WO2010029728A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2010029728A1
WO2010029728A1 PCT/JP2009/004452 JP2009004452W WO2010029728A1 WO 2010029728 A1 WO2010029728 A1 WO 2010029728A1 JP 2009004452 W JP2009004452 W JP 2009004452W WO 2010029728 A1 WO2010029728 A1 WO 2010029728A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
refrigerator compartment
refrigerator
cold air
chamber
Prior art date
Application number
PCT/JP2009/004452
Other languages
English (en)
French (fr)
Inventor
兵藤明
松本博幸
川崎竜也
湯浅雅司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP09812877.0A priority Critical patent/EP2317257A4/en
Priority to CN200980135991.1A priority patent/CN102149991B/zh
Priority to JP2010528619A priority patent/JPWO2010029728A1/ja
Publication of WO2010029728A1 publication Critical patent/WO2010029728A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0654Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0664Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0665Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the top
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems

Definitions

  • the present invention relates to a refrigerator, and more particularly to a refrigerator in which cold air circulates between a storage room and a cooling means.
  • Recent refrigerators often have a layout in which a refrigerating room with a high frequency of use is placed at the top where it is easier for users to see what is stored, and a freezing room is placed directly under this refrigerating room.
  • the cooler is placed in the cooling room located at the back of the freezing room, so that the cold air is fed from the back of the cooling room to the back of the freezing room in order to allow the cold air to be supplied to the entire refrigerating room. It is conveyed by a duct.
  • FIG. 9 is an explanatory view of a duct provided in a conventional refrigerator.
  • a portion that is visible in the front when the door of the refrigerator compartment 502 is opened is shown. That is, the duct 529a is provided along the heat insulation box 501 of the refrigerator compartment 502 which is a heat insulation structure.
  • a Y-shaped cold air circulation path is formed between the duct 529a and the heat insulating box 501.
  • the cold air in the refrigerating chamber 502 is sucked from a suction port 531 that opens below the refrigerating chamber 502, circulates through each storage chamber, and then discharge outlet 530 a that opens above the refrigerating chamber 502.
  • the horizontal width of the duct 529a is approximately the same as the horizontal width of the refrigerator compartment 502 in consideration of the air volume distribution in the warehouse.
  • the duct 529a has an interior lighting device disposed in the center, and an opening is provided so as to discharge each of the ducts 529a as air paths branched right and left at positions facing each shelf space (see, for example, Patent Document 1). ).
  • FIG. 10A is a diagram showing a conventional duct before fixing.
  • FIG. 10B is a diagram showing a conventional duct after being fixed.
  • FIG. 10A shows a cross-sectional view of the back portion of the refrigerator compartment 502.
  • duct engaging protrusions 501 a and 501 b are formed at the corners on both sides of the heat insulating box 501.
  • the protrusions 501a and 501b and the duct 529a are engaged with each other.
  • FIG. 11A shows a plan sectional view of a duct part of another conventional refrigerator.
  • FIG. 11B shows a perspective view of the duct portion of another conventional refrigerator.
  • an illuminating device 47 is arranged in the center of the back of the refrigerator, the refrigerator compartment ducts 44 are arranged on both sides thereof, the outlet on the front of the duct is abolished, the side of the duct and the refrigerator inner box Cold air is discharged from the gap.
  • the refrigerator back is comprised clearly and there exists an effect that the space which accommodates even a back duct can be provided widely (for example, refer patent document 2).
  • FIG. 11B a configuration having a discharge port hole 15b in the side surface of the duct 15 is described (for example, see Patent Document 2).
  • Patent Document 1 has a problem that the food and beverage placed on the shelf in the refrigerator compartment 502 are frozen because the suction port 531 and the discharge ports 530a to 530f are in front of the duct 529a. .
  • the outlet is arranged at the position facing the uppermost part between the shelves and the cold air flows from the top of the food, , It is not effective when the size of the food is tall or overlaid.
  • the design consideration itself of the arrangement of the discharge ports does not make sense.
  • the shape of the opening of the discharge opening is very important if it is not composed of a highly heat-insulating member (for example, a foamed resin material such as foamed polystyrene). Condensation is likely.
  • a highly heat-insulating member for example, a foamed resin material such as foamed polystyrene. Condensation is likely.
  • the front discharge portion is made of a heat insulating material, the heat insulating material can be seen and looks bad, and the user may accidentally spill food or beverage at the discharge port. Furthermore, there is a possibility of causing contamination and clogging inside the duct.
  • the food when food is stored on each shelf by the user, even if it is stored until the outlet of the duct is not blocked, the food may block the space in the front-rear direction and the back part may be too cold. there were.
  • refrigerators in recent years have increased in capacity and the depth of the refrigerator compartment has increased, and food that is not often used is placed in the back of a shelf with depth, and frequently used food is placed on the front side. It is easy to guess for ease of use. In such a case, the food in the back, which has a low frequency of taking in and out, is placed in a state of being too cold for a long time, so that the possibility of freezing increases.
  • Patent Document 2 the provision of the discharge port hole in the front of the panel is abolished, the duct is made almost full width on the back, and the discharge port is formed between the side of the duct panel and the inner wall surface. Forming.
  • Patent Document 2 there is no detailed description about prevention of condensation at the outlet opening through which low-temperature cold air passes, and since the outlet opening is located at both ends on the back, the food is placed at the end. There is still a risk of food freezing (see FIG. 11A).
  • Patent Document 2 a configuration having a discharge port hole 15b on the side surface of the duct 15 is described, but the relationship with the food storage place is described. Absent. Therefore, when food is placed in front of the discharge port 15b on the side surface of the duct 15, there is a risk of freezing (see FIG. 11B).
  • the present invention solves these problems, and provides a refrigerator capable of avoiding the problem that food in a refrigerator compartment freezes regardless of the position of the shelf or the position where the food is placed. With the goal.
  • a refrigerator according to the present invention includes a heat insulating box, a refrigerator compartment duct provided at the back of the refrigerator compartment formed in the insulator box, and a refrigerator compartment duct as viewed from the front of the refrigerator compartment.
  • a refrigeration room duct comprising: a side surface discharge port provided on a side surface; an upper surface discharge port provided on an upper surface of the refrigerator compartment duct; and a suction port provided only on one side of the side of the refrigerator compartment duct below the side surface discharge port.
  • a chamber space between the side of the refrigerator compartment duct and the side of the refrigerator compartment, and a chamber space above the refrigerator compartment duct and between the upper surface of the refrigerator compartment duct and the upper surface of the refrigerator compartment. is there.
  • the cold air discharged from the side discharge port which is the ventilation port on the side of the refrigerator compartment duct, circulates while being mixed with the air in the chamber while the wind speed is reduced in the chamber space, so the temperature of the food can be locally reduced Can be reduced.
  • the refrigerator of the present invention has no cold air outlet on the front surface of the refrigerator compartment duct, and cold air is discharged into the chamber space from the side outlet outlet provided on the side surface of the refrigerator compartment duct. It is possible to avoid the problem that the food in the room freezes.
  • the width of the refrigerator compartment duct becomes narrower than before, it contributes to resource saving by reducing the amount of material used, and also contributes to energy saving by reducing the transport energy related to parts distribution. There is also an effect that the manufacturing cost can be reduced.
  • there is no cold air outlet in front of the refrigerator compartment duct when the door of the refrigerator compartment is opened, the outlet is not visible on the front, so the appearance of the refrigerator compartment is improved.
  • the cold air discharged from the upper surface discharge port which is the ventilation port on the upper surface of the refrigeration room duct, flows along the ceiling surface while maintaining a high wind speed. Can be supplied. From the above, it is possible to keep the internal temperature of the entire refrigerator compartment uniform and to obtain the merit in terms of quality and performance as well as to achieve an energy saving effect.
  • FIG. 1 is a front view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view of the refrigerator in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a duct configuration of the refrigerator in the first embodiment of the present invention.
  • FIG. 4 is an overview of the refrigerator duct in the first embodiment of the present invention.
  • FIG. 5 is an overview diagram of the duct of the refrigerator in the first embodiment of the present invention.
  • FIG. 6 is a diagram showing an internal structure of the refrigerator compartment of the refrigerator in the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of a duct provided in the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 8A is a diagram showing a state before fixing a duct of the refrigerator in the first embodiment of the present invention.
  • FIG. 8B is a diagram showing the refrigerator after being fixed in the first embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of a duct provided in a conventional refrigerator.
  • FIG. 10A is a diagram showing a conventional duct before fixing.
  • FIG. 10B is a diagram showing a conventional duct after being fixed.
  • FIG. 11A is a plan sectional view of a duct portion of another conventional refrigerator.
  • FIG. 11B is a perspective view of a duct portion of another conventional refrigerator.
  • FIG. 12 is a perspective view of the lower food storage shelf in the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 13 is a cross-sectional plan view taken at the position of the lower food storage shelf in the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 14 is a perspective view of a food storage shelf in the middle stage of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 15 is a cross-sectional plan view cut at the position of the food storage shelf in the middle of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 16 is an explanatory diagram of a duct provided in the refrigerator according to Embodiment 2 of the present invention.
  • FIG. 17 is an explanatory diagram of a duct provided in the refrigerator according to Embodiment 3 of the present invention.
  • FIG. 18 is an explanatory diagram of a duct provided in the refrigerator according to the fourth embodiment of the present invention.
  • FIG. 19 is a front view of the refrigerator in the fifth embodiment of the present invention.
  • FIG. 20 is a longitudinal sectional view of a refrigerator in the fifth embodiment of the present invention.
  • FIG. 21 is a diagram illustrating a duct configuration of the refrigerator in the fifth embodiment of the present invention.
  • FIG. 22 is a schematic view of a refrigerator duct in the fifth embodiment of the present invention.
  • FIG. 23 is a schematic diagram of a refrigerator duct in the fifth embodiment of the present invention.
  • FIG. 24 is an explanatory diagram of a duct provided in the refrigerator according to the fifth embodiment of the present invention.
  • FIG. 24 is an explanatory diagram of a duct provided in the refrigerator according to the fifth embodiment of the present invention.
  • FIG. 25 is a longitudinal sectional view showing the sterilization apparatus attached to the refrigerator in the fifth embodiment of the present invention.
  • FIG. 26 is a diagram illustrating a duct configuration of the refrigerator in the sixth embodiment of the present invention.
  • FIG. 27 is a diagram illustrating a duct configuration of a refrigerator according to another embodiment according to Embodiment 5 of the present invention.
  • FIG. 28 is a diagram illustrating a duct configuration of another form of refrigerator according to Embodiment 5 of the present invention.
  • FIG. 1 is a front view of the refrigerator according to Embodiment 1 of the present invention.
  • a refrigerator 100 according to Embodiment 1 of the present invention is a refrigerator 100 that includes a double-spread door, and includes a plurality of compartments in a heat insulating box 101.
  • the storage room is referred to as a refrigeration room 102, an ice making room 105, a switching room 106, a vegetable room 104, a freezing room 103, or the like depending on its function (cooling temperature).
  • a rotary heat insulating door 107 filled with a foam heat insulating material such as urethane is provided at the front opening of the refrigerator compartment 102.
  • a rotary heat insulating door 107 filled with a foam heat insulating material such as urethane is provided at the front opening of the refrigerator compartment 102.
  • the ice making chamber 105, the switching chamber 106, the vegetable chamber 104, and the freezing chamber 103 are each provided with a heat insulating plate 108 as a front plate of the drawer, thereby sealing the storage chamber so that there is no leakage of cold air. Yes.
  • FIG. 2 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention. Specifically, FIG. 2 is a cross-sectional view taken along line 2-2 in FIG.
  • the heat insulating box 101 is formed by filling a heat insulating material such as rigid urethane foam between an outer box mainly made of a metal steel plate and an inner box mainly made of a vacuum molded resin. It is a box body.
  • the heat insulation box 101 is insulated by suppressing heat transfer from the surroundings to the inside of the heat insulation box 101.
  • the refrigerated room 102 is a storage room that is kept at a low temperature so as not to freeze for refrigerated storage.
  • a specific lower limit of the temperature is usually set to 1 to 5 ° C.
  • the temperature may be set to 0 to 1 ° C. in order to improve the freshness of fresh products.
  • the vegetable room 104 is a storage room whose temperature is set equal to or slightly higher than that of the refrigerator room 102. Specifically, it is set to 2 to 7 ° C. The lower the temperature, the longer the freshness of the leafy vegetables can be maintained.
  • the purpose of setting the temperature slightly higher than that of the refrigerator compartment 102 is to suppress the influence of freshness deterioration called low temperature failure at a low temperature such as eggplant or cucumber.
  • the vegetable compartment 104 which stores vegetables becomes high humidity with the water
  • the freezing room 103 is a storage room set in a freezing temperature zone. Specifically, it is usually set to ⁇ 22 to ⁇ 18 ° C. for frozen storage, but it may be set to a low temperature such as ⁇ 30 ° C. or ⁇ 25 ° C. to improve the frozen storage state. .
  • the ice making chamber 105 is a storage chamber that periodically supplies water from a water supply tank (not shown) disposed in the refrigerator compartment 102, automatically makes ice by an ice making mechanism (not shown), and stores the ice. .
  • the switching room 106 is a storage room that is provided on the side of the ice making room 105 and the temperature inside the storage room can be changed.
  • the operation panel attached to the refrigerator 100 can be switched from a refrigeration temperature zone to a freezing temperature zone according to the application.
  • the top surface portion of the heat insulation box 101 is formed with a recess 113 so as to be stepped toward the back of the refrigerator, and includes a first top surface portion 111 and a second top surface portion 112.
  • the staircase-shaped recess 113 mainly stores components on the high-pressure side forming the refrigeration cycle, such as a compressor 114 and a dryer (not shown) for removing moisture. That is, the recess 113 in which the compressor 114 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 102. Therefore, the compressor 114 is not disposed in the rear region of the lowermost storage chamber of the heat insulating box 101 that has been generally used conventionally.
  • a cooling chamber 115 is provided on the back of the freezer compartment 103 and the vegetable compartment 104 in a manner that spans both chambers.
  • the cooling chamber 115 is partitioned from the freezer compartment 103 and the vegetable compartment 104 by a first partition 116 having heat insulation as a partition wall.
  • the 2nd partition 117 which has the heat insulation as a heat insulation partition wall is arrange
  • the first partition 116 and the second partition 117 are parts that are assembled to the heat insulating box 101 after the heat insulating box 101 is foamed. Therefore, a foamed resin such as foamed polystyrene is usually used as a heat insulating material from the viewpoint of heat insulation. In addition, in order to further improve the heat insulating performance and rigidity, rigid foamed urethane may be used, or a vacuum insulating material having high heat insulating properties may be inserted to further reduce the partition structure.
  • a foamed resin such as foamed polystyrene is usually used as a heat insulating material from the viewpoint of heat insulation.
  • rigid foamed urethane may be used, or a vacuum insulating material having high heat insulating properties may be inserted to further reduce the partition structure.
  • the third partition 118 which is the top surface portion of the ice making chamber 105 and the switching chamber 106 and the fourth partition 119 on the bottom surface portion which are arranged in parallel are integrally formed of the same foam heat insulating material as the heat insulating box body 101. .
  • the cooling chamber 115 constitutes a part of the cooling means, and includes a fin-and-tube evaporator 120 as a representative one.
  • the cooling chamber 115 is arranged vertically in the vertical direction across the freezing chamber 103 and the vegetable chamber 104.
  • the evaporator 120 is arranged so that the area facing the vegetable compartment 104 is smaller than the area facing the freezer compartment 103. This is because the cooling chamber 115 has the lowest temperature in the refrigerator 100, and thus the influence of the low temperature state on the vegetable chamber 104 is reduced.
  • a cooling fan 121 is disposed in the upper space of the evaporator 120.
  • the cooling fan 121 blows the cool air cooled by the evaporator 120, forcibly convects the cool air to each storage chamber, and circulates the cool air in the refrigerator 100.
  • a circulation path through which cold air is forcedly circulated is formed inside the refrigerator 100. Specifically, the cold air cooled by the evaporator 120 is forced into a blowing state by the cooling fan 121 and is carried to each room through a duct provided between each storage room and the heat insulating box 101. Each chamber is cooled and returned to the evaporator 120 through a suction duct.
  • a sterilization device 200 is provided near the discharge port of the refrigerating room discharge duct 129a provided in the refrigerating chamber 102, and a deodorizing device (not shown) is provided near the suction port.
  • the refrigerator compartment 102 is provided with a plurality of food storage shelves 201 for storing foods and the like in the cabinet, and a slide case 202 is provided at the bottom, mainly by setting a temperature slightly lower than the shelf of the refrigerator compartment 102.
  • a chilled room for storing meat and fish There is a chilled room for storing meat and fish.
  • a plurality of door shelves 201 are provided on the door side, and the food storage shelves 201 and the door shelves 203 can be changed by changing the mounting positions according to the convenience of the user. Thereby, the height at which food enters can be changed by adjusting the vertical interval, and various storage properties can be improved.
  • FIG. 3 is a diagram showing the duct configuration of the refrigerator in the first embodiment of the present invention.
  • the refrigerator 100 includes a refrigerator compartment 102 / vegetable compartment 104 circulation path through which relatively high-temperature cold air circulates, an ice making room 105 circulation path through which relatively low-temperature cold air circulates, and a freezer compartment 103 circulation.
  • Such a cold air circulation path is formed by a duct.
  • the cold air cooled by the evaporator 120 is blown to the refrigerating chamber 102 by the cooling fan 121 through the refrigerating chamber discharge duct 129a.
  • the cold air cooled by the evaporator 120 is cooled to a temperature that can sufficiently correspond to the freezing temperature of the freezer compartment 103. Therefore, if the air is kept blown to the refrigerator compartment 102 in a relatively low temperature cold state, the refrigerator compartment 102 becomes too cold.
  • a twin damper 128 capable of controlling the insertion of the cold air is provided in the cold air circulation path including the refrigerator compartment 102.
  • the cold air cooled by the evaporator 120 is controlled to be inserted (on / off of the cold air flow) by the twin damper 128 and is not always circulated through the path of the refrigerator compartment 102 and the vegetable compartment 104. Further, when the entire refrigerator 100 is sufficiently cooled, the rotation of the cooling fan 121 is stopped and the circulation of the cold air is also stopped. At this time, the cooling cycle, that is, the compressor 114 and the like are also stopped.
  • the cool air cooled by the evaporator 120 passes through the refrigerating chamber discharge duct 129a upward from below according to the control described above, and vent holes 130a, 130b, 130c, 130d, 130e, and 130f opened at the top of the refrigerating chamber 102. Is exhaled from.
  • the cold air that has passed through the refrigerator compartment 102 is sucked into a suction port 131 a that opens at the bottom of the refrigerator compartment 102.
  • the cold air sucked into the suction port 131a is discharged from the discharge port 131b to the refrigerating chamber return duct 137, and a part is discharged from the discharge port 136 opened at the upper part of the vegetable chamber 104 via the refrigerating chamber return duct 137.
  • a part of the cool air discharged from the discharge port 136 circulates through the vegetable compartment 104 and then joins again to return to the evaporator 120.
  • the evaporator 120 that is disposed below the refrigerator compartment 102 and cools the heat insulating box 101 is provided, and the refrigerator compartment return duct 137 that sends cold air from the refrigerator compartment 102 to the evaporator 120 is provided on the same side as the suction port 131a.
  • the cool air circulation path can be configured with a simple configuration by being arranged downward through the suction port 131a.
  • the circulation of the cold air is controlled by a damper for intermittently controlling the discharged cold air, and the temperature of each chamber is controlled. That is, the refrigerator compartment 102, the ice making room 105, and the switching room 106 are equipped with temperature sensors (not shown) for controlling the internal temperature. Based on the temperature detected by the temperature sensor, the control board 122 (see FIG. 2) attached to the back of the refrigerator 100 controls the opening and closing of the damper. That is, when the temperature sensor is higher than the preset first temperature, the damper is opened, and when the temperature sensor is lower than the second temperature, the damper is closed to adjust the internal temperature to a predetermined temperature.
  • the ice making room damper 123 for intermittently controlling the ice making room 105 is installed in the upper part of the cooling room 115, and the cold air blown from the cooling fan 121 passes through the ice making room damper 123 and the ice making room discharge duct 124a. After being discharged into the interior and exchanging heat, the duct is configured to return to the evaporator 120 via the ice making chamber return duct 124b.
  • the twin damper 128 is integrally provided with a damper for intermittently controlling the refrigerator compartment 102 and a damper for intermittently controlling the switching chamber 106. Further, the twin damper 128 further cools the cold compartment flap 125 and the switching chamber 106 for interrupting the cold air in the refrigerator compartment 102. A switching chamber flap 126 for intermittent connection is provided, and in addition, a motor portion 127 for driving the flap is also integrally provided.
  • the twin damper 128 is installed around the back of the ice making chamber 105 and the switching chamber 106.
  • the suction port 531 for sucking cold air from the refrigerator compartment 502 and the discharge ports 530a to 530f for discharging cold air to the refrigerator compartment 502 are provided in front of the duct 529a.
  • a food or beverage placed in 502 may be placed near the discharge port and freeze.
  • the food storage shelf 201 can be replaced.
  • the suction port 531 and the discharge ports 530a to 530f are visible, which causes a problem of poor appearance.
  • the positions of the discharge holes are arranged inconsistently with the interval between the shelves, and the appearance is deteriorated.
  • FIG. 4 and 5 are schematic views of the refrigerator duct in the first embodiment of the present invention.
  • the duct referred to here is the refrigerator compartment discharge duct 129a, and hereinafter, the refrigerator compartment discharge duct 129a is simply referred to as "duct 129a".
  • FIG. 4 shows a surface (front surface) that can be seen when the door of the refrigerator compartment 102 is opened
  • FIG. 5 shows the back surface thereof.
  • the duct 129a is a combination of a heat insulating air passage 300 molded from foamed polystyrene or the like and a front panel 301 molded from a resin such as polypropylene, polystyrene, or ABS.
  • the basic air path is composed of a heat insulating air path 300, and the front panel 301 is provided in the exterior portion in terms of design and strength. Further, the front panel 301 has a width larger than the lateral width of the heat insulating air passage 300, and the design is improved by making it difficult to see the side surface and the air vent from the front.
  • discharge ports 130a to 130f for discharging cool air to the refrigerating chamber 102 as vent holes and a suction port 131a for sucking cool air from the refrigerating chamber 102.
  • the shapes of the discharge ports 130a to 130f and the suction port 131a may be holes or notches and are not particularly limited.
  • the discharge ports 130a to 130f are formed by the heat insulating air passage 300, and the front panel 301 is not in direct contact with the discharged cold air. It is possible to prevent frost formation.
  • the cold air circulation path in the duct 129a has the following configuration. Specifically, as shown in FIG. 5, the duct 129a has a cool air circulation path leading to the discharge port 130a to 130f upward in the center thereof, and a suction port 131a adjacent to the lower part of the cold air circulation path. And a cold air circulation path leading to.
  • the duct 129a is arranged in the approximate center in the refrigerator compartment 102, and the side surface of the duct 129a is located on the side from the center in the refrigerator.
  • the lateral width of the duct 129a is designed at a position located substantially at the center (W2) of the wall surface (W1).
  • the width of the duct 129a is made approximately the same as the width of the refrigerator compartment 102 as in the prior art, sufficient cool air cannot be discharged from the discharge ports 130a to 130f, and sufficient cool air can be sucked from the suction port 131a. It is not possible. Furthermore, it can be set as the structure which a foodstuff, a foreign material, and a liquid cannot fall into the suction inlet 131a easily.
  • the discharge ports 130a to 130f are places where low-temperature cold air is first discharged to the interior space.
  • the discharge ports 130a to 130f are compared with other air convection in the interior. Since the discharge flow rate is high, the discharge ports 130a to 130f are arranged on the side of the duct instead of the front of the duct 129a, and the sufficient chamber space 302 is provided on the side. Mixing with the air in the refrigerator and reducing the discharge flow rate prevents freezing without locally lowering the food temperature.
  • the duct 129a is disposed in the approximate center of the refrigerator compartment 102, and the side surface of the duct 129a extends from the center of the interior to the approximate center (W2) of the side wall surface (W1). ),
  • the width of the duct 129a is designed at a position located at (1)).
  • (1/4) ⁇ W1 the position of the side surface of the duct 129a (W0) ⁇ (3/4) ⁇ W1. is there.
  • the position of the side surface of the duct 129a is defined as the distance from the center of the refrigerator compartment duct to the side surface (hereinafter referred to as “W0”).
  • the depth direction of the duct 129a is increased in order to secure the duct internal volume (that is, the duct is located on the front side in the cabinet). ), And the internal volume will be compressed. Further, the chamber space 302 becomes larger, the wind speed of the cool air discharged from the discharge port is lowered, and the cool air is difficult to flow from the rear to the front. Therefore, it becomes difficult for the temperature distribution in the refrigerator compartment to be uniform.
  • the preferable chamber space 302 is that the duct 129a is arranged at substantially the center of the refrigerator compartment 102 and the distance from the center of the refrigerator to the side wall surface is W1, and the duct 129a Obtained by designing the lateral width of the duct 129a so that the side surface position (W0) falls within the range of (1/4) ⁇ W1 ⁇ side surface position (W0) ⁇ (3/4) ⁇ W1 of the duct 129a. It is a space that is created. As a result, the internal volume of the refrigerator is made uniform without compressing the internal volume of the refrigerator, and the cold air temperature is mixed with the internal air before the food gets cold. By reducing, it is possible to prevent freezing of food and the like without local temperature reduction.
  • the more preferable chamber space 302 is the position (W0) of the side surface of the duct 129a when the duct 129a is arranged at the approximate center in the refrigerator compartment 102 and the distance from the center to the side wall surface is W1.
  • W0 the position of the side surface of the duct 129a when the duct 129a is arranged at the approximate center in the refrigerator compartment 102 and the distance from the center to the side wall surface is W1.
  • W0 Is a space obtained by designing the width of the duct 129a so that it falls within the range of (1/2) ⁇ W1 ⁇ position (W0) ⁇ (3/4) ⁇ W1 of the side surface of the duct 129a. is there.
  • the degree of downsizing of the width of the duct 129a is reduced, the depth direction of the duct 129a is not further increased by setting (1/2) ⁇ W1 ⁇ the position of the side surface of the duct 129a (W0).
  • the usability of the refrigerator is not lowered, and the area where the cold air coming out from the left discharge port and the cold air coming out from the right discharge port wrap is reduced, and efficient cooling can be performed. Furthermore, it becomes easier for cold air to reach the vicinity of the left and right wall surfaces in the cabinet, making the temperature distribution in the refrigerator compartment uniform, and mixing the cold air temperature with the air in the cabinet before the food gets cold. be able to. Further, by reducing the discharge speed of the cold air, it is possible to prevent freezing of food and the like without local temperature reduction.
  • the width of the refrigerator compartment duct becomes narrower than before, which contributes to resource saving by reducing the amount of material used and distributing parts. Reducing the transport energy involved contributes to energy savings, and as a result, has the effect of reducing manufacturing costs.
  • the chamber space 302 also has a left-right symmetrical shape, and the flow of cold air from the left direction to the right direction is almost the same. The temperature distribution in the room becomes more uniform.
  • a duct plate 15 is provided in order to blow out cool air uniformly to the left and right, and the air passage is branched leftward and rightward.
  • One opening direction is defined with respect to the air path (for example, right direction).
  • the duct plate 15 is provided with an illumination means storage portion 15d.
  • the duct plate 15 is not an air passage, and the portion of the duct plate 15 at the center is substantially an ineffective space. It has become.
  • the lower part of the heat insulating air passage of the duct forms a single air passage at the center without branching from the center to the left and right directions.
  • Patent Document 2 There is no invalid space as in the conventional configuration (Patent Document 2), and the chamber space is provided at the tip of the discharge port so that the discharge port is not blocked and the balance of the airflow resistance is not lost. This reduces the amount of material used and contributes to resource saving.
  • the food storage shelf 201 can be replaced or moved up and down without worrying about the position of the discharge port.
  • the cooled cold air flows upward through the duct 129a and is discharged from the discharge ports 130a to 130f opened at the top of the refrigerator compartment 102.
  • the cold air thus discharged into the refrigerator compartment 102 is sucked from the suction port 131a that opens at the lower part of the refrigerator compartment 102, flows downward, and is discharged from the discharge port 131b to the refrigerator compartment return duct 137.
  • the cold air cooled by the evaporator 120 provided below the refrigerating chamber enters the region of the refrigerating chamber 102 and faces the duct 129a upward. Flowing. Then, the cold air discharged from the discharge ports 130a to 130f opened in the refrigerator compartment 102 and discharged to the refrigerator compartment 102 is lower than the discharge ports 130a to 130f of the refrigerator compartment 102 (in this embodiment, on the right side of the front side). It is sucked from a suction port 131a that opens to one side. And it returns to the evaporator 120 toward the downward direction through the refrigerator compartment return duct 137 (in this embodiment, one side on the right side as viewed from the front).
  • the flow on the cold air discharge side is such that the discharge ports 130a, 130b, 130e, and 130f are arranged on the side wall surfaces on both sides of the duct 129a, and the cold air is discharged to both sides in the refrigerator compartment 102.
  • the suction port 131a is arranged on the side wall surface on one side (right side) of the duct 129a, and cold air is sucked in from one side (right side) in the cold room 102, and the cold room return duct 137 is drawn.
  • the flow passes through one side (right side) of the evaporator 120 and returns from the lower part of the evaporator 120.
  • the reason why the refrigerator return duct 137 is arranged only on one side of the evaporator 120 is that if it is arranged on both sides, the width dimension of the evaporator 120 is pressed, and the design flexibility of the desired cooling capacity is reduced. This is due to the complexity of the structure due to the double-sided return duct configuration and the associated cost increase. However, if the refrigerator compartment return duct is provided either before or after the evaporator 120, the thickness of the evaporator 120 is added to the thickness of the evaporator 120 to compress the effective space inside the refrigerator, or It is not a good idea to lead to the demerit of reducing the cooling efficiency by infringing the thickness of the heat insulating material.
  • the chamber space 302 on the discharge port side is formed on both sides of the duct 129a.
  • the chamber space 302 is extended to the lower side of the refrigerator compartment 102, and the chamber space 302 on one side (right side) of the chamber space 302 is formed to face the opening of the suction port 131a disposed on the side wall surface.
  • the cold air discharged from the discharge ports 130a, 130b, 130e, and 130f is discharged into the chamber space 302, and the cold air temperature is mixed with the inside air before the food gets cold.
  • the discharge flow rate is reduced. This prevents freezing without locally lowering the temperature of the food.
  • the width of the duct 129a is reduced, and the arrangement position of the discharge ports 130a, 130b, 130e, 130f in the width direction in the refrigerator compartment 102 is moved toward the center in the refrigerator. There is an effect that the discharge temperature distribution in 102 becomes more uniform.
  • the cold air discharged from the center of the refrigerating chamber 102 finally circulates toward the suction port 131a in the lower part of the refrigerating chamber 102, but the suction port 131a is on one side (right side) of the duct 129a. It is provided only on the side wall surface.
  • the cold air discharged from the discharge ports 130a and 130b provided on the side wall surface of the duct 129a opposite to the side where the suction port 131a exists (left side) first enters the side chamber space 302 and then forwards. The direction is changed to flow in the refrigerator compartment 102. Subsequently, it flows into the chamber space 302 on the opposite side while crossing in the width direction, and then flows into the suction port 131a that opens to the side and is collected.
  • the discharge ports 130a and 130b and the suction port 131a are provided on the side wall surface of the duct 129a and become a path through which the cold air flows in and out through the chamber space 302, the flow path is long and the direction of flow is also changed. Many. Accordingly, a short circuit of the cold airflow from the discharge ports 130a and 130b to the suction port 131a does not occur, and the time during which the cold air stays in the refrigerating chamber 102 becomes longer, and the suction port 131a is efficiently cooled uniformly in the refrigerating chamber 102. Will be collected.
  • the suction port 131a is opened in a general shape in front of the duct 129a
  • the direction of the cool air discharged is small and resistance is low because of the suction port on the front. Therefore, a short circuit is easily generated from the discharge ports 130a and 130b whose width of the duct 129a is reduced to the center and from the suction port in front of the duct. Therefore, the inside of the refrigerator compartment 102 cannot flow to the suction port while crossing in the width direction, and the inside of the refrigerator compartment 102 cannot be uniformly cooled.
  • the duct 129a is disposed so as to reduce the width from the center in the width direction of the refrigerator compartment 102 to form the chamber space 302 on both sides, and the discharge ports 130a, 130b, 130e, 130f are formed on both side walls of the duct 129a. It is set as the structure which arranges.
  • the suction port 131a is arranged below the discharge ports 130a, 130b, 130e, and 130f and only on one side wall of the duct 129a.
  • the quality performance merit related to the temperature distribution can be rationally realized by the combined configuration in which the refrigerator compartment return duct 137 is arranged only on one side.
  • a configuration in which a bypass duct connecting both the inlets in the refrigerator compartment 102 is provided in the refrigerator compartment 102 to realize a one-side refrigerator compartment return duct is also conceivable, but the quality performance related to the temperature distribution in the refrigerator compartment described above is also conceivable You cannot enjoy the benefits. That is, a rational duct configuration in which the refrigerator compartment return duct 137 is arranged only on one side and a quality performance merit relating to temperature distribution cannot be achieved at the same time.
  • the duct 129a is formed with the chamber space 302 formed on both sides thereof with a width narrower than that of the refrigerator compartment 102, and the discharge ports 130a, 130b provided above and below the side wall surface of the duct 129a facing the chamber space 302.
  • the refrigerating chamber 102 has a configuration in which 130e and 130f and the suction port 131a are provided with the discharge ports 130a, 130b, 130e and 130f provided on both sides of the duct 129a and the suction port 131a provided only on one side.
  • the merit and performance merit related to the temperature distribution in the inside is obtained and has an effect.
  • the refrigerator return duct 137 is also arranged only on one side below the suction port 131a on the same side, so that a refrigerator with high cooling efficiency including the above advantages at a low cost with a series of rational duct configurations. Can be provided.
  • a rib may be provided on the extension of the food storage shelf 201 from the inner side of the back surface of the heat insulating box 101 to the front in the chamber space portion to prevent food falling.
  • the upper and lower food storage shelves use this food fall prevention means and will be described below.
  • the refrigerator compartment 102 is provided with a plurality of food storage shelves 201 for storing food and the like in the cabinet.
  • the refrigerator compartment 102 has three food storage shelves 201 in the upper, middle, and lower stages, and is installed in a bridge form from the left side to the right side of the refrigerator compartment 102.
  • FIG. 12 is a perspective view of the lower food storage shelf in the refrigerator according to the first embodiment of the present invention.
  • FIG. 13 is a cross-sectional plan view taken at the position of the lower food storage shelf in the refrigerator according to Embodiment 1 of the present invention.
  • the lower food storage shelf is a food storage shelf 221 in which the back side 221 ⁇ / b> A is linear.
  • the food storage shelf 221 includes a food placement space 211A in which foods and the like are placed, and the food placement space 211A is made of glass.
  • a frame portion 211C made of resin is provided around the food placement space 211A.
  • ribs 223 are formed on the left and right sides of the duct 129a with the duct 129a sandwiched forward from the inner surface of the back surface of the heat insulating box 101.
  • the ribs 223 are arranged on an extension line of the end surface of the food storage shelf 221 on the back side (the back inner surface side of the heat insulating box).
  • the back side of the food storage shelf 221 is linear, the food storage shelf itself does not undergo complicated processing, and the end surface of the back side of the food storage shelf 221 and the back inner surface of the heat insulating box 101 Will be narrowed by the ribs 223. Therefore, it is possible to prevent the food from being dropped into the chamber space 302 when the food placed on the back side of the food storage shelf 221 is a particularly small food or the like on the back side.
  • the lower food storage shelf was demonstrated here, in this Embodiment, it is set as the structure similar to the lower food storage shelf also about the upper food storage shelf.
  • the shape of the food storage shelf may be devised to prevent food falling.
  • the middle food storage shelf is a food storage shelf 211 that is installed in a bridge shape from the left side surface to the right side surface of the refrigerator compartment 102 and is shaped to surround the refrigerator compartment duct 129a.
  • FIG. 14 is a perspective view of a food storage shelf in the middle stage of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 15 is a cross-sectional plan view cut at the position of the food storage shelf in the middle of the refrigerator according to Embodiment 1 of the present invention.
  • the food storage shelf 211 includes a food placement space 211A in which foods and the like are placed, and guide ribs 211B provided on the back side of the food installation space 211A.
  • the food placement space 211A is made of glass.
  • the guide rib 211B is made of resin.
  • a frame portion 211C made of resin is provided around the food placement space 211A, and the back side of the food storage shelf 211 extends this frame portion 211C rearward to guide rib 211B. It is what.
  • a step is provided between the food placement space 211A and the guide rib 211B so that the guide rib 211B is high. Normally, no food is placed on the guide rib 211B.
  • the guide rib 211B is arranged in the chamber space 302.
  • the food storage shelf 211 shaped to surround the refrigerator compartment duct 129a, that is, the guide rib 211B is provided on the back side of the food storage shelf, so that the end face on the back side of the food storage shelf 211 and the heat insulation are insulated.
  • a gap formed between the inner surface of the back portion of the box body 101 is narrowed by the guide rib 211B. Therefore, it is possible to prevent the food from being dropped into the chamber space 302 when the food placed on the back side of the food storage shelf 211 is placed on the back side, particularly a small food.
  • the upper and lower food storage shelves are the food storage shelves 221 with the back side 221A being linear, and the middle food storage shelves surround the refrigerator compartment duct 129a.
  • the food storage shelf 211 has a special shape.
  • the ribs 223 may be formed from the inner surface of the rear portion toward the front as the food storage shelves 221 having the straight side 221A.
  • ribs may not be provided as the food storage shelves 211 having a shape surrounding the refrigerator compartment duct 129a for all of the plurality of food storage shelves.
  • the food storage shelf whose vertical position can be changed is a food storage shelf 211 that is shaped to surround the refrigerator compartment duct 129a without providing the rib 223 from the aspect of appearance, that is, the food storage shelf. It is preferable to devise the shape.
  • the shape of the back inner surface of the heat insulation box is devised, or the shape of the food storage shelf is devised, that is, means for preventing food from falling is provided.
  • the food is placed on the back side of the food storage shelf, especially when small foods are placed on the back side. It is possible to prevent food from falling into the space 302.
  • the back side 221A of the food storage shelf 221 is linear, but it is not necessarily straight, and there may be some unevenness on the back side. Anything that can reduce the fall of food on the food storage shelf 221 may be used.
  • FIG. 6 shows the internal structure of the refrigerator compartment of the refrigerator according to Embodiment 1 of the present invention.
  • the state before fixing the duct 129a is shown.
  • protrusions 101 a and 101 b are formed in two vertical rows at an intermediate position of the heat insulating box 101.
  • the protrusions 101a and 101b are protrusions of the inner box and engage with the duct 129a. Therefore, the distance between the protruding portions 101a and 101b is substantially equal to the lateral width of the duct 129a, and there is no protruding portion at a position corresponding to the discharge ports 130a to 130f and the suction port 131a.
  • FIG. 7 is an explanatory diagram of a duct provided in the refrigerator according to Embodiment 1 of the present invention.
  • a duct 129 a is provided along the heat insulating box 101 of the refrigerator compartment 102 having a heat insulating structure, and a Y-shaped cold air circulation path is formed between the duct 129 a and the heat insulating box 101.
  • the cool air in the refrigerator 102 is sucked from the suction port 131a that opens below the refrigerator compartment 102, circulates through each storage chamber, and then is discharged from the outlets 130a to 130a that open above the refrigerator compartment 102.
  • the duct 129a is provided with a cold air circulation path that leads upward to the discharge ports 130a to 130f and a cold air circulation path that leads to the suction port 131a adjacent to the lower part of the cold air circulation path. .
  • the cool air circulation path can be secured in a more compact state of the duct 129a. Then, by making the duct 129a more compact, a chamber space can be appropriately secured on the side of the duct 129a.
  • both the discharge ports 130a to 130f and the suction port 131a are provided on the side surface of the duct 129a. That is, neither the discharge ports 130a to 130f nor the suction port 131a exist on the front surface of the duct 129a, and a chamber space 302 is provided at the tip of the discharge ports 130a to 130f. Therefore, it is possible to avoid the problem that the food in the refrigerator compartment 102 is frozen, and when the door of the refrigerator compartment is opened, the discharge port and the suction inlet are not visible on the front surface, so the appearance of the refrigerator compartment 102 is good. Become.
  • FIG. 8A is a diagram showing a state before fixing the refrigerator duct in the first embodiment of the present invention.
  • FIG. 8B is a diagram showing the refrigerator after being fixed in the first embodiment of the present invention.
  • FIG. 8A a cross-sectional view of the rear portion of the refrigerator compartment 102 is shown.
  • duct engaging protrusions 101 a and 101 b are formed at the intermediate position of the heat insulating box 101.
  • the projecting portions 101a and 101b and the duct 129a are engaged with each other as shown in FIG. 8B.
  • the protrusions 101a and 101b are formed at the intermediate position of the heat insulation box 101, the space can be increased as compared with the case where the protrusions 101a and 101b are formed at the corners of the heat insulation box 101, and the protrusions 101a and 101b are accurate. Can be formed.
  • the protrusions 101a and 101b are formed at the intermediate position of the heat insulating box 101, it is possible to engage with the duct 129a outside the protrusions 101a and 101b. That is, the duct 129a holds the portion that protrudes outside the protruding portions 101a and 101b.
  • the protrusions 101a and 101b are formed at the corners on both sides of the heat insulating box 101 as in the prior art, it is only possible to engage with the duct 129a inside the protrusions 101a and 101b. No (see FIGS. 10A and 10B).
  • the duct 129a is engaged not only inside the protrusions 101a and 101b but also outside the protrusions 101a and 101b. It becomes possible.
  • the present invention has room for selection in the shapes of the protruding portions 101a and 101b (that is, the degree of freedom of the shape is high), and can be said to be superior to the prior art in terms of diversity.
  • the refrigerator in the embodiment of the present invention there is neither a cold air discharge port nor a suction port on the front surface of the duct, and a chamber between the side surface of the duct 129a and the inner wall surface.
  • a space 302 is provided. Therefore, it is possible to prevent discharged cold air having a low temperature and a high flow rate from directly hitting food in the refrigerator compartment, avoiding a problem that the food freezes, and improving the appearance of the refrigerator compartment.
  • the width of the duct 129a is narrower than that of the prior art, there is an effect that it contributes to resource saving and energy saving and as a result, the manufacturing cost is reduced.
  • the protrusion for engaging the duct is formed at an intermediate position of the heat insulation box, it is possible to provide a space with sufficient space and to accurately form the protrusion compared to the case where the protrusion is formed at the corner of the heat insulation box. And the diversity of the shape of the protrusion is increased.
  • the protrusion for engaging the duct is provided in the heat insulating box, there is an effect that a separate part for engaging with the duct is unnecessary.
  • a method of fixing the duct 129a using a fixing member such as a rivet may be employed.
  • a fixing member such as a rivet
  • a fixing member that secures a sealing property is disposed at a position that controls the flow of cold air in the duct 129a (for example, a place that deflects the flow of cold air toward the discharge port on the side of the duct).
  • a fixing member such as a rivet
  • the fixing member is provided with a guide member, the effect of guiding cold air can be further improved.
  • a fixing member (rivet or the like) is arranged at the branching position of the Y-shaped cold air circulation path, the cold air from the lower side is easily branched into two and flows upward, and the circulation of the cold air is improved. Needless to say.
  • the arrangement positions of the six discharge ports 130a to 130f have not been described in detail, but the arrangement positions are not particularly limited. However, it is preferable to arrange the six discharge ports 130a to 130f so that the temperature distribution in the refrigerator compartment 102 is as uniform as possible.
  • the six discharge ports 130a to 130f are illustrated, but the number of discharge ports is not particularly limited. Similarly, although one suction port 131a was illustrated, the number of suction ports is not particularly limited.
  • the temperature distribution in the refrigerator compartment is made uniform from the positional relationship between the discharge port and the suction port (both the discharge port and the suction port are provided on the side surface of the duct). It has been explained centering on making it.
  • Embodiment 2 will be described below as a first modification.
  • the second embodiment of the present invention differs from the first embodiment in that the right discharge ports 130e and 130f are not provided and the discharge ports are provided with the left discharge ports 130a and 130b. .
  • FIG. 16 is an explanatory diagram of a duct provided in the refrigerator according to the second embodiment of the present invention.
  • a duct 129 a is provided along the heat insulating box 101 of the refrigerator compartment 102 having a heat insulating structure, and a Y-shaped cold air circulation path is formed between the duct 129 a and the heat insulating box 101.
  • the cold air in the refrigerator 102 is sucked from the suction port 131a that opens below the refrigeration chamber 102, circulates through each storage chamber, and then the discharge ports 130a to 130a that open above the refrigeration chamber 102. It is discharged from 130d. That is, only the left discharge ports 130a and 130b are provided on the side surface of the duct 129a, and no discharge port is provided on the right side surface.
  • both the discharge ports 130a and 130b and the suction port 131a are provided on the side surface of the duct 129a. That is, neither the discharge ports 130a and 130b nor the suction port 131a are present on the front surface of the duct 129a, and the chamber space 302 is provided at the tip of the discharge ports 130a and 130b. Therefore, it is possible to avoid the problem that the food in the refrigerator compartment 102 is frozen, and when the door of the refrigerator compartment is opened, the discharge port and the suction inlet are not visible on the front surface, so the appearance of the refrigerator compartment 102 is good. Become.
  • the cold air cooled by the evaporator 120 provided below the refrigerating chamber enters the region of the refrigerating chamber 102 and flows upward through the duct 129a. Then, the water is discharged from the discharge ports 130a to 130d opened in the refrigerator compartment 102. The cold air discharged into the refrigerator compartment 102 is sucked from the inlet 131a that opens below the outlets 130a to 130d of the refrigerator compartment 102 (in the present embodiment, on the right side of the front). And it returns to the evaporator 120 toward the downward direction through the refrigerator compartment return duct 137 (in this embodiment, one side on the right side as viewed from the front).
  • the flow on the cold air discharge side is such that the discharge ports 130 a and 130 b are arranged on the left side wall surface of the duct 129 a and the cold air is discharged to the left side in the refrigerator compartment 102.
  • the suction port 131a is arranged on the side wall surface on one side (right side) of the duct 129a, and cold air is sucked in from one side (right side) in the cold room 102, and the cold room return duct 137 is drawn.
  • the flow passes through one side (right side) of the evaporator 120 and returns from the lower part of the evaporator 120.
  • the reason why the refrigerator return duct 137 is arranged only on one side of the evaporator 120 is that if it is arranged on both sides, the width dimension of the evaporator 120 is pressed, and the design flexibility of the desired cooling capacity is reduced. This is due to the complexity of the structure due to the double-sided return duct configuration and the associated cost increase.
  • a refrigerator compartment return duct is provided either before or after the evaporator 120, the thickness of the evaporator 120 is added to the thickness of the evaporator 120 to compress the effective space inside the warehouse, or the heat insulation behind the evaporator 120 It is not a good idea to lead to the demerit of reducing the cooling efficiency by infringing on the thickness of the material.
  • the chamber space 302 on the discharge port side described above is formed on the left side of the duct 129a, and this chamber space 302 extends to the lower side of the refrigerator compartment 102.
  • the cold air discharged from the discharge ports 130a and 130b is discharged into the chamber space 302, and the cold air temperature is mixed with the internal air before the food is exposed to the cold air.
  • freezing is prevented without lowering the temperature of the food locally.
  • the width of the duct 129a is reduced, and the arrangement position of the discharge ports 130a, 130b in the width direction in the refrigerator compartment 102 is moved toward the center in the refrigerator, so that the discharge in the refrigerator compartment 102 is performed. There is an effect that the temperature distribution becomes more uniform.
  • the cold air discharged from the center of the refrigerating chamber 102 finally circulates toward the suction port 131a in the lower part of the refrigerating chamber 102, but the suction port 131a is on one side (right side) of the duct 129a. It is provided only on the side wall surface. For this reason, cold air discharged from the discharge ports 130 a and 130 b provided on the side wall surface of the duct 129 a on the opposite side (left side) to the side where the suction port 131 a is present first enters the side chamber space 302. Next, the direction is changed to the front to flow in the refrigerating chamber 102, and then flows into the facing chamber space 302 while crossing in the width direction, and then flows to the suction port 131 a that opens to the side to be collected.
  • the duct 129a is arranged so as to form a chamber space 302 on the left side by reducing the width from the center in the width direction of the refrigerator compartment 102, and the discharge ports 130a, 130b are arranged on the left wall surface of the duct 129a.
  • the suction port 131a is arranged below the discharge ports 130a and 130b and only on one side wall surface of the duct 129a.
  • the quality performance merit related to such temperature distribution can be rationally realized by the combined configuration in which the refrigerator return duct 137 is arranged only on one side.
  • a configuration in which a bypass duct connecting both the inlets in the refrigerator compartment 102 is provided in the refrigerator compartment 102 to realize a one-side refrigerator compartment return duct is also conceivable, but the quality performance related to the temperature distribution in the refrigerator compartment described above is also conceivable You cannot enjoy the benefits. That is, a rational duct configuration in which the refrigerator compartment return duct 137 is arranged only on one side and a quality performance merit relating to temperature distribution cannot be achieved at the same time.
  • the duct 129a is formed with the chamber space 302 formed on the left side with a width narrower than that of the refrigerator compartment 102, and the discharge ports 130a and 130b provided above and below the side wall surface of the duct 129a so as to face the chamber space 302.
  • the refrigerator return duct 137 is also arranged only on one side below the suction port 131a on the same side, so that a refrigerator with high cooling efficiency including the above advantages at a low cost with a series of rational duct configurations. Can be provided.
  • the duct 129a is disposed so as to reduce the width from the center in the width direction of the refrigerator compartment 102 to form the chamber space 302 on the left side, and the discharge ports 130a and 130b are provided on the left wall surface of the duct 129a.
  • the configuration is arranged.
  • the suction port 131a is arranged below the discharge ports 130a and 130b and only on one side wall of the duct 129a.
  • the discharge ports 130c and 130d are provided above the refrigerator compartment.
  • the discharge ports 130c and 130d are not necessarily provided if the temperature distribution in the refrigerator compartment can be made uniform.
  • the refrigerating chamber duct is provided on the back surface of the refrigerating chamber formed in the heat insulating box, and the refrigerating chamber duct includes a discharge port that is a ventilation port only on one side surface, and a discharge port.
  • the refrigerator is provided with a suction port that is a ventilation port only on one side surface opposite to the discharge port at the lower side, and has a chamber space from the side surface of the refrigerator compartment duct to the side surface of the refrigerator compartment.
  • the temperature distribution in the refrigerator compartment can be made uniform by designing the width of the duct 129a so as to be the chamber space shown in the first embodiment.
  • Embodiment 3 will be described as a second modification.
  • the third embodiment of the present invention differs from the first embodiment in that the discharge ports 130a, 130b, 130e, and 130f are not provided on the side surface of the duct 129a, but are provided on the front surface of the duct 129a. It is a point.
  • FIG. 17 is an explanatory diagram of a duct provided in the refrigerator according to Embodiment 3 of the present invention.
  • a duct 129 a is provided along the heat insulating box 101 of the refrigerator compartment 102 having a heat insulating structure, and a Y-shaped cold air circulation path is formed between the duct 129 a and the heat insulating box 101.
  • a duct 129 a is provided along the heat insulating box 101 of the refrigerator compartment 102 having a heat insulating structure, and a Y-shaped cold air circulation path is formed between the duct 129 a and the heat insulating box 101.
  • the cool air in the refrigerator 102 is sucked from the suction port 131a that opens below the refrigerator compartment 102, circulates through each storage chamber, and then the discharge port 130a that opens above the refrigerator compartment 102, It is discharged from 130b, 130e, 130f.
  • the discharge ports 130a, 130b, 130e, and 130f are provided on the front surface of the duct 129a, and the suction port 131a is provided on the side surface of the duct 129a. That is, when the door of the refrigerator compartment is opened, the suction port is not visible on the front surface, so that the appearance of the refrigerator compartment 102 is improved.
  • the left and right positions of the discharge ports 130a, 130b, 130e, and 130f are provided not from the center of the duct 129a but from the outside of the duct 129a. As a result, cold air can be circulated also in the vicinity of the left and right wall surfaces in the refrigerator compartment.
  • discharge ports 130a, 130b, 130e, and 130f are provided from the center of the duct 129a, the central part in the left-right direction in the refrigerator compartment is further cooled, and there is a possibility that the cool air does not spread near the left and right sides in the refrigerator compartment. is there.
  • the cold air cooled by the evaporator 120 provided below the refrigerating chamber enters the region of the refrigerating chamber 102 and flows upward through the duct 129a.
  • the air is discharged from the discharge ports 130a, 130b, 130e, and 130f that open in the refrigerator compartment 102.
  • the cold air discharged into the refrigerator compartment 102 is sucked in from the inlet 131a that opens below the outlets 130a, 130b, 130e, and 130f of the refrigerator compartment 102 (on the right side in the present embodiment). And it returns to the evaporator 120 toward the downward direction through the refrigerator compartment return duct 137 (in this embodiment, one side on the right side as viewed from the front).
  • the flow on the cold air discharge side is such that the discharge ports 130a, 130b, 130e, 130f are arranged in front of the duct 129a, and the cold air is discharged forward in the refrigerator compartment 102.
  • the suction port 131a is arranged on the side wall surface on one side (right side) of the duct 129a, and cold air is sucked in from one side (right side) in the cold room 102, and the cold room return duct 137 is drawn.
  • the flow passes through one side (right side) of the evaporator 120 and returns from the lower part of the evaporator 120.
  • the reason why the refrigerator return duct 137 is arranged only on one side of the evaporator 120 is that if it is arranged on both sides, the width dimension of the evaporator 120 is pressed, and the design flexibility of the desired cooling capacity is reduced. This is due to the complexity of the structure due to the double-sided return duct configuration and the associated cost increase.
  • a refrigerator compartment return duct is provided either before or after the evaporator 120, the thickness of the evaporator 120 is added to the thickness of the evaporator 120 to compress the effective space inside the warehouse, or the heat insulation behind the evaporator 120 It is not a good idea to lead to the demerit of reducing the cooling efficiency by infringing on the thickness of the material.
  • the above-described chamber space 302 on the discharge port side is formed on both sides of the duct 129a.
  • the chamber space 302 is extended to the lower side of the refrigerator compartment 102, and the chamber space 302 on one side (right side) of the chamber space 302 is extended. Is formed to face the opening of the suction port 131a disposed on the side wall surface.
  • the cold air discharged from the discharge ports 130a, 130b, 130e, and 130f is discharged into the chamber space 302, and the cold air temperature is mixed with the inside air before the food gets cold.
  • the discharge flow rate is reduced.
  • freezing is prevented without locally lowering the temperature of the food, and the width of the duct 129a is reduced by providing the chamber space 302 at the same time, and the discharge ports 130a, 130b, 130e, and 130f in the refrigerator compartment 102 are reduced. Since the arrangement position in the width direction is moved toward the center in the storage, there is an effect that the discharge temperature distribution in the refrigerator compartment 102 becomes more uniform.
  • the cold air discharged from the center of the refrigerating chamber 102 finally circulates toward the suction port 131a in the lower part of the refrigerating chamber 102, but the suction port 131a is on one side (right side) of the duct 129a. It is provided only on the side wall surface. For this reason, the cool air discharged from the discharge ports 130 a and 130 b provided in front of the duct 129 a on the opposite side (left side) to the side where the suction port 131 a exists flows forward in the refrigerator compartment 102. Subsequently, it flows into the chamber space 302 on the opposite side while crossing in the width direction, and then flows into the suction port 131a that opens to the side and is collected.
  • the suction port 131a is provided on the side wall surface of the duct 129a and becomes a path through which cold air flows in and out through the chamber space 302, the circulation path is long and the flow direction is changed. Therefore, a short circuit of the cold airflow from the discharge ports 130a and 130b to the suction port 131a hardly occurs, and the dwell time in the refrigerating chamber 102 is long, and the air is collected in the suction port 131a while cooling the refrigerating chamber 102 uniformly and efficiently. It will be.
  • the suction port 131a is opened in a general shape on the front side of the duct 129a, the width of the duct 129a is reduced because the direction of the cool air discharged is small and the resistance is small because it is the front suction port.
  • a short circuit is easily generated from the discharge ports 130a and 130b formed at the center to the suction port in front of the duct. Accordingly, the cold air cannot flow to the suction port while crossing the inside of the refrigerator compartment 102 in the width direction, and the inside of the refrigerator compartment 102 cannot be cooled uniformly.
  • the duct 129a is disposed so as to reduce the width from the center in the width direction of the refrigerator compartment 102 to form the chamber space 302 on both sides, and the discharge ports 130a, 130b, 130e, and 130f are provided on the front surface of the duct 129a. It is set as the structure to arrange.
  • the suction port 131a is arranged below the discharge ports 130a, 130b, 130e, and 130f and only on one side wall of the duct 129a.
  • the quality performance merit related to such temperature distribution can be rationally realized by the combined configuration in which the refrigerator return duct 137 is arranged only on one side.
  • a configuration in which a bypass duct connecting both the inlets in the refrigerator compartment 102 is provided in the refrigerator compartment 102 to realize a one-side refrigerator compartment return duct is also conceivable, but the quality performance related to the temperature distribution in the refrigerator compartment described above is also conceivable You cannot enjoy the benefits. That is, a rational duct configuration in which the refrigerator compartment return duct 137 is arranged only on one side and a quality performance merit relating to temperature distribution cannot be achieved at the same time.
  • a suction port 131a provided on the side surface is provided with discharge ports 130a, 130b, 130e, and 130f provided on the front surface of the duct 129a and a suction port 131a provided only on one side surface.
  • the refrigerator return duct 137 is also arranged only on one side below the suction port 131a on the same side, so that a refrigerator with high cooling efficiency including the above advantages at a low cost with a series of rational duct configurations. Can be provided.
  • the duct 129a is arranged so as to reduce the width from the center in the width direction of the refrigerator compartment 102 so as to form the chamber space 302 on the left side, and the discharge ports 130a, 130b, 130e are provided in front of the duct 129a. , 130f is arranged.
  • the suction port 131a is arranged below the discharge ports 130a, 130b, 130e, and 130f and only on one side wall surface of the duct 129a.
  • discharge ports 130a, 130b, 130e, and 130f are provided in front of the duct 129a, in order to distribute the flow of cool air also in the vicinity of the left and right wall surfaces in the refrigerator compartment, do it.
  • the chamber space is a preferable chamber space as shown in the first embodiment, and the duct 129a is arranged at the approximate center in the refrigerator compartment 102, and the distance from the interior center to the side wall surface.
  • W1 is W1
  • the position (W0) of the side surface of the duct 129a falls within the range of (1/4) ⁇ W1 ⁇ the position (W0) of the side surface of the duct 129a ⁇ (3/4) ⁇ W1.
  • a space obtained by designing the lateral width of the duct 129a may be used.
  • the discharge ports 130a, 130b, 130e, and 130f are close to the vicinity of the left and right wall surfaces of the refrigerator compartment, and the flow of cold air can be made to flow near the left and right wall surfaces of the refrigerator compartment. It can be made uniform.
  • the chamber space is a more preferable chamber space as shown in the first embodiment, and the duct 129a is arranged at substantially the center in the refrigerator compartment 102, and from the center to the side wall surface.
  • the position (W0) of the side surface of the duct 129a is in the range of (1/2) ⁇ W1 ⁇ the position (W0) of the side surface of the duct 129a ⁇ (3/4) ⁇ W1.
  • a space obtained by designing the width of the duct 129a may be used.
  • the discharge ports 130a, 130b, 130e, and 130f have a distance (X dimension in FIG. 17) from the side surface of the duct 129a of 120 mm or less, so that the discharge ports 130a, 130b, 130e, and 130f Will be close to the left and right wall surfaces. Therefore, the flow of cool air can be made to spread near the left and right wall surfaces in the refrigerator compartment, and the temperature distribution in the refrigerator compartment can be made more uniform.
  • the discharge port is arranged in front, the flow of cold air toward the left and right of the refrigerator compartment is difficult to reach.
  • the width of the duct 129a is specified and the position of the discharge port is set as much as possible.
  • the temperature distribution in the refrigerator compartment is made uniform by making up for the outside.
  • the refrigerating chamber duct is provided on the back surface of the refrigerating chamber formed in the heat insulating box, and the refrigerating chamber duct has a discharge port which is a ventilation port on the front side and a lower side than the discharge port. And a suction port that is a ventilation port only on one side surface, and a refrigerator having a chamber space from the side surface of the refrigerating chamber duct to the side surface of the refrigerating chamber.
  • the fourth embodiment of the present invention is different from the first embodiment in that the suction port 131a is not provided on the side surface of the duct 129a but on the front surface of the duct 129a.
  • FIG. 18 is an explanatory diagram of a duct provided in the refrigerator according to the fourth embodiment of the present invention.
  • a duct 129 a is provided along the heat insulating box 101 of the refrigerator compartment 102 having a heat insulating structure, and a Y-shaped cold air circulation path is formed between the duct 129 a and the heat insulating box 101.
  • the cold air in the refrigerator 102 is sucked from the suction port 131a that opens below the refrigerating chamber 102, circulates through each storage chamber, and then the discharge ports 130a to 130a that open above the refrigerating chamber 102. It is discharged from 130f.
  • the discharge ports 130a to 130f are provided on the side surface of the duct 129a. That is, the discharge ports 130a to 130f do not exist on the front surface of the duct 129a, and the chamber space 302 is provided at the tip of the discharge ports 130a to 130f, so that the food in the refrigerator compartment 102 freezes. In addition, when the door of the refrigerator compartment is opened, the discharge port is not visible on the front surface, so that the appearance of the refrigerator compartment 102 is improved.
  • the cold air cooled by the evaporator 120 provided below the refrigerating chamber enters the region of the refrigerating chamber 102 and flows upward through the duct 129a.
  • the water is discharged from the discharge ports 130a to 130f opened in the refrigerator compartment 102.
  • the cold air discharged into the refrigerator compartment 102 is sucked from the inlet 131a that opens below the outlets 130a to 130f of the refrigerator compartment 102 (on the right side in the present embodiment). And it returns to the evaporator 120 toward the downward direction through the refrigerator compartment return duct 137 (in this embodiment, one side on the right side as viewed from the front).
  • the flow on the cold air discharge side is such that the discharge ports 130a, 130b, 130e, and 130f are arranged on the side wall surfaces on both sides of the duct 129a, and the cold air is discharged to both sides in the refrigerator compartment 102.
  • the flow on the cold air suction side is such that the suction port 131a is arranged in front of one side (right side) of the duct 129a, and cold air is sucked in from one side (right side) in the cold room 102, and is returned by the cold room return duct 137.
  • the flow passes through one side (right side) of the evaporator 120 and returns from the lower part of the evaporator 120.
  • the reason why the refrigerator return duct 137 is arranged only on one side of the evaporator 120 is that if it is arranged on both sides, the width dimension of the evaporator 120 is pressed, and the design flexibility of the desired cooling capacity is reduced. This is due to the complexity of the structure due to the double-sided return duct configuration and the associated cost increase.
  • a refrigerator compartment return duct is provided either before or after the evaporator 120, the thickness of the evaporator 120 is added to the thickness of the evaporator 120 to compress the effective space inside the warehouse, or the heat insulation behind the evaporator 120 It is not a good idea to lead to the demerit of reducing the cooling efficiency by infringing on the thickness of the material.
  • the chamber space 302 on the discharge port side is formed on both sides of the duct 129a, and the chamber space 302 extends to the lower side of the refrigerator compartment 102.
  • the cold air discharged from the discharge ports 130a, 130b, 130e, and 130f is discharged into the chamber space 302, and the cold air temperature is mixed with the inside air before the food gets cold.
  • the discharge flow rate is reduced.
  • freezing is prevented without locally lowering the temperature of the food, and the width of the duct 129a is reduced by providing the chamber space 302 at the same time, and the discharge ports 130a, 130b, 130e, and 130f in the refrigerator compartment 102 are reduced. Since the arrangement position in the width direction is moved toward the center in the storage, there is an effect that the discharge temperature distribution in the refrigerator compartment 102 becomes more uniform.
  • the cold air discharged from the center of the refrigerating chamber 102 finally circulates toward the suction port 131a in the lower part of the refrigerating chamber 102, but the suction port 131a is on one side (right side) of the duct 129a. ) It is provided only on the front. For this reason, cold air discharged from the discharge ports 130 a and 130 b provided on the side wall surface of the duct 129 a on the opposite side (left side) to the side where the suction port 131 a is present first enters the side chamber space 302. Next, the direction is changed to the front and flows in the refrigerating chamber 102, and then flows into the facing chamber space 302 while crossing in the width direction, and then flows into the suction port 131a opened to the front and collected.
  • the duct 129a is disposed so as to reduce the width from the center in the width direction of the refrigerator compartment 102 to form the chamber space 302 on both sides, and the discharge ports 130a, 130b, 130e, 130f are formed on both side walls of the duct 129a. It is set as the structure which arranges.
  • the suction port 131a is arranged below the discharge ports 130a, 130b, 130e, and 130f and only on one side of the duct 129a.
  • the quality performance merit related to such temperature distribution can be rationally realized by the combined configuration in which the refrigerator return duct 137 is arranged only on one side.
  • a configuration in which a bypass duct connecting both the inlets in the refrigerator compartment 102 is provided in the refrigerator compartment 102 to realize a one-side refrigerator compartment return duct is also conceivable, but the quality performance related to the temperature distribution in the refrigerator compartment described above is also conceivable You cannot enjoy the merit. That is, a rational duct configuration in which the refrigerator compartment return duct 137 is arranged only on one side and a quality performance merit relating to temperature distribution cannot be achieved at the same time.
  • the duct 129a is formed with the chamber space 302 formed on both sides with the width narrower than the width of the refrigerator compartment 102, and the discharge ports 130a, 130b provided above and below the side wall surface of the duct 129a facing the chamber space 302. 130e, 130f, a suction port 131a provided on the front surface of the duct 129a, and a discharge port 130a, 130b, 130e, 130f provided on both sides of the duct 129a and a suction port 131a provided only on one side.
  • the quality performance merit related to the temperature distribution in the refrigerator compartment 102 is obtained and effective.
  • the refrigerator return duct 137 is also arranged only on one side below the suction port 131a on the same side, so that a refrigerator with high cooling efficiency including the above advantages at a low cost with a series of rational duct configurations. Can be provided.
  • the duct 129a is disposed so as to reduce the width from the center in the width direction of the refrigerator compartment 102 so as to form the chamber space 302 on the left side and the right side, and the discharge port 130a, 130b is configured to dispose the discharge ports 130e and 130f on the right wall surface.
  • the suction port 131a is arranged below the discharge ports 130a, 130b, 130e, and 130f and only on one side of the duct 129a.
  • the refrigerator compartment duct is provided on the back surface of the refrigerator compartment formed in the heat insulation box, and the refrigerator compartment duct includes a discharge port that is a ventilation port on both the left and right sides, and a discharge port.
  • the refrigerator is provided with a suction port that is a ventilation port only on one front side at a lower side, and has a chamber space from the side surface of the refrigerator compartment duct to the side surface of the refrigerator compartment.
  • the temperature distribution in the refrigerator compartment can be made uniform by designing the width of the duct 129a so as to be the chamber space shown in the first embodiment.
  • FIG. 19 is a front view of the refrigerator in the fifth embodiment of the present invention.
  • a refrigerator 1100 according to Embodiment 5 of the present invention is a refrigerator 1100 including a single-open door, and includes a plurality of storage compartments in a heat insulating box 1101.
  • the storage rooms are referred to as a refrigeration room 1102, a switching room 1104, and a freezing room 1103 from the top depending on the function (cooling temperature).
  • a rotary heat insulating door 1107 filled with foam heat insulating material such as urethane is provided at the front opening of the refrigerator compartment 1102.
  • the switching chamber 1104 and the freezing chamber 1103 are each provided with a rotary heat insulating door 1107, thereby sealing the storage chamber so as not to leak cold air.
  • the doors of the switching chamber 1104 and the freezing chamber 1103 may be of a drawer type or the like as necessary.
  • FIG. 20 is a longitudinal sectional view of the refrigerator in the fifth embodiment of the present invention. Specifically, FIG. 20 is a cross-sectional view taken along line 20-20 in FIG.
  • the heat insulating box 1101 is formed by filling a heat insulating material such as hard urethane foam between an outer box mainly made of a metal steel plate and an inner box mainly made of a vacuum-formed resin. It is a box body.
  • the heat insulation box body 1101 is insulated by suppressing heat transfer from the surroundings to the inside of the heat insulation box body 1101.
  • the refrigerated room 1102 is a storage room that is maintained at a low temperature that does not freeze for refrigerated storage.
  • a specific lower limit of the temperature is usually set to 1 to 5 ° C.
  • the temperature may be set to 0 to 1 ° C. in order to improve the freshness of fresh products.
  • the switching room 1104 is a storage room in which the internal temperature can be changed.
  • the operation panel attached to the refrigerator 1100 can be switched from a refrigeration temperature zone to a freezing temperature zone according to the application. For example, it can be set to ⁇ 10 to 5 ° C.
  • a weak freezing temperature around -6 ° C In addition to refrigeration, chilled, ice temperature, partial freezing, etc., it is possible to select and set a weak freezing temperature around -6 ° C, a maturing freezing around -10 ° C, and a temperature range suitable for storing ice cream.
  • the freezer compartment 1103 is a storage room set in a freezing temperature zone. Specifically, it is usually set to ⁇ 22 to ⁇ 18 ° C. for frozen storage, but it may be set to a low temperature such as ⁇ 30 ° C. or ⁇ 25 ° C. to improve the frozen storage state. .
  • a recess 1113 is formed in the rear region of the lowermost storage chamber of the heat insulation box 1101.
  • the recess 1113 mainly stores components on the high-pressure side that form the refrigeration cycle, such as a compressor 1114 and a dryer (not shown) for removing moisture. That is, the recess 1113 in which the compressor 1114 is disposed is formed by biting into the lowermost rear region in the freezer compartment 1103.
  • a cooling chamber 1115 is provided on the back of the freezing chamber 1103.
  • the cooling chamber 1115 is partitioned from the freezing chamber 1103 by a first partition 1116 having heat insulation as a partition wall.
  • the first partition 1116 is a part that is assembled to the heat insulating box 1101 after the heat insulating box 1101 is foamed. Therefore, a foamed resin such as foamed polystyrene is usually used as a heat insulating material from the viewpoint of heat insulation. In addition, in order to further improve the heat insulating performance and rigidity, rigid foamed urethane may be used, or a vacuum insulating material having high heat insulating properties may be inserted to further reduce the partition structure. Further, the third partition 1118 which is the top surface portion of the switching chamber 1104 and the fourth partition 1119 which is the bottom surface portion are integrally formed of the same foam heat insulating material as the heat insulating box body 1101.
  • the cooling chamber 1115 constitutes a part of the cooling means, and includes a fin-and-tube evaporator 1120 as a representative one.
  • a cooling fan 1121 is disposed in the upper space of the evaporator 1120. The cooling fan 1121 blows the cool air cooled by the evaporator 1120, forcibly convects the cool air to each storage room, and circulates the cool air in the refrigerator 1100.
  • a circulation path through which cold air is circulated is formed inside the refrigerator 1100. Specifically, the cold air cooled by the evaporator 1120 is forced into a blowing state by the cooling fan 1121, and is carried to each room through a duct provided between each storage room and the heat insulating box 1101. Each chamber is cooled and returned to the evaporator 1120 through a suction duct.
  • a sterilization apparatus 1300 is provided in the vicinity of the discharge port of the refrigerating room discharge duct 1129 a provided in the refrigerating room 1102.
  • the refrigerator compartment 1102 is provided with a plurality of food storage shelves 1201 for storing food and the like in the cabinet, and a slide case 1202 is provided at the bottom, and a fresh case with a temperature setting slightly lower than the shelf of the refrigerator compartment 1102 is provided. Is provided. Further, a plurality of door shelves 1203 are also provided on the door side, and the food storage shelves 1201 and the door shelves 1203 can be changed by changing the mounting positions according to the convenience of the user. Thereby, the height at which food enters can be changed by adjusting the vertical interval, and various storage properties can be improved.
  • FIG. 21 is a diagram showing the duct configuration of the refrigerator in the fifth embodiment of the present invention.
  • the refrigerator 1100 includes a refrigerating chamber 1102 circulation path through which relatively high-temperature cold air circulates, a freezer compartment 1103 circulation path through which relatively low-temperature cold air circulates, and a switching chamber 1104 circulation path. Exists.
  • a cold air circulation path is formed by a duct.
  • the cool air cooled by the evaporator 1120 is sent to the refrigerator compartment 1102 by the cooling fan 1121 through the refrigerator discharge duct 1129a.
  • the cool air cooled by the evaporator 1120 is cooled to a temperature that can sufficiently correspond to the freezing temperature of the freezer compartment 1103. Therefore, if the air is kept being blown to the refrigerator compartment 1102 in a relatively low temperature cold state, the refrigerator compartment 1102 becomes too cold.
  • a twin damper 1128 capable of controlling the insertion of the cold air is provided in the cold air circulation path including the refrigerator compartment 1102.
  • the cold air cooled by the evaporator 1120 is controlled to be inserted (on / off of the cold air flow) by the twin damper 1128 and does not always circulate through the refrigerating chamber 1102 path.
  • the rotation of the cooling fan 1121 is stopped and the circulation of the cold air is also stopped. At this time, the cooling cycle, that is, the compressor 1114 and the like are also stopped.
  • the cool air cooled by the evaporator 1120 passes through the refrigerating chamber discharge duct 1129a from below to above according to the control described above, and vents 1130a, 1130b, 1130c, 1130d, 1130e, 1130f open at the top of the refrigerating chamber 1102. Is exhaled from.
  • the cold air that has passed through the refrigerator compartment 1102 is sucked into a suction port 1131a that opens at the bottom of the refrigerator compartment 1102.
  • the cold air sucked into the suction port 1131a is discharged from the discharge port 1131b to the refrigerating chamber return duct 1137, and returns to the evaporator 1120 via the refrigerating chamber return duct 1137.
  • the circulation of the cold air is controlled by a damper that intermittently controls the discharged cold air, and the temperature of each chamber is controlled. That is, the refrigerator compartment 1102 and the switching room 1104 are each equipped with a temperature sensor (not shown) for controlling the internal temperature. Based on the temperature detected by the temperature sensor, a control board 1122 (see FIG. 20) attached to the back of the refrigerator 1100 controls the opening and closing of the damper. That is, when the temperature sensor is higher than the preset first temperature, the damper is opened, and when the temperature sensor is lower than the second temperature, the damper is closed to adjust the internal temperature to a predetermined temperature.
  • the twin damper 1128 is integrally provided with a damper that intermittently controls the refrigerator compartment 1102 and a damper that intermittently controls the switching chamber 1104. Further, a refrigeration compartment flap 1125 for interrupting cold air in the refrigerating chamber 1102 and a switching chamber flap 1126 for interrupting cold air in the switching chamber 1104 are provided. In addition, a motor unit 1127 for driving the flap is also provided integrally.
  • the twin damper 1128 is installed around the back surface of the switching chamber 1104.
  • the suction port 531 for sucking cold air from the refrigerator compartment 502 and the discharge ports 530a to 530f for discharging cold air to the refrigerator compartment 502 are provided in front of the duct 529a.
  • a food or beverage placed in 502 may be placed near the discharge port and freeze.
  • the food storage shelf 201 can be replaced.
  • the suction port 531 and the discharge ports 530a to 530f are visible, which causes a problem of poor appearance.
  • the positions of the discharge holes are arranged inconsistently with the interval between the shelves, and the appearance is deteriorated.
  • 22 and 23 are schematic views of the refrigerator duct in the fifth embodiment of the present invention.
  • the duct is the refrigerator compartment discharge duct 1129a, and hereinafter, the refrigerator compartment discharge duct 1129a is simply referred to as "duct 1129a".
  • FIG. 22 shows a surface (front surface) that can be seen when the door of the refrigerator compartment 1102 is opened
  • FIG. 23 shows the back surface thereof.
  • the duct 1129a is a combination of a heat insulating air passage 1300 molded from foamed polystyrene or the like and a front panel 1301 molded from a resin such as polypropylene, polystyrene, or ABS.
  • the basic air path is composed of a heat insulating air path 1300, and the front panel 1301 is provided in the exterior portion in terms of design and strength.
  • the front panel 1301 has a width larger than the lateral width of the heat insulating air passage 1300, and the design is improved by making the side surface portion and the air vent difficult to see from the front.
  • outlets 1130a to 1130f for discharging cold air to the refrigerating chamber 1102 as ventilation openings and a suction port 1131a for sucking cold air from the refrigerating chamber 1102.
  • the shapes of the discharge ports 1130a to 1130f and the suction port 1131a may be holes or notches and are not particularly limited.
  • the discharge ports 1130a to 1130f are formed by the heat insulating air passage 1300, and the front panel 1301 is not in direct contact with the discharged cold air. Therefore, the front panel 1301 is cooled to cause local condensation or It is possible to prevent frost formation.
  • the cold air circulation path in the duct 1129a has the following configuration. Specifically, as shown in FIG. 23, the duct 1129a has a cool air circulation path leading to the discharge ports 1130a to 1130f upward at the center thereof, and a suction port 1131a adjacent to the lower portion of the cold air circulation path. And a cold air circulation path leading to.
  • the duct 1129a is arranged in the approximate center in the refrigerator compartment 1102 and the side surface of the duct 1129a is located on the side from the center in the refrigerator.
  • the lateral width of the duct 1129a is designed at a position located substantially at the center (W2) of the wall surface (W1).
  • the width of the duct 1129a is approximately the same as the width of the refrigerator compartment 1102 as in the prior art, sufficient cool air cannot be discharged from the discharge ports 1130a to 1130f, and sufficient cool air can be sucked from the suction port 1131a. Because it is not possible. Furthermore, it can be set as the structure by which a foodstuff, a foreign material, and a liquid cannot fall into the suction inlet 1131a easily.
  • the discharge ports 1130a to 1130f are places where low-temperature cold air is first discharged to the interior space.
  • the discharge ports 1130a to 1130f have the lowest air temperature in the refrigerating chamber 1102, and more than other air convection in the interior.
  • the discharge flow rate is high.
  • the discharge ports 1130a to 1130f are arranged not on the front surface of the duct 1129a but on the side surface of the duct, and a sufficient chamber space 1302 is provided on the side surface.
  • the duct 1129 a is arranged at substantially the center in the refrigerator compartment 1102, and the side surface of the duct 1129 a extends from the center in the refrigerator to the approximate center (W 2) of the side wall surface (W 1). ),
  • the width of the duct 1129a is designed at a position located at (1)). However, it is preferable that (1/4) ⁇ W1 ⁇ the position of the side surface of the duct 1129a (W0) ⁇ (3/4) ⁇ W1. is there.
  • the depth direction of the duct 1129a is increased in order to secure the duct internal volume (that is, the duct is located on the front side in the cabinet). ), And the internal volume will be compressed. Further, the chamber space 1302 becomes large, the wind speed of the cold air discharged from the discharge port decreases, it becomes difficult for the cold air to flow from the rear to the front, and the temperature distribution in the refrigerator compartment becomes difficult to be uniform.
  • the preferable chamber space 1302 is that the duct 1129a is arranged at the approximate center in the refrigerator compartment 1102 and the distance from the center to the side wall surface is W1, and the duct 1129a Obtained by designing the width of the duct 1129a so that the side surface position (W0) falls within the range of (1/4) ⁇ W1 ⁇ side surface position (W0) ⁇ (3/4) ⁇ W1 of the duct 1129a. It is a space that is created. As a result, the internal volume of the refrigerator is made uniform without compressing the internal volume of the refrigerator, and the cold air temperature is mixed with the internal air before the food gets cold. By reducing, it is possible to prevent freezing of food and the like without local temperature reduction.
  • the more preferable chamber space 1302 is the position (W0) of the side surface of the duct 1129a when the duct 1129a is arranged at the approximate center in the refrigerator compartment 1102 and the distance from the center to the side wall surface is W1.
  • W0 the position of the side surface of the duct 1129a when the duct 1129a is arranged at the approximate center in the refrigerator compartment 1102 and the distance from the center to the side wall surface is W1.
  • the degree of downsizing of the width of the duct 1129a is reduced, by setting (1/2) ⁇ W1 ⁇ the position (W0) of the side surface of the duct 1129a, the depth direction of the duct 1129a is not further increased.
  • the usability of the refrigerator is not lowered, and the area where the cold air coming out from the left discharge port and the cold air coming out from the right discharge port wrap is reduced, and efficient cooling can be performed. Furthermore, it becomes easier for cold air to reach the vicinity of the left and right wall surfaces in the cabinet, making the temperature distribution in the refrigerator compartment uniform, and mixing the cold air temperature with the air in the cabinet before the food gets cold. be able to. Further, by reducing the discharge speed of the cold air, it is possible to prevent freezing of food and the like without local temperature reduction.
  • the width of the refrigerator compartment duct 1129a becomes narrower than before, which contributes to resource savings by reducing the amount of material used and distributing parts. This also contributes to energy saving by reducing the transport energy involved, and as a result, can reduce the manufacturing cost.
  • the food storage shelf 201 can be replaced or moved up and down without worrying about the position of the discharge port.
  • the cooled cold air flows upward through the duct 1129a and is discharged from the discharge ports 1130a to 1130f opened at the top of the refrigerator compartment 1102.
  • the cold air discharged into the refrigerator compartment 1102 in this manner is sucked from the suction port 1131a that opens at the lower part of the refrigerator compartment 1102, flows downward, and is discharged from the discharge port 1131b to the refrigerator compartment return duct 1137.
  • the cold air cooled by the evaporator 1120 provided below the refrigerator compartment enters the region of the refrigerator compartment 1102 and flows upward through the duct 1129a.
  • the water is discharged from the discharge ports 1130a to 1130f opened in the refrigerator compartment 1102.
  • the cold air discharged into the refrigerator compartment 1102 is sucked from an inlet 1131a that opens below the outlets 1130a to 1130f of the refrigerator compartment 1102 (on the right side in the present embodiment). And it returns to the evaporator 1120 downward through the refrigerator compartment return duct 1137 (in this embodiment, one side on the right side as viewed from the front).
  • the flow on the cold air discharge side is such that the discharge ports 1130a, 1130b, 1130e, 1130f are arranged on the side wall surfaces on both sides of the duct 1129a, and the cold air is discharged to both sides in the refrigerator compartment 1102.
  • the suction port 1131a is arranged on the side wall surface on one side (right side) of the duct 1129a, and cold air is sucked in from one side (right side) in the refrigerator compartment 1102, and the refrigerator return duct 1137
  • the flow passes through one side (right side) of the evaporator 1120 and returns from the lower part of the evaporator 1120.
  • the reason why the refrigerator compartment return duct 1137 is arranged only on one side of the evaporator 1120 is that if arranged on both sides, the width dimension of the evaporator 1120 is pressed, and the degree of freedom in designing the desired cooling capacity is reduced. This is due to the complexity of the structure due to the double-sided return duct configuration and the associated cost increase.
  • the thickness of the evaporator 1120 is added to the thickness of the evaporator compartment 1120 to compress the effective space inside the warehouse, or the heat insulation behind the evaporator. It is not a good idea to lead to the demerit of reducing the cooling efficiency by infringing on the thickness of the material.
  • the above-described chamber space 1302 on the discharge port side is formed on both sides of the duct 1129a.
  • the chamber space 1302 extends to the lower side of the refrigerating room 1102, and one side (right side) of the chamber space 1302 is provided. Is formed to face the opening of the suction port 1131a arranged on the side wall surface.
  • the cold air discharged from the discharge ports 1130a, 1130b, 1130e, and 1130f is discharged into the chamber space 1302, and the cold air temperature is mixed with the inside air before the food hits the cold air.
  • the discharge flow rate is reduced.
  • freezing is prevented without locally lowering the temperature of the food, and at the same time, by providing the chamber space 1302, the width of the duct 1129a is reduced, and the discharge ports 1130a, 1130b, 1130e, 1130f in the refrigerator compartment 1102 are reduced.
  • the arrangement position in the width direction is moved toward the center in the cabinet. Therefore, there is an effect that the discharge temperature distribution in the refrigerator compartment 102 becomes more uniform.
  • the cold air discharged from the center of the refrigerator compartment 1102 finally circulates toward the inlet 1131a in the lower part of the refrigerator compartment 1102, but the inlet 1131a is located on one side (right side of the duct 1129a). It is provided only on the side wall surface. For this reason, the cool air discharged from the discharge ports 1130a and 1130b provided on the side wall surface of the duct 1129a opposite to the side where the suction port 1131a exists (left side) first enters the side chamber space 1302, and then forwards. The direction is changed to flow in the refrigerating chamber 1102 and then flows into the facing chamber space 1302 while crossing in the width direction, and then flows into the suction port 1131a opened to the side and collected.
  • the discharge ports 1130a and 1130b and the suction port 1131a are provided on the side wall surface of the duct 1129a and become a path through which cool air flows in and out through the chamber space 1302, the distribution path is long and the direction of the flow direction is also changed. Many. Accordingly, a short circuit of the cold airflow from the discharge ports 1130a and 1130b to the suction port 1131a does not occur, and the air stagnation time in the refrigeration chamber 1102 is long, and the refrigeration chamber 1102 is collected in the suction port 1131a while being uniformly cooled efficiently. It will be.
  • the suction port 1131a is opened in a general shape in front of the duct 1129a
  • the width of the duct 1129a is reduced because the direction of the cool air discharged is small and resistance is low because the suction port is the front.
  • a short circuit is easily generated from the discharge ports 1130a and 1130b at the center to the suction port in front of the duct, and cannot flow to the suction port while crossing the inside of the refrigerator compartment 1102 in the width direction.
  • the interior of the chamber 1102 cannot be cooled uniformly.
  • the duct 1129a is arranged so that the chamber space 1302 is formed on both sides by reducing the width from the center in the width direction of the refrigerator compartment 1102, and the discharge ports 1130a, 1130b, 1130e, 1130f are formed on both side walls of the duct 1129a. It is set as the structure which arranges.
  • the suction port 1131a is arranged below the discharge ports 1130a, 1130b, 1130e, and 1130f and only on one side wall surface of the duct 1129a. Accordingly, there is an advantage that the temperature distribution in the refrigerator compartment 1102 can be made uniform by reducing the short circuit component from the discharge to the suction in the respective side regions that occurs when both-side discharge and both-side suction are performed.
  • the quality performance merit related to such temperature distribution can be rationally realized by the combined configuration in which the refrigerator return duct 1137 is also arranged only on one side.
  • a configuration in which a bypass duct connecting both the inlets in the refrigerator compartment 1102 is provided in the refrigerator compartment 1102 to realize a one-side refrigerator compartment return duct is also conceivable, but the quality performance related to the temperature distribution in the refrigerator compartment described above is also conceivable. You cannot enjoy the benefits. That is, a rational duct configuration in which the refrigeration room return duct 1137 is disposed only on one side and a quality performance merit relating to temperature distribution cannot be achieved at the same time.
  • a duct 1129a having a chamber space 1302 formed on both sides with a width narrower than that of the refrigerator compartment 1102, and discharge ports 1130a, 1130b provided on the upper and lower sides of the side wall surface of the duct 1129a so as to face the chamber space 1302; 1130e, 1130f and the suction port 1131a, which are provided with the discharge ports 1130a, 1130b, 1130e, 1130f provided on both sides of the duct 1129a and the suction port 1131a provided only on one side, thereby providing the inside of the refrigerator compartment 1102
  • the quality performance merit related to the temperature distribution is obtained and has an effect.
  • the refrigerator return duct 1137 is also arranged only on one side on the same side below the suction port 1131a, so that a refrigerator with high cooling efficiency including the above advantages at a low cost with a series of rational duct configurations. Can be provided.
  • the contents of the food dropping means according to the present embodiment are the same as those described in the first embodiment (FIGS. 12 to 15), and thus the description thereof is omitted.
  • FIG. 24 is an explanatory diagram of a duct provided in the refrigerator according to the fifth embodiment of the present invention.
  • a portion that is visible in the front when the door of the refrigerator compartment 1102 is opened is shown. That is, a duct 1129a is provided along the heat insulating box 1101 of the refrigerator compartment 1102 having a heat insulating structure, and a substantially Y-shaped cold air circulation path is formed between the duct 1129a and the heat insulating box 1101.
  • a duct 1129a is provided along the heat insulating box 1101 of the refrigerator compartment 1102 having a heat insulating structure, and a substantially Y-shaped cold air circulation path is formed between the duct 1129a and the heat insulating box 1101.
  • the cold air in the refrigerator 1102 is sucked from a suction port 1131a that opens below the refrigeration chamber 1102, circulates through each storage chamber, and then discharge ports 1130a to 1130a that open above the refrigeration chamber 1102 are opened. It is discharged from 1130f.
  • the discharge ports 1130a to 1130f and the suction port 1131a are provided on the side surface of the duct 1129a. That is, neither the discharge ports 1130a to 1130f nor the suction port 1131a exist on the front surface of the duct 1129a, and a chamber space 1302 is provided at the tip of the discharge ports 1130a to 1130f. Therefore, it is possible to avoid the problem that the food in the refrigerator compartment 1102 freezes, and when the door of the refrigerator compartment is opened, the discharge port and the suction port are not visible on the front, so that the refrigerator compartment 1102 looks good. Become.
  • the duct fixing method of the present embodiment is the same as that described in the contents described in the first embodiment (FIG. 8), so the description thereof is omitted.
  • the refrigerator in the embodiment of the present invention there is neither a cold air discharge port nor a suction port on the front surface of the duct, and a chamber between the side surface of the duct 1129a and the inner wall surface. A space 1302 is provided. Therefore, it is possible to prevent the discharge cold air having a low flow rate and a high flow rate from directly hitting the food in the refrigerator, avoiding a problem that the food freezes, and improving the appearance of the refrigerator.
  • the width of the duct 1129a is narrower than that of the conventional one, there is an effect that it contributes to resource saving and energy saving and as a result, the manufacturing cost is reduced.
  • the arrangement positions of the six discharge ports 1130a to 1130f have not been described in detail, but these arrangement positions are not particularly limited. However, it is preferable to arrange the six discharge ports 1130a to 1130f so that the temperature distribution in the refrigerator compartment 1102 is as uniform as possible.
  • the six discharge ports 1130a to 1130f are illustrated, but the number of discharge ports is not particularly limited.
  • the number of outlets on the left side of the refrigerator may be three.
  • the number of suction ports 131a was illustrated, the number of suction ports is not particularly limited.
  • the third partition 1118 and the fourth partition 1119 are integrally formed of the same foam heat insulating material as the heat insulating box 1101, but like the first partition 1116, It is good also as another component assembled
  • the refrigerator compartment 1102 is provided with a plurality of food storage shelves 1201 for storing food or the like in the cabinet, and a slide case 1202, which is a fresh case, is provided at the bottom of the refrigerator compartment 1102 from the shelf of the refrigerator compartment 1102. Is about 1 degree lower.
  • the fresh case directly discharges cool air from the cooling air passage.
  • the duct 1129a includes a discharge port 1140 disposed at a substantially central portion of the air passage portion, a suction port 1141 disposed below the suction port 1131a, Is provided.
  • the cold air cooled by the evaporator 1120 passes through the refrigerating room discharge duct 1129a from below to above and is discharged from a discharge port 1140 that opens at the bottom of the refrigerating room 1102.
  • the cold air circulated in the slide case is sucked into the suction port 1141.
  • the cold air sucked into the suction port 1141 is discharged from the discharge port 1131b to the refrigerating chamber return duct 1137, and returns to the evaporator 1120 via the refrigerating chamber return duct 1137.
  • this fresh case includes a wide range of processed foods such as ham and wiener, marine products such as chikuwa and kamaboko, chilled foods such as raw noodles and prepared dishes, and yogurt. Things that span are stored.
  • the concave portion 113 in which the compressor 114 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 102. Therefore, in Embodiment 1, as shown in FIG. 4, the upper part of the duct 129a is stepped (L-shaped).
  • a recess 1113 is formed in the rear region of the lowermost storage chamber of the heat insulating box 1101, and in this recess 1113, a compressor 1114 and a dryer for removing moisture ( The high-pressure side components forming the refrigeration cycle are mainly housed. That is, the recess 1113 in which the compressor 1114 is disposed is formed by biting into the lowermost rear region in the freezer compartment 1103.
  • the upper portion of the duct 1129a has a planar shape (so-called flat shape).
  • gas which flowed from the downward direction of the duct 1129a has the ventilation resistance inside the duct 1129a reduced more, and upwards
  • the air volume of the cool air discharged from the discharge ports 1130c and 1130d arranged is increased, and the cooling capacity can be secured by the cool air flowing from above.
  • FIG. 25 is a longitudinal sectional view showing the sterilization apparatus attached to the refrigerator.
  • the sterilization apparatus 1400 according to the present embodiment forcibly sterilizes bacteria, spores and the like present in the cold air, and can also achieve deodorization by decomposing organic substances present in the cold air. It is.
  • the sterilization apparatus 1400 includes a carrier 1401 on which a photocatalyst is carried, an irradiation unit 1402 that irradiates the carrier 1401 with excitation light that excites the photocatalyst, a substrate 1403 to which the irradiation unit 1402 is attached, and a transparent resin.
  • the carrier 1401 is made of a resin made of a porous material that can come into contact with a large amount of cold air, and is a filter-like material formed by entanglement of fibers in which a photocatalyst is kneaded. Further, as the base resin, a resin capable of transmitting light that is easily excited by the photocatalyst is used.
  • a photocatalyst is a catalyst that can be sterilized by irradiating light of a specific wavelength to sterilize germs in cold air or oxidize or decompose odor components (organic substances, etc.) in cold air. Yes, it is a substance that is considered to be able to activate (for example, ionize or radicalize) components in cold air and to sterilize or deodorize based on this.
  • Specific examples of the photocatalyst include silver oxide and titanium oxide.
  • the wavelength of light necessary for silver oxide to perform functions such as sterilization is the visible blue region of about 400 nm to 580 nm.
  • the wavelength of light necessary for titanium oxide to perform functions such as sterilization is 380 nm.
  • the irradiation unit 1402 is an apparatus including a light source 1410 that can emit light including a wavelength that can excite the photocatalyst.
  • the light source 1410 may be any light source capable of emitting a predetermined amount of light having a wavelength including light having the above wavelength, and examples thereof include an ultraviolet lamp and a normal light bulb.
  • the photocatalyst is silver oxide
  • the use of an LED (Light Emitting Diode) that emits blue light (470 nm) in the visible light region makes it possible to increase the life and cost.
  • the photocatalyst is titanium oxide
  • a UV-LED that emits 380 nm UV (Ultraviolet) light may be employed.
  • silver oxide is used as the photocatalyst, and two LEDs as the light source 1410 of the irradiation unit 1402 are arranged side by side on the substrate 1403.
  • Cold air containing odors (organic substances, etc.) and bacteria blown from the cooling fan 1121 passes through a refrigerator compartment flap 1125 and a duct 1129a which is a duct for discharging cold air into the refrigerator compartment, and discharge ports 1130a, 1130b, 1130c, 1130d, 1130e, and 1130f are discharged into the refrigerator compartment 1102.
  • a part of the cold air is branched and introduced into the sterilization apparatus 1400.
  • the introduced cold air passes so as to lick the carrier 1401. Odor components and bacteria contained in the cold air are captured on the surface of the carrier 1401.
  • the trapped odor components and bacteria are deodorized and sterilized by oxidative degradation and sterilization by silver oxide.
  • the odor decomposition and sterilization action is exerted by the action of silver oxide even when light is not irradiated, so the amount of light irradiation and time can be reduced while ensuring the desired deodorization and sterilization effect,
  • the life of the irradiation means can be prolonged and the energy saving effect can be enhanced.
  • the light energy (blue or ultraviolet light) emitted from the light source 1410 silver oxide having an absorption spectrum in these wavelength regions is excited by the light energy of blue light, and the photocatalyst on the surface of the carrier 1401 is excited. .
  • the photocatalyst is excited, OH radicals are generated from moisture in the air, and the odor component captured by the carrier 1401 is oxidatively decomposed and the bacteria are lysed.
  • the cold air that has passed through the sterilization apparatus 1400 as described above becomes clean cold air that has been deodorized and sterilized, and is blown into the cabinet through the discharge ports 1130 c and 1130 d provided above. And inside the refrigerator compartment 1102, it mixes with the cold air discharged from the discharge ports 1130a, 1130b, 1130e, 1130f provided on the side surface, and circulates in the circulation path.
  • OH radicals generated by the sterilization apparatus 1400 are discharged together with cold air into the refrigeration room 1102, and deodorization and sterilization are performed in the refrigeration room 1102. That is, in this embodiment mode, a support 1301 on which a photocatalyst is supported, an irradiation unit 1402 that irradiates the support 1401 with excitation light that excites the photocatalyst, a substrate 1303 on which the irradiation unit 1402 is attached, and a transparent resin
  • the carrier 1401 and the substrate 1403 are fixed to the cover 1404. That is, the carrier 1401 and the irradiation unit 1402 are integrated via the cover 1404, and the cover 1404 is fixed to the inner box.
  • the distance between the carrier 1401 and the irradiation means 1402 can be stably obtained, and more stable sterilization effect and deodorization effect can be obtained. Moreover, since the sterilization apparatus is attached to the inner box, the duct 1129a can be simplified.
  • the irradiation means 1402 is disposed inside the duct 1129a. Thereby, cool air flows from the discharge ports 1130c and 1130d arranged above the duct 1129a (arrow A in FIG. 25), and light is emitted from the discharge ports 1130c and 1130d. Specifically, the light from the irradiation unit 1402 is combined with the direct light (arrow M in FIG. 25) and the reflected light (arrow N in FIG. 25) to improve the illuminance on the upper back side in the refrigerator compartment 1102. , Visibility can be improved.
  • the cold air discharged from the discharge port provided on the side surface of the duct and the cold air discharged from the discharge port provided on the upper surface of the duct soak in the food in the refrigerator compartment. Circulation is performed, and the occurrence of temperature unevenness in the refrigerator compartment can be reduced.
  • cleaner cold air circulates so as to entrap food in the refrigerator compartment, thereby improving the hygiene aspect of the refrigerator compartment. it can.
  • the storage room immediately below the refrigeration room 1102 is the switching room 1104.
  • the temperature may be the same as that of the refrigeration room 1102, or may be set slightly higher (for example, 2 to 7 ° C.). It may be a vegetable room. Further, it may be a storage room set at 0 to 4 ° C.
  • the cold air that cools the interior of the refrigerator has a greater specific gravity than air at room temperature, so it tends to accumulate in the lower part of the interior, and conversely, it tends not to stay in the upper part of the interior, so it usually goes to the upper part of the interior. Distribution with high temperature.
  • the duct is formed so as to satisfy the relationship of (1/4) ⁇ W1> Y, where Y is the distance from the upper surface of the duct 1129a to the upper surface in the refrigerator.
  • the upper surface of 1129a is arranged.
  • the cold air coming out of the duct 1129a flows along the ceiling surface while maintaining a high wind speed, and reaches the region Z.
  • the arrows shown in FIG. 27 indicate the flow of the cold air described above. Accordingly, the temperature can be appropriately lowered even in the region Z where the temperature is not easily lowered, and the temperature distribution can be made uniform in the refrigerator compartment.
  • the position (W0) of the side surface of the duct 1129a is in the range of (1/4) ⁇ W1 ⁇ the position of the side surface of the duct 1129a (W0) ⁇ (3/4) ⁇ W1.
  • the position of the upper surface of the duct 1129a is set to a range satisfying (1/4) ⁇ W1> Y, so that a chamber space exists on the side of the duct 1129a. The chamber space does not exist above the duct 1129a.
  • the side of the duct 1129a cools the air to prevent the food from freezing and the like, and above the duct 1129a, the air flows along the ceiling surface while maintaining a high wind speed, and the temperature tends to increase.
  • Cold air can be appropriately supplied to the region Z.
  • the temperature in the entire refrigerator compartment can be kept more uniform, and the merit of quality and performance can be obtained, and further, the energy saving effect can be realized.
  • the resistance of the wind flowing upward in the duct 1129a can be reduced by making the configuration of the duct 1129a into a planar shape.
  • the air path resistance of the entire duct 1129a can be reduced, and the amount of air flowing through the duct 1129a is increased.
  • the air volume discharged from the upper surface can be increased without greatly affecting the air volume discharged from the duct side, or by adjusting the Y dimension in the range of (1/4) ⁇ W1> Y. Cooling from above can be further strengthened by taking into account further increasing the wind speed.
  • planar shape referred to here may be any shape that can ensure the air passage portion in a straight line and increase the amount of air discharged from the upper surface, such as the duct 1129a shown in FIGS.
  • the refrigerator compartment return duct 137 for sending cold air from the refrigerator compartment 1102 to the evaporator 1120 is arranged on the same side as the inlet port 1131a toward the lower side through the inlet port 1131a, thereby taking a complicated configuration. And a cool air path to the evaporator can be constructed. Furthermore, since the cool air circulation path does not take a complicated configuration in the path from the evaporator 1120 to the discharge ports 1130c and 1130d, the wind speed of the cool air is maintained and the cool air from the upper surface of the duct 1129a is sufficient. Wind speed can be secured.
  • FIG. 26 is a diagram illustrating a duct configuration of the refrigerator in the sixth embodiment of the present invention.
  • the storage room immediately below the refrigeration room 1102 may be a refrigeration temperature zone, that is, the same temperature as the refrigeration room 1102, or may be a vegetable room that has a slightly higher temperature setting (eg, 2 to 7 ° C.). Good. If possible, a storage room set at 0 to 4 ° C. may be used.
  • the cold air is sent into the refrigeration chamber 1102 via the damper 1505, and the refrigeration chamber
  • the air is sucked into the refrigerator 1102 from the suction port 1131a on one side surface of the duct 1129a.
  • the sucked cold air in the cold room 1102 is not guided downward through the cold room return duct 1137 as in the fifth embodiment, but is discharged at the upper part in the storage room 1504 having the cold temperature adjacent to the cold room 1102.
  • the air is directly diffused from the outlet 1506 into the room. For example, it is sucked from a suction port 1507 provided in the diagonal direction of the discharge port 1506 in the lower part of the room, and returned to the cooler 1120 through the return duct 1508.
  • the return cold air in the refrigerating room 1102 is sucked from one side through the suction port 1131a on one side surface of the refrigerating room duct.
  • the storage room 1504 directly below is in the refrigerating temperature zone, the storage room is used without using the return duct. It is immediately released in 1504, diffuses and circulates, and returns to the cooler 1120.
  • the storage chamber 1504 functions like a chamber. As a result, there is an advantage that variation in the room temperature distribution of the storage room 1504 itself can be suppressed, and the two rooms connected in the refrigeration temperature zone of the refrigeration room 1102 in the upper part of the refrigerator and the storage room 1504 such as a vegetable room in the center part. It is possible to provide a refrigerator that can cool the layout in a balanced manner with a rational duct configuration.
  • the diagonal arrangement of the discharge port 1506 and the suction port 1507 is not necessarily an essential requirement, and if the relationship that can exhibit the effect of suppressing the variation in the room temperature distribution through the diffusion and circulation of the cold air with the storage chamber as a chamber space can be maintained. Of course, it does not matter even if it is the arrangement relationship.
  • the present application relates to a heat insulation box, a refrigerating room duct provided on the back of the refrigerating room formed in the heat insulating box, and a side discharge port provided on the side of the refrigerating room duct as viewed from the front of the refrigerating room.
  • an upper surface discharge port provided on the upper surface of the refrigerator compartment duct, and a suction port provided only on one side of the side surface of the refrigerator compartment duct below the side discharge port, the refrigerator compartment duct on both sides of the refrigerator compartment duct
  • a chamber space is provided between the side surface and the side surface of the refrigerator compartment, and no chamber space is provided above the refrigerator compartment duct and between the upper surface of the refrigerator compartment duct and the upper surface of the refrigerator compartment.
  • the cold air discharged from the side discharge port which is the ventilation port on the side of the refrigerator compartment duct, circulates while being mixed with the air in the chamber while the wind speed is reduced in the chamber space, so the temperature of the food can be locally reduced Can be reduced.
  • the outlet since there is no cold air outlet in front of the refrigerator compartment duct, when the door of the refrigerator compartment is opened, the outlet is not visible on the front, so the appearance of the refrigerator compartment is improved.
  • the cold air discharged from the upper surface discharge port which is the ventilation port on the upper surface of the refrigeration room duct, flows along the ceiling surface while maintaining a high wind speed. Can be supplied. From the above, it is possible to keep the internal temperature of the entire refrigerator compartment uniform and to obtain the merit in terms of quality and performance as well as to achieve an energy saving effect.
  • the refrigerator compartment duct is arranged at substantially the center of the refrigerator compartment, the distance from the center of the refrigerator compartment duct to the side is W0, the distance from the center of the refrigerator compartment to the side of the refrigerator compartment is W1, and from the top of the refrigerator compartment duct
  • the position (W0) of the side surface of the refrigerator compartment duct satisfies the range of (1/4) ⁇ W1 ⁇ W0 ⁇ (3/4) ⁇ W1.
  • the position of the upper surface of the refrigerator compartment duct does not constitute the chamber space by satisfying the range of (1/4) ⁇ W1> Y.
  • the temperature inside the entire refrigerator compartment can be kept uniform, and a merit in terms of quality and performance can be obtained. Further, an energy saving effect can be realized.
  • the refrigerator compartment duct is arranged at substantially the center of the refrigerator compartment, the distance from the center of the refrigerator compartment duct to the side is W0, the distance from the center of the refrigerator compartment to the side of the refrigerator compartment is W1, and from the top of the refrigerator compartment duct
  • the position (W0) of the side surface of the refrigerator compartment duct satisfies the range of (1/2) ⁇ W1 ⁇ W0 ⁇ (3/4) ⁇ W1.
  • the position of the upper surface of the refrigerator compartment duct does not constitute the chamber space by satisfying the range of (1/4) ⁇ W1> Y.
  • the wind speed can be further increased, the temperature inside the entire refrigerator compartment can be kept more uniform, the merit of quality performance can be obtained, and the energy saving effect can also be realized.
  • the refrigerator compartment duct has a planar shape. Therefore, the resistance of the wind which flows upwards in a duct can be reduced, and the air volume itself which distribute
  • the refrigerator compartment duct is composed of a heat insulating air channel and a front panel attached to the front surface of the heat insulating air channel, and the discharge port which is a side ventilation port is composed of a heat insulating air channel, and the discharged cold air is in direct contact with the front panel. It is arranged at the position not to. Thereby, it is possible to prevent the occurrence of local condensation or frost formation due to the cooling of the front panel.
  • a protrusion for engaging the refrigerator compartment duct is formed at an intermediate position of the heat insulating box body, and the protrusion engages with the refrigerator compartment duct.
  • the protruding portion engages with the refrigerator compartment duct so that the refrigerator compartment duct holds the portion protruding outside the protruding portion.
  • a fixing member for securing a sealing property is arranged at a position for controlling the flow of cold air in the refrigerator compartment duct.
  • a food storage shelf installed in a cross-linked manner from the left side to the right side of the refrigerator compartment is provided, and when the food placed on the back side of the food storage shelf is placed on the back side, the food is put into the chamber space.
  • the food fall prevention means which prevents the fall of food is provided.
  • the food fall prevention means is that the back side of the food storage shelf is straight, and a rib is formed in the chamber space from the inner surface of the back side of the heat insulating box to the front. It is arranged on the extension line.
  • the food storage shelf itself is formed by the end surface of the back side of the food storage shelf and the back inner surface of the heat insulating box without complicated processing. This prevents the food from falling into the chamber space when food is placed on the back side of the food storage shelf, especially when small food is placed on the back side. it can.
  • the food fall prevention means is such that the food storage shelf is shaped to surround the refrigerator compartment duct.
  • the gap formed between the end face on the back side of the food storage shelf and the back inner surface of the heat insulation box body is narrowed by devising the shape of the food storage shelf without processing the shape of the heat insulation box body.
  • the food placed on the back side of the food storage shelf can prevent the food from falling into the chamber space particularly when a small food or the like is placed on the back side.
  • the refrigerator compartment duct is provided with a cold air circulation path that leads to the discharge port upward in the center and a cold air circulation path that leads to the suction port adjacent to the lower part of the cold air circulation path.
  • an evaporator is provided below the refrigerating room to cool the heat insulation box, and the refrigerating room return duct that sends cold air from the refrigerating room to the evaporator passes through the suction port on the same side as the suction port and faces downward.
  • route of the cool air to an evaporator can be comprised, without taking a complicated structure.
  • the cooling air circulation path does not take a complicated configuration in the path from the evaporator to the discharge port, it is necessary to maintain the wind speed of the cold air and ensure a sufficient wind speed for the cold air from the upper surface of the duct. Can do.
  • the refrigerator according to the present invention can avoid the inconvenience that the food in the refrigerator compartment is frozen and can improve the appearance of the refrigerator compartment. Applicable to refrigerators of various types and sizes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

断熱箱体と、断熱箱体の開口部に開閉自在に取り付けられる扉体と、断熱箱体内の空気を冷却し冷気を生成する冷却手段と、冷蔵室(1102)と冷却手段との間で冷気を案内する冷気循環経路とを備える冷蔵庫であって、冷気循環経路を形成するダクト(1129a)の横幅を冷蔵室(1102)の横幅よりも狭く形成し、冷蔵室(1102)に冷気を吐き出す吐出口(1130a~1130f)と冷蔵室(1102)から冷気を吸い込む吸込口(1131a)とをダクト(1129a)の側面に備え、ダクト側面と庫内側壁面との間にチャンバー空間(1302)を設け、ダクト上面にはチャンバー空間を設けないことにより、冷蔵室内の食品等が凍ってしまう不具合を回避することができるとともに冷蔵室の見栄えを良くし、冷蔵室の全体の庫内温度を均一に保つことができる。

Description

冷蔵庫
 本発明は、冷蔵庫に関し、特に貯蔵室と冷却手段との間を冷気が循環する冷蔵庫に関する。
 近年の冷蔵庫は、使用者が収納物をより見易い最上部に使用頻度の高い冷蔵室を置き、この冷蔵室の直ぐ下に冷凍室を配置したレイアウトが多く見られる。この場合、冷却器は冷凍室の背部に配置する冷却室に置かれるので、冷気が冷蔵室全域へ供給されるのを可能にするためには、冷気は冷却室の背部から冷蔵室の背部にかけてダクトによって搬送される。
 図9は、従来の冷蔵庫が備えるダクトの説明図である。ここでは、冷蔵室502の扉を開けたとき、正面に見える部分を表している。すなわち、断熱構造である冷蔵室502の断熱箱体501に沿ってダクト529aが設けられている。また、このダクト529aと断熱箱体501との間にY字状の冷気循環経路が形成されている。冷蔵室502内の冷気は、図9中に矢印で示すように、冷蔵室502下方で開口する吸込口531から吸い込まれて各貯蔵室を循環した後、冷蔵室502上方で開口する吐出口530a,530b,530c,530d,530e,530fから吐き出される。ダクト529aの横幅は、庫内の風量分布を考慮して、冷蔵室502の横幅と同程度としている。また、ダクト529aは、中央部に庫内照明装置を配置し、左右に分岐した風路として各棚空間に相対する位置で各々吐出するように開口部が設けてある(例えば、特許文献1参照)。
 図10Aは、従来におけるダクトの固定前を示す図である。図10Bは、従来におけるダクトの固定後を示す図である。
 ここでは、図は冷蔵室502の背面部分における横断面図を示している。図10Aに示すように、断熱箱体501の両サイドの角部には、ダクト係合用の突起部501aおよび501bが形成されている。ダクト529aを、この突起部501aおよび501bと対向させて嵌め込むと、図10Bに示すように、突起部501aおよび501bとダクト529aとが係合するようになっている。
 また、図11Aは、別の従来の冷蔵庫のダクト部平面断面図を示す。図11Bは、別の従来の冷蔵庫のダクト部の斜視図を示す。
 図11Aに示すように、冷蔵庫の背面中央部に照明装置47を配置して、その両側面に冷蔵室ダクト44を配置した上、ダクト正面の吐出口を廃止して、ダクト側面と冷蔵庫内箱との隙間から冷気を吐出している。これにより、冷蔵庫背面はすっきりと構成され、背面ダクトまで収納する空間を広く提供できるという効果がある(例えば、特許文献2参照)。
 また、図11Bに示すように、ダクト15の側面部に吐出口の孔15bを有する構成が記されている(例えば、特許文献2参照)。
 しかしながら、上記従来の冷蔵庫(特許文献1)では、吸込口531および吐出口530a~530fがダクト529aの前面にあるので、冷蔵室502内の棚に置かれた食品や飲料が凍るという問題がある。また、少しでも吐出冷気を食品に直接あたらないような設計配慮として、棚間の最上部に相対する位置に吐出口を配置し、食品の上部から冷気を流すように構成をとっている場合は、食品のサイズが背の高い場合や重ね置きに対しては効果がない。さらには、収納性を向上させるべく棚位置が変更できるような構成の場合は、吐出口の配置の設計配慮自体が意味を成していないことになる。
 また、ダクトの吐出部は比較的低温の冷気が比較的高い流速で通過するので、吐出開口間口の形状は断熱性の高い部材(たとえば発泡ポリスチレン等の発泡樹脂材料)で構成しなければ非常に結露しやすい。ところが、正面の吐出部は断熱材で構成すると、断熱材が見えて見栄えが悪く、また使用者が誤って吐出口に食品や飲料をこぼしてしまう恐れが有る。さらに、ダクト内部の汚染やつまりを生じさせてしまう可能性がある。
 さらに、使用者が各棚上に食品を収納したときに、ダクトの吐出口が塞がれないまでの収納であっても、食品により前後方向に空間が遮断され、奥部が冷えすぎる場合があった。
 特に、近年の冷蔵庫は大容量化が進み冷蔵室の奥行きも増加しているおり、奥行のある棚の奥部に、あまり使わない食品が置かれ、手前側に頻繁に利用される食品が置かれるようになるのは使い勝手上、容易に推測されることである。このような場合、出し入れ頻度が少ない奥の食品は長期間、より冷えすぎた状態に置かれるので凍結する可能性も大きくなる。
 また、冷蔵室棚の奥行きが増加すると、奥部の食品は前部の食品によって状態が見えにくく、前方から背面ぎりぎりまで知らず知らずのうちに押し込まれてしまう状態が容易に予測され、吐出開口前の空間を確保することは非常に困難であった。
 また、別の従来の構成(特許文献2)では、吐出口の孔をパネル正面に設けることを廃止し、ダクトを背面のほぼ全幅とし、ダクトパネル側面と庫内壁面との間で吐出口を形成している。ところが、低温冷気が通過する吐出口開口部の結露防止については詳細な記載がなく、また、吐出口開口部が背面の両端部に位置しているので、食品が端部に置かれた場合の食品凍結の恐れは依然としてある(図11A参照)。
 また、別の従来の構成(特許文献2)の別の実施例として、ダクト15の側面部に吐出口の孔15bを有する構成が記されているが、食品収納場所との関係は記されていない。従って、ダクト15の側面部の吐出口15b前に食品が置かれた場合はやはり凍結してしまう恐れがある(図11B参照)。
特開平10-103844号公報 特開平6-213550号公報
 本発明は、これら課題を解決するものであって、棚の取付位置や食品が置かれる位置に関らず、冷蔵室内の食品等が凍ってしまう不具合を回避することができる冷蔵庫を提供することを目的とする。
 上記従来の課題を解決するために、本発明の冷蔵庫は、断熱箱体と、断熱箱体内に形成された冷蔵室の背面に設けられた冷蔵室ダクトと、冷蔵室の正面からみて冷蔵室ダクト側面に設けられた側面吐出口と、冷蔵室ダクト上面に設けられた上面吐出口と、側面吐出口の下方で冷蔵室ダクト側面の片側にのみ設けられた吸込口と、を備え、冷蔵室ダクトの両側であって冷蔵室ダクト側面から冷蔵室内側面までの間にチャンバー空間を有し、冷蔵室ダクトの上方であって冷蔵室ダクト上面から冷蔵室内上面までの間にチャンバー空間を有しないものである。
 これにより、冷蔵室ダクトの前面には冷気の吐出口が存在しないので、冷蔵室内の食品等が凍ってしまう不具合を回避することができる。また、冷蔵室ダクト側面の通風口である側面吐出口から吐出された冷気はチャンバー空間で風速が低下されつつ、庫内の空気と混合されて循環するので、食品を局所的に温度低下させる可能性を低減できる。
 本発明の冷蔵庫は、冷蔵室ダクトの前面には冷気の吐出口が存在せず、かつ冷蔵室ダクトの側面に設けた通風口である側面吐出口からチャンバー空間に冷気が吐出されるので、冷蔵室内の食品等が凍ってしまう不具合を回避することができる。また、冷蔵室ダクトの横幅が従来に比べて狭くなるので、材料使用量を削減して省資源に貢献し、部品流通に関る搬送エネルギーを削減することで省エネにも貢献し、結果的に製造コストを下げることが可能という効果もある。また、冷蔵室ダクトの前面には冷気の吐出口が存在しないので、冷蔵室の扉を開けたとき、吐出口が前面に見えないので、冷蔵室の見栄えがよくなる。さらに、ダクトの上方では、冷蔵室ダクト上面の通風口である上面吐出口から吐出された冷気は高い風速を維持したまま天井面に沿って流れ、温度が高くなりやすい領域には冷気を適切に供給することができる。以上から、冷蔵室の全体の庫内温度を均一に保つ事ができ、品質性能的なメリットが得られるとともに、さらに、省エネ効果も併せて実現できるものである。
図1は、本発明の実施の形態1における冷蔵庫の正面図である。 図2は、本発明の実施の形態1における冷蔵庫の縦断面図である。 図3は、本発明の実施の形態1における冷蔵庫のダクト構成を表す図である。 図4は、本発明の実施の形態1における冷蔵庫のダクトの概観図である。 図5は、本発明の実施の形態1における冷蔵庫のダクトの概観図である。 図6は、本発明の実施の形態1における冷蔵庫の冷蔵室の内部構造を示す図である。 図7は、本発明の実施の形態1における冷蔵庫が備えるダクトの説明図である。 図8Aは、本発明の実施の形態1における冷蔵庫のダクトの固定前を示す図である。 図8Bは、本発明の実施の形態1における冷蔵庫のダクトの固定後を示す図である。 図9は、従来の冷蔵庫が備えるダクトの説明図である。 図10Aは、従来におけるダクトの固定前を示す図である。 図10Bは、従来におけるダクトの固定後を示す図である。 図11Aは、別の従来の冷蔵庫のダクト部平面断面図である。 図11Bは、別の従来の冷蔵庫のダクト部の斜視図である。 図12は、本発明の実施の形態1における冷蔵庫の下段の食品収納棚の斜視図である。 図13は、本発明の実施の形態1における冷蔵庫の下段の食品収納棚の位置で切断した平面断面図である。 図14は、本発明の実施の形態1における冷蔵庫の中段の食品収納棚の斜視図である。 図15は、本発明の実施の形態1における冷蔵庫の中段の食品収納棚の位置で切断した平面断面図である。 図16は、本発明の実施の形態2における冷蔵庫が備えるダクトの説明図である。 図17は、本発明の実施の形態3における冷蔵庫が備えるダクトの説明図である。 図18は、本発明の実施の形態4における冷蔵庫が備えるダクトの説明図である。 図19は、本発明の実施の形態5における冷蔵庫の正面図である。 図20は、本発明の実施の形態5における冷蔵庫の縦断面図である。 図21は、本発明の実施の形態5における冷蔵庫のダクト構成を表す図である。 図22は、本発明の実施の形態5における冷蔵庫のダクトの概観図である。 図23は、本発明の実施の形態5における冷蔵庫のダクトの概観図である。 図24は、本発明の実施の形態5における冷蔵庫が備えるダクトの説明図である。 図25は、本発明の実施の形態5における冷蔵庫に取り付けた状態の除菌装置を示す縦断面図である。 図26は、本発明の実施の形態6における冷蔵庫のダクト構成を表す図である。 図27は、本発明の実施の形態5における別の形態の冷蔵庫のダクト構成を表す図である。 図28は、本発明の実施の形態5における別の形態の冷蔵庫のダクト構成を表す図である。
 以下、本発明の冷蔵庫の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1における冷蔵庫の正面図である。図1に示すように、本発明の実施の形態1における冷蔵庫100は、観音開き式の扉を備える冷蔵庫100であり、複数に区画された貯蔵室を断熱箱体101内に備えている。貯蔵室は、その機能(冷却温度)によって、冷蔵室102、製氷室105、切換室106、野菜室104、および冷凍室103等と称される。
 冷蔵室102の前面開口部には、例えば、ウレタンのような発泡断熱材を発泡充填した回転式の断熱扉107が設けられている。また、製氷室105、切換室106、野菜室104、および冷凍室103には、それぞれ引出の前板となる断熱板108が設けられ、これにより冷気の漏れがないように貯蔵室を密閉している。
 図2は、本発明の実施の形態1における冷蔵庫の縦断面図である。具体的には、図2は、図1における2-2線で切断した部分の断面図である。
 断熱箱体101は、主に金属鋼板で構成される外箱と、主に真空成型された樹脂で構成される内箱との間に、硬質発泡ウレタンなどの断熱材を充填して形成される箱本体である。この断熱箱体101は、周囲から断熱箱体101内部への熱移動を抑制し断熱している。
 冷蔵室102は、冷蔵保存のため、凍らない程度の低い温度に維持される貯蔵室である。具体的な温度の下限としては、通常1~5℃に設定される。特に生鮮品の保鮮性を向上させるために温度設定を0~1℃としている場合もある。
 野菜室104は、冷蔵室102と同等もしくは若干高く温度設定される貯蔵室である。具体的には、2~7℃に設定される。低温にするほど、葉野菜の鮮度を長期間維持することが可能である。冷蔵室102に比べて若干高めに温度設定するのは、ナスやキュウリなど低温で低温障害と呼ばれる鮮度劣化の影響を抑制することが狙いである。また、冷蔵室102と比べて野菜を収納する野菜室104は収納食品から発せられる水分により高湿度となるため、局所的に冷えすぎると結露することがある。比較的高温に温度設定することで、空気中の水分保有量が増加すると共に、温度維持に必要な冷却量も少なくなるので、野菜室104内の温度変動が抑制されるために結露発生を抑制できる。
 冷凍室103は、冷凍温度帯に設定される貯蔵室である。具体的には、冷凍保存のため、通常は-22~-18℃に設定されるが、冷凍保存状態の向上のため、例えば-30℃や-25℃などの低温に設定されることもある。
 製氷室105は、冷蔵室102に配置された給水タンク(図示しない)から定期的に水を給水し、製氷メカ(図示しない)で自動的に製氷を行い、その氷を保存する貯蔵室である。
 切換室106は、製氷室105の側方に併設され、庫内の温度が変更可能な貯蔵室である。冷蔵庫100に取り付けられた操作盤により、用途に応じて冷蔵温度帯から冷凍温度帯まで切り換えることができるようになっている。
 断熱箱体101の天面部は、冷蔵庫の背面方向に向かって階段状となるように凹部113が形成され、第1の天面部111と第2の天面部112とを備えている。この階段状の凹部113には、圧縮機114、水分除去を行うドライヤ(図示せず)等、冷凍サイクルを形成する高圧側の構成部品が主に収納されている。すなわち、圧縮機114が配設される凹部113は、冷蔵室102内の最上部の後方領域に食い込んで形成されることになる。したがって、従来一般的であった断熱箱体101の最下部の貯蔵室後方領域に圧縮機114は配置されない。
 冷凍室103と野菜室104の背面には、両室にまたがる態様で冷却室115が設けられている。冷却室115は、仕切り壁としての断熱性を有する第1の仕切り116で冷凍室103および野菜室104から仕切られている。また、冷凍室103と野菜室104との間には、断熱仕切り壁としての断熱性を有する第2の仕切り117が配設されている。
 第1の仕切り116および第2の仕切り117は、断熱箱体101の発泡後、断熱箱体101に組み付けられる部品である。そのため、通常断熱材としては発泡ポリスチレン等の発泡樹脂が断熱性の観点から使われる。なお、さらに断熱性能や剛性を向上させるために硬質発泡ウレタンを用いてもよく、また高断熱性の真空断熱材を挿入して仕切り構造のさらなる薄型化を図ってもよい。また、並列に配置された製氷室105と切換室106の天面部である第三の仕切り118と底面部の第四の仕切り119は、断熱箱体101と同じ発泡断熱材で一体成形されている。
 冷却室115は、冷却手段の一部を構成するものであり、代表的なものとしてフィンアンドチューブ式の蒸発器120を備えている。また、冷却室115は、冷凍室103と野菜室104とにまたがって上下方向に縦長に配設されている。ただし、蒸発器120は、冷凍室103に対向する面積よりも野菜室104に対向する面積の方が小さくなるように配置されている。これは、冷却室115が冷蔵庫100の中で最も低温になるため、当該低温状態が野菜室104に与える影響を少なくするためである。
 蒸発器120の上部空間には冷却ファン121が配置されている。冷却ファン121は、蒸発器120で冷却された冷気を送風し、各貯蔵室に強制的に冷気を対流させ、冷蔵庫100内で冷気を循環させるものである。
 冷蔵庫100の内部には、冷気が強制的に循環する循環経路が形成されている。具体的には、蒸発器120で冷却された冷気は、冷却ファン121により強制的に送風状態となり、各貯蔵室と断熱箱体101との間に設けられるダクトを通って各室に運ばれ、各室を冷却し、吸込ダクトを通って蒸発器120に戻される。なお、冷蔵室102内に備えられた冷蔵室吐出用ダクト129aの吐出口付近には除菌装置200が設けられ、吸込み口付近には脱臭装置(図示しない)が設けられている。
 また、冷蔵室102は庫内に食品等を収納する食品収納棚201が複数設けられ、最下段にはスライドケース202が備えられ冷蔵室102の棚部よりも若干低めの温度設定により、主に肉魚等の収納を目的とするチルド室が設けられている。さらに扉側にも複数の扉棚201が備えられており、食品収納棚201と扉棚203は使用者の使い勝手に応じて、取付位置を差換えて変更することが可能となっている。これにより、上下間隔を調節して食品が入る高さを変更することができ、多様な収納性を向上させることができる。
 図3は、本発明の実施の形態1における冷蔵庫のダクト構成を表す図である。図3に示すように、冷蔵庫100には、比較的高温の冷気が循環する冷蔵室102・野菜室104循環経路と、比較的低温の冷気が循環する製氷室105循環経路と、冷凍室103循環経路と、切換室106循環経路とが存在する。このような冷気循環経路はダクトによって形成される。
 以下、冷蔵室102・野菜室104循環経路について詳しく説明する。蒸発器120で冷却された冷気は、冷却ファン121により、冷蔵室吐出用ダクト129aを通して冷蔵室102に送風される。ただし、蒸発器120で冷却される冷気は、冷凍室103の冷凍温度に十分対応できる温度にまで冷却されている。したがって、比較的低温の冷気状態で冷蔵室102に送風され続けると冷蔵室102が低温になり過ぎる。
 そこで、冷蔵室102を含む冷気の循環経路には、冷気の挿通を制御することのできるツインダンパー128が設けられている。蒸発器120で冷却された冷気は、ツインダンパー128により挿通(冷気の流通のオン・オフ)が制御されており、冷蔵室102・野菜室104経路を常に循環しているわけではない。また、冷蔵庫100全体が十分に冷えているときは、冷却ファン121の回転が停止し、冷気の循環も停止する。この際、冷却サイクル、つまり圧縮機114等も停止する。
 蒸発器120で冷却された冷気は、上述した制御に従い冷蔵室吐出用ダクト129aを下方から上方に向けて通過し、冷蔵室102上部で開口する通風口130a,130b,130c,130d,130e,130fから吐き出される。冷蔵室102を通過した冷気は、冷蔵室102下部で開口する吸込口131aに吸い込まれる。吸込口131aに吸い込まれた冷気は、排出口131bから冷蔵室戻りダクト137に排出され、この冷蔵室戻りダクト137を経由して野菜室104上部で開口する吐出口136から一部分が吐き出される。吐出口136から吐き出された一部の冷気は、野菜室104を循環した後再び合流して蒸発器120に戻るようになっている。このように、冷蔵室102より下方に配置され断熱箱体101を冷却する蒸発器120を備え、冷蔵室102から蒸発器120への冷気を送る冷蔵室戻りダクト137を、吸込口131aと同側方で吸込口131aに通じて下方に向かって配置することにより、簡易な構成で冷気循環経路を構成することができる。
 以上が冷蔵室102・野菜室104循環経路の説明である。なお、製氷室105や切換室106でも、吐出冷気を断続制御するダンパーにより冷気の循環が制御され、各室の温度が制御される。すなわち、冷蔵室102、製氷室105、切換室106には、それぞれ庫内温度を制御する温度センサー(図示せず)が搭載されている。この温度センサーによって検知された温度に基づいて、冷蔵庫100背面に取り付けられている制御基板122(図2参照)がダンパーの開閉を制御する。つまり、温度センサーが予め設定された第1温度より高い場合はダンパーを開放させ、第2温度より低い場合はダンパーを閉鎖させて、庫内温度を所定の温度に調節する。
 製氷室105を断続制御する製氷室用ダンパー123は、冷却室115内上部に設置され、冷却ファン121から送風された冷気は製氷室用ダンパー123と製氷室用吐出ダクト124aとを通り製氷室105内に吐き出され、熱交換された後、製氷室用戻りダクト124bを経由して蒸発器120に戻るダクト構成となっている。
 ツインダンパー128は、冷蔵室102を断続制御するダンパーと切換室106を断続制御するダンパーとを一体に備え、さらに、冷蔵室102の冷気を断続させる冷蔵室用フラップ125と切換室106の冷気を断続させる切換室用フラップ126とを備え、加えて、フラップを駆動させるモータ部127も一体に備えている。ツインダンパー128は、製氷室105と切換室106の背面あたりに設置されている。
 ところで、従来の冷蔵庫では、図9に示したように、冷蔵室502から冷気を吸い込む吸込口531と、冷蔵室502に冷気を吐き出す吐出口530a~530fとがダクト529aの前面にあり、冷蔵室502内に置かれた食品や飲料が吐出口の近傍に置かれて凍ることがある。また、食品収納棚201は差換え可能であり、特に変更した棚位置によっては食品に直接冷気があたり、凍結しやすい問題がある。また、冷蔵室502の扉を開けたとき、吸込口531および吐出口530a~530fが見えることになるので、見栄えが悪いという問題がある。さらに食品収納棚が差換えられたときには、吐出穴の位置が棚間隔と不統一に配置され見栄えが悪くなる。
 そこで、本発明の実施の形態では、これらの問題を解決するために、以下の構成を採用している。
 図4および図5は、本発明の実施の形態1における冷蔵庫のダクトの概観図である。ここでいうダクトとは冷蔵室吐出用ダクト129aであり、以下でも冷蔵室吐出用ダクト129aを単に「ダクト129a」ということにする。図4は、冷蔵室102の扉を開けたときに見える面(前面)を示し、図5は、その裏面を示している。これらの図に示すように、ダクト129aは発泡ポリスチレンなどで成型される断熱風路300とポリプロピレンやポリスチレンやABSなどの樹脂で成型された前面パネル301とを組合わせてある。基本的な風路は断熱風路300で構成され、前面パネル301は意匠性や強度から外観部に設けられている。また、前面パネル301は断熱風路300の横幅よりも大きい幅としてあり、側面部や通風口が正面から見えにくくすることで、意匠性を向上させている。
 ダクト129aの側面には通風口として冷蔵室102に冷気を吐き出す吐出口130a~130fと、冷蔵室102から冷気を吸い込む吸込口131aとが備えられている。吐出口130a~130fと吸込口131aの形状は、穴でも切り欠きでもよく特に限定されるものではない。このとき、吐出口130a~130fは断熱風路300で形状を作られており、前面パネル301が直接吐出冷気に接触しない構成となっているので、前面パネル301が冷されて局部的な結露や着霜が発生することを防止できる。
 ダクト129a内における冷気循環経路は、以下のような構成となっている。具体的には、図5に示すように、ダクト129aは、その中央部に上方に向けて吐出口130a~130fに通じる冷気循環経路と、この冷気循環経路の下方部に隣接して吸込口131aに通じる冷気循環経路と、を備えている。
 ダクト129aの横幅は、冷蔵室102の横幅より狭くして、十分なチャンバー空間302を確保しておくことが必要である。ダクト129aの両側面に吐出口があるので、十分なチャンバー空間302を確保するためには、ダクト129aを冷蔵室102庫内のほぼ中央に配置して、ダクト129aの側面が庫内中央から側壁面(W1)の略中央(W2)に位置する位置にダクト129aの横幅を設計する。従来のようにダクト129aの横幅を冷蔵室102の横幅とほぼ同程度にすると、吐出口130a~130fから十分な冷気を吐き出すことができず、また、吸込口131aから十分な冷気を吸い込むことができないからである。さらに吸込口131aに食品や異物や液体が落下混入しにくい構成とすることができる。
 さらに、吐出口130a~130fは庫内空間に対して低温の冷気が最初に吐き出される場所であり、冷蔵室102内で最も低い空気温度となる上に、庫内の他の空気対流と比べて吐出流速が高くなっているので、吐出口130a~130fがダクト129a正面ではなくダクト側面に配置され、かつ十分なチャンバー空間302を側面に設けることにより、食品に冷気があたる前に、冷気温度を庫内空気と混合してなまらすと共に、吐出流速を低減することで、局所的に食品の温度を下げることがなく凍結防止を行うものである。
 なお、十分なチャンバー空間302を確保するためには、ダクト129aを冷蔵室102庫内のほぼ中央に配置して、ダクト129aの側面は、庫内中央から側壁面(W1)の略中央(W2)に位置する位置にダクト129aの横幅を設計することとしたが、好ましいのは、(1/4)×W1<ダクト129aの側面の位置(W0)<(3/4)×W1の範囲である。ここで、ダクト129aの側面の位置とは、冷蔵室ダクトの中央から側面までの距離(以下、「W0」とする)として定義されるものである。
 具体的には、ダクト129aの側面の位置(W0)>(3/4)×W1になると、チャンバー空間302が小さくなり、局所的に低温化されることとなり、食品等が凍ってしまう不具合が起こる可能性が高い。
 一方、ダクト129aの側面の位置(W0)<(1/4)×W1になると、ダクト内容積を確保するために、ダクト129aの奥行き方向が大きくなり(すなわち、ダクトが庫内の手前側になる)、庫内容積を圧迫することとなる。また、チャンバー空間302が大きくなり、吐出口から吐出された冷気の風速が低下し、後方から前方へ冷気がまわりにくくなる。従って、冷蔵室内の温度分布が均一になりにくくなる。
 すなわち、本実施の形態で、好ましいチャンバー空間302とは、ダクト129aを冷蔵室102庫内のほぼ中央に配置して、庫内中央から側壁面までの距離をW1とした場合に、ダクト129aの側面の位置(W0)が、(1/4)×W1<ダクト129aの側面の位置(W0)<(3/4)×W1、の範囲に入るように、ダクト129aの横幅を設計して得られる空間のことである。これにより、庫内容積を圧迫することがなく、冷蔵室内の温度分布を均一にするとともに、食品に冷気があたる前に、冷気温度を庫内空気と混合してなまらすとともに、冷気の吐出流速を低減することで、局所的な低温化がなく食品等の凍結防止を行える。
 また、発明者らは、上記した、好ましいチャンバー空間である、(1/4)×W1<ダクト129aの側面の位置(W0)<(3/4)×W1、を詳細に分析した結果、以下の知見を得た。
 具体的には、(1/2)×W1<ダクト129aの側面の位置(W0)、にすることで、左側の吐出口から出る冷気と、右側の吐出口から出る冷気と、が混ざり合う領域が大きくなり(すなわち、重なり合う領域が大きくなり)、非効率的な冷却となる。また、冷気がラップする領域である庫内中央部近傍で、局所的に冷却される可能性もある。
 これに対して、(1/2)×W1>ダクト129aの側面の位置(W0)、にすることで、左側の吐出口から出る冷気と、右側の吐出口から出る冷気と、がラップする領域が小さくなり(すなわち、重なり合う領域が小さくなり)、効率な冷却となる。さらには、左側の吐出口から出る冷気と右側の吐出口から出る冷気とで、庫内の左右のそれぞれの壁面近傍にも冷気が届きやすくなり、庫内の左右方向で、庫内の温度分布をより均一にできる(すなわち、庫内の左右のそれぞれの壁面近傍と中央部近傍とで温度差が少なくなる)。また、冷気がラップする領域が小さくなり、庫内中央部で、局所的に冷却される可能性も低くなる。
 よって、より好ましいチャンバー空間302とは、ダクト129aを冷蔵室102庫内のほぼ中央に配置して、庫内中央から側壁面までの距離をW1とした場合に、ダクト129aの側面の位置(W0)が、(1/2)×W1<ダクト129aの側面の位置(W0)<(3/4)×W1、の範囲に入るように、ダクト129aの横幅を設計して得られる空間のことである。ダクト129aの横幅の小型化の度合いは少なくなるものの、(1/2)×W1<ダクト129aの側面の位置(W0)、にすることで、ダクト129aの奥行き方向がより大きくなることがなく、庫内容積を圧迫することが少なくなる。このため、冷蔵庫の使い勝手を低下させることがなく、かつ、左側の吐出口から出る冷気と、右側の吐出口から出る冷気と、がラップする領域が小さくなり、効率的な冷却ができる。さらに、庫内の左右のそれぞれの壁面近傍にも冷気が届きやすくなり、冷蔵室内の温度分布を均一にするとともに、食品に冷気があたる前に、冷気温度を庫内空気と混合してなまらすことができる。さらに、冷気の吐出流速を低減することで、局所的な低温化がなく食品等の凍結防止を行える。
 このようなチャンバー空間302を得られるようにダクト129aの横幅を設計することで、冷蔵室ダクトの横幅が従来に比べて狭くなるので、材料使用量を削減して省資源に貢献し、部品流通に関る搬送エネルギーを削減することで省エネにも貢献し、結果的に製造コストを下げることが可能という効果もある。
 また、ダクト129aの断熱風路300は左右対称形状としたことにより、その結果、チャンバー空間302も左右対称形状となり、左方向からと右方向からとの冷気の流れがほぼ同じになるので、冷蔵室内の温度分布がより均一になる。
 また、従来の構成(特許文献2)では、図11Bに示すように、左右に均一に冷気を吹き出すために、ダクト板15を設け、風路を左方向と右方向とに分岐させ、ひとつの風路(例えば右方向)に対してひとつの開口方向としている。そして、このダクト板15には照明手段収納部15dを設けており、このダクト板15の部分は風路となっておらず、実質的には中央部であるダクト板15の部分は無効空間となっている。
 しかしながら、本実施の形態では、図5に示すように、ダクトの断熱風路の下方部分は、中央から左方向と右方向に分岐させることなく、中央でひとつの風路となっている。従来の構成(特許文献2)のような無効空間はなく、吐出口の先に各々チャンバー空間を備えることで、吐出口が閉塞されて風路抵抗のバランスが崩れることもないので、冷蔵室ダクトの横幅を狭くできることとなり、材料使用量を削減して省資源に貢献できる。
 また、食品収納棚201の差換えや上下移動が吐出口の位置を気にせずに行える。既に説明した通り、冷却された冷気は、ダクト129aを上方に向けて流れ、冷蔵室102上部で開口する吐出口130a~130fから吐き出される。このように冷蔵室102に吐き出された冷気は、冷蔵室102下部で開口する吸込口131aから吸い込まれて下方に向けて流れ、排出口131bから冷蔵室戻りダクト137に排出される。
 本実施の形態は、下方から上方に冷気が流れるので、上方から下方に冷気を流す方法と比べて、十分に冷気を上部まで循環させるためには、大きな流速が必要となる。本実施の形態のように、ダクト129aの横幅を狭くして、上から見た場合のダクト129aの断面積を小さくすることで、風量を一定とした場合、吐出流速が大きくなり、庫内を所定の温度で冷却するという点で、この方法は特に有効な効果が得られる。
 以上の内容においては、主として吐出口130a~130fの配置に関して言及してきたが、次に、吸込口131aに関わる構成および作用,効果について説明する。
 まず、全体的な冷気の流れについてみると、上述のように、冷蔵室より下部に設けられた蒸発器120で冷却された冷気は、冷蔵室102の領域に入ってダクト129aを上方に向けて流れる。そして、冷蔵室102で開口する吐出口130a~130fから吐き出され、冷蔵室102に吐き出された冷気は、冷蔵室102の吐出口130a~130fよりは下部(本実施の形態では正面向かって右側の片側)に開口する吸込口131aから吸い込まれる。そして、冷蔵室戻りダクト137(本実施の形態では正面向かって右側の片側)を通じて下方に向けて蒸発器120に帰還する。
 すなわち、本実施の形態では、冷気吐出側の流れは、吐出口130a,130b,130e,130fがダクト129aの両側の側壁面に配置され、冷蔵室102内の両側に冷気が吐出される。これに対して、冷気吸込側の流れは、吸込口131aがダクト129aの片側(右側)の側壁面に配置され冷蔵室102内の片側(右側)から冷気が吸い込まれて、冷蔵室戻りダクト137により蒸発器120の片側(右側)を通過して蒸発器120の下部より帰還する流れとなっている。
 なお、ここで蒸発器120の片側のみに冷蔵室戻りダクト137を配置する理由は、両側に配置すると蒸発器120の幅寸法を圧迫し、所望の冷却能力の設計自由度が小さくなることと、両側戻りダクト構成とすることによる構造の複雑さ並びに付随するコストアップに起因する。しかしながら、かといって冷蔵室戻りダクトを蒸発器120の前後いずれかに設ける場合は、蒸発器120の厚みに冷蔵室戻りダクトの厚みが加わり、庫内側の有効スペースを圧迫するか、蒸発器後方の断熱材の厚みを侵害して冷却効率を低下させるかのデメリットにつながり得策ではない。
 そして、上述の吐出口側のチャンバー空間302はダクト129aの両側に形成されている。このチャンバー空間302は冷蔵室102の下方にまで延長されて、このうちの片側(右側)のチャンバー空間302は、側壁面に配置された吸込口131aの開口部に対向して形成されている。
 このような構成にあって、吐出口130a,130b,130e,130fから吐出された冷気は、チャンバー空間302に吐出され、食品に冷気があたる前に、冷気温度を庫内空気と混合してなまらすと共に、吐出流速を低減する。これにより、局所的に食品の温度を下げることがなく凍結防止を行う。同時に、チャンバー空間302を設けることでダクト129aの幅が縮小され、吐出口130a,130b,130e,130fの冷蔵室102内における幅方向の配置位置が庫内の中央方向に寄せられるので、冷蔵室102内の吐出温度分布がより均一になるという効果がある。
 そして、このように冷蔵室102の中央方向寄りから吐出された冷気は、最終的に冷蔵室102内下部の吸込口131aに向けて流通しようとするが、吸込口131aがダクト129aの片側(右側)側壁面にのみ設けられている。この関係上、吸込口131aが存在する側と逆側(左側)のダクト129aの側壁面に設けた吐出口130a,130bから吐出される冷気は、まず側方のチャンバー空間302に入り、次いで前方に方向転換して冷蔵室102内を流れる。ついで幅方向にクロスしながら対面側のチャンバー空間302に流入し、その後側方に開口した吸込口131aに流れて回収される。
 このとき、吐出口130a,130bも吸込口131aもダクト129aの側壁面に設けられてチャンバー空間302を介して冷気が流出入する経路となるため、流通経路が長く、かつ流れ方向の方向転換も多い。従って、吐出口130a,130bから吸込口131aへの冷気流のショートサーキットが起こらず、冷気の冷蔵室102内の滞空時間が長くなり、効率よく冷蔵室102内を均一に冷却しながら吸込口131aに回収されることになる。
 ここで、吸込口131aを仮にダクト129aの正面の一般的な形で開口したとすると、正面の吸込口であるために吐出された冷気の方向転換が少なく抵抗も少ない。従って、ダクト129aの幅が縮小されて中央よりになった吐出口130a,130bからダクト正面の吸込口に対して、ショートサーキットが容易に発生する。よって、冷蔵室102内を幅方向にクロスしながら吸込口に流れることができず、冷蔵室102内を均一に冷却することができない。
 そして、冷蔵室102内の冷却を終えて吸込口131aに回収された冷気は、吸込口131aの下方に直結した上述の冷蔵室戻りダクト137によって合理的に片側から蒸発器120に戻される。
 以上のように、冷蔵室102の幅方向の中央よりに幅を縮めて両側にチャンバー空間302を形成するようにダクト129aを配置し、ダクト129aの両側壁面に吐出口130a,130b,130e,130fを配置する構成とする。一方、吐出口130a,130b,130e,130fよりは下部で、かつダクト129aの敢えて片側壁面にのみ吸込口131aを配置する構成とする。これらにより、両側吐出,両側吸込とする場合に発生するそれぞれの側面側領域での吐出から吸込へのショートサーキット成分を軽減して、冷蔵室102内の温度分布を均一化できるメリットがある。
 さらには、このような温度分布に関わる品質性能的メリットを、冷蔵室戻りダクト137をも片側にのみ配置する組み合わせ構成で合理的に実現できる。例えば、両側吸込口仕様であっても冷蔵室102内で両側吸込口を繋ぐバイパスダクトを設けて片側冷蔵室戻りダクトを実現する構成も考えられるが、上述の冷蔵室内における温度分布に関わる品質性能的メリットを享受することはできない。すなわち、冷蔵室戻りダクト137を片側のみに配置するという合理的なダクト構成と、温度分布に関わる品質性能的メリットと、が両立できない。
 したがって、冷蔵室102の幅に対して幅を狭くしてチャンバー空間302を両側に形成したダクト129aと、チャンバー空間302に対向してダクト129aの側壁面の上下に設けた吐出口130a,130b,130e,130fと吸込口131aであって、ダクト129aの両側に設けた吐出口130a,130b,130e,130fと、片側にのみ設けた吸込口131aと、を設ける構成とすることによって、冷蔵室102内の温度分布に関わる品質性能的メリットが得られ効果を有するものである。
 そして、これに加えて冷蔵室戻りダクト137も吸込口131aの下方で同側方に片側にのみ配置することによって、一連の合理的なダクト構成で安価に上記メリットを含めた冷却効率の高い冷蔵庫を提供することができる。
 次に、チャンバー空間部には断熱箱体101の背面部内方から前方に向けて、食品収納棚201の延長上に、リブが設けられ、食品落下防止とする場合がある。
 本実施の形態では、上段と下段の食品収納棚が、この食品落下防止手段を用いているので以下に説明する。
 具体的には、冷蔵室102には、庫内に食品等を収納する食品収納棚201が複数設けられている。冷蔵室102には、食品収納棚201は、上段と中段と下段とに三枚あり、冷蔵室102の左側面から右側面に渡って架橋状に設置されたものである。
 図12は、本発明の実施の形態1における冷蔵庫の下段の食品収納棚の斜視図である。図13は、本発明の実施の形態1における冷蔵庫の下段の食品収納棚の位置で切断した平面断面図である。
 図12に示すように、下段の食品収納棚は、奥側の辺221Aが直線状である食品収納棚221である。具体的には、食品収納棚221は、食品等が置かれる食品載置スペース211Aを備え、食品載置スペース211Aはガラスで構成されている。また、食品載置スペース211Aの周囲には、樹脂からなる枠部211Cが設けられている。
 図13に示すように、チャンバー空間302には断熱箱体101の背面部内面から前方に向けて、ダクト129aを挟んで、左右それぞれにリブ223を形成している。このリブ223は食品収納棚221の奥側(断熱箱体の背部内面側)の端面の延長線上に配置されている。
 これにより、食品収納棚221の奥側の辺は直線状であるため、食品収納棚自体は複雑な加工をすることなく、食品収納棚221の奥側の端面と断熱箱体101の背部内面とで形成される隙間を、リブ223によって狭めることとなる。よって、食品収納棚221の奥側に置かれた食品で、特に小さな食品等が奥側におされた際に、チャンバー空間302へ食品が落下することを防止することができる。
 なお、ここでは、下段の食品収納棚について説明したが、本実施の形態では、上段の食品収納棚についても下段の食品収納棚と同様の構成としている。また、一方では、食品収納棚の形状を工夫して、食品落下防止とする場合がある。
 本実施の形態では、中段の食品収納棚が、この食品落下防止手段を用いているので以下に説明する。中段の食品収納棚は、冷蔵室102の左側面から右側面に渡って架橋状に設置されたものであり、冷蔵室ダクト129aの周囲を囲うような形状とした食品収納棚211である。図14は、本発明の実施の形態1における冷蔵庫の中段の食品収納棚の斜視図である。図15は、本発明の実施の形態1における冷蔵庫の中段の食品収納棚の位置で切断した平面断面図である。
 図14に示すように、食品収納棚211は、食品等が置かれる食品載置スペース211Aと、食品設置スペース211Aの奥側に設けられたガイドリブ211Bと、からなり、食品載置スペース211Aはガラスで構成されており、また、ガイドリブ211Bは樹脂で構成されている。
 より具体的には、食品載置スペース211Aの周囲には、樹脂からなる枠部211Cが設けられており、食品収納棚211の奥側は、この枠部211Cを後方に延長させて、ガイドリブ211Bとしたものである。
 また、食品載置スペース211Aとガイドリブ211Bとの間には、ガイドリブ211Bが高くなるように段差が設けられている。通常、ガイドリブ211Bには、食品は置かれない。
 そして、ガイドリブ211Bが、チャンバー空間302に配置される。これにより、冷蔵室ダクト129aの周囲を囲うような形状とした食品収納棚211、すなわち、食品収納棚の奥側の辺にガイドリブ211Bを設けることで、食品収納棚211の奥側の端面と断熱箱体101の背部内面とで形成される隙間を、ガイドリブ211Bによって狭めることとなる。よって、食品収納棚211の奥側に置かれた食品で、特に小さな食品等が奥側におされた際に、チャンバー空間302へ食品が落下することを防止することができる。
 なお、本実施の形態では、上段と下段との食品収納棚は、奥側の辺221Aが直線状である食品収納棚221とし、中段の食品収納棚は、冷蔵室ダクト129aの周囲を囲うような形状とした食品収納棚211としている。ただし、複数の食品収納棚の全てについて、奥側の辺221Aが直線状である食品収納棚221として、背面部内面から前方に向けて、リブ223を形成してもよい。また、反対に、複数の食品収納棚の全てについて、冷蔵室ダクト129aの周囲を囲うような形状とした食品収納棚211として、リブを設けなくてもよい。
 ただし、上下の位置を変更できる食品収納棚は、見栄えの面から、リブ223を設けないで、冷蔵室ダクト129aの周囲を囲うような形状とした食品収納棚211とした、すなわち、食品収納棚の形状を工夫するほうが、好ましい。
 つまり、断熱箱体の背部内面の形状を工夫すること、あるいは、食品収納棚の形状を工夫こと、すなわち、食品の落下防止手段を設けている。これにより、冷蔵室ダクト側面から冷蔵室内側面までにチャンバー空間を備えた冷蔵庫においては、食品収納棚の奥側に置かれた食品で、特に小さな食品等が奥側におされた際に、チャンバー空間302へ食品が落下することを防止することができる。
 なお、本実施の形態では、食品収納棚221の奥側の辺221Aが直線状としたが、必ずしも直線状でなくてもよく、奥側の辺に一部に、多少の凹凸があっても、食品収納棚221上の食品の落下を低減できるものであればかまわない。
 図6は、本発明の実施の形態1における冷蔵庫の冷蔵室の内部構造を示す図である。ここでは、ダクト129aを固定する前の状態を示している。図6に示すように、断熱箱体101の中間位置には、縦2列に突出部101aおよび101bが形成されている。突出部101aおよび101bは、内箱を突出させたものであり、ダクト129aと係合することになる。したがって、突出部101aと101bの間の距離はダクト129aの横幅と略等しく、吐出口130a~130fや吸込口131aに対応する位置に突出部は存在しない。
 図7は、本発明の実施の形態1における冷蔵庫が備えるダクトの説明図である。ここでは、冷蔵室102の扉を開けたとき、正面に見える部分を表している。すなわち、断熱構造である冷蔵室102の断熱箱体101に沿ってダクト129aが設けられ、このダクト129aと断熱箱体101との間にY字状の冷気循環経路が形成されている。冷蔵庫102内の冷気は、図7中に矢印で示すように、冷蔵室102下方で開口する吸込口131aから吸い込まれて各貯蔵室を循環した後、冷蔵室102上方で開口する吐出口130a~130fから吐き出される。すなわち、ダクト129aは、その中央部に上方に向けて吐出口130a~130fに通じる冷気循環経路と、この冷気循環経路の下方部に隣接して吸込口131aに通じる冷気循環経路を設けられている。このような構成にすることで、ダクト129aを用いて冷気循環経路を構成するような場合でも、ダクト129aをよりコンパクトな状態で冷気循環経路を確保することができる。そして、ダクト129aをよりコンパクトにすることによって、ダクト129aの側方でチャンバー空間を適切に確保することができる。
 ここで、吐出口130a~130fも吸込口131aもダクト129aの側面に備えられる。すなわち、ダクト129aの前面には吐出口130a~130fも吸込口131aも存在せず、また吐出口130a~130fの先にはチャンバー空間302が設けられてある。従って、冷蔵室102内の食品等が凍ってしまう不具合を回避することができると共に、冷蔵室の扉を開けたとき、吐出口と吸込口が前面に見えないので、冷蔵室102の見栄えが良くなる。
 ところで、従来の冷蔵庫では、図10A、図10Bに示したように、断熱箱体501の両サイドの角部にダクト係合用の突起部501aおよび501bが形成される。しかしながら、突起部501aおよび501bは小さいので、精度よく突起部501aおよび501bを形成することができないという問題がある。そこで、本発明の実施の形態では、この問題を解決するために、以下の構成を採用している。
 図8Aは、本発明の実施の形態1における冷蔵庫のダクトの固定前を示す図である。図8Bは、本発明の実施の形態1おける冷蔵庫のダクトの固定後を示す図である。
 ここでは、冷蔵室102の背面部分における横断面図を示している。図8Aに示すように、断熱箱体101の中間位置には、ダクト係合用の突出部101aおよび101bが形成されている。この突出部101aおよび101bと対向させてダクト129aを嵌め込むと、図8Bに示すように、突出部101aおよび101bとダクト129aとが係合するようになっている。このように、断熱箱体101の中間位置に突出部101aおよび101bを形成すれば、断熱箱体101の角部に形成する場合に比べてスペース的に余裕ができて精度よく突出部101aおよび101bを形成することが可能となる。
 しかも、断熱箱体101の中間位置に突出部101aおよび101bを形成しているので、突出部101aおよび101bの外側でダクト129aと係合することが可能となる。すなわち、突出部101aおよび101bの外側に張り出した部位をダクト129aが抱きかかえるようなかたちとなっている。
 この点について更に詳しく説明すると、従来のように、断熱箱体101の両サイドの角部に突出部101aおよび101bを形成した場合は、突出部101aおよび101bの内側でダクト129aと係合するしかない(図10A、図10B参照)。しかしながら、本発明では、断熱箱体101の中間位置に突出部101aおよび101bを形成しているので、突出部101aおよび101bの内側はもちろん、突出部101aおよび101bの外側でもダクト129aと係合することが可能となる。このように、本発明は、突出部101aおよび101bの形状に選択の余地があり(すなわち、形状の自由度が高い)、多様性の面でも従来技術より優れているといえる。
 以上の説明から明らかなように、本発明の実施の形態における冷蔵庫によれば、ダクトの前面には冷気の吐出口も吸込口も存在せず、ダクト129a側面と庫内側壁面との間にチャンバー空間302を設けてある。従って、低温で流速の高い吐出冷気が直接冷蔵室内の食品等にあたることを防止し、食品が凍ってしまう不具合を回避することができると共に、冷蔵室の見栄えが良くなる。また、ダクト129aの横幅が従来に比べて狭くなるので、省資源かつ省エネルギーに貢献し結果として製造コストが下がるという効果もある。
 さらに、ダクト係合用の突出部は断熱箱体の中間位置に形成されるので、断熱箱体の角部に形成する場合に比べて、スペース的に余裕ができて精度よく突出部を形成することが可能となり、また、突出部の形状の多様性が増す。加えて、ダクト係合用の突出部は断熱箱体に設けられているため、ダクトと係合するための別部品が不要であるという効果もある。
 なお、上記の説明では特に言及しなかったが、リベットなどの固定部材を用いてダクト129aを固定する方法を採用することも可能である。この場合、ダクト129a内の冷気の流れをコントロールする位置(例えば、ダクト側面の吐出口に向って冷気の流れを偏向する場所など)に、シール性を確保する固定部材(リベットなど)を配置するのが好ましい。このようにすれば、シール性を確保することができると同時に、冷気をガイドする役割も果たすことができるからである。もちろん、この固定部材にガイド部材を設ければ、冷気をガイドする効果を更に向上させることが可能となる。さらに、Y字状の冷気循環経路の分岐位置などに固定部材(リベットなど)を配置すれば、下方からの冷気が2つに分岐して上方へ流れやすくなり、冷気の循環が良くなることはいうまでもない。
 また、上記の説明では、6つの吐出口130a~130fの配置位置については詳しく言及しなかったが、これらの配置位置は特に限定されるものではない。ただし、冷蔵室102内の温度分布がなるべく均一になるように、6つの吐出口130a~130fを配置するのが好ましい。
 また、上記の説明では、6つの吐出口130a~130fを例示したが、吐出口の数は特に限定されるものではない。同様に、1つの吸込口131aを例示したが、吸込口の数も特に限定されるものではない。
 なお、冷凍室が最下段に配置されるレイアウトで説明を例示したが、冷凍室が中央に配置されるいわゆるミッドフリーザータイプのレイアウトでも同様の効果を得ることができる。
 (実施の形態2)
 上記したように、実施の形態1については、吐出口と吸込口との位置関係(吐出口と吸込口との両方が、ダクト側面に設けられたこと)から、冷蔵室の温度分布を均一化させることを中心に説明してきた。
 しかしながら詳細に検討した結果、冷蔵室の温度分布を均一化させる方法について、実用上で、一定の効果のある変形例があることが判明したので、以下説明する。
 変形例の一つ目として、以下、実施の形態2を説明する。本発明の実施の形態2が、実施の形態1と異なる点は、右側の吐出口130e、130fが設けられておらず、吐出口は左側の吐出口130a、130bが設けられている点である。
 図16は、本発明の実施の形態2における冷蔵庫が備えるダクトの説明図である。ここでは、冷蔵室102の扉を開けたとき、正面に見える部分を表している。すなわち、断熱構造である冷蔵室102の断熱箱体101に沿ってダクト129aが設けられ、このダクト129aと断熱箱体101との間にY字状の冷気循環経路が形成されている。冷蔵庫102内の冷気は、図16中に矢印で示すように、冷蔵室102下方で開口する吸込口131aから吸い込まれて各貯蔵室を循環した後、冷蔵室102上方で開口する吐出口130a~130dから吐き出される。すなわち、ダクト129aの側面には、吐出口は左側の吐出口130a、130bのみが設けられており、右側の側面には、吐出口が設けられていない。
 ここで、吐出口130a,130bも吸込口131aもダクト129aの側面に備えられる。すなわち、ダクト129aの前面には吐出口130a、130bも吸込口131aも存在せず、また吐出口130a、130bの先にはチャンバー空間302が設けられてある。従って、冷蔵室102内の食品等が凍ってしまう不具合を回避することができると共に、冷蔵室の扉を開けたとき、吐出口と吸込口が前面に見えないので、冷蔵室102の見栄えが良くなる。
 次に、冷気の流れについて、説明する。まず、全体的な冷気の流れについてみると、上述のように冷蔵室より下部に設けられた蒸発器120で冷却された冷気は、冷蔵室102の領域に入ってダクト129aを上方に向けて流れ、冷蔵室102で開口する吐出口130a~130dから吐き出される。冷蔵室102に吐き出された冷気は、冷蔵室102の吐出口130a~130dよりは下部(本実施の形態では正面向かって右側の片側)に開口する吸込口131aから吸い込まれる。そして、冷蔵室戻りダクト137(本実施の形態では正面向かって右側の片側)を通じて下方に向けて蒸発器120に帰還する。
 すなわち、本実施の形態では冷気吐出側の流れは、吐出口130a,130bがダクト129aの左側の側壁面に配置され冷蔵室102内の左側に冷気が吐出される。これに対して、冷気吸込側の流れは、吸込口131aがダクト129aの片側(右側)の側壁面に配置され冷蔵室102内の片側(右側)から冷気が吸い込まれて、冷蔵室戻りダクト137により蒸発器120の片側(右側)を通過して蒸発器120の下部より帰還する流れとなっている。
 なお、ここで蒸発器120の片側のみに冷蔵室戻りダクト137を配置する理由は、両側に配置すると蒸発器120の幅寸法を圧迫し、所望の冷却能力の設計自由度が小さくなることと、両側戻りダクト構成とすることによる構造の複雑さ並びに付随するコストアップに起因する。しかしながら、かといって冷蔵室戻りダクトを蒸発器120の前後いずれかに設ける場合は蒸発器120の厚みに冷蔵室戻りダクトの厚みが加わり庫内側の有効スペースを圧迫するか、蒸発器後方の断熱材の厚みを侵害して冷却効率を低下させるかのデメリットにつながり得策ではない。
 そして、上述の吐出口側のチャンバー空間302はダクト129aの左側に形成されているが、このチャンバー空間302は冷蔵室102の下方にまで延長されている。
 このような構成にあって、吐出口130a,130bから吐出された冷気はチャンバー空間302に吐出され、食品に冷気があたる前に、冷気温度を庫内空気と混合してなまらすと共に、吐出流速を低減することで、局所的に食品の温度を下げることがなく凍結防止を行う。同時に、チャンバー空間302を設けることでダクト129aの幅が縮小され、吐出口130a,130bの冷蔵室102内における幅方向の配置位置が庫内の中央方向に寄せられるので、冷蔵室102内の吐出温度分布がより均一になるという効果がある。
 そして、このように冷蔵室102の中央方向寄りから吐出された冷気は、最終的に冷蔵室102内下部の吸込口131aに向けて流通しようとするが、吸込口131aがダクト129aの片側(右側)側壁面にのみ設けられている。この関係上、吸込口131aが存在する側と逆側(左側)のダクト129aの側壁面に設けた吐出口130a,130bから吐出される冷気は、まず側方のチャンバー空間302に入る。次いで前方に方向転換して冷蔵室102内を流れ、ついで幅方向にクロスしながら対面側のチャンバー空間302に流入し、その後側方に開口した吸込口131aに流れて回収される。
 このとき、吐出口130a,130bも吸込口131aもダクト129aの側壁面に設けられてチャンバー空間302を介して冷気が流出入する経路となるため、流通経路が長く、かつ流れ方向の方向転換も多い。従って、吐出口130a,130bから吸込口131aへの冷気流のショートサーキットが起こらず、冷蔵室102内の滞空時間が長く効率よく冷蔵室102内を均一に冷却しながら吸込口131aに回収されることになる。
 そして、冷蔵室102内の冷却を終えて吸込口131aに回収された冷気は、吸込口131aの下方に直結した上述の冷蔵室戻りダクト137によって合理的に片側から蒸発器120に戻される。
 以上のように、冷蔵室102の幅方向の中央よりに幅を縮めて左側にチャンバー空間302を形成するようにダクト129aを配置し、ダクト129aの左側壁面に吐出口130a,130bを配置する構成とする。一方、吐出口130a,130bよりは下部で、かつダクト129aの敢えて片側壁面にのみ吸込口131aを配置する構成とする。これにより、両側吐出,両側吸込とする場合に発生するそれぞれの側面側領域での吐出から吸込へのショートサーキット成分を軽減して、冷蔵室102内の温度分布を均一化できるメリットがある。
 さらには、このような温度分布に関わる品質性能的メリットを冷蔵室戻りダクト137をも片側にのみ配置する組み合わせ構成で合理的に実現できる。例えば、両側吸込口仕様であっても冷蔵室102内で両側吸込口を繋ぐバイパスダクトを設けて片側冷蔵室戻りダクトを実現する構成も考えられるが、上述の冷蔵室内における温度分布に関わる品質性能的メリットを享受することはできない。すなわち、冷蔵室戻りダクト137を片側のみに配置するという合理的なダクト構成と、温度分布に関わる品質性能的メリットと、が両立できない。
 したがって、冷蔵室102の幅に対して幅を狭くしてチャンバー空間302を左側に形成したダクト129aと、チャンバー空間302に対向してダクト129aの側壁面の上下に設けた吐出口130a,130bと吸込口131aであって、ダクト129aの左側に設けた吐出口130a,130bと片側にのみ設けた吸込口131aと、を設ける構成とすることによって、冷蔵室102内の温度分布に関わる品質性能的メリットが得られ効果を有するものである。
 そして、これに加えて冷蔵室戻りダクト137も吸込口131aの下方で同側方に片側にのみ配置することによって、一連の合理的なダクト構成で安価に上記メリットを含めた冷却効率の高い冷蔵庫を提供することができる。
 すなわち、本実施の形態では、冷蔵室102の幅方向の中央よりに幅を縮めて左側にチャンバー空間302を形成するようにダクト129aを配置し、ダクト129aの左側壁面に吐出口130a,130bを配置する構成としている。一方、吐出口130a,130bよりは下部で、かつダクト129aの敢えて片側壁面にのみ吸込口131aを配置する構成としている。これにより、両側吐出,両側吸込とする場合に発生するそれぞれの側面側領域での吐出から吸込へのショートサーキット成分を軽減して、実用上において、冷蔵室102内の温度分布を均一化できるという、一定の効果が得られる。
 なお、本実施の形態では、冷蔵室の上方に吐出口130c,130dを設けたが、冷蔵室内の温度分布の均一化が図れるならば、必ずしも、吐出口130c,130dは設けなくてもよい。
 以上、実施の形態2に示したように、断熱箱体内に形成された冷蔵室の背面に冷蔵室ダクトが設けられ、冷蔵室ダクトは、片側側面にのみ通風口である吐出口と、吐出口より下方で吐出口とは反対側の片側側面のみに通風口である吸込口と、を備え、冷蔵室ダクト側面から冷蔵室内側面までにチャンバー空間を備えた冷蔵庫である。
 これにより、(1)吸込口とは反対側に設けた吐出口から出た冷気は、幅方向にクロスしながら対面側のチャンバー空間に流入し、その後、吸込口に流れて回収され、(2)冷気の流通経路は長く、(3)流れ方向の方向転換も多いため、冷蔵室内での冷気の滞空時間が長くなり、吐出口から吸込口への冷気のショートサーキットが起こりにくくなり、実用上、効率よく冷蔵室内の温度分布の均一化を図ることができる。
 また、ダクトの前面には冷気の吐出口と吸込口とが存在しないので、冷蔵室の扉を開けとき、吐出口と吸込口とが前面に見えないので、冷蔵室の見栄えがよくなる。
 なお、本実施の形態においても、実施の形態1に示した、チャンバー空間となるように、ダクト129aの横幅を設計することで、冷蔵室内の温度分布を均一化できる。
 (実施の形態3)
 次に、変形例の二つ目として、以下、実施の形態3を説明する。本発明の実施の形態3が、実施の形態1と異なる点は、吐出口130a、130b、130e、130fが、ダクト129aの側面に設けられているのではなく、ダクト129aの正面に設けられている点である。
 図17は、本発明の実施の形態3における冷蔵庫が備えるダクトの説明図である。ここでは、冷蔵室102の扉を開けたとき、正面に見える部分を表している。すなわち、断熱構造である冷蔵室102の断熱箱体101に沿ってダクト129aが設けられ、このダクト129aと断熱箱体101との間にY字状の冷気循環経路が形成されている。冷蔵庫102内の冷気は、図17中に矢印で示すように、冷蔵室102下方で開口する吸込口131aから吸い込まれて各貯蔵室を循環した後、冷蔵室102上方で開口する吐出口130a、130b、130e、130fから吐き出される。
 ここで、吐出口130a、130b、130e、130fは、ダクト129aの正面に備えられ、また、吸込口131aは、ダクト129aの側面に備えられる。すなわち、冷蔵室の扉を開けたとき、吸込口が前面に見えないので、冷蔵室102の見栄えが良くなる。
 なお、吐出口130a、130b、130e、130fの左右方向の位置は、ダクト129aの中央よりではなく、ダクト129aの外側よりに設けることが望ましい。これにより、冷蔵室内の左右の壁面近傍にも、冷気をいきわたらすことができる。
 ダクト129aの中央よりに、吐出口130a、130b、130e、130fを設けると、冷蔵室内の左右方向の中央部がより冷却され、冷蔵室内の左右近傍に冷気がいきわたらない可能性があるためである。
 次に、冷気の流れについて、説明する。まず、全体的な冷気の流れについてみると、上述のように冷蔵室より下部に設けられた蒸発器120で冷却された冷気は、冷蔵室102の領域に入ってダクト129aを上方に向けて流れ、冷蔵室102で開口する吐出口130a、130b、130e、130fから吐き出される。冷蔵室102に吐き出された冷気は、冷蔵室102の吐出口130a、130b、130e、130fよりは下部(本実施の形態では正面向かって右側の片側)に開口する吸込口131aから吸い込まれる。そして、冷蔵室戻りダクト137(本実施の形態では正面向かって右側の片側)を通じて下方に向けて蒸発器120に帰還する。
 すなわち、本実施の形態では冷気吐出側の流れは、吐出口130a、130b、130e、130fがダクト129aの正面に配置され冷蔵室102内の前方に冷気が吐出される。これに対して、冷気吸込側の流れは、吸込口131aがダクト129aの片側(右側)の側壁面に配置され冷蔵室102内の片側(右側)から冷気が吸い込まれて、冷蔵室戻りダクト137により蒸発器120の片側(右側)を通過して蒸発器120の下部より帰還する流れとなっている。
 なお、ここで蒸発器120の片側のみに冷蔵室戻りダクト137を配置する理由は、両側に配置すると蒸発器120の幅寸法を圧迫し、所望の冷却能力の設計自由度が小さくなることと、両側戻りダクト構成とすることによる構造の複雑さ並びに付随するコストアップに起因する。しかしながら、かといって冷蔵室戻りダクトを蒸発器120の前後いずれかに設ける場合は蒸発器120の厚みに冷蔵室戻りダクトの厚みが加わり庫内側の有効スペースを圧迫するか、蒸発器後方の断熱材の厚みを侵害して冷却効率を低下させるかのデメリットにつながり得策ではない。
 そして、上述の吐出口側のチャンバー空間302はダクト129aの両側に形成されているが、このチャンバー空間302は冷蔵室102の下方にまで延長されて、このうちの片側(右側)のチャンバー空間302は、側壁面に配置された吸込口131aの開口部に対向して形成されている。
 このような構成にあって、吐出口130a,130b,130e,130fから吐出された冷気はチャンバー空間302に吐出され、食品に冷気があたる前に、冷気温度を庫内空気と混合してなまらすと共に、吐出流速を低減する。これにより、局所的に食品の温度を下げることがなく凍結防止を行い、同時にチャンバー空間302を設けることでダクト129aの幅が縮小され、吐出口130a,130b,130e,130fの冷蔵室102内における幅方向の配置位置が庫内の中央方向に寄せられるので、冷蔵室102内の吐出温度分布がより均一になるという効果がある。
 そして、このように冷蔵室102の中央方向寄りから吐出された冷気は、最終的に冷蔵室102内下部の吸込口131aに向けて流通しようとするが、吸込口131aがダクト129aの片側(右側)側壁面にのみ設けられている。この関係上、吸込口131aが存在する側と逆側(左側)のダクト129aの正面に設けた吐出口130a,130bから吐出される冷気は、冷蔵室102内を前方に流れる。ついで幅方向にクロスしながら対面側のチャンバー空間302に流入し、その後側方に開口した吸込口131aに流れて回収される。
 このとき、吸込口131aはダクト129aの側壁面に設けられてチャンバー空間302を介して冷気が流出入する経路となるため、流通経路が長く、かつ流れ方向の方向転換がある。従って、吐出口130a,130bから吸込口131aへの冷気流のショートサーキットが起こりにくく、冷蔵室102内の滞空時間が長く効率よく冷蔵室102内を均一に冷却しながら吸込口131aに回収されることになる。
 ここで、吸込口131aを仮にダクト129aの正面の一般的な形で開口したとすると、正面の吸込口であるために吐出された冷気の方向転換が少なく抵抗も少ないためダクト129aの幅が縮小されて中央よりになった吐出口130a,130bからダクト正面の吸込口に対してショートサーキットが容易に発生する。従って、冷気は冷蔵室102内を幅方向にクロスしながら吸込口に流れることができず、冷蔵室102内を均一に冷却することができない。
 そして、冷蔵室102内の冷却を終えて吸込口131aに回収された冷気は、吸込口131aの下方に直結した上述の冷蔵室戻りダクト137によって合理的に片側から蒸発器120に戻される。
 以上のように、冷蔵室102の幅方向の中央よりに幅を縮めて両側にチャンバー空間302を形成するようにダクト129aを配置し、ダクト129aの正面に吐出口130a,130b,130e,130fを配置する構成とする。一方、吐出口130a,130b,130e,130fよりは下部で、かつダクト129aの敢えて片側壁面にのみ吸込口131aを配置する構成とする。これにより、両側吐出,両側吸込とする場合に発生するそれぞれの側面側領域での吐出から吸込へのショートサーキット成分を軽減して、冷蔵室102内の温度分布を均一化できるメリットがある。
 さらには、このような温度分布に関わる品質性能的メリットを冷蔵室戻りダクト137をも片側にのみ配置する組み合わせ構成で合理的に実現できる。例えば、両側吸込口仕様であっても冷蔵室102内で両側吸込口を繋ぐバイパスダクトを設けて片側冷蔵室戻りダクトを実現する構成も考えられるが、上述の冷蔵室内における温度分布に関わる品質性能的メリットを享受することはできない。すなわち、冷蔵室戻りダクト137を片側のみに配置するという合理的なダクト構成と、温度分布に関わる品質性能的メリットと、が両立できない。
 したがって、冷蔵室102の幅に対して幅を狭くしてチャンバー空間302を両側に形成したダクト129aと、ダクト129aの正面の上下に設けた吐出口130a,130b,130e,130fと、ダクト129aの側面に設けた吸込口131aであって、ダクト129aの正面に設けた吐出口130a,130b,130e,130fと片側面にのみ設けた吸込口131aと、を設ける構成とする。これによって、冷蔵室102内の温度分布に関わる品質性能的メリットが得られ効果を有するものである。
 そして、これに加えて冷蔵室戻りダクト137も吸込口131aの下方で同側方に片側にのみ配置することによって、一連の合理的なダクト構成で安価に上記メリットを含めた冷却効率の高い冷蔵庫を提供することができる。
 すなわち、本実施の形態では、冷蔵室102の幅方向の中央よりに幅を縮めて左側にチャンバー空間302を形成するようにダクト129aを配置し、ダクト129aの正面に吐出口130a,130b、130e、130fを配置する構成とする。一方、吐出口130a,130b、130e、130fよりは下部で、かつダクト129aの敢えて片側壁面にのみ吸込口131aを配置する構成とする。これにより、両側吐出,両側吸込とする場合に発生するそれぞれの側面側領域での吐出から吸込へのショートサーキット成分を軽減して、実用上において、冷蔵室102内の温度分布を均一化できるという、一定の効果が得られる。
 なお、本実施の形態では、吐出口130a、130b、130e,130fは、ダクト129aの正面に設けたため、冷蔵室内の左右壁面近傍にも、冷気の流れをいきわたらせるために、以下のようにすればよい。
 具体的には、チャンバー空間は、実施の形態1で示したような、好ましいチャンバー空間となる、ダクト129aを冷蔵室102庫内のほぼ中央に配置して、庫内中央から側壁面までの距離をW1とした場合に、ダクト129aの側面の位置(W0)が、(1/4)×W1<ダクト129aの側面の位置(W0)<(3/4)×W1、の範囲に入るように、ダクト129aの横幅を設計して得られる空間とすればよい。
 これにより、吐出口130a,130b、130e、130fは、冷蔵室の左右の壁面近傍に近くなり、冷蔵室内の左右壁面近傍にも冷気の流れをいきわたらせることができ、冷蔵室内の温度分布を均一化できる。
 なお、冷蔵室内の左右壁面近傍にも、より冷気の流れをいきわたらせるために、以下のようにすればよい。具体的には、チャンバー空間は、実施の形態1で示したような、より好ましいチャンバー空間となる、ダクト129aを冷蔵室102庫内のほぼ中央に配置して、庫内中央から側壁面までの距離をW1とした場合に、ダクト129aの側面の位置(W0)が、(1/2)×W1<ダクト129aの側面の位置(W0)<(3/4)×W1、の範囲に入るように、ダクト129aの横幅を設計して得られる空間とすればよい。
 ここで、吐出口130a、130b、130e、130fは、ダクト129aの側面からの距離(図17におけるX寸法)を120mm以下とすることで、吐出口130a、130b、130e、130fを、更に冷蔵室内の左右壁面近傍に近づけることとなる。よって、冷蔵室内の左右壁面近傍にも、より冷気の流れをいきわたらせることができ、冷蔵室内の温度分布をより均一化できる。
 すなわち、本実施の形態では、吐出口を正面に配置するため、冷蔵室の左右近傍に向けての冷気の流れが届きにくくなるのを、ダクト129aの幅を特定し、吐出口の位置を極力外側に配置することで補い、冷蔵室内の温度分布の均一化を図るものである。
 以上、実施の形態3に示したように、断熱箱体内に形成された冷蔵室の背面に冷蔵室ダクトが設けられ、冷蔵室ダクトは、正面に通風口である吐出口と、吐出口より下方で片側側面のみに通風口である吸込口と、を備え、冷蔵室ダクト側面から冷蔵室内側面までにチャンバー空間を備えた冷蔵庫である。
 これにより、(1)吸込口とは反対側に設けた吐出口から出た冷気は、幅方向にクロスしながら対面側のチャンバー空間に流入し、その後、吸込口に流れて回収され、(2)特許文献1に記載の冷蔵庫と比較して、冷気の流通経路は長く、(3)特許文献1に記載の冷蔵庫と比較して、流れ方向の方向転換も多いため、冷蔵室内での冷気の滞空時間が長くなり、吐出口から吸込口への冷気のショートサーキットが起こりにくくなり、実用上、効率よく冷蔵室内の温度分布の均一化を図ることができる。
 (実施の形態4)
 次に、変形例の三つ目として、以下、実施の形態4を説明する。本発明の実施の形態4が、実施の形態1と異なる点は、吸込口131aが、ダクト129aの側面に設けられているのではなく、ダクト129aの正面に設けられている点である。
 図18は、本発明の実施の形態4における冷蔵庫が備えるダクトの説明図である。ここでは、冷蔵室102の扉を開けたとき、正面に見える部分を表している。すなわち、断熱構造である冷蔵室102の断熱箱体101に沿ってダクト129aが設けられ、このダクト129aと断熱箱体101との間にY字状の冷気循環経路が形成されている。冷蔵庫102内の冷気は、図18中に矢印で示すように、冷蔵室102下方で開口する吸込口131aから吸い込まれて各貯蔵室を循環した後、冷蔵室102上方で開口する吐出口130a~130fから吐き出される。
 ここで、吐出口130a~130fは、ダクト129aの側面に備えられる。すなわち、ダクト129aの前面には吐出口130a~130fが存在せず、また吐出口130a~130fの先にはチャンバー空間302が設けられてあるので、冷蔵室102内の食品等が凍ってしまう不具合を回避することができると共に、冷蔵室の扉を開けたとき、吐出口が前面に見えないので、冷蔵室102の見栄えが良くなる。
 次に、冷気の流れについて、説明する。まず、全体的な冷気の流れについてみると、上述のように冷蔵室より下部に設けられた蒸発器120で冷却された冷気は、冷蔵室102の領域に入ってダクト129aを上方に向けて流れ、冷蔵室102で開口する吐出口130a~130fから吐き出される。冷蔵室102に吐き出された冷気は、冷蔵室102の吐出口130a~130fよりは下部(本実施の形態では正面向かって右側の片側)に開口する吸込口131aから吸い込まれる。そして、冷蔵室戻りダクト137(本実施の形態では正面向かって右側の片側)を通じて下方に向けて蒸発器120に帰還する。
 すなわち、本実施の形態では冷気吐出側の流れは、吐出口130a,130b,130e,130fがダクト129aの両側の側壁面に配置され冷蔵室102内の両側に冷気が吐出される。これに対して、冷気吸込側の流れは、吸込口131aがダクト129aの片側(右側)の正面に配置され冷蔵室102内の片側(右側)から冷気が吸い込まれて、冷蔵室戻りダクト137により蒸発器120の片側(右側)を通過して蒸発器120の下部より帰還する流れとなっている。
 なお、ここで蒸発器120の片側のみに冷蔵室戻りダクト137を配置する理由は、両側に配置すると蒸発器120の幅寸法を圧迫し、所望の冷却能力の設計自由度が小さくなることと、両側戻りダクト構成とすることによる構造の複雑さ並びに付随するコストアップに起因する。しかしながら、かといって冷蔵室戻りダクトを蒸発器120の前後いずれかに設ける場合は蒸発器120の厚みに冷蔵室戻りダクトの厚みが加わり庫内側の有効スペースを圧迫するか、蒸発器後方の断熱材の厚みを侵害して冷却効率を低下させるかのデメリットにつながり得策ではない。
 そして、上述の吐出口側のチャンバー空間302はダクト129aの両側に形成されているが、このチャンバー空間302は冷蔵室102の下方にまで延長されている。
 このような構成にあって、吐出口130a,130b,130e,130fから吐出された冷気はチャンバー空間302に吐出され、食品に冷気があたる前に、冷気温度を庫内空気と混合してなまらすと共に、吐出流速を低減する。これにより、局所的に食品の温度を下げることがなく凍結防止を行い、同時にチャンバー空間302を設けることでダクト129aの幅が縮小され、吐出口130a,130b,130e,130fの冷蔵室102内における幅方向の配置位置が庫内の中央方向に寄せられるので、冷蔵室102内の吐出温度分布がより均一になるという効果がある。
 そして、このように冷蔵室102の中央方向寄りから吐出された冷気は、最終的に冷蔵室102内下部の吸込口131aに向けて流通しようとするが、吸込口131aがダクト129aの片側(右側)正面にのみ設けられている。この関係上、吸込口131aが存在する側と逆側(左側)のダクト129aの側壁面に設けた吐出口130a,130bから吐出される冷気は、まず側方のチャンバー空間302に入る。次いで前方に方向転換して冷蔵室102内を流れ、ついで幅方向にクロスしながら対面側のチャンバー空間302に流入し、その後正面に開口した吸込口131aに流れて回収される。
 このとき、吐出口130a,130bはダクト129aの側壁面に設けられてチャンバー空間302を介して冷気が流出入する経路となるため、流通経路が長く、かつ流れ方向の方向転換も多い。よって、吐出口130a,130bから吸込口131aへの冷気流のショートサーキットが起こらず、冷蔵室102内の滞空時間が長く効率よく冷蔵室102内を均一に冷却しながら吸込口131aに回収されることになる。
 そして、冷蔵室102内の冷却を終えて吸込口131aに回収された冷気は、吸込口131aの下方に直結した上述の冷蔵室戻りダクト137によって合理的に片側から蒸発器120に戻される。
 以上のように、冷蔵室102の幅方向の中央よりに幅を縮めて両側にチャンバー空間302を形成するようにダクト129aを配置し、ダクト129aの両側壁面に吐出口130a,130b,130e,130fを配置する構成としている。一方、吐出口130a,130b,130e,130fよりは下部で、かつダクト129aの敢えて片側正面にのみ吸込口131aを配置する構成としている。これにより、両側吐出,両側吸込とする場合に発生するそれぞれの側面側領域での吐出から吸込へのショートサーキット成分を軽減して、冷蔵室102内の温度分布を均一化できるメリットがある。
 さらには、このような温度分布に関わる品質性能的メリットを冷蔵室戻りダクト137をも片側にのみ配置する組み合わせ構成で合理的に実現できる。例えば、両側吸込口仕様であっても冷蔵室102内で両側吸込口を繋ぐバイパスダクトを設けて片側冷蔵室戻りダクトを実現する構成も考えられるが、上述の冷蔵室内における温度分布に関わる品質性能的メリットを享受することはできずない。すなわち、冷蔵室戻りダクト137を片側のみに配置するという合理的なダクト構成と、温度分布に関わる品質性能的メリットと、が両立できない。
 したがって、冷蔵室102の幅に対して幅を狭くしてチャンバー空間302を両側に形成したダクト129aと、チャンバー空間302に対向してダクト129aの側壁面の上下に設けた吐出口130a,130b,130e,130fとダクト129aの正面に設けた吸込口131aであって、ダクト129aの両側に設けた吐出口130a,130b,130e,130fと片側にのみ設けた吸込口131aと、を設ける構成とすることによって、冷蔵室102内の温度分布に関わる品質性能的メリットが得られ効果を有するものである。
 そして、これに加えて冷蔵室戻りダクト137も吸込口131aの下方で同側方に片側にのみ配置することによって、一連の合理的なダクト構成で安価に上記メリットを含めた冷却効率の高い冷蔵庫を提供することができる。
 すなわち、本実施の形態では、冷蔵室102の幅方向の中央よりに幅を縮めて左側と右側にチャンバー空間302を形成するようにダクト129aを配置し、ダクト129aの左側壁面に吐出口130a,130bを、右側壁面に吐出口130e、130fを配置する構成とする。一方、吐出口130a,130b、130e、130fよりは下部で、かつダクト129aの敢えて片側正面にのみ吸込口131aを配置する構成とする。これにより、両側吐出,両側吸込とする場合に発生するそれぞれの側面側領域での吐出から吸込へのショートサーキット成分を軽減して、実用上において、冷蔵室102内の温度分布を均一化できるという、一定の効果が得られる。
 以上、実施の形態4に示したように、断熱箱体内に形成された冷蔵室の背面に冷蔵室ダクトが設けられ、冷蔵室ダクトは、左右両側面に通風口である吐出口と、吐出口より下方で片側正面のみに通風口である吸込口と、を備え、冷蔵室ダクト側面から冷蔵室内側面までにチャンバー空間を備えた冷蔵庫である。
 これにより、(1)吸込口とは反対側に設けた吐出口から出た冷気は、幅方向にクロスしながら対面側のチャンバー空間に流入し、その後、吸込口に流れて回収され、(2)特許文献1に記載の冷蔵庫と比較して、冷気の流通経路は長く、(3)特許文献1に記載の冷蔵庫と比較して、流れ方向の方向転換も多いため、冷蔵室内での冷気の滞空時間が長くなり、吐出口から吸込口への冷気のショートサーキットが起こりにくくなり、実用上、効率よく冷蔵室内の温度分布の均一化を図ることができる。
 なお、本実施の形態においても、実施の形態1に示した、チャンバー空間となるように、ダクト129aの横幅を設計することで、冷蔵室内の温度分布を均一化できる。
 (実施の形態5)
 図19は、本発明の実施の形態5における冷蔵庫の正面図である。図19に示すように、本発明の実施の形態5における冷蔵庫1100は、片開き式の扉を備える冷蔵庫1100であり、複数に区画された貯蔵室を断熱箱体1101内に備えている。貯蔵室は、その機能(冷却温度)によって、上から、冷蔵室1102、切換室1104、および冷凍室1103と称される。
 冷蔵室1102の前面開口部には、例えばウレタンのような発泡断熱材を発泡充填した回転式の断熱扉1107が設けられている。また、切換室1104、および冷凍室1103にも、それぞれ回転式の断熱扉1107が設けられ、これにより冷気の漏れがないように貯蔵室を密閉している。なお、必要に応じて切換室1104、および冷凍室1103の扉形態は引き出し式等の形態もとれる。
 図20は、本発明の実施の形態5における冷蔵庫の縦断面図である。具体的には、図20は、図19における20-20線で切断した部分の断面図である。断熱箱体1101は、主に金属鋼板で構成される外箱と、主に真空成型された樹脂で構成される内箱との間に、硬質発泡ウレタンなどの断熱材を充填して形成される箱本体である。この断熱箱体1101は、周囲から断熱箱体1101内部への熱移動を抑制し断熱している。
 冷蔵室1102は、冷蔵保存のため、凍らない程度の低い温度に維持される貯蔵室である。具体的な温度の下限としては、通常1~5℃に設定される。特に生鮮品の保鮮性を向上させるために温度設定を0~1℃としている場合もある。
 切換室1104は、庫内の温度が変更可能な貯蔵室である。冷蔵庫1100に取り付けられた操作盤により、用途に応じて冷蔵温度帯から冷凍温度帯まで切り換えることができるようになっている。例えば、-10~5℃に設定可能である。冷蔵,チルド,氷温,パーシャルフリージング,などのほか、-6℃近辺の弱冷凍温度や-10℃近辺の肉などの熟成冷凍やアイスクリームの保存に適した温度帯などに選択設定できる。
 冷凍室1103は、冷凍温度帯に設定される貯蔵室である。具体的には、冷凍保存のため、通常は-22~-18℃に設定されるが、冷凍保存状態の向上のため、例えば-30℃や-25℃などの低温に設定されることもある。
 断熱箱体1101の最下部の貯蔵室後方領域は、凹部1113が形成されている。この凹部1113には、圧縮機1114、水分除去を行うドライヤ(図示せず)等、冷凍サイクルを形成する高圧側の構成部品が主に収納されている。すなわち、圧縮機1114が配設される凹部1113は、冷凍室1103内の最下部の後方領域に食い込んで形成されることになる。
 冷凍室1103の背面には、冷却室1115が設けられている。冷却室1115は、仕切り壁としての断熱性を有する第1の仕切り1116で冷凍室1103から仕切られている。
 第1の仕切り1116は、断熱箱体1101の発泡後、断熱箱体1101に組み付けられる部品である。そのため、通常断熱材としては発泡ポリスチレン等の発泡樹脂が断熱性の観点から使われる。なお、さらに断熱性能や剛性を向上させるために硬質発泡ウレタンを用いてもよく、また高断熱性の真空断熱材を挿入して仕切り構造のさらなる薄型化を図ってもよい。また、切換室1104の天面部である第三の仕切り1118と底面部の第四の仕切り1119は、断熱箱体1101と同じ発泡断熱材で一体成形されている。
 冷却室1115は、冷却手段の一部を構成するものであり、代表的なものとしてフィンアンドチューブ式の蒸発器1120を備えている。蒸発器1120の上部空間には冷却ファン1121が配置されている。冷却ファン1121は、蒸発器1120で冷却された冷気を送風し、各貯蔵室に強制的に冷気を対流させ、冷蔵庫1100内で冷気を循環させるものである。
 冷蔵庫1100の内部には、冷気が強制的に循環する循環経路が形成されている。具体的には、蒸発器1120で冷却された冷気は、冷却ファン1121により強制的に送風状態となり、各貯蔵室と断熱箱体1101との間に設けられるダクトを通って各室に運ばれ、各室を冷却し、吸込ダクトを通って蒸発器1120に戻される。なお、冷蔵室1102内に備えられた冷蔵室吐出用ダクト1129aの吐出口付近には除菌装置1300が設けられている。
 また、冷蔵室1102は庫内に食品等を収納する食品収納棚1201が複数設けられ、最下段にはスライドケース1202が備えられ冷蔵室1102の棚部よりも若干低めの温度設定によるフレッシュケースが設けられている。さらに扉側にも複数の扉棚1203が備えられており、食品収納棚1201と扉棚1203は使用者の使い勝手に応じて、取付位置を差換えて変更することが可能となっている。これにより、上下間隔を調節して食品が入る高さを変更することができ、多様な収納性を向上させることができる。
 図21は、本発明の実施の形態5における冷蔵庫のダクト構成を表す図である。
 図21に示すように、冷蔵庫1100には、比較的高温の冷気が循環する冷蔵室1102循環経路と、比較的低温の冷気が循環する冷凍室1103循環経路と、切換室1104循環経路と、が存在する。このような冷気循環経路はダクトによって形成される。
 以下、冷蔵室1102循環経路について詳しく説明する。蒸発器1120で冷却された冷気は、冷却ファン1121により、冷蔵室吐出用ダクト1129aを通して冷蔵室1102に送風される。ただし、蒸発器1120で冷却される冷気は、冷凍室1103の冷凍温度に十分対応できる温度にまで冷却されている。したがって、比較的低温の冷気状態で冷蔵室1102に送風され続けると冷蔵室1102が低温になり過ぎる。
 そこで、冷蔵室1102を含む冷気の循環経路には、冷気の挿通を制御することのできるツインダンパー1128が設けられている。蒸発器1120で冷却された冷気は、ツインダンパー1128により挿通(冷気の流通のオン・オフ)が制御されており、冷蔵室1102経路を常に循環しているわけではない。また、冷蔵庫1100全体が十分に冷えているときは、冷却ファン1121の回転が停止し、冷気の循環も停止する。この際、冷却サイクル、つまり圧縮機1114等も停止する。
 蒸発器1120で冷却された冷気は、上述した制御に従い冷蔵室吐出用ダクト1129aを下方から上方に向けて通過し、冷蔵室1102上部で開口する通風口1130a,1130b,1130c,1130d,1130e,1130fから吐き出される。冷蔵室1102を通過した冷気は、冷蔵室1102下部で開口する吸込口1131aに吸い込まれる。吸込口1131aに吸い込まれた冷気は、排出口1131bから冷蔵室戻りダクト1137に排出され、この冷蔵室戻りダクト1137を経由して、蒸発器1120に戻るようになっている。
 以上が冷蔵室1102循環経路の説明である。なお、切換室1104でも、吐出冷気を断続制御するダンパーにより冷気の循環が制御され、各室の温度が制御される。すなわち、冷蔵室1102、切換室1104には、それぞれ庫内温度を制御する温度センサー(図示せず)が搭載されている。この温度センサーによって検知された温度に基づいて、冷蔵庫1100背面に取り付けられている制御基板1122(図20参照)がダンパーの開閉を制御する。つまり、温度センサーが予め設定された第1温度より高い場合はダンパーを開放させ、第2温度より低い場合はダンパーを閉鎖させて、庫内温度を所定の温度に調節する。
 ツインダンパー1128は、冷蔵室1102を断続制御するダンパーと切換室1104を断続制御するダンパーとを一体に備えている。さらに、冷蔵室1102の冷気を断続させる冷蔵室用フラップ1125と切換室1104の冷気を断続させる切換室用フラップ1126とを備えている。加えて、フラップを駆動させるモータ部1127も一体に備えている。ツインダンパー1128は、切換室1104の背面あたりに設置されている。
 ところで、従来の冷蔵庫では、図9に示したように、冷蔵室502から冷気を吸い込む吸込口531と、冷蔵室502に冷気を吐き出す吐出口530a~530fとがダクト529aの前面にあり、冷蔵室502内に置かれた食品や飲料が吐出口の近傍に置かれて凍ることがある。また、食品収納棚201は差換え可能であり、特に変更した棚位置によっては食品に直接冷気があたり、凍結しやすい問題がある。また、冷蔵室502の扉を開けたとき、吸込口531および吐出口530a~530fが見えることになるので、見栄えが悪いという問題がある。さらに食品収納棚が差換えられたときには、吐出穴の位置が棚間隔と不統一に配置され見栄えが悪くなる。
 そこで、本発明の実施の形態では、これらの問題を解決するために、以下の構成を採用している。図22および図23は、本発明の実施の形態5における冷蔵庫のダクトの概観図である。
 ここでいうダクトとは冷蔵室吐出用ダクト1129aであり、以下でも冷蔵室吐出用ダクト1129aを単に「ダクト1129a」ということにする。図22は、冷蔵室1102の扉を開けたときに見える面(前面)を示し、図23は、その裏面を示している。これらの図に示すように、ダクト1129aは発泡ポリスチレンなどで成型される断熱風路1300とポリプロピレンやポリスチレンやABSなどの樹脂で成型された前面パネル1301とを組合わせてある。基本的な風路は断熱風路1300で構成され、前面パネル1301は意匠性や強度から外観部に設けられている。また、前面パネル1301は断熱風路1300の横幅よりも大きい幅としてあり、側面部や通風口が正面から見えにくくすることで、意匠性を向上させている。
 ダクト1129aの側面には通風口として冷蔵室1102に冷気を吐き出す吐出口1130a~1130fと、冷蔵室1102から冷気を吸い込む吸込口1131aとが備えられている。吐出口1130a~1130fと吸込口1131aの形状は、穴でも切り欠きでもよく特に限定されるものではない。このとき、吐出口1130a~1130fは断熱風路1300で形状を作られており、前面パネル1301が直接吐出冷気に接触しない構成となっているので、前面パネル1301が冷されて局部的な結露や着霜が発生することを防止できる。
 ダクト1129a内における冷気循環経路は、以下のような構成となっている。具体的には、図23に示すように、ダクト1129aは、その中央部に上方に向けて吐出口1130a~1130fに通じる冷気循環経路と、この冷気循環経路の下方部に隣接して吸込口1131aに通じる冷気循環経路と、を備えている。
 ダクト1129aの横幅は、冷蔵室1102の横幅より狭くして、十分なチャンバー空間1302を確保しておくことが必要である。ダクト1129aの両側面に吐出口があるので、十分なチャンバー空間1302を確保するためには、ダクト1129aを冷蔵室1102庫内のほぼ中央に配置して、ダクト1129aの側面が庫内中央から側壁面(W1)の略中央(W2)に位置する位置にダクト1129aの横幅を設計する。従来のようにダクト1129aの横幅を冷蔵室1102の横幅とほぼ同程度にすると、吐出口1130a~1130fから十分な冷気を吐き出すことができず、また、吸込口1131aから十分な冷気を吸い込むことができないからである。さらに吸込口1131aに食品や異物や液体が落下混入しにくい構成とすることができる。
 さらに、吐出口1130a~1130fは庫内空間に対して低温の冷気が最初に吐き出される場所であり、冷蔵室1102内で最も低い空気温度となる上に、庫内の他の空気対流と比べて吐出流速が高くなっている。さらに、吐出口1130a~1130fがダクト1129a正面ではなくダクト側面に配置され、かつ十分なチャンバー空間1302を側面に設けている。これにより、食品に冷気があたる前に、冷気温度を庫内空気と混合してなまらすと共に、吐出流速を低減することで、局所的に食品の温度を下げることがなく凍結防止を行うものである。
 なお、十分なチャンバー空間1302を確保するためには、ダクト1129aを冷蔵室1102庫内のほぼ中央に配置して、ダクト1129aの側面は、庫内中央から側壁面(W1)の略中央(W2)に位置する位置にダクト1129aの横幅を設計することとしたが、好ましいのは、(1/4)×W1<ダクト1129aの側面の位置(W0)<(3/4)×W1の範囲である。
 具体的には、ダクト1129aの側面の位置(W0)>(3/4)×W1になると、チャンバー空間1302が小さくなり、局所的に低温化されることとなり、食品等が凍ってしまう不具合が起こる可能性が高い。
 一方、ダクト1129aの側面の位置(W0)<(1/4)×W1になると、ダクト内容積を確保するために、ダクト1129aの奥行き方向が大きくなり(すなわち、ダクトが庫内の手前側になる)、庫内容積を圧迫することとなる。また、チャンバー空間1302が大きくなり、吐出口から吐出された冷気の風速が低下し、後方から前方へ冷気がまわりにくくなり、冷蔵室内の温度分布が均一になりにくくなる。
 すなわち、本実施の形態で、好ましいチャンバー空間1302とは、ダクト1129aを冷蔵室1102庫内のほぼ中央に配置して、庫内中央から側壁面までの距離をW1とした場合に、ダクト1129aの側面の位置(W0)が、(1/4)×W1<ダクト1129aの側面の位置(W0)<(3/4)×W1、の範囲に入るように、ダクト1129aの横幅を設計して得られる空間のことである。これにより、庫内容積を圧迫することがなく、冷蔵室内の温度分布を均一にするとともに、食品に冷気があたる前に、冷気温度を庫内空気と混合してなまらすとともに、冷気の吐出流速を低減することで、局所的な低温化がなく食品等の凍結防止を行える。
 また、発明者らは、上記した、好ましいチャンバー空間である、(1/4)×W1<ダクト1129aの側面の位置(W0)<(3/4)×W1、を詳細に分析した結果、以下の知見を得た。
 具体的には、(1/2)×W1<ダクト1129aの側面の位置(W0)、にすることで、左側の吐出口から出る冷気と、右側の吐出口から出る冷気と、がラップする領域が大きくなり(すなわち、重なり合う領域が大きくなり)、非効率的な冷却となる。また、冷気がラップする領域である庫内中央部近傍で、局所的に冷却される可能性もある。
 これに対して、(1/2)×W1>ダクト1129aの側面の位置(W0)、にすることで、左側の吐出口から出る冷気と、右側の吐出口から出る冷気と、がラップする領域が小さくなり(すなわち、重なり合う領域が小さくなり)、効率な冷却となる。さらには、左側の吐出口から出る冷気と右側の吐出口から出る冷気とで、庫内の左右のそれぞれの壁面近傍にも冷気が届きやすくなり、庫内の左右方向で、庫内の温度分布をより均一にできる(すなわち、庫内の左右のそれぞれの壁面近傍と中央部近傍とで温度差が少なくなる)。また、冷気がラップする領域が小さくなり、庫内中央部で、局所的に冷却される可能性も低くなる。
 よって、より好ましいチャンバー空間1302とは、ダクト1129aを冷蔵室1102庫内のほぼ中央に配置して、庫内中央から側壁面までの距離をW1とした場合に、ダクト1129aの側面の位置(W0)が、(1/2)×W1<ダクト1129aの側面の位置(W0)<(3/4)×W1、の範囲に入るように、ダクト1129aの横幅を設計して得られる空間のことである。ダクト1129aの横幅の小型化の度合いは少なくなるものの、(1/2)×W1<ダクト1129aの側面の位置(W0)、にすることで、ダクト1129aの奥行き方向がより大きくなることがなく、庫内容積を圧迫することが少なくなる。このため、冷蔵庫の使い勝手を低下させることがなく、かつ、左側の吐出口から出る冷気と、右側の吐出口から出る冷気と、がラップする領域が小さくなり、効率的な冷却ができる。さらに、庫内の左右のそれぞれの壁面近傍にも冷気が届きやすくなり、冷蔵室内の温度分布を均一にするとともに、食品に冷気があたる前に、冷気温度を庫内空気と混合してなまらすことができる。さらに、冷気の吐出流速を低減することで、局所的な低温化がなく食品等の凍結防止を行える。
 このようなチャンバー空間1302を得られるようにダクト1129aの横幅を設計することで、冷蔵室ダクトの横幅が従来に比べて狭くなるので、材料使用量を削減して省資源に貢献し、部品流通に関る搬送エネルギーを削減することで省エネにも貢献し、結果的に製造コストを下げることが可能という効果もある。
 また、食品収納棚201の差換えや上下移動が吐出口の位置を気にせずに行える。
 既に説明した通り、冷却された冷気は、ダクト1129aを上方に向けて流れ、冷蔵室1102上部で開口する吐出口1130a~1130fから吐き出される。このように冷蔵室1102に吐き出された冷気は、冷蔵室1102下部で開口する吸込口1131aから吸い込まれて下方に向けて流れ、排出口1131bから冷蔵室戻りダクト1137に排出される。
 下方から上方に冷気が流れるので上方から下方に冷気を流す方法と比べて、十分に冷気を上部まで循環させるためには、大きな流速が必要となるので吐出流速が大きくなるために特にこの方法において有効な効果が得られる。本実施の形態のように、ダクト1129aの横幅を狭くして、上から見た場合のダクト1129aの断面積を小さくすることで、風量を一定とした場合、吐出流速が大きくなり、庫内を所定の温度で冷却するという点で、この方法は特に有効な効果が得られる。
 以上の内容においては、主として吐出口1130a~1130fの配置に関して言及してきたが、次に、吸込口1131aに関わる構成および作用,効果について説明する。
 まず、全体的な冷気の流れについてみると、上述のように冷蔵室より下部に設けられた蒸発器1120で冷却された冷気は、冷蔵室1102の領域に入ってダクト1129aを上方に向けて流れ、冷蔵室1102で開口する吐出口1130a~1130fから吐き出される。冷蔵室1102に吐き出された冷気は、冷蔵室1102の吐出口1130a~1130fよりは下部(本実施の形態では正面向かって右側の片側)に開口する吸込口1131aから吸い込まれる。そして、冷蔵室戻りダクト1137(本実施の形態では正面向かって右側の片側)を通じて下方に向けて蒸発器1120に帰還する。
 すなわち、本実施の形態では冷気吐出側の流れは、吐出口1130a,1130b,1130e,1130fがダクト1129aの両側の側壁面に配置され冷蔵室1102内の両側に冷気が吐出される。これに対して、冷気吸込側の流れは、吸込口1131aがダクト1129aの片側(右側)の側壁面に配置され冷蔵室1102内の片側(右側)から冷気が吸い込まれて、冷蔵室戻りダクト1137により蒸発器1120の片側(右側)を通過して蒸発器1120の下部より帰還する流れとなっている。
 なお、ここで蒸発器1120の片側のみに冷蔵室戻りダクト1137を配置する理由は、両側に配置すると蒸発器1120の幅寸法を圧迫し、所望の冷却能力の設計自由度が小さくなることと、両側戻りダクト構成とすることによる構造の複雑さ並びに付随するコストアップに起因する。しかしながら、かといって冷蔵室戻りダクトを蒸発器1120の前後いずれかに設ける場合は蒸発器1120の厚みに冷蔵室戻りダクトの厚みが加わり庫内側の有効スペースを圧迫するか、蒸発器後方の断熱材の厚みを侵害して冷却効率を低下させるかのデメリットにつながり得策ではない。
 そして、上述の吐出口側のチャンバー空間1302はダクト1129aの両側に形成されているが、このチャンバー空間1302は冷蔵室1102の下方にまで延長されて、このうちの片側(右側)のチャンバー空間1302は、側壁面に配置された吸込口1131aの開口部に対向して形成されている。
 このような構成にあって、吐出口1130a,1130b,1130e,1130fから吐出された冷気はチャンバー空間1302に吐出され、食品に冷気があたる前に、冷気温度を庫内空気と混合してなまらすと共に、吐出流速を低減する。これにより、局所的に食品の温度を下げることがなく凍結防止を行い、同時にチャンバー空間1302を設けることでダクト1129aの幅が縮小され、吐出口1130a,1130b,1130e,1130fの冷蔵室1102内における幅方向の配置位置が庫内の中央方向に寄せられる。よって、冷蔵室102内の吐出温度分布がより均一になるという効果がある。
 そして、このように冷蔵室1102の中央方向寄りから吐出された冷気は、最終的に冷蔵室1102内下部の吸込口1131aに向けて流通しようとするが、吸込口1131aがダクト1129aの片側(右側)側壁面にのみ設けられている。この関係上、吸込口1131aが存在する側と逆側(左側)のダクト1129aの側壁面に設けた吐出口1130a,1130bから吐出される冷気は、まず側方のチャンバー空間1302に入り、次いで前方に方向転換して冷蔵室1102内を流れ、ついで幅方向にクロスしながら対面側のチャンバー空間1302に流入し、その後側方に開口した吸込口1131aに流れて回収される。
 このとき、吐出口1130a,1130bも吸込口1131aもダクト1129aの側壁面に設けられてチャンバー空間1302を介して冷気が流出入する経路となるため、流通経路が長く、かつ流れ方向の方向転換も多い。従って、吐出口1130a,1130bから吸込口1131aへの冷気流のショートサーキットが起こらず、冷蔵室1102内の滞空時間が長く効率よく冷蔵室1102内を均一に冷却しながら吸込口1131aに回収されることになる。
 ここで、吸込口1131aを仮にダクト1129aの正面の一般的な形で開口したとすると、正面の吸込口であるために吐出された冷気の方向転換が少なく抵抗も少ないためダクト1129aの幅が縮小されて中央よりになった吐出口1130a,1130bからダクト正面の吸込口に対してショートサーキットが容易に発生し、冷蔵室1102内を幅方向にクロスしながら吸込口に流れることができず、冷蔵室1102内を均一に冷却することができない。
 そして、冷蔵室1102内の冷却を終えて吸込口1131aに回収された冷気は、吸込口1131aの下方に直結した上述の冷蔵室戻りダクト1137によって合理的に片側から蒸発器1120に戻される。
 以上のように、冷蔵室1102の幅方向の中央よりに幅を縮めて両側にチャンバー空間1302を形成するようにダクト1129aを配置し、ダクト1129aの両側壁面に吐出口1130a,1130b,1130e,1130fを配置する構成とする。一方、吐出口1130a,1130b,1130e,1130fよりは下部で、かつダクト1129aの敢えて片側壁面にのみ吸込口1131aを配置する構成とする。これにより、両側吐出,両側吸込とする場合に発生するそれぞれの側面側領域での吐出から吸込へのショートサーキット成分を軽減して、冷蔵室1102内の温度分布を均一化できるメリットがある。
 さらには、このような温度分布に関わる品質性能的メリットを冷蔵室戻りダクト1137をも片側にのみ配置する組み合わせ構成で合理的に実現できる。例えば、両側吸込口仕様であっても冷蔵室1102内で両側吸込口を繋ぐバイパスダクトを設けて片側冷蔵室戻りダクトを実現する構成も考えられるが、上述の冷蔵室内における温度分布に関わる品質性能的メリットを享受することはできない。すなわち、冷蔵室戻りダクト1137を片側のみに配置するという合理的なダクト構成と、温度分布に関わる品質性能的メリットと、が両立できない。
 したがって、冷蔵室1102の幅に対して幅を狭くしてチャンバー空間1302を両側に形成したダクト1129aと、チャンバー空間1302に対向してダクト1129aの側壁面の上下に設けた吐出口1130a,1130b,1130e,1130fと吸込口1131aであって、ダクト1129aの両側に設けた吐出口1130a,1130b,1130e,1130fと片側にのみ設けた吸込口1131aと、を設ける構成とすることによって、冷蔵室1102内の温度分布に関わる品質性能的メリットが得られ効果を有するものである。
 そして、これに加えて冷蔵室戻りダクト1137も吸込口1131aの下方で同側方に片側にのみ配置することによって、一連の合理的なダクト構成で安価に上記メリットを含めた冷却効率の高い冷蔵庫を提供することができる。なお、本実施の形態の食品落下手段の内容については、実施の形態1で説明した内容(図12から図15)で説明したと同様なので、説明を省略する。
 また、本実施の形態の冷蔵室の内部構造については、実施の形態1で説明した内容(図6)で説明したと同様なので、説明を省略する。図24は、本発明の実施の形態5における冷蔵庫が備えるダクトの説明図である。ここでは、冷蔵室1102の扉を開けたとき、正面に見える部分を表している。すなわち、断熱構造である冷蔵室1102の断熱箱体1101に沿ってダクト1129aが設けられ、このダクト1129aと断熱箱体1101との間に略Y字状の冷気循環経路が形成されている。冷蔵庫1102内の冷気は、図24中に矢印で示すように、冷蔵室1102下方で開口する吸込口1131aから吸い込まれて各貯蔵室を循環した後、冷蔵室1102上方で開口する吐出口1130a~1130fから吐き出される。
 ここで、吐出口1130a~1130fも吸込口1131aもダクト1129aの側面に備えられる。すなわち、ダクト1129aの前面には吐出口1130a~1130fも吸込口1131aも存在せず、また吐出口1130a~1130fの先にはチャンバー空間1302が設けられてある。よって、冷蔵室1102内の食品等が凍ってしまう不具合を回避することができると共に、冷蔵室の扉を開けたとき、吐出口と吸込口が前面に見えないので、冷蔵室1102の見栄えが良くなる。
 また、本実施の形態のダクトの固定方法については、実施の形態1で説明した内容(図8)で説明したと同様なので、説明を省略する。以上の説明から明らかなように、本発明の実施の形態における冷蔵庫によれば、ダクトの前面には冷気の吐出口も吸込口も存在せず、ダクト1129a側面と庫内側壁面との間にチャンバー空間1302を設けてある。よって、低温で流速の高い吐出冷気が直接冷蔵室内の食品等にあたることを防止し、食品が凍ってしまう不具合を回避することができると共に、冷蔵室の見栄えが良くなる。また、ダクト1129aの横幅が従来に比べて狭くなるので、省資源かつ省エネルギーに貢献し結果として製造コストが下がるという効果もある。
 また、上記の説明では、6つの吐出口1130a~1130fの配置位置については詳しく言及しなかったが、これらの配置位置は特に限定されるものではない。ただし、冷蔵室1102内の温度分布がなるべく均一になるように、6つの吐出口1130a~1130fを配置するのが好ましい。
 また、上記の説明では、6つの吐出口1130a~1130fを例示したが、吐出口の数は特に限定されるものではない。例えば、冷蔵庫の左側の吐出口の数は3つもとしてもよい。同様に、1つの吸込口131aを例示したが、吸込口の数も特に限定されるものではない。
 なお、冷凍室が最下段に配置されるレイアウトで説明を例示したが、冷凍室が中央に配置されるいわゆるミッドフリーザータイプのレイアウトでも同様の効果を得ることができる。また、冷凍室が最上部に配置されるトップフリーザータイプのレイアウトでも同様の効果を得ることができる。
 なお、本実施の形態では、第三の仕切り1118と第四の仕切り1119は、断熱箱体1101と同じ発泡断熱材で一体成形されているものとしたが、第1の仕切り1116のように、断熱箱体1101の発泡後、断熱箱体1101に組み付けられる別部品としてもよい。
 次に、冷蔵室1102の下部に設けられたフレッシュケースについて説明する。先に述べたように、冷蔵室1102は庫内に食品等を収納する食品収納棚1201が複数設けられ、最下段には、フレッシュケースであるスライドケース1202が備えられ冷蔵室1102の棚部よりも約1度温度が低い。なお、このフレッシュケースには、冷却風路から冷気を直接吐出するものである。具体的には、図22、図23に示すように、ダクト1129aには、風路部分の略中央部に配置された吐出口1140と、吸込口1131aの下方に配置された吸込口1141と、が設けられている。
 蒸発器1120で冷却された冷気は、冷蔵室吐出用ダクト1129aを下方から上方に向けて通過し、冷蔵室1102下部で開口する吐出口1140から吐き出される。スライドケース内を循環した冷気は、吸込口1141に吸い込まれる。吸込口1141に吸い込まれた冷気は、排出口1131bから冷蔵室戻りダクト1137に排出され、この冷蔵室戻りダクト1137を経由して、蒸発器1120に戻るようになっている。
 なお、このフレッシュケースには、例えば、肉魚などの生鮮品のほかに、ハムやウインナーなどの加工食品、ちくわやかまぼこなどの水産練製品、生麺、総菜等のチルド食品、ヨーグルトなど、多岐にわたるものが収納される。
 次に、本実施の形態が実施の形態1と異なる点を中心に説明する。先に述べた実施の形態1では、図2に示すように、圧縮機114が配設される凹部113は、冷蔵室102内の最上部の後方領域に食い込んで形成されることになる。そのため、実施の形態1では、図4に示すように、ダクト129aの上方部分は、階段状(L字状)になっている。
 しかしながら、本実施の形態では、図20に示すように、断熱箱体1101の最下部の貯蔵室後方領域に凹部1113が形成され、この凹部1113には、圧縮機1114、水分除去を行うドライヤ(図示せず)等、冷凍サイクルを形成する高圧側の構成部品が主に収納されている。すなわち、圧縮機1114が配設される凹部1113は、冷凍室1103内の最下部の後方領域に食い込んで形成されることになる。
 その結果、本実施の形態では、図22に示すように、ダクト1129aの上方部分は、平面形状(いわゆるフラットな形状)になっている。これにより、ダクトの上方部分が階段状(L字状)になっているものと比較して、ダクト1129aの下方から流れてきた冷気は、ダクト1129aの内部の通風抵抗がより低減され、上方に配置される吐出口1130c、1130dから吐出される冷気の風量を増大させることとなり、上方から流れる冷気によって冷却能力を確保できる。
 次に、除菌装置について説明する。図25は、冷蔵庫に取り付けた状態の除菌装置を示す縦断面図である。本実施の形態にかかる除菌装置1400は、冷気中に存在する菌や胞子などを強制的に除菌するとともに、冷気中に存在する有機物質を分解させて脱臭をも実現することができる装置である。除菌装置1400は、光触媒が担持される担持体1401と、光触媒を励起する励起光を担持体1401に照射する照射手段1402と、照射手段1402が取り付けられた基板1403と、透明な樹脂からなるカバー1404と、からなる。より具体的には、担持体1401と基板1403とはカバー1404に固定されている。すなわち、担持体1401と照射手段1402とは、カバー1404を介して一体化され、そのカバー1404が内箱に固定される。
 担持体1401は、冷気と多く接触できるような多孔質からなる樹脂製であり、光触媒が練り込まれた繊維が絡み合って形成されるフィルタ状のものである。また、基材である樹脂は光触媒が励起しやすい光が透過しうる樹脂が採用されている。
 光触媒は、特定の波長の光が照射されることによって、冷気中の菌を除菌したり、冷気中の臭気成分(有機物質など)を酸化や分解等をして脱臭することができる触媒であり、冷気中の成分を活性化(例えば、イオン化やラジカル化)し、これに基づいて除菌したり、脱臭したりすることができると考えられている物質である。具体的に光触媒としては、酸化銀や酸化チタンを例示することができる。
 酸化銀が除菌などの機能を発揮するために必要な光の波長は約400nm~580nm程度の可視光の青色領域である。また、酸化チタンが除菌などの機能を発揮するために必要な光の波長は380nmである。
 照射手段1402は、光触媒を励起することのできる波長を含む光を放射することのできる光源1410を備える装置である。光源1410は、上記波長の光を含む波長の光が所定量発光できるものであれば良く、紫外線ランプや通常の電球などを例示することができる。また、光触媒が酸化銀の場合、可視光領域の青色(470nm)が発光するLED(Light Emitting Diode)を採用することで、長寿命化、低コスト化を図ることが可能となる。また、光触媒が酸化チタンの場合、380nmのUV(Ultraviolet)光を発光するUV-LEDを採用することも可能である。
 本実施の形態の場合、光触媒として酸化銀を採用し、照射手段1402の光源1410としてのLEDを基板1403上に2個並んで配置したものを採用している。
 次に、除菌装置1400の機能の作用について説明する。冷却ファン1121から送風された臭気(有機物質等)や菌を含んだ冷気は、冷蔵室用フラップ1125と冷蔵室に冷気を吐出するためのダクトであるダクト1129aを通り、吐出口1130a、1130b、1130c、1130d、1130e、1130fより冷蔵室1102内に吐出される。この時、冷気の一部は分岐され除菌装置1400内部に導入される。導入された冷気は、担持体1401を舐めるように通過する。冷気中に含まれる臭気成分や菌は、担持体1401の表面に捕捉される。捕捉された臭気成分や菌は、酸化銀による酸化分解および、除菌作用にて、脱臭・除菌される。
 これによって、光を照射しない時にも酸化銀の作用にて臭気分解、除菌作用が発揮されるため、所望の脱臭・除菌効果を確保しつつ光の照射量や時間を減じることができ、照射手段の寿命の長期化や省エネ効果を高めることができる。さらに、光源1410から照射される光エネルギー(青色や紫外光)によって、これらの波長領域に吸収スペクトルを有する酸化銀が青色光の光エネルギーにて励起し、担持体1401表面の光触媒が励起される。光触媒が励起すると、空気中の水分よりOHラジカルが発生し、担持体1401に捕捉された臭気成分の酸化分解と菌の溶菌が行なわれる。
 以上により除菌装置1400を通過した冷気は、脱臭・除菌されたクリーンな冷気となって上方に設けた吐出口1130c、1130dを介し庫内に吹き出される。そして冷蔵室1102内部で、側面に設けた吐出口1130a、1130b、1130e、1130fから吐出された冷気と混ざり、循環経路を循環する。
 また、除菌装置1400によって生成されたOHラジカルは、冷気とともに冷蔵室1102にも吐出され、冷蔵室1102内においても脱臭・除菌を行う。すなわち、本実施の形態では、光触媒が担持される担持体1301と、光触媒を励起する励起光を担持体1401に照射する照射手段1402と、照射手段1402が取り付けられた基板1303と、透明な樹脂からなるカバー1404と、からなり、担持体1401と基板1403とはカバー1404に固定されている。すなわち、担持体1401と照射手段1402とは、カバー1404を介して一体化され、そのカバー1404が内箱に固定される。
 これにより、担持体1401と照射手段1402との距離が安定して得られ、より安定した除菌効果や脱臭効果が得られる。また、除菌装置は内箱に取り付けられるので、ダクト1129aを簡素化できる。
 また、本実施の形態では、図25に示すように、ダクト1129aの内部に照射手段1402を配置している。これにより、ダクト1129aの上方に配置された吐出口1130c、1130dから冷気が流れる(図25の矢印A)とともに、吐出口1130c、1130dから光が照射される。具体的には、照射手段1402の光は、直接光(図25の矢印M)と反射光(図25の矢印N)とが合わさり、冷蔵室1102内の上方奥側の照度を向上させることとなり、視認性を向上できる。特に、本実施の形態のような、圧縮機1114が配設される凹部1113が、冷凍室1103内の最下部の後方領域に食い込んで形成された冷蔵庫では、冷蔵室1102の上方奥側のスペースも食品を置くことができるため、照度の向上をさせる効果は大きい。
 すなわち、本実施の形態では、ダクトの側面に設けられた吐出口から吐出された冷気、及び、ダクトの上面に設けられた吐出口から吐出された冷気は、冷蔵室内の食品をつつみ込むように循環することとなり、冷蔵室内の温度ムラの発生を低減できる。
 さらには、本実施の形態のように、除菌装置1400を設けることにより、よりクリーンな冷気が、冷蔵室内の食品をつつみ込むように循環することとなり、冷蔵室内の衛生面を向上させることができる。
 なお、本実施の形態では、冷蔵室1102の直下の貯蔵室は、切換室1104としたが、冷蔵室1102と同等温度としてもよく、あるいは、若干高く温度設定(例えば2~7℃)された野菜室としてもよい。また、0~4℃に設定された貯蔵室としてもよい。
 また、図27および図28は、実施の形態5の別の形態を示したものである。従来の冷蔵庫においては、庫内を冷却する冷気は常温の空気よりも比重が大きいために庫内の下部に溜まりやすく、逆に庫内上部には滞留しにくいために通常庫内上部にいくほど温度が高い分布を示す。
 加えて、特に、図27に示すように、冷蔵庫の上方部であって手前側である領域Z、すなわち扉棚の上部周辺には庫内背面のダクト1129aからの距離が遠いために冷気が届きにくく、この部分で局部的に温度が上がり、冷蔵室内の温度分布が均一になりにくくなるという課題も有していた。
 これに対し、図27および図28に示すように、ダクト1129aの上面から冷蔵庫内上面までの距離をYとした場合に、(1/4)×W1>Yとなる関係を満たすように、ダクト1129aの上面を配置したものである。Yが上記の関係を満たす事により、ダクト1129aの上面から冷蔵庫内上面までの空間が冷気をなますためのチャンバー空間として機能をしないこととなる。
 これによって、ダクト1129aから出る冷気が、高い風速を維持したまま天井面に沿って流れ、領域Zに到達するようにしたものである。図27に示す矢印は上述した冷気の流れを示したものである。これによって、温度が下がりにくい領域Zでも適切に温度を下げることができ、冷蔵室内で温度分布を均一にすることができる。
 このように、ダクト1129aの側面においては、ダクト1129aの側面の位置(W0)を、(1/4)×W1<ダクト1129aの側面の位置(W0)<(3/4)×W1の範囲にするものとし、一方で、ダクト1129aの上面においては、ダクト1129aの上面の位置を、(1/4)×W1>Yを満たす範囲にすることで、ダクト1129aの側方ではチャンバー空間が存在し、ダクト1129aの上方ではチャンバー空間が存在しないようにしたものである。
 このような構成により、ダクト1129aの側方では冷気をなまして食品の凍結などを防ぐとともに、ダクト1129aの上方では、冷気を高い風速を維持したまま天井面に沿って流れ、温度が高くなりやすい領域Zには冷気を適切に供給することができる。以上により、冷蔵室の全体の庫内温度をより均一に保つ事ができ、品質性能的なメリットが得られるとともに、さらに、省エネ効果も併せて実現できるものである。
 また、上述したYを考慮したダクト1129aの配置に加えて、さらにダクト1129aの構成を平面形状にする事により、ダクト1129a内の上方へ流れる風の抵抗を低減することができる。上方へ流れる風の抵抗を低減することにより、ダクト1129a全体の風路抵抗が低減でき、ダクト1129aを流通する風量そのものが増加する。これにより、ダクト側方からの吐出風量に大きく影響を与えることなく上面から吐出する風量をより多くすることでき、或いは、(1/4)×W1>Yの範囲でY寸法を調整することにより風速をさらに高める配慮をして上方からの冷却をさらに強めることができる。
 これにより、冷蔵室内全体の品質性能的なメリットや省エネ効果をさらに高めることができる。なお、ここでいう平面形状とは図22や図23に示すダクト1129aのように直線状に風路部分を確保して、上面から吐出する風量を多くすることができる形状であればよい。
 また、冷蔵室1102から蒸発器1120への冷気を送る冷蔵室戻りダクト137を、吸込口1131aと同側方で吸込口1131aに通じて下方に向かって配置することにより、複雑な構成を取ることがなく蒸発器への冷気の経路を構成することができる。さらに、蒸発器1120から吐出口1130c、1130dまでの経路においても、冷気循環経路が複雑な構成を取ることがないので、冷気の風速を維持して、ダクト1129aの上面からの冷気についても十分な風速を確保することができる。
 (実施の形態6)
 図26は、本発明の実施の形態6における冷蔵庫のダクト構成を表す図である。本実施の形態では、冷蔵室1102の直下の貯蔵室は、冷蔵温度帯、すなわち冷蔵室1102と同等温度としてもよく、あるいは、若干高く温度設定(例えば2~7℃)された野菜室としてもよい。また、可能であれば0~4℃に設定された貯蔵室としてもよい。
 このようなレイアウト形態のように、冷凍温度帯を持たず主として冷蔵温度の室温のみで構成される貯蔵室1504とする場合は、冷気はダンパー1505を介して冷蔵室1102内に送り込まれ、冷蔵室ダクト1129aの片側側面の吸込口1131aから冷蔵庫1102内に吸い込まれる。吸い込まれた冷蔵室1102内の冷気は、実施の形態5のように冷蔵室戻りダクト1137を通じて下方に導かれるのでなく、冷蔵室1102の直下に隣接する冷蔵温度の貯蔵室1504内の上部で吐出口1506から直接室内に開放拡散される。例えば、室内下部において吐出口1506の対角方向に設けた吸込口1507より吸い込まれ、戻りダクト1508を通じて冷却器1120に帰還するように構成されている。
 この場合、冷蔵室1102内の戻り冷気は冷蔵室ダクトの片側側面の吸込口1131aから片方より吸い込まれるが、直下の貯蔵室1504が同じく冷蔵温度帯であるので、戻りダクトを用いることなく貯蔵室1504内ですぐさま開放されて拡散,循環し、冷却器1120に帰還することになる。ここで、貯蔵室1504はチャンバーのような機能を果たす。その結果、貯蔵室1504自体の室温分布のバラツキを抑えることができるメリットがあり、冷蔵庫上部の冷蔵室1102と中央部の例えば野菜室などの貯蔵室1504の冷蔵温度帯で連接された2室のレイアウトを合理的なダクト構成でバランスよく冷却できる冷蔵庫を提供することができる。
 なお、吐出口1506と吸込口1507の対角配置は必ずしも必須要件ではなく、貯蔵室内をチャンバー空間として冷気が拡散,循環して室温分布のバラツキを抑える効果が発揮できる関係が維持できれば、それ以外の配置関係でももちろん構わない。
 以上のように、本願は、断熱箱体と、断熱箱体内に形成された冷蔵室の背面に設けられた冷蔵室ダクトと、冷蔵室の正面からみて冷蔵室ダクト側面に設けられた側面吐出口と、冷蔵室ダクト上面に設けられた上面吐出口と、側面吐出口の下方で冷蔵室ダクト側面の片側にのみ設けられた吸込口と、を備え、冷蔵室ダクトの両側であって冷蔵室ダクト側面から冷蔵室内側面までの間にチャンバー空間を有し、冷蔵室ダクトの上方であって冷蔵室ダクト上面から冷蔵室内上面までの間にチャンバー空間を有しないものである。これにより、冷蔵室ダクトの前面には冷気の吐出口が存在しないので、冷蔵室内の食品等が凍ってしまう不具合を回避することができる。また、冷蔵室ダクト側面の通風口である側面吐出口から吐出された冷気はチャンバー空間で風速が低下されつつ、庫内の空気と混合されて循環するので、食品を局所的に温度低下させる可能性を低減できる。また、冷蔵室ダクトの前面には冷気の吐出口が存在しないので、冷蔵室の扉を開けたとき、吐出口が前面に見えないので、冷蔵室の見栄えがよくなる。さらに、ダクトの上方では、冷蔵室ダクト上面の通風口である上面吐出口から吐出された冷気は高い風速を維持したまま天井面に沿って流れ、温度が高くなりやすい領域には冷気を適切に供給することができる。以上から、冷蔵室の全体の庫内温度を均一に保つ事ができ、品質性能的なメリットが得られるとともに、さらに、省エネ効果も併せて実現できるものである。
 さらに、冷蔵室ダクトを冷蔵室内のほぼ中央に配置して、冷蔵室ダクトの中央から側面までの距離をW0とし、冷蔵室内中央から冷蔵室内側面までの距離をW1とし、冷蔵室ダクトの上面から冷蔵室内上面までの距離をYとした場合に、冷蔵室ダクトの側面の位置(W0)は、(1/4)×W1<W0<(3/4)×W1の範囲を満たすことでチャンバー空間を構成し、冷蔵室ダクトの上面の位置は、(1/4)×W1>Yの範囲を満たすことでチャンバー空間を構成しないものである。これにより、冷蔵室の全体の庫内温度を均一に保つ事ができ、品質性能的なメリットが得られるとともに、さらに、省エネ効果も併せて実現できるものである。
 さらに、冷蔵室ダクトを冷蔵室内のほぼ中央に配置して、冷蔵室ダクトの中央から側面までの距離をW0とし、冷蔵室内中央から冷蔵室内側面までの距離をW1とし、冷蔵室ダクトの上面から冷蔵室内上面までの距離をYとした場合に、冷蔵室ダクトの側面の位置(W0)は、(1/2)×W1<W0<(3/4)×W1の範囲を満たすことでチャンバー空間を構成し、冷蔵室ダクトの上面の位置は、(1/4)×W1>Yの範囲を満たすことでチャンバー空間を構成しないものである。これにより、風速をさらに高めることができ冷蔵室の全体の庫内温度をより均一に保つ事ができ、品質性能的なメリットが得られるとともに、さらに、省エネ効果も併せて実現できるものである。
 さらに、冷蔵室ダクトを平面形状としたものである。これにより、ダクト内の上方へ流れる風の抵抗を低減することができ、ダクトを流通する風量そのものが増加する。以上から、ダクト側方からの吐出風量に大きく影響を与えることなく上面から吐出する風量をより多くすることでき、冷蔵室内全体の品質性能的なメリットや省エネ効果をさらに高めることができる。
 さらに、冷蔵室ダクトは、断熱風路と断熱風路前面に取り付けられた前面パネルとで構成され、側面の通風口である吐出口は断熱風路で構成され、前面パネルに直接吐出冷気が接触しない位置に配置されたものである。これにより、前面パネルが冷されることによる局部的な結露や着霜が発生することを防止できる。
 さらに、断熱箱本体の中間位置に冷蔵室ダクト係合用の突出部を形成し、突出部が冷蔵室ダクトと係合するものである。これにより、断熱箱体の角部に突出部を形成する場合に比べて、スペース的に余裕ができて精度よく突出部を形成することが可能となり、また、突出部の形状の多様性が増す。加えて、冷蔵室ダクト係合用の突出部は断熱箱体に設けられているため、ダクトと係合するための別部品が不要であるという効果もある。
 さらに、突出部の外側に張り出した部位を冷蔵室ダクトが抱きかかえるように、突出部が冷蔵室ダクトと係合するものである。これにより、箱本体の中間位置に突出部を形成しているので、突出部の内側はもちろん、突出部の外側でもダクトと係合することが可能となる。
 さらに、冷蔵室ダクト内の冷気の流れをコントロールする位置に、シール性を確保する固定部材を配置したものである。これにより、シール性を確保することができると同時に、冷気をガイドする役割も果たすこととなり、冷気の循環をよくすることができる。
 さらに、冷蔵室の左側面から右側面に渡って架橋状に設置された食品収納棚を備え、食品収納棚の奥側に置かれた食品が奥側におされた際に、チャンバー空間へ食品の落下を防止する食品落下防止手段を設けたものである。これにより、食品収納棚の奥側の端面と断熱箱体の背部内面とで形成される隙間を狭めることとなり、食品収納棚の奥側に置かれた食品で、特に小さな食品等が奥側におされた際に、チャンバー空間へ食品が落下することを防止することができる。
 さらに、食品落下防止手段とは、食品収納棚の奥側の辺は直線状とするとともに、チャンバー空間には断熱箱体の背面部内面から前方に向けてリブを形成し、リブは食品収納棚の延長線上に配置したものである。これにより、食品収納棚の奥側の辺は直線状であるため、食品収納棚自体は複雑な加工をすることなく、食品収納棚の奥側の端面と断熱箱体の背部内面とで形成される隙間を、リブによって狭めることとなり、食品収納棚の奥側に置かれた食品で、特に小さな食品等が奥側におされた際に、チャンバー空間へ食品が落下することを防止することができる。
 さらに、食品落下防止手段とは、食品収納棚は冷蔵室ダクトの周囲を囲うような形状としたものである。これにより、断熱箱体の形状を加工することなく、食品収納棚の奥側の端面と断熱箱体の背部内面とで形成される隙間を、食品収納棚の形状を工夫することによって狭めることとなり、食品収納棚の奥側に置かれた食品で、特に小さな食品等が奥側におされた際に、チャンバー空間へ食品が落下することを防止することができる。
 さらに、冷蔵室ダクトは、その中央部に上方に向けて吐出口に通じる冷気循環経路と、この冷気循環経路の下方部に隣接して吸込口に通じる冷気循環経路と、を備えたものである。これにより、ダクトにより冷気循環経路を構成するような場合であっても、ダクトをよりコンパクトにすることができ、ダクトの側方でチャンバー空間を適切に確保することができる。
 さらに、冷蔵室より下方に配置され断熱箱体を冷却する蒸発器を備え、冷蔵室から蒸発器へ冷気を送る冷蔵室戻りダクトを、吸込口と同側方で吸込口に通じて下方に向かって配置したものである。これにより、複雑な構成を取ることがなく蒸発器への冷気の経路を構成することができる。さらに、蒸発器から吐出口までの経路においても、冷気循環経路が複雑な構成を取ることがないので、冷気の風速を維持して、ダクトの上面からの冷気についても十分な風速を確保することができる。
 以上のように、本発明にかかる冷蔵庫は、冷蔵室内の食品等が凍ってしまう不具合を回避することができるとともに冷蔵室の見栄えを良くすることが可能であり、家庭用および業務用など様々な種類および大きさの冷蔵庫等に適用できる。
100  冷蔵庫
101  断熱箱体
101a,101b  突出部
102  冷蔵室
103  冷凍室
104  野菜室
105  製氷室
106  切換室
107  断熱扉
108  断熱板
129a  ダクト(冷蔵室ダクト)
130a,130b,130c,130d,130e,130f  吐出口(通風口)
131a  吸込口(通風口)
131b  排出口
201,211,221  食品収納棚
211A  食品載置スペース
211B  ガイドリブ
221A  食品収納棚の奥側の辺
223  リブ
300  断熱風路
301  前面パネル
302  チャンバー空間
1100  冷蔵庫
1101  断熱箱体
1102  冷蔵室
1103  冷凍室
1104  切換室
1107  断熱扉
1129a  ダクト(冷蔵室ダクト)
1130a,1130b,1130c,1130d,1130e,1130f  吐出口(通風口)
1131a  吸込口(通風口)
1131b  排出口
1201  食品収納棚
1300  断熱風路
1301  前面パネル
1302  チャンバー空間
1400  除菌装置
1401  担持体
1402  照射手段
1403  基板
1404  カバー

Claims (13)

  1. 断熱箱体と、前記断熱箱体内に形成された冷蔵室の背面に設けられた冷蔵室ダクトと、前記冷蔵室の正面からみて前記冷蔵室ダクト側面に設けられた側面吐出口と、前記冷蔵室ダクト上面に設けられた上面吐出口と、前記側面吐出口の下方で前記冷蔵室ダクト側面の片側にのみ設けられた吸込口と、を備え、前記冷蔵室ダクトの両側であって前記冷蔵室ダクト側面から前記冷蔵室内側面までの間にチャンバー空間を有し、前記冷蔵室ダクトの上方であって前記冷蔵室ダクト上面から前記冷蔵室内上面までの間にチャンバー空間を有しないことを特徴とする冷蔵庫。
  2. 前記冷蔵室ダクトを前記冷蔵室内のほぼ中央に配置して、
    前記冷蔵室ダクトの中央から側面までの距離をW0とし、
    前記冷蔵室内中央から前記冷蔵室内側面までの距離をW1とし、
    前記冷蔵室ダクトの上面から冷蔵室内上面までの距離をYとした場合に、
    前記冷蔵室ダクトの側面の位置は、
    (1/4)×W1<W0<(3/4)×W1
    の範囲を満たすことで前記チャンバー空間を構成し、
    前記冷蔵室ダクトの上面の位置は、
    (1/4)×W1>Y
    の範囲を満たすことで前記チャンバー空間を構成しない、
    ことを特徴とする請求項1に記載の冷蔵庫。
  3. 前記冷蔵室ダクトを前記冷蔵室内のほぼ中央に配置して、
    前記冷蔵室ダクトの中央から側面までの距離をW0とし、
    前記冷蔵室内中央から前記冷蔵室内側面までの距離をW1とし、
    前記冷蔵室ダクトの上面から冷蔵室内上面までの距離をYとした場合に、
    前記冷蔵室ダクトの側面の位置は、
    (1/2)×W1<W0<(3/4)×W1
    の範囲を満たすことで前記チャンバー空間を構成し、
    前記冷蔵室ダクトの上面の位置は、
    (1/4)×W1>Y
    の範囲を満たすことで前記チャンバー空間を構成しない、
    ことを特徴とする請求項1に記載の冷蔵庫。
  4. 前記冷蔵室ダクトは、平面形状であることを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。
  5. 前記冷蔵室ダクトは、断熱風路と前記断熱風路前面に取り付けられた前面パネルとで構成され、側面の通風口である吐出口は前記断熱風路で構成され、前記前面パネルに直接吐出冷気が接触しない位置に配置された請求項1に記載の冷蔵庫。
  6. 前記断熱箱本体の中間位置に前記冷蔵室ダクト係合用の突出部を形成し、前記突出部が前記冷蔵室ダクトと係合する請求項1に記載の冷蔵庫。
  7. 前記突出部の外側に張り出した部位を前記冷蔵室ダクトが抱きかかえるように、前記突出部が前記冷蔵室ダクトと係合する請求項6に記載の冷蔵庫。
  8. 前記冷蔵室ダクト内の冷気の流れをコントロールする位置に、シール性を確保する固定部材を配置した請求項1に記載の冷蔵庫。
  9. 前記冷蔵室の左側面から右側面に渡って架橋状に設置された食品収納棚を備え、前記食品収納棚の奥側に置かれた食品が奥側におされた際に、前記チャンバー空間へ食品の落下を防止する食品落下防止手段を設けた請求項1に記載の冷蔵庫。
  10. 前記食品落下防止手段とは、前記食品収納棚の奥側の辺は直線状とするとともに、前記チャンバー空間には前記断熱箱体の背面部内面から前方に向けてリブを形成し、前記リブは前記食品収納棚の延長線上に配置したこととした請求項9に記載の冷蔵庫。
  11. 前記食品落下防止手段とは、前記食品収納棚は前記冷蔵室ダクトの周囲を囲うような形状としたこととした請求項9に記載の冷蔵庫。
  12. 前記冷蔵室ダクトは、その中央部に上方に向けて前記吐出口に通じる冷気循環経路と、この冷気循環経路の下方部に隣接して前記吸込口に通じる冷気循環経路と、を備えた請求項1に記載の冷蔵庫。
  13. 前記冷蔵室より下方に配置され前記断熱箱体を冷却する蒸発器を備え、前記冷蔵室から前記蒸発器へ冷気を送る冷蔵室戻りダクトを、前記吸込口と同側方で前記吸込口に通じて下方に向かって配置した請求項1に記載の冷蔵庫。
PCT/JP2009/004452 2008-09-12 2009-09-09 冷蔵庫 WO2010029728A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09812877.0A EP2317257A4 (en) 2008-09-12 2009-09-09 FRIDGE
CN200980135991.1A CN102149991B (zh) 2008-09-12 2009-09-09 冷藏库
JP2010528619A JPWO2010029728A1 (ja) 2008-09-12 2009-09-09 冷蔵庫

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008234709 2008-09-12
JP2008-234709 2008-09-12
JP2009022140 2009-02-03
JP2009-022140 2009-02-03
JP2009-180307 2009-08-03
JP2009180307 2009-08-03

Publications (1)

Publication Number Publication Date
WO2010029728A1 true WO2010029728A1 (ja) 2010-03-18

Family

ID=42004992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004452 WO2010029728A1 (ja) 2008-09-12 2009-09-09 冷蔵庫

Country Status (5)

Country Link
EP (1) EP2317257A4 (ja)
JP (1) JPWO2010029728A1 (ja)
CN (1) CN102149991B (ja)
TW (1) TWI411755B (ja)
WO (1) WO2010029728A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247439A (ja) * 2010-05-24 2011-12-08 Hitachi Appliances Inc 冷蔵庫
WO2011158489A1 (ja) * 2010-06-15 2011-12-22 パナソニック株式会社 冷蔵庫
WO2012001849A1 (ja) * 2010-07-02 2012-01-05 パナソニック株式会社 冷蔵庫
JP2013174382A (ja) * 2012-02-24 2013-09-05 Sharp Corp 冷蔵庫
CN103924790A (zh) * 2014-04-14 2014-07-16 襄汾县侯临农业科技有限公司 一种旧厂房改造成保鲜库的方法
JP2014134357A (ja) * 2013-01-11 2014-07-24 Toshiba Corp 冷蔵庫
JP2014238184A (ja) * 2013-06-06 2014-12-18 パナソニックIpマネジメント株式会社 冷蔵庫
WO2015011926A1 (ja) * 2013-07-25 2015-01-29 パナソニックIpマネジメント株式会社 冷蔵庫
JP2015055363A (ja) * 2013-09-10 2015-03-23 パナソニックIpマネジメント株式会社 冷蔵庫
JP2016011832A (ja) * 2013-06-07 2016-01-21 三菱電機株式会社 冷蔵庫
JP2017150811A (ja) * 2013-06-07 2017-08-31 三菱電機株式会社 冷蔵庫
CN107270630A (zh) * 2017-06-21 2017-10-20 澳柯玛股份有限公司 一种保鲜装置及具有该装置的风冷冰箱

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861033B2 (ja) * 2011-09-26 2016-02-16 パナソニックIpマネジメント株式会社 冷蔵庫
JP6081872B2 (ja) * 2013-06-21 2017-02-15 アクア株式会社 冷蔵庫
DE102013213378A1 (de) * 2013-07-09 2015-01-15 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit einem Luftkanal
CN105509400A (zh) * 2015-12-29 2016-04-20 海信(山东)冰箱有限公司 一种单系统风冷冰箱
CN113758106B (zh) * 2016-10-14 2023-04-18 夏普株式会社 冰箱
DE102016220973A1 (de) * 2016-10-25 2018-04-26 BSH Hausgeräte GmbH Haushaltsgerät mit einem Innenraum und einer Innenraumbeleuchtung
CN107036369A (zh) * 2017-06-19 2017-08-11 海信容声(广东)冰箱有限公司 一种冰箱送风系统及风冷冰箱
CH713416A2 (de) * 2018-06-06 2018-08-15 V Zug Ag Kühlgerät mit Befestigungsmechanismus für ein Bauteil im Nutzraum.
BR112022018734A2 (pt) * 2020-03-24 2022-11-01 Electrolux Appliances AB Aparelho de refrigeração
EP3885680B1 (en) * 2020-03-24 2024-03-13 Electrolux Appliances Aktiebolag A refrigeration appliance equipped with a fan assembly and a method for manufacturing said appliance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148690U (ja) * 1981-03-13 1982-09-18
JPH06213550A (ja) 1993-01-18 1994-08-02 Hitachi Ltd 冷凍冷蔵庫
JPH10103844A (ja) 1996-09-30 1998-04-24 Sanyo Electric Co Ltd 冷蔵室用ダクト
JP2001108347A (ja) * 1999-10-06 2001-04-20 Sharp Corp 冷蔵庫

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111897U (ja) * 1982-01-27 1983-07-30 株式会社日立製作所 野菜室付冷凍冷蔵庫
JPH0792319B2 (ja) * 1989-04-22 1995-10-09 三菱電機株式会社 冷蔵庫の仕切板取付装置
JPH07117335B2 (ja) * 1990-04-16 1995-12-18 三菱電機株式会社 冷蔵庫
DE202005009581U1 (de) * 2005-06-18 2005-10-13 Geiger, Johann Vorrichtung zum Kühlen (für Behälter)
JP2008151409A (ja) * 2006-12-18 2008-07-03 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2008185243A (ja) * 2007-01-29 2008-08-14 Sharp Corp 冷蔵庫
KR101390448B1 (ko) * 2007-02-26 2014-04-29 삼성전자주식회사 냉장고

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148690U (ja) * 1981-03-13 1982-09-18
JPH06213550A (ja) 1993-01-18 1994-08-02 Hitachi Ltd 冷凍冷蔵庫
JPH10103844A (ja) 1996-09-30 1998-04-24 Sanyo Electric Co Ltd 冷蔵室用ダクト
JP2001108347A (ja) * 1999-10-06 2001-04-20 Sharp Corp 冷蔵庫

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2317257A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247439A (ja) * 2010-05-24 2011-12-08 Hitachi Appliances Inc 冷蔵庫
WO2011158489A1 (ja) * 2010-06-15 2011-12-22 パナソニック株式会社 冷蔵庫
WO2012001849A1 (ja) * 2010-07-02 2012-01-05 パナソニック株式会社 冷蔵庫
JP2012013352A (ja) * 2010-07-02 2012-01-19 Panasonic Corp 冷蔵庫
CN102959350A (zh) * 2010-07-02 2013-03-06 松下电器产业株式会社 冷藏库
JP2013174382A (ja) * 2012-02-24 2013-09-05 Sharp Corp 冷蔵庫
JP2014134357A (ja) * 2013-01-11 2014-07-24 Toshiba Corp 冷蔵庫
JP2014238184A (ja) * 2013-06-06 2014-12-18 パナソニックIpマネジメント株式会社 冷蔵庫
JP2016011832A (ja) * 2013-06-07 2016-01-21 三菱電機株式会社 冷蔵庫
JP2017150811A (ja) * 2013-06-07 2017-08-31 三菱電機株式会社 冷蔵庫
JP2017194271A (ja) * 2013-06-07 2017-10-26 三菱電機株式会社 冷蔵庫
JP2018063110A (ja) * 2013-06-07 2018-04-19 三菱電機株式会社 冷蔵庫
JP2018169159A (ja) * 2013-06-07 2018-11-01 三菱電機株式会社 冷蔵庫
WO2015011926A1 (ja) * 2013-07-25 2015-01-29 パナソニックIpマネジメント株式会社 冷蔵庫
JP2015055363A (ja) * 2013-09-10 2015-03-23 パナソニックIpマネジメント株式会社 冷蔵庫
CN103924790A (zh) * 2014-04-14 2014-07-16 襄汾县侯临农业科技有限公司 一种旧厂房改造成保鲜库的方法
CN107270630A (zh) * 2017-06-21 2017-10-20 澳柯玛股份有限公司 一种保鲜装置及具有该装置的风冷冰箱

Also Published As

Publication number Publication date
CN102149991A (zh) 2011-08-10
TWI411755B (zh) 2013-10-11
EP2317257A1 (en) 2011-05-04
EP2317257A4 (en) 2015-01-21
CN102149991B (zh) 2013-07-31
JPWO2010029728A1 (ja) 2012-02-02
TW201020489A (en) 2010-06-01

Similar Documents

Publication Publication Date Title
WO2010029728A1 (ja) 冷蔵庫
EP2527770B1 (en) Refrigerator
US6658884B2 (en) Refrigerator
WO2013105185A1 (ja) 冷蔵庫
JP2014219130A (ja) 冷蔵庫
JP4835784B2 (ja) 冷蔵庫
JP4218742B1 (ja) 冷蔵庫
JP2008292151A (ja) 冷蔵庫
JP2009121780A (ja) 冷蔵庫
JP2008275241A (ja) 冷蔵庫
JP5990766B2 (ja) 冷蔵庫
US20220154995A1 (en) Refrigerator
JP5211574B2 (ja) 冷蔵庫
JP4285245B2 (ja) 冷蔵庫
JP2009063280A (ja) 冷蔵庫
JP5251229B2 (ja) 冷蔵庫
JP2009030918A (ja) 直冷式冷蔵庫および除菌装置
JP5261970B2 (ja) 冷蔵庫
JP5145761B2 (ja) 冷蔵庫
JP2008292146A (ja) 冷蔵庫
JP2008292152A (ja) 冷蔵庫
JP5251230B2 (ja) 冷蔵庫
JP2009030919A (ja) 直冷式冷蔵庫および除菌装置
JP2005009784A (ja) 冷却貯蔵庫
JP2024008137A (ja) 冷蔵庫

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135991.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812877

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528619

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009812877

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE