WO2010026674A1 - 基準電圧発生回路 - Google Patents

基準電圧発生回路 Download PDF

Info

Publication number
WO2010026674A1
WO2010026674A1 PCT/JP2009/000804 JP2009000804W WO2010026674A1 WO 2010026674 A1 WO2010026674 A1 WO 2010026674A1 JP 2009000804 W JP2009000804 W JP 2009000804W WO 2010026674 A1 WO2010026674 A1 WO 2010026674A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage
circuit
startup
reference voltage
Prior art date
Application number
PCT/JP2009/000804
Other languages
English (en)
French (fr)
Inventor
藤山博邦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN200980134719.1A priority Critical patent/CN102144196B/zh
Priority to JP2010527649A priority patent/JPWO2010026674A1/ja
Publication of WO2010026674A1 publication Critical patent/WO2010026674A1/ja
Priority to US13/040,918 priority patent/US8093881B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45136One differential amplifier in IC-block form being shown
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45568Indexing scheme relating to differential amplifiers the IC comprising one or more diodes as shunt to the input leads
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45674Indexing scheme relating to differential amplifiers the LC comprising one current mirror
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/901Starting circuits

Definitions

  • the present invention relates to a reference voltage generation circuit, and more particularly to a startup technique for a reference voltage generation circuit.
  • bandgap reference circuits are used to suppress fluctuations in circuit characteristics due to fluctuations in power supply voltage and temperature.
  • the band gap reference circuit generates a reference voltage that is less dependent on the power supply voltage and temperature.
  • FIG. 10 shows a configuration of a reference voltage generation circuit including a general band gap reference circuit 90.
  • the band gap reference circuit 90 the voltage at the connection point between the resistance element R1 and the diode element D1 (connection point voltage VD1) and the voltage at the connection point between the resistance elements R2 and R3 (connection point voltage VD2) are equal to each other.
  • the control current Ic is controlled.
  • the connection point voltages VD1 and VD2 are equal to each other, the reference voltage VA is stabilized.
  • the reference voltage VA can be expressed as the following (Expression 1) or (Expression 2).
  • ⁇ VD is the difference between the threshold voltage of the diode D1 (ie, the node voltage VD1) and the threshold voltage of the diode D2, “k” is the Boltzmann coefficient, and “T” is absolute Temperature, “q” is the charge amount of electrons, “Is1” is the saturation current of the diode D1, and “Is2” is the saturation current of the diode D2.
  • the threshold voltage (VD1) of the diode D1 has a negative temperature characteristic
  • the differential voltage ⁇ VD has a positive temperature characteristic.
  • the potential difference between both ends of the resistance element R3 is equal to the difference voltage ⁇ VD, and the current flowing through the resistance element R1 is “( ⁇ VD / R3) ⁇ (R2 / R1)”. That is, a voltage having a positive voltage characteristic is generated in the resistance element R1. Since the temperature characteristic of the threshold voltage (VD1) of the diode D1 is canceled by the voltage generated in the resistor element R1, the reference voltage VA does not depend on the temperature. Further, the above (Expression 1) and (Expression 2) do not have a term depending on the power supply voltage VDD. From this equation, it can be seen that the reference voltage VA does not depend on the power supply voltage VDD.
  • the bandgap reference circuit 90 has a stable operation state in which the reference voltage VA is stable at a desired voltage level Vx and a non-stable state in which the reference voltage VA is stable at a voltage level lower than the desired voltage level (eg, voltage level Vy). It has an operation stable state.
  • the bandgap reference circuit 90 When the bandgap reference circuit 90 is in an operation stable state, the above (Formula 1) and (Formula 2) are established, so that it is possible to generate a reference voltage with low dependency on the power supply voltage and temperature.
  • the band gap reference circuit 90 when the band gap reference circuit 90 is in a non-operation stable state, the reference voltage VA, the connection point voltages VD1, VD2, and the control voltage VGN are stabilized at a voltage level close to the ground voltage GND, and the control voltage VGP is the power supply voltage VDD. Therefore, the reference voltage VA cannot be held at the desired voltage level Vx.
  • the band gap reference circuit 90 is likely to be in a non-operation stable state when the operation is started (when the power supply voltage VDD is supplied).
  • the reference voltage generation circuit shown in FIG. 10 includes a current source CS for drawing current from the connection point between the NMOS transistor and the PMOS transistor to the ground node in addition to the band gap reference circuit 90.
  • a current source CS for drawing current from the connection point between the NMOS transistor and the PMOS transistor to the ground node in addition to the band gap reference circuit 90.
  • the control voltage VGP decreases and the control current Ic increases, and as a result, the reference voltage VA increases forcibly.
  • the band gap reference circuit 90 can be changed from the non-operation stable state to the operation stable state.
  • the reference voltage generation circuit shown in FIG. 12 includes a resistance element R for supplying current from the power supply node to the differential amplifier 900 (for example, Non-Patent Document 1) ).
  • the reference voltage VA is increased by forcibly changing a voltage (for example, the control voltage VGP) that is not the reference voltage VA. It took a long time to transition from the state to the stable operation state.
  • a voltage for example, the control voltage VGP
  • an object of the present invention is to provide a reference voltage generation circuit capable of shortening the transition time from the non-operation stable state to the operation stable state as compared with the prior art.
  • the reference voltage generation circuit is a circuit that generates a reference voltage, and includes a first rectifier element, the first rectifier element, and an output node for generating the reference voltage.
  • a first resistance element connected between the second rectification element, a second rectification element, and second and third resistance elements connected in series between the second rectification element and the output node.
  • a voltage generating circuit a first voltage generated at a connection point between the first rectifying element and the first resistance element, and a connection point between the second resistance element and the third resistance element.
  • a differential amplifier that outputs a control voltage corresponding to a difference from the second voltage; a control circuit that supplies a control current corresponding to the control voltage from the differential amplifier to the output node; and a response to supply of a power supply voltage Supply startup current to the output node.
  • Ri and a start-up circuit for transitioning from a first stable state in which the reference voltage stabilizes at a voltage level lower than the desired voltage level to the second stable state in which the reference voltage is stabilized by the desired voltage level.
  • the reference voltage is directly increased by the startup current, so that the operation is stable from the non-operational stable state as compared with the case where the voltage other than the reference voltage is directly increased in the reference voltage generation circuit.
  • the transition time to the state can be shortened. Thereby, the response characteristic of the reference voltage generation circuit with respect to power-on can be improved.
  • the startup circuit decreases the startup current in accordance with an increase in a reference voltage generated at the output node.
  • the power consumption of the startup circuit can be reduced.
  • the reference voltage generation circuit voltage generation circuit, differential amplifier, and control circuit
  • the startup circuit also supplies the startup current to the differential amplifier.
  • the differential amplifier can be reliably driven by supplying the startup current not only to the output node but also to the differential amplifier. Further, the increase rate of the control current can be increased, and the transition time from the non-operation stable state to the operation stable state can be further shortened.
  • the reference voltage generation circuit is a circuit that generates a reference voltage, and includes a first rectifier element, the first rectifier element, and an output node for generating the reference voltage.
  • a first resistance element connected between the second rectification element, a second rectification element, and second and third resistance elements connected in series between the second rectification element and the output node.
  • a voltage generating circuit a first voltage generated at a connection point between the first rectifying element and the first resistance element, and a connection point between the second resistance element and the third resistance element.
  • a differential amplifier that outputs a control voltage corresponding to a difference from the second voltage; a control circuit that supplies a control current corresponding to the control voltage from the differential amplifier to the output node; and a response to supply of a power supply voltage Supply startup current to the differential amplifier.
  • the reference voltage is shifted from a first stable state where the reference voltage is stable at a voltage level lower than a desired voltage level to a second stable state where the reference voltage is stable at the desired voltage level, and is generated at the output node.
  • a startup circuit for decreasing the startup current in response to an increase in the reference voltage.
  • the reference voltage generation circuit can reduce the power consumption of the startup circuit and can accurately generate the reference voltage.
  • the reference voltage generation circuit is a circuit that generates a reference voltage, and includes a first rectifier element, the first rectifier element, and an output node for generating the reference voltage.
  • a first resistance element connected between the second rectification element, a second rectification element, and second and third resistance elements connected in series between the second rectification element and the output node.
  • a voltage generating circuit a first voltage generated at a connection point between the first rectifying element and the first resistance element, and a connection point between the second resistance element and the third resistance element.
  • a differential amplifier that outputs a control voltage corresponding to a difference from the second voltage; a control circuit that supplies a control current corresponding to the control voltage from the differential amplifier to the output node; and a response to supply of a power supply voltage Supply startup current to the differential amplifier.
  • a start-up circuit for making a transition from a first stable state in which the reference voltage is stable at a voltage level lower than a desired voltage level to a second stable state in which the reference voltage is stable at the desired voltage level, and
  • the startup circuit includes a current source provided in a reference current path from a power supply node to which the power supply voltage is supplied to a ground node, a current corresponding to the reference current generated in the reference current path, and the startup current as the output node.
  • a current mirror circuit generated in an output current path for supplying to the differential amplifier In the reference voltage generation circuit, the amount of startup current can be arbitrarily changed by changing the mirror ratio of the current mirror circuit. Therefore, an increase in circuit area can be suppressed as compared with the conventional case, and the amount of start-up current can be easily set.
  • the transition time from the non-operation stable state to the operation stable state can be shortened, and the response characteristics of the reference voltage generation circuit with respect to power-on can be improved.
  • FIG. 1 is a diagram illustrating a configuration example of a reference voltage generation circuit according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a reference voltage generation circuit according to the second embodiment.
  • FIG. 3 is a diagram for explaining a modification of the startup circuit shown in FIG.
  • FIG. 4 is a diagram illustrating a configuration example of a reference voltage generation circuit according to the third embodiment.
  • FIG. 5 is a diagram for explaining a start-up current supply location in the differential amplifier shown in FIG.
  • FIG. 6 is a diagram for explaining another supply location of the startup current for the differential amplifier shown in FIG.
  • FIG. 7 is a diagram for explaining a modification of the reference voltage generating circuit shown in FIG. FIG.
  • FIG. 8 is a diagram illustrating a configuration example of the reference voltage generation circuit according to the fourth embodiment.
  • FIG. 9 is a diagram for explaining a modification of the reference voltage generating circuit shown in FIG.
  • FIG. 10 is a block diagram of a conventional reference voltage generating circuit.
  • FIG. 11 is a graph showing the relationship between the reference voltage and the connection point voltage.
  • FIG. 12 is a block diagram of a conventional reference voltage generating circuit.
  • FIG. 1 shows a configuration example of a reference voltage generation circuit according to Embodiment 1 of the present invention.
  • This reference voltage generation circuit generates a reference voltage VA having a low dependency on the power supply voltage VDD and temperature by controlling the control current Ic so that the node voltages VD1 and VD2 are equal to each other.
  • This circuit includes a voltage generation circuit 11, a differential amplifier 12, a control circuit 13, and a startup circuit 14.
  • the voltage generation circuit 11 includes a rectifier element D1 (here, a diode), a resistor element R1 connected between the output node N101 and the rectifier element D1, a rectifier element D2, an output node N101, and the rectifier element D2. And resistive elements R2 and R3 connected in series.
  • the differential amplifier 12 includes a voltage (connection point voltage VD1) generated at the connection point between the resistance element R1 and the rectifying element D1, and a voltage (connection point voltage VD2) generated at the connection point between the resistance element R2 and the resistance element R3.
  • a control voltage VGN corresponding to the difference is output.
  • the control circuit 13 supplies a control current Ic corresponding to the control voltage VGN to the output node N101.
  • the control circuit 13 includes an NMOS transistor MN1 to which the control voltage VGN from the differential amplifier 12 is supplied to the gate, and PMOS transistors MP1 and MP2 constituting a current mirror circuit.
  • the start-up circuit 14 supplies a start-up current Ist to the output node N101 in response to power-on (supply of the power supply voltage VDD) to the reference voltage generation circuit.
  • the start-up circuit 14 includes a current source 101 (here, a resistance element), a PMOS transistor 102 (input side transistor), and a PMOS transistor 103 (output side transistor).
  • Current source 101 and PMOS transistor 102 are provided in a current path (reference current path) from a power supply node supplied with power supply voltage VDD to a ground node supplied with ground voltage GND.
  • the PMOS transistor 103 is provided in an output current path (here, a current path from the power supply node to the output node N101) for supplying the startup current Ist to the output node N101.
  • the PMOS transistors 102 and 103 form a current mirror circuit, and generate a current corresponding to the reference current Ir generated in the reference current path as a startup current Ist in the output current path.
  • the reference voltage generation circuit has two stable states (operation stable state and non-operation stable state).
  • the reference voltage VA has low dependency on the power supply voltage VDD and temperature, and the reference voltage VA is stabilized at a desired voltage level.
  • the reference voltage generating circuit is in a non-operation stable state, the reference voltage VA, the connection point voltages VD1, VD2, and the control voltage VGN are stabilized at a voltage level close to the ground voltage GND, and the control voltage VGP is set to the power supply voltage VDD. Since it is stable at a near voltage level, the differential amplifier 12 is in a stopped state, and the transistors MN1, MP1, and MP2 are all in an off state. For this reason, the reference voltage VA is stabilized at a voltage level lower than the desired voltage level, and therefore the reference voltage VA cannot be set to the desired voltage level.
  • the startup circuit 14 When the power supply voltage VDD is supplied, the startup circuit 14 generates the reference current Ir in the reference current path in which the current source 101 and the PMOS transistor 102 are provided, and the startup current in the output current path in which the PMOS transistor 103 is provided. Ist occurs. In this way, the startup current Ist is supplied to the output node N101.
  • the startup current Ist flows through the current path from the output node N101 to the diode D1 and the current path from the output node N101 to the diode D2, and the reference voltage VA and the connection point voltages VD1 and VD2 are forced.
  • the differential amplifier 12 changes from the stopped state to the driving state, and the control voltage VGN increases.
  • the NMOS transistor MN1 is turned on, the control voltage VGP is decreased, and the control current Ic is increased.
  • the reference voltage VA is set to a desired voltage level (the above (Expression 1) or (Expression 2)).
  • the reference voltage VA when the reference voltage VA is directly increased by the startup current Ist, a voltage other than the reference voltage VA (for example, the control voltage VGP) is directly increased in the reference voltage generation circuit.
  • the transition time from the non-operation stable state to the operation stable state can be shortened.
  • the response characteristic of the reference voltage generation circuit with respect to power-on can be improved.
  • the current draw amount (or current supply amount) In order to reduce the resistance, it is necessary to increase the size of the resistance element. For this reason, it has been difficult to reduce the circuit area.
  • the current amount of the start-up current Ist can be arbitrarily changed by changing the mirror ratio of the current mirror circuit (PMOS transistors 102 and 103). Therefore, an increase in circuit area can be suppressed as compared with the conventional case, and the amount of startup current Ist can be easily set.
  • FIG. 2 shows an example of the configuration of a reference voltage generating circuit according to Embodiment 2 of the present invention.
  • This circuit includes a startup circuit 24 in place of the startup circuit 14 shown in FIG. Other configurations are the same as those in FIG.
  • the startup circuit 24 decreases the amount of the startup current Ist according to the increase in the voltage level of the reference voltage VA.
  • the startup circuit 24 includes a PMOS transistor 201 (regulation transistor) in addition to the current source 101 and the PMOS transistors 102 and 103 shown in FIG.
  • the PMOS transistor 201 is provided in the reference current path together with the current source 101 and the PMOS transistor 102, and is interposed between the current source 101 and the ground node. Further, the reference voltage VA generated at the output node N101 is supplied to the gate of the PMOS transistor 201.
  • the PMOS transistor 201 When the reference voltage generation circuit is in a non-operation stable state, the PMOS transistor 201 is on because the reference voltage VA is at a voltage level close to the ground voltage GND. Therefore, in the startup circuit 24, the reference current Ir is generated in the reference voltage path, and the startup current Ist is supplied to the output node N101. As a result, the reference voltage VA increases.
  • the reference voltage VA increases, the voltage at the connection point between the current source 101 and the source of the PMOS transistor 201 increases. As a result, the potential difference between both ends of the current source 101 is reduced, so that the reference current Ir is reduced. Further, the start-up current Ist also decreases as the reference current Ir decreases.
  • the power consumption of the startup circuit 24 can be reduced by reducing the startup current Ist in accordance with the increase of the reference voltage VA.
  • the reference voltage VA since the influence of the startup current Ist applied to the basic configuration of the reference voltage generation circuit (the voltage generation circuit 11, the differential amplifier 12, and the control circuit 13) can be suppressed, the reference voltage VA can be generated with high accuracy.
  • the PMOS transistor 201 may be provided in the output current path in which the PMOS transistor 103 is provided. In this case, the on-resistance of the PMOS transistor 201 increases as the reference voltage VA increases, and as a result, the startup current Ist decreases.
  • FIG. 4 shows an example of the configuration of a reference voltage generation circuit according to Embodiment 3 of the present invention.
  • the startup circuit 14 supplies the startup current Ist not only to the output node N101 but also to the differential amplifier 12.
  • Other configurations are the same as those in FIG.
  • FIG. 5 shows the internal configuration of the differential amplifier 12.
  • the differential amplifier 12 includes a current source transistor 111 for supplying an operating current Id, differential transistors 112n and 112p to which connection point voltages VD1 and VD2 are respectively supplied to gates, and a transistor 113 constituting a current mirror circuit. 114.
  • a control voltage VGP is supplied to the gate of the current source transistor 111.
  • the startup current Ist is supplied to the sources of the differential transistors 112n and 112p. That is, the startup current Ist is supplied as the operating current Id of the differential amplifier 12.
  • the control voltage VGP is at a voltage level close to the power supply voltage VDD, so the current source transistor 111 is in an off state. Therefore, the operating current Id is not supplied, and the differential amplifier 12 is in a stopped state.
  • the connection point voltages VD1 and VD2 are stable at a voltage level close to the ground voltage GND.
  • the startup current Ist when the startup current Ist is supplied to the differential amplifier 12, the startup current Ist flows through a current path in which the differential transistor 112n and the transistor 113 are provided and a current path in which the differential transistor 112p and the transistor 114 are provided.
  • the voltage at the output terminal NT control voltage VGN
  • the control voltage VGP decreases and the control current Ic increases as the control voltage VGN increases.
  • the differential amplifier 12 is forcibly shifted from the stopped state to the drive state. Thereby, the differential amplifier 12 can be driven reliably. Further, the increase rate of the control current Ic can be increased as compared with the case where the startup current Ist is supplied only to the output node N101, and the transition time from the non-operation stable state to the operation stable state can be further shortened.
  • the startup current Ist may be supplied to the output terminal NT of the differential amplifier 12 as shown in FIG. Also in this case, the voltage at the output terminal NT (control voltage VGN) can be forcibly increased. Further, the startup current Ist may be supplied to both the sources of the differential transistors 112n and 112p and the output terminal NT.
  • the startup circuit 14 may supply a startup current only to the differential amplifier 12. Also in this case, the current amount of the startup current Ist can be arbitrarily changed by changing the mirror ratio of the current mirror circuit (PMOS transistors 102 and 103). Therefore, an increase in circuit area can be suppressed as compared with the conventional case, and the amount of startup current Ist can be easily set.
  • start-up currents Ist1 and Ist2 may be separately supplied to the output node N101 and the differential amplifier 12, respectively.
  • the reference voltage generation circuit shown in FIG. 7 includes a startup circuit 14a instead of the startup circuit 14 shown in FIG. Other configurations are the same as those in FIG.
  • the startup circuit 14a includes a PMOS transistor 104 (second output side transistor) in addition to the current source 101 and the PMOS transistors 102 and 103 shown in FIG.
  • the PMOS transistor 103 (first output side transistor) is provided in a current path (first current path) from the power supply node to the output node N101, and the PMOS transistor 104 is current path from the power supply node to the differential amplifier 12.
  • the PMOS transistors 102, 103, and 104 constitute a current mirror circuit, and generate startup currents Ist1 and Ist2 corresponding to the reference current Ir generated in the reference current path in the first and second current paths, respectively.
  • FIG. 8 shows a configuration of a reference voltage generating circuit according to Embodiment 4 of the present invention.
  • the startup circuit 24 supplies the startup current Ist not only to the output node N101 but also to the differential amplifier 12.
  • Other configurations are the same as those in FIG.
  • the differential amplifier 12 can be reliably driven and the increase rate of the control current Ic can be increased.
  • the power consumption of the startup circuit 24 can be reduced and the reference voltage VA can be generated with high accuracy.
  • the startup circuit 24 may supply the startup current Ist only to the differential amplifier 12. Also in this case, the power consumption of the startup circuit 24 can be reduced, and the reference voltage VA can be generated with high accuracy.
  • startup currents Ist1 and Ist2 may be individually supplied to the output node N101 and the differential amplifier 12, respectively.
  • the reference voltage generating circuit shown in FIG. 9 includes a startup circuit 24a instead of the startup circuit 24 shown in FIG. Other configurations are the same as those in FIG.
  • the startup circuit 24a includes a PMOS transistor 104 (second output side transistor) in addition to the current source 101 and the PMOS transistors 102 and 103 shown in FIG. With this configuration, it is possible to supply an appropriate startup current to each of the output node N101 and the differential amplifier 12.
  • the rectifying elements D1 and D2 have been described as diodes. However, the rectifying elements D1 and D2 may be diode-connected transistors. Further, although the current source 101 has been described as a resistance element, the current source 101 may be another constant current circuit. In the differential amplifier 12, another constant voltage different from the control voltage VGP may be supplied to the gate of the current source transistor 111.
  • the reference voltage generation circuit of the present invention is useful as a bandgap reference circuit that generates a reference voltage that is less dependent on the power supply voltage and temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

 差動増幅器(12)は、抵抗素子(R1)と整流素子(D1)の接続点に発生する電圧(VD1)と抵抗素子(R2,R3)の接続点に発生する電圧(VD2)との差に対応する制御電圧(VGN)を出力する。制御回路(13)は、制御電圧(VGN)に対応する制御電流(Ic)を出力ノード(N101)に供給する。スタートアップ回路(14)は、電源電圧(VDD)の供給に応答してスタートアップ電流(Ist)を出力ノード(N101)に供給することにより、基準電圧(VA)が所望の電圧レベルよりも低い電圧レベルで安定する第1の安定状態から基準電圧(VA)が所望の電圧レベルで安定する第2の安定状態へ遷移させる。

Description

基準電圧発生回路
 この発明は、基準電圧発生回路に関し、さらに詳しくは、基準電圧発生回路のスタートアップ技術に関する。
 従来、電源電圧や温度の変動に起因する回路特性の変動を抑制するために、バンドギャップリファレンス回路が用いられている。バンドギャップリファレンス回路は、電源電圧および温度に対する依存性の低い基準電圧を発生させる。
 図10は、一般的なバンドギャップリファレンス回路90を備える基準電圧発生回路の構成を示す。バンドギャップリファレンス回路90では、抵抗素子R1とダイオード素子D1との接続点の電圧(接続点電圧VD1)と抵抗素子R2,R3の接続点の電圧(接続点電圧VD2)とが互いに等しくなるように制御電流Icが制御される。接続点電圧VD1,VD2が互いに等しくなると基準電圧VAが安定する。基準電圧VAは、次の(式1)または(式2)のように表現できる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 上記(式1)(式2)において、“ΔVD”はダイオードD1の閾値電圧(すなわち、接続点電圧VD1)とダイオードD2の閾値電圧との差、“k”はボルツマン係数、“T”は絶対温度、“q”は電子の電荷量、“Is1”はダイオードD1の飽和電流、“Is2”はダイオードD2の飽和電流である。ここで、ダイオードD1の閾値電圧(VD1)は、負の温度特性を有し、差電圧ΔVDは、正の温度特性を有する。また、差動増幅器のイマジナリーショートによって、抵抗素子R3の両端の電位差は差電圧ΔVDに等しく、抵抗素子R1を流れる電流は“(ΔVD/R3)・(R2/R1)”である。すなわち、正の電圧特性を有する電圧が抵抗素子R1に発生する。この抵抗素子R1に発生する電圧によってダイオードD1の閾値電圧(VD1)の温度特性が打ち消されるため、基準電圧VAは温度に依存しない。また、上記(式1)(式2)には電源電圧VDDに依存する項がない。この式から、基準電圧VAは電源電圧VDDにも依存しないことがわかる。
 次に、図11を参照して、基準電圧VAと接続点電圧VD1,VD2との関係について説明する。接続点電圧VD2は、基準電圧VAの増加に伴って増加するが、接続点電圧VD1は、基準電圧VAが所定の電圧レベルを超えると一定になる。そのため、接続点電圧VD1,VD2が互いに等しくなる箇所が2つ存在する。つまり、バンドギャップリファレンス回路90は、基準電圧VAが所望の電圧レベルVxで安定する動作安定状態と、基準電圧VAが所望の電圧レベルよりも低い電圧レベル(例えば、電圧レベルVy)で安定する非動作安定状態とを有している。バンドギャップリファレンス回路90が動作安定状態である場合、上記(式1)(式2)が成立するので、電源電圧および温度に対する依存性の低い基準電圧を生成できる。一方、バンドギャップリファレンス回路90が非動作安定状態である場合、基準電圧VA,接続点電圧VD1,VD2,および制御電圧VGNは接地電圧GNDに近い電圧レベルで安定し、制御電圧VGPは電源電圧VDDに近い電圧レベルで安定するため、基準電圧VAを所望の電圧レベルVxで保持できない。また、バンドギャップリファレンス回路90は、動作立ち上げ時(電源電圧VDDの供給時)において非動作安定状態になりやすい。
 そこで、上記問題を解決すべく、図10に示した基準電圧発生回路は、バンドギャップリファレンス回路90に加えて、NMOSトランジスタとPMOSトランジスタとの接続点から接地ノードに電流を引き込むための電流源CSを備えている(例えば、特許文献1など)。この電流源CSによって電流I91が引き込まれることにより、制御電圧VGPが減少して制御電流Icが増加し、その結果、基準電圧VAが強制的に増加する。これにより、バンドギャップリファレンス回路90を非動作安定状態から動作安定状態へ遷移させることができる。また、図12に示した基準電圧発生回路では、バンドギャップリファレンス回路に加えて、電源ノードから差動増幅器900に電流を供給するための抵抗素子Rを備えている(例えば、非特許文献1など)。この抵抗素子Rによって電流I92が供給されることにより、制御電圧VGNが増加するとともに制御電圧VGPが減少し、その結果、基準電圧VAを強制的に増加させることができる。
米国特許5,686,823号明細書(第5頁、第3図) "OPERATIONAL AMPLIFIER SPEED AND ACCURACY INPROVEMENT", pp.38-42, 2004
 しかしながら、従来の基準電圧発生回路では、基準電圧VAではない電圧(例えば、制御電圧VGPなど)を強制的に変動させることによって基準電圧VAを増加させているので、基準電圧発生回路が非動作安定状態から動作安定状態へ遷移するまでに要する時間が長かった。
 そこで、この発明は、従来よりも非動作安定状態から動作安定状態への遷移時間を短縮できる基準電圧発生回路を提供することを目的とする。
 この発明の1つの局面に従うと、基準電圧発生回路は、基準電圧を発生させる回路であって、第1の整流素子と、上記第1の整流素子と上記基準電圧を発生させるための出力ノードとの間に接続された第1の抵抗素子と、第2の整流素子と、上記第2の整流素子と上記出力ノードとの間に直列に接続された第2および第3の抵抗素子とを含む電圧発生回路と、上記第1の整流素子と上記第1の抵抗素子との接続点に発生する第1の電圧と上記第2の抵抗素子と上記第3の抵抗素子との接続点に発生する第2の電圧との差に応じた制御電圧を出力する差動増幅器と、上記差動増幅器からの制御電圧に対応する制御電流を上記出力ノードに供給する制御回路と、電源電圧の供給に応答してスタートアップ電流を上記出力ノードに供給することにより、上記基準電圧が所望の電圧レベルよりも低い電圧レベルで安定する第1の安定状態から上記基準電圧が上記所望の電圧レベルで安定する第2の安定状態へ遷移させるスタートアップ回路とを備える。上記基準電圧発生回路では、スタートアップ電流によって基準電圧を直接的に増加させることにより、基準電圧発生回路において基準電圧以外の電圧を直接的に増加させる場合と比較して、非動作安定状態から動作安定状態への遷移時間を短縮できる。これにより、電源投入に対する基準電圧発生回路の応答特性を向上させることができる。
 好ましくは、上記スタートアップ回路は、上記出力ノードに発生する基準電圧の増加に応じて上記スタートアップ電流を減少させる。このように構成することにより、スタートアップ回路の消費電力を低減できる。また、基準電圧発生回路の基本構成(電圧発生回路,差動増幅器,および制御回路)に加えられるスタートアップ電流の影響を抑制できるので、基準電圧を精度良く生成できる。
 好ましくは、上記スタートアップ回路は、上記スタートアップ電流を上記差動増幅器にも供給する。このように構成することにより、出力ノードだけでなく差動増幅器にもスタートアップ電流を供給することにより、差動増幅器を確実に駆動させることができる。また、制御電流の増加速度を高めることができ、非動作安定状態から動作安定状態への遷移時間をさらに短縮できる。
 この発明の別の局面に従うと、基準電圧発生回路は、基準電圧を発生させる回路であって、第1の整流素子と、上記第1の整流素子と上記基準電圧を発生させるための出力ノードとの間に接続された第1の抵抗素子と、第2の整流素子と、上記第2の整流素子と上記出力ノードとの間に直列に接続された第2および第3の抵抗素子とを含む電圧発生回路と、上記第1の整流素子と上記第1の抵抗素子との接続点に発生する第1の電圧と上記第2の抵抗素子と上記第3の抵抗素子との接続点に発生する第2の電圧との差に応じた制御電圧を出力する差動増幅器と、上記差動増幅器からの制御電圧に対応する制御電流を上記出力ノードに供給する制御回路と、電源電圧の供給に応答してスタートアップ電流を上記差動増幅器に供給することにより上記基準電圧が所望の電圧レベルよりも低い電圧レベルで安定する第1の安定状態から上記基準電圧が上記所望の電圧レベルで安定する第2の安定状態へ遷移させるとともに、上記出力ノードに発生する基準電圧の増加に応じて上記スタートアップ電流を減少させるスタートアップ回路とを備える。上記基準電圧発生回路では、スタートアップ回路の消費電力を低減できるとともに、基準電圧を精度良く生成できる。
 この発明の別の局面に従うと、基準電圧発生回路は、基準電圧を発生させる回路であって、第1の整流素子と、上記第1の整流素子と上記基準電圧を発生させるための出力ノードとの間に接続された第1の抵抗素子と、第2の整流素子と、上記第2の整流素子と上記出力ノードとの間に直列に接続された第2および第3の抵抗素子とを含む電圧発生回路と、上記第1の整流素子と上記第1の抵抗素子との接続点に発生する第1の電圧と上記第2の抵抗素子と上記第3の抵抗素子との接続点に発生する第2の電圧との差に応じた制御電圧を出力する差動増幅器と、上記差動増幅器からの制御電圧に対応する制御電流を上記出力ノードに供給する制御回路と、電源電圧の供給に応答してスタートアップ電流を上記差動増幅器に供給することにより、上記基準電圧が所望の電圧レベルよりも低い電圧レベルで安定する第1の安定状態から上記基準電圧が上記所望の電圧レベルで安定する第2の安定状態へ遷移させるスタートアップ回路とを備え、上記スタートアップ回路は、上記電源電圧が供給される電源ノードから接地ノードに至る基準電流経路に設けられた電流源と、上記基準電流経路に発生した基準電流に対応する電流を上記スタートアップ電流を上記出力ノードおよび上記差動増幅器に供給するための出力電流経路に発生させる電流ミラー回路とを含む。上記基準電圧発生回路では、電流ミラー回路のミラー比を変更することによって、スタートアップ電流の電流量を任意に変更できる。そのため、従来よりも回路面積の増大を抑制でき、スタートアップ電流の電流量を容易に設定できる。
 以上のように、非動作安定状態から動作安定状態への遷移時間を短縮でき、電源投入に対する基準電圧発生回路の応答特性を向上させることができる。
図1は、実施形態1による基準電圧発生回路の構成例を示す図である。 図2は、実施形態2による基準電圧発生回路の構成例を示す図である。 図3は、図2に示したスタートアップ回路の変形例について説明するための図である。 図4は、実施形態3による基準電圧発生回路の構成例を示す図である。 図5は、図4に示した差動増幅器におけるスタートアップ電流の供給箇所について説明するための図である。 図6は、図4に示した差動増幅器に対するスタートアップ電流の別の供給箇所について説明するための図である。 図7は、図4に示した基準電圧発生回路の変形例について説明するための図である。 図8は、実施形態4による基準電圧発生回路の構成例を示す図である。 図9は、図8に示した基準電圧発生回路の変形例について説明するための図である。 図10は、従来の基準電圧発生回路の構成図である。 図11は、基準電圧と接続点電圧との関係を示すグラフである。 図12は、従来の基準電圧発生回路の構成図である。
符号の説明
 11  電圧発生回路
 12  差動増幅器
 13  制御回路
 14,14a,24,24a  スタートアップ回路
 R1,R2,R3  抵抗素子
 D1,D2  整流素子
 MN1  NMOSトランジスタ
 MP1,MP2  PMOSトランジスタ
 101  電流源
 102,103,104  PMOSトランジスタ(電流ミラー回路)
 以下、この発明の実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。
 (実施形態1)
 図1は、この発明の実施形態1による基準電圧発生回路の構成例を示す。この基準電圧発生回路は、接続点電圧VD1,VD2が互いに等しくなるように制御電流Icを制御することにより、電源電圧VDDおよび温度に対する依存性の低い基準電圧VAを発生させる。この回路は、電圧発生回路11と、差動増幅器12と、制御回路13と、スタートアップ回路14とを備える。
 電圧発生回路11は、整流素子D1(ここでは、ダイオード)と、出力ノードN101と整流素子D1との間に接続された抵抗素子R1と、整流素子D2と、出力ノードN101と整流素子D2との間に直列に接続された抵抗素子R2,R3とを含む。差動増幅器12は、抵抗素子R1と整流素子D1との接続点に発生する電圧(接続点電圧VD1)と抵抗素子R2と抵抗素子R3との接続点に発生する電圧(接続点電圧VD2)との差に対応する制御電圧VGNを出力する。制御回路13は、制御電圧VGNに対応する制御電流Icを出力ノードN101に供給する。例えば、制御回路13は、差動増幅器12からの制御電圧VGNがゲートに供給されるNMOSトランジスタMN1と、電流ミラー回路を構成するPMOSトランジスタMP1,MP2とを含む。
 スタートアップ回路14は、基準電圧発生回路への電源投入(電源電圧VDDの供給)に応答してスタートアップ電流Istを出力ノードN101に供給する。例えば、スタートアップ回路14は、電流源101(ここでは、抵抗素子)と、PMOSトランジスタ102(入力側トランジスタ)と、PMOSトランジスタ103(出力側トランジスタ)とを含む。電流源101およびPMOSトランジスタ102は、電源電圧VDDが供給される電源ノードから接地電圧GNDが供給される接地ノードに至る電流経路(基準電流経路)に設けられる。PMOSトランジスタ103は、スタートアップ電流Istを出力ノードN101に供給するための出力電流経路(ここでは、電源ノードから出力ノードN101に至る電流経路)に設けられる。PMOSトランジスタ102,103は、電流ミラー回路を構成しており、基準電流経路に発生した基準電流Irに対応する電流をスタートアップ電流Istとして出力電流経路に発生させる。
  〔基準電圧発生回路の安定状態〕
 基準電圧発生回路は、2つの安定状態(動作安定状態,非動作安定状態)を有する。基準電圧発生回路が動作安定状態である場合、基準電圧VAは、電源電圧VDDおよび温度に対する依存性が低く、基準電圧VAは所望の電圧レベルで安定する。一方、基準電圧発生回路が非動作安定状態である場合、基準電圧VA,接続点電圧VD1,VD2,および制御電圧VGNは接地電圧GNDに近い電圧レベルで安定し、制御電圧VGPは電源電圧VDDに近い電圧レベルで安定しているので、差動増幅器12は停止状態であり、トランジスタMN1,MP1,MP2はいずれもオフ状態である。そのため、基準電圧VAは所望の電圧レベルよりも低い電圧レベルで安定してしまうので、基準電圧VAを所望の電圧レベルに設定できない。
  〔スタートアップ回路の動作〕
 次に、図1に示したスタートアップ回路14の動作について説明する。ここでは、電源投入後(電源電圧VDDが供給された後)に、基準電圧発生回路が非動作安定状態になるものとする。
 電源電圧VDDが供給されると、スタートアップ回路14では、電流源101およびPMOSトランジスタ102が設けられた基準電流経路に基準電流Irが発生して、PMOSトランジスタ103が設けられた出力電流経路にスタートアップ電流Istが発生する。このようにして、スタートアップ電流Istが出力ノードN101に供給される。
 次に、電圧発生回路11において、出力ノードN101からダイオードD1に至る電流経路および出力ノードN101からダイオードD2に至る電流経路にスタートアップ電流Istが流れ、基準電圧VAおよび接続点電圧VD1,VD2が強制的に増加する。接続点電圧VD1,VD2の増加により、差動増幅器12が停止状態から駆動状態に遷移して制御電圧VGNが上昇する。次に、NMOSトランジスタMN1がオン状態になって制御電圧VGPが減少して制御電流Icが増加する。
 このようにして基準電圧発生回路の非動作安定状態が崩壊し、その後、基準電圧発生回路は動作安定状態になり、基準電圧VAは、所望の電圧レベル(上記(式1)または(式2)で表現される電圧レベル)で安定する。
 以上のように、スタートアップ電流Istによって基準電圧VAを直接的に増加させることにより、基準電圧発生回路において基準電圧VA以外の電圧(例えば、制御電圧VGPなど)を直接的に増加させる場合と比較して、非動作安定状態から動作安定状態への遷移時間を短縮できる。これにより、電源投入に対する基準電圧発生回路の応答特性を向上させることができる。
 また、従来のように抵抗素子を介して電流を直接的に引き抜く場合(または、抵抗素子を介して電源ノードから電流を直接的に供給する場合)では、電流引き抜き量(または、電流供給量)を小さくするためには、抵抗素子のサイズを大きくする必要がある。そのため、回路面積を削減することが困難であった。一方、この実施形態では、電流ミラー回路(PMOSトランジスタ102,103)のミラー比を変更することによって、スタートアップ電流Istの電流量を任意に変更できる。そのため、従来よりも回路面積の増大を抑制でき、スタートアップ電流Istの電流量を容易に設定できる。
 (実施形態2)
 図2は、この発明の実施形態2による基準電圧発生回路の構成例を示す。この回路は、図1に示したスタートアップ回路14に代えて、スタートアップ回路24を備える。その他の構成は、図1と同様である。スタートアップ回路24は、スタートアップ電流Istを供給した後に、基準電圧VAの電圧レベルの増加に応じてスタートアップ電流Istの電流量を減少させる。スタートアップ回路24は、図1に示した電流源101およびPMOSトランジスタ102,103に加えて、PMOSトランジスタ201(調整トランジスタ)を備える。PMOSトランジスタ201は、電流源101およびPMOSトランジスタ102とともに基準電流経路に設けられ、電流源101と接地ノードとの間に介在する。また、PMOSトランジスタ201のゲートには、出力ノードN101に発生した基準電圧VAが供給される。
  〔スタートアップ回路による動作〕
 次に、図2に示したスタートアップ回路24による動作について説明する。なお、スタートアップ回路24の基本動作(スタートアップ電流Istの出力)は、図1に示したスタートアップ回路14と同様である。
 基準電圧発生回路が非動作安定状態である場合、基準電圧VAが接地電圧GNDに近い電圧レベルであるので、PMOSトランジスタ201はオン状態である。そのため、スタートアップ回路24では、基準電圧経路に基準電流Irが発生し、スタートアップ電流Istが出力ノードN101に供給される。これにより、基準電圧VAが増加する。
 次に、基準電圧VAの増加に伴って電流源101とPMOSトランジスタ201のソースとの接続点における電圧が増加する。これにより、電流源101の両端の電位差が小さくなるので、基準電流Irは小さくなる。また、基準電流Irの減少に伴ってスタートアップ電流Istも減少する。
 以上のように、基準電圧VAの増加に応じてスタートアップ電流Istを減少させることにより、スタートアップ回路24の消費電力を低減できる。また、基準電圧発生回路の基本構成(電圧発生回路11,差動増幅器12,および制御回路13)に加えられるスタートアップ電流Istの影響を抑制できるので、基準電圧VAを精度良く生成できる。
 (スタートアップ回路の変形例)
 なお、図3のように、スタートアップ回路24において、PMOSトランジスタ103が設けられた出力電流経路にPMOSトランジスタ201を設けても良い。この場合、基準電圧VAの増加に伴ってPMOSトランジスタ201のオン抵抗が増加し、その結果、スタートアップ電流Istが減少する。
 (実施形態3)
 図4は、この発明の実施形態3による基準電圧発生回路の構成例を示す。この回路では、スタートアップ回路14は、出力ノードN101だけでなく差動増幅器12にもスタートアップ電流Istを供給する。その他の構成は、図1と同様である。
 図5は、差動増幅器12の内部構成を示す。差動増幅器12は、動作電流Idを供給するための電流源トランジスタ111と、接続点電圧VD1,VD2がそれぞれゲートに供給される差動トランジスタ112n,112pと、電流ミラー回路を構成するトランジスタ113,114とを含む。電流源トランジスタ111のゲートには、制御電圧VGPが供給される。ここでは、スタートアップ電流Istは、差動トランジスタ112n,112pのソースに供給される。すなわち、スタートアップ電流Istは、差動増幅器12の動作電流Idとして供給される。
  〔差動増幅器による動作〕
 次に、図5に示した差動増幅器12による動作について説明する。
 基準電圧発生回路が非動作安定状態である場合、制御電圧VGPは電源電圧VDDに近い電圧レベルであるので、電流源トランジスタ111はオフ状態である。そのため、動作電流Idが供給されず、差動増幅器12は停止状態である。また、接続点電圧VD1,VD2は、接地電圧GNDに近い電圧レベルで安定している。
 ここで、スタートアップ電流Istが差動増幅器12に供給されると、差動トランジスタ112nおよびトランジスタ113が設けられた電流経路および差動トランジスタ112pおよびトランジスタ114が設けられた電流経路にスタートアップ電流Istが流れ、その結果、出力端子NTの電圧(制御電圧VGN)が強制的に増加する。これにより、制御回路13では、制御電圧VGNの増加に伴い制御電圧VGPが減少し、制御電流Icが増加する。
 以上のように、出力ノードN101だけでなく差動増幅器12にもスタートアップ電流Istを供給することにより、差動増幅器12を停止状態から駆動状態に強制的に遷移させる。これにより、差動増幅器12を確実に駆動させることができる。また、出力ノードN101のみにスタートアップ電流Istを供給する場合よりも、制御電流Icの増加速度を高めることができ、非動作安定状態から動作安定状態への遷移時間をさらに短縮できる。
 なお、図6のように、スタートアップ電流Istを差動増幅器12の出力端子NTに供給しても良い。この場合も、出力端子NTの電圧(制御電圧VGN)を強制的に増加させることが可能である。さらに、差動トランジスタ112n,112pのソースおよび出力端子NTの両方にスタートアップ電流Istを供給しても良い。
 また、スタートアップ回路14は、差動増幅器12のみにスタートアップ電流を供給しても良い。この場合も、電流ミラー回路(PMOSトランジスタ102,103)のミラー比を変更することによって、スタートアップ電流Istの電流量を任意に変更できる。そのため、従来よりも回路面積の増大を抑制でき、スタートアップ電流Istの電流量を容易に設定できる。
 (実施形態3の変形例1)
 さらに、図7のように、出力ノードN101および差動増幅器12に対してそれぞれ個別にスタートアップ電流Ist1,Ist2を供給しても良い。図7に示した基準電圧発生回路は、図4に示したスタートアップ回路14に代えて、スタートアップ回路14aを備える。その他の構成は、図4と同様である。スタートアップ回路14aは、図4に示した電流源101およびPMOSトランジスタ102,103に加えて、PMOSトランジスタ104(第2の出力側トランジスタ)を含む。PMOSトランジスタ103(第1の出力側トランジスタ)は、電源ノードから出力ノードN101に至る電流経路(第1の電流経路)に設けられ、PMOSトランジスタ104は、電源ノードから差動増幅器12に至る電流経路(第2の電流経路)に設けられる。PMOSトランジスタ102,103,104は、電流ミラー回路を構成しており、基準電流経路に発生した基準電流Irに対応するスタートアップ電流Ist1,Ist2を第1および第2の電流経路にそれぞれ発生させる。
 このように構成することにより、出力ノードN101および差動増幅器12のそれぞれに対して適切なスタートアップ電流を供給できる。また、電流ミラー回路(PMOSトランジスタ102,103,104)のミラー比を変更することにより、スタートアップ電流Ist1,Ist2のそれぞれの電流量を所望値に容易に設定できる。
 (実施形態4)
 図8は、この発明の実施形態4による基準電圧発生回路の構成を示す。この回路では、スタートアップ回路24は、出力ノードN101だけでなく差動増幅器12にもスタートアップ電流Istを供給する。その他の構成は、図2と同様である。このように、出力ノードN101だけでなく差動増幅器12にもスタートアップ電流Istを供給することにより、差動増幅器12を確実に駆動させることができるとともに、制御電流Icの増加速度を高めることができる。また、基準電圧VAの増加に応じてスタートアップ電流Istを減少させることにより、スタートアップ回路24の消費電力を低減できるとともに、基準電圧VAを精度良く生成できる。
 なお、スタートアップ回路24は、差動増幅器12のみにスタートアップ電流Istを供給しても良い。この場合も、スタートアップ回路24の消費電力を低減できるとともに、基準電圧VAを精度良く生成できる。
 (実施形態4の変形例)
 また、図9のように、出力ノードN101および差動増幅器12に対してそれぞれ個別にスタートアップ電流Ist1,Ist2を供給しても良い。図9に示した基準電圧発生回路は、図8に示したスタートアップ回路24に代えて、スタートアップ回路24aを備える。その他の構成は、図8と同様である。スタートアップ回路24aは、図8に示した電流源101およびPMOSトランジスタ102,103に加えて、PMOSトランジスタ104(第2の出力側トランジスタ)を含む。このように構成することにより、出力ノードN101および差動増幅器12のそれぞれに対して適切なスタートアップ電流を供給できる。
 (その他の実施形態)
 以上の実施形態において、整流素子D1,D2をダイオードとして説明したが、整流素子D1,D2は、ダイオード接続されたトランジスタであっても良い。また、電流源101を抵抗素子として説明したが、電流源101は、他の定電流回路であっても良い。また、差動増幅器12において、電流源トランジスタ111のゲートに制御電圧VGPとは異なる別の定電圧が供給されていても良い。
 以上のように、本発明の基準電圧発生回路は、電源電圧および温度に対する依存性の低い基準電圧を発生させるバンドギャップリファレンス回路などとして有用である。

Claims (13)

  1.  基準電圧を発生させる回路であって、
     第1の整流素子と、前記第1の整流素子と前記基準電圧を発生させるための出力ノードとの間に接続された第1の抵抗素子と、第2の整流素子と、前記第2の整流素子と前記出力ノードとの間に直列に接続された第2および第3の抵抗素子とを含む電圧発生回路と、
     前記第1の整流素子と前記第1の抵抗素子との接続点に発生する第1の電圧と前記第2の抵抗素子と前記第3の抵抗素子との接続点に発生する第2の電圧との差に応じた制御電圧を出力する差動増幅器と、
     前記差動増幅器からの制御電圧に対応する制御電流を前記出力ノードに供給する制御回路と、
     電源電圧の供給に応答してスタートアップ電流を前記出力ノードに供給することにより、前記基準電圧が所望の電圧レベルよりも低い電圧レベルで安定する第1の安定状態から前記基準電圧が前記所望の電圧レベルで安定する第2の安定状態へ遷移させるスタートアップ回路とを備える
    ことを特徴とする基準電圧発生回路。
  2.  請求項1において、
     前記スタートアップ回路は、前記出力ノードに発生する基準電圧の増加に応じて前記スタートアップ電流を減少させる
    ことを特徴とする基準電圧発生回路。
  3.  請求項2において、
     前記スタートアップ回路は、前記スタートアップ電流を前記差動増幅器にも供給する
    ことを特徴とする基準電圧発生回路。
  4.  請求項3において、
     前記スタートアップ回路は、
      前記電源電圧が供給される電源ノードから接地ノードに至る基準電流経路に設けられた電流源と、
      前記基準電流経路に発生した基準電流に対応する電流を前記スタートアップ電流を前記出力ノードおよび前記差動増幅器に供給するための出力電流経路に発生させる電流ミラー回路と、
      前記基準電流経路および前記出力電流経路のいずれか一方に設けられ、前記出力ノードに発生する基準電圧をゲートに受けて当該電流経路の電流量を調整する調整トランジスタとを含む
    ことを特徴とする基準電圧発生回路。
  5.  請求項4において、
     前記電流ミラー回路は、
      前記基準電流経路に設けられるとともに自己のゲートおよびドレインが互いに接続された入力側トランジスタと、
      前記出力電流経路に設けられるとともに自己のゲートが前記入力側トランジスタのゲートに接続された出力側トランジスタとを含む
    ことを特徴とする基準電圧発生回路。
  6.  請求項4において、
     前記出力電流経路は、
      前記電源ノードから前記出力ノードに至る第1の電流経路と、
      前記電源ノードから前記差動増幅器に至る第2の電流経路とを含み、
     前記電流ミラー回路は、
      前記基準電流経路に設けられるとともに自己のゲートおよびドレインが互いに接続された入力側トランジスタと、
      前記第1の電流経路に設けられるとともに自己のゲートが前記入力側トランジスタのゲートに接続された第1の出力側トランジスタと、
      前記第2の電流経路に設けられるとともに自己のゲートが前記入力側トランジスタのゲートに接続された第2の出力側トランジスタとを含む
    ことを特徴とする基準電圧発生回路。
  7.  請求項1において、
     前記スタートアップ回路は、前記スタートアップ電流を前記差動増幅器にも供給する
    ことを特徴とする基準電圧発生回路。
  8.  請求項7において、
     前記スタートアップ回路は、
      前記電源電圧が供給される電源ノードから接地ノードへ至る基準電流経路に設けられた電流源と、
      前記基準電流経路に発生した基準電流に対応する電流を前記スタートアップ電流を前記出力ノードおよび前記差動増幅器に供給するための出力電流経路に発生させる電流ミラー回路とを含む
    ことを特徴とする基準電圧発生回路。
  9.  請求項1において、
     前記スタートアップ回路は、
      前記電源電圧が供給される電源ノードから接地ノードへ至る基準電流経路に設けられた電流源と、
      前記基準電流経路に発生した基準電流に対応する電流を前記スタートアップ電流を前記出力ノードに供給するための出力電流経路に発生させる電流ミラー回路とを含む
    ことを特徴とする基準電圧発生回路。
  10.  請求項3または請求項7において、
     前記スタートアップ回路は、前記差動増幅器の動作電流として前記スタートアップ電流を前記差動増幅器に供給する
    ことを特徴とする基準電圧発生回路。
  11.  請求項3または請求項7において、
     前記スタートアップ回路は、前記差動増幅器の出力端子に前記スタートアップ電流を供給する
    ことを特徴とする基準電圧発生回路。
  12.  基準電圧を発生させる回路であって、
     第1の整流素子と、前記第1の整流素子と前記基準電圧を発生させるための出力ノードとの間に接続された第1の抵抗素子と、第2の整流素子と、前記第2の整流素子と前記出力ノードとの間に直列に接続された第2および第3の抵抗素子とを含む電圧発生回路と、
     前記第1の整流素子と前記第1の抵抗素子との接続点に発生する第1の電圧と前記第2の抵抗素子と前記第3の抵抗素子との接続点に発生する第2の電圧との差に応じた制御電圧を出力する差動増幅器と、
     前記差動増幅器からの制御電圧に対応する制御電流を前記出力ノードに供給する制御回路と、
     電源電圧の供給に応答してスタートアップ電流を前記差動増幅器に供給することにより前記基準電圧が所望の電圧レベルよりも低い電圧レベルで安定する第1の安定状態から前記基準電圧が前記所望の電圧レベルで安定する第2の安定状態へ遷移させるとともに、前記出力ノードに発生する基準電圧の増加に応じて前記スタートアップ電流を減少させるスタートアップ回路とを備える
    ことを特徴とする基準電圧発生回路。
  13.  基準電圧を発生させる回路であって、
     第1の整流素子と、前記第1の整流素子と前記基準電圧を発生させるための出力ノードとの間に接続された第1の抵抗素子と、第2の整流素子と、前記第2の整流素子と前記出力ノードとの間に直列に接続された第2および第3の抵抗素子とを含む電圧発生回路と、
     前記第1の整流素子と前記第1の抵抗素子との接続点に発生する第1の電圧と前記第2の抵抗素子と前記第3の抵抗素子との接続点に発生する第2の電圧との差に応じた制御電圧を出力する差動増幅器と、
     前記差動増幅器からの制御電圧に対応する制御電流を前記出力ノードに供給する制御回路と、
     電源電圧の供給に応答してスタートアップ電流を前記差動増幅器に供給することにより、前記基準電圧が所望の電圧レベルよりも低い電圧レベルで安定する第1の安定状態から前記基準電圧が前記所望の電圧レベルで安定する第2の安定状態へ遷移させるスタートアップ回路とを備え、
     前記スタートアップ回路は、
      前記電源電圧が供給される電源ノードから接地ノードに至る基準電流経路に設けられた電流源と、
      前記基準電流経路に発生した基準電流に対応する電流を前記スタートアップ電流を前記差動増幅器に供給するための出力電流経路に発生させる電流ミラー回路とを含む
    ことを特徴とする基準電圧発生回路。
PCT/JP2009/000804 2008-09-05 2009-02-24 基準電圧発生回路 WO2010026674A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980134719.1A CN102144196B (zh) 2008-09-05 2009-02-24 基准电压产生电路
JP2010527649A JPWO2010026674A1 (ja) 2008-09-05 2009-02-24 基準電圧発生回路
US13/040,918 US8093881B2 (en) 2008-09-05 2011-03-04 Reference voltage generation circuit with start-up circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008228466 2008-09-05
JP2008-228466 2008-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/040,918 Continuation US8093881B2 (en) 2008-09-05 2011-03-04 Reference voltage generation circuit with start-up circuit

Publications (1)

Publication Number Publication Date
WO2010026674A1 true WO2010026674A1 (ja) 2010-03-11

Family

ID=41796860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000804 WO2010026674A1 (ja) 2008-09-05 2009-02-24 基準電圧発生回路

Country Status (4)

Country Link
US (1) US8093881B2 (ja)
JP (1) JPWO2010026674A1 (ja)
CN (1) CN102144196B (ja)
WO (1) WO2010026674A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101789544B1 (ko) 2016-10-29 2017-10-26 주식회사 센소니아 스타트-업 기능이 향상되는 밴드갭 기준전압 발생회로

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101585958B1 (ko) * 2008-12-29 2016-01-18 주식회사 동부하이텍 기준전압 발생회로
CN102354250B (zh) * 2011-08-25 2013-08-14 西安电子科技大学 适应用于无源uhfrfid标签芯片的带隙基准电路
JP6045148B2 (ja) * 2011-12-15 2016-12-14 エスアイアイ・セミコンダクタ株式会社 基準電流発生回路および基準電圧発生回路
CN103677037B (zh) 2012-09-11 2016-04-13 意法半导体研发(上海)有限公司 用于生成带隙基准电压的电路和方法
CN103955250B (zh) * 2014-03-18 2016-04-06 尚睿微电子(上海)有限公司 一种具有高电源抑制比的带隙基准电路
EP2977849A1 (en) * 2014-07-24 2016-01-27 Dialog Semiconductor GmbH High-voltage to low-voltage low dropout regulator with self contained voltage reference
CN106155151A (zh) * 2015-03-31 2016-11-23 成都锐成芯微科技有限责任公司 一种启动电路
US9667134B2 (en) * 2015-09-15 2017-05-30 Texas Instruments Deutschland Gmbh Startup circuit for reference circuits
CN107425742B (zh) * 2017-08-02 2019-07-26 宁波大学 一种用于能量获取的整流电路
CN109765962B (zh) * 2019-01-17 2021-03-16 深圳能芯半导体有限公司 低功耗高psrr的带隙基准电路
CN112217571B (zh) * 2019-07-09 2022-02-22 博通集成电路(上海)股份有限公司 Cmos单管红外收发器
US20230100998A1 (en) * 2021-09-29 2023-03-30 Skyworks Solutions, Inc. Reference startup circuit for audio amplifiers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11338567A (ja) * 1998-05-27 1999-12-10 Matsushita Electric Ind Co Ltd 基準電圧発生回路
JP2006023920A (ja) * 2004-07-07 2006-01-26 Seiko Epson Corp 基準電圧発生回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400383B1 (ko) * 1996-03-07 2003-12-31 마츠시타 덴끼 산교 가부시키가이샤 기준 전압원 회로 및 전압 피드백 회로
US5686823A (en) * 1996-08-07 1997-11-11 National Semiconductor Corporation Bandgap voltage reference circuit
JP3554123B2 (ja) * 1996-12-11 2004-08-18 ローム株式会社 定電圧回路
JP3185698B2 (ja) * 1997-02-20 2001-07-11 日本電気株式会社 基準電圧発生回路
US5867013A (en) * 1997-11-20 1999-02-02 Cypress Semiconductor Corporation Startup circuit for band-gap reference circuit
JP3519361B2 (ja) * 2000-11-07 2004-04-12 Necエレクトロニクス株式会社 バンドギャップレファレンス回路
JP2003167638A (ja) * 2001-12-03 2003-06-13 Fuji Electric Co Ltd 半導体集積回路装置
JP2007036653A (ja) * 2005-07-27 2007-02-08 Oki Electric Ind Co Ltd 演算増幅器及びそれを用いた定電流発生回路
JP4817825B2 (ja) * 2005-12-08 2011-11-16 エルピーダメモリ株式会社 基準電圧発生回路
US7659705B2 (en) * 2007-03-16 2010-02-09 Smartech Worldwide Limited Low-power start-up circuit for bandgap reference voltage generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11338567A (ja) * 1998-05-27 1999-12-10 Matsushita Electric Ind Co Ltd 基準電圧発生回路
JP2006023920A (ja) * 2004-07-07 2006-01-26 Seiko Epson Corp 基準電圧発生回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101789544B1 (ko) 2016-10-29 2017-10-26 주식회사 센소니아 스타트-업 기능이 향상되는 밴드갭 기준전압 발생회로

Also Published As

Publication number Publication date
CN102144196B (zh) 2013-11-06
CN102144196A (zh) 2011-08-03
JPWO2010026674A1 (ja) 2012-01-26
US8093881B2 (en) 2012-01-10
US20110156690A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
WO2010026674A1 (ja) 基準電圧発生回路
US10481625B2 (en) Voltage regulator
US7301322B2 (en) CMOS constant voltage generator
JP5168910B2 (ja) 定電流回路及び定電流回路を使用した発光ダイオード駆動装置
US6972550B2 (en) Bandgap reference voltage generator with a low-cost, low-power, fast start-up circuit
US7375504B2 (en) Reference current generator
JP2008293409A (ja) 基準電圧発生回路及び基準電圧発生回路を使用した定電圧回路
JP4582705B2 (ja) ボルテージレギュレータ回路
JP4787877B2 (ja) 基準電流回路、基準電圧回路、およびスタートアップ回路
JP2005250664A (ja) 電圧レギュレータ
JP4477373B2 (ja) 定電流回路
JP5535447B2 (ja) 電源電圧降圧回路、半導体装置および電源電圧回路
JP4263056B2 (ja) 基準電圧発生回路
JP2007140755A (ja) ボルテージレギュレータ
JP2002074967A (ja) 降圧電源回路
JP5040397B2 (ja) 基準電圧回路
KR100825956B1 (ko) 기준전압 발생기
US8872490B2 (en) Voltage regulator
JP4658838B2 (ja) 基準電位発生回路
JP4904954B2 (ja) 基準電圧発生回路
JP2006134126A (ja) 基準電圧発生回路及びこれを用いた電源電圧監視回路
CN115185329B (zh) 一种带隙基准结构
JP2010165071A (ja) 定電圧電源
JP4584677B2 (ja) 電力供給回路、半導体装置
JP4848870B2 (ja) 基準電圧発生回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134719.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527649

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811204

Country of ref document: EP

Kind code of ref document: A1