WO2010023816A1 - Soiウェーハの製造方法およびsoiウェーハ - Google Patents

Soiウェーハの製造方法およびsoiウェーハ Download PDF

Info

Publication number
WO2010023816A1
WO2010023816A1 PCT/JP2009/003573 JP2009003573W WO2010023816A1 WO 2010023816 A1 WO2010023816 A1 WO 2010023816A1 JP 2009003573 W JP2009003573 W JP 2009003573W WO 2010023816 A1 WO2010023816 A1 WO 2010023816A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wafer
soi
soi wafer
thickness
Prior art date
Application number
PCT/JP2009/003573
Other languages
English (en)
French (fr)
Inventor
岡哲史
桑原登
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to EP09809473.3A priority Critical patent/EP2320450B1/en
Priority to US13/055,829 priority patent/US8497187B2/en
Priority to CN200980131333.5A priority patent/CN102119435B/zh
Priority to KR1020117004285A priority patent/KR101573812B1/ko
Publication of WO2010023816A1 publication Critical patent/WO2010023816A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to an SOI wafer in which a silicon epitaxial layer is grown on an SOI layer of an SOI wafer serving as a substrate to increase the thickness of the SOI layer, and a method for manufacturing the same.
  • a wafer bonding method and a SIMOX method are generally known.
  • the wafer bonding method for example, two silicon wafers are bonded through an oxide film without using an adhesive, and the bonding strength is increased by heat treatment (1000 to 1200 ° C.), and then one wafer is ground and polished.
  • the advantage of this method is that the SOI layer crystallinity and the reliability of the buried oxide film (BOX layer) are equivalent to those of ordinary silicon wafers.
  • the film thickness uniformity of the SOI layer has a limit (about ⁇ 0.3 ⁇ m at most), and the cost is high because two silicon wafers are used for manufacturing one SOI wafer.
  • Patent Document 1 proposes an ion implantation separation method (also called Smart Cut (registered trademark) method), which is one of the bonding methods.
  • an oxide film is formed on at least one of two silicon wafers, at least one kind of hydrogen ion or rare gas ion is implanted into one main surface of one wafer, and an ion implantation layer is formed inside the wafer.
  • the ion-implanted surface and the main surface of the other silicon wafer are brought into close contact with each other through an oxide film, and then a heat treatment at a temperature of 300 ° C. to 600 ° C. or higher is applied to peel off the ion-implanted layer.
  • This method has the advantage that a thin-film SOI wafer having a SOI layer thickness uniformity of ⁇ 10 nm or less can be easily manufactured, and the advantage that cost can be reduced by reusing the peeled bond wafer multiple times. .
  • a high-concentration oxygen ion is implanted into a silicon wafer to form an oxygen ion implanted layer, and then an annealing process is performed at a high temperature of about 1300 ° C. to thereby bury a buried oxide film ( BOX layer), and the surface side layer is used as an SOI layer.
  • the SIMOX method is easy to manufacture, but the BOX layer formed from the oxygen ion implantation layer is limited to the extreme surface layer and cannot be formed at a deep position on the wafer. Therefore, the thickness of the surface device region can be increased. Have difficulty. Further, the formed BOX layer does not have a dense structure, and there is a drawback that it is difficult to obtain a complete withstand voltage, which is the greatest merit when an SOI wafer is used as a device fabrication wafer.
  • a thick SOI wafer having a SOI layer thickness of several ⁇ m to several tens of ⁇ m is an extremely useful wafer for bipolar devices and power devices, but producing a low-cost and high-quality SOI wafer
  • the bonding method by grinding / polishing the wafer with the oxide film is bonded to the bare wafer, and the bonding heat treatment is performed at 1100 ° C. or higher, and the grinding and polishing process is performed to obtain a desired SOI layer thickness.
  • the process is complicated and it is extremely difficult to improve the uniformity of the SOI layer thickness.
  • the thickness of the SOI layer is a depth that allows ion implantation ( In other words, in the case of a general implantation apparatus, the maximum acceleration voltage is about 200 keV, and only an SOI layer having a thickness of about 2 ⁇ m at most can be obtained.
  • the present invention has been made in view of such problems, and is an SOI wafer in which an epitaxial layer is grown to increase the thickness of the SOI layer, which has high productivity, low cost, and low slip dislocation. It is an object of the present invention to provide a quality SOI wafer and a manufacturing method thereof.
  • the present invention provides an SOI wafer manufacturing method in which an epitaxial layer is grown on an SOI layer of an SOI wafer having an SOI layer on a BOX layer to increase the thickness of the SOI layer.
  • a method for producing an SOI wafer characterized by epitaxially growing an SOI wafer having an infrared reflectance of 20% to 40% in an infrared wavelength region of 800 to 1300 nm.
  • the SOI wafer has an infrared reflectance of 20% or more and 40% or less in the infrared wavelength region of 800 to 1300 nm, the infrared reflectance is comparable to that of a polished silicon wafer.
  • slip-free conditions such as lamp heating power balance during the epitaxial growth of a polished silicon wafer can be applied as they are. This eliminates the need for a test to find slip-free conditions and greatly reduces time.
  • the epitaxial growth is performed under the slip-free optimum growth conditions from the start to the end of the epitaxial growth. be able to. Therefore, a high-quality thick film SOI wafer on which a slip-free epitaxial layer is formed can be manufactured at low cost with high productivity.
  • the thickness of the BOX layer of the SOI wafer on which the epitaxial layer is grown is preferably 30 nm or less or ((positive integer multiple of 340) ⁇ 20) nm.
  • the infrared reflectance in the infrared wavelength region of 800 to 1300 nm is 20% or more and 40% or less regardless of the thickness of the SOI layer. For this reason, when the present invention is carried out, it is only necessary to adjust the thickness of the BOX layer of the SOI wafer. Further, since the variation in reflectance due to the change in the SOI layer thickness during epitaxial growth is small, slip-free and thick film can be obtained. An SOI wafer can be manufactured with high productivity.
  • the SOI wafer on which the epitaxial layer is grown is ion-implanted with at least one of hydrogen ions and rare gas ions from the surface of the bond wafer to form an ion-implanted layer inside the wafer, and the bond wafer is ion-implanted. It is preferable that the surface on the opposite side and the surface of the base wafer are brought into close contact with each other through an oxide film, and then the bond wafer is separated into a thin film in the ion implantation layer. Since an SOI wafer manufactured by such an ion implantation separation method has an SOI layer with high film thickness uniformity, if an epitaxial layer is grown on the SOI layer, a higher quality thick SOI wafer can be obtained. can do.
  • the epitaxial layer is grown using a single-wafer type lamp heating apparatus in which the emission wavelength of an infrared lamp applied to the SOI wafer is limited to 800 to 1300 nm.
  • the emission wavelength of an infrared lamp applied to the SOI wafer is limited to 800 to 1300 nm.
  • the epitaxial layer is preferably grown thicker than 1 ⁇ m.
  • the manufacturing method according to the present invention hardly changes the infrared reflectance due to the change in the thickness of the SOI layer, and ends from the start of the epitaxial growth even if the temperature is kept long. This is preferable because the epitaxial layer can be grown under slip-free conditions.
  • the present invention is an SOI wafer comprising a base wafer made of a silicon single crystal, a BOX layer on the base wafer, and an SOI layer on the BOX layer, wherein the thickness of the BOX layer is 30 nm or less, Or ((positive integer multiple of 340) ⁇ 20) nm, and the SOI layer is composed of a silicon single crystal layer on the BOX layer and an epitaxial layer grown on the silicon single crystal layer.
  • An SOI wafer is provided.
  • the infrared reflectance in the infrared wavelength region of 800 to 1300 nm is 20% or more and 40% or less. Therefore, when an epitaxial layer is formed on a silicon single crystal layer. In addition, the infrared reflectivity is almost unchanged and shows the same reflectivity as a polished silicon wafer, so the slip-free epitaxial layer can be applied to the polished silicon wafer as it is and the slip-free epitaxial layer is grown with good productivity. Therefore, a high-quality and low-cost SOI wafer is obtained.
  • a high-quality thick film SOI wafer with few slip dislocations and the like can be manufactured with high productivity.
  • the SOI layer becomes thicker due to epitaxial growth, and the infrared reflectance also changes at the same time, so that the epitaxial growth conditions that were optimal immediately before the epitaxial growth are no longer optimal, and slip dislocations are likely to occur. It is believed that there is. In particular, when the epitaxial layer to be grown exceeds 1 ⁇ m and becomes as thick as several ⁇ m to several tens of ⁇ m, the time that is maintained at a high temperature during epitaxial growth increases, and slip dislocation is more likely to occur.
  • the present inventors have used an SOI wafer having a specific infrared reflectance for device fabrication. It has been found that the thickness is about the same as that of a general polished silicon wafer, and the infrared reflectance is not affected by the thickness of the SOI layer thereon. Furthermore, the present inventors have found that an SOI wafer having a specific BOX layer thickness has the infrared reflectance described above, and have reached the present invention.
  • the same epitaxial growth condition (lamp heating power balance) as that of a polished silicon wafer can be applied, and slipping occurs when epitaxial growth is performed on the SOI wafer.
  • the test time for finding free conditions can be greatly reduced, and slip-free epitaxial growth can be performed, and a high-quality SOI wafer can be manufactured at low cost.
  • the wavelength of infrared light emitted to the SOI wafer is limited to 800 nm to 1300 nm using a filter that transmits a specific wavelength, the influence of wavelengths that are not considered in the simulation can be reduced. As a result, a result closer to the simulation result can be obtained.
  • FIG. 5 shows the spectral distribution characteristics of a halogen lamp used in a single-wafer lamp heating type epitaxial growth apparatus. It can be seen that the emission is distributed over a wide infrared region, but the peak wavelength is around 1000 nm.
  • FIG. 1 is a simulation of the infrared reflectance of a polished silicon wafer, SOI wafer A (SOI layer: 70 nm, BOX layer: 145 nm), and SOI wafer B (SOI layer: 50 nm, BOX layer: 10 nm). From this figure, the infrared reflectance of the SOI wafer varies greatly depending on the thicknesses of the SOI layer and the BOX layer, and the reflectance is almost the same as that of the polished silicon wafer like the SOI wafer B. You can see that there are things.
  • FIG. 6 shows the result of simulating the reflectivity of the SOI wafer with respect to a wavelength of 1000 nm, which is the peak wavelength of the halogen lamp, using the SOI layer thickness and the BOX layer thickness as parameters.
  • the reflectivity of the SOI wafer changes periodically according to the thickness of the SOI layer and the BOX layer, and when the BOX layer thickness is 145 nm as in the SOI wafer A, 80% when the SOI layer thickness is 70 nm. Although it has a high reflectivity, the SOI layer thickness is about 10% or less when the SOI layer thickness is 140 nm, and it can be seen that the reflectivity varies greatly with the thickness of the SOI layer.
  • an SOI wafer having a BOX layer thickness of 10 nm exhibits a substantially constant reflectance of 30% to 40% even when the thickness of the SOI layer changes, and polished silicon. It was found to be almost the same as the reflectance of the wafer. Further, the thickness of the BOX layer that has a substantially constant reflectivity even when the thickness of the SOI layer changes like the SOI wafer B periodically exists, and the thickness of the next period is around 340 nm. I also found it.
  • FIG. 7 shows the results of H 2 annealing of SOI wafers A and B under these conditions.
  • the SOI wafer B which is almost the same as the reflectance of the polished silicon wafer, was slip-free in the same manner as the polished silicon wafer, but the SOI wafer A was slipped at the periphery of the wafer.
  • the slip free condition is obtained and the result of applying it to the SOI wafer B is shown in FIG. 7 as well, but the SOI wafer B is significantly slipped around the wafer and near the center. I found out.
  • the SOI wafer has different slip-free conditions depending on the thickness of the SOI layer and the BOX layer, and the SOI wafer B can be applied with the polished silicon wafer slip-free condition.
  • This can be explained by the difference in infrared reflectance shown in FIG. That is, the polished silicon wafer and the SOI wafer B have substantially the same reflectivity, and the SOI wafer A has a remarkably different reflectivity, so it is considered that the slip-free conditions are different.
  • the reflectance (20%) is almost the same as that of the polished silicon wafer.
  • the same heat treatment conditions as those for obtaining slip-free in a polished silicon wafer can be obtained during epitaxial growth or hydrogen annealing for removing a natural oxide film immediately before epitaxial growth. It was found that by setting, a slip-free heat treatment can be performed on the SOI wafer, and the present invention has been completed.
  • FIG. 2 is a flowchart showing an example of an embodiment of the production method of the present invention.
  • FIG. 3 is a schematic view showing an example of the SOI wafer of the present invention.
  • an SOI wafer having an infrared reflectance of 20% to 40% in an infrared wavelength region of 800 to 1300 nm is first prepared as a substrate on which a silicon epitaxial layer is grown.
  • a silicon epitaxial layer is grown.
  • two silicon mirror wafers are prepared, and a base wafer 10 serving as a support substrate and a bond wafer 11 serving as an SOI layer are prepared in accordance with device specifications.
  • At least one of the wafers, here, the bond wafer 11 is, for example, thermally oxidized to form an oxide film 12 on the surface thereof.
  • This oxide film can be formed by a method such as CVD.
  • the thickness of the oxide film 12 is adjusted so that the thickness of the BOX layer of the SOI wafer to be manufactured is 30 nm or less or ((positive integer multiple of 340) ⁇ 20) nm. Is preferred.
  • An SOI wafer having such a BOX layer thickness is an SOI wafer having an infrared reflectance of 20% to 40% in the infrared wavelength region of 800 to 1300 nm regardless of the thickness of the SOI layer.
  • An SOI wafer that satisfies the above requirements can be easily manufactured. Since the oxide film to be formed becomes a BOX layer of an SOI wafer to be manufactured later, when forming an oxide film on only one wafer, it is formed so as to have the same thickness as the above-mentioned thickness.
  • the lower limit is not specifically limited, However In order to ensure sufficient insulation, it is preferable to set it as 5 nm or more.
  • step (c) of FIG. 2 at least one kind of ions of hydrogen ions and rare gas (He, Ne, etc.) ions is implanted into one surface of the bond wafer 11, and the average ion penetration depth is obtained. Then, an ion implantation layer 13 parallel to the surface is formed.
  • He, Ne, etc. rare gas
  • the hydrogen ion implantation surface of the ion-implanted bond wafer 11 and the base wafer 10 are overlapped and brought into close contact via the oxide film 12.
  • the wafers are bonded together without using an adhesive or the like.
  • an adhesive agent or the like may be used in order to bond more firmly.
  • the SOI wafer 16 is fabricated by peeling the bond wafer 11 with the ion implantation layer 13 as a boundary.
  • the bond wafer 11 can be peeled off by the ion implantation layer 13 due to crystal rearrangement and bubble aggregation, whereby an SOI wafer 16 can be obtained.
  • the heat treatment for stripping can be omitted by increasing the amount of ion implantation when forming the ion implantation layer 13 for stripping or activating the surface by performing plasma treatment in advance on the surface to be overlapped. is there.
  • the process of manufacturing the SOI wafer to be the substrate on which the epitaxial layer is grown is based on the ion implantation delamination method.
  • the SOI wafer is not limited to the ion implantation delamination method, but by any method. It may be produced.
  • a method (SIMOX method) of performing heat treatment after implanting oxygen ions into a silicon wafer can also be used.
  • this method can also be applied to the case where an SOI wafer is manufactured by thinning by grinding or the like after bonding.
  • an SOI layer having a higher quality thick SOI layer can be obtained by growing an epitaxial layer on the SOI layer in a later process. Can be a wafer.
  • a bonding heat treatment step can be performed in the step (f) after the peeling step.
  • the bonding process is performed on the SOI wafer 16 at a high temperature. It is also possible to make the bond strength sufficient by performing the heat treatment.
  • This heat treatment is performed, for example, in an inert gas atmosphere at 1000 to 1200 ° C. for 30 minutes to 2 hours.
  • the SOI wafer 16 having an infrared reflectance of 20% to 40% in the infrared wavelength region of 800 to 1300 nm is manufactured.
  • the epitaxial layer 14 is grown on the SOI layer 17 of the SOI wafer 16 serving as the substrate, and the SOI layer 17 is thickened to a desired thickness.
  • the epitaxial layer 14 after the epitaxial growth is integrated with the SOI layer 17 before the epitaxial growth to form the SOI layer 17 of the SOI wafer 16 after the epitaxial growth.
  • the SOI wafer 16 may be subjected to hydrogen annealing in the epitaxial growth apparatus to remove the natural oxide film on the surface of the SOI layer 17 and then epitaxially grow.
  • the thickness of the SOI layer changes as the epitaxial growth progresses, so that the infrared reflectivity changes, which is essentially the optimum condition.
  • an SOI wafer having an infrared reflectance of 20% or more and 40% or less in the infrared wavelength region of 800 to 1300 nm is used, so that the layer thickness of the SOI layer changes.
  • the infrared reflectance does not change and the temperature can be measured accurately.
  • the epitaxial growth conditions initially set to the slip-free conditions remain optimal from the start to the end of the growth, and the temperature can be adjusted with high accuracy.
  • the infrared reflectance is as described above, the reflectance is comparable to that of the polished silicon wafer, and therefore, the epitaxial growth conditions of the polished silicon wafer can be applied as it is, and the SOI layer, the BOX layer, etc. Since it is not necessary to check slip-free conditions for each difference, the test time is greatly reduced. Further, the slip-free condition of the polished silicon wafer can be applied to the condition of hydrogen annealing before epitaxial growth. As described above, according to the manufacturing method of the present invention, an SOI wafer having a thick SOI layer free of slip and high quality can be manufactured with high productivity and low cost.
  • This epitaxial growth is performed using, for example, a single wafer lamp heating type epitaxial growth apparatus as shown in FIG.
  • the epitaxial growth apparatus of FIG. 4 mounts an SOI wafer to be epitaxially grown on a susceptor, introduces a process gas into a quartz chamber, and heats the wafer to an epitaxial growth temperature by a halogen lamp (infrared lamp).
  • the temperature of the susceptor (or the back surface of the susceptor) is measured with a pyrometer and is epitaxially grown while maintaining the set temperature.
  • the epitaxial layer 14 is preferably grown using a single wafer lamp heating device in which the emission wavelength of the infrared lamp applied to the SOI wafer 16 is limited to 800 to 1300 nm.
  • the emission wavelength of the infrared lamp applied to the SOI wafer 16 is limited to 800 to 1300 nm.
  • the film thickness of the epitaxial layer 14 can be adjusted by the gas flow rate, the reaction temperature, and the reaction time, but it is preferably thicker than 1 ⁇ m, for example, 2 ⁇ m to 5 ⁇ m or more. Even if the time for forming such a relatively thick epitaxial layer and maintaining it at a high temperature is increased, the manufacturing method of the present invention enables epitaxial growth under optimum conditions from the start to the end of growth. Good epitaxial growth without slip can be performed.
  • an SOI wafer 16 comprising a base wafer 10 made of silicon single crystal, a BOX layer 15 on the base wafer 10, and an SOI layer 17 on the BOX layer 15.
  • the BOX layer 15 has a thickness of 30 nm or less, or ((positive integer multiple of 340) ⁇ 20) nm
  • the SOI layer 17 includes the silicon single crystal layer 18 on the BOX layer 15, the silicon single crystal
  • An SOI wafer 16 comprising the epitaxial layer 14 grown on the crystal layer 18 is manufactured.
  • the infrared reflectance in the infrared wavelength region of 800 to 1300 nm is 20% or more and 40% or less. Therefore, when an epitaxial layer is formed on a silicon single crystal layer. In addition, the infrared reflectivity is almost unchanged and shows the same reflectivity as a polished silicon wafer, so the slip-free epitaxial layer can be applied to the polished silicon wafer as it is and the slip-free epitaxial layer is grown with good productivity. Therefore, a high-quality and low-cost SOI wafer is obtained.
  • SOI wafer C SOI layer: 70 nm, BOX layer: 340 nm
  • SOI wafer D SOI layer: 50 nm, BOX layer: 30 nm
  • SOI wafer E SOI layer: 70 nm, BOX layer: 360 nm
  • SOI wafer F SOI layer: 70 nm, BOX layer: 320 nm
  • silicon epitaxial growth of 5 ⁇ m was performed on the SOI layer.
  • Silicon epitaxial growth was performed at 1100 ° C., a reduced pressure of 106.6 hPa, H 2 : 40 slm, SiH 2 Cl 2 : 450 sccm, and non-doped epi in which impurities such as boron and phosphorus were not introduced.
  • the power balance of the heating lamp was determined under optimum conditions (conditions for slip-free after H 2 annealing) for a normal polished silicon wafer, and the epitaxial growth was performed while maintaining the balance.
  • the occurrence of slip after epitaxial growth was evaluated by displaying a slip emphasis map on a wafer stress measuring device SIRD (Scanning InfraRed Depolarization).
  • An SOI wafer A (SOI layer: 70 nm, BOX layer: 145 nm), whose infrared reflectance is recognized to vary greatly with the SOI thickness in the simulation, is prepared as an SOI wafer for epitaxial growth.
  • the silicon epitaxial growth of 5 ⁇ m was performed on the SOI layer.
  • the silicon epitaxial growth conditions were the same as in the example except that the power balance of the heating lamp determined the optimum conditions for the SOI wafer A (conditions that were slip-free after H 2 annealing). The balance was maintained. In addition, the occurrence of slip after epitaxial growth was evaluated by displaying a slip emphasis map on a wafer stress measuring device SIRD (Scanning InfraRed Depolarization).
  • SIRD Sccanning InfraRed Depolarization
  • FIG. 8 shows a slip occurrence state after the H 2 annealing of the SOI wafer A and the SOI wafer C and a slip occurrence state after 5 ⁇ m epitaxial growth on the SOI layer.
  • the SOI wafers D, E, and F were also satisfactorily epitaxially grown similarly to the SOI wafer C.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 本発明は、BOX層上にSOI層を有するSOIウェーハのSOI層上にエピタキシャル層を成長させてSOI層を厚くするSOIウェーハの製造方法において、エピタキシャル層を成長させるSOIウェーハの800~1300nmの赤外線波長領域における赤外線反射率が20%以上40%以下のものを用いてエピタキシャル成長させるSOIウェーハの製造方法である。これにより、エピタキシャル層を成長させてSOI層を厚くしたSOIウェーハであって、生産性が良く低コストで、スリップ転位等の少ない高品質なSOIウェーハ、及びその製造方法が提供される。

Description

SOIウェーハの製造方法およびSOIウェーハ
 本発明は、基板となるSOIウェーハのSOI層上にシリコンエピタキシャル層を成長させてSOI層を厚くしたSOIウェーハ、および、その製造方法に関する。
 
 SOIウェーハ作製方法として、ウェーハ貼り合わせ法とSIMOX法が一般的に知られている。ウェーハ貼り合わせ法は、例えば、2枚のシリコンウェーハを酸化膜を介して接着剤を用いることなく結合し、熱処理(1000~1200℃)により結合強度を高めた後、片方のウェーハを研削・研磨やエッチングなどにより薄膜化する方法であり、本手法の利点は、SOI層の結晶性や埋め込み酸化膜(BOX層)の信頼性が通常のシリコンウェーハと同等であることであり、また、欠点はSOI層の膜厚均一性に限界(高々±0.3μm程度)があること、および1枚のSOIウェーハの製造には2枚のシリコンウェーハが使用されるためコストが高い点である。
 また、貼り合わせ法の一つであるイオン注入剥離法(スマートカット(登録商標)法とも呼ばれる)が特許文献1に提案されている。この方法は、2枚のシリコンウェーハの少なくとも一方に酸化膜を形成し、一方のウェーハの一主面に水素イオン、または希ガスイオンの少なくとも一種類を注入し、ウェーハ内部にイオン注入層を形成させた後、イオン注入した面と他方のシリコンウェーハの一主面とを酸化膜を介して密着させ、その後、300℃~600℃、或いはそれ以上の温度の熱処理を加えてイオン注入層で剥離する方法であり、±10nm以下のSOI層膜厚均一性を有する薄膜SOIウェーハを容易に作製できる優位性と、剥離したボンドウェーハを複数回再利用しコスト低減が図れる優位性を有している。
 一方、SIMOX法は、シリコンウェーハの内部に高濃度の酸素イオンを注入して酸素イオン注入層を形成し、その後1300℃程度の高温でアニール処理を行うことにより、シリコンウェーハ中に埋め込み酸化膜(BOX層)を形成し、その表面側の層をSOI層として使用する方法である。SIMOX法は製法が簡便であるが、酸素イオン注入層から形成されるBOX層は極表層に限られ、ウェーハの深い位置に形成することはできないため、表層デバイス領域の厚さを厚くすることが困難である。また、形成したBOX層は緻密な構造とはなっておらず、SOIウェーハをデバイス作製用ウェーハとして使う場合の最大のメリットである完全な絶縁耐圧が得られ難いという欠点がある。
 ところで、SOI層の膜厚が数μmから数10μmの厚膜SOIウェーハは、バイポーラデバイスやパワーデバイス用として極めて有用なウェーハであるが、低コストでかつ高品質のSOIウェーハを作製することは、上述した研削・研磨による貼り合わせ法およびスマートカット法を用いても困難であることが知られている。その理由は、研削・研磨による貼り合わせ法の場合、酸化膜付ウェーハとベアウェーハを貼り合わせ、1100℃以上で結合熱処理を行い、研削および研磨処理して所望のSOI層厚になるように造りこまなければならず、工程が複雑でかつSOI層の膜厚均一性を良くすることは極めて困難であること、一方、スマートカット法の場合は、SOI層の厚さはイオン注入できる深さ(すなわちイオン注入装置の加速電圧)で決ってしまい、一般的な注入装置の場合、最大加速電圧は200keV程度であり、最大でも2μm程度の厚さのSOI層しか得ることができないということである。
 
特開平5-211128号公報 特開2007-194539号公報
 そこで、本発明は、このような問題点に鑑みてなされたもので、エピタキシャル層を成長させてSOI層を厚くしたSOIウェーハであって、生産性が良く低コストで、スリップ転位等の少ない高品質なSOIウェーハ、及びその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明は、BOX層上にSOI層を有するSOIウェーハのSOI層上にエピタキシャル層を成長させてSOI層を厚くするSOIウェーハの製造方法において、前記エピタキシャル層を成長させるSOIウェーハの800~1300nmの赤外線波長領域における赤外線反射率が20%以上40%以下のものを用いてエピタキシャル成長させることを特徴とするSOIウェーハの製造方法を提供する。
 このように、800~1300nmの赤外線波長領域における赤外線反射率が20%以上40%以下であるSOIウェーハであれば、ポリッシュドシリコンウェーハと同程度の赤外線反射率である。このようなSOIウェーハのSOI層上にエピタキシャル層を成長させる際に、ポリッシュドシリコンウェーハのエピタキシャル成長時のランプ加熱パワーバランス等のスリップフリー条件を、そのまま適用することができる。このため、スリップフリー条件を見出すためのテストが不要であり、大幅に時間が削減される。また、上記のようなSOIウェーハであれば、エピタキシャル成長時の層厚の変化による赤外線反射率の変化が非常に少ないため、エピタキシャル成長開始から終了まで、スリップフリーの最適な成長条件の下でエピタキシャル成長を行うことができる。
 従って、スリップフリーのエピタキシャル層が形成された、高品質の厚膜SOIウェーハを低コストで生産性良く製造することができる。
 このとき、前記エピタキシャル層を成長させるSOIウェーハのBOX層の厚さを、30nm以下、又は、((340の正の整数倍)±20)nmとすることが好ましい。
 このような厚さのBOX層を有するSOIウェーハであれば、SOI層の厚さに関わらず、800~1300nmの赤外線波長領域における赤外線反射率が20%以上40%以下となる。このため、本発明を実施する際に、SOIウェーハのBOX層の厚さのみを調整すればよく、さらにエピタキシャル成長時のSOI層厚の変化による反射率の変動も少ないため、スリップフリーで厚膜のSOIウェーハを生産性良く製造することができる。
 このとき、前記エピタキシャル層を成長させるSOIウェーハを、ボンドウェーハの表面から水素イオン、希ガスイオンの少なくとも一種類をイオン注入してウェーハ内部にイオン注入層を形成し、前記ボンドウェーハのイオン注入された側の表面とベースウェーハの表面とを、酸化膜を介して密着させ、次いで前記イオン注入層においてボンドウェーハを薄膜状に分離して作製することが好ましい。
 このようなイオン注入剥離法により作製されたSOIウェーハであれば、膜厚均一性の高いSOI層を有するため、そのSOI層にエピタキシャル層を成長させれば、より高品質の厚膜SOIウェーハにすることができる。
 このとき、前記エピタキシャル層を、前記SOIウェーハに照射する赤外線ランプの発光波長を800~1300nmに限定した枚葉式ランプ加熱装置を用いて成長させることが好ましい。
 赤外線ランプの発光波長を上記範囲にすることで、波長の反射率に対する影響を少なくすることができるため、スリップフリーの設定条件により近い状態でエピタキシャル層を成長させることができる。
 このとき、前記エピタキシャル層を、厚さ1μmより厚く成長させることが好ましい。
 このように、比較的厚くエピタキシャル層を成長させる場合でも、本発明の製造方法であればSOI層の層厚変化による赤外線反射率の変化がほとんど無く、高温を長く保持してもエピタキシャル成長開始から終了までスリップフリー条件でエピタキシャル層を成長させることができるため、好適である。
 また、本発明は、シリコン単結晶からなるベースウェーハと、該ベースウェーハ上のBOX層と、該BOX層上のSOI層とからなるSOIウェーハであって、前記BOX層の厚さが30nm以下、又は、((340の正の整数倍)±20)nmであり、前記SOI層が前記BOX層上のシリコン単結晶層と、該シリコン単結晶層上に成長されたエピタキシャル層とからなるものであることを特徴とするSOIウェーハを提供する。
 このような厚さのBOX層のSOIウェーハであれば、800~1300nmの赤外線波長領域における赤外線反射率が20%以上40%以下となるため、シリコン単結晶層上にエピタキシャル層を形成する際に、赤外線反射率がほとんど変化せず、かつポリッシュドシリコンウェーハと同程度の反射率を示すため、ポリッシュドシリコンウェーハのスリップフリー条件をそのまま適用してスリップフリーのエピタキシャル層を確実に生産性良く成長させることができるため、高品質で低コストのSOIウェーハとなる。
 本発明であれば、SOIウェーハのSOI層上にエピタキシャル層を成長させてSOI層を厚くする際に、スリップ転位等の少ない高品質の厚膜SOIウェーハを生産性良く製造することができる。
 
ポリッシュドシリコンウェーハとSOIウェーハの反射率を示すグラフである。 本発明の製造方法の実施態様の一例としてのフロー図である。 本発明のSOIウェーハの一例を示す概略図である。 枚葉式ランプ加熱エピタキシャル成長装置の概略図である。 ハロゲンランプの分光特性を示すグラフである。 SOI層及びBOX層の厚さと、反射率の関係を示す図である。 ハロゲンランプのパワーバランスによるスリップ発生状況を示す図である。 アニール後と5μmエピタキシャル成長後のスリップ発生状況を示す図である。
 従来、基板となるSOIウェーハのSOI層上に、例えば枚葉式ランプ加熱型のエピタキシャル成長装置を用いて高温でエピタキシャル成長を行うと、ウェーハ上にスリップ転位が発生しやすく品質が悪化してしまう問題点があった。
 この問題に対して、エピタキシャル成長前のSOI層表面の反射率が30%以上80%以下となるようにしてエピタキシャル成長を行うこと、及び、その反射率になるようにBOX層およびSOI層の厚さをおのおの調整する方法がある(特許文献2)。しかしながら、この範囲の反射率を有するSOIウェーハを用いても、スリップ転位が発生しない(スリップフリー)条件を見出すこと、および、スリップフリーのエピタキシャル成長を行うことは非常に困難となる場合があった。
 この理由としては、エピタキシャル成長によってSOI層が厚くなり、同時に赤外線反射率も変化して、エピタキシャル成長直前には最適であったエピタキシャル成長条件が最適な条件ではなくなってしまい、スリップ転位が発生しやすくなるためであると考えられる。特に、成長するエピタキシャル層が1μmを超え、数μmから十数μmと厚くなると、エピタキシャル成長時の高温で保持される時間が増加し、スリップ転位が一層発生しやすくなる。
 これは、エピタキシャル成長時に赤外線反射率が変化すると、ウェーハ表面(あるいはサセプター裏面)を正確に温度測定が出来なくなり、ランプの出力が不安定になる結果、実際の成長温度の均一性が悪化し、スリップ転位が発生すると考えられる。
 これに対して、本発明者らは、SOIウェーハのBOX層厚およびSOI層厚に対して赤外線反射率をシミュレーションし、検討した結果、特定の赤外線反射率を有するSOIウェーハは、デバイス作製に用いられる一般的なポリッシュドシリコンウェーハと同程度となり、かつ、その上のSOI層厚には赤外線反射率が影響されないことを見出した。そしてさらに、特定のBOX層厚を有するSOIウェーハであれば上記の赤外線反射率を有することを見出し、本発明に至った。
 すなわち、この特定のBOX層厚を有するSOIウェーハを使用することにより、ポリッシュドシリコンウェーハと同じエピタキシャル成長条件(ランプ加熱パワーバランス)を適用することができ、SOIウェーハに対してエピタキシャル成長を行う際にスリップフリー条件を見出すためのテスト時間の大幅な削減と、スリップフリーのエピタキシャル成長ができ、低コストで良質なSOIウェーハを作製することが可能となる。
 また、エピタキシャル成長を行う際、特定波長を透過するフィルターを用いて、SOIウェーハに照射される赤外線の発光波長を800nmから1300nmに限定すれば、シミュレーションでは考慮されていない波長の影響を低減することができるので、シミュレーション結果により近い結果を得ることができる。
 以下、本発明者らの検討結果をより詳細に説明する。
 まず、図5は、枚葉式ランプ加熱型のエピタキシャル成長装置に使用されるハロゲンランプの分光分布特性を示したものである。発光は赤外線の広い領域に渡って分布しているが、そのピーク波長は1000nm付近にあることがわかる。
 図1は、ポリッシュドシリコンウェーハ、SOIウェーハA(SOI層:70nm、BOX層:145nm)、SOIウェーハB(SOI層:50nm、BOX層:10nm)の赤外線反射率をシミュレーションしたものである。この図から、SOIウェーハの赤外線反射率は、SOI層とBOX層の厚さに依存して大きく変化すること、および、SOIウェーハBのようにポリッシュドシリコンウェーハとほぼ同程度の反射率を有するものもあることがわかる。
 図6は、SOI層厚とBOX層厚をパラメータとして、ハロゲンランプのピーク波長である1000nmの波長に対するSOIウェーハの反射率をシミュレーションした結果である。
 SOIウェーハの反射率は、SOI層およびBOX層の厚さに応じて周期的に変化すること、及び、SOIウェーハAのようにBOX層厚が145nmの場合、そのSOI層厚が70nmでは80%程度の高い反射率を有するが、SOI層厚が140nmでは10%以下程度になり、SOI層の厚さで反射率が大きく変化することがわかる。また、SOIウェーハBのようにBOX層厚が10nmのSOIウェーハは、そのSOI層の厚さが変化しても反射率が30%から40%のほぼ一定の値を示し、かつ、ポリッシュドシリコンウェーハの反射率とほぼ同程度であることがわかった。さらに、SOIウェーハBのようにSOI層の厚さが変化してもほぼ一定の反射率となるBOX層の厚さは周期的に存在しており、次の周期の厚さとしては340nm付近にあることもわかった。
(実験例)
 シミュレーションの結果を確認するために、各々直径300mmのポリッシュドシリコンウェーハ、SOIウェーハA(SOI層:70nm、BOX層:145nm)、SOIウェーハB(SOI層:50nm、BOX層:10nm)を用いて、枚葉式ランプ加熱型のエピタキシャル成長装置(Centura:アプライドマテリアルズ社製)で、1100℃、900秒間のHアニール(Hガス100%雰囲気下)を行った。スリップの発生状況は、ウェーハストレス測定装置SIRD(Scanning InfraRed Depolarization)のスリップ強調マップ表示によって評価した。
 まず、ポリッシュドシリコンウェーハについて、Hアニール後にスリップフリーとなるランプ加熱パワーバランス(ウェーハ上下、ウェーハ内外)条件を求めた。この条件でSOIウェーハA、BをHアニールした結果を図7に示す。ポリッシュドシリコンウェーハの反射率とほぼ同程度であるSOIウェーハBは、ポリッシュドシリコンウェーハとほぼ同様にスリップフリーであったが、SOIウェーハAはウェーハ周辺部にスリップがみられた。
 一方、SOIウェーハAについて、スリップフリーとなる条件を求め、それをSOIウェーハBに適応した結果も図7に合わせて示しているが、SOIウェーハBにはウェーハ周辺、中心付近に著しくスリップが発生していることがわかった。
 このように、SOIウェーハはSOI層とBOX層の厚さによって、スリップフリー条件が異なること、およびSOIウェーハBにはポリッシュドシリコンウェーハのスリップフリー条件を適用できることがわかった。これは、図1に示す赤外線反射率の違いにより説明することができる。すなわち、ポリッシュドシリコンウェーハとSOIウェーハBはほぼ同じ反射率であり、SOIウェーハAはそれらとは著しく異なる反射率であるためスリップフリー条件が異なると考えられる。
 従って、SOIウェーハBのように、枚葉式ランプ加熱型のエピタキシャル成長装置に使用されるハロゲンランプのピーク波長領域を含む800nmから1300nmの波長領域において、ポリッシュドシリコンウェーハとほぼ同じ反射率(20%以上40%以下程度)を有するSOIウェーハであれば、エピタキシャル成長時や、エピタキシャル成長直前の自然酸化膜除去のための水素アニール時に、ポリッシュドシリコンウェーハでスリップフリーが得られる熱処理条件と同一の熱処理条件を設定することによって、SOIウェーハに対してスリップフリーの熱処理を行うことができることを見出して、本発明を完成させた。
 以下、図を参照して、本発明の実施の形態について具体的に説明するが、本発明はこれらに限定されるものではない。
 図2は、本発明の製造方法の実施態様の一例を示すフロー図である。図3は、本発明のSOIウェーハの一例を示す概略図である。
 本発明の製造方法では、シリコンエピタキシャル層を成長させる基板として、まずは800~1300nmの赤外線波長領域における赤外線反射率が20%以上40%以下であるSOIウェーハを作製する。
 まず、図2の工程(a)では、2枚のシリコン鏡面ウェーハを準備するものであり、デバイスの仕様に合った支持基板となるベースウェーハ10とSOI層となるボンドウェーハ11を用意する。
 次に、図2の工程(b)では、そのうちの少なくとも一方のウェーハ、ここではボンドウェーハ11を例えば熱酸化して、その表面に酸化膜12を形成する。この酸化膜の形成は、CVD等の方法を採用することも可能である。
 このとき、作製しようとするSOIウェーハのBOX層の厚さが、30nm以下、又は、((340の正の整数倍)±20)nmとなるように、酸化膜12の厚さを調整することが好ましい。
 このようなBOX層の厚さを有するSOIウェーハであれば、SOI層厚等に関わらず800~1300nmの赤外線波長領域における赤外線反射率が20%以上40%以下のSOIウェーハとなるため、本発明の要件を満たすSOIウェーハを容易に作製することができる。
 形成される酸化膜が、後に作製しようとするSOIウェーハのBOX層になるため、一方のウェーハのみに酸化膜を形成する場合には、上記の厚さと同じ厚さになるように形成し、両ウェーハに形成する場合には、両ウェーハの酸化膜の厚さを足した値が上記の厚さとなるように形成する。尚、BOX層を30nm以下の厚さとする場合、その下限値は特に限定されないが、十分な絶縁性を確保するため、5nm以上とすることが好ましい。
 次に、図2の工程(c)では、ボンドウェーハ11の片面に対して水素イオン、希ガス(He、Neなど)イオンのうち、少なくとも一種類のイオンを注入し、イオンの平均進入深さにおいて表面に平行なイオン注入層13を形成する。
 次に、図2の工程(d)では、イオン注入したボンドウェーハ11の水素イオン注入面と、ベースウェーハ10を、酸化膜12を介して重ね合わせて密着させる。常温の清浄な雰囲気下で2枚のウェーハの表面同士を接触させることにより、接着剤等を用いることなくウェーハ同士が接着する。ただし、より強固に接着させるために、接着剤等を用いてもよい。
 次に、図2の工程(e)では、イオン注入層13を境界としてボンドウェーハ11を剥離することによってSOIウェーハ16を作製する。例えば不活性ガス雰囲気下約300~600℃の温度で熱処理を加えれば、結晶の再配列と気泡の凝集とによってイオン注入層13でボンドウェーハ11を剥離させて、SOIウェーハ16とすることができる。なお、剥離用のイオン注入層13を形成する際のイオン注入量を高めたり、あるいは重ね合わせる面に対して予めプラズマ処理を行って表面を活性化したりすることにより、剥離熱処理を省略できる場合もある。
 このように図2の工程では、エピタキシャル層を成長させる基板となるSOIウェーハを作製する工程はイオン注入剥離法によるものとしたが、SOIウェーハの作製はイオン注入剥離法に限らず、どんな方法で作製しても良い。例えば、シリコンウェーハに酸素イオンを注入した後に熱処理する方法(SIMOX法)を用いることもできる。また、貼り合わせ後、研削等により薄膜化してSOIウェーハを製造した場合にも本法は適用できる。
 ただし、イオン注入剥離法によれば、SOI層の膜厚均一性が非常に高いため、そのSOI層に後工程でエピタキシャル層を成長させることで、より高品質の厚膜のSOI層を有するSOIウェーハにすることができる。
 次に、図2の工程では剥離工程の後、工程(f)で結合熱処理工程を行うことができる。この工程は前記工程(d)(e)の密着工程および剥離熱処理工程で密着させたウエーハ同士の結合力では、そのままデバイス工程で使用するには弱い場合には、結合熱処理としてSOIウェーハ16に高温の熱処理を施し結合強度を十分なものとすることもできる。この熱処理は、例えば不活性ガス雰囲気下、1000~1200℃で30分から2時間の範囲で行われる。
 以上のような工程(a)~(f)を経て、800~1300nmの赤外線波長領域における赤外線反射率が20%以上40%以下であるSOIウェーハ16を作製する。
 次に、図2の工程(g)では、基板となるSOIウェーハ16のSOI層17上にエピタキシャル層14を成長させて、SOI層17を所望の厚さまで厚くする。エピタキシャル成長後のエピタキシャル層14は、エピタキシャル成長前のSOI層17と一体となってエピタキシャル成長後のSOIウェーハ16のSOI層17を形成する。また、このエピタキシャル成長させる前に、エピタキシャル成長装置内でSOIウェーハ16に水素アニールを施して、SOI層17表面の自然酸化膜を除去してからエピタキシャル成長させることもできる。
 このようなエピタキシャル層を成長させてSOI層を厚くするSOIウェーハの製造方法では、エピタキシャル成長が進むにつれて、SOI層の層厚が変化するため、赤外線反射率が変化してしまい、本来最適条件でのエピタキシャル成長が困難であるが、本発明の製造方法であれば、800~1300nmの赤外線波長領域における赤外線反射率が20%以上40%以下であるSOIウェーハを用いるため、SOI層の層厚が変化しても赤外線反射率が変化せず、さらに、正確に温度測定できる。これにより、最初にスリップフリー条件に設定したエピタキシャル成長条件が、成長開始から終了まで最適なままで、温度調整も精度良くエピタキシャル成長を行うことができる。
 また、上記のような赤外線反射率であれば、ポリッシュドシリコンウェーハと同程度の反射率であるため、ポリッシュドシリコンウェーハのスリップフリー条件のエピタキシャル成長条件をそのまま適用でき、SOI層やBOX層等の違いごとにスリップフリー条件を調べる必要が無いため、そのテスト時間の大幅な削減となる。さらに、ポリッシュドシリコンウェーハのスリップフリー条件は、エピタキシャル成長前の水素アニールの条件についても適用することができる。
 以上より、本発明の製造方法であれば、スリップフリーで高品質の厚いSOI層を有するSOIウェーハを生産性良く低コストで製造することができる。
 このエピタキシャル成長は、例えば図4に示すような枚葉式ランプ加熱型のエピタキシャル成長装置を用いて行われる。
 図4のエピタキシャル成長装置は、サセプター上にエピタキシャル成長させるSOIウェーハを載置し、石英チャンバー内にプロセスガスを導入し、エピタキシャル成長温度にまでハロゲンランプ(赤外線ランプ)によりウェーハが加熱され、その加熱されるウェーハ(あるいはサセプター裏面)の温度をパイロメーターにより測定して設定温度に維持しながらエピタキシャル成長させる。
 このとき、エピタキシャル層14を、SOIウェーハ16に照射する赤外線ランプの発光波長を800~1300nmに限定した枚葉式ランプ加熱装置を用いて成長させることが好ましい。
 赤外線ランプの発光波長を上記範囲に限定することで、波長の反射率に対する影響を低減することができるため、設定したエピタキシャル成長条件により近いエピタキシャル成長を行うことができる。
 また、エピタキシャル層14の膜厚としては、ガスの流量、反応温度、反応時間によって調節できるが、厚さ1μmより厚く、例えば2μmから5μm、あるいはそれ以上成長させることが好ましい。
 このような比較的厚膜のエピタキシャル層を形成して高温で保持される時間が増加しても、本発明の製造方法であれば、成長開始から終了まで最適な条件でエピタキシャル成長させることができるので、スリップのない良好なエピタキシャル成長を行うことができる。
 以上のような製造方法により、例えば図3に示すような、シリコン単結晶からなるベースウェーハ10と、ベースウェーハ10上のBOX層15と、BOX層15上のSOI層17とからなるSOIウェーハ16であって、BOX層15の厚さが30nm以下、又は、((340の正の整数倍)±20)nmであり、SOI層17がBOX層15上のシリコン単結晶層18と、シリコン単結晶層18上に成長されたエピタキシャル層14とからなるものであることを特徴とするSOIウェーハ16が製造される。
 このような厚さのBOX層のSOIウェーハであれば、800~1300nmの赤外線波長領域における赤外線反射率が20%以上40%以下となるため、シリコン単結晶層上にエピタキシャル層を形成する際に、赤外線反射率がほとんど変化せず、かつポリッシュドシリコンウェーハと同程度の反射率を示すため、ポリッシュドシリコンウェーハのスリップフリー条件をそのまま適用してスリップフリーのエピタキシャル層を確実に生産性良く成長させることができるため、高品質で低コストのSOIウェーハとなる。
 
 以下、本発明の実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
 
(実施例)
 まず、800~1300nmの赤外線波長領域における赤外線反射率が20%以上40%以下であるSOIウェーハC(SOI層:70nm、BOX層:340nm)、SOIウェーハD(SOI層:50nm、BOX層:30nm)、SOIウェーハE(SOI層:70nm、BOX層:360nm)、SOIウェーハF(SOI層:70nm、BOX層:320nm)の4枚を、エピタキシャル成長用SOIウェーハとしてイオン注入剥離法により用意した。
 次に、枚葉式ランプ加熱型のエピタキシャル成長装置(Centura)で、SOI層の上に5μmのシリコンエピタキシャル成長を行った。シリコンエピタキシャル成長は、1100℃、減圧106.6hPa、H:40slm、SiHCl:450sccmで行い、ボロン、リン等の不純物は導入しないノンドープエピとした。
 尚、加熱ランプのパワーバランスは、通常のポリッシュドシリコンウェーハについて最適な条件(Hアニール後にスリップフリーである条件)を決定し、エピタキシャル成長はそのバランスを維持したまま行った。また、エピタキシャル成長後のスリップの発生状況は、ウェーハストレス測定装置SIRD(Scanning InfraRed Depolarization)のスリップ強調マップ表示によって評価した。
 
(比較例)
 シミュレーションで赤外線反射率がSOI厚さで大きく変化すると認められるSOIウェーハA(SOI層:70nm、BOX層:145nm)を、エピタキシャル成長用SOIウェーハとして用意し、枚葉式ランプ加熱型のエピタキシャル成長装置(Centura)で、SOI層の上に5μmのシリコンエピタキシャル成長を行った。
 シリコンエピタキシャル成長条件は、実施例と同一条件としたが、ただし、加熱ランプのパワーバランスは、SOIウェーハAに対して最適な条件(Hアニール後にスリップフリーである条件)を決定し、エピタキシャル成長はそのバランスを維持したまま行った。また、エピタキシャル成長後のスリップの発生状況は、ウェーハストレス測定装置SIRD(Scanning InfraRed Depolarization)のスリップ強調マップ表示によって評価した。
 図8は、SOIウェーハAとSOIウェーハCのHアニール後のスリップ発生状況と、SOI層の上に5μmのエピタキシャル成長後のスリップ発生状況を示している。SOIウェーハA(比較例)は、エピタキシャル成長直前のHアニール時にはスリップが発生しない条件であっても、図6に示したようにSOI層厚が変化すると反射率も周期的に変動するために温度制御がうまくいかず、5μmのエピタキシャル成長後にスリップが発生した。一方、SOIウェーハC(実施例)は、エピタキシャル層厚が変化しても反射率はあまり変動しないために、温度制御が適正に行われスリップフリーの良好なエピタキシャル成長が行われた。
 また、SOIウェーハD,E,F(実施例)についてもSOIウェーハCと同様に、スリップフリーの良好なエピタキシャル成長が行われていた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (6)

  1.  BOX層上にSOI層を有するSOIウェーハのSOI層上にエピタキシャル層を成長させてSOI層を厚くするSOIウェーハの製造方法において、前記エピタキシャル層を成長させるSOIウェーハの800~1300nmの赤外線波長領域における赤外線反射率が20%以上40%以下のものを用いてエピタキシャル成長させることを特徴とするSOIウェーハの製造方法。
     
  2.  前記エピタキシャル層を成長させるSOIウェーハのBOX層の厚さを、30nm以下、又は、((340の正の整数倍)±20)nmとすることを特徴とする請求項1に記載のSOIウェーハの製造方法。
     
  3.  前記エピタキシャル層を成長させるSOIウェーハを、ボンドウェーハの表面から水素イオン、希ガスイオンの少なくとも一種類をイオン注入してウェーハ内部にイオン注入層を形成し、前記ボンドウェーハのイオン注入された側の表面とベースウェーハの表面とを、酸化膜を介して密着させ、次いで前記イオン注入層においてボンドウェーハを薄膜状に分離して作製することを特徴とする請求項1又は請求項2に記載のSOIウエーハの製造方法。
     
  4.  前記エピタキシャル層を、前記SOIウェーハに照射する赤外線ランプの発光波長を800~1300nmに限定した枚葉式ランプ加熱装置を用いて成長させることを特徴とする請求項1乃至請求項3のいずれか一項に記載のSOIウェーハの製造方法。
     
  5.  前記エピタキシャル層を、厚さ1μmより厚く成長させることを特徴とする請求項1乃至請求項4のいずれか一項に記載のSOIウェーハの製造方法。
     
  6.  シリコン単結晶からなるベースウェーハと、該ベースウェーハ上のBOX層と、該BOX層上のSOI層とからなるSOIウェーハであって、前記BOX層の厚さが30nm以下、又は、((340の正の整数倍)±20)nmであり、前記SOI層が前記BOX層上のシリコン単結晶層と、該シリコン単結晶層上に成長されたエピタキシャル層とからなるものであることを特徴とするSOIウェーハ。
PCT/JP2009/003573 2008-08-28 2009-07-29 Soiウェーハの製造方法およびsoiウェーハ WO2010023816A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09809473.3A EP2320450B1 (en) 2008-08-28 2009-07-29 Method for manufacturing soi wafer
US13/055,829 US8497187B2 (en) 2008-08-28 2009-07-29 Method for manufacturing SOI wafer and SOI wafer
CN200980131333.5A CN102119435B (zh) 2008-08-28 2009-07-29 Soi芯片的制造方法
KR1020117004285A KR101573812B1 (ko) 2008-08-28 2009-07-29 Soi 웨이퍼의 제조방법 및 soi 웨이퍼

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-219981 2008-08-28
JP2008219981A JP4666189B2 (ja) 2008-08-28 2008-08-28 Soiウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2010023816A1 true WO2010023816A1 (ja) 2010-03-04

Family

ID=41721000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003573 WO2010023816A1 (ja) 2008-08-28 2009-07-29 Soiウェーハの製造方法およびsoiウェーハ

Country Status (7)

Country Link
US (1) US8497187B2 (ja)
EP (1) EP2320450B1 (ja)
JP (1) JP4666189B2 (ja)
KR (1) KR101573812B1 (ja)
CN (1) CN102119435B (ja)
TW (1) TWI453819B (ja)
WO (1) WO2010023816A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447111B2 (ja) * 2010-04-07 2014-03-19 信越半導体株式会社 Soiウェーハの熱処理温度を求める方法及びランプ加熱型の気相成長装置における反応炉の温度管理方法
JP5440693B2 (ja) * 2010-04-08 2014-03-12 信越半導体株式会社 シリコンエピタキシャルウエーハ、シリコンエピタキシャルウエーハの製造方法、及び半導体素子又は集積回路の製造方法
JP6086031B2 (ja) * 2013-05-29 2017-03-01 信越半導体株式会社 貼り合わせウェーハの製造方法
JP6824115B2 (ja) 2017-06-19 2021-02-03 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
CN107265399A (zh) * 2017-07-03 2017-10-20 上海先进半导体制造股份有限公司 硅片密封腔体的制作方法
TWI751570B (zh) * 2020-06-02 2022-01-01 合晶科技股份有限公司 半導體基板及其形成方法
CN113764433A (zh) * 2020-06-02 2021-12-07 合晶科技股份有限公司 半导体基板及其形成方法
FR3119849B1 (fr) * 2021-02-12 2024-01-12 Soitec Silicon On Insulator Méthode de configuration pour ajuster les conditions de température d’un procédé d’épitaxie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211128A (ja) 1991-09-18 1993-08-20 Commiss Energ Atom 薄い半導体材料フィルムの製造方法
JP2006261346A (ja) * 2005-03-16 2006-09-28 Shin Etsu Handotai Co Ltd Soiウェーハの設計方法及びsoiウェーハ
WO2007083587A1 (ja) * 2006-01-23 2007-07-26 Shin-Etsu Handotai Co., Ltd. Soiウエーハの製造方法およびsoiウエーハ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468923B1 (en) * 1999-03-26 2002-10-22 Canon Kabushiki Kaisha Method of producing semiconductor member
JP2004247610A (ja) * 2003-02-14 2004-09-02 Canon Inc 基板の製造方法
JP4251054B2 (ja) * 2003-10-01 2009-04-08 株式会社デンソー 半導体装置の製造方法
EP1806769B1 (en) * 2004-09-13 2013-11-06 Shin-Etsu Handotai Co., Ltd. Soi wafer manufacturing method
JP5082299B2 (ja) * 2006-05-25 2012-11-28 株式会社Sumco 半導体基板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211128A (ja) 1991-09-18 1993-08-20 Commiss Energ Atom 薄い半導体材料フィルムの製造方法
JP2006261346A (ja) * 2005-03-16 2006-09-28 Shin Etsu Handotai Co Ltd Soiウェーハの設計方法及びsoiウェーハ
WO2007083587A1 (ja) * 2006-01-23 2007-07-26 Shin-Etsu Handotai Co., Ltd. Soiウエーハの製造方法およびsoiウエーハ
JP2007194539A (ja) 2006-01-23 2007-08-02 Shin Etsu Handotai Co Ltd Soiウエーハの製造方法およびsoiウエーハ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2320450A4

Also Published As

Publication number Publication date
TW201025444A (en) 2010-07-01
KR20110047201A (ko) 2011-05-06
JP2010056311A (ja) 2010-03-11
US20110117727A1 (en) 2011-05-19
JP4666189B2 (ja) 2011-04-06
CN102119435B (zh) 2014-06-18
EP2320450B1 (en) 2013-08-28
KR101573812B1 (ko) 2015-12-02
TWI453819B (zh) 2014-09-21
CN102119435A (zh) 2011-07-06
EP2320450A1 (en) 2011-05-11
US8497187B2 (en) 2013-07-30
EP2320450A4 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4666189B2 (ja) Soiウェーハの製造方法
JP4173884B2 (ja) ゲルマニウム・オン・インシュレータ(GeOI)型ウェーハの製造方法
TWI693640B (zh) 使半導體表面平整之製造方法
US7279700B2 (en) Semiconductor substrate and process for producing it
JP5168788B2 (ja) Soiウエーハの製造方法
JP5005097B2 (ja) 複合構造上でエピタキシーによって成長する層の製造方法
EP2128891B1 (en) Process for producing laminated substrate
JP2004247610A (ja) 基板の製造方法
US20170025306A1 (en) Methods for preparing layered semiconductor structures and related bonded structures
US20060030087A1 (en) Compliant substrate for a heteroepitaxial structure and method for making same
EP2519965B1 (en) Method for the preparation of a multi-layered crystalline structure
US20120280367A1 (en) Method for manufacturing a semiconductor substrate
JP2018085536A (ja) 多層半導体デバイス作製時の低温層転写方法
JP5310004B2 (ja) 貼り合わせウェーハの製造方法
US10796946B2 (en) Method of manufacture of a semiconductor on insulator structure
JPH10200079A (ja) 半導体部材の製造方法および半導体部材
JP5031190B2 (ja) 歪みSi層を有する半導体ウェーハの製造方法
JP2001085649A (ja) Soiウェーハおよびその製造方法
US20180005872A1 (en) Preparation of silicon-germanium-on-insulator structures

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131333.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13055829

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009809473

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117004285

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE