WO2019022003A1 - 赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、それらを用いた偽造防止インク、偽造防止用印刷膜、ならびに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法 - Google Patents

赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、それらを用いた偽造防止インク、偽造防止用印刷膜、ならびに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法 Download PDF

Info

Publication number
WO2019022003A1
WO2019022003A1 PCT/JP2018/027497 JP2018027497W WO2019022003A1 WO 2019022003 A1 WO2019022003 A1 WO 2019022003A1 JP 2018027497 W JP2018027497 W JP 2018027497W WO 2019022003 A1 WO2019022003 A1 WO 2019022003A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
resin
absorbing fine
absorbing
fine particles
Prior art date
Application number
PCT/JP2018/027497
Other languages
English (en)
French (fr)
Inventor
裕史 常松
長南 武
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CA3086897A priority Critical patent/CA3086897A1/en
Priority to JP2019532595A priority patent/JP7238776B2/ja
Priority to CN201880049821.0A priority patent/CN111032745A/zh
Priority to EP18839475.3A priority patent/EP3660079A4/en
Priority to AU2018306015A priority patent/AU2018306015B2/en
Priority to US16/633,716 priority patent/US20200283586A1/en
Priority to IL272224A priority patent/IL272224B2/en
Priority to KR1020207002698A priority patent/KR102615612B1/ko
Publication of WO2019022003A1 publication Critical patent/WO2019022003A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/328Inkjet printing inks characterised by colouring agents characterised by dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten

Definitions

  • the present invention absorbs light in the infrared range and is a pulverized masterbatch containing an infrared-absorbing fine particle which is excellent in chemical resistance, a dispersion containing a masterbatch crushed by an infrared-absorbing fine particle, an infrared-absorbing material containing ink, forgery prevention using them
  • the present invention relates to a method for producing an ink, a forgery-proof printed material, and a pulverized masterbatch containing infrared-absorbing fine particles.
  • infrared absorption techniques that have good visible light transmittance and lower solar radiation transmittance while maintaining transparency.
  • the infrared absorption technology using conductive fine particles which is an inorganic substance, is superior to other technologies in infrared absorption characteristics, low in cost, and has advantages such as radio wave transparency and high weather resistance. There is.
  • Patent Document 1 describes a technology to which the infrared absorption characteristics of tin oxide fine powder are applied, and a transparent resin containing tin oxide fine powder in a dispersed state or a transparent resin containing tin oxide fine powder in a dispersed state
  • An infrared-absorbing synthetic resin molded article has been proposed in which a synthetic resin is molded into a sheet or a film and laminated on a transparent synthetic resin substrate.
  • Patent Document 2 discloses metals such as Sn, Ti, Si, Zn, Zr, Fe, Al, Cr, Co, In, Ni, Ag, Cu, Pt, Mn, Ta, W, V, Mo, and the like. And the nitride of the metal, the sulfide of the metal, the doped product of Sb and F to the metal, or a technology applying the infrared absorption characteristics of a mixture thereof, which are dispersed in the medium A laminated glass in which the intermediate layer is sandwiched is proposed.
  • Patent Document 3 discloses a technology applying the infrared absorption characteristics of titanium nitride fine particles and lanthanum boride fine particles in Patent Document 3, and at least one of these is dispersed in a solvent or medium. It discloses a selective permeation membrane coating solution and a selective permeation membrane.
  • the infrared absorbing structures such as the infrared ray absorbing synthetic resin molded articles disclosed in Patent Documents 1 to 3 have infrared absorbing characteristics when high visible light transmittance is required. There is a problem that this is not sufficient, and the function as an infrared absorbing structure is not sufficient.
  • the visible light transmittance calculated based on JIS R 3106 1998 (in the present invention, simply as an example of a specific numerical value of the infrared absorption property of the infrared absorbing structure disclosed in Patent Documents 1 to 3)
  • the visible light transmittance may be described as 70%
  • the solar light transmittance similarly calculated based on JIS R 3106 1998 in the present invention, it may be simply referred to as the "sun radiation transmittance" Is over 50%).
  • M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe).
  • At least one element selected from Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, W is tungsten, O is oxygen, 0.
  • the composite tungsten oxide represented by 001 x x / y 1 1 and 2.2 z z / y ⁇ ⁇ ⁇ 3.0
  • Composite tungsten oxide is hexagonal, tetragonal or cubic crystal It includes more than one type of infrared absorbing particles having a granulated particle size of the infrared absorbing material fine particles disclosed an infrared absorbing dispersion, characterized in that at 1nm or 800nm or less.
  • the infrared-absorbing fine particle dispersion containing the infrared-absorbing fine particles represented by the above-mentioned general formula M x W y O z exhibits high infrared absorption characteristics, and has a visible light transmittance of 70%.
  • the solar radiation transmittance was improved to below 50%.
  • an infrared-absorbing fine particle dispersion using infrared-absorbing fine particles having a hexagonal crystal structure employing at least one selected from specific elements such as Cs, Rb and Tl as the M element exhibits excellent infrared absorbing characteristics
  • the solar radiation transmittance was improved to less than 37% when the visible light transmittance was 70%.
  • Patent Document 5 discloses a composition for anti-counterfeit ink including infrared absorbing fine particles represented by the general formula M x W y O z disclosed in Patent Document 4 and a forgery in which the composition is dispersed in a solvent.
  • the present invention provides a protective ink and a forgery-proof printed material produced using the same.
  • the printed matter produced using the anti-counterfeit ink is absorbed only at a specific wavelength when the printing surface is irradiated with an infrared laser, it is possible to judge the authenticity by reading the reflected or transmitted light, passbook of deposit and savings, identification It was highly effective in preventing forgery of valuable printed matter such as documents, credit cards, cash cards, checks, airline tickets, road tickets, tickets, prepaid cards, gift certificates, and securities.
  • the present invention has been accomplished under the above-mentioned circumstances, and the problem to be solved is a crushed masterbatch having excellent infrared absorption characteristics and excellent chemical resistance, and an infrared-absorbing fine particle-containing masterbatch It is an object of the present invention to provide a method for producing a pulverized material-containing dispersion, an infrared absorbing material-containing ink, a forgery-preventing ink using them, a forgery-preventing printed matter, and a pulverized material of masterbatch containing infrared-absorbing fine particles.
  • the present inventors conducted intensive studies to achieve the above object. Then, it was found that the infrared-absorbing fine particle-containing master batch obtained by dispersing the infrared-absorbing fine particles in a specific resin exhibits excellent chemical resistance. Furthermore, it has been found that the crushed infrared-absorbing fine particle-containing masterbatch exhibits excellent chemical resistance even when crushed to a level that can be added to the anti-counterfeit ink. Specifically, when the median value of the volume cumulative particle size measured by the particle size distribution measuring device based on the laser diffraction / scattering method is the dispersed particle size, the infrared absorbing fine particle-containing master batch crushing of the dispersed particle size is 1 ⁇ m or more Also showed excellent chemical resistance.
  • the present inventors have found that the forgery-preventing ink and forgery-preventing printed material prepared using the infrared-absorbing fine particle-containing masterbatch and the pulverized material thereof have transparency in the visible light region and have excellent infrared-absorbing characteristics. Also in view of showing excellent chemical resistance, the present invention was completed.
  • a dispersed particle size (median value of volume cumulative particle size measured by a particle size distribution measuring device based on a laser diffraction / scattering method) is 1 ⁇ m or more, and it contains a resin in which infrared absorbing fine particles are dispersed therein. It is a masterbatch grinding thing containing infrared rays absorption microparticles.
  • the second invention is The infrared absorbing fine particles have a general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, One or more elements selected from V, Mo, Ta, Re, Be, Hf, Os, Bi, I, and Yb, W is tungsten, O is oxygen, 0.001 ⁇ x / y ⁇ 1, 2
  • the infrared-absorbing fine particle-containing masterbatch according to the first invention which is an infrared-absorbing fine particle represented by the formula: 0 ⁇ z / y ⁇ 3.0).
  • the third invention is The infrared-absorbing fine particle-containing masterbatch according to the first or second invention, wherein the infrared-absorbing fine particles contain a hexagonal crystal structure.
  • the fourth invention is The infrared-absorbing fine particle is an infrared-absorbing fine particle represented by the general formula WyOz (wherein W is tungsten, O is oxygen, 2.2 ⁇ z / y ⁇ 2.999). It is the infrared-absorbing fine particle-containing masterbatch pulverized material according to the invention.
  • the fifth invention is The infrared absorbing fine particle is selected from the general formula XBm (where X is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, Ca) 1 or more metal elements described above, B is boron, m is a number indicating the amount of boron in the general formula, and it is an infrared-absorbing fine particle represented by 3 ⁇ m ⁇ 20).
  • the infrared-absorbing fine particle-containing masterbatch is The sixth invention is
  • the resin is polyethylene resin, polypropylene resin, acrylic resin, polystyrene resin, polyisobutylene resin, epoxy resin, epoxy resin, polyimide resin, ionomer resin, fluorine resin, urethane resin, ABS resin, polyvinyl alcohol resin, polyvinyl acetate resin, polyvinyl chloride Resin, one kind of resin selected from the resin group of polyvinylidene chloride resin, or a mixture of two or more kinds of resins selected from the previous resin group, or a co-weight of two or more kinds of resins selected from the previous resin group It is a resin selected from any one of united, It is the infrared-absorbing fine particle-containing masterbatch pulverized material according to any of the first to fifth inventions, characterized in that it is a resin.
  • the seventh invention is The resin is one kind of resin selected from the resin group of polyethylene resin, polypropylene resin, acrylic resin, polystyrene resin, polyisobutylene resin, fluorocarbon resin, or a mixture of two or more kinds of resins selected from the resin group mentioned above; Or the infrared absorbing fine particle according to any one of the first to sixth inventions, which is a resin selected from any one of a copolymer of two or more kinds of resins selected from the resin group in the previous period. Contained master batch is ground material.
  • the eighth invention is The content of the infrared ray absorbing fine particles in the crushed material of the master particle containing infrared ray absorbing fine particles according to any of the first to seventh inventions is 0.001% by mass or more and 25.0% by mass or less. It is a masterbatch grinding thing containing infrared rays absorption microparticles.
  • the ninth invention is It is a dispersion containing the infrared-absorbing fine particles-containing masterbatch, which is characterized in that it contains the crushed infrared-absorbing fine particles-containing masterbatch described in any of the first to eighth inventions and a solvent.
  • the tenth invention is Containing at least one selected from an infrared-absorbing fine particle-containing masterbatch pulverized product according to any of the first to eighth inventions and a liquid uncured product of an organic binder or a resin curable with energy rays It is an infrared ray absorbing material-containing ink, which is characterized.
  • the eleventh invention is It is an anti-counterfeit ink characterized by including the infrared absorption material-containing ink according to the tenth invention.
  • the twelfth invention is An eleventh aspect of the invention is the solvent according to the eleventh invention, further comprising a solvent, wherein the solvent is one or more selected from water, an organic solvent, a vegetable oil, a compound derived from vegetable oil and the like, and a petroleum solvent.
  • Anti-counterfeit ink is A printed material for preventing forgery, comprising the crushed masterbatch containing infrared absorbing fine particles according to any one of the first to eighth inventions.
  • the fourteenth invention is A first step of obtaining a master batch in which infrared absorbing fine particles are dispersed therein; An infrared-absorbing fine particle-containing masterbatch according to any of the first to eighth inventions, comprising: a second step of mechanically grinding the masterbatch obtained in the first step; It is a manufacturing method of a ground material.
  • the fifteenth invention is In the second step, the infrared-absorbing fine particle-containing masterbatch grinding according to the fourteenth invention is characterized in that the masterbatch obtained in the first step is mechanically ground while maintaining the masterbatch obtained in the first step below the freezing point. Manufacturing method.
  • an infrared-absorbing fine particle-containing masterbatch-containing dispersion containing an infrared-absorbing fine particle having transparency and excellent infrared absorption characteristics in a visible light region and using an batch-ground product, an ink containing an infrared-absorbing material, Anti-counterfeit ink and anti-counterfeit printed matter can be obtained.
  • the crushed infrared-absorbing fine particle-containing masterbatch according to the present invention is constituted by the crushed master-batch in which the infrared-absorbing fine particles and the additive according to the present invention described later are dispersed in a predetermined resin. And the dispersed particle diameter of the master batch pulverized product is 1 ⁇ m or more. And since the said masterbatch grinding material is disperse
  • the infrared-absorbing fine particle-containing masterbatch-containing dispersion containing the infrared-absorbing fine particle-containing masterbatch-ground product dispersed in a predetermined solvent or the like may be referred to as a “milled product-containing dispersion” in the present invention.
  • An infrared-absorbing material-containing ink (sometimes referred to as “infrared-absorbing ink” in the present invention), a forgery-preventing ink, and a forgery-proof printed material using the forgery-preventing ink exhibit similar chemical resistance, It exhibits an optical property of exhibiting absorption in the region and less absorption of light in the visible light region.
  • the crushed infrared-absorbing fine particle-containing masterbatch according to the present invention is obtained by dispersing infrared-absorbing fine particles described later in a predetermined resin, and then molding the infrared-absorbing fine particles-containing master batch obtained by forming into pellets. It can be obtained by crushing with
  • Milled product of masterbatch containing infrared-absorbing fine particles and method for producing the same
  • the masterbatch-ground product containing infrared-absorbing fine particles is contained in the milled masterbatch of infrared-absorbing fine particles by adding a medium resin thereto and kneading it It is characterized in that the dispersion concentration can be adjusted while the dispersion state of the infrared absorbing fine particles is maintained.
  • the content of the infrared-absorbing fine particles contained in the crushed masterbatch containing infrared-absorbing fine particles is 0.001% by mass to 25% by mass.
  • the content rate of the infrared rays absorbing fine particles contained in the infrared absorbing fine particles containing master batch ground matter is maintained even when it becomes the infrared absorbing fine particles containing master batch ground matter.
  • the infrared-absorbing fine particles contained in the crushed masterbatch containing infrared-absorbing fine particles are 0.001% by mass to 25% by mass, many infrared-absorbing fine particles contained in the crushed masterbatch containing infrared-absorbing fine particles are coated with a resin It is
  • the masterbatch crushed with infrared-absorbing fine particles according to the present invention has little absorption in the visible light range and has absorption in the infrared range. And it shows excellent chemical resistance. Moreover, the forgery prevention ink which disperse
  • the infrared-absorbing fine particle-containing masterbatch is a flake-like or pellet-like product obtained by kneading infrared-absorbing fine particles into a resin. If the infrared-absorbing fine particle-containing masterbatch is crushed, it is possible to easily obtain an infrared-absorbing fine particle-containing masterbatch crushed product having a dispersed particle diameter of 1 ⁇ m or more.
  • the crushed masterbatch containing the infrared-absorbing fine particles according to the present invention has little absorption in the visible light region, has absorption in the infrared light region, and is excellent Shows chemical resistance.
  • distributed the said ground material, and the forgery prevention printed matter also show the same characteristic.
  • the dispersed particle diameter of the crushed masterbatch containing infrared absorbing fine particles is 1 ⁇ m or more, the infrared absorbing fine particles having a dispersed particle diameter of 800 nm or less are covered with a resin having a sufficient thickness. Even if it is immersed in an alkaline solution or acid of the above, the infrared absorbing fine particles do not dissolve, and a considerable number of infrared absorbing fine particles dispersed powder is secured.
  • the crushed infrared-absorbing fine particle-containing masterbatch according to the present invention can be coated with a resin even if it is exposed to the outside by being applied to windows, building materials, further, the outer wall of a building, etc. Since it is difficult to allow water to penetrate into the inside of the infrared ray absorbing fine particle dispersed powder and alkali and acid are not led by water, the infrared ray absorbing fine particles are not dissolved. Then, the ground material of the masterbatch containing infrared absorbing fine particles according to the present invention is incorporated by coating or kneading into fibers such as clothes, structures such as outdoor windows and outer walls of buildings, materials of agriculture, forestry and fisheries industries. Therefore, it can also be used for infrared shielding by infrared absorption and photothermal conversion by infrared absorption.
  • the dispersed particle diameter of the masterbatch crushed with infrared absorbing fine particles can be measured as a median value of volume cumulative particle size by Microtrack Bell Inc. Microtrac (registered trademark) based on the principle of dynamic light scattering.
  • the infrared-absorbing fine particle-containing masterbatch ground material such as water can be dispersed and measured in a solvent which does not dissolve it.
  • a small amount of dispersant such as sodium hexametaphosphate can also be added.
  • the crushed masterbatch containing infrared absorbing fine particles according to the present invention has a dispersed particle diameter of 1 ⁇ m or more. And, in the pulverized infrared-absorbing fine particles according to the present invention, since the infrared-absorbing fine particles are dispersed in the resin having high chemical resistance, it exhibits excellent chemical resistance and has absorption in the infrared region, And, the absorption of light in the visible light range is low.
  • the ground material containing the infrared-absorbing fine particles containing masterbatch is dispersed in a predetermined solvent or the like to obtain a ground product-containing dispersion, an infrared-absorbing ink, an anti-counterfeit ink, etc. described later.
  • the dispersed particle diameter of the crushed master particle containing the infrared absorbing fine particle according to the present invention is 1 ⁇ m or more
  • the infrared absorbing fine particle according to the present invention having the dispersed particle diameter of 800 nm or less is a resin having a sufficient thickness. Covered. Therefore, even if the crushed infrared-absorbing fine particle-containing masterbatch according to the present invention is immersed in, for example, a high-temperature alkaline solution or acid, the infrared-absorbing fine particles according to the present invention are not dissolved, and predetermined optical characteristics are obtained. Can be secured.
  • the dispersed particle diameter of the masterbatch containing the infrared absorbing fine particles according to the present invention is 1 ⁇ m or more.
  • the crushed infrared-absorbing fine particle-containing masterbatch according to the present invention is used for the infrared-absorbing ink or anti-counterfeit ink described later, the infrared-absorbing fine particle-containing masterbatch is crushed from the viewpoint of securing the transparency in the visible light region.
  • the dispersed particle diameter of the substance is more preferably 1 ⁇ m or more and 200 ⁇ m or less, more preferably 1 ⁇ m or more and 100 ⁇ m or less, and still more preferably 1 ⁇ m or more and 50 ⁇ m or less.
  • the dispersed particle diameter of the masterbatch containing infrared absorbing fine particles according to the present invention is the size of the dispersed particles of Microtrack Bell (old Nikkiso) Microtrack (registered trademark) based on the principle of particle size distribution measuring device based on laser diffraction / scattering method It can be measured as a median value of volume cumulative particle size by the trade mark.
  • the measurement of the dispersed particle size of the pulverized masterbatch containing infrared absorbing fine particles it is possible to measure by dispersing in a solvent which does not dissolve the infrared absorbing fine particle dispersed powder such as water.
  • the crushed masterbatch containing infrared-absorbing fine particles according to the present invention is an infrared-absorbing fine particle, a resin, a dispersant, and optionally other additives according to the present invention.
  • components of the crushed masterbatch containing infrared-absorbing fine particles according to the present invention i) Infrared-absorbing fine particles according to the present invention, (ii) resin (iii) dispersant, (iv) other additives, (v)
  • the solvent will be described in order. explain.
  • (I) Infrared-absorbing fine particles according to the present invention The infrared-absorbing fine particles according to the present invention
  • the infrared absorbing fine particle represented by the general formula MxWyOz will be further described.
  • the element M, x, y, z and the crystal structure thereof in the general formula MxWyOz are closely related to the free electron density of the infrared absorbing fine particles, and greatly affect the infrared absorbing characteristics.
  • tungsten trioxide has low infrared absorption characteristics because no effective free electrons exist.
  • the present inventors indicate that the tungsten oxide can be converted into the M element (wherein the M element is H, He, an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, T1, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, By adding one or more elements selected from Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, and Yb to form a composite tungsten oxide
  • the free electron is generated in the composite tungsten oxide, the absorption characteristic derived from free electrons is expressed in the infrared region, and it becomes effective as an infrared absorbing material in the vicinity of
  • the complex tungsten oxide easily takes a hexagonal crystal structure, transmits visible light, absorbs infrared rays and shields it, and is therefore particularly preferable for the reason described later. It is a finding.
  • the present inventors' knowledge about the value of x which shows the addition amount of M element is demonstrated. If the value of x / y is 0.001 or more, a sufficient amount of free electrons can be generated to obtain the desired infrared absorption characteristics. The amount of free electrons supplied increases as the amount of M element added increases, and the infrared absorption characteristics also increase. Moreover, if the value of x / y is 1 or less, generation of an impurity phase in the composite tungsten fine particles can be avoided, which is preferable.
  • the present inventors' knowledge about the value of z which shows control of oxygen amount is demonstrated.
  • the value of z / y is preferably 2.0 ⁇ z / y ⁇ 3.0, more preferably 2.2 ⁇ z / y ⁇ 3.0. More preferably, 2.6 ⁇ z / y ⁇ 3.0, and most preferably 2.7 ⁇ z / y ⁇ 3.0.
  • this z / y is 2.0 or more, it is possible to avoid the appearance of the crystal phase of WO 2 which is a non-target compound in the complex tungsten oxide, and, as a material chemistry, It is because it can be applied as an effective infrared ray absorbing material because it can obtain the desired stability.
  • the value of z / y is 3.0 or less, the required amount of free electrons is generated in the tungsten oxide, and the material becomes an efficient infrared absorbing material.
  • the infrared absorbing fine particles represented by the general formula WyOz will be described.
  • the compositional range of tungsten and oxygen in the general formula WyOz has a composition ratio of oxygen to tungsten of 3 or less, and further, when the tungsten oxide is described as WyOz, 2.2 ⁇ z / y ⁇ 2. It is preferable that it is 999. If this value of z / y is 2.2 or more, it is possible to avoid the appearance of the crystal phase of WO2 other than the purpose in the tungsten oxide, and the chemical stability as a material It can be applied as an effective infrared absorbing material. On the other hand, if the value of z / y is 2.999 or less, the required amount of free electrons is generated in the tungsten oxide, and the material becomes an efficient infrared absorbing material.
  • tungsten oxide fine particles obtained by micronizing the tungsten oxide a so-called "Magnellie phase” having a composition ratio represented by 2.45 z z / y 2.99 2.999 when it is represented by the general formula WyOz is chemically It is preferable as an infrared absorbing material because it is stable and has good absorption characteristics in the infrared region.
  • the composite tungsten oxide-based and tungsten oxide-based infrared absorbing fine particles have a tetragonal or cubic tungsten bronze structure in addition to hexagonal crystals.
  • it is effective as an infrared absorbing material when taking any structure.
  • the absorption position of the infrared region tends to change depending on the crystal structure of the infrared absorbing fine particles. That is, the absorption position in the infrared region tends to move to the longer wavelength side when tetragonal than cubic, and to move further to the longer wavelength than tetragonal when it is hexagonal.
  • absorption in the visible light region is the least hexagonal and secondly tetragonal, and the cubic is the largest among them. From the above findings, it is preferable to use hexagonal tungsten bronze for applications in which light in the visible light region is further transmitted and light in the infrared region is further shielded.
  • the infrared absorbing fine particle has a hexagonal crystal structure, the transmission of the fine particle in the visible light region is improved, and the absorption in the near infrared region is improved. That is, in the infrared-absorbing fine particles, if it is hexagonal tungsten bronze, excellent optical properties are exhibited.
  • the infrared absorbing fine particle has a monoclinic crystal structure similar to that of WO 2.72 called a magneli phase, or the orthorhombic crystal structure, it is excellent in infrared absorption and is close It may be effective as an outside line shielding material.
  • the addition amount of the added M element is preferably 0.2 or more and 0.5 or less in value of x / y, and further, Preferably still more preferably 0.29 ⁇ x / y ⁇ 0.39.
  • the value of x / y is 0.33, and it is considered that the added M element is disposed in all of the hexagonal voids.
  • the infrared-absorbing particles contained in the pulverized masterbatch containing infrared-absorbing fine particles according to the present invention absorb infrared rays and convert the absorbed infrared rays into heat.
  • the infrared absorbing particles that have absorbed infrared rays warm the environment with the converted heat.
  • the infrared absorbing particles absorb infrared rays, they consequently shield the infrared rays.
  • the dispersed particle diameter of the infrared absorbing fine particles is preferably 800 nm or less and 1 nm or more, and more preferably 200 nm or less and 1 nm or more.
  • the dispersion particle diameter of the infrared absorbing fine particles is preferably 200 nm or less, similarly to the infrared absorbing fine particles in the infrared absorbing fine particle dispersion.
  • the dispersed particle diameter is 200 nm or less, excellent visible light transparency can be secured, the change in color tone due to the use of the infrared absorbing fine particles becomes small, and the toning of the finally obtained forgery prevention printed matter is easy It is because on the other hand, the dispersed particle diameter is preferably 1 nm or more, more preferably 10 nm or more from the viewpoint of the infrared absorption characteristics of the infrared absorbing fine particles.
  • the composite tungsten oxide based and tungsten oxide based infrared absorbing fine particles according to the present invention can be produced by a solid phase reaction method.
  • (a) raw materials used for the solid phase reaction method, (b) firing in the solid phase reaction method and the conditions thereof will be described in this order.
  • MxWyOz (where M is one or more elements selected from Cs, Rb, K, Tl and Ba), which is a more preferable embodiment, 0.001 ⁇ x / y ⁇ 1, 2.0 ⁇
  • the M element compound used for producing the raw material of the infrared absorbing fine particles shown by z / y ⁇ 3.0) is selected from oxides, hydroxides, nitrates, sulfates, chlorides, and carbonates of M elements. It is preferable that it is 1 or more types.
  • the infrared absorbing fine particles according to the present invention contain as a raw material a compound containing at least one impurity element selected from Si, Al and Zr (sometimes referred to as "impurity element compound” in the present invention). May be.
  • the impurity element compound does not react with the composite tungsten compound in the later firing step, and suppresses the crystal growth of the composite tungsten oxide to prevent the coarsening of the crystal.
  • the compound containing an impurity element is preferably at least one selected from oxides, hydroxides, nitrates, sulfates, chlorides, and carbonates, and colloidal silica and colloidal alumina having a particle size of 500 nm or less Particularly preferred.
  • the impurity element compound is contained as a raw material, wet mixing is performed so that the impurity element compound is 0.5% by mass or less. Then, the obtained mixed liquid is dried to obtain a mixed powder of the M element compound and the tungsten compound, or a mixed powder of the M element compound and the tungsten compound containing the impurity element compound.
  • the infrared absorbing fine particles represented by the general formula WyOz according to the present invention are synthesized by a solid phase reaction method, a tungsten compound is used as a raw material.
  • the tungsten compound as the starting material is tungsten trioxide powder, tungsten dioxide powder, or hydrate of tungsten oxide, or tungsten hexachloride powder, or ammonium tungstate powder, or tungsten hexachloride dissolved in alcohol Hydrate powder of tungsten oxide obtained by drying after drying, or tungsten hexachloride dissolved in alcohol and precipitated by addition of water, and hydration of tungsten oxide obtained by drying this Powder, or a tungsten compound powder obtained by drying an aqueous solution of ammonium tungstate, or at least one selected from metal tungsten powder.
  • tungsten oxide fine particles a tungsten oxide hydrate powder, tungsten trioxide, or a tungsten compound powder obtained by drying an aqueous solution of ammonium tungstate from the viewpoint of easiness of the production process, It is further preferred to use
  • the infrared absorbing fine particles represented by the general formula MxWyOz include M containing a mixed powder of an M element compound and a tungsten compound produced by the above wet mixing, or an impurity element compound
  • the mixed powder of the elemental compound and the tungsten compound is fired in one step under an inert gas alone or a mixed gas atmosphere of an inert gas and a reducing gas.
  • the firing temperature is preferably close to the temperature at which the infrared absorbing fine particles start to crystallize.
  • the firing temperature is preferably 1000 ° C. or less, more preferably 800 ° C. or less, and still more preferably 800 ° C. or less and 500 ° C. or more.
  • tungsten trioxide may be used instead of the tungsten compound.
  • heat treatment conditions in an inert atmosphere of a tungsten compound powder obtained by drying a hydrate powder of tungsten oxide, tungsten trioxide or an ammonium tungstate aqueous solution Preferably, the temperature is 650 ° C. or higher.
  • the starting material heat-treated at 650 ° C. or higher has sufficient near infrared absorption ability and is efficient as infrared absorbing fine particles. It is preferable to use an inert gas such as N 2 or Ar as the inert gas.
  • heat treatment conditions in a reducing atmosphere first, the starting material is heat treated in a reducing gas atmosphere at 100 ° C.
  • the reducing gas at this time is not particularly limited, but H 2 is preferable.
  • H 2 is used as the reducing gas, the composition of the reducing atmosphere, preferably not less than 0.1% with H 2 volume ratio, more preferably from 2% or more. If the volume ratio of H 2 is 0.1% or more, the reduction can be efficiently promoted.
  • the hydrogen oxide-reduced tungsten oxide fine particles contain a magneli phase, exhibit good infrared absorption characteristics, and can be used as infrared light absorbing fine particles in this state.
  • the application since the hydrogen remaining in the tungsten oxide is unstable, the application may be limited in terms of weatherability. Therefore, by further heat-treating the hydrogen-containing tungsten oxide at 650 ° C. or higher in an inert atmosphere, more stable infrared-absorbing fine particles can be obtained.
  • the atmosphere during the heat treatment at 650 ° C. or higher is not particularly limited, but N 2 and Ar are preferable from the industrial viewpoint. By the heat treatment at 650 ° C. or higher, a magneli phase is obtained in the infrared absorbing fine particles, and the weather resistance is improved.
  • the boride-based infrared absorbing fine particles according to the present invention have a general formula XBm (where X is Y, La, Ce, Pr, Nd, Sm, Eu) , Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, Ca, B is boron, m is a number indicating the amount of boron in the general formula) It is an oxide particle.
  • the boride particles according to the present invention can be particles of a boride represented by the general formula XBm as described above.
  • the value of m indicating the element ratio (molar ratio) (B / X) of boron (B) to metal element (X) is particularly limited although not preferred, it is preferable that 3 ⁇ m ⁇ 20.
  • the boride constituting the boride particles represented by the formula XBM e.g. XB 4, XB 6, XB 12, and the like.
  • the boride particles according to the present invention be mainly composed of XB 4 or XB 6 from the viewpoint of selectively and efficiently reducing the transmittance of light in the near infrared region at a wavelength of about 1000 nm.
  • And may include XB 12 in part.
  • the value of m which is the element ratio (B / X) of boron (B) to metal element (X) in the general formula XBm is more preferably 4.0 ⁇ m ⁇ 6.2.
  • XB 6 is particularly high in near-infrared absorptivity, and it is preferable that the boride particles according to the present invention be mainly composed of XB 6 .
  • the value of m which is the element ratio (B / X) of boron (B) to metal element (X), is 5.8 ⁇ m ⁇ More preferably, it is 6.2.
  • the powder containing boride particles obtained is not composed only of boride particles of a single composition, but particles containing borides of a plurality of compositions. be able to. Specifically, it may be particles of a mixture of borides such as XB 4 , XB 6 , XB 12 and the like.
  • the powder containing the obtained boride particle is chemically modified by ICP emission spectrometry (high frequency inductively coupled plasma emission spectrometry) etc.
  • ICP emission spectrometry high frequency inductively coupled plasma emission spectrometry
  • the metal element (X) of the boride particle according to the present invention is not particularly limited, and, for example, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, One or more metal elements selected from Tm, Yb, Lu, Sr, and Ca can be used.
  • the boride particles according to the present invention preferably contain lanthanum hexaboride particles.
  • the boride particles such as hexaboride particles are powders colored in dark blue purple etc., but they are ground and dispersed in a predetermined film so that the particle diameter is sufficiently smaller than the visible light wavelength.
  • visible light transmission occurs in the film.
  • the film exhibits an infrared shielding function to be an infrared shielding film.
  • the transmittance of the film has a maximum value in the wavelength range of 400 nm to 700 nm, and the wavelength of 700 nm It is confirmed that the local minimum value is in the region of not less than 1800 nm.
  • the visible light has a wavelength of 380 nm or more and 780 nm or less and the visual sensitivity has a bell shape with a peak near 550 nm, such a film effectively transmits visible light, and the other solar radiation is It can be understood that it absorbs and reflects effectively.
  • the average dispersed particle diameter of the boride particles according to the present invention is preferably 100 nm or less, and more preferably 85 nm or less. In addition, it can measure with the particle size measuring apparatus based on a dynamic-light-scattering method with an average dispersed particle diameter here.
  • the lower limit value of the average dispersed particle size of the boride particles is not particularly limited, but is preferably, for example, 1 nm or more. This is because industrial manufacture is easy if the average dispersed particle size of the boride particles is 1 nm or more.
  • the obtained boride particles have the general formula XBm (wherein X is Y, La, Ce, Pr, Nd,
  • the method is not particularly limited as long as it is a method capable of producing one represented by one or more metal elements selected from Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, and Ca.
  • a solid phase reaction method using carbon or boron carbide as a reducing agent can be mentioned.
  • boride particles using lanthanum as the metal element can be produced by firing a mixture of a boron source, a reducing agent, and a lanthanum source.
  • lanthanum boride particles using boron carbide as a boron source and a reducing agent and lanthanum oxide as a lanthanum source
  • a raw material mixture of boron carbide and lanthanum oxide is prepared.
  • carbon in boron carbide reduces the lanthanum oxide, carbon monoxide and carbon dioxide are generated, and carbon is removed.
  • lanthanum boride is obtained from the remaining lanthanum and boron.
  • the carbon derived from boron carbide is not completely removed as carbon monoxide and carbon dioxide, but a part thereof remains in the lanthanum boride particles to become impurity carbon. Therefore, by suppressing the ratio of boron carbide in the raw material, the impurity carbon concentration in the obtained lanthanum boride particles can be suppressed, which is preferable.
  • the resulting powder containing boride particles is not composed of only boride particles of a single composition but particles of a mixture with LaB 4 , LaB 6 , LaB 12 or the like. . Therefore, when X-ray diffraction measurement is performed on the obtained powder containing boride particles, the analysis result of the X-ray diffraction shows that even if it is a single phase for boride, it actually contains a trace amount of other phases. It is considered to be
  • the value of boron in the boron source of the raw material and the value of the elemental ratio B / La of lanthanum in the lanthanum source are particularly limited. Although not preferred, it is preferably 3.0 or more and 20.0 or less.
  • the element ratio B / La of boron in the boron source of the raw material and the lanthanum element in the lanthanum source is 4.0 or more, the formation of LaB, LaB 2 and the like can be suppressed. Also, although the reason is not clear, it is preferable because it can improve the solar radiation shielding characteristics.
  • the value of the element ratio B / La of boron in the boron source of the raw material and of the lanthanum in the lanthanum source is 6.2 or less, formation of boron oxide particles other than boride particles is suppressed. Since the boron oxide particles are hygroscopic, the moisture resistance of the powder containing the boride particles is improved by reducing the amount of the boron oxide particles in the powder containing the boride particles, and the solar radiation shielding property is deteriorated with time. It is suppressed and preferred.
  • the value of the elemental ratio B / La of boron in the boron source of the raw material and of lanthanum in the lanthanum source is 6.2 or less.
  • the value of element ratio B / La is 6.2 or less, since the content rate of the hexaboride which was excellent in especially a solar radiation shielding characteristic can be made to increase and a solar radiation shielding characteristic improves, it is preferable.
  • a powder of lanthanum boride having an impurity carbon concentration of 0.2% by mass or less can be obtained more reliably by producing particles of lanthanum boride with a value of B / La of 6.2 or less. Preferred.
  • the value of the element ratio (molar ratio) B / La of boron in the boron source and lanthanum in the lanthanum source is 4.0 or more It is more preferable to set it as 6.2 or less.
  • the particles of the resulting lanthanum boride is preferably LaB 6 is in principal. This is because LaB 6 has a particularly high ability to absorb near infrared light.
  • the value of the element ratio B / La of boron in the boron source of the raw material and of the lanthanum element in the lanthanum source is more preferably 5.8 or more and 6.2 or less.
  • a lanthanum boride particle is manufactured using boron carbide as a boron source and a reducing agent, and a lanthanum oxide as a lanthanum source was demonstrated to the example here, it is not limited to the form which concerns.
  • boron or boron oxide can be used as a boron source
  • carbon can be used as a reducing agent
  • lanthanum oxide can be used as a lanthanum source.
  • the method of producing boride particles has been described by using lanthanum as the metal element as an example. Then, depending on the metal element X to be contained in the boride particles to be produced, it is possible to use a compound containing the metal element X instead of the lanthanum oxide.
  • a compound containing the metal element X 1 or more types selected from the hydroxide of the metal element X, the hydrate of the metal element X, the oxide of the metal element X are mentioned, for example.
  • the method for producing the compound containing the metal element X is not particularly limited. For example, a solution containing a compound containing the metal element X is reacted with an alkaline solution while stirring to form a precipitate, which is obtained from the precipitate be able to.
  • the element ratio of boron in the boron source and the metal element X in the metal element X source can be the same ratio as the element ratio of boron in the boron source and the lanthanum element in the lanthanum source described above .
  • the obtained boride particles can be made boride particles having a desired average dispersed particle size, for example, by performing wet grinding or the like.
  • the composite tungsten oxide infrared absorbing fine particles represented by the general formula MxWyOz, the general formula The tungsten oxide based infrared absorbing fine particles represented by WyOz and the boride based infrared absorbing fine particles represented by the general formula XBm may be used alone, but two or more types selected from these infrared absorbing fine particles may be used. It is also a preferable configuration to use an infrared absorbing fine particle as a mixture. Since the shapes of the infrared absorption profiles of these infrared absorbing fine particles are different from each other, it is possible in some cases to obtain a desired infrared absorption profile by mixing and using them appropriately.
  • the mixing method may be a known method.
  • the resin constituting the crushed masterbatch containing infrared absorbing fine particles according to the present invention includes polyethylene resin, polypropylene resin, acrylic resin, polystyrene resin, polyisobutylene resin, epoxy resin, polyimide resin, ionomer resin, fluorocarbon resin And urethane resins, ABS resins, polyvinyl alcohol resins, polyvinyl acetate resins, polyvinyl chloride resins, polyvinylidene chloride resins and the like.
  • polyethylene resin, polypropylene resin, acrylic resin, polystyrene resin, polyisobutylene resin, and fluorine resin are particularly preferable because they have high chemical resistance.
  • (Iii) Dispersant In order to further improve the dispersion stability of the infrared-absorbing fine particles in the infrared-absorbing fine particle-containing master batch according to the present invention and to avoid the coarsening of the dispersed particle size due to reaggregation, various dispersing agents, interfaces The addition of activators, coupling agents, etc. is also preferred.
  • the said dispersing agent, a coupling agent, and surfactant can be selected according to a use, it is preferable that it is group which has an amine, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group.
  • These functional groups are adsorbed on the surface of the infrared absorbing fine particles to prevent aggregation, and have the effect of uniformly dispersing the infrared absorbing fine particles according to the present invention even in the infrared absorbing film. More desirable are polymeric dispersants having any of these functional groups in the molecule.
  • Solsparse 9000, 12000, 17000, 20000, 21000, 24000, 26000, 27000, 28000, 32000, 35100, 54000, 250 (manufactured by Nippon Lubrizol Corporation), EFKA (registered trademark) ) 4008, 4009, 4010, 4015, 4046, 4060, 4080, 4620, 4020, 4050, 4055, 4400, 4401, 4402, 4300, 4320, 4330, 4340, 6220, 6250, 6700, 6780, 6782 , 8503 (manufactured by Efka Adidobs), Addisper (registered trademark) PA 111, PB 821, PB 822, PN 411, Famex L-12 (manufactured by Ajinomoto Fine Techno Co., Ltd.), isperBYK (registered trademark) 101, 102, 106, 108, 111, 116, 130, 140,
  • a known ultraviolet absorber, a known infrared absorber of an organic substance, or a phosphorus-based color protection agent may be added to the pulverized masterbatch containing the infrared-absorbing fine particles according to the present invention. Moreover, you may contain the catalyst etc. which polymerize the monomer of a polymer.
  • V) Solvent The solvent used in the production of the infrared-absorbing fine particle-containing masterbatch according to the present invention is not particularly limited, and may be appropriately selected in accordance with the production conditions, other additives, and the like.
  • the solvent is water, an organic solvent, a liquid resin, a liquid plasticizer for a medium resin, a polymer monomer, or a mixture of these.
  • alcohol solvents such as methanol, ethanol, 1-propanol, isopropanol, butanol, pentanol, benzyl alcohol and diacetone alcohol; ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone Solvents; Ester solvents such as 3-methyl-methoxy-propionate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol isopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol methyl ether acetate, propylene Glycol derivatives such as glycol ethyl ether acetate; , N- methyl formamide,
  • chlorobenzene can be used.
  • organic solvents dimethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, toluene, propylene glycol monomethyl ether acetate, n-butyl acetate and the like are particularly preferable.
  • liquid plasticizers for medium resins known liquid plasticizers represented by organic acid ester type and phosphoric acid ester type can be used.
  • the plasticity of the masterbatch can be improved by using the liquid plasticizer as a liquid medium.
  • the liquid plasticizer for example, a plasticizer that is a compound of a monohydric alcohol and an organic acid ester, an ester-based plasticizer such as a polyhydric alcohol organic acid ester compound, an organic phosphoric acid plasticizer, etc.
  • the plasticizer which is a phosphoric acid type is mentioned, and as for all, what is liquid at room temperature is preferable.
  • a plasticizer which is an ester compound synthesized from a polyhydric alcohol and a fatty acid is preferable.
  • the ester compound synthesized from polyhydric alcohol and fatty acid is not particularly limited.
  • glycol such as triethylene glycol, tetraethylene glycol, tripropylene glycol and the like, butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid
  • glycol ester compounds obtained by reaction with monobasic organic acids such as n-octylic acid, 2-ethylhexylic acid, pelargonic acid (n-nonylic acid) and decylic acid.
  • ester compounds of tetraethylene glycol and tripropylene glycol with the above monobasic organic compounds and the like can also be mentioned.
  • fatty acid esters of triethylene glycol such as triethylene glycol dihexanate, triethylene glycol di-2-ethyl butyrate, triethylene glycol di-octanate, triethylene glycol di-2-ethyl hexanonate and the like are preferable. is there.
  • a polymer monomer is a monomer which forms polymer
  • a methyl methacrylate monomer, an acrylate monomer, and a styrene resin are used as a preferable polymer monomer used by this invention.
  • a monomer etc. are mentioned.
  • the solvents described above can be used alone or in combination of two or more. Furthermore, if necessary, an acid or an alkali may be added to these solvents to adjust the pH. Moreover, when removing a solvent from the infrared rays absorption fine particle dispersion liquid for manufacturing a masterbatch, and obtaining an infrared rays absorption fine particle dispersion powder, it is desirable to use the organic solvent which has a boiling point of 120 degrees C or less. Specific examples of the organic solvent having a boiling point of 120 ° C. or less include toluene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, isopropyl alcohol and ethanol.
  • the infrared absorbing fine particle dispersion liquid comprises the infrared absorbing fine particle obtained by the above synthesis method, water, an organic solvent, a liquid resin, a liquid plasticizer for plastic, a polymer monomer or the like
  • the liquid medium of the mixed slurry selected from the mixture, and an appropriate amount of dispersant, coupling agent, surfactant and the like are pulverized and dispersed by a medium stirring mill. Then, the dispersion state of the fine particles in the solvent is good, and the dispersed particle diameter is 1 to 800 nm.
  • content of the infrared rays absorption microparticle contained in this infrared rays absorption microparticle dispersion liquid is 0.01 mass% or more and 80 mass% or less.
  • the dispersed particle diameter of the infrared absorbing fine particle is 1 to 800 nm
  • light of the visible light region of wavelength 380 nm to 780 nm is not scattered by geometric scattering or Mie scattering, so haze is reduced and visible It is preferable because the light transmittance can be increased.
  • the scattered light is reduced in proportion to the sixth power of the particle diameter as the dispersed particle diameter is reduced, so the scattering is reduced and the transparency is improved. Therefore, when the dispersed particle diameter is 200 nm or less, the scattered light is extremely reduced, and the haze can be suppressed, which further increases the transparency, which is preferable.
  • the dispersed particle size of the infrared absorbing fine particles refers to the particle size of a single particle of the infrared absorbing fine particles dispersed in the solvent, or the particle size of an aggregated particle in which the infrared absorbing fine particles are aggregated, and is commercially available. It can be measured by a particle size distribution analyzer. For example, a sample of the infrared absorbing fine particle dispersion is collected, and the sample is analyzed by ELS-8000 manufactured by Otsuka Electronics Co., Ltd., Nanotrack manufactured by Microtrack Bell Inc., etc. based on the principle of dynamic light scattering. It can be measured using
  • the method of dispersing infrared absorbing fine particles in the dispersion is not particularly limited as long as the fine particles can be uniformly dispersed in the dispersion without aggregation.
  • the dispersion method include a grinding and dispersion method using an apparatus such as a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer. Among them, it is preferable to grind and disperse with a medium stirring mill such as a bead mill, a ball mill, a sand mill, a paint shaker, etc.
  • an organic solvent having a boiling point of 120 ° C. or less when dispersing the infrared absorbing fine particles in the plasticizer.
  • the organic solvent having a boiling point of 120 ° C. or less include toluene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, isopropyl alcohol and ethanol.
  • any particle can be selected as long as it can uniformly disperse fine particles that exhibit an infrared absorption function at a boiling point of 120 ° C. or less.
  • (C) Removal of Solvent It is preferable to remove the solvent contained in the infrared absorbing fine particle dispersion liquid to an amount that allows the remaining of the master batch in the production process of the master batch. Further, it is also preferable to use an infrared-absorbing fine particle dispersed powder obtained by removing a liquid medium from an infrared-absorbing fine particle dispersion as the infrared-absorbing fine particles mixed with the medium resin in the production process of the masterbatch. In addition, as a method of removing a solvent from the said infrared rays absorption microparticle dispersion liquid, it is preferable to vacuum-dry an infrared rays absorption microparticle dispersion liquid. Specifically, the infrared-absorbing fine particle dispersion is stirred under reduced pressure and dried to separate the infrared-absorbing fine particle-containing composition and the solvent component. The pressure value at the time of pressure reduction in the solvent removal step is appropriately selected.
  • the removal efficiency of the solvent from the infrared-absorbing fine particle dispersion is improved, and the infrared-absorbing fine particle dispersed powder according to the present embodiment is not exposed to high temperature for a long time. It is preferable because aggregation of the infrared absorbing fine particles dispersed in the powder does not occur. Furthermore, the productivity of the infrared-absorbing fine particle dispersed powder is increased, and it is easy to recover the evaporated solvent, which is preferable from the environmental consideration.
  • the amount of the remaining organic solvent is preferably 5% by mass or less. If the residual organic solvent is 5% by mass or less, no bubbles are generated when the infrared-absorbing fine particle dispersed powder is processed into an infrared-absorbing fine particle-containing master batch, and the infrared-absorbing fine particle-containing master batch is finally obtained It is preferable from the viewpoint of chemical resistance because no bubbles are contained in the product.
  • the equipment used in the solvent removal step is preferably a vacuum flow dryer, a vibrating flow dryer or the like from the viewpoint that heating and pressure reduction are possible and mixing and recovery of the dispersed powder are easy, but it is not limited thereto.
  • the infrared-absorbing fine particle-containing masterbatch according to the present invention is obtained by dispersing the infrared-absorbing fine particles according to the present invention in the above-described predetermined resin, and then pelletizing the resin.
  • the particles or pellets of the predetermined medium resin described above, and other additives as needed It knead
  • a masterbatch is obtained by processing into a pellet form with the method of cutting the general melt-extruded kneaded material.
  • examples of the shape of the master batch may include cylindrical and prismatic shapes.
  • the masterbatch generally has a near spherical shape.
  • the ground material of the infrared-absorbing fine particles containing masterbatch according to the present invention can be obtained by grinding the above-mentioned infrared-absorbing fine particles-containing masterbatch with a grinder.
  • the pulverizer include a cutting mill, a roll mill, a high-speed rotary pulverizer (pin mill, hammer mill, screw mill), a vibration mill, a knuckle type pulverizer, a roll granulator, and a cylindrical mixer. These are used together as needed. With these pulverizers, it is possible to achieve a dispersed particle diameter of 200 ⁇ m or less, which is a more preferable range in the pulverized material of the masterbatch containing infrared absorbing fine particles.
  • the infrared absorbing fine particle-containing masterbatch is first coarsely pulverized into a coarsely pulverized product having a dispersed particle diameter of 200 ⁇ m or more and 5 mm or less by the above-mentioned pulverizer. It is also desirable to pulverize the pulverized material further by a pulverizer.
  • a pulverizer for example, a jet crusher using supersonic jet air, a coarse pulverized material is introduced into a space formed between a rotor (rotor) rotating at high speed and a stator (liner) Impact-type crusher etc. which crush and pulverize.
  • the dispersed particle diameter of 200 ⁇ m or less can be achieved by these pulverizers, but it is also possible to pulverize the dispersed particle diameter to 15 ⁇ m or less.
  • the infrared-absorbing fine particle-containing masterbatch by a freeze-pulverization method using a cryogen such as liquid nitrogen.
  • the dispersion concentration of the infrared-absorbing fine particles in the above-described infrared-absorbing fine particle-containing master batch is not necessarily high, and is often 20 wt% or less.
  • the main component of the masterbatch is a resin, mechanical grinding is difficult at normal temperature, but it can be easily pulverized by a freeze crusher using a cryogen such as liquid nitrogen.
  • a finer masterbatch grind can be obtained. It is also possible to cryogenically grind without using a dedicated freeze crusher, for example, by immersing the masterbatch in liquid nitrogen and cooling to -196 ° C, then the masterbatch in small portions into the crusher opening You can move it quickly. It becomes possible to finely pulverize the dispersed particle diameter to 5 ⁇ m or less by the freeze pulverization method.
  • Dispersion liquid containing master particles containing master particles containing infrared ray absorbing particles (dispersion liquid containing base particles) and ink containing infrared ray absorbing material (infrared ray absorbing ink)
  • the ground material-containing dispersion or infrared light used when the ground material containing the master particle containing the infrared absorption particles according to the present invention is used by applying it to a desired base material such as the above-mentioned building material, agriculture and forestry industry material, printing material, etc. It is convenient to use as an absorbing ink.
  • dispersion liquid containing crushed particles of masterbatch containing infrared-absorbing fine particles (dispersion liquid containing crushed material) and (2) ink containing infrared-absorbing material (infrared-absorbing ink) will be described in this order.
  • a dispersion containing the infrared-absorbing fine particles-containing masterbatch pulverized product (dispersed product containing pulverized product)
  • the pulverized material-containing dispersion liquid according to the present invention can be suitably prepared by dispersing the pulverized infrared-absorbing fine particle-containing master batch in a solvent which does not dissolve the pulverized infrared-absorbing fine particle-containing master batch.
  • the solvent used for the pulverized material-containing dispersion is not particularly limited, and it is not dissolved in the infrared-absorbing fine particle-containing masterbatch-containing master batch, the application conditions and application environment of the pulverized material-containing dispersion, and It may be appropriately selected according to the inorganic binder, resin binder, etc.
  • the liquid solvent is water, an organic solvent, a fat or oil, a liquid resin, a liquid plasticizer for a resin, a polymer monomer, or a mixture thereof.
  • the pulverized material-containing dispersion liquid according to the present invention will be described in the order of (A) solvent, (B) dispersant, (C) dispersion method, (D) binder, and other additives.
  • organic solvent various solvents such as alcohol type, ketone type, hydrocarbon type, glycol type and water type can be selected.
  • alcohol solvents such as methanol, ethanol, 1-propanol, isopropanol, butanol, pentanol, benzyl alcohol and diacetone alcohol; ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone Solvents; Ester solvents such as 3-methyl-methoxy-propionate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol isopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol methyl ether acetate, propylene Glycol derivatives such as glycol ethyl ether acetate; ,
  • vegetable fats and oils are preferable.
  • vegetable oils include dry oils such as linseed oil, sunflower oil, soy sauce and eno oil, sesame oil, cottonseed oil, rapeseed oil, semi-dry oil such as soybean oil, rice bran oil and poppy seed oil, olive oil, palm oil, palm oil and dehydrated castor oil Etc. non-drying oil is used.
  • fatty acid monoester, ether etc. which carried out the ester reaction of the fatty acid of vegetable oil and monoalcohol directly are used.
  • liquid plasticizer known liquid plasticizers represented by organic acid ester type and phosphoric acid ester type can be used.
  • a plasticizer which is a compound of a monohydric alcohol and an organic acid ester a plasticizer which is an ester type such as a polyhydric alcohol organic acid ester compound, and a plasticizer which is a phosphoric acid type such as an organic phosphoric acid plasticizer It is preferred that all be liquid at room temperature.
  • a plasticizer which is an ester compound synthesized from a polyhydric alcohol and a fatty acid is preferable.
  • the ester compound synthesized from polyhydric alcohol and fatty acid is not particularly limited.
  • glycol such as triethylene glycol, tetraethylene glycol, tripropylene glycol and the like, butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid
  • glycol ester compounds obtained by reaction with monobasic organic acids such as n-octylic acid, 2-ethylhexylic acid, pelargonic acid (n-nonylic acid) and decylic acid.
  • ester compounds of tetraethylene glycol and tripropylene glycol with the above monobasic organic compounds and the like can also be mentioned.
  • fatty acid esters of triethylene glycol such as triethylene glycol dihexanate, triethylene glycol di-2-ethyl butyrate, triethylene glycol di-octanate, triethylene glycol di-2-ethyl hexanonate and the like are preferable. is there.
  • polymer monomer is a monomer that forms a polymer by polymerization etc.
  • preferred polymer monomers used in the present invention include methyl methacrylate monomer, acrylate monomer and styrene resin alone. And the like.
  • liquid solvents described above can be used alone or in combination of two or more. Furthermore, if necessary, an acid or an alkali may be added to these liquid solvents to adjust the pH.
  • (B) Dispersant Furthermore, as a dispersant, in order to further improve the dispersion stability of the infrared-absorbing fine particle-containing masterbatch ground product in the ground product-containing dispersion and to avoid the coarsening of the dispersed particle size due to reaggregation, The addition of various surfactants, coupling agents and the like is also preferred. Although the said coupling agent and surfactant can be selected according to a use, it is preferable that it is an amine-containing group, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group.
  • These functional groups are adsorbed on the surface of the crushed masterbatch containing infrared-absorbing fine particles to prevent aggregation, and an effect of uniformly dispersing the crushed masterbatch containing infrared-absorbing fine particles according to the present invention even in the pulverized-containing dispersion have. More desirable are polymeric dispersants having any of these functional groups in the molecule.
  • Solsparse 9000, 12000, 17000, 20000, 21000, 24000, 26000, 27000, 28000, 32000, 35100, 54000, 250 (manufactured by Nippon Lubrizol Corporation), EFKA (registered trademark) ) 4008, 4009, 4010, 4015, 4046, 4060, 4080, 4620, 4020, 4050, 4055, 4400, 4401, 4402, 4300, 4320, 4330, 4340, 6220, 6250, 6700, 6780, 6782 , 8503 (manufactured by Efka Adidobs), Addisper (registered trademark) PA 111, PB 821, PB 822, PN 411, Famex L-12 (manufactured by Ajinomoto Fine Techno Co., Ltd.) DisperBYK (registered trademark) 101, 102, 106, 108, 111, 116, 130, 140,
  • (C) Dispersion method The method of dispersing the infrared-absorbing fine particle-containing masterbatch into the crushed material-containing dispersion is carried out by uniformly dispersing the infrared-absorbing fine particle-containing masterbatch in the dispersion containing the infrared-absorbing fine particles.
  • the method is not particularly limited as long as it can be performed.
  • Examples of the dispersion method include a grinding and dispersion method using an apparatus such as a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer.
  • a medium stirring mill such as a bead mill, a ball mill, a sand mill, a paint shaker, etc.
  • media media such as beads, balls and Ottawa sand
  • grinding and dispersion with a medium agitation mill such as a bead mill, a ball mill, a sand mill, a paint shaker, etc. using a medium (beads, balls, Ottawa sand) should be appropriate.
  • a medium beads, balls, Ottawa sand
  • an organic solvent having a boiling point of 120 ° C. or less when dispersing the pulverized material of the infrared-absorbing fine particles-containing master batch into a plasticizer.
  • the organic solvent having a boiling point of 120 ° C. or less include toluene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, isopropyl alcohol and ethanol.
  • any particle can be selected as long as it can uniformly disperse fine particles that exhibit an infrared absorption function at a boiling point of 120 ° C. or less.
  • the pulverized material-containing dispersion may appropriately contain one or more selected from resin binders.
  • the type of the resin binder to be contained in the pulverized material-containing dispersion is not particularly limited, but as the resin binder, thermoplastic resins such as acrylic resin, thermosetting resins such as epoxy resin, etc. can be applied.
  • known inorganic pigments such as carbon black and red iron oxide and known organic pigments can also be added.
  • a known ultraviolet absorber, a known infrared shielding material of an organic substance, or a phosphorus-based color protection agent may be added to the pulverized material-containing dispersion.
  • the infrared absorbing ink according to the present invention includes at least one selected from an infrared absorbing fine particle-containing master batch pulverized product and an organic binder or a liquid uncured product of a resin cured by energy rays.
  • the organic binder is a resin that is soluble in a solvent that can be used for the above-described pulverized material-containing dispersion.
  • the liquid uncured material of the resin that cures with energy rays is an uncured material of an ultraviolet curable resin, an electron beam curable resin, or a thermosetting resin. In the case of using a liquid uncured product of a resin that is cured by energy rays, a curing agent, a curing accelerator, and the like can be further added.
  • a solvent that can be added to the above-described pulverized material-containing dispersion can be added to the infrared absorbing ink.
  • the solvent which can be added is not separated from the organic binder or the liquid uncured material of the resin which is cured by energy rays.
  • a known inorganic pigment such as carbon black or a red iron oxide, or a known organic pigment can be added to the infrared absorbing ink, as in the above-described pulverized material-containing dispersion.
  • the infrared absorbing ink according to the present invention can be manufactured by the same method as the pulverized material-containing dispersion described above.
  • the anti-counterfeit ink according to the present invention is obtained by using the above-mentioned crushed material of masterbatch containing infrared-absorbing fine particles described above with a solvent, a desired organic binder, or a liquid resin cured with energy rays. It is a mixture of at least one selected from a cured product, an appropriately added polymerization initiator, a pigment, and a dye, and further various desired additives.
  • the forgery prevention printed matter can be obtained by printing the forgery prevention ink according to the present invention on a desired printing substrate.
  • the anti-counterfeit ink according to the present invention in which the ground material containing the above-mentioned infrared-absorbing fine particles is dispersed, has less absorption in the visible light region and has absorption in the infrared region. It absorbs a specific wavelength when it is irradiated with an infrared laser. Therefore, the printed matter on which the forgery prevention ink is printed on one side or both sides of the printing substrate is irradiated with an infrared ray of a specific wavelength and the reflection or transmission is read, and the difference in the reflection amount or the transmission amount Can be determined. Furthermore, because the chemical resistance is excellent, for example, even if the printed matter is mixed with a high temperature alkaline detergent solution in a washing machine, the infrared absorbing fine particles are not dissolved and the function as forgery prevention is maintained.
  • the anti-counterfeit ink according to the present invention is immersed in a high-temperature alkaline solution because the infrared absorbing fine particles dispersed in the master batch are covered with a resin having a sufficient thickness and high chemical resistance.
  • the infrared absorbing particles do not dissolve. That is, it has excellent chemical resistance.
  • the dispersed particle diameter of the crushed master batch of the infrared-absorbing fine particles is 200 ⁇ m or less
  • a forgery-preventing print film is produced in a later step, a print film with few irregularities and a smooth surface can be produced.
  • the dispersed particle size is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the dispersed particle diameter of the pulverized infrared-absorbing fine particle-containing master batch is less than 1 ⁇ m, the resin layer covering the infrared-absorbing fine particles becomes thin, and the chemical resistance is lowered. Therefore, the dispersed particle diameter of the pulverized material of the infrared-absorbing fine particles-containing masterbatch needs to be 1 ⁇ m or more.
  • the anti-counterfeit ink according to the present invention contains the ground particle of the infrared-absorbing fine particle-containing master batch. As a result, since there is a peak of transmittance in the visible light region, there is little coloring, and at the same time, there is a bottom (absorption peak) of transmittance in the infrared region. For this reason, it is possible to judge the authenticity of a printed matter using the information by reading the information from the printed matter on which the composition for preventing forgery ink according to the present invention is printed by an infrared sensor.
  • the anti-counterfeit ink according to the present invention will be described in the order of (A) components of the anti-counterfeit ink and (B) a method of producing the anti-counterfeit ink.
  • the anti-counterfeit ink can also contain a color pigment that transmits infrared light.
  • a colored anti-counterfeit ink which exhibits the same color as the colored pigment in the visible light range felt by human eyes but has a characteristic absorption in the infrared range, You can get it. Since the colored anti-counterfeit ink absorbs less in the visible light range, the color tone of the color pigment is maintained. Moreover, you may add a fluorescent material, a pearl pigment, etc. as the said color pigment.
  • the forgery prevention ink in which a black pigment is mixed as a color pigment that transmits infrared light is recognized as equivalent black by human eyes as compared to a black ink containing only a black pigment, but the infrared light is irradiated. It can be read that they have different transmission profiles when compared. Therefore, a printed matter using this black anti-counterfeit ink, for example, a barcode printed matter, can be further complicated and advanced forgery-prevented by printing a normal black ink containing no near-infrared absorbing material as a dummy It becomes.
  • forgery prevention is carried out by applying or printing a colored ink using a black pigment or another infrared ray It can also be used as a printed matter.
  • This forgery-preventing printed matter is recognized as black or other colors to be recognized by human eyes, but since characters and symbols that can only be read by infrared rays are printed in the same area, the infrared rays should be emitted. Can determine the authenticity of the printed matter.
  • a black pigment which transmits infrared rays is preferable.
  • complex oxidation such as Cu-Fe-Mn, Cu-Cr, Cu-Cr-Mn, Cu-Cr-Mn-Ni, Cu-Cr-Fe, Co-Cr-Fe, etc.
  • the dispersed particle diameter of the black pigment in the anti-counterfeit ink is preferably 800 nm or less, more preferably 200 nm or less, as in the infrared absorbing fine particles. The reason is the same as in the case of the above-mentioned infrared absorbing fine particle.
  • the anti-counterfeit ink according to the present invention may be a general composition according to the printing method, such as gravure ink, screen ink, offset ink, melt thermal transfer ink, intaglio ink, inkjet ink, flexo ink, etc. It is also possible to include additives such as plasticizers, antioxidants, thickeners, waxes and the like.
  • the anti-counterfeit ink according to the present invention is produced by dispersing the ground particle of the infrared-absorbing fine particles-containing master batch and, if necessary, the color pigment in a solvent. At this time, in order to maintain chemical resistance, it is possible to dissolve the contained masterbatch without dissolving the resin having high chemical resistance in the contained masterbatch and without atomizing the contained masterbatch. It is required to be uniformly dispersed in a solvent.
  • a solvent comprising one or more selected from water, alcohols such as ethanol, ketones such as methyl ethyl ketone, toluene, xylene, compounds derived from vegetable oil and vegetable oil, and petroleum solvents Is preferably used.
  • drying oil such as linseed oil, sunflower oil, soy sauce, sesame oil, cottonseed oil, rapeseed oil, semi-drying oil such as soybean oil, rice bran oil etc., non-drying oil such as olive oil, coconut oil, palm oil, dehydrated castor oil etc. Used.
  • fatty acid monoester, ether etc. which carried out the ester reaction of the fatty acid of vegetable oil and monoalcohol directly are used.
  • Isopar E which has a high aniline point
  • Exor Hexane Exor Hexane
  • Exsol E Exol D30, Exol D40, Exol D60, Exol D80, Exol D95, Exol D110, Exol D130 (all available from Exxon Mobil), etc. Is used.
  • These solvents can be selected according to the intended use of the anti-counterfeit ink.
  • vegetable oils and compounds derived from vegetable oils are preferred. This is because vegetable oils and compounds derived from vegetable oils do not erode rubber parts of printing equipment.
  • a petroleum-based solvent instead of a vegetable oil or a compound derived from a vegetable oil, a compound having a high aniline point which does not corrode rubber parts of printing equipment is preferable.
  • the infrared absorbing fine particles and, if necessary, the method for dispersing the coloring pigment in the solvent are not particularly limited. However, if ultrasonic waves or medium stirring mills are used, the particles can be loosened to some extent to make them finer. preferable.
  • the infrared-absorbing fine particle dispersed powder-containing dispersion prepared in advance and the infrared-absorbing ink may be processed into an anti-counterfeit ink.
  • the method of obtaining the forgery-preventing ink by dispersing the crushed infrared-absorbing fine particle-containing master batch into a liquid uncured material of a resin that is cured by a solvent or energy beam is not particularly limited as long as it is a method that can uniformly disperse the contained masterbatch grind without dissolving the highly chemically resistant resin in the batch grind and without atomizing the contained masterbatch grind.
  • the dispersion method include a grinding and dispersion method using an apparatus such as a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer.
  • a medium agitation mill such as a bead mill, a ball mill, a sand mill, a paint shaker, etc. using a medium media (beads, balls, Ottawa sand).
  • a medium media beads, balls, Ottawa sand.
  • the anti-counterfeit printed matter according to the present invention can be obtained by applying or printing the anti-counterfeit ink according to the present invention on the surface of a substrate to be printed by a conventional method.
  • the anti-counterfeit ink according to the present invention removes the solvent by evaporation or the like to fix it on the surface of the substrate to be printed, or cures the liquid uncured material of the resin cured by energy rays by irradiation of energy rays.
  • the printed matter for preventing forgery is formed by fixing the ink to a substrate to be printed.
  • a printing film is obtained by apply
  • the content of the infrared absorbing fine particles in the anti-counterfeit printed material according to the present invention can be changed according to the intended application, but usually 0.05 g / m 2 or more is preferable. If the content is 0.05 g / m 2 or more, the absorption in the infrared region appears remarkably, and it functions as a forgery-preventing printed matter.
  • the upper limit of the content is not particularly limited, but 5 g / m 2 or less is preferable from the viewpoint of maintaining transparency because light in the visible light region is not significantly absorbed.
  • the content of the infrared absorbing particles in order to act equally with respect to light all of the filler is incident on the printing surface, it can be evaluated in a content of 1 m 2 per the printing film.
  • the substrate to be printed for printing the anti-counterfeit ink a material suitable for the intended application may be used, and in addition to paper, a mixture of resin and pulp, a resin film or the like can be used.
  • the seal may be printed with the anti-counterfeit ink according to the present invention on the seal, and the seal may be affixed to a printing substrate.
  • the forgery-preventing printed material according to the present invention produced in this manner can not be copied by copying etc., and it is mechanically irradiated by irradiating infrared rays and detecting its reflection or transmission regardless of visual judgment. An authentic judgment can be made.
  • inorganic fine particles of composite tungsten oxide and / or tungsten oxide are used as infrared absorbing fine particles and applied to a substrate to be printed by a printing method, the print is excellent in weather resistance and light resistance, and inexpensive print for preventing forgery Can be provided.
  • the chemical resistance is excellent, for example, even if the printed matter is mixed with a high temperature alkaline detergent solution in a washing machine, the infrared absorbing fine particles are not dissolved and the function as forgery prevention is maintained.
  • the ground material of the master batch containing the infrared-absorbing fine particles according to the present invention is excellent in chemical resistance, and thus can withstand chemical solutions such as alkali and acid, and further, environment resistance such as acid rain. Therefore, by incorporating or kneading the infrared absorbing fine particle dispersed powder according to the present invention into fibers such as clothes, structures such as outdoor windows and outer walls of buildings, or materials of the agriculture, forestry and fisheries industries. It can also be used for infrared shielding by infrared absorption, light-to-heat conversion by infrared absorption, and the like.
  • the dispersed particle sizes of the dispersions in the examples and comparative examples are shown as average values measured by a particle size measuring apparatus (ELS-8000 manufactured by Otsuka Electronics Co., Ltd.) based on the dynamic light scattering method.
  • the dispersed particle sizes of the master batch and the infrared absorbing fine particle dispersed powder in Examples and Comparative Examples are the particle size distribution measuring apparatus based on the laser diffraction / scattering method, and the volume accumulation is measured by Microtrac (registered trademark) HRA manufactured by Nikkiso Co., Ltd. Measured as the median value of particle size.
  • the optical properties of the printed film in the examples and comparative examples were measured using a spectrophotometer (U-4100 manufactured by Hitachi, Ltd.), and the visible light transmittance and the solar radiation transmittance were calculated according to JIS R 3106.
  • Example 1 A solution was obtained by dissolving 7.43 kg of cesium carbonate (Cs 2 CO 3 ) in 6.70 kg of water. The solution was added to 34.57 kg of tungstic acid (H 2 WO 4 ), sufficiently stirred and mixed, and then dried with stirring (the molar ratio of W to Cs is equivalent to 1: 0.33). The dried product was heated while supplying 5% by volume of H 2 gas with N 2 gas as a carrier, and baked at a temperature of 800 ° C. for 5.5 hours, and then the supplied gas was switched to only N 2 gas. Then, the temperature was lowered to room temperature to obtain Cs tungsten oxide particles.
  • Cs 2 CO 3 cesium carbonate
  • H 2 WO 4 tungstic acid
  • beads made of 0.1 mm diameter YSZ (Yttria-Stabilized Zirconia: yttria stabilized zirconia) were used as the beads.
  • the rotational speed of the rotor was 14 rpm / sec, and the pulverizing and dispersing treatment was performed at a slurry flow rate of 3 kg / min, to obtain an infrared-absorbing fine particle dispersion liquid according to Example 1.
  • the particle size measuring apparatus based on a dynamic-light-scattering method.
  • the particle refractive index was set to 1.81, and the particle shape was non-spherical.
  • the background was measured using toluene, and the solvent refractive index was 1.50.
  • Resin a is further added to the infrared-absorbing fine particle dispersion according to Example 1, and the weight ratio of resin a to infrared-absorbing fine particles (Cs tungsten oxide fine particles) [resin a / infrared-absorbing fine particle] is adjusted to 4 did.
  • Toluene was removed from the obtained adjustment solution using a universal mixer, to obtain an infrared-absorbing fine particle dispersed powder of Example 1.
  • the infrared-absorbing fine particle dispersed powder and the polypropylene resin according to Example 1 were dry-blended so that the concentration of the infrared-absorbing fine particles was 5.0 wt%.
  • the resulting mixture was charged into an extruder and melt mixed to obtain a strand.
  • the strand was subjected to a cutting machine to obtain an infrared absorbing fine particle-containing master batch according to Example 1 in the form of pellets.
  • Example 1 The infrared-absorbing fine particle-containing masterbatch according to Example 1 was crushed by a hammer mill to obtain an infrared-absorbing fine particle-containing masterbatch crushed according to Example 1. It was 45 micrometers when the dispersion particle diameter of the said infrared-absorbing fine particle containing master batch grinding
  • Example 1 50 g of the crushed master batch containing the infrared-absorbing fine particles according to Example 1 and 50 g of UV curable resin UV3701 (manufactured by Toagosei Co., Ltd.) were well mixed to obtain an anti-counterfeit ink according to Example 1 .
  • a transparent PET film having a thickness of 50 ⁇ m was used as a printing substrate, and the anti-counterfeit ink according to Example 1 was formed on the surface thereof by a bar coater.
  • the film was irradiated with ultraviolet light using a high pressure mercury lamp to cure the ultraviolet curable resin, and a print film for preventing forgery according to Example 1 was obtained.
  • the above manufacturing conditions are shown in Table 1.
  • the optical characteristics of the printed film according to Example 1 were measured, and the transmittance of light with a wavelength of 550 nm in the visible light region was 66%, the transmittance of light with a wavelength of 1000 nm was 4%, and light with a wavelength of 1500 nm Transmittance of 1%.
  • a mixed solution of 0.3 parts by mass of a linear alkylbenzene sulfonic acid surfactant, 1 part by mass of sodium hydroxide and 98.7 parts by mass of pure water is maintained at a temperature of 70 ° C., and the printing film according to Example 1 is maintained for 30 minutes Soaked.
  • the optical properties of the printed film according to Example 1 after immersion were measured.
  • the transmittance of light of wavelength 550 nm in the visible light region was 69%
  • the transmittance of light of wavelength 1000 nm was 5%
  • the transmissivity of was 2%, and it was confirmed that the infrared absorption characteristics were maintained.
  • the evaluation results are shown in Table 2.
  • Examples 2 and 3 An infrared-absorbing fine particle dispersion according to Examples 2 and 3, an infrared-absorbing fine particle dispersed powder, an infrared ray according to the same procedures as in Example 1 except that polyethylene resin or acrylic resin is used instead of polypropylene resin.
  • An absorbent particle-containing master batch pulverized product, an anti-counterfeit ink, and a print film for anti-counterfeit were obtained.
  • the same evaluation as in Example 1 was carried out on the infrared-absorbing fine particle dispersion, the crushed infrared-absorbing fine particle-containing master batch, and the anti-counterfeit printing film according to Examples 2 and 3.
  • the manufacturing conditions and the evaluation results are shown in Tables 1 and 2.
  • Example 4 An infrared-absorbing fine particle according to Example 4 is carried out in the same manner as in Example 1 except that a jet mill pulverizer is used instead of a hammer mill to grind an infrared-absorbing fine particle-containing masterbatch. Dispersed powder, pulverized masterbatch containing infrared absorbing fine particles, ink for preventing forgery, and print film for preventing forgery were obtained. Evaluation similar to Example 1 was implemented with respect to the infrared rays absorption microparticle dispersion liquid, infrared rays absorption microparticles containing masterbatch ground material concerning Example 4, and a printing film for forgery prevention. The production conditions and the evaluation results are shown in Tables 1 and 2.
  • Example 5 The infrared-absorbing fine particle dispersed powder according to Example 5 is carried out in the same manner as in Example 1 except that a freezing crusher is used instead of a hammer mill to crush an infrared-absorbing fine particle-containing masterbatch. An infrared-absorbing fine particle-containing master batch, a forgery-preventing ink, and a forgery-preventing printing film were obtained. Evaluation similar to Example 1 was implemented with respect to the infrared rays absorption microparticle dispersion liquid, infrared rays absorption microparticles containing master batch grinding material concerning Example 5, and a printing film for forgery prevention. The production conditions and the evaluation results are shown in Tables 1 and 2.
  • Example 6 20 parts by weight of this tungsten oxide powder (WO 2.72 ), 75 parts by weight of toluene, and 5 parts by weight of a polyacrylate dispersant are mixed, and the same dispersion treatment as in Example 1 is carried out. An infrared-absorbing fine particle dispersion according to Example 6 was obtained.
  • Example 6 The infrared absorption according to Example 6 is carried out in the same manner as in Example 1, except that the infrared absorption fine particle dispersion system according to Example 6 is used instead of the infrared absorption fine particle dispersion according to Example 1. Fine particle dispersed powder, crushed material of masterbatch containing infrared absorbing fine particles, ink for preventing forgery, and print film for preventing forgery were obtained. Evaluation similar to Example 1 was implemented with respect to the infrared rays absorption microparticle dispersion liquid, infrared rays absorption microparticles containing master batch grinding material concerning Example 6, and a printing film for forgery prevention. The production conditions and the evaluation results are shown in Tables 1 and 2.
  • B 4 C Boron carbide
  • lanthanum oxide was used as a lanthanum source, and these were weighed and mixed such that the value of B / La, which is an elemental ratio of lanthanum to boron, was 5.90. Then, it baked at temperature conditions of 1600 +/- 50 degreeC in argon atmosphere for 6 hours, and obtained the lithium hexaboride particle containing powder.
  • Example 10 parts by weight of the prepared powder containing lanthanum hexaboride particles, 80 parts by weight of toluene, and 10 parts by weight of resin a are weighed, mixed, and subjected to the same dispersion treatment as in Example 1
  • An infrared-absorbing fine particle dispersion liquid according to Example 7 of 80 nm was obtained.
  • Resin a is further added to the infrared-absorbing fine particle dispersion according to Example 7, and the weight ratio of the resin a to the infrared-absorbing fine particles (lanthanum hexaborate particles) [resin a / infrared-absorbing fine particles] has a value of 7 Adjusted to By performing the same operation as in Example 5 except for the above, an infrared-absorbing fine particle dispersed powder, an infrared-absorbing fine particle-containing master batch pulverized product, an anti-counterfeit ink, and a print film for preventing anti-counterfeit according to Example 7 were obtained.
  • Example 2 The same evaluation as in Example 1 was carried out on the infrared-absorbing fine particle dispersion, the crushed infrared-absorbing fine particle-containing master batch, and the anti-counterfeit printing film according to Example 7. The production conditions and the evaluation results are shown in Tables 1 and 2.
  • Comparative Example 1 The resin a described above is further added to the infrared absorbing fine particle dispersion according to Example 1, and the weight ratio of the resin a to the infrared absorbing fine particles (Cs tungsten oxide fine particles) [resin a / infrared absorbing fine particle] becomes 4. I adjusted it. Crushing treatment was carried out while removing toluene from the obtained adjustment liquid using a vacuum crusher (manufactured by Ishikawa Factory Co., Ltd.) to obtain an infrared-absorbing fine particle dispersed powder according to Comparative Example 1.
  • a vacuum crusher manufactured by Ishikawa Factory Co., Ltd.
  • An anti-counterfeit ink according to Comparative Example 1 was obtained by thoroughly mixing 50 g of the infrared-absorbing fine particle dispersed powder according to Comparative Example 1 and 50 g of UV curable resin UV3701 (manufactured by Toagosei Co., Ltd.).
  • a transparent PET film having a thickness of 50 ⁇ m was used as a printing substrate, and a forgery-preventing ink according to Comparative Example 1 was formed on the surface of the transparent PET film by a bar coater.
  • the film was irradiated with ultraviolet light using a high pressure mercury lamp to cure the ultraviolet curable resin, and a printing film of the anti-counterfeit ink according to Comparative Example 1 was obtained.
  • the optical characteristics of the printed film according to Comparative Example 1 obtained were measured, and the transmittance of light of wavelength 550 nm in the visible light region was 71%, the transmittance of light of wavelength 1000 nm was 4%, and light of wavelength 1500 nm Transmittance of 1%.
  • a mixed solution of 0.3 parts by mass of linear alkylbenzene sulfonic acid surfactant, 1 part by mass of sodium hydroxide, and 98.7 parts by mass of pure water is maintained at a temperature of 70 ° C., and the printing film according to Comparative Example 1 is maintained for 30 minutes Soaked.
  • the optical characteristics of the printed film according to Comparative Example 1 after immersion were measured.
  • the transmittance of light of wavelength 550 nm in the visible light region is 88%
  • the transmittance of light of wavelength 1000 nm is 89%
  • the transmissivity of was 88%, and it was confirmed that the infrared absorption characteristics had disappeared.
  • Comparative Example 2 An infrared-absorbing fine particle dispersion, an infrared-absorbing fine particle dispersed powder, and an infrared-absorbing fine particle-containing master batch according to Comparative Example 2 by performing the same operation as in Example 1 except that a polyethylene terephthalate resin is used instead of the polypropylene resin. The crushed material, the anti-counterfeit ink, and the anti-counterfeit printing film were obtained. Evaluation similar to Example 1 was implemented with respect to the infrared rays absorption microparticle dispersion liquid which concerns on the comparative example 2, an infrared rays absorption microparticles containing masterbatch, and a printing film for forgery prevention. The production conditions and the evaluation results are shown in Tables 1 and 2.
  • Comparative Example 3 Resin a is further added to the infrared-absorbing fine particle dispersion according to Example 7, and the weight ratio of the resin a to the infrared-absorbing fine particles (lanthanum hexaborate particles) [resin a / infrared-absorbing fine particles] has a value of 7 Adjusted to Crushing treatment was carried out while removing toluene from the obtained adjustment liquid using a vacuum crusher (manufactured by Ishikawa Factory Co., Ltd.) to obtain an infrared-absorbing fine particle dispersed powder according to Comparative Example 3. It was 0.7 micrometer when the average particle diameter of the infrared rays absorption fine particle dispersion powder which concerns on obtained Comparative example 3 was measured.
  • the anti-counterfeit ink according to Comparative Example 3 by performing the same operation as Comparative Example 1 except that the infrared-absorbing fine particle dispersed powder according to Comparative Example 3 is used instead of the infrared-absorbing fine particle dispersed powder according to Comparative Example 1 , Obtained anti-counterfeit printing film.
  • the same evaluation as in Comparative Example 1 was carried out on the anti-counterfeit printing film according to Comparative Example 3.
  • the production conditions and the evaluation results are shown in Tables 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

優れた赤外線吸収特性を有し、耐薬品性に優れる赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インクそれらを用いた偽造防止インク、偽造防止用印刷物、並びに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法を提供する。分散粒子径が1μm以上であり、内部に赤外線吸収微粒子が分散した樹脂を含む赤外線吸収微粒子含有マスターバッチ粉砕物を提供する。

Description

赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、それらを用いた偽造防止インク、偽造防止用印刷膜、ならびに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法
 本発明は、赤外線領域の光を吸収し、耐薬品性に優れる赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、それらを用いた偽造防止インク、偽造防止用印刷物、並びに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法に関する。
 良好な可視光透過率を有し透明性を保ちながら日射透過率を低下させる赤外線吸収技術として、これまでさまざまな技術が提案されてきた。なかでも、無機物である導電性微粒子を用いた赤外線吸収技術は、その他の技術と比較して赤外線吸収特性に優れ、低コストである上、電波透過性が有り、さらに耐候性が高い等のメリットがある。
 例えば特許文献1には、酸化錫微粉末の赤外線吸収特性を応用した技術が記載され、酸化錫微粉末を分散状態で含有させた透明樹脂や、酸化錫微粉末を分散状態で含有させた透明合成樹脂をシートまたはフィルムに成形したものを、透明合成樹脂基材に積層してなる赤外線吸収性合成樹脂成形品が提案されている。
 特許文献2には、Sn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moといった金属、当該金属の酸化物、当該金属の窒化物、当該金属の硫化物、当該金属へのSbやFのドープ物、または、これらの混合物の赤外線吸収特性を応用した技術が記載され、これらが媒体中に分散させた中間層を挟み込んだ合わせガラスが提案されている。
 また、出願人は特許文献3にて、窒化チタン微粒子やホウ化ランタン微粒子の赤外線吸収特性を応用した技術を提案しており、これらのうちの少なくとも1種を、溶媒中や媒体中に分散させた選択透過膜用塗布液や選択透過膜を開示している。
 しかしながら出願人の検討によると、特許文献1~3に開示されている赤外線吸収性合成樹脂成形品等の赤外線吸収構造体は、いずれも高い可視光透過率が求められたときの赤外線吸収特性が十分でなく、赤外線吸収構造体としての機能が十分でないという問題点が存在した。例えば、特許文献1~3に開示されている赤外線吸収構造体の持つ赤外線吸収特性の具体的な数値の例として、JIS R 3106 1998に基づいて算出される可視光透過率(本発明において、単に「可視光透過率」と記載する場合がある。)が70%のとき、同じくJIS R 3106 1998に基づいて算出される日射透過率(本発明において、単に「日射透過率」と記載する場合がある。)は、50%を超えてしまっていた。
 そこで、出願人は特許文献4にて、一般式M(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物を赤外線吸収微粒子として応用した技術を提案し、当該赤外線吸収微粒子の製造方法と、当該複合タングステン酸化物が六方晶、正方晶、または立方晶の結晶構造を有する赤外線吸収微粒子のいずれか1種類以上を含み、前記赤外線吸収材料微粒子の粒子径が1nm以上800nm以下であることを特徴とする赤外線吸収分散体を開示した。
 特許文献4に開示したように、前記一般式Mで表される赤外線吸収微粒子を含む赤外線吸収微粒子分散体は高い赤外線吸収特性を示し、可視光透過率が70%のときの日射透過率は50%を下回るまでに改善された。とりわけM元素としてCsやRb、Tlなど特定の元素から選択される少なくとも1種類を採用し、結晶構造を六方晶とした赤外線吸収微粒子を用いた赤外線吸収微粒子分散体は卓越した赤外線吸収特性を示し、可視光透過率が70%のときの日射透過率は37%を下回るまでに改善された。
 さらに、出願人は特許文献5にて、特許文献4で開示した一般式Mで表される赤外線吸収微粒子を含む偽造防止インク用組成物、それを溶媒中に分散させた偽造防止インク、それを用いて作製した偽造防止用印刷物を提供した。当該偽造防止インクを用いて作製した印刷物は、その印刷面に赤外線レーザーを照射すると特定波長のみ吸収されるため、反射若しくは透過光を読み取ることで真贋の判定が可能で、預貯金の通帳や身分証明書、クレジットカード、キャッシュカード、小切手、航空券、道路通行券、乗車券、プリペードカード、商品券、証券等の有価印刷物の偽造防止効果が高いものであった。
特開平2-136230号公報 特開平8-259279号公報 特開平11-181336号公報 国際公開第2005/037932号 特開2015-117353号公報
 しかしながら出願人のさらなる検討によると、上述した従来の技術に係る複合タングステン酸化物微粒子においては耐薬品性が十分ではない場合があった。具体的には、従来の技術に係る複合タングステン酸化物微粒子を樹脂等に分散した分散体を、例えば高温のアルカリ溶液に浸漬させると当該複合タングステン酸化物微粒子がアルカリ溶液に溶解し、赤外線吸収機能が消失する場合があるという問題があった。
 本発明は、上述の状況の下で成されたものであり、その解決しようとする課題は、優れた赤外線吸収特性を有し、耐薬品性に優れるマスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インクそれらを用いた偽造防止インク、偽造防止用印刷物、並びに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法を提供することである。
 本発明者らは、上記目的を達成するため鋭意研究を行った。
 そして、特定の樹脂に赤外線吸収微粒子を分散させて得られた赤外線吸収微粒子含有マスターバッチは、優れた耐薬品性を示すことを知見した。さらに、その赤外線吸収微粒子含有マスターバッチ粉砕物は、偽造防止インクに添加可能なレベルまで粉砕しても優れた耐薬品性を示すことを知見した。具体的には、レーザ回折・散乱法に基づく粒子径分布測定装置で測定される体積累積粒度のメジアン値を分散粒子径としたとき、当該分散粒子径が1μm以上の赤外線吸収微粒子含有マスターバッチ粉砕物でも優れた耐薬品性を示した。
 さらに本発明者らは、当該赤外線吸収微粒子含有マスターバッチやその粉砕物を用いて作製した偽造防止インク、偽造防止用印刷物が、可視光領域で透明性があり、優れた赤外線吸収特性を有し、優れた耐薬品性を示すことにも想到し、本発明を完成させた。
 すなわち、上述の課題を解決する第1の発明は、
 分散粒子径(レーザ回折・散乱法に基づく粒子径分布測定装置で測定される体積累積粒度のメジアン値)が1μm以上であり、内部に赤外線吸収微粒子が分散した樹脂を含むことを特徴とする、赤外線吸収微粒子含有マスターバッチ粉砕物である。
 第2の発明は、
 前記赤外線吸収微粒子が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される赤外線吸収微粒子であることを特徴とする、第1の発明に記載の赤外線吸収微粒子含有マスターバッチ粉砕物である。
 第3の発明は、
 前記赤外線吸収微粒子が、六方晶の結晶構造を含むことを特徴とする、第1または第2の発明に記載の赤外線吸収微粒子含有マスターバッチ粉砕物である。
 第4の発明は、
 前記赤外線吸収微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記される赤外線吸収微粒子であることを特徴とする、第1の発明に記載の赤外線吸収微粒子含有マスターバッチ粉砕物である。
 第5の発明は、
 前記赤外線吸収微粒子が、一般式XBm(但し、Xは、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caから選ばれる1種類以上の金属元素、Bはホウ素、mは一般式におけるホウ素量を示す数字、3≦m≦20)で表記される赤外線吸収微粒子であることを特徴とする、第1の発明に記載の赤外線吸収微粒子含有マスターバッチ粉砕物である。
 第6の発明は、
 前記樹脂が、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリスチレン樹脂、ポリイソブチレン樹脂、エポキシ樹脂、ポリイミド樹脂、アイオノマー樹脂、フッ素樹脂、ウレタン樹脂、ABS樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂という樹脂群から選択される1種の樹脂、または前期樹脂群から選択される2種以上の樹脂の混合物、または前期樹脂群から選択される2種以上の樹脂の共重合体、のいずれかから選択される樹脂であることを特徴とする、第1から第5の発明のいずれかに記載の赤外線吸収微粒子含有マスターバッチ粉砕物である。
 第7の発明は、
 前記樹脂が、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリスチレン樹脂、ポリイソブチレン樹脂、フッ素樹脂という樹脂群から選択される1種の樹脂、または前期樹脂群から選択される2種以上の樹脂の混合物、または前期樹脂群から選択される2種以上の樹脂の共重合体、のいずれかから選択される樹脂であることを特徴とする、第1から第6の発明のいずれかに記載の赤外線吸収微粒子含有マスターバッチ粉砕物である。
 第8の発明は、
 第1から第7の発明のいずれかに記載の赤外線吸収微粒子含有マスターバッチ粉砕物中の赤外線吸収微粒子の含有率が、0.001質量%以上25.0質量%以下であることを特徴とする赤外線吸収微粒子含有マスターバッチ粉砕物である。
 第9の発明は、
 第1から第8の発明のいずれかに記載される赤外線吸収微粒子含有マスターバッチ粉砕物と、溶媒とを含むことを特徴とする、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液である。
 第10の発明は、
 第1から第8の発明のいずれかに記載の赤外線吸収微粒子含有マスターバッチ粉砕物と、有機バインダーまたはエネルギー線で硬化する樹脂の液状の未硬化物から選択される1種以上とを含むことを特徴とする、赤外線吸収材料含有インクである。
 第11の発明は、
 第10の発明に記載の赤外線吸収材料含有インクを含むことを特徴とする、偽造防止インクである。
 第12の発明は、
 さらに溶媒を含み、前記溶媒が、水、有機溶媒、植物油や植物油由来等の化合物、石油系溶媒から選択される1種類以上からなる溶媒であることを特徴とする、第11の発明に記載の偽造防止インクである。
 第13の発明は、
 第1から第8の発明のいずれかに記載の赤外線吸収微粒子含有マスターバッチ粉砕物を含むことを特徴とする、偽造防止用印刷物である。
 第14の発明は、
 内部に赤外線吸収微粒子が分散したマスターバッチを得る第1の工程と、
 前記第1の工程で得られたマスターバッチを機械的に粉砕する第2の工程と、を有することを特徴とする、第1から第8の発明のいずれかに記載の赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法である。
 第15の発明は、
 前記第2の工程において、前記第1工程で得られたマスターバッチを氷点以下に維持しながら、機械的に粉砕することを特徴とする、第14の発明に記載の赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法である。
 本発明によれば、優れた赤外線吸収特性を有し、優れた耐薬品性を示す赤外線吸収微粒子含有マスターバッチ粉砕物を得ることが出来、さらに当該優れた耐薬品性を示す赤外線吸収微粒子含有マスターバッチ粉砕物を用いた、可視光領域で透明性があり優れた赤外線吸収特性を有し、優れた耐薬品性を示す赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、および偽造防止インク、並びに偽造防止用印刷物を得ることが出来る。
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物は、後述する本発明に係る赤外線吸収微粒子と添加剤とが、所定の樹脂中に分散しているマスターバッチ粉砕物によって構成されているものであり、当該マスターバッチ粉砕物の分散粒子径が1μm以上のものである。そして、当該マスターバッチ粉砕物は、赤外線吸収微粒子が所定の樹脂からなるマスターバッチ粉砕物中に分散しているので、優れた耐薬品性を示す。 
 そして、当該赤外線吸収微粒子含有マスターバッチ粉砕物を、所定の溶媒等に分散させた赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液(本発明において「粉砕物含有分散液」と記載する場合がある。)、赤外線吸収材料含有インク(本発明において「赤外線吸収インク」と記載する場合がある。)、偽造防止インク、当該偽造防止インクを用いた偽造防止用印刷物も同様の耐薬品性を示し、赤外線領域に吸収を発揮し且つ可視光領域の光の吸収が少ないという光学的特性を示すものである。
 一方、本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物は、所定の樹脂に後述する赤外線吸収微粒子を分散させた後に、ペレット状に成形して得られる赤外線吸収微粒子含有マスターバッチを、所定の方法で粉砕することで得ることが出来る。
 以下、本発明の実施の形態について[1]赤外線吸収微粒子含有マスターバッチ粉砕物とその製造方法、[2]赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液(粉砕物含有分散液)および赤外線吸収材料含有インク(赤外線吸収インク)、[3]偽造防止インクおよび偽造防止用印刷物、の順で説明する。
[1]赤外線吸収微粒子含有マスターバッチ粉砕物とその製造方法
 赤外線吸収微粒子含有マスターバッチ粉砕物は、ここへ媒体樹脂を追加して混練することにより、当該赤外線吸収微粒子含有マスターバッチ粉砕物に含まれる赤外線吸収微粒子の分散状態が維持されたまま、その分散濃度を調整出来るという特徴を有している。赤外線吸収微粒子含有マスターバッチ粉砕物に含まれる赤外線吸収微粒子は0.001質量%~25質量%である。そして、赤外線吸収微粒子含有マスターバッチ粉砕物に含まれる赤外線吸収微粒子の含有率は、赤外線吸収微粒子含有マスターバッチ粉砕物となっても維持される。そして、赤外線吸収微粒子含有マスターバッチ粉砕物に含まれる赤外線吸収微粒子は0.001質量%~25質量%なので、赤外線吸収微粒子含有マスターバッチ粉砕物に含まれる多くの赤外線吸収微粒子は、樹脂に被覆されているものである。
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物は、赤外線吸収微粒子が、後述する耐薬品性の高い樹脂中に分散しているので、可視光領域の吸収が少なく、赤外線領域に吸収を持ち、且つ優れた耐薬品性を示す。また、当該マスターバッチ粉砕物を分散させた偽造防止インクや偽造防止用印刷物も同様の特性を示す。
 後述するように、本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物は、赤外線吸収微粒子含有マスターバッチを粉砕することで容易に得ることができる。赤外線吸収微粒子含有マスターバッチは、樹脂に赤外線吸収微粒子を練り込んだフレーク状やペレット状に成形された物である。赤外線吸収微粒子含有マスターバッチを粉砕すれば、容易に分散粒子径1μm以上の赤外線吸収微粒子含有マスターバッチ粉砕物を得ることができる。
 これに対し、所定の樹脂中に赤外線吸収微粒子を練り込んだバルク状の樹脂を粉砕しても、樹脂中に赤外線吸収微粒子を含む粒状の物を得ることが出来るが、バルク状の樹脂を粉砕することは難しい。
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物は、赤外線吸収微粒子が耐薬品性の高い樹脂中に分散しているので、可視光領域の吸収が少なく、赤外線領域に吸収を持ち、且つ優れた耐薬品性を示す。また、該粉砕物を分散させた偽造防止インクや偽造防止用印刷物も同様の特性を示す。
 赤外線吸収微粒子含有マスターバッチ粉砕物の分散粒子径が1μm以上であれば、分散粒子径800nm以下の赤外線吸収微粒子は、十分な厚さの樹脂で覆われている為、赤外線吸収微粒子分散粉を高温のアルカリ液や酸に浸漬しても赤外線吸収微粒子が溶解せず、相当数の赤外線吸収微粒子分散粉が担保される。
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物は、窓や建材さらには建築物の外壁等や農林水産業の資材等に塗布されるなどして屋外に曝されても、赤外線吸収微粒子が樹脂で覆われているので、赤外線吸収微粒子分散粉の内部に水などが浸透し難く、水によりアルカリや酸が導かれないので、赤外線吸収微粒子が溶解することはない。そして、本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物を、衣類等の繊維、屋外の窓や建築物の外壁等の構造物、農林水産業の資材に塗布したり又は練り込むなどして組み込むことで、赤外線吸収による赤外線遮蔽や赤外線吸収による光熱変換などに活用することもできる。
 赤外線吸収微粒子含有マスターバッチ粉砕物の分散粒子径は、動的光散乱法を原理としたマイクロトラック・ベル株式会社マイクロトラック(登録商標)により体積累積粒度のメジアン値として測定することができる。赤外線吸収微粒子含有マスターバッチ粉砕物の分散粒子径の測定では、水などの赤外線吸収微粒子含有マスターバッチ粉砕物を溶解しない溶媒に分散して測定することができる。測定の際には、ヘキサメタリン酸ナトリウムなどの分散剤を少量添加することもできる。
 以下、本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物とその製造方法について、(1)赤外線吸収微粒子含有マスターバッチ粉砕物の性状、(2)赤外線吸収微粒子含有マスターバッチ粉砕物の構成成分、(3)赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法、の順に説明する。
 (1)赤外線吸収微粒子含有マスターバッチ粉砕物の性状
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物は、その分散粒子径が1μm以上のものである。そして、本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物においては、赤外線吸収微粒子が耐薬品性の高い樹脂中に分散しているので、優れた耐薬品性を示し、赤外線領域に吸収を持ち、且つ可視光領域の光の吸収が少ないものである。そして、当該赤外線吸収微粒子含有マスターバッチ粉砕物を所定の溶媒等に分散させることで、後述する粉砕物含有分散液、赤外線吸収インク、偽造防止インク等を得ることが出来るものである。
 ここで、本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物の分散粒子径が1μm以上であれば、分散粒子径が800nm以下である本発明に係る赤外線吸収微粒子が、十分な厚さの樹脂で覆われる。この為、本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物が、例えば高温のアルカリ液や酸に浸漬されても、本発明に係る赤外線吸収微粒子が溶解されることがなく、所定の光学的特性を担保することが出来るものである。
 上述の観点から、本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物の分散粒子径は1μm以上であることが好ましい。一方、本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物を、後述する赤外線吸収インクや偽造防止インクに用いるのであれば、可視光領域での透明性を担保する観点から赤外線吸収微粒子含有マスターバッチ粉砕物の分散粒子径は1μm以上200μm以下であることがさらに好ましく、より好ましくは1μm以上100μm以下、さらにより好ましくは1μm以上50μm以下である。
 尚、本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物の分散粒子径は、レーザ回折・散乱法に基づく粒子径分布測定装置を原理としたマイクロトラック・ベル(旧日機装)株式会社マイクロトラック(登録商標)により体積累積粒度のメジアン値として測定することができる。赤外線吸収微粒子含有マスターバッチ粉砕物の分散粒子径の測定では、水などの赤外線吸収微粒子分散粉を溶解しない溶媒に分散して測定することができる。
 (2)赤外線吸収微粒子含有マスターバッチ粉砕物の構成成分
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物は、後述する、本発明に係る赤外線吸収微粒子、樹脂、分散剤、所望によりその他の添加剤を所定溶媒に分散させた赤外線吸収微粒子分散液を、所定の樹脂と混錬して分散させた後に、ペレット状に成形して得られる赤外線吸収微粒子含有マスターバッチを、所定の方法で粉砕することで得ることが出来る。
 以下、本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物の構成成分について(i)本発明に係る赤外線吸収微粒子、(ii)樹脂(iii)分散剤、(iv)その他の添加剤、(v)溶媒、の順に説明する。
説明する。
 (i)本発明に係る赤外線吸収微粒子
 本発明に係る赤外線吸収微粒子について(A)一般式MxWyOzで表記される複合タングステン酸化物系赤外線吸収微粒子、(B)一般式WyOzで表記される酸化タングステン系赤外線吸収微粒子、(C)本発明に係る複合タングステン酸化物系並びに酸化タングステン系赤外線吸収微粒子の構造、(D)本発明に係る複合タングステン酸化物系並びに酸化タングステン系赤外線吸収微粒子の合成方法、(E)一般式XBmで表記されるホウ化物系赤外線吸収微粒子(F)本発明に係るホウ化物系赤外線吸収微粒子の合成方法、(G)複合タングステン酸化物系赤外線吸収微粒子、酸化タングステン系赤外線吸収微粒子、およびホウ化物系赤外線吸収微粒子の混合使用、の順に説明する。
 (A)一般式MxWyOzで表記される複合タングステン酸化物系赤外線吸収微粒子
 一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される赤外線吸収微粒子や、一般式WyOz(2.2≦z/y≦2.999)で表記される赤外線吸収微粒子は、本発明に係る赤外線吸収微粒子として好ましい。
 当該一般式MxWyOzで示される赤外線吸収微粒子について、さらに説明する。
 一般式MxWyOz中のM元素、x、y、zおよびその結晶構造は、赤外線吸収微粒子の自由電子密度と密接な関係があり、赤外線吸収特性に大きな影響を及ぼす。
 一般に、三酸化タングステン(WO)中には有効な自由電子が存在しないため赤外線吸収特性が低い。
 ここで本発明者らは、当該タングステン酸化物へ、M元素(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種以上の元素を添加して複合タングステン酸化物とすることで、当該複合タングステン酸化物中に自由電子が生成され、赤外線領域に自由電子由来の吸収特性が発現し、波長1000nm付近の赤外線吸収材料として有効なものとなり、且つ、当該複合タングステン酸化物は化学的に安定な状態を保ち、耐候性に優れた赤外線吸収材料として有効なものとなることを知見したものである。さらに、M元素は、Cs、Rb、K、Tl、Ba、Cu、Al、Mn、Inが好ましいこと、なかでも、M元素がCs、Rbであると、当該複合タングステン酸化物が六方晶構造を取り易くなり、可視光線を透過し赤外線を吸収し遮蔽することから、後述する理由により特に好ましいことも知見したものである。
 ここで、M元素の添加量を示すxの値についての本発明者らの知見を説明する。
 x/yの値が0.001以上であれば、十分な量の自由電子が生成され目的とする赤外線吸収特性を得ることが出来る。そして、M元素の添加量が多いほど、自由電子の供給量が増加し、赤外線吸収特性も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1以下であれば、複合タングステン微粒子に不純物相が生成されるのを回避できるので好ましい。
 次に、酸素量の制御を示すzの値についての本発明者らの知見を説明する。
 一般式MxWyOzで示される赤外線吸収微粒子において、z/yの値は2.0<z/y≦3.0であることが好ましく、より好ましくは2.2≦z/y≦3.0であり、さらに好ましくは2.6≦z/y≦3.0、最も好ましくは2.7≦z/y≦3.0である。このz/yの値が2.0以上であれば、当該複合タングステン酸化物中に目的以外の化合物であるWOの結晶相が現れるのを回避することが出来ると伴に、材料としての化学的安定性を得ることが出来るので、有効な赤外線吸収材料として適用できるためである。一方、このz/yの値が3.0以下であれば当該タングステン酸化物中に必要とされる量の自由電子が生成され、効率よい赤外線吸収材料となる。
 (B)一般式WyOzで表記される酸化タングステン系赤外線吸収微粒子
 前記一般式WyOzで示される赤外線吸収微粒子について説明する。
 一般式WyOz中のタングステンと酸素との組成範囲は、タングステンに対する酸素の組成比が3以下であり、さらには、当該タングステン酸化物をWyOzと記載したとき、2.2≦z/y≦2.999であることが好ましい。このz/yの値が、2.2以上であれば、当該タングステン酸化物中に目的以外であるWO2の結晶相が現れるのを回避することが出来ると伴に、材料としての化学的安定性を得ることが出来るので、有効な赤外線吸収材料として適用できるからである。
 一方、このz/yの値が、2.999以下であれば、当該タングステン酸化物中に必要とされる量の自由電子が生成され、効率よい赤外線吸収材料となる。
 また、当該タングステン酸化物を微粒子化したタングステン酸化物微粒子において、一般式WyOzとしたとき2.45≦z/y≦2.999で表される組成比を有する、所謂「マグネリ相」は化学的に安定であり、赤外線領域の吸収特性も良いので、赤外線吸収材料として好ましい。
 (C)本発明に係る複合タングステン酸化物系並びに酸化タングステン系赤外線吸収微粒子の構造
 複合タングステン酸化物系並びに酸化タングステン系赤外線吸収微粒子は、六方晶以外に、正方晶、立方晶のタングステンブロンズの構造をとるが、いずれの構造をとるときも赤外線吸収材料として有効である。しかしながら、当該赤外線吸収微粒子がとる結晶構造によって、赤外線領域の吸収位置が変化する傾向がある。即ち、赤外線領域の吸収位置は、立方晶よりも正方晶のときが長波長側に移動し、六方晶のときは正方晶のときよりも、さらに長波長側へ移動する傾向がある。また、当該吸収位置の変動に付随して、可視光線領域の吸収は六方晶が最も少なく、次に正方晶であり、立方晶はこの中では最も大きい。
 以上の知見から、可視光領域の光をより透過させ、赤外線領域の光をより遮蔽する用途には、六方晶のタングステンブロンズを用いることが好ましい。赤外線吸収微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過が向上し、近赤外領域の吸収が向上する。
 即ち、赤外線吸収微粒子において、六方晶のタングステンブロンズであれば、優れた光学的特性が発揮される。また、赤外線吸収微粒子が、マグネリ相と呼ばれるWO2.72と同様の単斜晶の結晶構造をとっている場合や、斜方晶の結晶構造をとっている場合も、赤外線吸収に優れ、近外線遮蔽材料として有効なことがある。
 以上の知見より、六方晶の結晶構造を有する赤外線吸収微粒子が均一な結晶構造を有するとき、添加M元素の添加量は、x/yの値で0.2以上0.5以下が好ましく、更に好ましくは更に好ましくは0.29≦x/y≦0.39である。理論的にはz/y=3の時、x/yの値が0.33となることで、添加M元素が六角形の空隙の全てに配置されると考えられる。
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物に含まれる赤外線吸収粒子は、赤外線を吸収し、吸収した赤外線を熱に変換する。赤外線を吸収した赤外線吸収粒子は、変換した熱で、周囲を温める。また、赤外線吸収粒子が赤外線を吸収するので、結果的に赤外線を遮蔽する。
 赤外線吸収微粒子の分散粒子径は、800nm以下1nm以上であることが好ましく、さらに好ましくは、200nm以下1nm以上である。赤外線吸収微粒子の分散粒子径が、200nm以下であることが好ましいことは、赤外線吸収微粒子分散液中の赤外線吸収微粒子においても同様である。これは、分散粒子径が200nm以下であれば優れた可視光透明性を確保でき、赤外線吸収微粒子を用いることによる色調の変化が小さくなり、最終的に得られる偽造防止用印刷物の調色が容易となるからである。一方、当該赤外線吸収微粒子の赤外線吸収特性の観点から、分散粒子径は1nm以上であることが好ましく、より好ましくは10nm以上である。
 (D)本発明に係る複合タングステン酸化物系並びに酸化タングステン系赤外線吸収微粒子の合成方法
 本発明に係る複合タングステン酸化物系並びに酸化タングステン系赤外線吸収微粒子の合成方法について説明する。
 本発明に係る複合タングステン酸化物系並びに酸化タングステン系赤外線吸収微粒子は固相反応法により製造することが出来る。以下、(a)固相反応法に用いる原料、(b)固相反応法における焼成とその条件、の順に説明する。
 (a)固相反応法に用いる原料
 本発明に係る一般式MxWyOzで示される赤外線吸収微粒子を固相反応法で合成する際には、原料としてタングステン化合物およびM元素化合物を用いる。
 タングステン化合物は、タングステン酸(HWO)、タングステン酸アンモニウム、六塩化タングステン、アルコールに溶解した六塩化タングステンに水を添加して加水分解した後、溶媒を蒸発させたタングステンの水和物、から選ばれる1種以上であることが好ましい。
 また、より好ましい実施形態である一般式MxWyOz(但し、Mは、Cs、Rb、K、Tl、Baから選択される1種類以上の元素、0.001≦x/y≦1、2.0<z/y≦3.0)で示される赤外線吸収微粒子の原料の製造に用いるM元素化合物には、M元素の酸化物、水酸化物、硝酸塩、硫酸塩、塩化物、炭酸塩、から選ばれる1種以上であることが好ましい。
 また、本発明に係る赤外線吸収微粒子は、Si、Al、Zrから選ばれる1種以上の不純物元素を含有する化合物(本発明において「不純物元素化合物」と記載する場合がある。)を原料として含んでもよい。当該不純物元素化合物は、後の焼成工程において複合タングステン化合物と反応せず、複合タングステン酸化物の結晶成長を抑制して、結晶の粗大化を防ぐ働きをするものである。不純物元素を含む化合物としては、酸化物、水酸化物、硝酸塩、硫酸塩、塩化物、炭酸塩、から選ばれる1種以上であることが好ましく、粒径が500nm以下のコロイダルシリカやコロイダルアルミナが特に好ましい。
 上記タングステン化合物と、上記M元素化合物を含む水溶液とを、M元素とW元素の比が、MxWyOz(但し、Mは前記M元素、Wはタングステン、Oは酸素、0.001≦x/y≦1.0、2.0<z/y≦3.0)のM元素とW元素の比となるように湿式混合する。不純物元素化合物を原料として含有する場合は、不純物元素化合物が0.5質量%以下になるように湿式混合する。そして、得られた混合液を乾燥することによって、M元素化合物とタングステン化合物との混合粉体、もしくは不純物元素化合物を含むM元素化合物とタングステン化合物との混合粉体が得られる。
 また、本発明に係る一般式WyOzで示される赤外線吸収微粒子を固相反応法で合成する際には、原料としてタングステン化合物を用いる。
 出発原料であるタングステン化合物は、3酸化タングステン粉末、2酸化タングステン粉末、もしくはタングステン酸化物の水和物、もしくは、6塩化タングステン粉末、もしくはタングステン酸アンモニウム粉末、もしくは、6塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、もしくは、6塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、もしくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末から選ばれたいずれか一種類以上であることが好ましい。
 ここで、タングステン酸化物微粒子を製造する場合には製造工程の容易さの観点より、タングステン酸化物の水和物粉末、三酸化タングステン、もしくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、を用いることがさらに好ましい。
 (b)固相反応法における焼成とその条件
 一般式MxWyOzで示される赤外線吸収微粒子については、上述の湿式混合で製造したM元素化合物とタングステン化合物との混合粉体、もしくは不純物元素化合物を含むM元素化合物とタングステン化合物との混合粉体を、不活性ガス単独または不活性ガスと還元性ガスとの混合ガス雰囲気下、1段階で焼成する。このとき、焼成温度は赤外線吸収微粒子が結晶化し始める温度に近いことが好ましい。具体的には焼成温度が1000℃以下であることが好ましく、800℃以下であることがより好ましく、800℃以下500℃以上の温度範囲がさらに好ましい。この焼成温度の制御により、結晶性の良い赤外線吸収微粒子を得られるようになる。尤も、当該複合タングステン酸化物の合成において、前記タングステン化合物に替えて、三酸化タングステンを用いても良い。
 また、一般式WyOzで示される赤外線吸収微粒子については、タングステン酸化物の水和物粉末、三酸化タングステン、もしくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末を、不活性雰囲気中における熱処理条件としては、650℃以上が好ましい。650℃以上で熱処理された出発原料は、十分な近赤外線吸収力を有し赤外線吸収微粒子として効率が良い。不活性ガスとしてはN、Ar等の不活性ガスを用いることが良い。また、還元性雰囲気中の熱処理条件としては、まず出発原料を還元性ガス雰囲気中にて100℃以上850℃以下で熱処理し、次いで不活性ガス雰囲気中で650℃以上1200℃以下の温度で熱処理することが良い。この時の還元性ガスは、特に限定されないがHが好ましい。また還元性ガスとしてHを用いる場合は、還元雰囲気の組成として、Hが体積比で0.1%以上が好ましく、さらに好ましくは2%以上が良い。Hが体積比で0.1%以上あれば効率よく還元を進めることができる。
 水素で還元されたタングステン酸化物微粒子はマグネリ相を含み、良好な赤外線吸収特性を示し、この状態で赤外線吸収微粒子として使用可能である。しかし、タングステン酸化物中に残留する水素が不安定であるため、耐候性の面で応用が限定される可能性がある。そこで、この水素を含むタングステン酸化物を、不活性雰囲気中、650℃以上で熱処理することで、さらに安定な赤外線吸収微粒子を得ることができる。この650℃以上の熱処理時の雰囲気は特に限定されないが、工業的観点から、N、Arが好ましい。当該650℃以上の熱処理により、赤外線吸収微粒子中にマグネリ相が得られ耐候性が向上する。
 (E)一般式XBmで表記されるホウ化物系赤外線吸収微粒子
 本発明に係るホウ化物系赤外線吸収微粒子は、一般式XBm(但し、Xは、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caから選ばれる1種類以上の金属元素、Bはホウ素、mは一般式におけるホウ素量を示す数字)で表されるホウ化物粒子である。
 本発明に係るホウ化物粒子は、上述のように一般式XBmで表されるホウ化物の粒子とすることができる。
 上述の一般式XBmで表される本発明に係るホウ化物粒子において、金属元素(X)に対するホウ素(B)の元素比(モル比)(B/X)を示すmの値は、特に限定されるものではないが、3≦m≦20であることが好ましい。
 一般式XBmで表されるホウ化物粒子を構成するホウ化物としては、例えばXB、XB、XB12等が挙げられる。しかし、波長1000nm付近における近赤外領域の光の透過率を選択的に効率よく低下させる観点から、本発明に係るホウ化物粒子は、XB、またはXBが主体となっていることが好ましく、一部にXB12を含んでいてもよい。
 このため、上記一般式XBmにおける、金属元素(X)に対するホウ素(B)の元素比(B/X)であるmの値は、4.0≦m≦6.2であることがより好ましい。
 なお、前記(B/X)の値が4.0以上の場合、XBや、XB等の生成を抑制することができ、理由は明らかではないが、日射遮蔽特性を向上させることができる。また、上記(B/X)の値が6.2以下の場合には、特に日射遮蔽特性に優れた六ホウ化物の含有割合を増加させることが出来、日射遮蔽特性が向上するため好ましい。
 上述したホウ化物の中でもXBは、特に近赤外線の吸収能が高いことから、本発明に係るホウ化物粒子はXBが主体になっていることが好ましい。
 このため、一般式XBmで表される本発明に係るホウ化物粒子において、金属元素(X)に対するホウ素(B)の元素比(B/X)であるmの値は、5.8≦m≦6.2であることがさらに好ましい。
 なお、ホウ化物粒子を製造した場合、得られるホウ化物粒子を含む粉体は、単一の組成のホウ化物の粒子のみから構成されるものではなく、複数の組成のホウ化物を含む粒子とすることができる。具体的には、例えばXB、XB、XB12等のホウ化物の混合物の粒子とすることができる。
 従って、例えば、代表的なホウ化物粒子である六ホウ化物の粒子についてX線回折の測定を行った場合、X線回折の分析上は単一相であっても、実際には微量に他相を含んでいると考えられる。
 そこで、本発明に係るホウ化物粒子の一般式XBmにおけるmの値は、例えば、得られたホウ化物粒子を含む粉体をICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)等により化学分析した場合における、X元素1原子に対するホウ素(B)の原子数比とすることができる。
 一方、本発明に係るホウ化物粒子の金属元素(X)は、特に限定されるものではなく、例えばY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caから選ばれる1種類以上の金属元素とすることができる。
 ただし、ランタンの六ホウ化物である、六ホウ化ランタンは特に近赤外線の吸収能が高い。そこで、本発明に係るホウ化物粒子は、六ホウ化ランタン粒子を含むことが好ましい。
 ここで、六ホウ化物粒子等のホウ化物粒子は、暗い青紫等に着色した粉末であるが、粒径が可視光波長に比べて十分小さくなるように粉砕し、所定の膜中に分散した状態においては、当該膜に可視光透過性が生じる。同時に、当該膜に赤外線遮蔽機能が発現し赤外線遮蔽膜となる。
 当該ホウ化物粒子に赤外線遮蔽機能が発現する理由については詳細に解明されていない。しかし、これらのホウ化物材料は自由電子を比較的多く保有し、4f-5d間のバンド間遷移や、電子-電子、電子-フォノン相互作用による吸収が近赤外領域に存在することに由来すると考えられる。
 本発明らの検討によると、これらのホウ化物粒子を十分細かくかつ均一に分散させた赤外線遮蔽膜では、膜の透過率が、波長400nm以上700nm以下の領域内に極大値をもち、かつ波長700nm以上1800nm以下の領域に極小値をもつことが確認される。可視光の波長が380nm以上780nm以下であり、視感度が波長550nm付近をピークとする釣鐘型であることを考慮すると、このような膜では可視光を有効に透過し、それ以外の日射光を有効に吸収・反射することが理解できる。
 本発明に係るホウ化物粒子の平均分散粒子径は100nm以下であることが好ましく、85nm以下であることがより好ましい。なお、ここでいう平均分散粒子径とは動的光散乱法に基づく粒径測定装置により測定することができる。
 ホウ化物粒子の平均分散粒子径の下限値は特に限定されないが、例えば1nm以上であることが好ましい。これは、ホウ化物粒子の平均分散粒子径が1nm以上であれば、工業的製造が容易だからである。
 (F)本発明に係るホウ化物系赤外線吸収微粒子の合成方法
 ホウ化物粒子の製造方法としては、得られるホウ化物粒子が一般式XBm(但し、Xは、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caから選ばれる1種類以上の金属元素)で表されるものを製造できる方法であれば、特に限定されない。
 本発明に係るホウ化物粒子の製造方法の一構成例として、例えば、炭素または炭化ホウ素を還元剤として用いた固相反応法が挙げられる。
 以下、金属元素としてランタンを用いた場合を例に、ホウ化物粒子の製造方法について説明する。
 例えば、金属元素としてランタンを用いたホウ化物粒子は、ホウ素源と、還元剤と、ランタン源との混合物を焼成することによって製造できる。
 具体的には、例えば、ホウ素源および還元剤として炭化ホウ素を、ランタン源として酸化ランタンを用いて、ホウ化ランタン粒子を製造する場合、まず炭化ホウ素と、酸化ランタンとの原料混合物を調製する。次いで、当該原料混合物を不活性雰囲気中で1500℃以上の温度で焼成すると、炭化ホウ素中の炭素によってランタン酸化物が還元され、一酸化炭素および二酸化炭素が発生して炭素は除去される。さらに、残ったランタンとホウ素からホウ化ランタンが得られる。
 なお、炭化ホウ素由来の炭素は、一酸化炭素及び二酸化炭素として完全に除去されるのではなく、一部がホウ化ランタン粒子中に残留して不純物炭素となる。そのため、原料中の炭化ホウ素の割合を抑制することで、得られるホウ化ランタン粒子中の不純物炭素濃度を抑制することが出来好ましい。
 上述したように、得られるホウ化物粒子を含む粉体は、単一の組成のホウ化物の粒子のみから構成されるものではなく、LaB、LaB、LaB12等との混合物の粒子となる。従って、得られるホウ化物粒子を含む粉体についてX線回折の測定を行った場合、X線回折結果の分析上、ホウ化物について単一相であっても、実際には微量に他相を含んでいると考えられる。
 ここで、上述のように金属元素としてランタンを用いたホウ化物粒子を製造する場合、原料のホウ素源中のホウ素、及びランタン源中のランタンの元素比B/Laの値は、特に限定されるものではないが、3.0以上20.0以下であることが好ましい。
 特に、原料のホウ素源中のホウ素、及びランタン源中のランタン元素の元素比B/Laが4.0以上の場合、LaB、LaB等の生成を抑制できる。また、理由は明らかではないが、日射遮蔽特性を向上することが出来好ましい。
 一方、原料のホウ素源中のホウ素、及びランタン源中のランタンの元素比B/Laの値が6.2以下の場合、ホウ化物粒子以外に酸化ホウ素粒子が生成することが抑制される。酸化ホウ素粒子は吸湿性があるため、ホウ化物粒子を含む粉体中における酸化ホウ素粒子量を低減することで、ホウ化物粒子を含む粉体の耐湿性が向上し、日射遮蔽特性の経時劣化が抑制され好ましい。
 このため、原料のホウ素源中のホウ素、およびランタン源中のランタンの元素比B/Laの値を6.2以下として酸化ホウ素粒子の生成を抑制することが好ましい。また、元素比B/Laの値が6.2以下の場合には、特に日射遮蔽特性に優れた六ホウ化物の含有割合を増加させることができ、日射遮蔽特性が向上するため好ましい。
 さらに不純物炭素濃度を低減するためには、可能な限り原料中の炭化ホウ素の割合を低下させることが有効である。そこで、例えばB/Laの値を6.2以下としてホウ化ランタンの粒子を生成することで、より確実に不純物炭素濃度が0.2質量%以下のホウ化ランタンの粒子を含む粉体が得られ好ましい。
 以上説明したように、金属元素としてランタンを用いたホウ化物粒子を製造する場合、ホウ素源中のホウ素、及びランタン源中のランタンの元素比(モル比)B/Laの値は4.0以上6.2以下とすることがより好ましい。原料の組成を上記範囲とすることで、得られるホウ化ランタンの粒子を含む粉体中の不純物濃度を低く抑制すると同時に、高い日射遮蔽特性を示すホウ化ランタン粒子を含有する粉体を得ることが出来好ましい。
 また、得られるホウ化ランタンの粒子は、LaBが主体になっていることが好ましい。これは、LaBは特に近赤外線の吸収能が高いからである。
 このため、原料のホウ素源中のホウ素、および、ランタン源中のランタン元素の元素比B/Laの値は、5.8以上6.2以下であることがさらに好ましい。
 なお、ここでは、ホウ素源及び還元剤として炭化ホウ素を、ランタン源として酸化ランタンを用いて、ホウ化ランタン粒子を製造する場合を例に説明したが、係る形態に限定されるものではない。例えばホウ素源としてホウ素や酸化ホウ素を、還元剤として炭素を、ランタン源として酸化ランタンをそれぞれ用いることもできる。この場合、生成物中に、余剰の炭素や、酸素などの不純物が残留しないように、予備試験等を行い、各成分の混合比率を選択することが好ましい。
 以上、金属元素としてランタンを用いた場合を例に、ホウ化物粒子の製造方法について説明した。
 そして、製造するホウ化物粒子に含有させたい金属元素Xに応じて、酸化ランタンに替えて金属元素Xを含む化合物を用いることもできる。金属元素Xを含む化合物としては例えば、金属元素Xの水酸化物、金属元素Xの水和物、金属元素Xの酸化物から選択された1種類以上が挙げられる。当該金属元素Xを含む化合物の製造方法は特に限定されないが、例えば金属元素Xを含む化合物を含有する溶液と、アルカリ溶液とを撹拌しながら反応させて沈殿物を生成し、当該沈殿物から得ることができる。
 上述のように、酸化ランタンに替えて金属元素Xを含む化合物を用いる場合においても、生成物中に、余剰の炭素や、酸素が残留しないように、予備試験等を行い、各成分の混合比率を選択することが好ましい。例えば、ホウ素源中のホウ素、および金属元素X源中の金属元素Xの元素比を、上述したホウ素源中のホウ素、およびランタン源中のランタン元素の元素比と同様の比とすることもできる。
 得られたホウ化物粒子は、例えば湿式粉砕等を行うことで、所望の平均分散粒子径を有するホウ化物粒子とすることができる。
 (G)複合タングステン酸化物系赤外線吸収微粒子、酸化タングステン系赤外線吸収微粒子、およびホウ化物系赤外線吸収微粒子の混合使用
 上述した、一般式MxWyOzで表記される複合タングステン酸化物系赤外線吸収微粒子、一般式WyOzで表記される酸化タングステン系赤外線吸収微粒子、および一般式XBmで表記されるホウ化物系赤外線吸収微粒子はそれぞれ単独で使用してもよいが、これらの赤外線吸収微粒子から選択される2種類以上の赤外線吸収微粒子を混合して使用することも好ましい構成である。
 これらの赤外線吸収微粒子における赤外線吸収プロファイルの形は互いに異なるので、これらを適宜混合使用することにより、所望の赤外線吸収プロファイルの形を得られる場合があるからである。
 混合方法は公知の方法を用いれば良い。
 (ii)樹脂
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物を構成する樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリスチレン樹脂、ポリイソブチレン樹脂、エポキシ樹脂、ポリイミド樹脂、アイオノマー樹脂、フッ素樹脂、ウレタン樹脂、ABS樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂などが挙げられる。これらの中でも、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリスチレン樹脂、ポリイソブチレン樹脂、フッ素樹脂は特に耐薬品性が高く、好ましい。
 (iii)分散剤
 本発明に係る赤外線吸収微粒子含有マスターバッチ中における赤外線吸収微粒子の分散安定性を一層向上させ、再凝集による分散粒子径の粗大化を回避するために、各種の分散剤、界面活性剤、カップリング剤などの添加も好ましい。当該分散剤、カップリング剤、界面活性剤は用途に合わせて選定可能であるが、アミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として有するものであることが好ましい。これらの官能基は、赤外線吸収微粒子の表面に吸着して凝集を防ぎ、赤外線吸収膜中においても本発明に係る赤外線吸収微粒子を均一に分散させる効果を持つ。これらの官能基のいずれかを分子中にもつ高分子系分散剤がさらに望ましい。
 このような分散剤として、ソルスパース(登録商標)9000、12000、17000、20000、21000、24000、26000、27000、28000、32000、35100、54000、250(日本ルーブリゾール株式会社製)、EFKA(登録商標)4008、4009、4010、4015、4046、4047、4060、4080、7462、4020、4050、4055、4400、4401、4402、4403、4300、4320、4330、4340、6220、6225、6700、6780、6782、8503(エフカアディディブズ社製)、アジスパー(登録商標)PA111、PB821、PB822、PN411、フェイメックスL-12(味の素ファインテクノ株式会社製)、DisperBYK(登録商標)101、102、106、108、111、116、130、140、142、145、161、162、163、164、166、167、168、170、171、174、180、182、192、193、2000、2001、2020、2025、2050、2070、2155、2164、220S、300、306、320、322、325、330、340、350、377、378、380N、410、425、430(ビックケミー・ジャパン株式会社製)、ディスパロン(登録商標)1751N、1831、1850、1860、1934、DA-400N、DA-703-50、DA-725、DA-705、DA-7301、DN-900、NS-5210、NVI-8514L(楠本化成株式会社製)、アルフォン(登録商標)UC-3000、UF-5022、UG-4010、UG-4035、UG-4070(東亞合成株式会社製)が挙げられる。
 (iv)その他の添加剤
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物には、公知の紫外線吸収剤や有機物の公知の赤外線吸収材やリン系の着色防止剤を添加してもよい。また、高分子の単量体を重合させる触媒等を含有してもよい。
 (v)溶媒
 本発明に係る赤外線吸収微粒子含有マスターバッチ製造の際に用いられる溶媒は、特に限定されるものではなく、製造条件、他の添加物等に合わせて適宜選択すればよい。例えば、溶媒は、水、有機溶媒、液状樹脂、媒体樹脂用の液状可塑剤、高分子単量体、または、これらの混合物などである。
 ここで、有機溶媒としては、アルコール系、ケトン系、炭化水素系、グリコール系、水系など、種々のものを選択することが可能である。具体的には、メタノール、エタノール、1-プロパノール、イソプロパノール、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール系溶剤;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶剤;3-メチル-メトキシ-プロピオネートなどのエステル系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテートなどのグリコール誘導体;フォルムアミド、N-メチルフォルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド類;トルエン、キシレンなどの芳香族炭化水素類;エチレンクロライド、クロルベンゼンなどが使用可能である。そして、これらの有機溶媒中でも、特に、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n-ブチルなどが好ましい。
 媒体樹脂用の液状可塑剤としては、有機酸エステル系やリン酸エステル系等に代表される、公知の液状可塑剤を用いることができる。可塑性を備えたマスターバッチを製造する為に用いる赤外線吸収微粒子分散液においては、前記液状可塑剤を液状媒体とすることで、マスターバッチの可塑性を向上させることができるからである。
 ここで、液状可塑剤としては、例えば一価アルコールと有機酸エステルとの化合物である可塑剤や、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられ、いずれも室温で液状であるものが好ましい。なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
 多価アルコールと脂肪酸から合成されたエステル化合物は特に限定されないが、例えば、トリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール等のグリコールと、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシル酸等の一塩基性有機酸との反応によって得られた、グリコール系エステル化合物が挙げられる。また、テトラエチレングリコール、トリプロピレングリコールと、上記一塩基性有機とのエステル化合物等も挙げられる。
 なかでも、トリエチレングリコールジヘキサネート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-オクタネート、トリエチレングリコールジ-2-エチルヘキサノネート等のトリエチレングリコールの脂肪酸エステルが好適である。
 また、高分子単量体とは重合等により高分子を形成する単量体であるが、本発明で用いる好ましい高分子単量体としては、メチルメタクリレート単量体、アクレリート単量体やスチレン樹脂単量体などが挙げられる。
 以上、説明した溶媒は、1種または2種以上を組み合わせて用いることができる。さらに、必要に応じて、これらの溶媒へ酸やアルカリを添加してpH調整してもよい。
 また、マスターバッチを製造する為の赤外線吸収微粒子分散液から溶剤を除去して赤外線吸収微粒子分散粉を得る場合には、120℃以下の沸点を有する有機溶剤を用いることが望ましい。120℃以下の沸点を有する有機溶剤として、具体的にはトルエン、メチルエチルケトン、メチルイソブチルケトン、酢酸ブチル、イソプロピルアルコール、エタノールが挙げられる。
 (3)赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物を製造する際、まず赤外線吸収微粒子分散液を製造し、そこから溶媒を除去して赤外線吸収微粒子分散粉を得る。次に、当該赤外線吸収微粒子分散粉と所定の樹脂とを混錬し、赤外線吸収微粒子を樹脂に分散させた後にペレット状に成形して赤外線吸収微粒子含有マスターバッチを得、得られた赤外線吸収微粒子含有マスターバッチを粉砕して、赤外線吸収微粒子含有マスターバッチ粉砕物を製造する。
 以下、本発明に係る赤外線吸収微粒子分散粉の製造方法について(A)赤外線吸収微粒子分散液、(B)赤外線吸収微粒子分散液の製造方法、(C)溶媒の除去、(D)マスターバッチの製造方法、(E)マスターバッチの粉砕方法、の順に説明する。
 (A)赤外線吸収微粒子分散液
 赤外線吸収微粒子分散液は、上記合成方法で得られた赤外線吸収微粒子と、水、有機溶媒、液状樹脂、プラスチック用の液状可塑剤、高分子単量体またはこれらの混合物から選択される混合スラリーの液状媒体、および適量の分散剤、カップリング剤、界面活性剤等を、媒体攪拌ミルで粉砕、分散させたものである。
 そして、当該溶媒中における当該微粒子の分散状態が良好で、その分散粒子径が1~800nmであることを特徴とする。また、該赤外線吸収微粒子分散液に含有されている赤外線吸収微粒子の含有量が、0.01質量%以上80質量%以下であることが好ましい。
 赤外線吸収微粒子の分散粒子径が、1~800nmであれば、幾何学散乱またはミー散乱によって波長380nm~780nmの可視光線領域の光を散乱することがないので、曇り(ヘイズ)が減少し、可視光透過率の増加を図ることが出来るので好ましい。さらに、レイリー散乱領域では、分散粒子径の減少に伴い散乱光は粒子径の6乗に比例して低減するため、散乱が低減し透明性が向上する。そこで、分散粒子径が200nm以下となると散乱光は非常に少なくなり、ヘイズを抑制できるため、より透明性が増すことになり好ましい。
 ここで、赤外線吸収微粒子分散液中における、当該赤外線吸収微粒子の分散粒子径について簡単に説明する。赤外線吸収微粒子の分散粒子径とは、溶媒中に分散している赤外線吸収微粒子の単体粒子や、当該赤外線吸収微粒子が凝集した凝集粒子の粒子径を意味するものであり、市販されている種々の粒度分布計で測定することができる。例えば、当該赤外線吸収微粒子分散液のサンプルを採取し、当該サンプルを、動的光散乱法を原理とした大塚電子株式会社製ELS-8000やマイクロトラック・ベル株式会社製ナノトラック(登録商標)等を用いて測定することができる。
 (B)赤外線吸収微粒子分散液の製造方法
 赤外線吸収微粒子の分散液への分散方法は、当該微粒子を分散液中において、凝集させることなく均一に分散できる方法であれば特に限定されない。当該分散方法として、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどの装置を用いた粉砕・分散処理方法が挙げられる。その中でも、ビーズ、ボール、オタワサンドといった媒体メディアを用いる、ビーズミル、ボールミル、サンドミル、ペイントシェーカー等の媒体攪拌ミルで粉砕、分散させることは、所望とする分散粒子径に要する時間が短いことから好ましい。
 媒体攪拌ミルを用いた粉砕・分散処理によって、赤外線吸収微粒子の分散液中への分散と同時に、赤外線吸収微粒子同士の衝突や媒体メディアの該微粒子への衝突などによる微粒子化も進行し、赤外線吸収微粒子をより微粒子化して分散させることができる(即ち、粉砕・分散処理される。)。
 赤外線吸収微粒子を可塑剤へ分散させる際、所望により、さらに120℃以下の沸点を有する有機溶剤を添加することも好ましい構成である。
 120℃以下の沸点を有する有機溶剤として、具体的にはトルエン、メチルエチルケトン、メチルイソブチルケトン、酢酸ブチル、イソプロピルアルコール、エタノールが挙げられる。尤も、沸点が120℃以下で赤外線吸収機能を発揮する微粒子を均一に分散可能なものであれば、任意に選択できる。
 (C)溶媒の除去
 マスターバッチの製造工程において、前記赤外線吸収微粒子分散液に含まれる溶媒を、当該マスターバッチに残留が許容される量まで除去してしまうのは好ましい構成である。また、マスターバッチの製造工程において、媒体樹脂と混合される赤外線吸収微粒子として、赤外線吸収微粒子分散液から液状媒体を除去して得られる赤外線吸収微粒子分散粉を用いることも好ましい。尚、前記赤外線吸収微粒子分散液から溶媒を除去する方法としては、赤外線吸収微粒子分散液を減圧乾燥することが好ましい。具体的には、赤外線吸収微粒子分散液を撹拌しながら減圧乾燥し、赤外線吸収微粒子含有組成物と溶媒成分とを分離する。溶媒除去工程の減圧の際の圧力値は適宜選択される。
 当該減圧乾燥法を用いることで、赤外線吸収微粒子分散液からの溶媒の除去効率が向上するとともに、本実施形態に係る赤外線吸収微粒子分散粉が長時間高温に曝されることがないので、当該分散粉中に分散している赤外線吸収微粒子の凝集が起こらず好ましい。さらに赤外線吸収微粒子分散粉の生産性も上がり、蒸発した溶媒を回収することも容易で、環境的配慮からも好ましい。
 当該溶媒除去工程後に得られた本実施形態に係る赤外線吸収微粒子分散粉において、残留する有機溶媒は5質量%以下であることが好ましい。残留する有機溶媒が5質量%以下であれば、当該赤外線吸収微粒子分散粉を、赤外線吸収微粒子含有マスターバッチに加工した際に気泡が発生せず、最終的に得られる赤外線吸収微粒子含有マスターバッチ粉砕物にも気泡が含まれないことから、耐薬品性の観点から好ましい。
 溶媒除去工程に用いる設備としては、加熱および減圧が可能で、当該分散粉の混合や回収がし易いという観点から、真空流動乾燥機、振動流動乾燥機等が好ましいが、これらに限定されない。
 (D)マスターバッチの製造方法
 本発明に係る赤外線吸収微粒子含有マスターバッチは、本発明に係る赤外線吸収微粒子を、上述した所定の樹脂中に分散させた後、当該樹脂をペレット化することで得られる。
 具体的には、上述した赤外線吸収微粒子分散液や赤外線吸収微粒子分散粉と、上述した所定の媒体樹脂の粉粒体またはペレットと、必要に応じて他の添加剤とを均一に混合したのち、ベント式一軸若しくは二軸の押出機で混練する。そして、一般的な溶融押出された混錬物をカットする方法によりペレット状に加工することによって、マスターバッチを得られる。この場合、マスターバッチの形状として円柱状や角柱状のものを挙げることができる。また、溶融押出物を直接カットするいわゆるホットカット法を採ることも可能である。この場合、マスターバッチは、球状に近い形状とすることが一般的である。
 (E)マスターバッチの粉砕方法
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物は、上述した赤外線吸収微粒子含有マスターバッチを粉砕機によって粉砕することで得られる。粉砕機としては、カッティングミル、ロールミル、高速回転式粉砕機(ピンミル、ハンマーミル、スクリューミル)、振動ミル、ナックルタイプ粉砕機、ロールグラニュレーター、円筒型ミキサー等が挙げられる。これらは必要に応じて併用される。これらの粉砕機によって、赤外線吸収微粒子含有マスターバッチ粉砕物において、より好ましい範囲である分散粒子径200μm以下を達成することが出来る。
 また、粉砕速度の向上と更なる微粒化の観点から、赤外線吸収微粒子含有マスターバッチを、まず上述した粉砕機によって分散粒子径200μm以上5mm以下程度の粗粉砕物に粗粉砕し、得られた粗粉砕物を更に微粉砕機で微粉砕することも望ましい粉砕方法である。微粉砕機としては、例えば、超音速ジェット気流を利用するジェット式粉砕機や、高速で回転する回転子(ロータ)と固定子(ライナ)との間に形成される空間に粗粉砕物を導入して粉砕する衝撃式粉砕機等などが挙げられる。これらの微粉砕機によって分散粒子径200μm以下を達成することが出来るだけでなく、分散粒子径15μm以下にまで微粉砕することも可能である。
 他にも、液体窒素等の寒剤を用いた凍結粉砕法によって、赤外線吸収微粒子含有マスターバッチを微粉砕することも望ましい粉砕方法である。上述した赤外線吸収微粒子含有マスターバッチ中の赤外線吸収微粒子の分散濃度は必ずしも高くなく、20wt%以下である場合が多い。この場合、マスターバッチの主成分は樹脂となるため、常温では機械的な粉砕がしづらいが、液体窒素等の寒剤を用いた凍結粉砕機によって容易に微粉砕することが出来る。樹脂温度が低いほど凍結粉砕機で微粉砕し易く、好ましくは約-75℃以下、好ましくは約-150℃以下、さらに好ましくは約-170℃以下、さらに一段と好ましくは約-190℃以下の温度で微粉砕することで、より微細なマスターバッチ粉砕物が得られる。また、専用の凍結粉砕機を用いずとも低温粉砕することは可能であり、例えば、マスターバッチを液体窒素中に浸して-196℃に冷却し、次いで、マスターバッチを少量ずつ粉砕機の開口に迅速に移送すればよい。凍結粉砕法によって分散粒子径5μm以下にまで微粉砕することが可能となる。
[2]赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液(粉砕物含有分散液)および赤外線吸収材料含有インク(赤外線吸収インク)
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物を、上述した建築資材、農林水産業の資材、被印刷資材等の所望の基材へ塗布等して使用する際、粉砕物含有分散液や赤外線吸収インクとして使用することが便宜である。そこで、(1)赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液(粉砕物含有分散液)、(2)赤外線吸収材料含有インク(赤外線吸収インク)、の順に説明する。
 (1)赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液(粉砕物含有分散液)
 本発明に係る粉砕物含有分散液は、赤外線吸収微粒子含有マスターバッチ粉砕物を、該赤外線吸収微粒子含有マスターバッチ粉砕物を溶解しない溶媒へ分散することで、適宜、調製することが出来る。
 粉砕物含有分散液に用いられる溶媒は特に限定されるものではなく、赤外線吸収微粒子含有マスターバッチ粉砕物を溶解しないことと、当該粉砕物含有分散液の塗布条件、塗布環境、および、適宜添加される無機バインダーや樹脂バインダーなどに合わせて適宜選択すればよい。例えば、液状溶媒は、水、有機溶媒、油脂、液状樹脂、樹脂用の液状可塑剤、高分子単量体、または、これらの混合物などである。
 以下、本発明に係る粉砕物含有分散液について(A)溶媒、(B)分散剤、(C)分散方法、(D)バインダー、その他の添加剤、の順に説明する。
 (A)溶媒
 ここで、有機溶媒としては、アルコール系、ケトン系、炭化水素系、グリコール系、水系など、種々のものを選択することが可能である。具体的には、メタノール、エタノール、1-プロパノール、イソプロパノール、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール系溶剤;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶剤;3-メチル-メトキシ-プロピオネートなどのエステル系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテートなどのグリコール誘導体;フォルムアミド、N-メチルフォルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド類;トルエン、キシレンなどの芳香族炭化水素類;エチレンクロライド、クロルベンゼンなどが使用可能である。
 油脂としては、植物油脂または植物由来油脂が好ましい。植物油としては、アマニ油、ヒマワリ油、桐油、エノ油等の乾性油、ゴマ油、綿実油、菜種油、大豆油、米糠油、ケシ油等の半乾性油、オリーブ油、ヤシ油、パーム油、脱水ヒマシ油等の不乾性油が用いられる。植物油由来の化合物としては、植物油の脂肪酸とモノアルコールを直接エステル反応させた脂肪酸モノエステル、エーテル類などが用いられる。また、市販の石油系溶剤も油脂として用いることができ、アイソパーE、エクソールHexane、エクソールHeptane、エクソールE、エクソールD30、エクソールD40、エクソールD60、エクソールD80、エクソールD95、エクソールD110、エクソールD130(以上、エクソンモービル製)等を挙げることができる。
 液状可塑剤としては、有機酸エステル系やリン酸エステル系等に代表される、公知の液状可塑剤を用いることができる。例えば、一価アルコールと有機酸エステルとの化合物である可塑剤や、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられ、いずれも室温で液状であるものが好ましい。なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
 多価アルコールと脂肪酸から合成されたエステル化合物は特に限定されないが、例えば、トリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール等のグリコールと、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシル酸等の一塩基性有機酸との反応によって得られた、グリコール系エステル化合物が挙げられる。また、テトラエチレングリコール、トリプロピレングリコールと、上記一塩基性有機とのエステル化合物等も挙げられる。
 なかでも、トリエチレングリコールジヘキサネート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-オクタネート、トリエチレングリコールジ-2-エチルヘキサノネート等のトリエチレングリコールの脂肪酸エステルが好適である。
 また、高分子単量体は重合等により高分子を形成する単量体であるが、本発明で用いる好ましい高分子単量体としては、メチルメタクリレート単量体、アクレリート単量体やスチレン樹脂単量体などが挙げられる。 
 以上、説明した液状溶媒は、1種または2種以上を組み合わせて用いることができる。さらに、必要に応じて、これらの液状溶媒へ酸やアルカリを添加してpH調整してもよい。
 (B)分散剤
 さらに、粉砕物含有分散液中における赤外線吸収微粒子含有マスターバッチ粉砕物の分散安定性を一層向上させ、再凝集による分散粒子径の粗大化を回避するために、分散剤として、各種の界面活性剤、カップリング剤などの添加も好ましい。当該カップリング剤、界面活性剤は用途に合わせて選定可能であるが、アミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として有するものであることが好ましい。これらの官能基は、赤外線吸収微粒子含有マスターバッチ粉砕物の表面に吸着して凝集を防ぎ、粉砕物含有分散液中においても本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物を均一に分散させる効果を持つ。これらの官能基のいずれかを分子中にもつ高分子系分散剤がさらに望ましい。
 このような分散剤として、ソルスパース(登録商標)9000、12000、17000、20000、21000、24000、26000、27000、28000、32000、35100、54000、250(日本ルーブリゾール株式会社製)、EFKA(登録商標)4008、4009、4010、4015、4046、4047、4060、4080、7462、4020、4050、4055、4400、4401、4402、4403、4300、4320、4330、4340、6220、6225、6700、6780、6782、8503(エフカアディディブズ社製)、アジスパー(登録商標)PA111、PB821、PB822、PN411、フェイメックスL-12(味の素ファインテクノ株式会社製)、DisperBYK(登録商標)101、102、106、108、111、116、130、140、142、145、161、162、163、164、166、167、168、170、171、174、180、182、192、193、2000、2001、2020、2025、2050、2070、2155、2164、220S、300、306、320、322、325、330、340、350、377、378、380N、410、425、430(ビックケミー・ジャパン株式会社製)、ディスパロン(登録商標)1751N、1831、1850、1860、1934、DA-400N、DA-703-50、DA-725、DA-705、DA-7301、DN-900、NS-5210、NVI-8514L(楠本化成株式会社製)、アルフォン(登録商標)UC-3000、UF-5022、UG-4010、UG-4035、UG-4070(東亞合成株式会社製)が挙げられる。
 (C)分散方法
 粉砕物含有分散液への赤外線吸収微粒子含有マスターバッチ粉砕物の分散方法は、当該赤外線吸収微粒子含有マスターバッチ粉砕物を粉砕物含有分散液中において、凝集させることなく均一に分散できる方法であれば特に限定されない。当該分散方法として、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどの装置を用いた粉砕・分散処理方法が挙げられる。その中でも、ビーズ、ボール、オタワサンドといった媒体メディアを用いる、ビーズミル、ボールミル、サンドミル、ペイントシェーカー等の媒体攪拌ミルで粉砕、分散させることは、所望とする分散粒子径に要する時間が短いことから好ましい。
 ただし、媒体メディア(ビーズ、ボール、オタワサンド)を用いるビーズミル、ボールミル、サンドミル、ペイントシェーカー等の媒体攪拌ミルでの粉砕、分散は適度なものとする。この結果、粉砕物含有分散液中において、候耐薬品性の樹脂が溶解したり、分散粉が微粒化したりして、耐薬品性が担保出来なくなる事態を回避できる。
 赤外線吸収微粒子含有マスターバッチ粉砕物を可塑剤へ分散させる際、所望により、さらに120℃以下の沸点を有する有機溶剤を添加することも好ましい構成である。120℃以下の沸点を有する有機溶剤として、具体的にはトルエン、メチルエチルケトン、メチルイソブチルケトン、酢酸ブチル、イソプロピルアルコール、エタノールが挙げられる。尤も、沸点が120℃以下で赤外線吸収機能を発揮する微粒子を均一に分散可能なものであれば、任意に選択できる。
 (D)バインダー、その他の添加剤
 粉砕物含有分散液には、適宜、樹脂バインダーから選ばれる1種以上を含有させることができる。当該粉砕物含有分散液に含有させる樹脂バインダーの種類は特に限定されるものではないが、樹脂バインダーとしては、アクリル樹脂などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂などが適用できる。
 また、粉砕物含有分散液の色調を調整する為に、カーボンブラックや弁柄等の公知の無機顔料や公知の有機顔料も添加できる。さらに、粉砕物含有分散液には、公知の紫外線吸収剤や有機物の公知の赤外線遮蔽材やリン系の着色防止剤を添加してもよい。
 (2)赤外線吸収材料含有インク(赤外線吸収インク)
 本発明に係る赤外線吸収インクは、赤外線吸収微粒子含有マスターバッチ粉砕物と、有機バインダーまたはエネルギー線で硬化する樹脂の液状の未硬化物から選択される1種以上とを含む。ここで、有機バインダーとは、上述した粉砕物含有分散液に使用出来る溶媒に溶解する樹脂である。また、エネルギー線で硬化する樹脂の液状の未硬化物とは、紫外線硬化樹脂や電子線硬化樹脂や熱硬化樹脂の未硬化物である。エネルギー線で硬化する樹脂の液状の未硬化物を用いる場合は、さらに硬化剤や硬化促進剤などを添加することができる。
 赤外線吸収インクへは、上述した粉砕物含有分散液に添加出来る溶媒を加えることができる。但し、当該添加出来る溶媒は、有機バインダーまたはエネルギー線で硬化する樹脂の液状の未硬化物と、分離しないことが肝要である。
 赤外線吸収インクへは、上述した粉砕物含有分散液と同様に、色調を調整する為に、カーボンブラックや弁柄等の公知の無機顔料や公知の有機顔料も添加できる。
 本発明に係る赤外線吸収インクは、上述した粉砕物含有分散液と同様な方法で製造することができる。
[3]偽造防止インクおよび偽造防止用印刷物
 本発明に係る偽造防止インクは、上述した赤外線吸収微粒子含有マスターバッチ粉砕物を、溶媒、所望の有機バインダーや、エネルギー線で硬化する樹脂の液状の未硬化物、適宜添加される、重合開始剤、さらに顔料、染料から選択される1種以上、さらに所望の各種添加剤と混合したものである。また、本発明に係る偽造防止インクを、所望の被印刷基材に印刷することで、偽造防止用印刷物を得ることができる。また、エネルギー線で硬化する偽造防止インクを得たい場合は、エネルギー線の照射を受けて液状の未硬化物が硬化する有機バインダーを用いる。
 そこで、偽造防止インクおよび偽造防止用印刷物について、(1)偽造防止インク(2)偽造防止用印刷物、の順に説明する。
 (1)偽造防止インク
 上述した赤外線吸収微粒子含有マスターバッチ粉砕物を分散させた本発明に係る偽造防止インクは、可視光領域の吸収が少なく、且つ赤外線領域に吸収をもつため、その印刷面に赤外線レーザーを照射したとき特定の波長を吸収する。従って、この偽造防止インクを被印刷基材の片面又は両面に印刷した印刷物は、特定波長の赤外線を照射してその反射若しくは透過を読み取ることによって、反射量又は透過量の違いから、印刷物の真贋を判定することができる。さらに、耐薬品性に優れるため、例えば該印刷物が洗濯機の中で高温のアルカリ性の洗剤液と混合されても、赤外線吸収微粒子が溶解せずに偽造防止としての機能が保持される。
 また、本発明に係る偽造防止インクは、マスターバッチ粉砕物中に分散している赤外線吸収微粒子が十分な厚さの耐薬品性の高い樹脂で覆われているため、高温のアルカリ液に浸漬しても赤外線吸収微粒子が溶解しない。つまり、優れた耐薬品性を保持している。
 ここで、前記赤外線吸収微粒子含有マスターバッチ粉砕物の分散粒子径が200μm以下であれば、後工程で偽造防止印刷膜を作製した際に、凹凸の少なく、表面が滑らかな印刷膜を作製できる。平滑性の観点から、マスターバッチ粉砕物の分散粒子径は小さいほど良い。分散粒子径は、好ましくは100μm以下、より好ましくは50μm以下である。
 また、赤外線吸収微粒子含有マスターバッチ粉砕物の分散粒子径が1μm未満になると、赤外線吸収微粒子を覆う樹脂層が薄くなり、耐薬品性が低下する。よって、赤外線吸収微粒子含有マスターバッチ粉砕物の分散粒子径は1μm以上である必要がある。
 本発明に係る偽造防止インクは、前記赤外線吸収微粒子含有マスターバッチ粉砕物を含有する。その結果、可視光領域に透過率のピークを持つため着色が少なく、同時に赤外線領域に透過率のボトム(吸収ピーク)がある。この為、本発明に係る偽造防止インク用組成物を印刷した印刷物から、その情報を赤外線センサーで読み取ることにより、その情報を用いて印刷物の真贋を判定することが可能である。
 本発明に係る偽造防止インクについて、(A)偽造防止インクの成分、(B)偽造防止インクの製造方法、の順に説明する。
 (A)偽造防止インクの成分
 偽造防止インクには、赤外線を透過する着色顔料を含ませることも出来る。このような着色顔料を含むことによって、人の目に感じる可視光領域では着色顔料と同等の色を呈するが、赤外線領域では特徴的な吸収を持つ着色した偽造防止インクおよびその偽造防止用印刷物を得ることができる。尚、この着色した偽造防止インクは、可視光領域における吸収が少ないため、着色顔料の色調は保持される。また当該着色顔料として、蛍光材料やパール顔料などを添加しても良い。
 また例えば、赤外線を透過する着色顔料として黒色顔料を混合した偽造防止インクは、黒色顔料のみを含む黒色インクと比較すると、人の目には同等の黒色として認識されるが、赤外線を照射して比較すると異なる透過プロファイルを有することが読み取れる。従って、この黒色の偽造防止インクを用いた印刷物、例えばバーコード印刷した印刷物は、近赤外吸収材料を含まない通常の黒色インクをダミーとして印刷することで、更に複雑で高度な偽造防止が可能となる。
 また、本発明の偽造防止インクを被印刷基材の片面又は両面に印刷した印刷物の印刷膜上に、黒色顔料その他の赤外線と透過する着色顔料を用いた着色インクを塗布又は印刷して偽造防止用印刷物とすることもできる。この偽造防止用印刷物は、人の目には黒又はその他に着色されて認識されるが、その同じ領域に赤外線でのみ読み取れる文字や記号等が隠れて印刷されているため、赤外線を照射することによって印刷物の真贋を判定することができる。
 このような着色顔料としては、赤外線を透過する黒色顔料が好ましい。また、黒色顔料の好ましい具体例としては、Cu-Fe-Mn、Cu-Cr、Cu-Cr-Mn、Cu-Cr-Mn-Ni、Cu-Cr-Fe、Co-Cr-Fe等の複合酸化物、あるいはチタンブラック、窒化チタン、酸窒化チタン、暗色アゾ顔料、ペリレンブラック顔料、アニリンブラック顔料、カーボンブラックを挙げることができる。偽造防止インク中における黒色顔料の分散粒子径は、赤外線吸収微粒子と同様に800nm以下、さらには200nm以下が好ましい。その理由は、上述した赤外線吸収微粒子の場合と同様である。
 また、黒色顔料の分散粒子径を小さくすることで色調に深みが現れ、意匠的に好まれやすい。さらに、微細な印刷を必要とする場合は、着色顔料の分散粒子径を小さくすることで光の散乱が少なくなるため、印刷パターンの輪郭が明瞭になり好ましい。
 また、本発明に係る偽造防止インクは、必要に応じて、グラビアインク、スクリーンインク、オフセットインク、溶融熱転写インク、凹版インク、インクジェットインク、フレキソインク等、印刷方法に応じた一般的な配合とすることが可能であり、また、可塑剤、酸化剤防止剤、増粘剤、ワックス等の添加剤を含ませることができる。
 (B)偽造防止インクの製造方法
 本発明に係る偽造防止インクは、赤外線吸収微粒子含有マスターバッチ粉砕物および必要に応じて着色顔料を、溶媒中に分散させることで製造される。
 このとき、耐薬品性を維持するため、含有マスターバッチ粉砕物中の高耐薬品性の樹脂を溶解させることなく、また、含有マスターバッチ粉砕物を微粒化させることなく、含有マスターバッチ粉砕物を均一に溶媒中に分散させることが求められる。そこで、溶媒としては、上述したように、水、エタノール等のアルコール類、メチルエチルケトン等のケトン類、トルエン、キシレン、植物油や植物油由来等の化合物、石油系溶媒から選択される1種類以上からなる溶媒が好ましく用いられる。
 植物油としては、アマニ油、ヒマワリ油、桐油等の乾性油、ゴマ油、綿実油、菜種油、大豆油、米糠油等の半乾性油、オリーブ油、ヤシ油、パーム油、脱水ヒマシ油等の不乾性油が用いられる。植物油由来の化合物としては、植物油の脂肪酸とモノアルコールを直接エステル反応させた脂肪酸モノエステル、エーテル類などが用いられる。石油系溶媒としては、アニリン点の高いアイソパーE、エクソールHexane、エクソールHeptane、エクソールE、エクソールD30、エクソールD40、エクソールD60、エクソールD80、エクソールD95、エクソールD110、エクソールD130(以上、エクソンモービル製)などが用いられる。
 これらの溶媒は、偽造防止インクの使用目的に応じて選択することが可能である。なかでも、植物油や植物油由来の化合物が好ましい。これは、植物油や植物油由来の化合物は、印刷設備のゴム部品を浸食しないからである。また、植物油や植物油由来の化合物の代わりに石油系溶媒を使用する場合は、印刷設備のゴム部品を浸食しないようなアニリン点の高いものが好ましい。
 当該溶媒へ、赤外線吸収微粒子および必要に応じて着色顔料を分散させる方法としては、特に限定されないが、超音波や媒体撹拌ミル等を使用すれば、ある程度粒子をほぐして微細化することができるので好ましい。もちろん、あらかじめ作成した赤外線吸収微粒子分散粉含有分散液、赤外線吸収インクを偽造防止インクに加工してもよい。
 赤外線吸収微粒子含有マスターバッチ粉砕物を、溶媒やエネルギー線で硬化する樹脂の液状の未硬化物へ分散して偽造防止インクを得る方法は、当該微粒子含有マスターバッチ粉砕物を溶媒中において、含有マスターバッチ粉砕物中の高耐薬品性の樹脂を溶解させることなく、また、含有マスターバッチ粉砕物を微粒化させることなく、含有マスターバッチ粉砕物を均一に分散できる方法であれば特に限定されない。当該分散方法として、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどの装置を用いた粉砕・分散処理方法が挙げられる。ただし、媒体メディア(ビーズ、ボール、オタワサンド)を用いるビーズミル、ボールミル、サンドミル、ペイントシェーカー等の媒体攪拌ミルで粉砕、分散は適度なものとする。この結果、粉砕物含有分散液中において、候耐薬品性の樹脂が溶解したり、分散粉が微粒化したりして、耐薬品性が担保出来なくなる事態を回避できる。
 (2)偽造防止用印刷物
 本発明に係る偽造防止インクを、被印刷基材の表面に通常の方法により塗布又は印刷することにより、本発明に係る偽造防止用印刷物を得ることができる。その場合、本発明に係る偽造防止インクは、溶媒を蒸発などにより除去して被印刷基材の表面に固着させたり、エネルギー線の照射によってエネルギー線で硬化する樹脂の液状の未硬化物を硬化させて被印刷基材に固着させたりすることで偽造防止用印刷物を形成する。
 また、上述した本発明に係る偽造防止インクがバインダーを含まない場合には、被印刷基材に塗布又は印刷し、溶媒を蒸発させることで印刷膜が得られる。ただし、この場合には、印刷膜の剥離や微粒子の脱落を防止するため、当該印刷膜の上へ、透明樹脂からなるカバー層を設けることが好ましい。
 本発明に係る偽造防止用印刷物中における赤外線吸収微粒子の含有量は、目的とする用途に応じて変更可能であるが、通常は0.05g/m以上が好ましい。0.05g/m以上の含有量があれば赤外線領域の吸収が顕著に表れ、偽造防止用印刷物として機能する。また、含有量の上限は特に限定されないが、5g/m以下であれば可視光領域の光を大幅に吸収してしまうことがないため、透明性を維持する観点から好ましい。尚、上記赤外線吸収微粒子の含有量は、全てのフィラーが印刷面に入射する光線に対して同等に作用するため、被印刷膜の1m当たりの含有量で評価することができる。
 偽造防止インクを印刷するための被印刷基材は、目的とする用途にあったものを使用すればよく、紙の他に、樹脂とパルプの混合物、樹脂フィルム等を用いることができる。また、シール上に本発明に係る偽造防止インクで印刷し、このシールを被印刷基材に貼付してもかまわない。
 このようにして作製した本発明に係る偽造防止用印刷物は、コピー等では複製が不可能であって、目視判定によらず、赤外線を照射し且つその反射又は透過を検出することによって機械的に確実に、真贋の判定を行うことができる。しかも、赤外線吸収微粒子として複合タングステン酸化物または/およびタングステン酸化物という無機微粒子を用い、これを印刷法により被印刷基材に適用するため、耐候性と耐光性に優れ、安価な偽造防止用印刷物を提供することができる。さらに、耐薬品性に優れるため、例えば該印刷物が洗濯機の中で高温のアルカリ性の洗剤液と混合されても、赤外線吸収微粒子が溶解せずに偽造防止としての機能が保持される。
 本発明に係る赤外線吸収微粒子含有マスターバッチ粉砕物は、耐薬品性に優れることから、アルカリや酸などの薬液、さらには、酸性雨等の耐環境にも耐えることができる。その為、本発明に係る赤外線吸収微粒子分散粉を、衣類等の繊維、屋外の窓や建築物の外壁等の構造物、農林水産業の資材に塗布したり又は練り込むなどして組み込むことで、赤外線吸収による赤外線遮蔽や赤外線吸収による光熱変換などに活用することもできる。
 以下、実施例を参照しながら本発明を具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
 尚、実施例および比較例における分散液の分散粒子径は、動的光散乱法に基づく粒径測定装置(大塚電子株式会社製ELS-8000)により測定した平均値をもって示した。また、実施例および比較例におけるマスターバッチ粉砕物および赤外線吸収微粒子分散粉の分散粒子径は、レーザー回折・散乱法に基づく粒子径分布測定装置日機装株式会社製マイクロトラック(登録商標)HRAで体積累積粒度のメジアン値として測定した。
 また、実施例および比較例における印刷膜の光学特性は、分光光度計(日立製作所株式会社製U-4100)を用いて測定し、可視光透過率と日射透過率とは、JISR3106に従って算出した。
[実施例1]
 水6.70kgに、炭酸セシウム(CsCO)7.43kgを溶解して、溶液を得た。当該溶液を、タングステン酸(HWO)34.57kgに添加して十分撹拌混合した後、撹拌しながら乾燥した(WとCsとのモル比が1:0.33相当である。)。当該乾燥物を、Nガスをキャリア-とした5体積%Hガスを供給しながら加熱し、800℃の温度で5.5時間焼成した、その後、当該供給ガスをNガスのみに切り替えて、室温まで降温してCsタングステン酸化物粒子を得た。
 当該Csタングステン酸化物粒子20質量%と、トルエン75重量部と、ポリアクリレート系高分子樹脂(以下、本実施例、比較例において「樹脂a」と記載する。)5重量部とを混合し、30kgのスラリーを調製した。このスラリーをビーズと共に媒体攪拌ミルに投入し、10時間粉砕分散処理を行った。尚、媒体攪拌ミルは横型円筒形のアニュラータイプ(アシザワ株式会社製)を使用し、ベッセル内壁とローター(回転攪拌部)の材質はジルコニアとした。また、ビーズには、直径0.1mmのYSZ(Yttria-Stabilized Zirconia:イットリア安定化ジルコニア)製のビーズを使用した。ローターの回転速度は14rpm/秒とし、スラリー流量3kg/minにて粉砕分散処理を行い、実施例1に係る赤外線吸収微粒子分散液を得た。
 実施例1に係る赤外線吸収微粒子分散液の分散粒子径を、動的光散乱法に基づく粒径測定装置を用いて測定したところ70nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドは、トルエンを用いて測定し、溶媒屈折率は1.50とした。
 実施例1に係る赤外線吸収微粒子分散液へさらに樹脂aを添加し、樹脂aと赤外線吸収微粒子(Csタングステン酸化物微粒子)との重量比[樹脂a/赤外線吸収微粒子]が4となるように調整した。得られた調整液からユニバーサルミキサーを用いてトルエンを除去し、実施例1に係る赤外線吸収微粒子分散粉を得た。
 実施例1に係る赤外線吸収微粒子分散粉とポリプロピレン樹脂を、赤外線吸収微粒子の濃度が5.0wt%になるようにドライブレンドした。得られた混合物を押し出し機に投入して溶融混合し、ストランドを得た。その後、ストランドを裁断機にかけてペレット状の実施例1に係る赤外線吸収微粒子含有マスターバッチを得た。
 実施例1に係る赤外線吸収微粒子含有マスターバッチをハンマーミルによって粉砕し、実施例1に係る赤外線吸収微粒子含有マスターバッチ粉砕物を得た。当該赤外線吸収微粒子含有マスターバッチ粉砕物の分散粒子径を求めたところ45μmであった。
 得られた実施例1に係る赤外線吸収微粒子含有マスターバッチ粉砕物50gと、紫外線硬化樹脂UV3701(東亞合成(株)製)50gとを、よく混合して実施例1に係る偽造防止インクを得た。
 被印刷基材として厚さ50μmの透明PETフィルムを使用し、その表面へ実施例1に係る偽造防止インクをバーコーターにより成膜した。この膜に高圧水銀ランプを用いて紫外線を照射し、紫外線硬化樹脂を硬化させ、実施例1に係る偽造防止用印刷膜を得た。
 以上の製造条件を表1に示す。
 得られた実施例1に係る印刷膜の光学特性を測定したところ、可視光領域の波長550nmの光の透過率は66%であり、波長1000nmの光の透過率は4%、波長1500nmの光の透過率は1%であった。
 直鎖アルキルベンゼンスルホン酸系界面活性剤0.3質量部、水酸化ナトリウム1質量部、純水98.7質量部の混合溶液を温度70℃に保持し、実施例1に係る印刷膜を30分間浸漬した。浸漬後の実施例1に係る印刷膜の光学特性を測定したところ、可視光領域の波長550nmの光の透過率は69%であり、波長1000nmの光の透過率は5%、波長1500nmの光の透過率は2%であり、赤外線吸収特性が保持されていることを確認した。
 当該評価結果を表2に示す。
[実施例2、3]
 ポリプロピレン樹脂の代わりに、ポリエチレン樹脂またはアクリル樹脂を用いたこと以外は、実施例1と同様の操作をすることで、実施例2および3に係る赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収微粒子含有マスターバッチ粉砕物、偽造防止インク、偽造防止用印刷膜を得た。
 当該実施例2および3に係る赤外線吸収微粒子分散液、赤外線吸収微粒子含有マスターバッチ粉砕物、偽造防止用印刷膜に対して、実施例1と同様の評価を実施した。
 当該製造条件と評価結果とを、表1および2に示す。
[実施例4]
 赤外線吸収微粒子含有マスターバッチを粉砕するのに、ハンマーミルに代えて、ジェットミル微粉砕機を用いたこと以外は、実施例1と同様の操作をすることで、実施例4に係る赤外線吸収微粒子分散粉、赤外線吸収微粒子含有マスターバッチ粉砕物、偽造防止インク、偽造防止用印刷膜を得た。
 実施例4に係る赤外線吸収微粒子分散液、赤外線吸収微粒子含有マスターバッチ粉砕物、偽造防止用印刷膜に対して、実施例1と同様の評価を実施した。
 当該製造条件と評価結果を表1および2に示す。
[実施例5]
 赤外線吸収微粒子含有マスターバッチを粉砕するのに、ハンマーミルに代えて、凍結粉砕機を用いたこと以外は、実施例1と同様の操作をすることで、実施例5に係る赤外線吸収微粒子分散粉、赤外線吸収微粒子含有マスターバッチ粉砕物、偽造防止インク、偽造防止用印刷膜を得た。
 実施例5に係る赤外線吸収微粒子分散液、赤外線吸収微粒子含有マスターバッチ粉砕物、偽造防止用印刷膜に対して、実施例1と同様の評価を実施した。
 当該製造条件と評価結果を表1および2に示す。
[実施例6]
 6塩化タングステンをエタノールに少量ずつ溶解し溶液を得た。この溶液を130℃で乾燥し、粉末状の出発原料とした。この出発原料を、還元雰囲気(アルゴン/水素=95/5体積比)中において550℃で1時間加熱した。そして、一度室温に戻した後800℃アルゴン雰囲気中で1時間加熱することで、W1849(WO2.72)のタングステン酸化物粉末を作製した。このタングステン酸化物粉末(WO2.72)は、X線回折による結晶相の同定の結果、W1849の結晶相が観察された。
 このタングステン酸化物粉末(WO2.72)を20重量部、トルエン75重量部、ポリアクリレート系分散剤5重量部を混合し、実施例1と同様の分散処理を行い、分散粒子径80nmの実施例6に係る赤外線吸収微粒子分散液を得た。
 実施例1に係る赤外線吸収微粒子分散液に代えて、実施例6に係る赤外線吸収微粒子分散系を用いたこと以外は、実施例1と同様の操作をすることで、実施例6に係る赤外線吸収微粒子分散粉、赤外線吸収微粒子含有マスターバッチ粉砕物、偽造防止インク、偽造防止用印刷膜を得た。
 実施例6に係る赤外線吸収微粒子分散液、赤外線吸収微粒子含有マスターバッチ粉砕物、偽造防止用印刷膜に対して、実施例1と同様の評価を実施した。
 当該製造条件と評価結果を表1および2に示す。
[実施例7]
 ホウ素源及び還元剤として炭化ホウ素(BC)、ランタン源として酸化ランタンを用い、これらをランタンとホウ素の元素比であるB/Laの値が5.90となるように秤量、混合した。その後、アルゴン雰囲気中、1600±50℃の温度条件で6時間焼成し、六ホウ化ランタン粒子含有粉末を得た。
 次に、作製した六ホウ化ランタン粒子含有粉末10重量部、トルエン80重量部、樹脂a10重量部の割合となるように秤量、混合し、実施例1と同様の分散処理を行い、分散粒子径80nmの実施例7に係る赤外線吸収微粒子分散液を得た。
 実施例7に係る赤外線吸収微粒子分散液へさらに樹脂aを添加し、樹脂aと赤外線吸収微粒子(六ホウ化ランタン粒子)との重量比[樹脂a/赤外線吸収微粒子]の値が7となるように調整した。
 それ以外は実施例5と同様の操作をすることで、実施例7に係る赤外線吸収微粒子分散粉、赤外線吸収微粒子含有マスターバッチ粉砕物、偽造防止インク、偽造防止用印刷膜を得た。
 実施例7に係る赤外線吸収微粒子分散液、赤外線吸収微粒子含有マスターバッチ粉砕物、偽造防止用印刷膜に対して、実施例1と同様の評価を実施した。
 当該製造条件と評価結果を表1および2に示す。
[比較例1]
 実施例1に係る赤外線吸収微粒子分散液へさらに、上述した樹脂aを添加し、樹脂aと赤外線吸収微粒子(Csタングステン酸化物微粒子)との重量比[樹脂a/赤外線吸収微粒子]が4となるように調整した。得られた調整液から真空擂潰機(株式会社石川工場製)を用いてトルエンを除去しながら解砕処理を施し、比較例1に係る赤外線吸収微粒子分散粉を得た。
 得られた比較例1に係る赤外線吸収微粒子分散粉の分散粒子径を測定したところ0.7μmであった。
 比較例1に係る赤外線吸収微粒子分散粉50gと、紫外線硬化樹脂UV3701(東亞合成(株)製)50gとをよく混合し、比較例1に係る偽造防止インクを得た。
 被印刷基材として厚さ50μmの透明PETフィルムを使用し、その表面へ比較例1に係る偽造防止インクをバーコーターにより成膜した。この膜に高圧水銀ランプを用いて紫外線を照射し、紫外線硬化樹脂を硬化させ、比較例1に係る偽造防止インクの印刷膜を得た。
 得られた比較例1に係る印刷膜の光学特性を測定したところ、可視光領域の波長550nmの光の透過率は71%であり、波長1000nmの光の透過率は4%、波長1500nmの光の透過率は1%であった。
 直鎖アルキルベンゼンスルホン酸系界面活性剤0.3質量部、水酸化ナトリウム1質量部、純水98.7質量部の混合溶液を温度70℃に保持し、比較例1に係る印刷膜を30分間浸漬した。浸漬後の比較例1に係る印刷膜の光学特性を測定したところ、可視光領域の波長550nmの光の透過率は88%であり、波長1000nmの光の透過率は89%、波長1500nmの光の透過率は88%であり、赤外線吸収特性が消失していることを確認した。
[比較例2]
 ポリプロピレン樹脂に代えて、ポリエチレンテレフタレート樹脂を用いたこと以外は、実施例1と同様の操作をすることで比較例2に係る赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収微粒子含有マスターバッチ粉砕物、偽造防止インク、偽造防止用印刷膜を得た。
 比較例2に係る赤外線吸収微粒子分散液、赤外線吸収微粒子含有マスターバッチ粉砕物、偽造防止用印刷膜に対して、実施例1と同様の評価を実施した。
 当該製造条件と評価結果を表1および2に示す。
[比較例3]
 実施例7に係る赤外線吸収微粒子分散液へさらに樹脂aを添加し、樹脂aと赤外線吸収微粒子(六ホウ化ランタン粒子)との重量比[樹脂a/赤外線吸収微粒子]の値が7となるように調整した。得られた調整液から真空擂潰機(株式会社石川工場製)を用いてトルエンを除去しながら解砕処理を施し、比較例3に係る赤外線吸収微粒子分散粉を得た。
 得られた比較例3に係る赤外線吸収微粒子分散粉の平均粒子径を測定したところ0.7μmであった。
 比較例1に係る赤外線吸収微粒子分散粉の代わりに比較例3に係る赤外線吸収微粒子分散粉を用いたこと以外は、比較例1と同様の操作をすることで、比較例3に係る偽造防止インク、偽造防止用印刷膜を得た。
 比較例3に係る偽造防止用印刷膜に対して、比較例1と同様の評価を実施した。当該製造条件と評価結果を表1および2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (15)

  1.  分散粒子径が1μm以上であり、内部に赤外線吸収微粒子が分散した樹脂を含むことを特徴とする赤外線吸収微粒子含有マスターバッチ粉砕物。
  2.  前記赤外線吸収微粒子が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される赤外線吸収微粒子であることを特徴とする、請求項1に記載の赤外線吸収微粒子含有マスターバッチ粉砕物。
  3.  前記赤外線吸収微粒子が、六方晶の結晶構造を含むことを特徴とする請求項1または2に記載の赤外線吸収微粒子含有マスターバッチ粉砕物。
  4.  前記赤外線吸収微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記される赤外線吸収微粒子であることを特徴とする、請求項1に記載の赤外線吸収微粒子含有マスターバッチ粉砕物。
  5.  前記赤外線吸収微粒子が、一般式XBm(但し、Xは、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caから選ばれる1種類以上の金属元素、Bはホウ素、mは一般式におけるホウ素量を示す数字、3≦m≦20)で表記される赤外線吸収微粒子であることを特徴とする、請求項1に記載の赤外線吸収微粒子含有マスターバッチ粉砕物。
  6.  前記樹脂が、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリスチレン樹脂、ポリイソブチレン樹脂、エポキシ樹脂、ポリイミド樹脂、アイオノマー樹脂、フッ素樹脂、ウレタン樹脂、ABS樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂という樹脂群から選択される1種の樹脂、または前期樹脂群から選択される2種以上の樹脂の混合物、または前期樹脂群から選択される2種以上の樹脂の共重合体、のいずれかから選択される樹脂であることを特徴とする、請求項1から5のいずれかに記載の赤外線吸収微粒子含有マスターバッチ粉砕物。
  7.  前記樹脂が、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリスチレン樹脂、ポリイソブチレン樹脂、フッ素樹脂という樹脂群から選択される1種の樹脂、または前期樹脂群から選択される2種以上の樹脂の混合物、または前期樹脂群から選択される2種以上の樹脂の共重合体、のいずれかから選択される樹脂であることを特徴とする、請求項1から6のいずれかに記載の赤外線吸収微粒子含有マスターバッチ粉砕物。
  8.  請求項1から7のいずれかに記載の赤外線吸収微粒子含有マスターバッチ粉砕物中の赤外線吸収微粒子の含有率が、0.001質量%以上25.0質量%以下であることを特徴とする赤外線吸収微粒子含有マスターバッチ粉砕物。
  9.  請求項1から8のいずれかに記載される赤外線吸収微粒子含有マスターバッチ粉砕物と、溶媒とを含むことを特徴とする赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液。
  10.  請求項1から8にいずれかに記載の赤外線吸収微粒子含有マスターバッチ粉砕物と、有機バインダーまたはエネルギー線で硬化する樹脂の液状の未硬化物から選択される1種以上とを含むことを特徴とする赤外線吸収材料含有インク。
  11.  請求項10に記載の赤外線吸収材料含有インクを含むことを特徴とする偽造防止インク。
  12.  さらに溶媒を含み、前記溶媒が、水、有機溶媒、植物油や植物油由来等の化合物、石油系溶媒から選択される1種類以上からなる溶媒であることを特徴とする請求項11に記載の偽造防止インク。
  13.  請求項1から8のいずれかに記載の赤外線吸収微粒子含有マスターバッチ粉砕物を含むことを特徴とする偽造防止用印刷物。
  14.  内部に赤外線吸収微粒子が分散したマスターバッチを得る第1の工程と、
     前記第1の工程で得られたマスターバッチを機械的に粉砕する第2の工程と、を有することを特徴とする請求項1から8のいずれかに記載の赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法。
  15.  前記第2の工程において、前記第1工程で得られたマスターバッチを氷点以下に維持しながら、機械的に粉砕することを特徴とする請求項14に記載の赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法。
     
PCT/JP2018/027497 2017-07-24 2018-07-23 赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、それらを用いた偽造防止インク、偽造防止用印刷膜、ならびに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法 WO2019022003A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3086897A CA3086897A1 (en) 2017-07-24 2018-07-23 Pulverized masterbatch products containing infrared absorbing fine particles, dispersion liquid containing pulverized masterbatch products containing infrared absorbing fine particles, ink containing infrared absorbing material, and anti-counterfeit ink and anti-counterfeit printed matter using them, and method for producing the pulverized masterbatch...
JP2019532595A JP7238776B2 (ja) 2017-07-24 2018-07-23 赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、それらを用いた偽造防止インク、偽造防止用印刷膜、ならびに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法
CN201880049821.0A CN111032745A (zh) 2017-07-24 2018-07-23 含有红外线吸收微粒的母料粉碎物、包含含有红外线吸收微粒的母料粉碎物的分散液、含有红外线吸收材料的油墨及使用它们的防伪油墨、防伪用印刷膜、以及含有红外线吸收微粒的母料粉碎物的制造方法
EP18839475.3A EP3660079A4 (en) 2017-07-24 2018-07-23 Powdered MASTER BATCH PRODUCT WITH infrared FINE PARTICLES, DISPERSION WITH POWDERED MASTER BATCH PRODUCT WITH infrared FINE PARTICLES, INK WITH infrared absorbing MATERIAL, FAKE SAFE INK WITH THE USE THEREOF, COUNTERFEIT SECURE PRINTING FILM AND PROCESS FOR PRODUCING POWDERED MASTER BATCH PRODUCT WITH infrared FINE PARTICLES
AU2018306015A AU2018306015B2 (en) 2017-07-24 2018-07-23 Infrared-absorbing-fine-particle-containing masterbatch pulverized product, dispersion containing infrared-absorbing-fine-particle-containing masterbatch pulverized product, infrared-absorbing-material-containing ink, anti-counterfeiting ink employing same, anti-counterfeiting print film, and method for manufacturing infrared-absorbing-fine-particle-containing masterbatch pulverized product
US16/633,716 US20200283586A1 (en) 2017-07-24 2018-07-23 Pulverized masterbatch products containing infrared absorbing fine particles, dispersion liquid containing pulverized masterbatch products containing infrared absorbing fine particles, ink containing infrared absorbing material, and anti-counterfeit ink and anti-counterfeit printed matter using them, and method for producing the pulverized masterbatch products containing infrared absorbing fine particles
IL272224A IL272224B2 (en) 2017-07-24 2018-07-23 Crushed Masterbatch products containing infrared-absorbing material particles, suspending liquid containing crushed Masterbatch products containing infrared-absorbing material particles, ink containing infrared-absorbing material, anti-counterfeit ink and anti-counterfeit printed material using them, and a method for producing the Masterbatch products The crushed ones containing particles of infrared-absorbing material
KR1020207002698A KR102615612B1 (ko) 2017-07-24 2018-07-23 적외선 흡수 미립자 함유 마스터배치 분쇄물, 적외선 흡수 미립자 함유 마스터배치 분쇄물 함유 분산액, 적외선 흡수 재료 함유 잉크, 그것들을 사용한 위조 방지 잉크, 위조 방지용 인쇄막, 및 적외선 흡수 미립자 함유 마스터배치 분쇄물의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017142903 2017-07-24
JP2017-142903 2017-07-24

Publications (1)

Publication Number Publication Date
WO2019022003A1 true WO2019022003A1 (ja) 2019-01-31

Family

ID=65041213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027497 WO2019022003A1 (ja) 2017-07-24 2018-07-23 赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、それらを用いた偽造防止インク、偽造防止用印刷膜、ならびに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法

Country Status (10)

Country Link
US (1) US20200283586A1 (ja)
EP (1) EP3660079A4 (ja)
JP (1) JP7238776B2 (ja)
KR (1) KR102615612B1 (ja)
CN (1) CN111032745A (ja)
AU (1) AU2018306015B2 (ja)
CA (1) CA3086897A1 (ja)
IL (1) IL272224B2 (ja)
TW (1) TWI758518B (ja)
WO (1) WO2019022003A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131727A (ja) * 2018-01-31 2019-08-08 共同印刷株式会社 赤外線吸収性インキ及びその製造方法
JP2020196850A (ja) * 2019-06-05 2020-12-10 住友金属鉱山株式会社 偽造防止インク用組成物、偽造防止インク、偽造防止用印刷物
JP2021075825A (ja) * 2019-11-12 2021-05-20 住友金属鉱山株式会社 赤外線吸収繊維、繊維製品
EP3901098A4 (en) * 2018-12-18 2022-03-16 Sumitomo Metal Mining Co., Ltd. METHOD FOR PRODUCING ORGANIC-INORGANIC HYBRID PARTICLES ABSORBING INFRARED RADIATION AND ORGANIC-INORGANIC HYBRID PARTICLE ABSORBING INFRARED RADIATION
CN115066470A (zh) * 2020-02-12 2022-09-16 共同印刷株式会社 红外线吸收性uv墨及其制造方法
CN116601240A (zh) * 2020-12-24 2023-08-15 共同印刷株式会社 钨系红外线吸收性颜料分散液、染色液、纤维制品和纤维制品的处理方法
WO2024090360A1 (ja) * 2022-10-25 2024-05-02 住友金属鉱山株式会社 偽造防止インク用組成物および偽造防止用印刷物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI704190B (zh) * 2015-12-18 2020-09-11 日商住友金屬礦山股份有限公司 防偽油墨用組成物、防偽油墨及防偽用印刷物,暨防偽油墨用組成物之製造方法
TWI829917B (zh) * 2019-05-28 2024-01-21 瑞士商西克帕控股有限公司 安全性墨水以及機器可讀式安全性特徵
EP4183845A4 (en) * 2020-07-15 2023-12-06 FUJIFILM Corporation INK SET FOR RECORDING A SECURITY IMAGE, SECURITY IMAGE RECORDING METHOD AND SECURITY IMAGE RECORDING
KR102609124B1 (ko) * 2021-07-09 2023-12-04 인네이처 주식회사 열차단능이 있는 온실 필름용 마스터배치의 제조방법
CN117467310A (zh) * 2023-10-31 2024-01-30 珠海市铠信科技有限公司 防伪色浆、紫外光固化防伪喷墨墨水及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136230A (ja) 1988-11-16 1990-05-24 Takiron Co Ltd 赤外線吸収性合成樹脂成型品
JPH08259279A (ja) 1995-01-23 1996-10-08 Central Glass Co Ltd 合せガラス及びその製造方法
JPH11181336A (ja) 1997-09-30 1999-07-06 Sumitomo Metal Mining Co Ltd 選択透過膜用塗布液、選択透過膜および選択透過多層膜
JP2004161791A (ja) * 2002-11-08 2004-06-10 Hitachi Chem Co Ltd 近赤外線吸収性能を有する樹脂微粒子及びその製造方法
WO2005037932A1 (ja) 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2009501271A (ja) * 2005-07-14 2009-01-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ナノ微粒子ソーラーコントロール組成物
WO2010032570A1 (ja) * 2008-09-22 2010-03-25 Jsr株式会社 樹脂粒子
JP2010174164A (ja) * 2009-01-30 2010-08-12 Toppan Printing Co Ltd 近赤外線吸収インキ及びその製造方法
JP2012506463A (ja) * 2008-10-23 2012-03-15 データレース リミテッド 熱吸収添加剤
JP2012517517A (ja) * 2009-02-12 2012-08-02 ビーエーエスエフ ソシエタス・ヨーロピア ナノ粒子状ir吸収剤を含有するポリマー組成物
JP2013234331A (ja) * 2005-05-31 2013-11-21 E I Du Pont De Nemours & Co ナノ粒子太陽光制御コンセントレートを含むポリマーブレンドの製造方法
JP2015117353A (ja) 2013-12-20 2015-06-25 住友金属鉱山株式会社 偽造防止インク及び偽造防止印刷物

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826624A1 (de) * 1998-06-18 1999-12-23 Merck Patent Gmbh Pigmentpräparation
JP4349779B2 (ja) * 2002-07-31 2009-10-21 住友金属鉱山株式会社 熱線遮蔽透明樹脂成形体と熱線遮蔽透明積層体
WO2006016729A1 (en) * 2004-08-13 2006-02-16 Hae-Wook Lee Composition for functional coatings, film formed therefrom and method for forming the composition and the film
JP2008291072A (ja) * 2007-05-23 2008-12-04 Toyo Ink Mfg Co Ltd インキ組成物
US8268460B2 (en) * 2007-10-25 2012-09-18 Sumitomo Metal Mining Co., Ltd. High heat resistant masterbatch, heat ray shielding transparent molded resin, and heat-ray shielding transparent lamination body
JP5176492B2 (ja) * 2007-11-06 2013-04-03 住友金属鉱山株式会社 近赤外線吸収粘着体、プラズマディスプレイパネル用近赤外線吸収フィルターおよびプラズマディスプレイパネル
EP2360220B1 (en) * 2008-11-13 2015-03-18 Sumitomo Metal Mining Co., Ltd. Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
JP5559483B2 (ja) * 2009-03-17 2014-07-23 株式会社ブリヂストン 熱線遮蔽ガラス、及びこれを用いた複層ガラス
JP2012082326A (ja) * 2010-10-12 2012-04-26 Sumitomo Metal Mining Co Ltd 高耐熱性熱線遮蔽成分含有マスターバッチおよびその製造方法、高耐熱性熱線遮蔽透明樹脂成形体、並びに高耐熱性熱線遮蔽透明積層体
TWI503346B (zh) * 2014-06-11 2015-10-11 Zirco Applied Materials Co Ltd 近紅外光屏蔽膜及近紅外光屏蔽膜之製造方法
WO2016031969A1 (ja) * 2014-08-29 2016-03-03 住友金属鉱山株式会社 六ホウ化物微粒子の集合体、六ホウ化物微粒子分散液、六ホウ化物微粒子分散体、六ホウ化物微粒子分散体合わせ透明基材、赤外線吸収フィルムおよび赤外線吸収ガラス
TW201609923A (zh) * 2014-09-10 2016-03-16 台虹科技股份有限公司 紅外線吸收膜、紅外線吸收膜的製作方法及包含該紅外線吸收膜的相機模組
DE102014015151A1 (de) * 2014-10-13 2016-04-14 Schlenk Metallic Pigments Gmbh PVD-Metalleffektpigmentpulver
US10308823B2 (en) * 2015-01-27 2019-06-04 Sumitomo Metal Mining Co., Ltd. Near-infrared absorbing fine particle dispersion liquid and method for producing the same
IL272223B2 (en) * 2017-07-24 2024-01-01 Sumitomo Metal Mining Co Dispersion powder containing INFA red absorbent particles, dispersion liquid containing dispersion powder containing INFA red absorbent particles, ink containing dispersion powder containing INFA red absorbent particles, anti-counterfeiting ink, and anti-counterfeiting printed material

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136230A (ja) 1988-11-16 1990-05-24 Takiron Co Ltd 赤外線吸収性合成樹脂成型品
JPH08259279A (ja) 1995-01-23 1996-10-08 Central Glass Co Ltd 合せガラス及びその製造方法
JPH11181336A (ja) 1997-09-30 1999-07-06 Sumitomo Metal Mining Co Ltd 選択透過膜用塗布液、選択透過膜および選択透過多層膜
JP2004161791A (ja) * 2002-11-08 2004-06-10 Hitachi Chem Co Ltd 近赤外線吸収性能を有する樹脂微粒子及びその製造方法
WO2005037932A1 (ja) 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2013234331A (ja) * 2005-05-31 2013-11-21 E I Du Pont De Nemours & Co ナノ粒子太陽光制御コンセントレートを含むポリマーブレンドの製造方法
JP2009501271A (ja) * 2005-07-14 2009-01-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ナノ微粒子ソーラーコントロール組成物
WO2010032570A1 (ja) * 2008-09-22 2010-03-25 Jsr株式会社 樹脂粒子
JP2012506463A (ja) * 2008-10-23 2012-03-15 データレース リミテッド 熱吸収添加剤
JP2010174164A (ja) * 2009-01-30 2010-08-12 Toppan Printing Co Ltd 近赤外線吸収インキ及びその製造方法
JP2012517517A (ja) * 2009-02-12 2012-08-02 ビーエーエスエフ ソシエタス・ヨーロピア ナノ粒子状ir吸収剤を含有するポリマー組成物
JP2015117353A (ja) 2013-12-20 2015-06-25 住友金属鉱山株式会社 偽造防止インク及び偽造防止印刷物

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131727A (ja) * 2018-01-31 2019-08-08 共同印刷株式会社 赤外線吸収性インキ及びその製造方法
JP7133932B2 (ja) 2018-01-31 2022-09-09 共同印刷株式会社 赤外線吸収性インキ及びその製造方法
EP3901098A4 (en) * 2018-12-18 2022-03-16 Sumitomo Metal Mining Co., Ltd. METHOD FOR PRODUCING ORGANIC-INORGANIC HYBRID PARTICLES ABSORBING INFRARED RADIATION AND ORGANIC-INORGANIC HYBRID PARTICLE ABSORBING INFRARED RADIATION
US11912878B2 (en) 2018-12-18 2024-02-27 Sumitomo Metal Mining Co., Ltd. Method of producing organic-inorganic hybrid infrared absorbing particles and organic-inorganic hybrid infrared absorbing particles
JP7358785B2 (ja) 2019-06-05 2023-10-11 住友金属鉱山株式会社 偽造防止インク用組成物、偽造防止インク、偽造防止用印刷物
JP2020196850A (ja) * 2019-06-05 2020-12-10 住友金属鉱山株式会社 偽造防止インク用組成物、偽造防止インク、偽造防止用印刷物
WO2020246299A1 (ja) * 2019-06-05 2020-12-10 住友金属鉱山株式会社 偽造防止インク用組成物、偽造防止インク、偽造防止用印刷物
CN113993709A (zh) * 2019-06-05 2022-01-28 住友金属矿山株式会社 防伪墨用组成物、防伪墨、防伪用印刷品
EP3981604A4 (en) * 2019-06-05 2022-08-10 Sumitomo Metal Mining Co., Ltd. ANTI-COUNTERFEIT INK COMPOSITION, ANTI-COUNTERFEIT INK AND ANTI-COUNTERFEIT PRINTED PRODUCT
CN113993709B (zh) * 2019-06-05 2024-01-09 住友金属矿山株式会社 防伪墨用组成物、防伪墨、防伪用印刷品
JP2021075825A (ja) * 2019-11-12 2021-05-20 住友金属鉱山株式会社 赤外線吸収繊維、繊維製品
JP7363394B2 (ja) 2019-11-12 2023-10-18 住友金属鉱山株式会社 赤外線吸収繊維、繊維製品
CN115066470A (zh) * 2020-02-12 2022-09-16 共同印刷株式会社 红外线吸收性uv墨及其制造方法
CN116601240A (zh) * 2020-12-24 2023-08-15 共同印刷株式会社 钨系红外线吸收性颜料分散液、染色液、纤维制品和纤维制品的处理方法
WO2024090360A1 (ja) * 2022-10-25 2024-05-02 住友金属鉱山株式会社 偽造防止インク用組成物および偽造防止用印刷物

Also Published As

Publication number Publication date
KR20200033862A (ko) 2020-03-30
CA3086897A1 (en) 2019-01-31
IL272224B2 (en) 2024-03-01
TW201908424A (zh) 2019-03-01
JP7238776B2 (ja) 2023-03-14
IL272224B1 (en) 2023-11-01
AU2018306015A1 (en) 2020-03-12
IL272224A (en) 2020-03-31
EP3660079A1 (en) 2020-06-03
TWI758518B (zh) 2022-03-21
JPWO2019022003A1 (ja) 2020-08-20
CN111032745A (zh) 2020-04-17
AU2018306015B2 (en) 2024-05-09
US20200283586A1 (en) 2020-09-10
EP3660079A4 (en) 2021-05-12
KR102615612B1 (ko) 2023-12-20

Similar Documents

Publication Publication Date Title
JP7238776B2 (ja) 赤外線吸収微粒子含有マスターバッチ粉砕物、赤外線吸収微粒子含有マスターバッチ粉砕物含有分散液、赤外線吸収材料含有インク、それらを用いた偽造防止インク、偽造防止用印刷膜、ならびに赤外線吸収微粒子含有マスターバッチ粉砕物の製造方法
JP7259748B2 (ja) 赤外線吸収微粒子分散粉、赤外線吸収微粒子分散粉含有分散液、赤外線吸収微粒子分散粉含有インク、および偽造防止インク、並びに偽造防止用印刷物
TWI704190B (zh) 防偽油墨用組成物、防偽油墨及防偽用印刷物,暨防偽油墨用組成物之製造方法
AU2018289672B2 (en) Counterfeit-preventing ink composition, counterfeit-preventing ink, printed article for counterfeit prevention, and method for producing counterfeit-preventing ink composition
TWI841535B (zh) 分散著紅外線吸收微粒子之粉末、含有分散著紅外線吸收微粒子之粉末的分散液、含有分散著紅外線吸收微粒子之粉末的油墨、及防偽油墨暨防偽用印刷物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532595

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018839475

Country of ref document: EP

Effective date: 20200224

ENP Entry into the national phase

Ref document number: 2018306015

Country of ref document: AU

Date of ref document: 20180723

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3086897

Country of ref document: CA