010032570A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • B29C67/04Sintering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene

Definitions

  • the present invention relates to resin particles. More specifically, it consists of a specific cyclic olefin resin that has good adhesion and adhesion to other materials, is highly transparent, and has high heat resistance, and is a light diffusing agent, powder coating material, toner material, ink.
  • the present invention relates to resin particles useful as spacers (for example, for liquid crystal displays), fillers, antiblocking agents, lubricant components, three-dimensional object molding powders, and the like.
  • Particles made of various resins are used as light diffusing agents, powder paints, toner materials, inks, spacers (for example, for liquid crystal displays), fillers, anti-blocking agents, lubricant components, three-dimensional object molding powders, etc. .
  • the three-dimensional object modeling by the powder sintering additive manufacturing method is effective in shortening the period of molding development and cost saving, the demand for powder for three-dimensional object molding has been increasing in recent years mainly on polyamide resin particles.
  • the powder sintering layered manufacturing method is a technology for manufacturing a target modeled object, which includes the following steps.
  • Patent Literature 1 discloses the technology. (1) Step of creating data of cross-sectional shape at predetermined intervals (data of 1st to n-th cross-sections) of the target object in advance (2) Resin / metal powder spread over the thickness of the predetermined interval Next, a step of irradiating a laser to a cross-sectional shape corresponding to the data of the first cross section and fusing a resin or a metal (3) A thickness of a predetermined interval is again formed on the fused resin or metal.
  • Step (4) Steps (1) to (3) in which resin / metal powder is spread and laser is scanned and irradiated to the cross-sectional shape corresponding to the data of the second cross section to fuse and laminate the resin / metal.
  • marking is performed by cutting the laser irradiated portion to change the surface shape, or by utilizing the property that the irradiated object is colored or faded by laser irradiation.
  • cyclic olefin-based resins have features such as high glass transition temperature, high light transmittance and low birefringence compared to conventional optical films due to low refractive index anisotropy. .
  • the cyclic olefin-based resin has attracted attention as a transparent thermoplastic resin having a better balance of heat resistance, transparency, and optical properties than polyamide resins (see, for example, Patent Documents 2 to 6).
  • Cyclic olefin resin having such excellent properties can also be expected to have properties as particles, especially high heat resistance, which was difficult to manufacture by conventional photo-molding methods using photo-curing reaction when applied to powder sintering lamination molding. It is expected that a molded article with high transparency and high strength can be obtained.
  • the resin powder is fused by irradiating the resin powder with a laser (specifically, a far infrared laser) to generate heat.
  • a laser specifically, a far infrared laser
  • the cyclic olefin-based resin is amorphous, it is excellent in transparency as described above, but the degree of decrease in melt viscosity when the temperature is increased is smaller than that of a crystal material such as nylon. For this reason, it has been pointed out that the cyclic olefin-based resin has poor laser processability and is disadvantageous for powder sintering lamination molding and the like (see Patent Document 7).
  • the object of the present invention is excellent in heat resistance and transparency, light diffusing agent, powder paint, toner material, ink, spacer (for liquid crystal display, for example), filler, anti-blocking agent, lubricant component, three-dimensional object modeling It is providing the resin particle which consists of a cyclic olefin resin which can be used conveniently as a powder for an application.
  • the transparency refers to both the transparency of the resin particles and the transparency after heat-sealing the resin particles.
  • Another object of the present invention is to provide resin particles that are excellent in far-infrared absorption capability and are suitable for use in powder sintering laminate molding, engraving, cutting, marking, and the like using a far-infrared laser.
  • the gist of the present invention is as follows.
  • the weight average molecular weight measured by gel permeation chromatography is 30,000 to 200,000, is composed of a cyclic olefin resin having a repeating unit represented by the following general formula (1), and the volume average particle diameter is 1 to 200 ⁇ m.
  • Resin particles characterized by:
  • [X represents a group represented by the formula: —CH ⁇ CH— or a group represented by the formula: —CH 2 CH 2 —, a and b independently represent 0 or 1, and c and d independently represent Represents an integer from 0 to 2,
  • R 4 , R 5 , R 6 , R 7 , R 8 and R 9 each independently represents any of the following (i) to (v);
  • Substituted hydrocarbon group having 1 to 40 carbon atoms (v)
  • Polar group R 10 , R 11 , R 12 and R 13 are each independently any one of (i) to (v) above or (vi ) To (vii);
  • the logarithmic viscosity of the cyclic olefin resin measured using a Ubbelohde viscometer is preferably 0.30 to 0.95 dL / g.
  • the resin particles of the present invention are preferably resin particles having a glass transition temperature of 115 to 200 ° C. and a volume average particle diameter of 10 to 80 ⁇ m.
  • cyclic olefin resin 95% or more of the carbon-carbon double bond portion excluding the aromatic unsaturated bond is preferably hydrogenated.
  • the resin particles of the present invention comprise a resin composition containing the cyclic olefin resin and a styrene polymer having a structural unit represented by the following formula (4), and have a volume average particle diameter of 1 to 200 ⁇ m. It may be a resin particle.
  • R represents an alkyl group having 1 to 4 carbon atoms, a hydroxyl group or a carboxyl group
  • n represents an integer of 0 to 5
  • a plurality of R may be the same. May be different.
  • Examples of the far-infrared absorber include silicate minerals or phosphate esters.
  • the resin particles of the present invention preferably further contain an antioxidant.
  • the resin particles of the present invention can be used in a powder sintering additive manufacturing method.
  • resin particles having excellent heat resistance and transparency include a light diffusing agent, a powder coating material, a toner material, an ink, a spacer (for example, for a liquid crystal display), a filler, and a blocking agent. It can be suitably used for various particles such as an inhibitor, a lubricant component, and a three-dimensional object shaping powder.
  • the resin particles of the present invention have a weight average molecular weight of 30,000 to 200,000 as measured by gel permeation chromatography, are composed of a cyclic olefin resin having a repeating unit represented by the following general formula (1), and have a volume average particle diameter. Is 1 to 200 ⁇ m.
  • the resin particles of the present invention may be resin particles made of a resin composition containing the cyclic olefin resin and a specific styrene polymer.
  • X represents a group represented by the formula: —CH ⁇ CH— or a group represented by the formula: —CH 2 CH 2 —, a and b independently represent 0 or 1, c and d Independently represents an integer from 0 to 2,
  • R 4 , R 5 , R 6 , R 7 , R 8 and R 9 each independently represents any of the following (i) to (v);
  • Substituted hydrocarbon group having 1 to 40 carbon atoms (v)
  • Polar group R 10 , R 11 , R 12 and R 13 are each independently any one of (i) to (v) above or (vi ) To (vii);
  • the cyclic olefin resin constituting the resin particles of the present invention has a polystyrene-equivalent weight average molecular weight [Mw] measured by gel permeation chromatography (GPC) of 30,000 to 200,000, preferably 32,000 to 180. , 000, particularly preferably 35,000 to 160,000.
  • Mw polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) of 30,000 to 200,000, preferably 32,000 to 180. , 000, particularly preferably 35,000 to 160,000.
  • Mw polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography
  • the molecular weight distribution [Mw / Mn] of the cyclic olefin resin is preferably 1.1 to 10.0, more preferably 1.3 to 8.0, and particularly preferably 1.5 to 6.0. It is.
  • the logarithmic viscosity of the cyclic olefin-based resin constituting the resin particles of the present invention measured using a Ubbelohde viscometer is usually 0.30 to 0.95 dL / g, preferably 0.32 to 0.90 dL / g, Particularly preferred is 0.35 to 0.80 dL / g. If the logarithmic viscosity is less than 0.30 dL / g, the strength of the molded product obtained by heating and heat-sealing resin particles may be insufficient. On the other hand, if it exceeds 0.95 dL / g, the transparency of the molded product obtained by heating and thermally fusing the resin particles tends to be insufficient, and the fusion strength tends to be insufficient.
  • the glass transition temperature [Tg] of the cyclic olefin resin constituting the resin particle of the present invention is usually 115 to 200 ° C., preferably 120 to 180 ° C.
  • Tg is less than 115 ° C.
  • the resin particles may be deformed when used under high temperature conditions.
  • Tg exceeds 200 ° C., it may be difficult to mold the resin particles, and it may be necessary to increase the heating temperature during the molding process, so that the resin may be deteriorated by heat.
  • the cyclic olefin resin constituting the resin particles of the present invention is a polymer having a repeating unit represented by the general formula (1) as described above.
  • the said cyclic olefin resin may have another repeating unit as needed.
  • the cyclic olefin-based resin may have only one type of repeating unit corresponding to the above formula (1), and the structure is different, but a plurality of types of repeating units corresponding to the above formula (1) are both included. You may have.
  • the cyclic olefin-based resin having a repeating unit represented by the general formula (1) is a monomer represented by the following general formula (3) (hereinafter also referred to as “monomer (1)”) and necessary. Accordingly, it can be obtained by ring-opening (co) polymerizing other monomers.
  • X is a group represented by the formula: —CH ⁇ CH—.
  • a and b independently represent 0 or 1
  • c and d independently represent an integer of 0 to 2
  • R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are Each independently represents any one of (i) to (v) described in the description of the above formula (1)
  • R 10 , R 11 , R 12 and R 13 are each independently described in the description of the above formula (1).
  • halogen atom (ii) examples include a fluorine atom, a chlorine atom and a bromine atom.
  • Examples of the substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms of (iii) include alkyl groups such as a methyl group, an ethyl group, and a propyl group; A cycloalkyl group such as a cyclopentyl group and a cyclohexyl group; Alkenyl groups such as vinyl group, allyl group, propenyl group; At least one hydrogen of an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group or a propyl group is an alkyl group such as a methyl group, an ethyl group or a propyl group, a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, vinyl A group substituted with an alkenyl group such as a group, an allyl group, a propenyl group; Aryl groups such as phenyl, nap
  • the above substituted or unsubstituted hydrocarbon group may be directly bonded to the ring structure, or may be bonded via a linking group as shown in (iv) above.
  • linking group examples include a carbonyl group (—CO—), an oxycarbonyl group (—O (CO) —), a carbonyloxy group (—COO—), a sulfone group (—SO 2 —), an ether bond (— O-), thioether bond (-S-), imino group (-NH-), amide bond (-NHCO-, -CONH-) and siloxane bond (-OSi (R)-(wherein R is methyl, ethyl Etc.) and the like.
  • the linking group may be a group containing a plurality of these.
  • Examples of the polar group (v) include a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, a carbonyloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, a cyano group, an amide group, an imide group, a triorganosiloxy group, A triorganosilyl group, an amino group, an acyl group, an alkoxysilyl group, a sulfonyl group, a carboxyl group and the like can be mentioned.
  • examples of the alkoxy group include a methoxy group, an ethoxy group, and the like;
  • the carbonyloxy group include alkylcarbonyloxy groups such as an acetoxy group and propionyloxy group, and arylcarbonyloxy groups such as a benzoyloxy group;
  • examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group;
  • Examples of the triorganosiloxy group include trimethylsiloxy group and triethylsiloxy group;
  • examples of the triorganosilyl group include a trimethylsilyl group and a triethylsilyl group;
  • the amino group a primary amino group;
  • an acyl group an alkylcarbonyloxy groups such as an acetoxy group and propionyloxy group
  • arylcarbonyloxy groups such as a benzoyloxy group
  • examples of the alkoxycarbonyl group include a me
  • R 10 and R 11 , or R 12 and R 13 are combined to form a monocyclic or polycyclic hydrocarbon ring or heterocyclic ring. Also good. Further, as shown in the above (vii), R 10 or R 11 and R 12 or R 13 may be bonded to each other to form a monocyclic or polycyclic hydrocarbon ring or heterocyclic ring.
  • R represents a linear, branched or cyclic alkyl group having 20 or less carbon atoms, or an aryl group.
  • alkyl group or aryl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclohexyl group, a phenyl group, a naphthyl group, and a biphenyl group.
  • the monomer (1) include the following compounds. Bicyclo [2.2.1] hept-2-ene, tricyclo [4.3.0.1 2,5 ] -3-decene, tricyclo [5.2.1.0 2,6 ] -deca-3, 8- diene, tricyclo [4.4.0.1 2, 5]-3-undecene, tetracyclo [4.4.0.1 2,5 .1 7,10] -3- dodecene, pentacyclo [6.5 .1.1 3,6 .0 2,7 .0 9,13] -4-pentadecene, pentacyclo [7.4.0.1 2,5 .1 9,12 .0 8,13] -3- pentadecene 5-methylbicyclo [2.2.1] hept-2-ene, 5-ethylbicyclo [2.2.1] hept-2-ene, 5-methoxycarbonylbicyclo [2.2.1] hept-2 -Ene, 5-methyl-5-methoxycarbonylbicyclo [[2.
  • hept-2-ene 5-n-hexylbicyclo [2. .1] hept-2-ene, 5-cyclohexylbicyclo [2.2.1] hept-2-ene, 5- (2-cyclohexenyl) bicyclo [2.2.1] hept-2-ene, 5- n-octylbicyclo [2.2.1] hept-2-ene, 5-n-decylbicyclo [2.2.1] hept-2-ene, 5-isopropylbicyclo [2.2.1] hept-2 -Ene, 5- (1-naphthyl) bicyclo [2.2.1] hept-2-ene, 5- (2-naphthyl) bicyclo [2.2.1] hept-2-ene, 5- (2- Naphthyl) -5-methylbicyclo [2.2.1] hept-2-ene, 5- (4-biphenyl) bicyclo [2.2.1] hept-2-ene
  • hept-2-ene 5-tri-n-butoxysilylbicyclo [2.2.1] hept-2-ene, 5-chloromethylbicyclo [2.2.1] hept-2-ene, 5 -Hydroxymethylbicyclo [2.2.1] hept-2-ene, 5-cyclohexenylbicyclo [2.2.1] hept-2-ene, 5-fluorobicyclo [2.2.1] hept-2- Ene, 5-fluoromethylbicyclo [2.2.1] hept-2-ene, 5-trifluoromethylbicyclo [2.2.1] hept-2-ene, 5,5-difluorobicyclo [2.2.
  • Monomer (1) can be used alone or in combination of two or more.
  • Monomers in which a to d have such numerical values are excellent in availability and economy of raw materials for producing monomers, and monomers can be produced with high productivity.
  • R 4 to R 9 are each independently any one of (i) to (v), preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, more preferably hydrogen.
  • Monomers in which R 4 to R 9 are the above groups are preferable because they can be produced in high yield.
  • R 10 to R 13 are each independently any one of the above (i) to (v), or any one of the above (vi) to (vii), but R 10 and R 11 or R 12 And R 13 is preferably a hydrogen atom, or R 10 or R 11 and R 12 or R 13 are preferably bonded to form a ring structure.
  • Monomers in which R 10 to R 13 have the above structure are easy to produce, and cyclic olefin-based resins obtained from the monomers have a high glass transition temperature [Tg] and excellent mechanical strength. Therefore, it is preferable.
  • Examples of such preferable monomers include the following. Bicyclo [2.2.1] hept-2-ene, tricyclo [4.3.0.1 2,5 ] -3-decene, tricyclo [5.2.1.0 2,6 ] -deca-3, 8- diene, tetracyclo [4.4.0.1 2,5 .1 7,10] -3- dodecene, 5-methyl-5-methoxycarbonyl-bicyclo [2.2.1] hept-2-ene, 5 - ethylidene bicyclo [2.2.1] hept-2-ene, 8-ethylidene tetracyclo [4.4.0.1 2,5 .1 7,10] -3- dodecene, 8-methoxycarbonyloxy-8 Methyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] -3-dodecene, 5-phenylbicyclo [2.2.1] hept-2-ene.
  • bicyclo [2.2.1] hept-2-ene, tricyclo [5.2.1.0 2,6 ] -deca-3,8-diene, 5-methyl-5-methoxycarbonylbicyclo [ 2.2.1] hept-2-ene and 8-methoxycarbonyl-8-methyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] -3-dodecene is particularly preferred.
  • the cyclic olefin resin may be copolymerized with a copolymerizable monomer other than the monomer represented by the general formula (3) (monomer (1)).
  • the copolymerizable monomer include cycloolefins having 4 to 20 carbon atoms, preferably cycloolefins having 4 to 12 carbon atoms. Specific examples thereof include cyclobutene, cyclopentene, cycloheptene, and cyclooctene.
  • copolymerizable monomers can be used singly or in combination of two or more.
  • a preferred use ratio of the monomer (1) / copolymerizable monomer is 100/0 to 50/50 by weight, and more preferably 100/0 to 60/40.
  • Monomers in the ring-opening (co) polymer obtained by ring-opening (co) polymerizing the monomer (1) and the copolymerizable monomer at a usage ratio of 100/0 to 50/50 ( The ratio of 1) / copolymerizable monomer is 100/0 to 50/50 by weight, and when ring-opening (co) polymerization is performed at a usage ratio of 100/0 to 60/40, the monomer The ratio of (1) / copolymerizable monomer is 100/0 to 60/40 by weight.
  • Ring-opening polymerization catalyst As the catalyst for ring-opening (co) polymerization used for the production of the cyclic olefin-based resin, a catalyst described in Olefin Metathesis and Metathesis Polymerization (KJIVIN, JCMOL, Academic Press 1997) is preferably used.
  • Such a catalyst examples include (a) at least one compound selected from the group consisting of compounds of W, Mo, Re, V and Ti, and (b) Li, Na, K, Mg, Ca, Zn. , Cd, Hg, B, Al, Si, Sn, Pb, etc., and a metathesis comprising a combination of at least one selected from those having the element-carbon bond or the element-hydrogen bond A polymerization catalyst is mentioned.
  • This catalyst may be added with an additive (c) described later in order to increase the activity of the catalyst.
  • Preferable representative examples of the component (c) that is an additive include alcohols, aldehydes, ketones, amines, and the like, and further compounds disclosed in JP-A-1-240517. These are added to adjust the activity of the catalyst or to adjust the solubility of the catalyst in the solvent.
  • a metathesis catalyst composed of a group 4 to group 8 transition metal-carbene complex, a metallacyclobutane complex, or the like without using a promoter is exemplified.
  • solvent for polymerization reaction examples include pentane, hexane, heptane, octane, nonane and decane.
  • Alkanes such as; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Halogenated alkanes and halogenated aryl compounds such as chlorobutane, bromohexane, methylene chloride, dichloroethane, hexamethylene dibromide, chlorobenzene, chloroform, tetrachloroethylene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, iso-butyl acetate, methyl propionate and dimethoxyethane; Mention may be made of ethers such as dibutyl ether, tetrahydrofuran and dimethoxyethane. These can be used individually by
  • the amount of the solvent for the polymerization reaction is such that “solvent: monomer (1) (weight ratio)” is usually 1: 1 to 10: 1, preferably 1: 1 to 5: 1. It is taken as a quantity.
  • solvent: monomer (1) (weight ratio) is usually 1: 1 to 10: 1, preferably 1: 1 to 5: 1. It is taken as a quantity.
  • the same polymerization reaction solvent as described above can be used.
  • the molecular weight of the resulting ring-opening (co) polymer can be adjusted depending on the polymerization temperature, the type of catalyst, and the type of solvent. In the present invention, the molecular weight regulator is adjusted to coexist in the polymerization reaction system. can do.
  • Suitable molecular weight regulators include ⁇ -olefins such as ethylene, propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene and 1-decene. And styrene. Of these, 1-butene and 1-hexene are particularly preferred.
  • molecular weight regulators can be used singly or in combination of two or more.
  • the amount of the molecular weight regulator used is usually 0.005 to 0.6 mol, preferably 0.02 to 0.5 mol, based on 1 mol of all monomers subjected to the ring-opening polymerization reaction.
  • the same molecular weight regulator as described above can be used.
  • the polymerization reaction can be carried out under normal pressure to 1 MPa, the reaction temperature is usually 40 to 140 ° C., and the reaction time is usually 0.5 to 5 hours.
  • the monomer (1) and the copolymerizable monomer may be subjected to ring-opening copolymerization.
  • ring-opening copolymerization Furthermore, polybutadiene, polyisoprene, etc.
  • unsaturated hydrocarbon polymers containing two or more carbon-carbon double bonds in the main chain such as conjugated diene compounds, styrene-butadiene copolymers, ethylene-nonconjugated diene copolymers, and polynorbornene.
  • the monomer (1) may be subjected to ring-opening polymerization and introduced as a structural unit of the ring-opening (co) polymer.
  • ⁇ Hydrogenated body> The ring-opening (co) polymer obtained as described above can be used as it is, but a hydrogenated product obtained by further hydrogenation thereof is useful as a raw material for resin particles having high heat resistance.
  • the hydrogenated product is a ring-opening in which X in the general formula (1) is converted from an olefinically unsaturated group represented by —CH ⁇ CH— to a group represented by —CH 2 —CH 2 —. (Co) polymer.
  • the aromatic unsaturated bond may remain, and may be hydrogenated as necessary.
  • Hydrogenation catalyst As the hydrogenation catalyst used in the hydrogenation reaction, those used in the usual hydrogenation reaction of olefinic compounds can be used. As the hydrogenation catalyst, any of known heterogeneous catalysts and homogeneous catalysts can be used.
  • heterogeneous catalyst examples include a solid catalyst in which a noble metal catalyst material such as palladium, platinum, nickel, rhodium, and ruthenium is supported on a carrier such as carbon, silica, alumina, and titania.
  • a noble metal catalyst material such as palladium, platinum, nickel, rhodium, and ruthenium is supported on a carrier such as carbon, silica, alumina, and titania.
  • homogeneous catalysts include nickel naphthenate / triethylaluminum, bis (acetylacetonato) nickel (II) / triethylaluminum, cobalt octenoate / n-butyllithium, titanocene dichloride / diethylaluminum monochloride, rhodium acetate, chlorotris (Triphenylphosphine) rhodium, dichlorotris (triphenylphosphine) ruthenium, chlorohydridocarbonyltris (triphenylphosphine) ruthenium, dichlorocarbonyltris (triphenylphosphine) ruthenium, (acetoxy) carbonyl (hydrido) bis (triphenylphosphine) Examples include ruthenium and (4-pentylbenzoyloxy) carbonyl (hydrido) bis (triphenylphosphine
  • the form of the catalyst may be powdery or granular. These hydrogenation catalysts can be used either individually or in combination of two or more.
  • the “ring-opening (co) polymer: hydrogenation catalyst (weight ratio)” is 1: 1 ⁇ 10 ⁇ 6 to 1: 2. It is desirable to use at a ratio of
  • the proportion of hydrogenation is usually 95 mol% or more, preferably 97 mol% or more, more preferably 97 mol% or more of the whole repeating unit represented by the general formula (1) in the ring-opening (co) polymer.
  • a ratio in which 99 mol% or more is a group in which X is represented by —CH 2 —CH 2 — is desirable. That is, in the ring-opening (co) polymer, it is desirable that 95% or more of the carbon-carbon double bond portion excluding the aromatic unsaturated bond is hydrogenated.
  • the higher the ratio of hydrogenation the more preferable it is from the viewpoint of antioxidation property, because coloring and deterioration due to heat can be suppressed in the obtained hydrogenated product.
  • a hydrogenation catalyst is added to a solution of a ring-opening (co) polymer (the solvent is a solvent for the polymerization reaction used to produce the ring-opening (co) polymer), and this is usually performed.
  • the reaction can be carried out by reacting hydrogen at 40 to 250 ° C., usually at normal pressure to 30 MPa, preferably 2 to 20 MPa, more preferably 3 to 18 MPa, usually 0.5 to 5 hours.
  • a high-purity cyclic olefin resin is obtained.
  • a conventionally known method can be used for purification.
  • the obtained reactant solution is diluted with a good solvent such as toluene or tetrahydrofuran, and then a poor solvent such as methanol, water, or a mixed solution thereof is added to the diluted solution to appropriately aggregate the polymer. And a method of extraction processing.
  • the ratio of the solvent weight used as the reaction solvent and the solvent added for dilution to the polymer weight is usually 0.5 / 1 to 6 / 1, preferably 0.7 / 1 to 4/1.
  • the amount (weight) of a poor solvent such as methanol, water, or a mixed solution thereof used for extraction is usually 0.3 to 5 in a ratio to the weight of the good solvent (poor solvent / good solvent).
  • the amount is preferably 0.5 to 3.
  • the extraction temperature is usually 40 to 120 ° C., preferably 50 to 100 ° C.
  • the solution After extraction as described above, the solution is cooled and separated into light multi-layers, and the light layers are removed with a centrifuge or the like. After these extraction operations are repeated 1 to 10 times, the multilayer solution is concentrated and desolubilized by a desoldering apparatus such as a devolatilizer or a twin screw extruder.
  • the temperature during desorption is 150 to 350 ° C., preferably 200 to 350 ° C.
  • the degree of vacuum is 0.1 to 50 mmHg, preferably 1 to 40 mmHg.
  • circulation filtration may be performed by diluting before desolubilization.
  • one type of filtering agent having a pore size of 0.1 to 100 ⁇ m may be used alone, or a plurality of filters having different pore sizes may be installed in stages.
  • the pore size of the polymer filter is preferably 0.1 to 100 ⁇ m.
  • Ring-opened (co) polymerized hydrogenated product (2) Addition (co) polymer of cyclic olefin monomer represented by general formula (3) (3) Cyclic formula represented by general formula (3) Addition copolymer of olefin monomer and ethylene or monosubstituted ethylene (4) Cyclic olefin monomer, vinyl cyclic hydrocarbon monomer and cyclopentadiene represented by the general formula (3)
  • examples of monosubstituted ethylene include propylene, Butene etc., preferably 2-12 carbon atoms, Preferable examples thereof include ⁇ -olefin-based compound having 2 to 8 carbon atoms.
  • resin particles can be obtained by the method for producing resin particles described later, but heat resistance, mechanical strength, workability, transparency
  • the cyclic olefin resin (ring-opening (co) polymer or hydrogenated product thereof) is particularly excellent in balance of productivity and the like.
  • the resin particles of the present invention may be resin particles made of a resin composition containing the above cyclic olefin resin and a styrene polymer having a structural unit represented by the following formula (4). From the resin composition containing a styrenic polymer having a structural unit of the following formula (4), resin particles that are particularly excellent in fluidity at the time of melting can be obtained.
  • R represents an alkyl group having 1 to 4 carbon atoms, a hydroxyl group or a carboxyl group
  • n represents an integer of 0 to 5
  • n represents an integer of 0 to 5
  • a plurality of Rs are the same But it may be different.
  • R is preferably a methyl group or a hydroxyl group, and n is preferably 0 or 1 from the viewpoint of fluidity when the resin particles are melted and compatibility with the cyclic olefin resin.
  • Examples of the polymer having the structural unit represented by the formula (4) include polystyrene, styrene / hydroxystyrene copolymer, styrene / ⁇ -methylstyrene copolymer, styrene / olefin copolymer, styrene / butadiene copolymer. And hydrogenated products of styrene / butadiene copolymers.
  • hydrogenated polystyrene, styrene / olefin copolymers and styrene / butadiene copolymers have good compatibility with cyclic olefin resins and can improve the fluidity and strength of resin particles. preferable.
  • Polystyrene having a weight average molecular weight of 1000 to 30000, preferably 1500 to 15000, measured by gel permeation chromatography is preferred.
  • a polystyrene having a weight average molecular weight in the above range is preferable in that it has good compatibility with the cyclic olefin resin and can improve the fluidity of the resin particles.
  • Such a method for producing polystyrene is known, and the polystyrene is commercially available.
  • Examples of commercially available products include SX100 (manufactured by Yasuhara Chemical Co., Ltd., Mw; 2500), Regit S94 (manufactured by Sanyo Chemical Industries, Ltd., Mw; 4000), Hymer ST95 (manufactured by Sanyo Chemical Industries, Ltd., Mw; 5000). ).
  • the proportion of structural units derived from styrene is usually from 5 to 70% by weight, preferably from 10 to 65% by weight, based on 100% by weight of the total structural units of the hydrogenated styrene / butadiene copolymer.
  • the hydrogenation rate of the hydrogenated styrene / butadiene copolymer is usually 70% or more, preferably 80% or more, as the hydrogenation rate of the olefinic double bond derived from butadiene.
  • the hydrogenation rate is in this range since the heat resistance of the resin particles becomes good.
  • a copolymerized hydrogenated product is sometimes called a styrene / ethylene / butylene copolymer because of its structure.
  • Such hydrogenated styrene / butadiene copolymer has a polystyrene-reduced weight average molecular weight of 10,000 to 300,000, preferably 20,000 to 250,000, as measured by gel permeation chromatography. Is preferred.
  • a resin composition containing a hydrogenated styrene / butadiene copolymer having a weight average molecular weight in the above range is preferable because resin particles having excellent strength can be obtained.
  • a method for producing such a hydrogenated product of styrene / butadiene copolymer is known, and the hydrogenated product is also commercially available.
  • Examples of commercially available products include Tuftec H1041 (manufactured by Asahi Kasei Co., Ltd., Mw; 70,000) having a styrene / ethylene / butylene ratio of 30/70% by weight, and a styrene / ethylene / butylene ratio of 48/52% by weight.
  • Tuftec H1041 manufactured by Asahi Kasei Co., Ltd., Mw; 70,000
  • Dynaron 8900 manufactured by JSR Corporation.
  • the weight ratio of the cyclic olefin resin and the styrene polymer satisfies the above ratio, it is preferable because the fluidity and strength of the resin particles can be improved while maintaining excellent heat resistance and transparency derived from the cyclic olefin resin. .
  • the resin composition constituting the resin particles of the present invention is, for example, JP-A-9-221577 as a resin component other than the above cyclic olefin resin and styrene polymer, as long as the effects of the present invention are not impaired.
  • the resin composition can be produced by mixing a cyclic olefin resin, a styrene polymer, and, if necessary, the above hydrocarbon resin and the like by a known method.
  • a pellet-shaped resin composition can be obtained by kneading them using a twin screw extruder.
  • the cyclic olefin resin, the styrene resin, and, if necessary, the above hydrocarbon resin and the like are dissolved in a suitable solvent and mixed uniformly, and then desorbed by the same method as the cyclic olefin resin desorption method. It is also possible to obtain a pellet-shaped resin composition by melting.
  • the resin particles of the present invention comprising such a resin composition are particularly excellent in fluidity at the time of melting.
  • the melt flow rate (MFR) measured at a load of 10 kg and a temperature of 260 ° C. is usually 10 to 250 g / min, preferably 20 to 200 g / min.
  • the resin particle of this invention contains a far-infrared absorber from a viewpoint of the absorption capability of a far-infrared ray.
  • the type of the far-infrared absorber is not limited as long as it exhibits absorption in the far-infrared wavelength region (4 to 1000 ⁇ m).
  • Examples of the far-infrared absorber include organic dyes, organic pigments, inorganic dyes, inorganic pigments, other organic substances, and inorganic substances.
  • these far-infrared absorbers may be colored in the range which does not impair the effect of this invention, and may be colorless. It is preferable to appropriately select the color and absorption characteristics of the far-infrared absorber depending on the purpose of use of the resin particles of the present invention.
  • Examples of the inorganic substance include inorganic fine particles, and examples of the organic substance include a phosphorus atom-containing compound.
  • inorganic fine particles are thermally stable, and do not impair the heat resistance characteristics such as the glass transition temperature of the cyclic olefin resin and the resin composition (hereinafter also referred to as “cyclic olefin resin etc.”). -It is preferable because it has various shapes and can satisfy various purposes.
  • Specific inorganic fine particles include carbonates such as calcium carbonate and strontium carbonate; clay minerals and silicates such as silicate clay, mica, kaolin mineral, mica clay mineral, smectite, serpentine mineral, talc, chlorite, vermiculite Mention can be made of minerals.
  • the shape of the inorganic fine particles is not particularly limited, and may be spherical, acicular, or other irregular shapes.
  • the particle size of the inorganic fine particles is usually from 0.1 to 30 ⁇ m, preferably from 0.3 to 28 ⁇ m, particularly preferably from 0.5 to 25 ⁇ m, as the primary volume average particle size. If the average particle size is larger than 30 ⁇ m, the transparency of the cyclic olefin resin may be impaired.
  • Examples of the phosphorus atom-containing compound include phosphoric acid, phosphoric acid esters, polyphosphoric acid, phosphorous acid, phosphorous acid esters, and phosphonic acid esters. Of these, phosphate esters, phosphite esters, and phosphonate esters are preferred because of their low corrosivity and excellent compatibility with cyclic olefin resins, and phosphate esters are particularly preferred.
  • Phosphate esters, phosphite esters, and phosphonate esters have (YO—) 3 P, (YO—) 3 P ⁇ O, and Y (YO—) 2 P ⁇ O structures, respectively.
  • a plurality of Y present may be the same or different, and Y represents an alkyl group such as a methyl group and an ethyl group (the alkyl group may have a substituent), an aryl group such as a phenyl group and a biphenyl group (the group The aryl group may have a substituent) and the like.
  • triphenyl phosphate diphenyl phenylphosphonate, dimethyl phenylphosphonate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, Xylenyl diphenyl phosphate, cresyl bis (di-2,6-xylenyl) phosphate, di-2-ethylhexyl phosphate, resorcinol bis (di-2,6-xylenyl) phosphate, bisphenol A bis (diphenyl) phosphate, bisphenol A bis ( Dicresyl) phosphate, 4,4′-biphenol bis (diphenyl) phosphate.
  • Inorganic compounds, phosphate esters, phosphite esters and phosphonate esters can be selected according to the required quality level such as heat resistance and transparency. Moreover, you may use each individually or in combination of multiple types. Further, an inorganic compound and phosphate esters, phosphites and phosphonates may be used in combination.
  • the amount is from 01 to 70:30, preferably from 99.95: 0.05 to 75:25, particularly preferably from 99.9: 0.1 to 80:20.
  • the addition amount of the far-infrared absorber exceeds the above range, the transparency and heat resistance inherent to the cyclic olefin resin and the like are impaired. If the amount is less than the above range, the utilization efficiency of far-infrared energy does not increase.
  • the cyclic olefin-based resin or resin composition to which the far-infrared absorber is added has an excellent far-infrared absorption capability, and when processed into a film having a thickness of 100 ⁇ m, the absorbance at a wave number of 945 cm ⁇ 1 exceeds 0.36, and more Preferably it exceeds 0.4. If the absorbance is 0.36 or less, since the infrared absorption is low, problems such as a decrease in thermal efficiency may occur when the resin particles of the present invention are subjected to processing using infrared rays.
  • the total light transmittance of a film obtained by processing a cyclic olefin resin to which a far-infrared absorber is added to a thickness of 100 ⁇ m is usually 85% or more, preferably 88% or more, particularly preferably 90% or more, and haze. Is usually 10% or less, preferably 9% or less, particularly preferably 8% or less.
  • the total light transmittance is less than 85% or the haze exceeds 10%, the internal visibility of the molded body obtained by processing the resin particles of the present invention by a powder sintering additive manufacturing method may be reduced. is there.
  • the cyclic olefin-based resin or resin composition constituting the resin particles of the present invention may include an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an infrared absorber, an antistatic agent, and a dispersant as necessary.
  • Processability improver chlorine scavenger, flame retardant, crystallization nucleating agent, antiblocking agent, antifogging agent, mold release agent, dye, pigment, fluorescent whitening agent, organic or inorganic filler, neutralizing agent
  • Known additives such as lubricants, decomposition agents, metal deactivators, antifouling materials, antibacterial agents and other resins, and thermoplastic elastomers can be added as long as the effects of the present invention are not impaired. These additives may be used alone or in combination. The addition amount of the additive is usually 10 parts by mass or less with respect to 100 parts by mass of the cyclic olefin resin or the like.
  • antioxidants examples include 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, tetrakis [ Methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, , 3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxy Phenyl) propionate, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-diethylphenylmethane, 3,9-bis [1,1-dimethyl-2- ( ⁇ - (3 -T-butyl-4-hydroxy
  • antioxidants Made by Ciba Japan Co., Ltd .; Irganox 1010, Irganox 1035, Irganox 1076, Irganox 1330, Irganox 245, Irgafos 168, Irgafos 38, made by ADEKA Corporation;
  • Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) ) Phenol, 2- (2H-benzotriazol-2-yl) -4,6-di-t-pentylphenol, 2-benzotriazol-2-yl 4,6-di-t-butylphenol, 2,2'- And methylenebis [4- (1,1,3,3-tetramethylbutyl) -6-[(2H-benzotriazol-2-yl) phenol]].
  • the resin particles of the present invention have a volume average particle diameter of 1 to 200 ⁇ m, preferably 10 to 80 ⁇ m.
  • the volume average particle diameter is larger than 200 ⁇ m, the thickness of one section (slice) becomes thick at the time of modeling by the powder sintering additive manufacturing method, and the fineness of the three-dimensional model is lacking.
  • the volume average particle diameter is less than 1 ⁇ m, the number of slices becomes too large and productivity is lacking.
  • the volume average particle diameter is a volume average particle diameter measured using a Microtrac MT3300 manufactured by Nikkiso Co., Ltd. regardless of the shape of the particles.
  • the shape of the resin particles of the present invention is not particularly limited and may be spherical or irregular.
  • classification may be performed by a known classifier.
  • the classification method may be wet or dry.
  • Specific examples of the classifier include an inertia classifier such as an air separator, a dry centrifugal classifier such as a cyclone and a micron separator, a wet centrifugal classifier such as a centrifugal sedimentator and a liquid cyclone, and a sieving machine.
  • the resin particles of the present invention are particles made of the above cyclic olefin resin, or a resin composition containing the cyclic olefin resin and the styrene polymer.
  • Various known methods can be adopted as a method of forming a resin or resin composition into particles, and for example, a cyclic olefin-based resin or the like can be formed into resin particles by an emulsification method or a mechanical pulverization method. These two methods will be described below.
  • Step 1 in which a cyclic olefin-based resin or resin composition is dissolved in an organic solvent and the solution A obtained in Step 1 And a step 3 of emulsifying in the aqueous solution B containing the agent and a step 3 of recovering and drying particles of the cyclic olefin resin dispersed in the emulsion obtained in step 2.
  • the organic solvent used in step 1 is not particularly limited as long as it can dissolve the cyclic olefin-based resin or resin composition.
  • hydrocarbons such as petroleum ether, pentane, hexane, heptane, octane, nonane, decane; Cyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, decalin, norbornane;
  • Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene, chlorobenzene;
  • Halogenated hydrocarbons such as dichloromethane, dichloroethane, chlorobutane, chloroform, tetrachloroethylene; Esters such as methyl acetate, ethyl acetate, n-butyl acetate, isobutyl
  • Step 1 can be performed as follows, for example. (1) Any of the following (a) to (d) is dissolved in the organic solvent.
  • A Pellet of cyclic olefin resin, etc.
  • a cyclic olefin resin is synthesized in the organic solvent, and hydrogenated as necessary. That is, the organic solvent used for the synthesis of the cyclic olefin resin is used as it is as the organic solvent.
  • a cyclic olefin-based resin is synthesized in the organic solvent, and a residual monomer or catalyst is added to the reaction solution obtained by hydrogenation of the resin as necessary, by purification by extraction purification or adsorption treatment. Remove.
  • the concentration of the cyclic olefin resin or the like in the organic solvent solution of the cyclic olefin resin or the like (hereinafter also simply referred to as solution A) is usually 5 to 40% by mass, preferably 7 to 35% by mass, particularly preferably 10 to 30%. % By mass. If the concentration is less than 5% by mass, the productivity of particles such as cyclic olefin resins may be lowered. On the other hand, if it exceeds 40% by mass, the dispersibility of the solution A in water described later or in the aqueous solution B containing the surfactant is lowered, and problems such as failure to obtain resin particles having a desired particle diameter arise. There is.
  • step 2 the solution A obtained in step 1 is emulsified in water or an aqueous solution B containing a surfactant, whereby the cyclic olefin-based resin or the like is dispersed in water or the aqueous solution B and takes the shape of particles. .
  • stirring / dispersing means in the emulsification a conventionally known stirring device can be mentioned without particular limitation.
  • Specific examples of such devices include impeller stirrers, sawtooth blade mixers, closed rotor mixers, rotor / stator mixers, static mixers, inline propeller / turbine mixers, inline rotor / stator mixers, colloid mills And a high-pressure homogenizer.
  • Stirring conditions such as the number of revolutions of the stirrer cannot be determined uniquely because they vary depending on the equipment and the production amount of the resin particles and other conditions. However, under general stirring conditions (for example, 10 to 30000 rpm) Can be implemented.
  • the stirring time cannot be uniquely determined in the same manner, but is usually 5 to 300 minutes, preferably 10 to 180 minutes, more preferably 15 to 120 minutes.
  • the stirring time is shorter than 5 minutes, the dispersion of the cyclic olefin-based resin or the like becomes insufficient, and resin particles having a desired particle size may not be obtained.
  • the stirring time is longer than 300 minutes, the productivity of the resin particles tends to decrease.
  • the temperature at which the solution A is emulsified in water or in the aqueous solution B is usually 0 to 100 ° C., preferably 5 to 80 ° C., particularly preferably 10 to 60 ° C. If the temperature during emulsification exceeds 100 ° C., the resin particles tend to aggregate in the emulsified liquid in which the solution A is emulsified. On the other hand, when the temperature is less than 0 ° C., the production cost of the resin particles tends to increase.
  • Water or aqueous solution B is used as the medium for dispersing solution A, and aqueous solution B is preferred.
  • the presence of the surfactant increases the stability of the resin particles in the emulsion obtained in step 2.
  • surfactant examples include known anionic surfactants such as sodium fatty acid, fatty acid potassium, sodium alkylbenzene sulfonate, sodium alkyl sulfate ester, sodium alkyl ether sulfate, sodium alpha olefin sulfonate, sodium alkyl sulfonate, and the like; Cationic surfactants such as alkyltrimethylammonium salts and dialkyldimethylammonium salts; Amphoteric surfactants such as sodium alkylamino fatty acids, alkylbetaines, alkylamine oxides; Sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkyl ester, fatty acid alkanolamide, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxypropylene alkyl ether, polyoxypropylene fatty acid ester, etc.
  • nonionic surfactants are preferable because they have high compatibility with cyclic olefin resins and the like, and the effect on the transparency of resin particles when they remain in a small amount in the resin particles is preferable.
  • the surfactant are polyoxyethylene or polyoxypropylene derivatives such as polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxypropylene alkyl ether, and polyoxypropylene alkyl ester.
  • Kao's Emulgen series Leodoll series, Emanon series, Lion's Leox series, Lecole series, Lionol series, Leo fat series, Lionon series, etc. can do. These may be used alone or in combination.
  • the HLB value (Hydrophile-Lipophile Balance) of the surfactant is appropriately selected depending on the type of the cyclic olefin resin used and the type of the organic solvent, but cannot be uniquely determined, but is usually 6 to 20, preferably 7 To 19.5, particularly preferably 7.5 to 19.
  • the concentration of the surfactant in the aqueous solution B is usually 0.1 to 20% by mass, preferably 0.2 to 18% by mass, particularly preferably 0.3 to 15% by mass. If the concentration is less than 0.1% by mass, the stability of the resin particles in the emulsion obtained in step 2 may be insufficient. On the other hand, when the concentration exceeds 20% by mass, the particle diameter of the obtained resin particles becomes smaller than necessary, and the amount of the surfactant remaining in the resin particles tends to increase.
  • the solvent C that is compatible with both the organic solvent and water used in step 1 and that does not dissolve the cyclic olefin-based resin or the like is mixed with the emulsion obtained in step 2. It is preferable.
  • the solvent C is preferable because the resin particles can be solidified while maintaining the spherical shape, and the organic solvent and the surfactant used for dissolving the cyclic olefin-based resin can be extracted and removed. .
  • does not dissolve the cyclic olefin resin or the like specifically means that 1 g or less of the cyclic olefin resin or the like dissolved in 100 g of the solvent C at 25 ° C.
  • alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, s-butanol and isobutanol are preferable, and methanol, ethanol, propanol and isopropanol are particularly preferable.
  • the amount of the solvent C used is usually 30 to 2000% by mass, preferably 50 to 1000% by mass with respect to 100% by mass of the emulsion.
  • the mixing of the solvent C and the emulsified liquid is preferably carried out by stirring with a stirrer.
  • the stirring conditions at that time are usually 10 to 30,000 rpm, stirring temperature 0 to 60 ° C., stirring time 5 to 120. Minutes.
  • a step of concentrating the organic solvent used in the step may be added. By adding the concentration step, the amount of the organic solvent that volatilizes from the resin particles during drying is reduced, and resin particles having a shape closer to a true sphere can be obtained.
  • the pore size of the filter or mesh for collecting the above resin particles is selected according to the required particle size of the resin particles.
  • the recovered resin particles can be made into resin particles having a stable shape by drying with a vacuum or a hot air dryer.
  • the drying temperature is usually 20 to 160 ° C., preferably 30 to 140 ° C., more preferably 40 to 120 ° C. If the drying temperature is less than 20 ° C., the drying time tends to be long, so the productivity tends to decrease. On the other hand, if the drying temperature exceeds 160 ° C., the resin particles may be fused together, and resin particles having a desired particle size may not be obtained.
  • the amount of residual solvent in the resin particles thus obtained is usually less than 1% by mass, preferably less than 0.5% by mass, and more preferably less than 0.2% by mass. Resin particles having a residual solvent in this range have low blocking properties when stored for a long time.
  • far-infrared absorbers and various additives can be added to the cyclic olefin-based resin and the resin composition.
  • the addition of these additives can be performed, for example, before the start of Step 1.
  • the additive when dissolving the cyclic olefin resin or the like in an organic solvent in Step 1, the additive is added simultaneously with the cyclic olefin resin or the like. It may be added to an organic solvent and dissolved.
  • an organic solvent solution such as the cyclic olefin resin and a solution or dispersion of the additive are mixed to remove the known desorption.
  • a melting apparatus may be used for demelting. The mixture that has undergone this operation is subjected to Step 1 described above.
  • resin particles are obtained by producing the cyclic olefin-based resin or resin composition and mechanically pulverizing the resin or the like.
  • the mechanical pulverization may be freeze pulverization or normal temperature pulverization.
  • the apparatus for performing mechanical pulverization include various known apparatuses, such as a hammer mill, a jet mill, a ball mill, an impeller mill, a cutter mill, a pin mill, and a biaxial crusher.
  • the resin When mechanically pulverized, the resin generates frictional heat and may cause fusion due to temperature rise, and a powder having a desired particle size may not be obtained. For this reason, it is preferable to cool the apparatus and the resin using liquid nitrogen or the like and to make the resin embrittled and crushed.
  • the additives are usually added before pulverization.
  • a method of mixing the above-mentioned solution and desolving may be employed, or a kneading method using an extruder or the like may be employed.
  • the resin particles of the present invention can be produced by employing the following known methods in addition to the above method. ⁇ After kneading a pellet of a cyclic olefin resin or a resin composition and a dissimilar polymer material that is incompatible with the cyclic olefin resin, the pellet is dispersed in the dissimilar polymer material, and then the cyclic A method of recovering the resin particles of the present invention by dissolving the dissimilar polymer material with a solvent in which only an olefinic resin or the like does not dissolve. Such a technique is disclosed in Japanese Patent Laid-Open No. 2007-217651. A method of spray drying an organic solvent solution such as a cyclic olefin resin. Such a technique is disclosed in Japanese Patent Publication No. 2000-504642.
  • ⁇ Modification of resin particles> when the resin particles of the present invention produced by the above method are used in a powder sintering additive manufacturing method or the like, if the resin particles are not sufficiently melted and fused by the laser, the surface of the resin particles The resin particles may have a core / shell structure by surface modification by coating or graft polymerization. In such a case, in order not to impair the transparency inherent in the resin particles of the present invention, it is preferable to use a material or modifier that has a refractive index as close as possible to that of the resin particles.
  • a resin having a refractive index close to that of the resin particles and a heat or photocurable resin is formed.
  • a post-treatment such as impregnation with an object and subsequent curing treatment may be performed.
  • GPC gel permeation chromatography apparatus (manufactured by Tosoh Corporation HLC-8220GPC, column: Tosoh Corp. guard column H XL -H, TSK gel G7000H XL , TSK gel GMH XL 2 present, a TSK gel G2000H XL sequentially Connection, solvent: tetrahydrofuran, flow rate: 1 mL / min, sample concentration: 0.7 to 0.8 wt%, sample injection volume: 70 ⁇ L, measurement temperature: 40 ° C., detector: RI (40 ° C.), standard substance: TSK manufactured by Tosoh Corporation Standard polystyrene) was used to measure the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn). The Mn is a number average molecular weight.
  • NMR 1 H-NMR was measured in deuterated chloroform using a superconducting nuclear magnetic resonance absorber (NMR, manufactured by Bruker, trade name: AVANCE500), and the copolymer composition ratio and hydrogenation rate were calculated.
  • Logarithmic viscosity ⁇ Measured using a Ubbelohde viscometer in chloroform at a sample concentration of 0.5 g / dL and a temperature of 30 ° C.
  • Tg Extrapolated glass transition temperature was determined in accordance with Japanese Industrial Standard K7121 using a differential scanning calorimeter (trade name: DSC6220, manufactured by SII Nano Technology).
  • Volume average particle diameter Measured using Microtrack MT3300 manufactured by Nikkiso Co., Ltd.
  • MFR Melt flow rate
  • the hydrogenation rate of this hydrogenated product determined by NMR measurement was 99.0% or more.
  • the obtained ring-opening polymerization hydrogenated product is referred to as a cyclic olefin resin 1A.
  • the obtained ring-opening copolymerized hydrogenated product is referred to as a cyclic olefin resin 2A.
  • the obtained hydrogenated ring-opening copolymer is referred to as a cyclic olefin resin 3A.
  • the obtained ring-opening copolymerized hydrogenated product is referred to as a cyclic olefin-based resin 6A.
  • the obtained hydrogenated ring-opening copolymer is referred to as a cyclic olefin resin 7A.
  • a surfactant aqueous solution was placed in a 500 mL container, and a toluene solution of the cyclic olefin resin 1A was added into the surfactant aqueous solution while stirring at 2000 to 2500 rpm with a TK homomixer MARK II manufactured by PRIMIX Corporation. .
  • This emulsion was put into 1420 g of methanol and stirred for 10 minutes at 25 ° C. and 200 rpm using a three-one motor (propeller blade).
  • the precipitated resin particles were collected with a stainless steel 500 mesh wire net and dried with a vacuum dryer at 100 ° C. for 12 hours.
  • the recovery rate of the resin particles was 95%, and the volume average particle size was 36 ⁇ m.
  • Example 2 Resin particles were obtained at a recovery rate of 98% in the same manner as in Example 1 except that the amount of Emulgen 130K used was 1.0 g.
  • the volume average particle diameter of the resin particles was 67 ⁇ m, and the shape was almost spherical.
  • Example 3 Resin particles were obtained at a recovery rate of 96% in the same manner as in Example 1 except that the cyclic olefin resin 2A obtained in Synthesis Example 2 was used.
  • the volume average particle diameter of the resin particles was 50 ⁇ m, and the shape was almost spherical.
  • Example 4 Resin particles were obtained at a recovery rate of 95% in the same manner as in Example 1 except that the cyclic olefin resin 3A obtained in Synthesis Example 3 was used.
  • the volume average particle diameter of the resin particles was 78 ⁇ m, and the shape was almost spherical.
  • Example 5 Resin particles were obtained at a recovery rate of 95% in the same manner as in Example 1 except that the cyclic olefin resin 3A obtained in Synthesis Example 3 was used and the amount of Emulgen 130K used was 20.0 g.
  • the volume average particle diameter of the resin particles was 18 ⁇ m, and the shape was almost spherical.
  • Example 6 Resin particles were prepared in the same manner as in Example 2. The obtained resin particles were passed through a wet vibration sieve, and the particles collected on the 53 ⁇ m pore size sieve through a 63 ⁇ m pore size sieve were collected and vacuum dried. The recovery rate was 25%.
  • Example 7 20 g of the cyclic olefin resin 1A obtained in Synthesis Example 1 was dissolved in 180 g of toluene, and resin particles were obtained at a recovery rate of 95% in the same manner as in Example 1 except that the amount of Emulgen 130K was changed to 1.0 g. .
  • the volume average particle diameter of the resin particles was 15 ⁇ m, and the shape was almost spherical.
  • Example 8 To 100 parts by weight of the cyclic olefin resin 1A obtained in Synthesis Example 1, 0.3 part by weight of tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane as an antioxidant was added. The added product was pelletized with a twin-screw extruder, and then mechanical freeze pulverization using a hammer mill was performed. As a result, resin particles having a volume average particle diameter of 49 ⁇ m were obtained. The recovery rate was 90%.
  • Example 9 To 100 parts by weight of the cyclic olefin resin 2A obtained in Synthesis Example 2, 0.3 parts by weight of tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane as an antioxidant was added. The added product was pelletized with a twin-screw extruder and mechanical freeze-pulverized using a hammer mill to obtain resin particles with a volume average particle size of 60 ⁇ m. The recovery rate was 90%.
  • Example 10 To 100 parts by weight of the cyclic olefin resin 3A obtained in Synthesis Example 3, 0.3 parts by weight of tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane as an antioxidant was added. The added product was pelletized with a twin-screw extruder and mechanical freeze-pulverized using a hammer mill to obtain resin particles with a volume average particle size of 60 ⁇ m. The recovery rate was 90%.
  • Example 11 To 100 parts by weight of the cyclic olefin resin 6A obtained in Synthesis Example 6, 0.3 parts by weight of tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane as an antioxidant was added. The added product was pelletized with a twin-screw extruder, and then mechanical freeze pulverization using a hammer mill was performed. As a result, resin particles having a volume average particle diameter of 46 ⁇ m were obtained. The recovery rate was 92%.
  • Example 12 To 100 parts by weight of the cyclic olefin resin 1A obtained in Synthesis Example 1, 0.3 part by weight of tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane as an antioxidant was added. The added 9.5 kg and 0.5 kg of a styrene thermoplastic elastomer (Taftec H1041 manufactured by Asahi Kasei Co., Ltd.) having a styrene / ethylene / butylene ratio of 30/70 wt. 37BS (manufactured by Toshiba Machine) and kneaded to obtain a pellet-shaped thermoplastic resin composition. The cylinder temperature was 280 ° C., the shaft rotation speed was 100 rpm, and the extrusion speed was 10 to 20 kg / hr. The appearance of the obtained pellet was transparent, and its MFR was 21 g / 10 min.
  • Example 13 To 100 parts by weight of the cyclic olefin resin 1A obtained in Synthesis Example 1, 0.3 part by weight of tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane as an antioxidant was added. The same as Example 12 except that 9 kg added and 1.0 kg styrene-based thermoplastic elastomer (Asahi Kasei Co., Ltd., Tuftec H1041) having a styrene / ethylene / butylene ratio of 30/70% by weight were used. To obtain pellets. The MFR of the obtained pellet was 28 g / 10 min.
  • Example 14 To 100 parts by weight of the cyclic olefin resin 7A obtained in Synthesis Example 7, 0.3 part by weight of tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane as an antioxidant was added.
  • Example 12 except that 9.5 kg added and 0.5 kg of a styrene thermoplastic elastomer (Tuftec H1041 manufactured by Asahi Kasei Co., Ltd.) having a styrene / ethylene / butylene ratio of 30/70% by weight were used. In the same manner, a pellet was obtained. The MFR of the obtained pellet was 41 g / 10 min.
  • Example 15 To 100 parts by weight of the cyclic olefin resin 7A obtained in Synthesis Example 7, 0.3 part by weight of tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane as an antioxidant was added.
  • Example 12 except that 8.5 kg added and 1.5 kg styrene thermoplastic elastomer (Taftec H1041 manufactured by Asahi Kasei Co., Ltd.) having a styrene / ethylene / butylene ratio of 30/70% by weight were used. In the same manner, a pellet was obtained. The MFR of the obtained pellet was 63 g / 10 min.
  • Example 16 To 100 parts by weight of the cyclic olefin resin 7A obtained in Synthesis Example 7, 0.3 part by weight of tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane as an antioxidant was added.
  • Example 12 except that 9 kg added and 1.0 kg styrene-based thermoplastic elastomer (JSR Corp., Dynalon 8900) having a styrene / ethylene butylene ratio of about 48/52 wt% were used. Pellets were obtained in the same manner. The MFR of the obtained pellet was 52 g / 10 min.
  • Example 17 To 100 parts by weight of the cyclic olefin resin 1A obtained in Synthesis Example 1, 0.3 part by weight of tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane as an antioxidant was added. Pellets were obtained in the same manner as in Example 12 except that 8 kg added and 2 kg styrene resin (Yasuhara Chemical Co., Ltd., SX100) were used. The MFR of the obtained pellet was 110 g / 10 min.
  • Example 18 To 100 parts by weight of the cyclic olefin resin 7A obtained in Synthesis Example 7, 0.3 part by weight of tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane as an antioxidant was added. Pellets were obtained in the same manner as in Example 12 except that 8.5 kg added and 1.5 kg styrene resin (Yasuhara Chemical Co., Ltd., SX100) were used. The obtained pellet had an MFR of 140 g / 10 min.
  • indicates that the appearance of the fused material is transparent, and ⁇ indicates that the appearance of the fused material is transparent but contains relatively large bubbles and is insufficiently transparent.
  • indicates that no damage occurs even when a load of 10 kg is applied to the fusion product
  • X indicates that the material is broken.
  • the fused product refers to a block-like product obtained by heat-welding powder in the oven, and a load of 10 kg was applied from the top of the sample.
  • the resin particles comprising the specific cyclic olefin-based resin or resin composition of the present invention are excellent in transparency and fusion strength, and therefore suitable for powder sintering additive manufacturing. Recognize.
  • resin particles (containing a specific cyclic olefin resin and a styrene polymer) have resin particles having excellent fluidity (MFR) at the time of melting than resin particles made of the same cyclic olefin resin. It turns out that it is obtained.
  • the resin particles of the present invention have high heat resistance, they are useful for various uses other than powder sintering additive manufacturing.
  • Test example Next, the test example which verified the effect at the time of adding a far-infrared absorber to cyclic olefin system resin is shown.
  • the appearance of the resin composition (1) was transparent, and the glass transition temperature was 163 ° C.
  • the film obtained by press-molding the composition to a thickness of 100 ⁇ m had an absorbance at a wave number of 945 cm ⁇ 1 of 0.49, a total light transmittance of 91.7%, and a haze of 4.1%.
  • the appearance of the resin composition (2) was transparent, and the glass transition temperature was 163 ° C.
  • the film obtained by press-molding the composition to a thickness of 100 ⁇ m had an absorbance at a wave number of 945 cm ⁇ 1 of 0.85, a total light transmittance of 91%, and a haze of 5.2%.
  • the appearance of the resin composition (3) was transparent, and the glass transition temperature was 163 ° C.
  • the film obtained by press-molding the composition to a thickness of 100 ⁇ m had an absorbance at a wave number of 945 cm ⁇ 1 of 1.05, a total light transmittance of 91%, and a haze of 5.7%.
  • Test Example 4 A resin composition (4) was prepared in the same manner as in Test Example 1 except that the cyclic olefin resin 2A obtained in Synthesis Example 2 was used.
  • the appearance of the resin composition (4) was transparent, and the glass transition temperature was 154 ° C.
  • the film obtained by press-molding the composition to a thickness of 100 ⁇ m had an absorbance at a wave number of 945 cm ⁇ 1 of 0.54, a total light transmittance of 92.5%, and a haze of 2.3%.
  • Test Example 5 A resin composition (5) was prepared in the same manner as in Test Example 2 except that the cyclic olefin resin 2A obtained in Synthesis Example 2 was used.
  • the appearance of the resin composition (5) was transparent, and the glass transition temperature was 154 ° C.
  • the film obtained by press-molding the composition to a thickness of 100 ⁇ m had an absorbance at a wave number of 945 cm ⁇ 1 of 0.97, a total light transmittance of 92.3%, and a haze of 2.8%.
  • Test Example 6 A resin composition (6) was prepared in the same manner as in Test Example 3 except that the cyclic olefin resin 2A obtained in Synthesis Example 2 was used.
  • the appearance of the resin composition (6) was transparent, and the glass transition temperature was 154 ° C.
  • the film obtained by press-molding the composition to a thickness of 100 ⁇ m had an absorbance at a wave number of 945 cm ⁇ 1 of 1.13, a total light transmittance of 92%, and a haze of 3.4%.
  • the appearance of the resin composition (7) was transparent, and the glass transition temperature was 153 ° C.
  • the film obtained by press-molding the composition to a thickness of 100 ⁇ m had an absorbance at a wave number of 945 cm ⁇ 1 of 0.76, a total light transmittance of 93%, and a haze of 2%.
  • the appearance of the resin composition (8) was transparent, and the glass transition temperature was 144 ° C.
  • the film obtained by press-molding the composition to a thickness of 100 ⁇ m had an absorbance at a wave number of 945 cm ⁇ 1 of 0.98, a total light transmittance of 93%, and a haze of 2%.
  • the appearance of the resin composition (9) was transparent, and the glass transition temperature was 154 ° C.
  • the film obtained by press-molding the composition to a thickness of 100 ⁇ m had an absorbance at a wave number of 945 cm ⁇ 1 of 0.88, a total light transmittance of 93%, and a haze of 2%.
  • the appearance of the resin composition (10) was transparent, and the glass transition temperature was 145 ° C.
  • the film obtained by press molding the composition to a thickness of 100 ⁇ m had an absorbance at a wave number of 945 cm ⁇ 1 of 1.16, a total light transmittance of 93%, and a haze of 2%.
  • a resin composition (11) was obtained in the same manner as in Test Example 1 except that no far-infrared absorber was used.
  • the appearance of the resin composition (11) was transparent, and the glass transition temperature was 163 ° C.
  • the film obtained by press-molding the composition to a thickness of 100 ⁇ m had an absorbance at a wave number of 945 cm ⁇ 1 of 0.36, a total light transmittance of 93%, and a haze of 2.3%.
  • a resin composition (12) was obtained in the same manner as in Test Example 4 except that no far-infrared absorber was used.
  • the appearance of the resin composition (12) was transparent, and the glass transition temperature was 153 ° C.
  • the film obtained by press-molding the composition to a thickness of 100 ⁇ m had an absorbance at a wave number of 945 cm ⁇ 1 of 0.36, a total light transmittance of 93%, and a haze of 2.0%.
  • the appearance of the resin composition (13) is opaque. When press molding was performed on the composition, an evaluation film could not be obtained due to insufficient strength.
  • the appearance of the resin composition (14) was transparent, but the glass transition temperature was as low as 80 ° C., and the composition could not exhibit the heat resistance characteristic of the cyclic olefin resin.
  • the resin particles of the present invention are excellent in heat resistance and transparency, light diffusing agent, powder coating material, toner material, ink, spacer (for liquid crystal display, for example), filler, anti-blocking agent, lubricant component, three-dimensional object modeling. It can be suitably used as a powder for use.
  • the resin particles of the present invention contain a far-infrared absorber
  • the resin particles have excellent far-infrared absorption capability, and are used for powder sintering laminate molding, engraving, cutting, marking, etc. using a far-infrared laser. It is particularly suitable for doing so.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の目的は、耐熱性及び透明性に優れ、光拡散剤、粉体塗料、トナー用材料、インク、スペーサー(例えば液晶ディスプレイ用)、充填材、ブロッキング防止剤、潤滑剤成分、立体物造形用粉末等として好適に使用できる環状オレフィン系樹脂からなる樹脂粒子を提供することである。  本発明の樹脂粒子は、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量が30,000~200,000であり、特定の環状オレフィン系樹脂からなり、体積平均粒子径が1~200μmであることを特徴としている。

Description

樹脂粒子
 本発明は、樹脂粒子に関する。より詳しくは、他材料との密着性や接着性が良好で、高透明であり、さらに高耐熱性である特定の環状オレフィン系樹脂からなり、光拡散剤、粉体塗料、トナー用材料、インク、スペーサー(例えば液晶ディスプレイ用)、充填材、ブロッキング防止剤、潤滑剤成分、立体物造形用粉末等として有用な樹脂粒子に関する。
 各種樹脂からなる粒子は光拡散剤、粉体塗料、トナー用材料、インク、スペーサー(例えば液晶ディスプレイ用)、充填材、ブロッキング防止剤、潤滑剤成分、立体物造形用粉末等として用いられている。特に粉末焼結積層造形法による立体物造形は成型物開発の期間の短縮および費用節約に効果的である事から、近年ポリアミド樹脂粒子を中心として立体物造形用粉末の需要が拡大している。
 粉末焼結積層造形法は、以下の工程からなる、目的の造形物を製造する技術であり、例えば特許文献1にその技術が開示されている。
(1)あらかじめ目的とする造形物の一定間隔の断面形状のデータ(第1~第n番目の断面のデータ)を作成する工程
(2)前記一定間隔の厚さに敷き詰められた樹脂・金属粉末に、レーザーを前記第1番目の断面のデータに対応する断面形状に走査照射して、樹脂や金属を融着する工程
(3)融着した樹脂または金属の上に再び一定間隔の厚さに樹脂・金属粉末を敷き詰め、レーザーを前記第2番目の断面のデータに対応する断面形状に走査照射して、前記樹脂・金属を融着積層する工程
(4)工程(1)~(3)を繰り返して、第n番目の断面形状まで樹脂・金属の融着積層を行う工程。
 また、粉末焼結積層造形法以外の遠赤外線レーザーを用いた加工法として、遠赤外線レーザーを用いた彫刻、切削、マーキング等も盛んに検討されている。これらのレーザー加工法では、レーザー照射部分を削って表面形状を変化させたり、レーザー照射により被照射物が発色または退色する性質を利用してマーキングを行う。
 一方、環状オレフィン系樹脂は、ガラス転移温度、光線透過率が高く、しかも屈折率の異方性が小さいことにより従来の光学フィルムに比べて低複屈折性を示すなどの特長を有している。また前記環状オレフィン系樹脂は、ポリアミド樹脂よりも耐熱性、透明性、光学特性のバランスに優れた透明熱可塑性樹脂として注目されている(たとえば特許文献2~6参照)。
 また、上記の特徴を利用して、例えば、光ディスク、光学レンズ、光ファイバー、透明プラスチック基板、低誘電材料などの電子・光学材料、光半導体封止などの封止材料などの分野において、環状オレフィン系樹脂を応用することが検討されている。
 このように優れた性質を有する環状オレフィン系樹脂は粒子としての特性も期待でき、特に粉末焼結積層造形に応用すれば従来の光硬化反応を利用した光造形法では製造困難であった高耐熱、高透明、且つ高強度な造形物が得られることが期待される。
 ところで、粉末焼結積層造形法においては、樹脂粉末にレーザー(詳しくは遠赤外線レーザー)を照射して発熱させることにより前記樹脂粉末を融着させる。しかしながら、環状オレフィン系樹脂は非晶性であるため、前記のように透明性に優れる半面、温度が上昇した際の溶融粘度の低下度合いがナイロン等の結晶材料と比べて小さい。そのため、環状オレフィン系樹脂はレーザー加工性が不良であり、粉末焼結積層造形等には不利であるとの指摘もなされている(特許文献7参照)。
WO1997/029148号パンフレット 特開平1-132625号公報 特開昭63-218726号公報 特開平2-133413号公報 特開昭61-120816号公報 特開昭61-115912号公報 WO1996/006881号パンフレット
 本発明の課題は、耐熱性及び透明性に優れ、光拡散剤、粉体塗料、トナー用材料、インク、スペーサー(例えば液晶ディスプレイ用)、充填材、ブロッキング防止剤、潤滑剤成分、立体物造形用粉末等として好適に使用できる環状オレフィン系樹脂からなる樹脂粒子を提供することである。なお、本明細書においては、前記透明性とは樹脂粒子の透明性及び樹脂粒子を熱融着した後の透明性の双方を指す。
 また本発明は、遠赤外線の吸収能力に優れ、遠赤外線レーザーを用いた粉末焼結積層造形、彫刻、切削、マーキング等に使用するのに好適な樹脂粒子を提供することも目的としている。
 本発明者らは、前記課題を解決するべく鋭意研究を行った結果、特定の環状オレフィン系樹脂または該樹脂を含む樹脂組成物からなり、体積平均粒子径が一定の範囲にある樹脂粒子が、上記要求を満たすことを見出し、本発明を完成するにいたった。
 すなわち本発明の要旨は、以下のとおりである。
 ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量が30,000~200,000であり、下記一般式(1)で表される繰り返し単位を有する環状オレフィン系樹脂からなり、体積平均粒子径が1~200μmであることを特徴とする樹脂粒子:
Figure JPOXMLDOC01-appb-C000003
[Xは式:-CH=CH-で表される基または式:-CH2CH2-で表される基を示し、aおよびbは独立に0または1を示し、cおよびdは独立に0~2の整数を示し、
 R4、R5、R6、R7、R8およびR9はそれぞれ独立に下記(i)~(v)のいずれかを表し;
(i)水素原子
(ii)ハロゲン原子
(iii)置換または非置換の炭素数1~40の炭化水素基
(iv)酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する置換または非置換の炭素数1~40の炭化水素基
(v)極性基
 R10、R11、R12およびR13はそれぞれ独立に上記(i)~(v)のいずれかであるか、または下記(vi)~(vii)のいずれかである;
(vi)R10とR11、またはR12とR13とが結合して単環または多環の炭化水素環もしくは複素環を形成し、前記結合に関与しないR10~R13はそれぞれ独立に上記(i)~(v)のいずれかである
(vii)R10またはR11とR12またはR13とが相互に結合して単環または多環の炭化水素環もしくは複素環を形成し、前記結合に関与しないR10~R13はそれぞれ独立に上記(i)~(v)のいずれかである]。
 前記環状オレフィン系樹脂のウッベローデ型粘度計を用いて測定した対数粘度が0.30~0.95dL/gであることが好ましい。
 本発明の樹脂粒子として好ましいのは、前記環状オレフィン系樹脂のガラス転移温度が115~200℃であり、体積平均粒子径が10~80μmである樹脂粒子である。
 前記環状オレフィン系樹脂において、芳香族性の不飽和結合を除く炭素-炭素二重結合部分のうち95%以上が水素添加されていることが好ましい。
 また本発明の樹脂粒子は、前記環状オレフィン系樹脂と、下記式(4)で表される構造単位を有するスチレン系重合体とを含有する樹脂組成物からなり、体積平均粒子径が1~200μmである樹脂粒子であってもよい。
Figure JPOXMLDOC01-appb-C000004
[上記式において、Rは炭素数1~4のアルキル基、ヒドロキシル基またはカルボキシル基を表し、nは0~5の整数を表し、nが2以上の場合には、複数存在するRは同一でも異なってもよい。]。
 本発明の樹脂粒子は、更に遠赤外線吸収剤を、樹脂粒子を構成する前記環状オレフィン系樹脂または樹脂組成物との重量比が、環状オレフィン系樹脂(樹脂組成物):遠赤外線吸収剤=99.99:0.01~70:30となる量で含有することが好ましい。このような樹脂粒子は遠赤外線を良く吸収するので、遠赤外線を用いた粉末焼結積層造形法等に好適に用いることができる。
 前記遠赤外線吸収剤の例として、珪酸塩鉱物またはリン酸エステル類が挙げられる。
 本発明の樹脂粒子は、更に酸化防止剤を含有することが好ましい。
 本発明の樹脂粒子は、粉末焼結積層造形方法に使用することができる。
 本発明によれば、耐熱性、透明性に優れた樹脂粒子が提供され、その樹脂粒子は光拡散剤、粉体塗料、トナー用材料、インク、スペーサー(例えば液晶ディスプレイ用)、充填材、ブロッキング防止剤、潤滑剤成分、立体物造形用粉末等の各種粒子の用途に好適に使用できる。
 以下本発明について詳細に説明する。
 本発明の樹脂粒子は、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量が30,000~200,000であり、下記一般式(1)で表される繰り返し単位を有する環状オレフィン系樹脂からなり、体積平均粒子径が1~200μmであることを特徴とする。なお、後述するように、本発明の樹脂粒子は、前記環状オレフィン系樹脂と、特定のスチレン系重合体とを含有する樹脂組成物からなる樹脂粒子であってもよい。
Figure JPOXMLDOC01-appb-C000005
上記式において、Xは式:-CH=CH-で表される基または式:-CH2CH2-で表される基を示し、aおよびbは独立に0または1を示し、cおよびdは独立に0~2の整数を示し、
 R4、R5、R6、R7、R8およびR9はそれぞれ独立に下記(i)~(v)のいずれかを表し;
(i)水素原子
(ii)ハロゲン原子
(iii)置換または非置換の炭素数1~40の炭化水素基
(iv)酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する置換または非置換の炭素数1~40の炭化水素基
(v)極性基
 R10、R11、R12およびR13はそれぞれ独立に上記(i)~(v)のいずれかであるか、または下記(vi)~(vii)のいずれかである;
(vi)R10とR11、またはR12とR13とが結合して単環または多環の炭化水素環もしくは複素環を形成し、前記結合に関与しないR10~R13はそれぞれ独立に上記(i)~(v)のいずれかである
(vii)R10またはR11とR12またはR13とが相互に結合して単環または多環の炭化水素環もしくは複素環を形成し、前記結合に関与しないR10~R13はそれぞれ独立に上記(i)~(v)のいずれかである。
 以下、本発明の樹脂粒子を構成する環状オレフィン系樹脂およびその製造方法について説明する。
 〔環状オレフィン系樹脂〕
 本発明の樹脂粒子を構成する環状オレフィン系樹脂は、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量〔Mw〕が30,000~200,000、好ましくは32,000~180,000、特に好ましくは35,000~160,000である。Mwが30,000未満であると、樹脂粒子を加熱して熱融着させて得られる成型体の強度が不十分となる。また200,000を超えると、樹脂粒子を加熱して熱融着させて得られる成型体の透明性が不十分となり、また融着強度も不十分となる。
 また、前記環状オレフィン系樹脂の分子量分布〔Mw/Mn〕は、好ましくは1.1~10.0、さらに好ましくは1.3~8.0であり、特に好ましくは1.5~6.0である。
 本発明の樹脂粒子を構成する環状オレフィン系樹脂のウッベローデ型粘度計を用いて測定した対数粘度は通常0.30~0.95dL/gであり、好ましくは0.32~0.90dL/g、特に好ましくは0.35~0.80dL/gである。対数粘度が0.30dL/g未満であると、樹脂粒子を加熱して熱融着させて得られる成型体の強度が不十分となる場合がある。また0.95dL/gを超えると樹脂粒子を加熱して熱融着させて得られる成型体の透明性が不十分となる傾向があり、また融着強度も不十分となる傾向にある。
 さらに、本発明の樹脂粒子を構成する環状オレフィン系樹脂のガラス転移温度〔Tg〕は、通常115~200℃であり、好ましくは120~180℃である。Tgが115℃未満の場合は、高温条件下での使用時に樹脂粒子が変形することがある。一方、Tgが200℃を超えると、樹脂粒子の成形加工が困難になることがあり、また成形加工時の加熱温度を高くする必要が生じるため、熱によって樹脂が劣化する可能性がある。
 本発明の樹脂粒子を構成する環状オレフィン系樹脂は、前記のように上記一般式(1)で表される繰り返し単位を有する重合体である。前記環状オレフィン系樹脂は、必要に応じて他の繰り返し単位を有していてもよい。また、前記環状オレフィン系樹脂は上記式(1)に該当する繰り返し単位を1種のみ有していてもよいし、構造は異なるが、ともに上記式(1)に該当する複数種の繰り返し単位を有していてもよい。
 上記一般式(1)で表される繰り返し単位を有する環状オレフィン系樹脂は、下記一般式(3)で表される単量体(以下「単量体(1)」ともいう。)および必要に応じて他の単量体を開環(共)重合して得られる。なお、この開環(共)重合により得られる環状オレフィン系樹脂の一般式(1)で表わされる繰り返し単位においては、Xは式:-CH=CH-で表される基である。後述する水素添加をすることにより、Xが式:-CH2-CH2-で表される基である環状オレフィン系樹脂(水添体)が得られる。
Figure JPOXMLDOC01-appb-C000006
式(3)において、aおよびbは独立に0または1を示し、cおよびdは独立に0~2の整数を示し、R4、R5、R6、R7、R8およびR9はそれぞれ独立に上記式(1)の説明で述べた(i)~(v)のいずれかを表し、R10、R11、R12およびR13はそれぞれ独立に上記式(1)の説明で述べた上記(i)~(v)のいずれかであるか、または(vi)~(vii)のいずれかである。
 前記(ii)のハロゲン原子としては、たとえばフッ素原子、塩素原子及び臭素原子が挙げられる。
 前記(iii)の置換または非置換の炭素数1~40の炭化水素基としては、例えばメチル基、エチル基、プロピル基等のアルキル基;
シクロペンチル基、シクロヘキシル基等のシクロアルキル基;
ビニル基、アリル基、プロペニル基等のアルケニル基;
メチル基、エチル基、プロピル基等の炭素数1~10のアルキル基の少なくとも1つの水素が、メチル基、エチル基、プロピル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基、プロペニル基等のアルケニル基などで置換されている基;
フェニル基、ナフチル基、ビフェニル基等のアリール基;
メチル基、エチル基、プロピル基等のアルキル基で置換された、フェニル基、ナフチル基、ビフェニル基等のアルキル基置換アリール基;などを挙げることができる。
 また、上記の置換または非置換の炭化水素基は直接環構造に結合していてもよいし、あるいは前記(iv)に示されるように連結基を介して結合していてもよい。
 前記連結基としては、たとえば、カルボニル基(-CO-)、オキシカルボニル基(-O(CO)-)、カルボニルオキシ基(-COO-)、スルホン基(-SO2-)、エーテル結合(-O-)、チオエーテル結合(-S-)、イミノ基(-NH-)、アミド結合(-NHCO-、-CONH-)およびシロキサン結合(-OSi(R)-(式中、Rはメチル、エチル等のアルキル基))等が挙げられる。前記連結基は、これらを複数含む基であってもよい。
 前記(v)の極性基としては、たとえば、水酸基、炭素数1~10のアルコキシ基、カルボニルオキシ基、アルコキシカルボニル基、アリーロキシカルボニル基、シアノ基、アミド基、イミド基、トリオルガノシロキシ基、トリオルガノシリル基、アミノ基、アシル基、アルコキシシリル基、スルホニル基およびカルボキシル基など挙げられる。
 さらに具体的には、上記アルコキシ基としては、メトキシ基、エトキシ基等;
カルボニルオキシ基としては、アセトキシ基、プロピオニルオキシ基等のアルキルカルボニルオキシ基、およびベンゾイルオキシ基等のアリールカルボニルオキシ基;
アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基等;
アリーロキシカルボニル基としては、フェノキシカルボニル基、ナフチルオキシカルボニル基、フルオレニルオキシカルボニル基、ビフェニリルオキシカルボニル基等;
トリオルガノシロキシ基としては、トリメチルシロキシ基、トリエチルシロキシ基等;
トリオルガノシリル基としては、トリメチルシリル基、トリエチルシリル基等;
アミノ基としては、第1級アミノ基;
アシル基としては、アセチル基、プロピオニル基、ベンゾイル基等;
アルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基等が挙げられる。
 前記(vi)で示されるように、上記式(1)において、R10とR11、またはR12とR13とが結合して単環または多環の炭化水素環もしくは複素環を形成してもよい。また前記(vii)で示されるように、R10またはR11とR12またはR13とが相互に結合して単環または多環の炭化水素環もしくは複素環を形成してもよい。
 このような環状構造としては、例えば下記式で表されるものを列挙することができる。
下記式中Rは炭素数20以下の直鎖状、分岐状、または環状のアルキル基、またはアリール基を表す。前記アルキル基またはアリール基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、シクロヘキシル基、フェニル基、ナフチル基、ビフェニル基等を挙げることができる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 単量体(1)の具体例としては、次のような化合物が挙げられる。
ビシクロ[2.2.1]ヘプト-2-エン、トリシクロ[4.3.0.12,5]-3-デセン、トリシクロ[5.2.1.02,6 ]-デカ-3,8-ジエン、トリシクロ[4.4.0.12,5]-3-ウンデセン、テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、ペンタシクロ[6.5.1.13,6.02,7.09,13]-4-ペンタデセン、ペンタシクロ[7.4.0.12,5.19,12.08,13]-3-ペンタデセン、5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-メトキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-メチル-5-メトキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-エチリデンビシクロ[2.2.1]ヘプト-2-エン、5-シアノビシクロ[2.2.1]ヘプト-2-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-エトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-n-プロポキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-イソプロポキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-n-ブトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-フェノキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-(1-ナフトキシ)カルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-(2-ナフトキシ)カルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-〈4-フェニルフェノキシ〉カルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メチル-8-エトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メチル-8-n-プロポキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メチル-8-イソプロポキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メチル-8-n-ブトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メチル-8-フェノキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メチル-8-(1-ナフトキシ)カルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メチル-8-(2-ナフトキシ)カルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メチル-8-〈4-フェニルフェノキシ〉カルボニルテトラシ[4.4.0.12,5.17,10]-3-ドデセン、ペンタシクロ[8.4.0.12,5.19,12.08,13]-3-ヘキサデセン、ヘプタシクロ[8.7.0.13,6.110,17.112,15.02,7.011,16]-4-エイコセン、ヘプタシクロ[8.8.0.14,7.111,18.113,16.03,8.012,17]-5-ヘンエイコセン、5-エチリデンビシクロ[2.2.1]ヘプト-2-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、5-フェニルビシクロ[2.2.1]ヘプト-2-エン、5-フェニル-5―メチルビシクロ[2.2.1]ヘプト-2-エン、8-フェニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、5-n-ブチルビシクロ[2.2.1]ヘプト-2-エン、5-n-ヘキシルビシクロ[2.2.1]ヘプト-2-エン、5-シクロヘキシルビシクロ[2.2.1]ヘプト-2-エン、5-(2-シクロヘキセニル)ビシクロ[2.2.1]ヘプト-2-エン、5-n-オクチルビシクロ[2.2.1]ヘプト-2-エン、5-n-デシルビシクロ[2.2.1]ヘプト-2-エン、5-イソプロピルビシクロ[2.2.1]ヘプト-2-エン、5-(1-ナフチル)ビシクロ[2.2.1]ヘプト-2-エン、5-(2-ナフチル)ビシクロ[2.2.1]ヘプト-2-エン、5-(2-ナフチル)-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-(4-ビフェニル)ビシクロ[2.2.1]ヘプト-2-エン、5-(4-ビフェニル)-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-アミノメチルビシクロ[2.2.1]ヘプト-2-エン、5-トリメトキシシリルビシクロ[2.2.1]ヘプト-2-エン、5-トリエトキシシリルビシクロ[2.2.1]ヘプト-2-エン、5-トリn-プロポキシシリルビシクロ[2.2.1]ヘプト-2-エン、5-トリn-ブトキシシリルビシクロ[2.2.1]ヘプト-2-エン、5-クロロメチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシメチルビシクロ[2.2.1]ヘプト-2-エン、5-シクロヘキセニルビシクロ[2.2.1]ヘプト-2-エン、5-フルオロビシクロ[2.2.1]ヘプト-2-エン、5-フルオロメチルビシクロ[2.2.1]ヘプト-2-エン、5-トリフルオロメチルビシクロ[2.2.1]ヘプト-2-エン、5,5-ジフルオロビシクロ[2.2.1]ヘプト-2-エン、5,6-ジフルオロビシクロ[2.2.1]ヘプト-2-エン、5,5-ビス(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ビス(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン、5-メチル-5-トリフルオロメチルビシクロ[2.2.1]ヘプト-2-エン、5,5,6-トリフルオロビシクロ[2.2.1]ヘプト-2-エン、5,5,6,6-テトラフルオロビシクロ[2.2.1]ヘプト-2-エン、8-フルオロテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-フルオロメチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-トリフルオロメチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8,8-ジフルオロテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、スピロ[フルオレン-9,8'-トリシクロ[4.3.0.12.5][3]デセン]など。
 単量体(1)は、単独でまたは2種以上を組み合わせて用いることができる。
 上記一般式(1)において、aおよびbはそれぞれ独立に0または1であるが、好ましくはa=1、b=0である。また、cおよびdは独立に0~2の整数を示すが、好ましくは0~1、より好ましくはc=0且つd=0またはd=1である。a~dがこのような数値である単量体は、単量体を製造するための原料の入手性および経済性に優れ、また単量体を生産性よく製造することができる。
 上記一般式(1)中、R4~R9はそれぞれ独立に(i)~(v)のいずれかであるが、好ましくは水素原子または炭素数1~10の炭化水素基、さらに好ましくは水素原子または炭素数1~4の炭化水素基、特に好ましくは水素原子である。R4~R9が上記の基である単量体は、高収率で製造することができるため好ましい。
 また、R10~R13はそれぞれ独立に上記(i)~(v)のいずれかであるか、または上記(vi)~(vii)のいずれかであるが、R10およびR11またはR12およびR13の何れかが水素原子であるか、R10またはR11とR12またはR13とが結合して環構造を形成していることが好ましい。R10~R13が上記の構造である単量体は、製造が容易で、当該単量体から得られる環状オレフィン系樹脂は、そのガラス転移温度〔Tg〕が高く、かつ機械的強度も優れているので好ましい。
 このような好ましい単量体としては例えば下記のものを挙げることができる。ビシクロ[2.2.1]ヘプト-2-エン、トリシクロ[4.3.0.12,5]-3-デセン、トリシクロ[5.2.1.02,6 ]-デカ-3,8-ジエン、テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、5-メチル-5-メトキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-エチリデンビシクロ[2.2.1]ヘプト-2-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、5-フェニルビシクロ[2.2.1]ヘプト-2-エン。
 これらの中でも、ビシクロ[2.2.1]ヘプト-2-エン、トリシクロ[5.2.1.02,6 ]-デカ-3,8-ジエン、5-メチル-5-メトキシカルボニルビシクロ[2.2.1]ヘプト-2-エンおよび8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンが特に好ましい。
 (共重合性単量体)
 上記環状オレフィン系樹脂には、上記一般式(3)で表わされる単量体(単量体(1))以外の共重合性単量体が共重合されていてもよい。共重合性単量体としては、炭素数4~20のシクロオレフィンを挙げることができ、好ましくは、炭素数4~12のシクロオレフィンである。その具体例としては、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテンを挙げることができる。
 これらの共重合性単量体は、1種単独で、または2種以上を併用することができる。
 単量体(1)/共重合性単量体の好ましい使用割合は、重量比で100/0~50/50であり、さらに好ましくは100/0~60/40である。使用割合100/0~50/50で単量体(1)と共重合性単量体とを開環(共)重合させた場合に得られる開環(共)重合体中の単量体(1)/共重合性単量体の割合は、重量比で100/0~50/50であり、使用割合100/0~60/40で開環(共)重合させた場合は、単量体(1)/共重合性単量体の割合は、重量比で100/0~60/40である。
 (開環重合触媒)
 上記環状オレフィン系樹脂の製造に用いられる開環(共)重合用の触媒としては、Olefin Metathesis and Metathesis Polymerization(K.J.IVIN,J.C.MOL, Academic Press 1997)に記載されている触媒が好ましく用いられる。
 このような触媒としては、たとえば、(a)W、Mo、Re、VおよびTiの化合物からなる群より選ばれる少なくとも1種の化合物と、(b)Li、Na、K、Mg、Ca、Zn、Cd、Hg、B、Al、Si、Sn、Pbなどの化合物であって、少なくとも1つの当該元素-炭素結合あるいは当該元素-水素結合を有するものから選ばれる少なくとも1種との組合せからなるメタセシス重合触媒が挙げられる。この触媒は、触媒の活性を高めるために、後述の添加剤(c)が添加されたものであってもよい。
 添加剤である(c)成分の好ましい代表例としては、アルコール類、アルデヒド類、ケトン類、アミン類などが挙げられ、さらに特開平1-240517号公報に示される化合物も挙げられる。これらは触媒の活性を調整するため、または触媒の溶媒への溶解性を調整するために添加される。
 また、上記のメタセシス重合触媒以外のその他の触媒として、(d)助触媒を用いない周期表第4族~8族遷移金属-カルベン錯体やメタラシクロブタン錯体などからなるメタセシス触媒が挙げられる。
 メタセシス触媒(d)の代表例としては、W(=N-2,6-C6iPr2)(=CH tBu)(O tBu)2、Mo(=N-2,6-C6iPr2)(=CH tBu)(O tBu)2、Ru(=CHCH=CPh2)(PPh3)2Cl2、Ru(=CHPh)(PC611)2Cl2などが挙げられる。
 (重合反応用溶媒)
 開環重合反応において用いられる重合反応用溶媒(後述する分子量調節剤の溶媒、単量体(1)および/またはメタセシス触媒の溶媒)としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等のアルカン類;
シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素;
クロロブタン、ブロモヘキサン、塩化メチレン、ジクロロエタン、ヘキサメチレンジブロミド、クロロベンゼン、クロロホルム、テトラクロロエチレン等のハロゲン化アルカン、ハロゲン化アリール化合物;
酢酸エチル、酢酸n-ブチル、酢酸iso-ブチル、プロピオン酸メチル、ジメトキシエタン等の飽和カルボン酸エステル類;
ジブチルエーテル、テトラヒドロフラン、ジメトキシエタン等のエーテル類などを挙げることができる。これらは1種単独で、または2種以上を混合して用いることができる。これらのうちでも、芳香族炭化水素が好ましい。
 重合反応用溶媒の使用量は、「溶媒:単量体(1)(重量比)」が、通常1:1~10:1となる量とされ、好ましくは1:1~5:1となる量とされる。なお、後述する(1)~(4)の(共)重合体の製造の際にも、上記と同様の重合反応用溶媒を使用することができる。
 (分子量調節剤)
 得られる開環(共)重合体の分子量の調節は、重合温度、触媒の種類、溶媒の種類によって行うことができるが、本発明においては、分子量調節剤を重合反応系に共存させることにより調節することができる。
 ここで、好適な分子量調節剤としては、例えば、エチレン、プロペン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセンなどのα-オレフィン類およびスチレンを挙げることができる。これらのうち、1-ブテン、1-ヘキセンが特に好ましい。
 これらの分子量調節剤は、1種単独で、または2種以上を混合して用いることができる。
 分子量調節剤の使用量は、開環重合反応に供される全単量体1モルに対して通常0.005~0.6モル、好ましくは0.02~0.5モルとされる。なお、後述する(1)、(2)および(4)の(共)重合体の製造に際しても、上記と同様の分子量調節剤を使用することができる。
 (重合反応)
 重合反応は常圧~1MPaの圧力下で行うことができ、反応温度は通常40~140℃、反応時間は通常0.5~5時間である。
 開環(共)重合体を得るには、開環重合工程において、単量体(1)と共重合性単量体とを開環共重合させてもよいが、さらに、ポリブタジエン、ポリイソプレンなどの共役ジエン化合物、スチレン-ブタジエン共重合体、エチレン-非共役ジエン共重合体、ポリノルボルネンなどの主鎖に炭素-炭素間二重結合を2つ以上含む不飽和炭化水素系ポリマーなどの存在下に単量体(1)を開環重合させて、これらを開環(共)重合体の構造単位として導入してもよい。
 <水添体>
 以上のようにして得られる開環(共)重合体は、そのままでも用いられるが、これをさらに水素添加して得られた水添体は、耐熱性の大きい樹脂粒子の原料として有用である。
 水添体とは、上記一般式(1)中のXが、-CH=CH-で表されるオレフィン性不飽和基から-CH2-CH2-で表される基に転換された開環(共)重合体である。単量体(1)が芳香族性の置換基を有する場合には、当該芳香族性の不飽和結合が残存していてもよく、必要に応じて水素添加されていてもよい。
 (水素添加触媒)
 上記水素添加反応に用いられる水素添加触媒としては、通常のオレフィン性化合物の水素添加反応に用いられるものを使用することができる。この水素添加触媒としては、公知の不均一系触媒および均一系触媒のいずれも用いることができる。
 不均一系触媒としては、パラジウム、白金、ニッケル、ロジウム、ルテニウムなどの貴金属触媒物質を、カーボン、シリカ、アルミナ、チタニアなどの担体に担持させた固体触媒を挙げることができる。
 また、均一系触媒としては、ナフテン酸ニッケル/トリエチルアルミニウム、ビス(アセチルアセトナト)ニッケル(II)/トリエチルアルミニウム、オクテン酸コバルト/n-ブチルリチウム、チタノセンジクロリド/ジエチルアルミニウムモノクロリド、酢酸ロジウム、クロロトリス(トリフェニルホスフィン)ロジウム、ジクロロトリス(トリフェニルホスフィン)ルテニウム、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、ジクロロカルボニルトリス(トリフェニルホスフィン)ルテニウム、(アセトキシ)カルボニル(ヒドリド)ビス(トリフェニルホスフィン)ルテニウム、(4-ペンチルベンゾイロキシ)カルボニル(ヒドリド)ビス(トリフェニルホスフィン)ルテニウムなどを挙げることができる。
 触媒の形態は粉末状でも粒状でもよい。また、これらの水素添加触媒は、1種単独でも2種以上を組み合わせても使用することができる。
 これらの水素添加触媒は、適宣その使用量を調整する必要があるが、「開環(共)重合体:水素添加触媒(重量比)」が、1:1×10-6~1:2となる割合で使用するのが望ましい。
 なお、水素添加する割合としては、上記開環(共)重合体中の上記一般式(1)で表わされる繰り返し単位全体のうち、通常95モル%以上、好ましくは97モル%以上、さらに好ましくは99モル%以上が、Xが-CH2-CH2-で表される基となる割合が望ましい。すなわち前記開環(共)重合体において、芳香族性の不飽和結合を除く炭素-炭素二重結合部分のうち95%以上が水素添加されていることが望ましい。水素添加する割合が高いほど、得られる水添体において熱による着色や劣化を抑制することができるため、抗酸化性の点から好ましい。
 水素添加反応は、たとえば開環(共)重合体の溶液(溶媒は開環(共)重合体を製造するのに使用した重合反応用溶媒である)に水素添加触媒を添加し、これに通常40~250℃で、通常常圧~30MPa、好ましくは2~20MPa、更に好ましくは3~18MPaで、通常0.5~5時間水素を作用させることによって行うことができる。
 <精製>
 上記開環(共)重合体またはその水添体の合成反応後、精製することによって高純度の環状オレフィン系樹脂が得られる。精製には、従来公知の方法を用いることができる。前記方法としてたとえば、得られた反応物溶液をトルエンまたはテトラヒドロフラン等の良溶媒で希釈後、メタノール、水、またはこれらの混合溶液等の貧溶媒を希釈溶液に添加して重合体を適度に凝集させ、抽出処理する方法が挙げられる。
 抽出処理の際、反応溶媒として使用した溶媒および希釈のために添加した溶媒を合計した良溶媒重量と重合体重量との比(良溶媒/重合体)は、通常0.5/1~6/1、好ましくは0.7/1~4/1である。
 また、抽出に使用するメタノール、水、またはこれらの混合溶液等の貧溶媒の使用量(重量)は、前記良溶媒重量との比(貧溶媒/前記良溶媒)が、通常0.3~5、好ましくは0.5~3となる量である。
 抽出温度は、通常40~120℃、好ましくは50~100℃である。
 前記のように抽出した後、溶液を冷却して軽重層に分離させ、遠心分離機等で軽層を除去する。これらの抽出操作を1~10回繰り返した後、重層液を濃縮してデボラチライター、二軸押出し機等の脱溶装置で脱溶する。脱溶時の温度は150~350℃、好ましくは200~350℃、真空度は0.1~50mmHg、好ましくは1~40mmHgである。
 また、脱溶前に希釈して循環濾過を実施してもよい。濾過の際には、孔径が0.1~100μmである濾剤を1種単独で使用してもよく、孔径の異なるフィルターを段階的に複数設置してもよい。また、脱溶後の溶融ポリマーを濾過することにより精製してもよい。この際のポリマーフィルターの孔径は0.1~100μmであることが望ましい。
 〔その他の(共)重合体〕
 尚、前記一般式(3)で表される単量体に由来する構造単位を有する他の(共)重合体としては、以下のものが挙げられる。
(1)本発明の樹脂粒子を構成する環状オレフィン系樹脂(開環(共)重合体または開環(共)重合水添体)をフリーデルクラフト反応により環化したのち、水素添加して得られる開環(共)重合水添体
(2)前記一般式(3)で表される環状オレフィン系単量体の付加(共)重合体
(3)前記一般式(3)で表される環状オレフィン系単量体とエチレンまたは1置換エチレンとの付加共重合体
(4)前記一般式(3)で表される環状オレフィン系単量体、ビニル系環状炭化水素系単量体およびシクロペンタジエン系単量体からなる群より選ばれる少なくとも1種の単量体の付加型(共)重合体またはその水添体
 上記(3)の付加共重合体において、1置換エチレンとしては、例えば、プロピレン、ブテンなど、好ましくは炭素数2~12、さらに好ましくは炭素数2~8のαオレフィン系化合物を挙げることができる。
 上記(1)~(4)のその他の(共)重合体を用いても、後述の樹脂粒子の製造方法により樹脂粒子を得ることができるが、耐熱性、機械的強度、加工性、透明性および生産性等のバランスにおいて上記環状オレフィン系樹脂(開環(共)重合体またはその水添体)が特に優れる。
 〔環状オレフィン系樹脂とスチレン系重合体とを含有する樹脂組成物〕
 本発明の樹脂粒子は、上記環状オレフィン系樹脂と、下記式(4)で表される構造単位を有するスチレン系重合体とを含有する樹脂組成物からなる樹脂粒子であってもよい。下記式(4)の構造単位を有するスチレン系重合体を含有する樹脂組成物からは、溶融時の流動性に特に優れた樹脂粒子が得られる。
Figure JPOXMLDOC01-appb-C000016
式(4)において、Rは炭素数1~4のアルキル基、ヒドロキシル基またはカルボキシル基を表し、nは0~5の整数を表し、nが2以上の場合には、複数存在するRは同一でも異なってもよい。
 樹脂粒子の溶融時の流動性、環状オレフィン系樹脂との相溶性の観点から、Rは好ましくはメチル基またはヒドロキシル基であり、nは好ましくは0または1である。
 前記式(4)で表される構造単位を有する重合体としては、ポリスチレン、スチレン/ヒドロキシスチレン共重合体、スチレン/α-メチルスチレン共重合体、スチレン/オレフィン共重合体、スチレン/ブタジエン共重合体、スチレン/ブタジエン共重合体の水素添加体を挙げることができる。
 上記重合体のうち、ポリスチレン、スチレン/オレフィン共重合体およびスチレン/ブタジエン共重合体の水素添加体が、環状オレフィン系樹脂への相溶性が良好で且つ樹脂粒子の流動性や強度を改善できるので好ましい。
 ポリスチレンとしては、ゲルパーミエーションクロマトグラフィーにより測定した重量平均分子量が1000~30000、好ましくは1500~15000のものが好ましい。重量平均分子量が前記範囲のポリスチレンは、環状オレフィン系樹脂への相溶性が良好で且つ樹脂粒子の流動性を改善できる点で好ましい。このようなポリスチレンの製造方法は公知であり、該ポリスチレンは市販もされている。市販品の例としては、SX100(ヤスハラケミカル(株)製、Mw;2500)、レジットS94(三洋化成工業(株)製、Mw;4000)、ハイマーST95(三洋化成工業(株)製、Mw;5000)を挙げることができる。
 前記スチレン/ブタジエン共重合体の水素添加体の全構造単位100重量%のうち、スチレンに由来する構造単位の割合は通常5~70重量%、好ましくは10~65重量%である。スチレンに由来する構造単位が前記範囲にあると、環状オレフィン系樹脂への相溶性が良好で且つ樹脂粒子の強度が向上する点で好ましい。スチレン/ブタジエン共重合体の水素添加体の水素添加率は、ブタジエン由来のオレフィン性二重結合の水素添加率として通常70%以上、好ましくは80%以上である。水素添加率がこの範囲であると、樹脂粒子の耐熱性が良好となるため好ましい。このような共重合水素添加体は、その構造からスチレン/エチレン/ブチレン共重合体などと呼ばれることもある。
 このようなスチレン/ブタジエン共重合体の水素添加体としては、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が10,000~300,000、好ましくは20,000~250,000のものが好ましい。重量平均分子量が前記範囲のスチレン/ブタジエン共重合体の水素添加体を含む樹脂組成物からは、強度に優れた樹脂粒子が得られるので好ましい。このようなスチレン/ブタジエン共重合体の水素添加体の製造方法は公知であり、該水素添加体は市販もされている。市販品の例としては、スチレン/エチレン・ブチレン比率が30/70重量%であるタフテックH1041(旭化成(株)製、Mw;70,000)、スチレン/エチレン・ブチレン比率が48/52重量%であるJSR(株)製、ダイナロン8900を挙げることができる。
 本発明の樹脂粒子を構成する樹脂組成物において、環状オレフィン系樹脂とスチレン系重合体との重量割合は、通常環状オレフィン系樹脂/スチレン系重合体=99/1~50/50、好ましくは95/5~70/30である。環状オレフィン系樹脂とスチレン系重合体との重量比が上記比率を満たすと、環状オレフィン系樹脂由来の優れた耐熱性および透明性を維持しつつ、樹脂粒子の流動性や強度を改善できるため好ましい。
 また、本発明の樹脂粒子を構成する樹脂組成物は、上記環状オレフィン系樹脂およびスチレン系重合体以外の樹脂成分として、本発明の効果を損なわない範囲で、例えば、特開平9-221577号公報、特開平10-287732号公報に記載されている、特定の炭化水素系樹脂、または公知の熱可塑性樹脂、熱可塑性エラストマー、ゴム質重合体、有機微粒子などを、好ましくは樹脂成分100重量%に対して0~60重量%の割合で含有することができる。
 なお、樹脂組成物は、環状オレフィン系樹脂とスチレン系重合体と、必要に応じて上記炭化水素系樹脂等とを公知の方法により混合して製造することができる。たとえば二軸押出機を使用してこれらを混練することにより、ペレット状の樹脂組成物が得られる。また、環状オレフィン系樹脂とスチレン系樹脂と、必要に応じて上記炭化水素系樹脂等とを適当な溶媒に溶解して均一混合した後に、環状オレフィン系樹脂の脱溶方法と同様の方法で脱溶してペレット状の樹脂組成物を得ることもできる。
 このような樹脂組成物からなる本発明の樹脂粒子は溶融時の流動性に特に優れ、具体的には、荷重10kg、温度260℃にて測定したメルトフローレート(MFR)が通常10~250g/minであり、好ましくは20~200g/minである。
 <遠赤外線吸収剤>
 本発明の樹脂粒子は、遠赤外線の吸収能力の観点から、遠赤外線吸収剤を含有することが好ましい。
 遠赤外線吸収剤は、遠赤外線の波長領域(4~1000μm)に吸収を示すものであればその種類に限定はない。遠赤外線吸収剤の例として、有機染料、有機顔料、無機染料、無機顔料、その他の有機物または無機物を挙げることができる。また、これらの遠赤外線吸収剤は本発明の効果を損なわない範囲で着色していてもよく、無色であってもよい。本発明の樹脂粒子の使用目的により、遠赤外線吸収剤の色や吸収特性を適宜選択することが好ましい。
 前記無機物の例として無機微粒子が挙げられ、前記有機物の例としてリン原子含有化合物を挙げることができる。
 無機微粒子の多くは熱的に安定であり、また環状オレフィン系樹脂および樹脂組成物(以下「環状オレフィン系樹脂等」ともいう)のガラス転移温度等の耐熱特性を損なわず、さらに、その粒径・形状等が多様であり、各種目的を満足しうるため好ましい。無機微粒子として具体的には、炭酸カルシウム、炭酸ストロンチウム等の炭酸塩類;珪酸塩白土、雲母、カオリン鉱物、雲母粘土鉱物、スメクタイト、蛇紋石鉱物、タルク、緑泥石、バーミキュライト等の粘土鉱物・珪酸塩鉱物を挙げることができる。
 これらの中でも珪酸塩鉱物が好ましく、特に好ましくは雲母である。無機微粒子の形状は特に限定されず、球形、針状、その他の不定形であってもよい。無機微粒子の粒径は、一次体積平均粒径として通常0.1~30μm、好ましくは0.3~28μm、特に好ましくは0.5~25μmである。平均粒径が30μmよりも大きいと、環状オレフィン系樹脂等が有する透明性を損なうことがある。
 前記リン原子含有化合物としては、リン酸、リン酸エステル類、ポリリン酸、亜リン酸、亜リン酸エステル類、ホスホン酸エステル類を挙げることができる。これらのうち、リン酸エステル類、亜リン酸エステル類、ホスホン酸エステルが腐食性が低く、環状オレフィン系樹脂等への相溶性に優れるため好ましく、リン酸エステル類が特に好ましい。
 リン酸エステル類、亜リン酸エステル類、ホスホン酸エステルは、それぞれ(YO-)3P、(YO-)3P=O、Y(YO-)2P=O構造(ただし、同一分子内に存在する複数のYは同一でも異なってもよく、Yはメチル基およびエチル基等のアルキル基(該アルキル基は置換基を有してもよい)、フェニル基およびビフェニル基等のアリール基(該アリール基は置換基を有してもよい)などである)を有すればよい。
 これらの具体例としては、トリフェニルホスファイト、フェニルホスホン酸ジフェニル、フェニルホスホン酸ジメチル、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、クレジルビス(ジ-2,6-キシレニル)ホスフェート、ジ-2-エチルヘキシルホスフェート、レゾルシノールビス(ジ-2,6-キシレニル)ホスフェート、ビスフェノールAビス(ジフェニル)ホスフェート、ビスフェノールAビス(ジクレジル)ホスフェート、4,4’-ビフェノールビス(ジフェニル)ホスフェートが挙げられる。
 これらの中でも、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、クレジルビス(ジ-2,6-キシレニル)ホスフェート、レゾルシノールビス(ジ-2,6-キシレニル)ホスフェート、ビスフェノールAビス(ジフェニル)ホスフェート、ビスフェノールAビス(ジクレジル)ホスフェート、4,4’-ビフェノールビス(ジフェニル)ホスフェートが低揮発性であるため好ましい。さらに、レゾルシノールビス(ジ-2,6-キシレニル)ホスフェートおよび4,4’-ビフェノールビス(ジフェニル)ホスフェートは固形であり、ドライブレンドプロセスに適していることから特に好ましい。
 無機化合物、リン酸エステル類、亜リン酸エステル類及びホスホン酸エステル類は、耐熱性や透明性等の要求される品質のレベルに応じて選択することができる。またそれぞれを単独でまたは複数種を組み合わせて用いてもよい。さらに無機化合物と、リン酸エステル類、亜リン酸エステル類及びホスホン酸エステル類とを複合的に用いてもよい。
 このような遠赤外線吸収剤の添加量は、樹脂粒子を構成する環状オレフィン系樹脂または樹脂組成物に対する重量が、環状オレフィン系樹脂(樹脂組成物):遠赤外線吸収剤=99.99:0.01~70:30となる量であり、好ましくは99.95:0.05~75:25となる量であり、特に好ましくは99.9:0.1~80:20となる量である。遠赤外線吸収剤の添加量が上記範囲を超えると、環状オレフィン系樹脂等が本来有する透明性や耐熱性が損なわれる。また上記範囲よりも少ないと、遠赤外線エネルギーの利用効率が上がらない。
 遠赤外線吸収剤が添加された環状オレフィン系樹脂または樹脂組成物は優れた遠赤外線吸収能力を有し、100μm厚みのフィルムに加工したとき、波数945cm-1における吸光度が0.36を超え、より好ましくは0.4を超える。吸光度が0.36以下であると、赤外線の吸収性が低いため、本発明の樹脂粒子を赤外線を用いた加工に供した際に、熱効率が低下するなどの問題を生じることがある。
 また遠赤外線吸収剤が添加された環状オレフィン系樹脂等を100μm厚みに加工したフィルムの全光線透過率は、通常85%以上、好ましくは88%以上、特に好ましくは90%以上であり、またヘーズは通常10%以下、好ましくは9%以下、特に好ましくは8%以下である。全光線透過率が85%未満またはヘーズが10%を超えると、本発明の樹脂粒子を粉末焼結積層造形法等により加工して得られる成型体において、その内部の視認性が低下することがある。
 <添加剤>
 本発明の樹脂粒子を構成する環状オレフィン系樹脂または樹脂組成物には、必要に応じて、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、赤外線吸収剤、帯電防止剤、分散剤、加工性向上剤、塩素捕捉剤、難燃剤、結晶化核剤、ブロッキング防止剤、防曇剤、離型剤、染料、顔料、蛍光増白剤、有機または無機の充填材、中和剤、滑剤、分解剤、金属不活性化剤、汚染防止材、抗菌剤やその他の樹脂、熱可塑性エラストマーなどの公知の添加剤を、本発明の効果が損なわれない範囲で添加することができる。これらの添加剤は一種単独で使用してもよく複数を併用してもよい。添加剤の添加量は、通常環状オレフィン系樹脂等100質量部に対して10質量部以下である。
 前記酸化防止剤としては、2,6-ジ-t-ブチル-4-メチルフェノール、2,2'-ジオキシ-3,3'-ジ-t-ブチル-5,5'-ジメチルジフェニルメタン、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2'-ジオキシ-3,3'-ジ-t-ブチル-5,5'-ジエチルフェニルメタン、3,9-ビス[1,1-ジメチル-2-(β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)エチル]、2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-t-ブチル-4-メチルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイトなどが挙げられる。
 また酸化防止剤の市販の商品としては、以下のものを挙げることができる。チバ・ジャパン株式会社製;Irganox1010、Irganox1035、Irganox1076、Irganox1330、Irganox245、Irgafos168、Irgafos38、株式会社ADEKA製;アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-330、アデカスタブ2112。
 前記紫外線吸収剤としては、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-t-ペンチルフェノール、2-ベンゾトリアゾール-2-イル4,6-ジ-t-ブチルフェノール、2,2'-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-[(2H-ベンゾトリアゾール-2-イル)フェノール]〕などが挙げられる。
 [樹脂粒子]
 本発明の樹脂粒子は、体積平均粒子径が1~200μmであり、好ましくは10~80μmである。体積平均粒子径がこの200μmよりも大きいと、粉末焼結積層造形法による造形時に断面一層分(スライス)の厚みが厚くなり、立体造形物の精細性を欠くことになる。一方、体積平均粒子径が1μm未満であると、スライスの数が多くなり過ぎて生産性を欠くことになる。なお、本明細書において体積平均粒子径とは、粒子の形状によらず日機装(株)製マイクロトラックMT3300を用いて測定した体積平均粒子径である。
 本発明の樹脂粒子の形状には特に制限はなく球形でも不定形でもよい。
 また、得られた樹脂粒子の粒度分布が所望の分布よりも広い場合には、公知の分級機により分級してもよい。分級方式は湿式でも乾式でもよい。分級機として具体的には、エアセパレーター等の慣性分級機、サイクロン、ミクロンセパレーター等の乾式遠心分級機、遠心沈降機、液体サイクロン等の湿式遠心分級機、ふるい分け機等を用いることができる。
 本発明の樹脂粒子は上記環状オレフィン系樹脂、または環状オレフィン系樹脂と上記スチレン系重合体とを含有する樹脂組成物からなる粒子である。樹脂または樹脂組成物を粒子にする方法としては公知の種々の方法を採用することができ、たとえば乳化法や機械的粉砕法により環状オレフィン系樹脂等を樹脂粒子にすることができる。以下これら二つの方法について説明する。
 <乳化法>
 本発明の樹脂粒子を乳化法により製造する場合、その製造方法として、環状オレフィン系樹脂または樹脂組成物を有機溶媒に溶解する工程1と、工程1で得られた溶液Aを、水中または界面活性剤を含有する水溶液B中で乳化させる工程2と、工程2で得られた乳化液中に分散した環状オレフィン系樹脂等の粒子を回収し乾燥する工程3とを有することを特徴とする製造方法が挙げられる。以下、これら各工程について説明する。
 (工程1)
 工程1で使用される有機溶媒は、前記環状オレフィン系樹脂または樹脂組成物を溶解できれば特に限定されないが、たとえば、石油エーテル、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカンなどの炭化水素類;
シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナンなどの環状炭化水素類;
ベンゼン、トルエン、キシレン、エチルベンゼン、クメン、クロロベンゼンなどの芳香族炭化水素類;
ジクロロメタン、ジクロロエタン、クロロブタン、クロロホルム、テトラクロロエチレンなどのハロゲン化炭化水素類;
酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸イソブチル、プロピオン酸メチルなどのエステル類;
ジブチルエーテル、テトラヒドロフラン、ジメトキシエタン、ジオキサンなどのエーテル類;
N,N-11ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどのアミド類;
を挙げることができる。これらは単独であるいは二種以上を混合して用いることができる。これらのうち、芳香族炭化水素類が、環状オレフィン系樹脂等の溶解性の点から好ましく用いられる。
 工程1は、たとえば下記の何れかのようにして実施することが出来る。
(1)下記(a)~(d)のいずれかを前記有機溶媒に溶解する。
 (a)環状オレフィン系樹脂等のペレット
 (b)本明細書で説明する樹脂粒子の製造方法により製造された樹脂粒子を除く環状オレフィン系樹脂等の粉末
 (c)環状オレフィン系樹脂もしくは樹脂組成物製のフィルムや射出成型物をリサイクル利用する場合には、そのフィルムおよび射出成型物またはその粉砕物等
 (d)環状オレフィン系樹脂ペレットとスチレン系重合体等の異種樹脂ペレットとの混合物
(2)前記有機溶媒中で環状オレフィン系樹脂を合成し、必要に応じて水素添加する。すなわち環状オレフィン系樹脂の合成に使用した有機溶媒をそのまま前記有機溶媒として使用する。
(3)前記有機溶媒中で環状オレフィン系樹脂を合成し、必要に応じて該樹脂に水素添加して得られた反応溶液に、抽出精製または吸着処理等による精製を加えて残留モノマーや触媒を除去する。
 環状オレフィン系樹脂等の有機溶媒溶液(以下単に溶液Aともいう)中の環状オレフィン系樹脂等の濃度は通常5~40質量%であり、好ましくは7~35質量%、特に好ましくは10~30質量%である。濃度が5質量%未満であると、環状オレフィン系樹脂等の粒子の生産性が低くなることがある。また、40質量%を超えると、溶液Aの後述する水中または界面活性剤を含有する水溶液B中への分散性が低下し、所望の粒子径の樹脂粒子が得られない等の問題が生じることがある。
 (工程2)
 工程2において、工程1で得られた溶液Aを水中または界面活性剤を含有する水溶液B中で乳化させることにより、環状オレフィン系樹脂等が水中または水溶液B中に分散し、粒子の形状をとる。
 前記の乳化させる際の攪拌・分散手段としては、従来公知の攪拌装置を特に制限なく挙げることが出来る。このような装置として具体的には、インペラー式攪拌機、のこぎり歯状のブレードミキサー、閉式ローターミキサー、ローター/ステーター式ミキサー、スタティックミキサー、インラインプロペラ/タービン式ミキサー、インラインローター/ステーター式ミキサー、コロイドミル、高圧ホモジナイザー等を挙げることができる。
 攪拌機の回転数等の攪拌条件は、設備や樹脂粒子の生産量およびその他の条件により変動するため一義的に決定することは出来ないが、一般的な攪拌条件(たとえば、10~30000rpm)にて実施することが出来る。
 攪拌時間についても同様に一義的に決定することは出来ないが、通常は5~300分間、好ましくは10~180分間、より好ましくは15~120分間である。攪拌時間が5分よりも短いと環状オレフィン系樹脂等の分散が不十分となり、所望の粒子径の樹脂粒子を得ることができない場合がある。また攪拌時間が300分よりも長いと樹脂粒子の生産性が低下する傾向がある。
 溶液Aを、水中または水溶液B中で乳化させる際の温度は、通常0~100℃、好ましくは5~80℃、特に好ましくは10~60℃である。乳化させる際の温度が100℃を超えると、樹脂粒子が、溶液Aが乳化した乳化液中で凝集しやすくなる傾向がある。一方温度が0℃未満であると樹脂粒子の製造費用が高くなる傾向にある。
 工程2における溶液Aと水または水溶液Bとの質量比(使用量の比)は、通常[溶液A]/[水または水溶液B]=1/100~5/1であり、好ましくは1/50~4/1、特に好ましくは1/30~3/1である。溶液Aと水または水溶液Bとの質量比が1/100よりも小さいと樹脂粒子の生産性が低下する傾向にある。一方5/1よりも大きいと樹脂粒子が乳化液中で凝集しやすく、所望の粒子径を有する樹脂粒子が得られない場合がある。
 溶液Aを分散させる媒体としては、水または水溶液Bが用いられるが、好ましくは水溶液Bである。界面活性剤が存在することにより、樹脂粒子の工程2で得られる乳化液中での安定性が高まる。
 前記界面活性剤としては公知の脂肪酸ナトリウム、脂肪酸カリウム、アルキルベンゼンスルホン酸ナトリウム、アルキル硫酸エステルナトリウム、アルキルエーテル硫酸エステルナトリウム、アルファオレフィンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、等の陰イオン界面活性剤;
アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩等の陽イオン界面活性剤;
アルキルアミノ脂肪酸ナトリウム、アルキルベタイン、アルキルアミンオキシド等の両性界面活性剤;
しょ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエステル、脂肪酸アルカノールアミド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシプロピレンアルキルエーテル、ポリオキシプロピレン脂肪酸エステル等のノニオン系の界面活性剤;
などを特に制限なく用いることができる。
 これらのうちノニオン系の界面活性剤が環状オレフィン系樹脂等との相溶性が高く、樹脂粒子中に微量に残留した際の樹脂粒子の透明性への影響が小さい点で好ましい。界面活性剤として特に好ましいのは、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシプロピレンアルキルエーテル、ポリオキシプロピレンアルキルエステル等の、ポリオキシエチレンまたはポリオキシプロピレンの誘導体である。
 より具体的には花王(株)製のエマルゲンシリーズ、レオドールシリーズ、エマノーンシリーズ、ライオン(株)製のレオックスシリーズ、レオコールシリーズ、ライオノールシリーズ、レオファットシリーズ、リオノンシリーズ等を列挙することができる。これらは単独で用いてもよく、複数を併用してもよい。
 上記界面活性剤のHLB値(Hydrophile-Lipophile Balance)は、用いる環状オレフィン系樹脂等の種類や有機溶媒の種類により適宜選択されるため一義的には決定できないが、通常6~20、好ましくは7~19.5、特に好ましくは7.5~19である。
 前記界面活性剤の、水溶液B中の濃度は、通常0.1~20質量%、好ましくは0.2~18質量%、特に好ましくは0.3~15質量%である。濃度が0.1質量%未満であると樹脂粒子の工程2で得られる乳化液中における安定性が不足することがある。一方濃度が20質量%を超えると、得られる樹脂粒子の粒子径が必要以上に小さくなるとともに樹脂粒子中に残留する界面活性剤量が増加する傾向にある。
 (工程3)
 上記の工程2において得られた乳化液中に分散した樹脂粒子をフィルターまたはメッシュ等により回収して乾燥することにより、体積平均粒子径が1~200μmの樹脂粒子を得ることが可能である。
 なお、この回収をする前に、工程1で用いた有機溶媒および水の両方と相溶し、且つ環状オレフィン系樹脂等を溶解しない溶媒Cと、工程2で得られた乳化液とを混合することが好ましい。
 溶媒Cを用いることにより、球形状を保ったまま樹脂粒子を固化させることができ、さらに環状オレフィン系樹脂等を溶解するために用いた有機溶媒や界面活性剤を抽出除去することができるため好ましい。
 前記の「環状オレフィン系樹脂等を溶解しない」とは、具体的には25℃の100gの溶媒Cに溶解する環状オレフィン系樹脂等が1g以下であるということである。
 このような条件を満たす溶媒Cとしては、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、s-ブタノール、イソブタノール等のアルコール類が好ましく、メタノール、エタノール、プロパノール、イソプロパノールが特に好ましい。
 溶媒Cの使用量は、前記乳化液100質量%に対して通常30~2000質量%、好ましくは50~1000質量%である。
 また溶媒Cと乳化液との混合は、攪拌機で撹拌することにより行うことが好ましく、その際の撹拌条件は、通常回転数10~30,000rpm、撹拌温度0~60℃、撹拌時間5~120分である。
 また、工程2で得られた乳化液中に分散した樹脂粒子をフィルターまたはメッシュ等により回収する前、または上記溶媒Cと前記乳化液とを混合する前に、環状オレフィン系樹脂等を溶解させるために使用した有機溶媒を濃縮する工程を加えてもよい。濃縮工程を加えることによって、乾燥時に樹脂粒子中から揮発する有機溶媒の量が少なくなり、より真球形状に近い形状の樹脂粒子を得ることが出来る。
 上述の樹脂粒子を回収するためのフィルターまたはメッシュの孔径は、必要な樹脂粒子の粒子径により選択される。回収した樹脂粒子を真空または熱風乾燥機等にて乾燥することにより形状の安定した樹脂粒子とすることが出来る。
 乾燥温度は通常20~160℃、好ましくは30~140℃、更に好ましくは40~120℃である。乾燥温度が20℃未満であると乾燥時間が長くなるため生産性が低下する傾向にある。また、乾燥温度が160℃を超えると樹脂粒子どうしが融着して所望の粒子径の樹脂粒子が得られないことがある。
 このようにして得られる樹脂粒子中の残留溶媒量は通常1質量%未満、好ましくは0.5質量%未満、更に好ましくは0.2質量%未満である。残留溶媒がこの範囲である樹脂粒子は、長期保管した際のブロッキング性が低い。
 なお、前述のように環状オレフィン系樹脂および樹脂組成物には遠赤外線吸収剤や種々の添加剤を添加することができる。これらの添加剤の添加は、たとえば工程1を開始する前に行うことができ、また、工程1で環状オレフィン系樹脂等を有機溶媒に溶解する際に、環状オレフィン系樹脂等と同時に添加剤を有機溶媒に添加して溶解してもよい。
 また添加においては、環状オレフィン系樹脂等と添加剤とがよく混合されるようにするため、環状オレフィン系樹脂等の有機溶媒溶液と、添加剤の溶液または分散液とを混合し、公知の脱溶装置を使用して脱溶してもよい。この操作を経た混合物は、上記工程1に供される。
 <機械的粉砕法>
 機械的粉砕法では、上記環状オレフィン系樹脂または樹脂組成物を製造し、その樹脂等を機械的に粉砕することにより、樹脂粒子を得る。
 機械的粉砕は、凍結粉砕でも常温での粉砕でもよい。機械的粉砕を実施する装置としては公知の種々の装置が挙げられるが、たとえばハンマーミル、ジェットミル、ボールミル、インペラーミル、カッターミル、ピンミル、2軸クラッシャーが挙げられる。機械的に粉砕する場合には樹脂が摩擦熱を発生し、温度上昇による融着を起こして所望の粒子径の粉末が得られない場合がある。そのため、液体窒素等を用いて装置および樹脂等を冷却すると共に、樹脂等を脆化させて破砕することが好ましい。
 環状オレフィン系樹脂等に上述の遠赤外線吸収剤を含めた種々の添加剤を添加する場合には、通常粉砕を行う前に添加剤の添加が行われる。添加においては、上記のような溶液を混合し、脱溶する方法を採用してもよいし、押出機等を用いた混練方法を採用してもよい。
 なお、一般に機械的粉砕法は乳化法よりも球形の粒子を得ることが難しい。樹脂粒子の形状が球形でないと、スライス一層分の樹脂粒子を供給する際の樹脂粒子の滑り性が劣るため好ましくない場合があるので、環状オレフィン系樹脂等を樹脂粒子とする方法としては、乳化法が好ましい場合がある。一方、生産性は機械的粉砕法の方が優れているため、要求される品質と製造コストによって、樹脂粒子の製造方法が適宜選択される。
 <その他の製法>
 本発明の樹脂粒子は、上記の方法以外にも下記の公知の方法を採用して製造することができる。
・環状オレフィン系樹脂または樹脂組成物のペレットと、環状オレフィン系樹脂等に非相溶性の異種高分子材料とを混練して、前記異種高分子材料中に前記ペレットを分散させた後に、前記環状オレフィン系樹脂等のみが溶解しない溶剤で前記異種高分子材料を溶解し、本発明の樹脂粒子を回収する方法。このような技術は特開2007-217651号公報に開示されている。
・環状オレフィン系樹脂等の有機溶媒溶液を噴霧乾燥する方法。このような技術は特表2000-504642号公報に開示されている。
 <樹脂粒子の改質>
 たとえば上記の方法により製造される本発明の樹脂粒子を粉末焼結積層造形法等に用いる場合において、レーザーによる樹脂粒子の溶融性・融着性が不足する場合には、樹脂粒子の表面に異種樹脂をコーティングまたはグラフト重合等により表面修飾して、樹脂粒子をコア・シェル構造にしてもよい。このような場合には、本発明の樹脂粒子が本来有する透明性を損なわないために、前記樹脂粒子と屈折率が出来るだけ近い材料または修飾剤を用いることが好ましい。
 また、粉末焼結積層造形法で得た造形物中に気泡等が存在し、透明性が不十分である場合には、樹脂粒子と屈折率が近い、熱または光硬化性の樹脂を前記造形物に含侵させ、その後に硬化処理する等の後処理を行ってもよい。このような後処理を行うことにより、造形物中の気泡がなくなり、透明性が十分なものとなる場合がある。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 <分析方法>
 GPC:ゲルパーミエーションクロマトグラフィー装置(東ソー(株)製HLC-8220GPC、カラム;東ソー(株)製ガードカラムHXL-H、TSK gel G7000HXL、TSK gel GMHXL2本、TSK gel G2000HXLを順次連結、溶媒;テトラヒドロフラン、流速;1mL/min、サンプル濃度0.7~0.8wt%、サンプル注入量;70μL、測定温度;40℃、検出器;RI(40℃)、標準物質;東ソー(株)製TSKスタンダードポリスチレン)を用い、重量平均分子量(Mw)および分子量分布(Mw/Mn)を測定した。なお、前記Mnは数平均分子量である。
 NMR:超伝導核磁気共鳴吸収装置(NMR、Bruker社製、商品名:AVANCE500)を用い、重水素化クロロホルム中で1H-NMRを測定し、共重合組成比および水素添加率を算出した。
 対数粘度η:ウッベローデ型粘度計を用いて、クロロホルム中、試料濃度0.5g/dL、温度30℃で測定した。
 Tg:示差走査熱量計(SIIナノテクノロジー社製、商品名:DSC6220)を用いて、日本工業規格K7121に従って補外ガラス転移温度を求めた。
 体積平均粒子径:日機装(株)製マイクロトラックMT3300を用いて測定した。
 走査型電子顕微鏡:日本電子(株)製JSM6360LA型を用いた。
 MFR: (株)テクノ・セブン製SEMI-AUTO MELTINDEXER L251を用い、JIS  K7210 B法に準拠して荷重10Kg、温度260℃にてメルトフローレート(MFR)を測定した。
 [合成例1]
 単量体として下記式(1a)に示す8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン100g、分子量調節剤として1-へキセン7.2g、およびトルエン200gを窒素置換した反応容器に仕込み、80℃に加熱した。
 これにトリエチルアルミニウム(0.6mol/L)のトルエン溶液0.21mL、およびメタノール変性WCl6トルエン溶液(0.025モル/L)0.86mLを加え、80℃で1時間反応させることにより開環重合体を得た。
 次いで、得られた開環重合体溶液に水素添加触媒であるクロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム(RuHCl(CO)[P(C6533)を0.04g添加し、水素ガス圧を9~10MPaとし、160~165℃の温度で、3時間反応させた。
 反応終了後、得られた生成物を多量のメタノール中で沈殿させることにより水素添加物を得た[ガラス転移温度(Tg)=163℃、重量平均分子量(Mw)=6.7×104、分子量分布(Mw/Mn)=5.0、対数粘度0.45dL/g、MFR=13g/10min、収量90g(収率90%)]。NMR測定により求めたこの水素添加物の水素添加率は99.0%以上であった。以後、得られた開環重合水添体を環状オレフィン系樹脂1Aとする。
Figure JPOXMLDOC01-appb-C000017
 [合成例2]
 前記式(1a)で表される単量体144g、下記式(2a)で表される単量体6g、分子量調節剤として1-へキセン14.4g、およびトルエン225gを窒素置換した反応容器に仕込み、80℃に加熱した。
 これにトリエチルアルミニウム(0.6mol/L)のトルエン溶液0.34mL、およびメタノール変性WCl6トルエン溶液(0.025モル/L)1.37mLを加え、80℃で1時間反応させることにより開環共重合体を得た。
 次いで、得られた開環共重合体溶液に水素添加触媒であるクロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム(RuHCl(CO)[P(C6533)を0.06g添加し、水素ガス圧を9~10MPaとし、160~165℃の温度で、3時間反応させた。
 反応終了後、得られた生成物を多量のメタノール中で沈殿させることにより水素添加物を得た[ガラス転移温度(Tg)=154℃、重量平均分子量(Mw)=7.4×104、分子量分布(Mw/Mn)=4.2、対数粘度0.55dL/g、収量90g(収率90%)]。NMR測定により求めたこの水素添加物の水素添加率は99.0%以上であり、共重合組成比は[(1a)由来の構造]/[(2a)由来の構造]=95.8/4.2(重量比)であった。以後、得られた開環共重合水添体を環状オレフィン系樹脂2Aとする。
Figure JPOXMLDOC01-appb-C000018
 [合成例3]
 前記式(1a)で表される単量体113.2g、前記式(2a)で表される単量体1.5g、下記式(3a)で表される単量体35.3g、分子量調節剤として1-へキセン20.5g、およびトルエン225gを窒素置換した反応容器に仕込み、80℃に加熱した。
 これにトリエチルアルミニウム(0.6mol/L)のトルエン溶液0.34mL、およびメタノール変性WCl6トルエン溶液(0.025モル/L)1.39mLを加え、80℃で1時間反応させることにより開環共重合体を得た。
 次いで、得られた開環共重合体溶液に水素添加触媒である(4-ペンチルベンゾイロキシ)カルボニル(ヒドリド)ビス(トリフェニルホスフィン)ルテニウム{RuH(OCO-Ar-CH2CH2CH2CH2CH3)(CO)[P(C6532(式中Arはパラフェニレン基を表す)}を0.06g添加し、90℃に昇温した後、水素ガス圧を9~10MPaとし、更に160~165℃まで昇温して3時間反応させた。
 反応終了後、得られた生成物を多量のメタノール中で沈殿させることにより水素添加物を得た[ガラス転移温度(Tg)=141℃、重量平均分子量(Mw)=4.4×104、分子量分布(Mw/Mn)=5.1、対数粘度0.41dL/g、収量90g(収率90%)]。NMR測定により求めたこの水素添加物の水素添加率は99.0%以上であり、共重合組成比は[(1a)由来の構造]/[(2a)由来の構造]/[(3a)由来の構造]=75.3/1.1/23.6(重量比)であった。以後、得られた開環共重合体水添体を環状オレフィン系樹脂3Aとする。
Figure JPOXMLDOC01-appb-C000019
 [合成例4]
1-へキセンの使用量を1.8gにした以外は合成例1と同様にして開環重合水添体を得た。ガラス転移温度(Tg)=168℃、重量平均分子量(Mw)=22×104、分子量分布(Mw/Mn)=5.0、対数粘度1.00dL/g、収量90g(収率90%)、NMR測定により求めたこの水素添加物の水素添加率は99.0%以上であった。以後、得られた開環重合体水添体を環状オレフィン系樹脂4Aとする。
 [合成例5]
 1-へキセンの使用量を12gにした以外は合成例1と同様にして開環重合水添体を得た。ガラス転移温度(Tg)=160℃、重量平均分子量(Mw)=2.8×104、分子量分布(Mw/Mn)=5.0、対数粘度0.29dL/g、収量90g(収率90%)、NMR測定により求めたこの水素添加物の水素添加率は99.0%以上であった。以後、得られた開環重合水添体を環状オレフィン系樹脂5Aとする。
 [合成例6]
 前記式(1a)で表される単量体133.5g、前記式(2a)で表される単量体16.5g、分子量調節剤として1-へキセン15.4g、およびトルエン225gを窒素置換した反応容器に仕込み、80℃に加熱した。
 これにトリエチルアルミニウム(0.6mol/L)のトルエン溶液0.34mL、およびメタノール変性WCl6トルエン溶液(0.025モル/L)1.37mLを加え、80℃で1時間反応させることにより開環共重合体を得た。
 次いで、得られた開環共重合体溶液に水素添加触媒であるクロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム(RuHCl(CO)[P(C6533)を0.06g添加し、水素ガス圧を9~10MPaとし、160~165℃の温度で、3時間反応させた。
 反応終了後、得られた生成物を多量のメタノール中で沈殿させることにより水素添加物を得た[ガラス転移温度(Tg)=126℃、重量平均分子量(Mw)=5.0×104、分子量分布(Mw/Mn)=4.2、対数粘度0.43dL/g、収量90g(収率90%)]。NMR測定により求めたこの水素添加物の水素添加率は99.0%以上であり、共重合組成比は[(1a)由来の構造]/[(2a)由来の構造]=89/11(重量比)であった。以後、得られた開環共重合水添体を環状オレフィン系樹脂6Aとする。
 [合成例7]
 前記式(1a)で表される単量体113.2g、前記式(2a)で表される単量体1.5g、前記式(3a)で表される単量体35.3g、分子量調節剤として1-へキセン17.0g、およびトルエン225gを窒素置換した反応容器に仕込み、80℃に加熱した。
 これにトリエチルアルミニウム(0.6mol/L)のトルエン溶液0.34mL、およびメタノール変性WCl6トルエン溶液(0.025モル/L)1.39mLを加え、80℃で1時間反応させることにより開環共重合体を得た。
 次いで、得られた開環共重合体溶液に水素添加触媒である(4-ペンチルベンゾイロキシ)カルボニル(ヒドリド)ビス(トリフェニルホスフィン)ルテニウム{RuH(OCO-Ar-CH2CH2CH2CH2CH3)(CO)[P(C6532(式中Arはパラフェニレン基を表す)}を0.06g添加し、90℃に昇温した後、水素ガス圧を9~10MPaとし、更に160~165℃まで昇温して3時間反応させた。
 反応終了後、得られた生成物を多量のメタノール中で沈殿させることにより水素添加物を得た[ガラス転移温度(Tg)=144℃、重量平均分子量(Mw)=5.3×104、分子量分布(Mw/Mn)=4.8、対数粘度0.51dL/g、MFR=25g/10min、収量90g(収率90%)]。NMR測定により求めたこの水素添加物の水素添加率は99.0%以上であり、共重合組成比は[(1a)由来の構造]/[(2a)由来の構造]/[(3a)由来の構造]=75.3/1.4/23.3(重量比)であった。以後、得られた開環共重合体水添体を環状オレフィン系樹脂7Aとする。
 [実施例1]
 合成例1で得た環状オレフィン系樹脂1A 49gをトルエン148gに溶解した溶液を調製した。一方、花王(株)製のノニオン界面活性剤エマルゲン130K(ポリオキシエチレンラウリルエーテル HLB=18.1) 2.0gをイオン交換水188gに溶解した水溶液を調製した。
 界面活性剤の水溶液を500mLの容器に入れ、プライミクス(株)製T.K.ホモミクサーMARKIIにて2000~2500rpmの回転数で攪拌しながら環状オレフィン系樹脂1Aのトルエン溶液を界面活性剤の水溶液中に投入した。
 その後、25℃にて1時間攪拌を継続した。
 この乳化液をメタノール1420g中に入れ、スリーワンモーター(プロペラ翼)を用い、25℃、200rpmにて10分間攪拌した。析出した樹脂粒子をステンレス製の500メッシュ金網で回収し、100℃の真空乾燥機にて12時間乾燥した。樹脂粒子の回収率は95%であり、体積平均粒子径は36μmであった。走査型電子顕微鏡にて回収した樹脂粒子の形状を観察したところ、ほぼ球状であった。
 [実施例2]
 エマルゲン130Kの使用量を1.0gにしたこと以外は実施例1と同様にして樹脂粒子を回収率98%で得た。樹脂粒子の体積平均粒子径は67μmであり、また、形状はほぼ球形であった。
 [実施例3]
 合成例2で得た環状オレフィン系樹脂2Aを用いた以外は実施例1と同様にして樹脂粒子を回収率96%で得た。樹脂粒子の体積平均粒子径は50μmであり、また、形状はほぼ球形であった。
 [実施例4]
 合成例3で得た環状オレフィン系樹脂3Aを用いた以外は実施例1と同様にして樹脂粒子を回収率95%で得た。樹脂粒子の体積平均粒子径は78μmであり、また、形状はほぼ球形であった。
 [実施例5]
 合成例3で得た環状オレフィン系樹脂3Aを用い、エマルゲン130Kの使用量を20.0gにしたこと以外は実施例1と同様にして樹脂粒子を回収率95%で得た。樹脂粒子の体積平均粒子径は18μmであり、また、形状はほぼ球形であった。
 [実施例6]
 実施例2と同様にして樹脂粒子を作成した。得られた樹脂粒子を湿式振動ふるい機にかけ、63μm孔径のふるいを通過して53μm孔径のふるい上に捕集された粒子を回収し真空乾燥した。回収率は25%であった。
 [実施例7]
 合成例1で得た環状オレフィン系樹脂1A 20gをトルエン180gに溶解し、エマルゲン130Kの使用量を1.0gに変更した以外は実施例1と同様にして樹脂粒子を回収率95%で得た。樹脂粒子の体積平均粒子径は15μmであり、また、形状はほぼ球形であった。
 [実施例8]
 合成例1で得た環状オレフィン系樹脂1A 100重量部に酸化防止剤としてテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.3重量部を添加したものを2軸押出し機にてペレットとした後、ハンマーミルを用いた機械的凍結粉砕を行ったところ、体積平均粒子径49μmの樹脂粒子が得られた。回収率は90%であった。
 [実施例9]
 合成例2で得た環状オレフィン系樹脂2A 100重量部に酸化防止剤としてテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.3重量部を添加したものを2軸押出し機にてペレットとした後、ハンマーミルを用いた機械的凍結粉砕を行ったところ、体積平均粒子径60μmの樹脂粒子が得られた。回収率は90%であった。
 [実施例10]
 合成例3で得た環状オレフィン系樹脂3A 100重量部に酸化防止剤としてテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.3重量部を添加したものを2軸押出し機にてペレットとした後、ハンマーミルを用いた機械的凍結粉砕を行ったところ、体積平均粒子径60μmの樹脂粒子が得られた。回収率は90%であった。
 [実施例11]
 合成例6で得た環状オレフィン系樹脂6A 100重量部に酸化防止剤としてテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.3重量部を添加したものを2軸押出し機にてペレットとした後、ハンマーミルを用いた機械的凍結粉砕を行ったところ、体積平均粒子径46μmの樹脂粒子が得られた。回収率は92%であった。
 [実施例12]
 合成例1で得た環状オレフィン系樹脂1A 100重量部に酸化防止剤としてテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.3重量部を添加したもの9.5Kgと、スチレン/エチレン・ブチレン比率が30/70重量%であるスチレン系熱可塑性エラストマー(旭化成(株)製、タフテックH1041)0.5Kgとを、二軸押し出し機(TEM-37BS、東芝機械製)を用いて混練して、ペレット状の熱可塑性樹脂組成物を得た。シリンダー温度は280℃、軸回転速度は100rpm、押出し速度は10~20kg/hrであった。得られたペレットの外観は透明であり、そのMFRは21g/10minであった。
 得られたペレットに対してハンマーミルを用いた機械的凍結粉砕を行ったところ、体積平均粒子径50μmの樹脂粒子が得られた。回収率は90%であった。
 [実施例13]
 合成例1で得た環状オレフィン系樹脂1A 100重量部に酸化防止剤としてテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.3重量部を添加したもの9Kgと、スチレン/エチレン・ブチレン比率が30/70重量%であるスチレン系熱可塑性エラストマー(旭化成(株)製、タフテックH1041)1.0Kgとを使用した以外は、実施例12と同様にしてペレットを得た。得られたペレットのMFRは28g/10minであった。
 得られたペレットに対してハンマーミルを用いた機械的凍結粉砕を行ったところ、体積平均粒子径52μmの樹脂粒子が得られた。回収率は90%であった。
 [実施例14]
 合成例7で得た環状オレフィン系樹脂7A 100重量部に酸化防止剤としてテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.3重量部を添加したもの9.5Kgと、スチレン/エチレン・ブチレン比率が30/70重量%であるスチレン系熱可塑性エラストマー(旭化成(株)製、タフテックH1041)0.5Kgとを使用した以外は、実施例12と同様にしてペレットを得た。得られたペレットのMFRは41g/10minであった。
 得られたペレットに対してハンマーミルを用いた機械的凍結粉砕を行ったところ、体積平均粒子径51μmの樹脂粒子が得られた。回収率は92%であった。
 [実施例15]
 合成例7で得た環状オレフィン系樹脂7A 100重量部に酸化防止剤としてテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.3重量部を添加したもの8.5Kgと、スチレン/エチレン・ブチレン比率が30/70重量%であるスチレン系熱可塑性エラストマー(旭化成(株)製、タフテックH1041)1.5Kgとを使用した以外は、実施例12と同様にしてペレットを得た。得られたペレットのMFRは63g/10minであった。
 得られたペレットに対してハンマーミルを用いた機械的凍結粉砕を行ったところ、体積平均粒子径50μmの樹脂粒子が得られた。回収率は90%であった。
 [実施例16]
 合成例7で得た環状オレフィン系樹脂7A 100重量部に酸化防止剤としてテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.3重量部を添加したもの9Kgと、スチレン/エチレン・ブチレン比率が約48/52重量%であるスチレン系熱可塑性エラストマー(JSR(株)製、ダイナロン8900)1.0Kgとを使用した以外は、実施例12と同様にしてペレットを得た。得られたペレットのMFRは52g/10minであった。
 得られたペレットに対してハンマーミルを用いた機械的凍結粉砕を行ったところ、体積平均粒子径50μmの樹脂粒子が得られた。回収率は91%であった。
 [実施例17]
 合成例1で得た環状オレフィン系樹脂1A 100重量部に酸化防止剤としてテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.3重量部を添加したもの8Kgと、スチレン系樹脂(ヤスハラケミカル(株)製、SX100)2Kgとを使用した以外は、実施例12と同様にしてペレットを得た。得られたペレットのMFRは110g/10minであった。
 得られたペレットに対してハンマーミルを用いた機械的凍結粉砕を行ったところ、体積平均粒子径50μmの樹脂粒子が得られた。回収率は89%であった。
 [実施例18]
 合成例7で得た環状オレフィン系樹脂7A 100重量部に酸化防止剤としてテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.3重量部を添加したもの8.5Kgと、スチレン系樹脂(ヤスハラケミカル(株)製、SX100)1.5Kgとを使用した以外は、実施例12と同様にしてペレットを得た。得られたペレットのMFRは140g/10minであった。
 得られたペレットに対してハンマーミルを用いた機械的凍結粉砕を行ったところ、体積平均粒子径48μmの樹脂粒子が得られた。回収率は89%であった。
 [比較例1]
 合成例4で得た環状オレフィン系樹脂4Aを用いた以外は実施例1と同様にして樹脂粒子を回収率96%で得た。樹脂粒子の体積平均粒子径は99μmであり、また、形状はほぼ球形であった。
 [比較例2]
 合成例5で得た環状オレフィン系樹脂5Aを用いた以外は実施例1と同様にして樹脂粒子を回収率96%で得た。樹脂粒子の体積平均粒子径は20μmであり、また、形状はほぼ球形であった。
 [比較例3]
 実施例2と同様にして樹脂粒子を作成した。得られた樹脂粒子を湿式振動ふるい機にかけ、200μm孔径のふるい上に捕集された樹脂粒子を回収した。回収した樹脂粒子の体積平均粒子径は220μmであり、回収率は5%であった。
 <評価>
 実施例および比較例で得た樹脂粒子1gを3.5mLのサンプル瓶に入れ、環状オレフィン系樹脂のガラス転移温度よりも50℃高い温度に設定したオーブン中にて加熱して融着した。得られた融着物の透明性並びに融着強度の評価を実施した。結果をまとめて下表1および2に示した。
 表1および2中の透明性に関し、○は融着物の外観が透明であることを表し、×は融着物の外観が透明であるものの比較的大きな気泡を含み透明性が不十分であることを表す。
 また融着強度に関し、○は融着物に10Kgの荷重を加えても破損しないことを表し、×は破損したことを表す。尚、融着物とは前記オーブン中にて粉末を加熱溶着させて得られたブロック状のものを言い、10Kgの荷重は当該サンプルの上部から加えた。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 上記実施例および比較例ならびに評価結果から、本発明の特定の環状オレフィン系樹脂または樹脂組成物からなる樹脂粒子は、透明性および融着強度に優れるため粉末焼結積層造形に好適であることがわかる。また、樹脂組成物(特定の環状オレフィン系樹脂およびスチレン系重合体を含有する)からは、同じ環状オレフィン系樹脂からなる樹脂粒子よりも、溶融時の流動性(MFR)に優れた樹脂粒子が得られることがわかる。さらに、本発明の樹脂粒子は高い耐熱性を有するため粉末焼結積層造形以外の各種用途にも有用である。
 [試験例]
 次に、環状オレフィン系樹脂に遠赤外線吸収剤を添加した際の効果を検証した試験例を示す。
 〔試験例1〕
 合成例1で得た環状オレフィン系樹脂1Aを47.52g、チバ・ジャパン(株)製Irganox1010 を0.14g、および遠赤外線吸収剤として商品名:Laserfrair800(Merck株式会社製、体積平均粒子径が15μm以下に分級された雲母)を0.48g計量して、ラボプラストミルにて280℃で25分間それらを混錬して樹脂組成物(1)を得た。
 樹脂組成物(1)の外観は透明であり、ガラス転移温度は163℃であった。また、該組成物を100μm厚みにプレス成型して得られたフィルムの波数945cm-1における吸光度は0.49、全光線透過率は91.7%、ヘーズは4.1%であった。
 〔試験例2〕
 合成例1で得た環状オレフィン系樹脂1Aを46.56g、チバ・ジャパン(株)製Irganox1010 を0.14g、および遠赤外線吸収剤として商品名:Laserfrair800を1.44g計量して、ラボプラストミルにて280℃で25分間それらを混錬して樹脂組成物(2)を得た。
 樹脂組成物(2)の外観は透明であり、ガラス転移温度は163℃であった。該組成物を100μm厚みにプレス成型して得られたフィルムの波数945cm-1における吸光度は0.85、全光線透過率は91%、ヘーズは5.2%であった。
 〔試験例3〕
 合成例1で得た環状オレフィン系樹脂1Aを45.6g、チバ・ジャパン(株)製Irganox1010 を0.14g、および遠赤外線吸収剤として商品名:Laserfrair800を2.4g計量して、ラボプラストミルにて280℃で25分間それらを混錬して樹脂組成物(3)を得た。
 樹脂組成物(3)の外観は透明であり、ガラス転移温度は163℃であった。該組成物を100μm厚みにプレス成型して得られたフィルムの波数945cm-1における吸光度は1.05、全光線透過率は91%、ヘーズは5.7%であった。
 〔試験例4〕
 合成例2で得た環状オレフィン系樹脂2Aを用いたこと以外は試験例1と同様にして樹脂組成物(4)を作成した。
 樹脂組成物(4)の外観は透明であり、ガラス転移温度は154℃であった。該組成物を100μm厚みにプレス成型して得られたフィルムの波数945cm-1における吸光度は0.54、全光線透過率は92.5%、ヘーズは2.3%であった。
 〔試験例5〕
 合成例2で得た環状オレフィン系樹脂2Aを用いたこと以外は試験例2と同様にして樹脂組成物(5)を作成した。
 樹脂組成物(5)の外観は透明であり、ガラス転移温度は154℃であった。該組成物を100μm厚みにプレス成型して得られたフィルムの波数945cm-1における吸光度は0.97、全光線透過率は92.3%、ヘーズは2.8%であった。
 〔試験例6〕
 合成例2で得た環状オレフィン系樹脂2Aを用いたこと以外は試験例3と同様にして樹脂組成物(6)を作成した。
 樹脂組成物(6)の外観は透明であり、ガラス転移温度は154℃であった。該組成物を100μm厚みにプレス成型して得られたフィルムの波数945cm-1における吸光度は1.13、全光線透過率は92%、ヘーズは3.4%であった。
 〔試験例7〕
 合成例1で得た環状オレフィン系樹脂1Aを46.56g、チバ・ジャパン(株)製Irganox1010 を0.14g、および遠赤外線吸収剤として大八化学工業(株)製PX-200(燐酸エステル化合物)を1.44g計量して、ラボプラストミルにて280℃で25分間それらを混錬して樹脂組成物(7)を得た。
 樹脂組成物(7)の外観は透明であり、ガラス転移温度は153℃であった。該組成物を100μm厚みにプレス成型して得られたフィルムの波数945cm-1における吸光度は0.76、全光線透過率は93%、ヘーズは2%であった。
 〔試験例8〕
 合成例1で得た環状オレフィン系樹脂1Aを45.6g、チバ・ジャパン(株)製Irganox1010 を0.14g、および遠赤外線吸収剤として大八化学工業(株)製PX-200を2.4g計量して、ラボプラストミルにて280℃で25分間それらを混錬して樹脂組成物(8)を得た。
 樹脂組成物(8)の外観は透明であり、ガラス転移温度は144℃であった。該組成物を100μm厚みにプレス成型して得られたフィルムの波数945cm-1における吸光度は0.98、全光線透過率は93%、ヘーズは2%であった。
 〔試験例9〕
 合成例1で得た環状オレフィン系樹脂1Aを46.56g、チバ・ジャパン(株)製Irganox1010 を0.14g、および遠赤外線吸収剤として下記式(1b)で表される4,4'-ビフェノールビス(ジフェニル)ホスフェートを1.44g計量して、ラボプラストミルにて280℃で25分間それらを混錬して樹脂組成物(9)を得た。
 樹脂組成物(9)の外観は透明であり、ガラス転移温度は154℃であった。該組成物を100μm厚みにプレス成型して得られたフィルムの波数945cm-1における吸光度は0.88、全光線透過率は93%、ヘーズは2%であった。
Figure JPOXMLDOC01-appb-C000022
 〔試験例10〕
 合成例1で得た環状オレフィン系樹脂1Aを45.6g、チバ・ジャパン(株)製Irganox1010 を0.14g、および遠赤外線吸収剤として上記式(1b)で表される4,4'-ビフェノールビス(ジフェニル)ホスフェートを2.4g計量して、ラボプラストミルにて280℃で25分間それらを混錬して樹脂組成物(10)を得た。
 樹脂組成物(10)の外観は透明であり、ガラス転移温度は145℃であった。該組成物を100μm厚みにプレス成型して得られたフィルムの波数945cm-1における吸光度は1.16、全光線透過率は93%、ヘーズは2%であった。
 〔比較試験例1〕
 遠赤外線吸収剤を用いなかったこと以外は試験例1と同様にして樹脂組成物(11)を得た。樹脂組成物(11)の外観は透明であり、ガラス転移温度は163℃であった。該組成物を100μm厚みにプレス成型して得られたフィルムの波数945cm-1における吸光度は0.36、全光線透過率は93%、ヘーズは2.3%であった。
 〔比較試験例2〕
 遠赤外線吸収剤を用いなかったこと以外は試験例4と同様にして樹脂組成物(12)を得た。樹脂組成物(12)の外観は透明であり、ガラス転移温度は153℃であった。該組成物を100μm厚みにプレス成型して得られたフィルムの波数945cm-1における吸光度は0.36、全光線透過率は93%、ヘーズは2.0%であった。
 〔比較試験例3〕
 合成例1で得た環状オレフィン系樹脂1Aを32g、チバ・ジャパン(株)製Irganox1010を0.14g、および遠赤外線吸収剤として商品名:Laserfrair800を16g計量して、ラボプラストミルにて280℃で25分間それらを混錬して樹脂組成物(13)を得た。
 樹脂組成物(13)の外観は不透明であり、該組成物に対してプレス成型を実施したところ、強度不足により評価用フィルムを得ることができなかった。
 〔比較試験例4〕
 合成例1で得た環状オレフィン系樹脂1Aを32g、チバ・ジャパン(株)製Irganox1010を0.14g、および遠赤外線吸収剤として大八化学工業(株)製PX-200を16g計量して、ラボプラストミルにて280℃で25分間それらを混錬して樹脂組成物(14)を得た。
 樹脂組成物(14)の外観は透明であったが、ガラス転移温度は80℃と低く、該組成物は、環状オレフィン系樹脂の特徴である耐熱性を発揮できるものではなかった。
 本発明の樹脂粒子は耐熱性及び透明性に優れ、光拡散剤、粉体塗料、トナー用材料、インク、スペーサー(例えば液晶ディスプレイ用)、充填材、ブロッキング防止剤、潤滑剤成分、立体物造形用粉末等として好適に使用することができる。
 また本発明の樹脂粒子が遠赤外線吸収剤を含有する場合には、該樹脂粒子は遠赤外線の吸収能力に優れ、遠赤外線レーザーを用いた粉末焼結積層造形、彫刻、切削、マーキング等に使用するのに特に好適である。

Claims (11)

  1.  ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量が30,000~200,000であり、
     下記一般式(1)で表される繰り返し単位を有する環状オレフィン系樹脂からなり、
     体積平均粒子径が1~200μmであることを特徴とする樹脂粒子:
    Figure JPOXMLDOC01-appb-C000001
    [Xは式:-CH=CH-で表される基または式:-CH2CH2-で表される基を示し、aおよびbは独立に0または1を示し、cおよびdは独立に0~2の整数を示し、
     R4、R5、R6、R7、R8およびR9はそれぞれ独立に下記(i)~(v)のいずれかを表し;
    (i)水素原子
    (ii)ハロゲン原子
    (iii)置換または非置換の炭素数1~40の炭化水素基
    (iv)酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する置換または非置換の炭素数1~40の炭化水素基
    (v)極性基
     R10、R11、R12およびR13はそれぞれ独立に上記(i)~(v)のいずれかであるか、または下記(vi)~(vii)のいずれかである;
    (vi)R10とR11、またはR12とR13とが結合して単環または多環の炭化水素環もしくは複素環を形成し、前記結合に関与しないR10~R13はそれぞれ独立に上記(i)~(v)のいずれかである
    (vii)R10またはR11とR12またはR13とが相互に結合して単環または多環の炭化水素環もしくは複素環を形成し、前記結合に関与しないR10~R13はそれぞれ独立に上記(i)~(v)のいずれかである]。
  2.  前記環状オレフィン系樹脂のウッベローデ型粘度計を用いて測定した対数粘度が0.30~0.95dL/gであることを特徴とする請求項1に記載の樹脂粒子。
  3.  前記環状オレフィン系樹脂のガラス転移温度が115~200℃であり、
     体積平均粒子径が10~80μmであることを特徴とする請求項1または2に記載の樹脂粒子。
  4.  前記環状オレフィン系樹脂において、芳香族性の不飽和結合を除く炭素-炭素二重結合部分のうち95%以上が水素添加されていることを特徴とする請求項1~3のいずれかに記載の樹脂粒子。
  5.  更に遠赤外線吸収剤を、前記環状オレフィン系樹脂との重量比が環状オレフィン系樹脂:遠赤外線吸収剤=99.99:0.01~70:30となる量で含有することを特徴とする請求項1~4のいずれかに記載の樹脂粒子。
  6.  前記遠赤外線吸収剤が、珪酸塩鉱物またはリン酸エステル類であることを特徴とする請求項5に記載の樹脂粒子。
  7.  請求項1に記載の環状オレフィン系樹脂と、下記式(4)で表される構造単位を有するスチレン系重合体とを含有する樹脂組成物からなり、
     体積平均粒子径が1~200μmであることを特徴とする樹脂粒子:
    Figure JPOXMLDOC01-appb-C000002
    [Rは炭素数1~4のアルキル基、ヒドロキシル基またはカルボキシル基を表し、nは0~5の整数を表し、nが2以上の場合には、複数存在するRは同一でも異なってもよい。]。
  8.  更に遠赤外線吸収剤を、前記樹脂組成物との重量比が樹脂組成物:遠赤外線吸収剤=99.99:0.01~70:30となる量で含有することを特徴とする請求項7に記載の樹脂粒子。
  9.  前記遠赤外線吸収剤が、珪酸塩鉱物またはリン酸エステル類であることを特徴とする請求項8に記載の樹脂粒子。
  10.  更に酸化防止剤を含有することを特徴とする請求項1~9のいずれかに記載の樹脂粒子。
  11.  請求項1~10のいずれかに記載の樹脂粒子を用いることを特徴とする粉末焼結積層造形方法。
PCT/JP2009/064286 2008-09-22 2009-08-13 樹脂粒子 WO2010032570A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-242454 2008-09-22
JP2008242454 2008-09-22
JP2008-264640 2008-10-10
JP2008264640A JP2010090350A (ja) 2008-10-10 2008-10-10 レーザー焼結積層造形用樹脂粉末

Publications (1)

Publication Number Publication Date
WO2010032570A1 true WO2010032570A1 (ja) 2010-03-25

Family

ID=42039411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064286 WO2010032570A1 (ja) 2008-09-22 2009-08-13 樹脂粒子

Country Status (2)

Country Link
TW (1) TW201012864A (ja)
WO (1) WO2010032570A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060147A (ja) * 2014-09-19 2016-04-25 ポリプラスチックス株式会社 3dプリンター用造形材料
WO2017119346A1 (ja) * 2016-01-04 2017-07-13 日本ゼオン株式会社 三次元造形用材料、三次元造形用材料の製造方法、及び樹脂成形体
WO2019022003A1 (ja) * 2017-07-24 2019-01-31 住友金属鉱山株式会社 赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、それらを用いた偽造防止インク、偽造防止用印刷膜、ならびに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法
WO2019146474A1 (ja) * 2018-01-29 2019-08-01 コニカミノルタ株式会社 立体造形用樹脂組成物、立体造形物、および立体造形物の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06162856A (ja) * 1992-11-20 1994-06-10 Nippon Zeon Co Ltd 熱硬化性樹脂成形材料、成形品、及び熱可塑性ノルボルネン系樹脂粒子
JPH11100469A (ja) * 1997-09-29 1999-04-13 Mitsui Chem Inc 環状オレフィン系樹脂成形体およびその製造方法
JPH11323098A (ja) * 1998-05-11 1999-11-26 Jsr Corp 熱可塑性樹脂組成物
JP2000219725A (ja) * 1999-01-29 2000-08-08 Nippon Zeon Co Ltd ノルボルネン系重合体水素添加物及びその組成物
JP2002521464A (ja) * 1998-07-28 2002-07-16 アヴェンティス・クロップサイエンス・ゲーエムベーハー シクロオレフィン共重合体から製造された微小粒子、および活性物質の制御放出のためのそれら微小粒子の使用
WO2006073102A1 (ja) * 2005-01-05 2006-07-13 Jsr Corporation 熱可塑性樹脂組成物、光学フィルムおよびフィルム製造方法
JP2007217651A (ja) * 2006-02-20 2007-08-30 Daicel Chem Ind Ltd 環状ポリオレフィン系樹脂の球状粒子およびその製造方法
JP2007298869A (ja) * 2006-05-02 2007-11-15 Sharp Corp 電子写真用カプセルトナー
JP2007301945A (ja) * 2006-05-15 2007-11-22 Univ Of Tokyo 3次元構造体及びその作製方法
JP2008106082A (ja) * 2006-10-23 2008-05-08 Daicel Chem Ind Ltd 球状樹脂微粒子およびその樹脂微粒子を用いたrpt成形法およびその成形品
JP2008291253A (ja) * 2007-04-27 2008-12-04 Daicel Chem Ind Ltd 無機粒子を含む複合樹脂粒子

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06162856A (ja) * 1992-11-20 1994-06-10 Nippon Zeon Co Ltd 熱硬化性樹脂成形材料、成形品、及び熱可塑性ノルボルネン系樹脂粒子
JPH11100469A (ja) * 1997-09-29 1999-04-13 Mitsui Chem Inc 環状オレフィン系樹脂成形体およびその製造方法
JPH11323098A (ja) * 1998-05-11 1999-11-26 Jsr Corp 熱可塑性樹脂組成物
JP2002521464A (ja) * 1998-07-28 2002-07-16 アヴェンティス・クロップサイエンス・ゲーエムベーハー シクロオレフィン共重合体から製造された微小粒子、および活性物質の制御放出のためのそれら微小粒子の使用
JP2000219725A (ja) * 1999-01-29 2000-08-08 Nippon Zeon Co Ltd ノルボルネン系重合体水素添加物及びその組成物
WO2006073102A1 (ja) * 2005-01-05 2006-07-13 Jsr Corporation 熱可塑性樹脂組成物、光学フィルムおよびフィルム製造方法
JP2007217651A (ja) * 2006-02-20 2007-08-30 Daicel Chem Ind Ltd 環状ポリオレフィン系樹脂の球状粒子およびその製造方法
JP2007298869A (ja) * 2006-05-02 2007-11-15 Sharp Corp 電子写真用カプセルトナー
JP2007301945A (ja) * 2006-05-15 2007-11-22 Univ Of Tokyo 3次元構造体及びその作製方法
JP2008106082A (ja) * 2006-10-23 2008-05-08 Daicel Chem Ind Ltd 球状樹脂微粒子およびその樹脂微粒子を用いたrpt成形法およびその成形品
JP2008291253A (ja) * 2007-04-27 2008-12-04 Daicel Chem Ind Ltd 無機粒子を含む複合樹脂粒子

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060147A (ja) * 2014-09-19 2016-04-25 ポリプラスチックス株式会社 3dプリンター用造形材料
WO2017119346A1 (ja) * 2016-01-04 2017-07-13 日本ゼオン株式会社 三次元造形用材料、三次元造形用材料の製造方法、及び樹脂成形体
JPWO2017119346A1 (ja) * 2016-01-04 2018-10-25 日本ゼオン株式会社 三次元造形用材料、三次元造形用材料の製造方法、及び樹脂成形体
US11135767B2 (en) 2016-01-04 2021-10-05 Zeon Corporation Material for three-dimensional modeling, method for manufacturing material for three-dimensional modeling, and resin molded body
WO2019022003A1 (ja) * 2017-07-24 2019-01-31 住友金属鉱山株式会社 赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、それらを用いた偽造防止インク、偽造防止用印刷膜、ならびに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法
JPWO2019022003A1 (ja) * 2017-07-24 2020-08-20 住友金属鉱山株式会社 赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、それらを用いた偽造防止インク、偽造防止用印刷膜、ならびに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法
JP7238776B2 (ja) 2017-07-24 2023-03-14 住友金属鉱山株式会社 赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、それらを用いた偽造防止インク、偽造防止用印刷膜、ならびに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法
WO2019146474A1 (ja) * 2018-01-29 2019-08-01 コニカミノルタ株式会社 立体造形用樹脂組成物、立体造形物、および立体造形物の製造方法
JPWO2019146474A1 (ja) * 2018-01-29 2021-01-28 コニカミノルタ株式会社 立体造形用樹脂組成物、立体造形物、および立体造形物の製造方法
US20210087375A1 (en) * 2018-01-29 2021-03-25 Konica Minolta, Inc. Resin composition for three-dimensional modeling, three-dimensional modeled article, and method for manufacturing three-dimensional modeled article
JP7107325B2 (ja) 2018-01-29 2022-07-27 コニカミノルタ株式会社 立体造形用樹脂組成物、立体造形物、および立体造形物の製造方法
US11795312B2 (en) * 2018-01-29 2023-10-24 Konica Minolta, Inc. Resin composition for three-dimensional modeling, three-dimensional modeled article, and method for manufacturing three-dimensional modeled article

Also Published As

Publication number Publication date
TW201012864A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
JP2010095706A (ja) 樹脂粒子
CN100554333C (zh) 热塑性组合物
JP5646793B2 (ja) 透明フィルム
JP2010090350A (ja) レーザー焼結積層造形用樹脂粉末
TWI689528B (zh) 聚碳酸酯樹脂、成形品及光學薄膜
KR20050107583A (ko) 반투명 열가소성 조성물, 이 조성물의 제조 방법, 및이로부터 성형된 제품
TW200837141A (en) Flame retardancy polycarbonate resin composition
WO2009060986A1 (ja) 樹脂組成物
CN107778638A (zh) 一种无卤阻燃超高分子量聚乙烯材料及其制备方法
KR20110013350A (ko) 난연성 폴리카보네이트 수지 조성물
WO2010032570A1 (ja) 樹脂粒子
WO2010106870A1 (ja) 特定の樹脂の粉末を用いた粉末焼結積層造形方法
KR20070078725A (ko) 환상 올레핀계 수지 조성물, 이 수지 조성물을 포함하는수지 성형품의 제조 방법, 및 이 수지 조성물을 포함하는필름
JP6697644B1 (ja) 液晶性樹脂微粒子の製造方法
CN102782017B (zh) 混合物用于制备冲击改性热塑性组合物的应用
TWI609045B (zh) Resin composition and resin molded body
CN106398085A (zh) 耐刮擦无卤阻燃tpe注塑料及其制备方法
JP4729802B2 (ja) 熱可塑性樹脂組成物およびその用途
JP6854655B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP6782576B2 (ja) ポリカーボネート樹脂組成物
JP2016160278A (ja) 絶縁熱伝導性ポリカーボネート樹脂組成物
JP2009167231A (ja) フルオレン系ポリエステル樹脂微粒子及びその製造方法
JP4691844B2 (ja) 成形材料およびこれによる成形品
WO1998010020A1 (fr) Composition de resine thermoplastique
TW202006064A (zh) 聚碳酸酯樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814415

Country of ref document: EP

Kind code of ref document: A1