WO2010018768A1 - 金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置 - Google Patents

金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置 Download PDF

Info

Publication number
WO2010018768A1
WO2010018768A1 PCT/JP2009/063810 JP2009063810W WO2010018768A1 WO 2010018768 A1 WO2010018768 A1 WO 2010018768A1 JP 2009063810 W JP2009063810 W JP 2009063810W WO 2010018768 A1 WO2010018768 A1 WO 2010018768A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
metal recovery
exhaust gas
metal
collection
Prior art date
Application number
PCT/JP2009/063810
Other languages
English (en)
French (fr)
Inventor
正道 原
淳 五味
達夫 波多野
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN200980130242XA priority Critical patent/CN102112206A/zh
Priority to US13/058,243 priority patent/US8349283B2/en
Priority to KR1020117002995A priority patent/KR101291982B1/ko
Publication of WO2010018768A1 publication Critical patent/WO2010018768A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/005Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/869Multiple step processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0025Especially adapted for treating semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/102Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2045Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/706Organometallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a metal recovery method, a metal recovery apparatus, an exhaust system, and a film forming apparatus using the same, which recover a metal component in an unreacted source gas in an exhaust gas discharged from a film forming apparatus.
  • a process of forming a desired thin film on a surface of a semiconductor wafer, an LCD substrate or the like and a process of etching the film into a desired pattern are repeatedly performed. .
  • a silicon thin film, a silicon oxide thin film, and a silicon nitride thin film are reacted by reacting a predetermined processing gas (raw material gas) in a processing container during this process. Then, a metal thin film, a metal oxide thin film, a metal nitride thin film, or the like is formed on the surface of the object to be processed. At this time, an extra reaction by-product is generated simultaneously with the film formation reaction and is discharged together with the exhaust gas. Unreacted processing gas is also discharged.
  • a predetermined processing gas raw material gas
  • this reaction by-product or unreacted processing gas is released into the atmosphere as it is, it causes environmental pollution.
  • a trap mechanism is provided in the exhaust system extending from the processing vessel, thereby capturing reaction by-products and unreacted processing gas contained in the exhaust gas. It is supposed to be removed.
  • this trap mechanism when removing reaction by-products that condense (liquefy) and solidify (solidify) at room temperature, this trap mechanism is configured by providing a large number of fins in a casing having an exhaust gas inlet and an exhaust port as an example. ing. The fins are arranged along the flow direction of the exhaust gas. When the exhaust gas passes between the fins, the reaction by-products in the exhaust gas are attached to the fin surface and captured, and discarded. It is supposed to be.
  • this fin is cooled by a cooling medium or the like to increase the capture efficiency (for example, JP2001-214272A).
  • a scrubber device that sprays water or the like as a trap mechanism is used to recover the reaction by-products and unreacted gas components in the sprayed water by bringing the exhaust gas into contact with the sprayed water and collecting it. It has been broken.
  • a cartridge-type adsorption tower which is made detachable on the premise of disposal is provided, and reaction by-products and unreacted raw material gas components are adsorbed and removed from the exhaust gas. Some have done.
  • the adsorption tower having the lowered removal capacity is discarded and replaced with a new adsorption tower.
  • the reason for discarding in this way is that it is relatively difficult to regenerate useful metals from the recovered reaction byproducts when the source gas contains a halogen element such as fluorine (F) or chlorine (Cl). That's why.
  • exhaust gas discharged from the trap mechanism often contains harmful gas components.
  • This harmful gas component was detoxified by a detoxifying device provided on the downstream side (rear stage) of the trap mechanism, and then this exhaust gas was released into the atmosphere.
  • a thin film is formed by using a raw material (source gas) of an organometallic compound containing a noble metal such as silver, gold, or ruthenium. Forming is also done.
  • a noble metal such as silver, gold, or ruthenium.
  • Such noble metals are very expensive.
  • the raw materials of the organometallic compound as described above there are raw materials that contain C, H, O, etc. in addition to metal atoms but do not contain halogen elements such as F and Cl. Therefore, the application of the collection method based on the premise of the disposal of the collected material as described above has a problem that the expensive metal is wasted and the running cost is increased. .
  • a conventional trap mechanism using a scrubber device or fins must be provided with a separate detoxifying device for detoxifying exhaust gas exhausted from the trap mechanism, which increases the installation space. There was a problem such as.
  • An object of the present invention is to recover metal components from exhaust gas discharged from a processing container that forms a thin film on the surface of an object to be processed and to remove exhaust gas while having a simple structure with a small space.
  • An object of the present invention is to provide a metal recovery method, a metal recovery apparatus, an exhaust system, and a film forming apparatus using the same.
  • the metal recovery method recovers a metal component from exhaust gas discharged from a processing vessel that forms a thin film on the surface of an object to be processed using a source gas made of an organometallic compound source.
  • a metal recovery method for removing exhaust gas wherein the exhaust gas is brought into contact with a heated collecting member to thermally decompose unreacted source gas contained in the exhaust gas,
  • the exhaust gas when recovering metal components from the exhaust gas discharged from the processing vessel that forms a thin film on the surface of the object to be processed using the raw material gas made of the organometallic compound, the exhaust gas is heated and exhausted.
  • a detoxification process that oxidizes and detoxifies harmful gas components contained in the exhaust gas, so that a thin film is formed on the surface of the object to be processed using a space saving and simple structure recovery device.
  • the metal component can be recovered from the exhaust gas discharged from the processing container forming the gas, and the exhaust gas can be removed.
  • the recovered metal component can be reused without being discarded, the running cost can be reduced accordingly.
  • the reuse it is not necessary to perform a complicated refining operation, and it can be easily taken out as a raw material.
  • the detoxification step may be performed in the presence of an oxidizing gas.
  • the collection step may be performed in the presence of an oxidizing gas.
  • the temperature of the catalyst in the detoxification step may be in the range of 600 to 800 ° C.
  • the temperature of the collecting member in the collecting step may be in the range of 600 to 1000 ° C.
  • the catalyst may be made of one or more materials selected from the group consisting of MnO 2 , CaO, MgO, HfO 2 , and Ta 2 O 5 .
  • the oxidizing gas may be composed of one or more gases selected from the group consisting of O 2 , O 3 , H 2 O, and air.
  • the organometallic compound may be Ru 3 (CO) 12 and the gas discharged through the detoxification step may be CO 2 gas.
  • a metal recovery apparatus recovers metal components from exhaust gas discharged from a processing vessel that forms a thin film on the surface of an object to be processed using a raw material gas made of an organic metal compound.
  • a collection unit having a collection member configured to adhere; a detoxification unit having a catalyst that oxidizes and detoxifies harmful gas components contained in the exhaust gas that has passed through the collection unit; Is provided.
  • the exhaust gas is heated in the metal recovery device that recovers the metal components from the exhaust gas discharged from the processing container that forms a thin film on the surface of the object to be processed using the raw material gas made of the organic metal compound.
  • the collection unit and the abatement unit may be sequentially arranged in a casing along a flow direction of the exhaust gas.
  • the collection unit may have a collection member heating mechanism for heating the collection member.
  • the abatement unit may have a catalyst heating mechanism for heating the catalyst.
  • the collection member may include a plurality of collection pieces housed in a casing.
  • the collection member may have a plurality of wire meshes arranged along the flow direction of the exhaust gas.
  • the collection member may include a plurality of punching plates having vent holes arranged along the flow direction of the exhaust gas.
  • the metal recovery apparatus may have an oxidizing gas supply mechanism that supplies an oxidizing gas toward the collection unit.
  • the metal recovery apparatus may have an oxidizing gas supply mechanism that supplies an oxidizing gas toward the abatement unit.
  • the temperature of the catalyst may be in the range of 600 to 800 ° C.
  • the temperature of the collecting member may be in the range of 600 to 1000 ° C.
  • the catalyst may be made of one or more materials selected from the group consisting of MnO 2 , CaO, MgO, HfO 2 , and Ta 2 O 5 .
  • the oxidizing gas may be composed of one or more gases selected from the group consisting of O 2 , O 3 , H 2 O, and air.
  • the organometallic compound may be Ru 3 (CO) 12 and the gas discharged from the abatement unit may be CO 2 gas.
  • An exhaust system is connected to a processing vessel that forms a thin film on the surface of an object to be processed using a raw material gas made of an organic metal compound, and a metal is discharged from the exhaust gas discharged from the processing vessel.
  • An exhaust system that recovers components and removes exhaust gas, and is provided with an exhaust passage connected to an exhaust port of the processing container, a vacuum pump interposed in the exhaust passage, and an exhaust passage. Any of the above-described metal recovery apparatuses according to one embodiment of the present invention.
  • a film forming apparatus is a film forming apparatus for performing a film forming process on an object to be processed, and a processing container that can be evacuated, and the object to be processed in the processing container.
  • FIG. 1 is a configuration diagram schematically showing a film forming apparatus having a metal recovery apparatus according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing an example of the configuration inside the metal recovery apparatus.
  • FIG. 3 is a flowchart for explaining the metal recovery method according to the consistent embodiment of the present invention.
  • FIG. 4A is a schematic diagram for explaining a general situation in which a raw material gas is pyrolyzed and a metal component is collected.
  • FIG. 4B is a schematic diagram for explaining a general situation where harmful gas is removed.
  • FIG. 5A is a schematic diagram for explaining a situation where Ru 3 (CO) 12 that is a source gas is thermally decomposed and a metal component is collected.
  • FIG. 5B is a schematic diagram for explaining a situation where harmful gas generated by thermally decomposing Ru 3 (CO) 12 as a raw material gas is removed.
  • FIG. 6A is a diagram schematically showing a configuration of a modification of the collection unit.
  • FIG. 6B is a diagram schematically showing a configuration of a modification of the collection unit.
  • FIG. 1 is a schematic configuration diagram showing a film forming apparatus having a metal recovery device
  • FIG. 2 is an enlarged cross-sectional configuration diagram showing an example in the metal recovery device.
  • Ru 3 (CO) 12 that is a carbonyl-based organometallic compound is used as a raw material for an organometallic compound
  • CO carbon monoxide
  • a film forming apparatus 2 includes a film forming apparatus main body 4 that actually performs a film forming process on a semiconductor wafer W as an object to be processed, and the film forming apparatus main body 4.
  • the material gas supply system 6 for supplying the film forming material gas and the exhaust system 8 for exhausting the exhaust gas from the film forming apparatus main body 4 are mainly configured.
  • the film forming apparatus main body 4 has a cylindrical processing container 10 made of, for example, an aluminum alloy.
  • a holding mechanism 12 that holds a semiconductor wafer W as an object to be processed is provided.
  • the holding mechanism 12 includes a disk-shaped mounting table 16 erected from a container bottom by a support column 14, and the wafer W is mounted on the mounting table 16.
  • the mounting table 16 is made of a ceramic material such as AlN (aluminum nitride).
  • a heating mechanism 18 made of, for example, tungsten wire is provided in the mounting table 16 so as to heat the wafer W.
  • the heating mechanism 18 is not limited to a tungsten wire or the like, and for example, a heating lamp may be used.
  • An exhaust port 20 is provided at the bottom of the processing container 10, and the exhaust system 8 is connected to the exhaust port 20 so that the atmosphere in the processing container 10 can be evacuated.
  • the exhaust system 8 will be described later.
  • An opening 22 for carrying in and out the wafer W is formed on the side wall of the processing container 10, and the opening 22 is provided with a gate valve 24 for opening and closing the opening.
  • a gas introduction mechanism 28 including, for example, a shower head 26 is provided on the ceiling portion of the processing container 10 so that necessary gas is supplied into the processing container 10 from a gas ejection hole 30 provided on the lower surface. It has become.
  • the gas inlet 26A of the shower head 26 has the source gas supply system 6 and other necessary gas, the gas supply system is connected.
  • the raw material gas and other gases may be mixed in the shower head 26, or may be separately introduced into the shower head 26 and mixed separately in the processing vessel 10.
  • the shower head 26 is used as the gas introduction mechanism 28, but a simple nozzle or the like may be used instead.
  • the source gas supply system 6 has a source tank 32 for storing a solid source or a liquid source.
  • the raw material tank 32 contains, for example, a solid raw material 34 that is a raw material of the organometallic compound.
  • Ru 3 (CO) 12 is used as described above.
  • the solid material 34 generally has a characteristic that vapor pressure is very low and evaporation is difficult.
  • a liquid raw material in which a raw material gas is formed by bubbling or the like may be used.
  • One end is connected to the gas outlet 36 provided in the ceiling portion of the raw material tank 32, and the other end is connected to the gas inlet 26A of the shower head 26 of the film forming apparatus body 4 to provide a raw material passage 38.
  • the raw material gas generated in the raw material tank 32 can be supplied.
  • An opening / closing valve 40 is interposed in a portion of the raw material passage 38 close to the raw material tank 32.
  • a carrier gas pipe 42 for supplying a carrier gas to the raw material tank 32 is connected to the lower surface side of the raw material tank 32.
  • a flow rate controller 44 such as a mass flow controller and a carrier gas on / off valve 46 are sequentially provided in the middle of the carrier gas pipe 42 to supply the carrier gas while controlling the flow rate to heat the solid material 34. By doing so, the solid raw material 34 is vaporized to form a raw material gas.
  • a porous plate 48 is installed in the vicinity of the side where the carrier gas pipe 42 is installed to hold the solid raw material 34 on the porous plate 48, and the carrier gas pipe.
  • the carrier gas supplied from 42 is uniformly supplied into the raw material tank 32 through the holes formed in the porous plate 48.
  • CO (carbon monoxide) gas is used as the carrier gas.
  • the raw material tank 32 is provided with a tank heating mechanism 50 for heating the raw material tank 32 so as to cover the entire tank, thereby promoting the vaporization of the solid raw material 34.
  • the heating temperature of the solid raw material 34 is a temperature lower than the decomposition temperature.
  • a bypass pipe 52 is provided so as to connect the upstream side of the carrier gas pipe 42 with respect to the carrier gas on-off valve 46 and the downstream side of the on-off valve 40 of the raw material passage 38.
  • the bypass pipe 52 is provided with a bypass opening / closing valve 54 so that the carrier gas can flow by bypassing the raw material tank 32 as necessary.
  • the raw material passage 38 is provided with a heating mechanism (not shown) such as a tape heater, which is heated to prevent the raw material gas from solidifying.
  • the exhaust system 8 has an exhaust passage 60 connected to the exhaust port 20 of the processing container 10, and the atmosphere in the processing container 10 is exhausted along the exhaust passage 60. Specifically, a pressure regulating valve 62, a vacuum pump 64, and a metal recovery device 66 are sequentially provided in the exhaust passage 60 from the upstream side toward the downstream side.
  • the pressure adjusting valve 62 is constituted by a butterfly valve, for example, and has a function of adjusting the pressure in the processing vessel 10.
  • the vacuum pump 64 is, for example, a combination of a turbo molecular pump and a dry pump, and can evacuate the atmosphere in the processing vessel 10.
  • the metal recovery device 66 exposes the exhaust gas flowing in the exhaust passage 60 to a high temperature, decomposes the unreacted raw material gas contained in the exhaust gas, recovers the metal component, and further in the exhaust gas Oxidizes harmful components and eliminates them.
  • the unreacted source gas that is, Ru 3 (CO) 12 gas is recovered. This configuration will be described later.
  • an opening / closing valve 68 is provided in each of the exhaust passage 60 upstream of the metal recovery device 66 and the exhaust passage 60 downstream of the metal recovery device 66. During maintenance of the metal recovery device 66, the metal recovery device 66 can be shut off from the exhaust passage 60 side by closing the on-off valve 68.
  • the metal recovery device 66 has an outer shell formed by a casing 70 formed into a cylindrical shape by, for example, stainless steel.
  • a gas inlet 72 is formed in the upper part of the housing 70 and a gas outlet 74 is formed in the lower part.
  • the gas inlet 72 is hermetically connected to one side of the exhaust passage 60 via a seal member 76 such as an O-ring by a flange portion 72A formed here.
  • the gas outlet 74 is hermetically connected to the other side of the exhaust passage 60 through a seal member 78 such as an O-ring by a flange portion 74A formed here.
  • the exhaust gas is exposed to a high temperature, and the unreacted source gas contained in the exhaust gas is thermally decomposed to capture the metal components contained in the source gas.
  • a collection unit 80 that collects and a detoxification unit 82 that oxidizes and removes harmful gas components contained in the exhaust gas that has passed through the collection unit 80 are arranged in order along the flow direction of the exhaust gas. Has been.
  • the collection unit 80 has a collection member 84 for adhering the metal component generated by the thermal decomposition.
  • the collection member 84 has a plurality (a large number) of collection pieces 86 formed in a spherical shape, a lump shape, or a block shape.
  • the collection piece 86 is accommodated in a cylindrical casing 88 so that it can be taken out.
  • the casing 88 is made of, for example, stainless steel.
  • a large number of ventilation holes 90 and 92 for passing exhaust gas are formed in the ceiling and bottom of the casing 88, respectively, so that the exhaust gas can pass through the casing 88.
  • a collecting member heating mechanism 94 made of, for example, a tungsten heater is provided on the outer periphery of the casing 88 to heat the collecting member 84, and the collecting piece 86 is moved to a predetermined temperature, for example, 600. It can be heated to temperatures in the range of ⁇ 1000 ° C.
  • the diameter of the collection piece 86 may be set to 10 mm or more.
  • a ceramic piece made of silicon piece, aluminum nitride, alumina, or the like can be used in addition to a metal piece such as stainless steel.
  • the abatement unit 82 disposed downstream of the collection unit 80 is a catalyst that oxidizes and removes harmful gas components contained in the exhaust gas flowing through the collection unit 80. 100.
  • the catalyst 100 has a spherical shape, a block shape, or a block shape.
  • the catalyst 100 is accommodated in a cylindrical casing 102 so that it can be taken out.
  • the casing 102 is made of, for example, stainless steel.
  • a large number of vent holes 104 and 106 for allowing exhaust gas to pass therethrough are formed in the ceiling and bottom of the casing 102, respectively, and the exhaust gas that has passed through the collection unit 80 passes through the casing 102. You can pass through.
  • a catalyst heating mechanism 108 made of, for example, a tungsten heater is provided on the outer periphery of the casing 102 to heat the catalyst 100.
  • the catalyst 100 is kept at a predetermined temperature, for example, within a range of 600 to 800 ° C. It can be heated to a temperature of
  • the diameter thereof is preferably set to 5 mm or more.
  • the catalyst 100 can be used MnO 2, CaO, MgO, HfO 2, Ta 2 O 5 or the like.
  • the casing 70 is connected to an oxidizing gas supply mechanism 110 for supplying oxidizing gas into the casing 70.
  • the oxidizing gas supply mechanism 110 includes a shower head 112 formed in a circular ring shape provided at a ceiling portion in the casing 70, that is, an uppermost stream portion in the casing 70 of the exhaust gas flow. Have.
  • the shower head 112 is connected to a gas flow path 116 provided with an on-off valve 114 in the middle.
  • the flow rate-controlled oxidizing gas is supplied from the plurality of gas injection holes 112 ⁇ / b> A formed in the shower head 112 toward substantially the entire upstream side of the collection unit 80.
  • the oxidizing gas supplied from the shower head 112 flows not only into the collection unit 80 but also into the abatement unit 82 located downstream thereof.
  • the shower head 112 of the oxidizing gas supply mechanism 110 is installed between the collection unit 80 and the abatement unit 82.
  • This oxidizing gas O 2 can be used.
  • the structure of the oxidizing gas supply mechanism 110 is not limited to the above structure.
  • a passage heater 120 such as a tape heater is provided in the exhaust passage 60 from the exhaust port 20 of the processing vessel 10 to the metal recovery device 66 and each member interposed in the middle thereof.
  • the exhaust gas flowing in the exhaust passage 60 is heated to about 110 ° C., for example, depending on the raw material used, and unreacted source gas in the unreacted exhaust gas is condensed (solidified) on the way. ) To prevent.
  • the overall operation of the film forming apparatus 2 configured as described above, for example, control of start of gas supply, stop of gas supply, process temperature, process pressure, supply of oxidizing gas in the metal recovery device 66, etc. For example, it is performed by the control device 122 formed of a computer.
  • a computer-readable program necessary for this control is stored in a storage medium 124.
  • a storage medium 124 a flexible disk, a CD (Compact Disc), a CD-ROM, a hard disk, a flash memory, a DVD, or the like is used. Can do.
  • an auxiliary trap mechanism for auxiliaryly collecting a part of the unreacted raw material gas may be installed upstream of the metal recovery device 66.
  • FIG. 3 is a process diagram for explaining a metal recovery method
  • FIGS. 4A and 4B are schematic diagrams showing a general situation in which a raw material gas is thermally decomposed to collect metal components and remove harmful gases
  • FIG. 5A is a schematic diagram showing a situation where Ru 3 (CO) 12 which is a raw material gas is thermally decomposed to collect metal components and remove harmful gases.
  • the vacuum pump 64 of the exhaust system 8 is continuously driven to evacuate the processing container 10 to a predetermined pressure.
  • the semiconductor wafer W on the mounting table 16 is maintained at a predetermined temperature by the heating mechanism 18.
  • the side wall of the processing vessel 10 and the shower head 26 are also maintained at predetermined temperatures by a vessel-side heating mechanism (not shown).
  • the entire raw material gas supply system 6 is heated to a predetermined temperature in advance by a tank heating mechanism 50 or a passage heating mechanism (not shown).
  • the carrier gas (CO) whose flow rate is controlled is supplied into the raw material tank 32 via the carrier gas pipe 42.
  • the solid material 34 stored in the inside is heated and vaporized, thereby generating a material gas.
  • the generated raw material gas flows in the raw material passage 38 toward the downstream side together with the carrier gas.
  • This source gas is introduced from the shower head 26 of the film forming apparatus body 4 into the processing container 10 in a reduced pressure atmosphere.
  • a Ru metal thin film is formed on the wafer W by, for example, CVD (Chemical Vapor Deposition).
  • the process pressure can be set to about 0.1 Torr (13.3 Pa)
  • the wafer temperature can be set to about 200 to 250 ° C.
  • the temperature of the sidewall of the processing vessel 10 can be set to about 75 to 80 ° C.
  • Ru 3 (CO) 12 which is a solid raw material 34 is a raw material which has a very low vapor pressure and hardly evaporates (vaporizes), and contributes very little to the film forming reaction, and is about 90% of the raw material.
  • the gas flows down through the exhaust passage 60 of the exhaust system 8 together with the carrier gas CO in an unreacted state.
  • the reaction at this time is represented by the following chemical formula, and CO (carbon monoxide), which is the same gas type as the carrier gas, is generated by the reaction.
  • the exhaust gas flowing down the exhaust passage 60 passes through the pressure regulating valve 62, the vacuum pump 64, and the metal recovery device 66 in order, and is then diffused into the atmosphere.
  • the metal component of the unreacted raw material gas is recovered in the metal recovery device 66, only the CO gas remains as the exhaust gas. Therefore, the CO gas is further oxidized in the metal recovery device 66. It becomes CO 2 and is released into the atmosphere.
  • step S1 the exhaust gas is exposed to a high temperature, and the unreacted source gas contained in the exhaust gas is thermally decomposed to collect the metal component contained in the source gas into the collecting member 84.
  • step S2 an abatement process for oxidizing and detoxifying harmful gas components contained in the exhaust gas by bringing the exhaust gas having passed through the collecting process into contact with the catalyst 100 ) And are performed.
  • the exhaust gas flowing in the exhaust passage 60 is introduced into the housing 70 from the gas inlet 72 provided in the ceiling portion of the metal recovery device 66 and flows into the collection unit 80, and then into the casing 88. It flows toward the downstream side in contact with the surfaces of a large number of collecting pieces 86 constituting the collecting member 84 accommodated in the container.
  • the collection piece 86 is heated by the collection member heating mechanism 94 to a predetermined temperature, that is, within a range of 600 to 1000 ° C. which is a temperature at which unreacted source gas can be thermally decomposed.
  • the source gas, that is, Ru 3 (CO) 12 is thermally decomposed into “Ru” and “CO”. And among these, "Ru" which is a metal component adheres to the surface of the collection piece 86 made into the said high temperature state, and is collected.
  • FIGS. 4A and 5A The situation at this time is schematically shown in FIGS. 4A and 5A.
  • a source gas in which a ligand 132 is bonded to a metal atom 130 is exposed to a high temperature. Then, it is thermally decomposed and separated into the metal atom 130 and the ligand 132, and the metal atom 130 adheres to the surface of the high temperature collection piece 86.
  • the ligand includes any one or more of carbon (C), oxygen (O), and hydrogen (H), preferably any two or more, and fluorine or chlorine. Halogen elements such as are not included.
  • Ru 3 (CO) 12 is used as a raw material and CO (carbon monoxide) is used as a carrier gas, so that Ru is separated as a metal component, and The ligand is desorbed to generate CO, and the carrier gas, CO, remains as it is.
  • CO carbon monoxide
  • the exhaust gas from which the metal component is collected in the collection unit 80 passes through the collection unit 80 and is then subjected to downstream detoxification in a state containing “CO” which is a harmful component. It flows into the unit 82.
  • the exhaust gas flows in the abatement unit 82 while being in contact with a catalyst made of, for example, MnO 2 or CaO heated to a high temperature, for example, 600 to 800 ° C. by the catalyst heating mechanism 108.
  • O 2 gas is introduced as an oxidizing gas into the casing 70 from the oxidizing gas supply mechanism 110 provided on the ceiling of the casing 70, so that the O 2 gas is mixed in the exhaust gas. Yes. Therefore, the toxic gas, CO, is promoted by the catalytic action of the catalyst 100 in a high temperature state, and the oxidation reaction with the O 2 gas is promoted to be detoxified as CO 2 .
  • the ligand 132 containing C, O, and H is oxidized with O 2 gas to be detoxified as CO 2 , H 2 O, and O 2 .
  • the CO component is oxidized to CO 2 and detoxified.
  • the exhaust gas contains only gas components that are safe to the human body even if released into the atmosphere, such as CO 2 , H 2 O, O 2, etc. Therefore, this metal recovery device 66 The exhaust gas exhausted from the air is released into the atmosphere as it is.
  • the metal component adhering to the collection piece 86 is recovered and reused by periodically exchanging the collection unit 80. Moreover, since there is nothing adhering to the catalyst 100 of the abatement unit 80, this catalyst 100 is repeatedly used semipermanently.
  • a processing container for forming a thin film on the surface of an object to be processed for example, a semiconductor wafer W, using a source gas of an organometallic compound, for example, a source gas made of Ru 3 (CO) 12.
  • a source gas of an organometallic compound for example, a source gas made of Ru 3 (CO) 12.
  • the exhaust gas is brought into contact with a heated collecting member to thermally decompose the unreacted source gas contained in the exhaust gas into the source gas.
  • a collecting step for adhering the contained metal component to the collecting member, and contacting exhaust gas that has passed through the collecting step with the catalyst 100 oxidizes and removes harmful gas components contained in the exhaust gas.
  • a decontamination process so that metal components can be circulated from the exhaust gas discharged from the processing vessel that forms a thin film on the surface of the object to be processed, while using a space-saving and simple metal recovery device. And, and, it is possible to detoxify the exhaust gas.
  • the recovered metal component is reused without being discarded, the running cost can be reduced accordingly.
  • the reuse it is not necessary to perform a complicated refining operation, and it can be easily taken out as a raw material.
  • a metal recovery apparatus that recovers metal components from exhaust gas discharged from a processing vessel that forms a thin film on the surface of the object to be processed using a raw material gas made of an organometallic compound
  • the exhaust gas is exposed to a high temperature.
  • FIG. 6A and 6B are diagrams schematically showing a configuration of a modification of the collection unit.
  • constituent parts that can be configured identically to the constituent parts shown in FIG.
  • FIG. 6A shows a modification of the collection unit 80, in which a plurality of punching plates 140 are used as the collection member 84.
  • a plurality of (many) vent holes 140A are formed over the entire surface.
  • the punching plates 140 are arranged at a predetermined pitch along the exhaust gas flow direction.
  • the punching plates 140 adjacent to each other in the vertical direction are arranged such that the vent holes 140A are displaced in the horizontal direction or the front-rear direction in the horizontal plane so that the exhaust gas does not flow linearly. Efficiently contacts the surface of the punching plate 140.
  • a collecting member heating mechanism 94 is provided on a side portion of each punching plate 140 so that the punching plate 140 can be heated.
  • a material of the punching plate 140 for example, stainless steel, ceramic or the like can be used. Also according to the first modification, it is possible to obtain the same effects as the effects described in the above-described embodiment, and it is possible to attach and collect metal components in the exhaust gas.
  • FIG. 6B shows another modification of the collection unit 80, in which a plurality of wire nets 146 are used as the collection member 84.
  • the plurality of wire meshes 146 are arranged at a predetermined pitch along the flow direction of the exhaust gas.
  • a collecting member heating mechanism 94 is provided on the side portion of each wire mesh 146 so that the wire mesh 146 can be heated.
  • a material of the wire mesh 146 for example, stainless steel, tungsten, or the like can be used. Also according to the second modified example, the same effect as the effect described in the above embodiment can be obtained, and the metal component in the exhaust gas can be attached and collected.
  • the case where MnO 2 or CaO is used as the catalyst 100 has been described as an example.
  • the present invention is not limited thereto, and examples of the catalyst 100 include MnO 2 , CaO, MgO, HfO 2 , One or more materials selected from the group consisting of Ta 2 O 5 can be used.
  • O 2 gas is used as the oxidizing gas.
  • the present invention is not limited to this, and is selected from the group consisting of O 2 , O 3 , H 2 O, and air (mixed gas of oxygen and nitrogen). One or more gases can be used.
  • the case where Ru 3 (CO) 12 is used as the raw material of the organometallic compound has been described as an example.
  • the present invention is not limited to this, and the raw material of the organometallic compound does not include a halogen element.
  • Each of the above raw materials contains a ligand containing, for example, C, O, and H in addition to the metal component.
  • a halogen element such as fluorine or chlorine is contained in the raw material because a complicated purification process (work) is required.
  • a metal that is easily oxidized may be recovered as a metal oxide, such as Mn or Ta, in this case, as shown in FIG.
  • a reducing gas may be used in addition to the raw material gas for forming the metal film. In this case, H 2 gas or the like is used as the reducing gas, and this H 2 gas is also described above. To be abolished.
  • the semiconductor wafer includes a silicon substrate and a compound semiconductor substrate such as GaAs, SiC, GaN, and the like, and is not limited to these substrates.
  • the present invention can also be applied to glass substrates, ceramic substrates, and the like used in display devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Treating Waste Gases (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 金属回収装置(66)は、有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する処理容器(10)から排出される排気ガス中から、金属成分を回収して排気ガスを除害する。金属回収装置は、前記排気ガスを加熱して排気ガス中に含まれる未反応の原料ガスを熱分解させて原料ガス中に含まれている金属成分を付着させる捕集部材を有する捕集ユニット(80)と、捕集ユニットを通過した排気ガス中に含まれる有害なガス成分を酸化して除害する触媒(100)を有する除害ユニット(82)と、を備える。

Description

金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置
 本発明は、成膜装置より排出される排気ガス中の未反応の原料ガス中の金属成分を回収する金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置に関する。
 一般に、ICなどの集積回路や論理素子を形成するためには、半導体ウエハ、LCD基板等の表面に、所望の薄い成膜を施す工程やこれを所望のパターンにエッチングする工程が繰り返して行なわれる。
 ところで、成膜工程を例にとると、この工程中、所定の処理ガス(原料ガス)を処理容器内にて反応させることによってシリコンの薄膜、シリコンの酸化物の薄膜、シリコンの窒化物の薄膜、金属の薄膜、金属の酸化物の薄膜、金属の窒化物の薄膜等を被処理体の表面に形成する。この際、この成膜反応と同時に余分な反応副生成物が発生し、これが排気ガスと共に排出されてしまう。また、未反応の処理ガスも排出される。
 この反応副生成物や未反応の処理ガスは、そのまま大気中に放出されると環境汚染等の原因になる。これを防止するため、一般的には、処理容器から延びる排気系にトラップ機構を介設し、これにより排気ガス中に含まれている反応副生成物や未反応の処理ガス等を捕獲して除去するようになっている。
 このトラップ機構の構成は、捕獲除去すべき反応副生成物等の特性に応じて種々提案されている。例えば常温で凝縮(液化)、凝固(固化)する反応副生成物を除去する場合、このトラップ機構はその一例として排気ガスの導入口と排出口を有する筐体内に多数のフィンを設けて構成されている。そして、このフィンは、排気ガスの流れる方向に沿って配列されており、これらのフィン間を排気ガスが通過する時に排気ガス中の反応副生成物等をフィン表面に付着させて捕獲し、廃棄するようになっている。
 また、このフィンを冷却媒体等により冷却して捕獲効率を上げることも行なわれている(例えばJP2001-214272A)。また、トラップ機構として水等を散布するスクラバー装置を用い、排気ガスをこの散布された水と接触させて反応副生成物や未反応ガス成分を、散布水に解かし込んで回収する回収方法も行われている。
 また他のトラップ機構としては、廃棄を前提とした着脱可能になされたカートリッジ形の吸着塔を設け、これに反応副生成物や未反応の原料ガス成分を吸着させて排気ガスから除去するようにしたものもある。このトラップ機構においては、吸着塔の除去能力が低下すると、当該除去能力が低下した吸着塔は廃棄され、新たな吸着塔と交換される。このように廃棄する理由は、原料ガス中にフッ素(F)や塩素(Cl)等のハロゲン元素が含まれている場合、回収した反応副生成物から有用な金属を再生するのが比較的困難だからである。
 そして、トラップ機構から排出された排気ガス中には、有害ガス成分が含まれている場合が多い。この有害ガス成分はトラップ機構の下流側(後段)に設けた除害装置にて除害され、その後、この排気ガスは大気中に放出されていた。
 また、最近にあっては、配線抵抗やコンタクト抵抗の低減化等の目的のため、銀、金、ルテニウム等の貴金属を含む有機金属化合物の原料(ソースガス)を用いて薄膜を成膜装置で形成することも行われている。このような貴金属は、非常に高価である。また、前述したような有機金属化合物の原料の中には、金属原子の他にC、H、O等は含むがFやClなどのハロゲン元素は含まない原料もある。したがって、前述したような回収物の廃棄を前提とした捕集方法を適用することは、高価な金属を無駄に廃棄してしまうことになるので、ランニングコストの高騰を招く、といった問題があった。
 このため、例えばJP2001-342566Aでは、上記した貴金属や高価な金属類の有効利用を図るために、処理容器から排出される排気ガスを冷却することによりガスを凝縮等させて未反応の原料を含む反応副生成物を回収し、更に、この反応副生成物を精製することにより未反応原料を得るようにした、回収方法も提案されている。しかしながら、JP2001-342566Aに開示した回収方法では、未反応の原料と共に反応副生成物も一緒に回収されるため、その後に、未反応の原料を取り出す精製作業を必ず行わなければならず、作業は煩雑化する、といった問題があった。
 更には、従来のスクラバー装置やフィン等を用いたトラップ機構は、これより排出される排気ガスを除害する除害装置を必ず別体で設けなければならず、そのため、設置スペースも大きくなってしまう、といった問題があった。
 本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、省スペースで簡単な構造でありながら、被処理体の表面に薄膜を形成する処理容器から排出される排気ガス中から金属成分を回収し且つ排気ガスを除害することが可能な金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置を提供することにある。
 本発明の一態様による金属回収方法は、有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する処理容器より排出される排気ガス中から、金属成分を回収して排気ガスを除害する金属回収方法であって、前記排気ガスを加熱された捕集部材に接触させることにより該排気ガス中に含まれる未反応の前記原料ガスを熱分解させ、前記原料ガス中に含まれている金属成分を前記捕集部材に付着させる捕集工程と、前記捕集工程を経た前記排気ガスを触媒に接触させることにより前記排気ガス中に含まれる有害なガス成分を酸化して除害する除害工程と、を有する。
 このように、有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する処理容器から排出される排気ガス中から金属成分を回収するに際して、排気ガスを加熱して排気ガス中に含まれる未反応の原料ガスを熱分解させて原料ガス中に含まれている金属成分を捕集部材に付着させる捕集工程と、捕集工程を経た排気ガスを触媒に接触させることにより排気ガス中に含まれる有害なガス成分を酸化して除害する除害工程と、を有するようにしたので、省スペースで簡単な構造の回収装置を用いて、被処理体の表面に薄膜を形成する処理容器から排出される排気ガス中から金属成分を回収し、且つ、排気ガスを除害することができる。
 また、回収された金属成分は、廃棄されることなく再利用され得るので、その分、ランニングコストを削減することができる。また、再利用に関しては、複雑な精製作業を行う必要がなく、簡易に原料として取り出すことができる。
 本発明の一態様による金属回収方法において、前記除害工程は、酸化ガスの存在下で行われるようにしてもよい。
また、本発明の一態様による金属回収方法において、前記捕集工程は、酸化ガスの存在下で行われるようにしてもよい。
 さらに、本発明の一態様による金属回収方法において、前記除害工程の前記触媒の温度は600~800℃の範囲内であるようにしてもよい。
 さらに、前記捕集工程の前記捕集部材の温度は600~1000℃の範囲内であるようにしてもよい。
 さらに、本発明の一態様による金属回収方法において、前記触媒は、MnO、CaO、MgO、HfO、Taよりなる群から選択される1以上の材料よりなっていてもよい。
 さらに、本発明の一態様による金属回収方法において、前記酸化ガスは、O、O、HO、空気よりなる群から選択される1以上のガスよりなっていてもよい。
 さらに、本発明の一態様による金属回収方法において、前記有機金属化合物は、Ru(CO)12、TEMAT(テトラキスエチルメチルアミノチタニウム)、TAIMATA、Cu(EDMDD)、Ru(CO)12、W(CO)、TaCl、TMA(トリメチルアルミニウム)、TBTDET(ターシャリーブチルイミド-トリ-ジエチルアミドタンタル)、PET(ペンタエトキシタンタル)、TMS(テトラメチルシラン)、TEH(テトラキスエトキシハフニウム)、CpMn[=Mn(C]、(MeCp)Mn[=Mn(CH]、(EtCp)Mn[=Mn(C]、(i-PrCp)Mn[=Mn(C]、MeCpMn(CO)[=(CH)Mn(CO)]、(t-BuCp)Mn[=Mn(C]、CHMn(CO)、Mn(DPM)[=Mn(C1119]、Mn(DMPD)(EtCp)[=Mn(C11)]、Mn(acac)[=Mn(C]、Mn(DPM)[=Mn(C1119]、Mn(acac)[=Mn(C]よりなる群から選択されるハロゲン元素を含まない1以上の材料よりなっていてもよい。
 さらに、本発明の一態様による金属回収方法において、前記有機金属化合物はRu(CO)12であり、前記除害工程を経て排出されるガスはCOガスであってもよい。
 本発明の一態様による金属回収装置は、有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する処理容器から排出される排気ガス中から、金属成分を回収して排気ガスを除害する金属回収装置であって、前記排気ガスを加熱して該排気ガス中に含まれる未反応の前記原料ガスを熱分解させて前記原料ガス中に含まれている金属成分を付着させるように構成された捕集部材を有する捕集ユニットと、前記捕集ユニットを通過した前記排気ガス中に含まれる有害なガス成分を酸化して除害する触媒を有する除害ユニットと、を備える。
 このように、有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する処理容器から排出される排気ガス中から金属成分を回収する金属回収装置において、排気ガスを加熱して排気ガス中に含まれる未反応の原料ガスを熱分解させて原料ガス中に含まれている金属成分を付着させる捕集部材を有する捕集ユニットと、捕集ユニットを通過した排気ガス中に含まれる有害なガス成分を酸化して除害する触媒を有する除害ユニットとを一体化させるようにしたので、設置スペースを大幅に削減することができる。
 本発明の一態様による金属回収装置において、前記捕集ユニットと前記除害ユニットとは筐体内に、前記排気ガスの流れ方向に沿って順に配列されていてもよい。
 また、本発明の一態様による金属回収装置において、前記捕集ユニットは、前記捕集部材を加熱する捕集部材加熱機構を有するようにしてもよい。
 さらに、本発明の一態様による金属回収装置において、前記除害ユニットは、前記触媒を加熱する触媒加熱機構を有するようにしてもよい。
 さらに、本発明の一態様による金属回収装置において、前記捕集部材は、ケーシング内に収容された複数の捕集片と、を有するようにしてもよい。
 さらに、本発明の一態様による金属回収装置において、前記捕集部材は、前記排気ガスの流れ方向に沿って配列された複数の金網を有するようにしてもよい。
 さらに、本発明の一態様による金属回収装置において、前記捕集部材は、前記排気ガスの流れ方向に沿って配列された、通気孔を有する複数のパンチング板を有するようにしてもよい。
 さらに、本発明の一態様による金属回収装置において、前記捕集ユニットに向けて酸化ガスを供給する酸化ガス供給機構を有するようにしてもよい。
 さらに、本発明の一態様による金属回収装置において、前記除害ユニットに向けて酸化ガスを供給する酸化ガス供給機構を有するようにしてもよい。
 さらに、本発明の一態様による金属回収装置において、前記触媒の温度は、600~800℃の範囲内であるようにしてもよい。
 さらに、本発明の一態様による金属回収装置において、前記捕集部材の温度は、600~1000℃の範囲内であるようにしてもよい。
 さらに、本発明の一態様による金属回収装置において、前記触媒は、MnO、CaO、MgO、HfO、Taよりなる群から選択される1以上の材料よりなっていてもよい。
 さらに、本発明の一態様による金属回収装置において、前記酸化ガスは、O、O、HO、空気よりなる群から選択される1以上のガスよりなっていてもよい。
 さらに、本発明の一態様による金属回収装置において、前記有機金属化合物は、Ru(CO)12、TEMAT(テトラキスエチルメチルアミノチタニウム)、TAIMATA、Cu(EDMDD)、Ru(CO)12、W(CO)、TaCl、TMA(トリメチルアルミニウム)、TBTDET(ターシャリーブチルイミド-トリ-ジエチルアミドタンタル)、PET(ペンタエトキシタンタル)、TMS(テトラメチルシラン)、TEH(テトラキスエトキシハフニウム)、CpMn[=Mn(C]、(MeCp)Mn[=Mn(CH]、(EtCp)Mn[=Mn(C]、(i-PrCp)Mn[=Mn(C]、MeCpMn(CO)[=(CH)Mn(CO)]、(t-BuCp)Mn[=Mn(C]、CHMn(CO)、Mn(DPM)[=Mn(C1119]、Mn(DMPD)(EtCp)[=Mn(C11)]、Mn(acac)[=Mn(C]、Mn(DPM)[=Mn(C1119]、Mn(acac)[=Mn(C]よりなる群から選択されるハロゲン元素を含まない1以上の材料よりなっていてもよい。
 さらに、本発明の一態様による金属回収装置において、前記有機金属化合物はRu(CO)12であり、前記除害ユニットから排出されるガスはCOガスであってもよい。
 本発明の一態様による排気系は、有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する処理容器に接続し、前記処理容器から排出される排気ガス中から金属成分を回収して排気ガスを除害する排気系であって、前記処理容器の排気口に接続された排気通路と、前記排気通路に介設された真空ポンプと、前記排気通路に介設された上述の本発明の一態様による金属回収装置のいずれかと、を備える。
 本発明の一態様による成膜装置は、被処理体に対して成膜処理を施すための成膜装置において、真空排気が可能になされた処理容器と、前記処理容器内で前記被処理体を保持する保持機構と、前記被処理体を加熱する加熱機構と、前記処理容器内へガスを導入するガス導入機構と、前記ガス導入機構に接続された原料ガスの供給系と、前記処理容器に接続された上述した本発明の一態様による排気系と、を備える。
図1は、本発明の一実施の形態に係る金属回収装置を有する成膜装置を概略的に示す構成図である。 図2は、金属回収装置内の構成の一例を示す縦断面図である。 図3は、本発明の一致実施の形態に係る金属回収方法を説明するためのフローチャートである。 図4Aは、原料ガスが熱分解されて金属成分が捕集される一般的な状況を説明するための模式図である。 図4Bは、有害ガスの除害が行われる一般的な状況を説明するための模式図である。 図5Aは、原料ガスであるRu(CO)12が熱分解されて金属成分が捕集される状況を説明するための模式図である。 図5Bは、原料ガスであるRu(CO)12が熱分解されて生成された有害ガスの除害が行われる状況を説明するための模式図である。 図6Aは、捕集ユニットの一変形例の構成を概略的に示す図である。 図6Bは、捕集ユニットの一変形例の構成を概略的に示す図である。
 以下に、本発明に係る金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置の好適な一実施形態を添付図面に基づいて詳述する。図1は金属回収装置を有する成膜装置を示す概略構成図、図2は金属回収装置内の一例を示す拡大断面構成図である。以下の一実施の形態においては、有機金属化合物の原料としてカルボニル系の有機金属化合物であるRu(CO)12を用いるとともに、キャリアガスとしてCO(一酸化炭素)を用い、Ru金属膜よりなる薄膜を成膜する例について説明する。
 図1に示すように、本実施の形態に係る成膜装置2は、被処理体としての半導体ウエハWに対して成膜処理を実際に施す成膜装置本体4と、この成膜装置本体4に対して成膜用の原料ガスを供給する原料ガスの供給系6と、上記成膜装置本体4からの排気ガスを排出する排気系8と、により主に構成されている。
 まず、上記成膜装置本体4について説明する。この成膜装置本体4は、例えばアルミニウム合金等よりなる筒体状の処理容器10を有している。この処理容器10内には、被処理体である半導体ウエハWを保持する保持機構12が設けられている。具体的には、この保持機構12は、容器底部より支柱14により起立された円板状の載置台16よりなり、この載置台16上にウエハWが載置される。そして、この載置台16は、例えばAlN(窒化アルミニウム)等のセラミック材よりなっている。載置台16内には、例えばタングステンワイヤ等よりなる加熱機構18が設けられており、上記ウエハWを加熱するようになっている。ここで上記加熱機構18としては、タングステンワイヤ等に限定されず、例えば加熱ランプを用いてもよい。
 この処理容器10の底部には、排気口20が設けられ、この排気口20には上記排気系8が接続されて、処理容器10内の雰囲気を真空排気できるようになっている。この排気系8については後述する。この処理容器10の側壁には、ウエハWを搬出入する開口22が形成されており、この開口22には、これを気密に開閉するためのゲートバルブ24が設けられている。
 そして、この処理容器10の天井部には、例えばシャワーヘッド26よりなるガス導入機構28が設けられており、下面に設けたガス噴出孔30より処理容器10内へ必要なガスを供給するようになっている。そして、このシャワーヘッド26のガス入口26Aに、上記原料ガスの供給系6や他に必要なガスがある場合には、そのガスの供給系が接続されている。用いるガス種によっては、このシャワーヘッド26内では原料ガスと他のガスが混合される場合もあるし、シャワーヘッド26内へ別々に導入されて別々に流れて処理容器10内で混合される場合もある。本実施の形態では、ガス導入機構28としてシャワーヘッド26を用いているが、これに代えて単なるノズル等を用いてもよい。
 次に、上記原料ガスの供給系6について説明する。まず、この原料ガスの供給系6は、固体原料又は液体原料を貯留する原料タンク32を有している。本実施の形態では、この原料タンク32内に、有機金属化合物の原料である例えば固体原料34が収容されている。この固体原料34としては、前述したようにRu(CO)12が用いられている。この固体原料34は、一般的には蒸気圧が非常に低くて蒸発し難い特性を有している。尚、上記固体原料34に代えてバブリング等により原料ガスが形成される液体原料を用いてもよい。
 そして、この原料タンク32の天井部に設けたガス出口36に一端を接続し、上記成膜装置本体4のシャワーヘッド26のガス入口26Aに他端を接続して原料通路38が設けられており、上記原料タンク32にて発生した原料ガスを供給できるようになっている。そして、上記原料通路38の原料タンク32に近い部分には開閉弁40が介設されている。
 また、上記原料タンク32の下面側には、上記原料タンク32にキャリアガスを供給するためのキャリアガス管42が接続されている。このキャリアガス管42の途中には、マスフローコントローラのような流量制御器44とキャリアガス開閉弁46とが順次介設されており、キャリアガスを流量制御しつつ供給して上記固体原料34を加熱することにより、この固体原料34を気化させて原料ガスを形成するようになっている。
 また原料タンク32の内部には、上記キャリアガス管42が設置された側の近傍に、多孔板48が設置され、上記固体原料34を上記多孔板48の上に保持すると共に、上記キャリアガス管42から供給されるキャリアガスが、上記多孔板48に形成された孔部を介して、上記原料タンク32内に均一に供給される構造となっている。本実施の形態において、上記キャリアガスとして、CO(一酸化炭素)ガスが用いられている。
 そして、上記原料タンク32には、これを加熱するためのタンク加熱機構50がタンク全体を覆うようにして設けられており、固体原料34の気化を促進させるようになっている。固体原料34の加熱温度は、分解温度未満の温度である。また、上記キャリアガス管42のキャリアガス開閉弁46よりも上流側と上記原料通路38の開閉弁40の下流側とを連通してバイパス管52が設けられている。このバイパス管52には、バイパス開閉弁54が介設されており、必要に応じて原料タンク32をバイパスさせてキャリアガスを流すことができるようになっている。また、上記原料通路38には、テープヒータのような加熱機構(図示せず)が設けられており、これを加熱して原料ガスが再固化することを防止するようになっている。
 次に排気系8について説明する。この排気系8は上記処理容器10の排気口20に接続された排気通路60を有しており、この排気通路60に沿って処理容器10内の雰囲気を排気するようになっている。具体的には、この排気通路60には、その上流側から下流側に向けて圧力調整弁62、真空ポンプ64、金属回収装置66が順次介設されている。
 上記圧力調整弁62は例えばバタフライ弁によって構成され、上記処理容器10内の圧力を調整する機能を有している。上記真空ポンプ64は、ここでは例えばターボ分子ポンプとドライポンプとの組み合わせよりなり、処理容器10内の雰囲気を真空引きできるようになっている。
 また、金属回収装置66は、排気通路60内を流れてくる排気ガスを高温に曝して排気ガス中に含まれる未反応の原料ガスを分解して金属成分を回収し、更に、排気ガス中の有害成分を酸化して除害するものである。本実施の形態では、未反応の原料ガス、すなわち、Ru(CO)12ガスのほとんど全てを回収するようにする。この構成については後述する。
 まず、この金属回収装置66よりも上流側の排気通路60と、金属回収装置66よりも下流側の排気通路60とには、それぞれ、開閉弁68が介設されている。この金属回収装置66のメンテナンス時には、此の開閉弁68を閉じることにより、この金属回収装置66を排気通路60側から遮断することができるようになっている。
 図2にも示すように、この金属回収装置66は、例えばステンレススチール等により筒体状に成形された筐体70によって、その外殻を形成されている。この筐体70の上部にはガス入口72が形成されると共に、下部にはガス出口74が形成されている。そして、上記ガス入口72は、ここに形成されたフランジ部72Aによって上記排気通路60の一方側にOリング等のシール部材76を介して気密に接続されている。また、上記ガス出口74は、ここに形成されたフランジ部74Aによって、上記排気通路60の他方側にOリング等のシール部材78を介して気密に接続されている。
 そして、上記筒体状の筐体70内には、排気ガスを高温に曝してこの排気ガス中に含まれる未反応の原料ガスを熱分解させて原料ガス中に含まれていた金属成分を捕集する捕集ユニット80と、この捕集ユニット80を通過した排気ガス中に含まれる有害なガス成分を酸化して除害する除害ユニット82と、が排気ガスの流れ方向に沿って順に配列されている。
 具体的には、上記捕集ユニット80は、上記熱分解によって発生した金属成分を付着する捕集部材84を有している。本実施の形態において、上記捕集部材84は、球形状、塊状或いはブロック状になされた複数(多数)の捕集片86を有している。この捕集片86は、取り出し可能に筒体状のケーシング88内に収容されている。このケーシング88は例えばステンレススチールにより形成されている。
 このケーシング88の天井、及び底部には、排気ガスを通すための多数の通気孔90、92がそれぞれ形成されており、このケーシング88内を排気ガスが通過することができるようになっている。そして、このケーシング88の外周には、この捕集部材84を加熱するために例えばタングステンヒータ等よりなる捕集部材加熱機構94が設けられており、上記捕集片86を所定の温度、例えば600~1000℃の範囲内の温度に加熱し得るようになっている。
 上記捕集片86は、この捕集片86間を流れる排気ガスの通気性を十分に確保するために、例えば捕集片86が球形の場合には、その直径を10mm以上に設定することが好ましい。この捕集片86としては、例えばステンレススチール等の金属片の他に、シリコン片や窒化アルミニウム、アルミナ等よりなるセラミック片などを用いることができる。
 また上記捕集ユニット80の下流側に配置される上記除害ユニット82は、上記捕集ユニット80を通過して流れてきた排気ガス中に含まれる有害なガス成分を酸化して除害する触媒100を有している。本実施の形態では、上記触媒100は、球形状、塊状或いはブロック状になされている。この触媒100は、取り出し可能に筒体状のケーシング102内に収容されている。このケーシング102は例えばステンレススチールにより形成されている。
 このケーシング102の天井、及び底部には、排気ガスを通すための多数の通気孔104、106がそれぞれ形成されており、このケーシング102内を、上記捕集ユニット80内を通過してきた排気ガスが通過することができるようになっている。そして、このケーシング102の外周には、この触媒100を加熱するために例えばタングステンヒータ等よりなる触媒加熱機構108が設けられており、上記触媒100を所定の温度、例えば600~800℃の範囲内の温度に加熱し得るようになっている。
 上記触媒100は、この触媒100間を流れる排気ガスの通気性を十分に確保するために、例えば触媒100が球形の場合には、その直径を5mm以上に設定するのが好ましい。この触媒100としては、MnO、CaO、MgO、HfO、Ta等を用いることができる。
 また上記筐体70には、筐体70内に酸化ガスを供給するための酸化ガス供給機構110が接続されている。この酸化ガス供給機構110は、本実施の形態では、筐体70内の天井部、すなわち、排気ガス流の筐体70内における最上流部に設けられた円形リング状になされたシャワーヘッド112を有している。このシャワーヘッド112には、途中に開閉弁114を介設されたガス流路116が接続している。そして、上記シャワーヘッド112に形成された複数のガス噴射孔112Aから、捕集ユニット80の上流側の略全面に向けて、流量制御された酸化ガスが供給されるようになっている。
 このシャワーヘッド112より供給された酸化ガスは、上記捕集ユニット80内のみならず、その下流側に位置する除害ユニット82内も流れ込むようになっている。ここで、除害ユニット82内のみに酸化ガスを流す場合には、上記酸化ガス供給機構110のシャワーヘッド112を、上記捕集ユニット80と除害ユニット82との間に設置するようにすればよい。この酸化ガスとしては、Oを用いることができる。尚、上記酸化ガス供給機構110の構造は、上記構成に限定されない。
 そして、上記処理容器10の排気口20から金属回収装置66までの排気通路60及びその途中に介設された各部材にはテープヒータ等の通路加熱ヒータ120が設けられている。これにより、排気通路60内を流れている排気ガスを、使用する原料にもよるが、例えば110℃程度に加熱して、途中で未反応の排気ガス中の未反応の原料ガスが凝縮(凝固)することを防止するようになっている。
 そして、このように構成された成膜装置2の全体の動作、例えばガスの供給の開始、ガスの供給の停止、プロセス温度、プロセス圧力、金属回収装置66における酸化ガスの供給等の制御は、例えばコンピュータよりなる制御装置122により行われることになる。
 この制御に必要なコンピュータに読み取り可能なプログラムは記憶媒体124に記憶されており、この記憶媒体124としては、フレキシブルディスク、CD(CompactDisc)、CD-ROM、ハードディスク、フラッシュメモリ或いはDVD等を用いることができる。尚、必要な場合には、上記金属回収装置66の上流側に未反応の原料ガスの一部を補助的に捕集する補助トラップ機構を設置するようにしてもよい。
 次に、以上のように構成された成膜装置2の動作について、主に図3~図5Bを参照しながら、説明する。図3は金属回収方法を説明する工程図、図4Aおよび図4Bは原料ガスが熱分解されて金属成分の捕集と有害ガスの除害が行われる一般的な状況を示す模式図、図5Aおよび図5Bは原料ガスであるRu(CO)12が熱分解されて金属成分の捕集と有害ガスの除害が行われる状況を示す模式図である。まず、図1に示すように、この成膜装置2の成膜装置本体4においては、排気系8の真空ポンプ64が継続的に駆動されて、処理容器10内が真空引きされて所定の圧力に維持されており、また載置台16上の半導体ウエハWは加熱機構18により所定の温度に維持されている。また処理容器10の側壁及びシャワーヘッド26もそれぞれ容器側加熱機構(図示せず)により所定の温度に維持されている。
 また、原料ガスの供給系6の全体は、タンク加熱機構50や通路加熱機構(図示せず)によって予め所定の温度に加熱されている。そして、成膜処理が開始すると、原料ガスの供給系6においては、原料タンク32内へはキャリアガス管42を介して流量制御されたキャリアガス(CO)が供給されることによって、原料タンク32内に貯留されている固体原料34が加熱されて気化し、これにより原料ガスが生成される。
 この発生した原料ガスは、キャリアガスと共に原料通路38内を下流側に向けて流れて行く。この原料ガスは、成膜装置本体4のシャワーヘッド26から減圧雰囲気になされている処理容器10内へ導入される。この処理容器10内で、例えばCVD(Chemical Vapor Deposition)によりウエハW上にRu金属の薄膜が成膜されることになる。この時のプロセス条件として、プロセス圧力が0.1Torr(13.3Pa)程度、ウエハ温度が200~250℃程度、処理容器10の側壁の温度が75~80℃程度に設定され得る。
 ここで固体原料34であるRu(CO)12は、蒸気圧が非常に低くて蒸発(気化)し難い原料であり、また成膜反応に寄与する量は非常に少なく、90%程度の原料ガスが未反応状態でキャリアガスであるCOと共に排気系8の排気通路60内を流下して行く。この時の反応は次の化学式で示され、反応によってキャリアガスと同じガス種であるCO(一酸化炭素)が発生している。
Ru(CO)12 ⇔ Ru(CO)12
Ru(CO)12↑ ⇔ Ru(CO)12-x↑+XCO↑
Ru(CO)12-x↑+Q → 3Ru+(12-X)CO↑
Ru(CO)12↑+Q → 3Ru+12CO↑
ここで”⇔”は可逆的であることを示し、”↑”はガス状態であることを示し、”↑”が付いていないものは固体状態であることを示し、”Q”は熱量が加わることを示している。
 上記排気通路60を流下する排気ガスは、圧力調整弁62、真空ポンプ64、金属回収装置66を順次経由した後に大気中に放散される。この場合、金属回収装置66内で未反応の原料ガスの金属成分が回収された後は、排気ガスとしてCOガスが残留するだけなので、このCOガスは更にこの金属回収装置66内にて酸化されてCOになって大気放散されることになる。
 ここで、金属回収装置66内で排気ガスに対して行われる処理の内容について詳しく説明する。図3Aおよび図3Bに示すように、排気ガスを高温に曝してこの排気ガス中に含まれる未反応の原料ガスを熱分解させて原料ガス中に含まれている金属成分を捕集部材84に付着させる捕集工程(ステップS1)と、上記捕集工程を経た排気ガスを触媒100に接触させることにより排気ガス中に含まれる有害なガス成分を酸化して除害する除害工程(ステップS2)と、が行われる。
 すなわち、排気通路60内を流れてきた排気ガスは、上記金属回収装置66の天井部に設けたガス入口72から筐体70内へ導入され、捕集ユニット80内へ流れ込んで、このケーシング88内に収容されている捕集部材84を構成する多数の捕集片86の表面と接触しつつ下流側に向けて流れて行くことになる。ここで、上記捕集片86は捕集部材加熱機構94により、所定の温度、すなわち未反応の原料ガスを熱分解し得る温度である600~1000℃の範囲内に加熱されているので、この原料ガス、すなわち、Ru(CO)12は”Ru”と”CO”とに熱分解されてしまう。そして、この内、金属成分である”Ru”は上記高温状態になされた捕集片86の表面に付着して捕集されることになる。
 この時の状況は、図4A及び図5Aに模式的に示されており、図4Aに示すように、例えば金属原子130に配位子132が結合しているような原料ガスは、高温に曝されると熱分解して金属原子130と配位子132とに分離し、金属原子130が高温の捕集片86の表面に付着することになる。上記配位子としては、炭素(C)、酸素(O)、水素(H)の内、何れか1つ以上、好ましくは何れか2つ以上を含んだ配位子が対応し、フッ素や塩素等のハロゲン元素は含まれない。
 また、図5Aに示すように、本実施の形態では、原料としてRu(CO)12を用い、キャリアガスとしてCO(一酸化炭素)を用いているので、金属成分としてRuが分離し、また配位子が脱離してCOが発生し、キャリアガスであるCOはそのまま残存する。
 このようにして、上記捕集ユニット80内で金属成分が捕集された排気ガスは、捕集ユニット80内を通過した後、有害成分である”CO”を含んだ状態で下流側の除害ユニット82内へ流れ込む。そして、この排気ガスは、この除害ユニット82内で、触媒加熱機構108により高温、例えば600~800℃に加熱されている例えばMnOやCaO等よりなる触媒と接触しつつ流れることになる。
 ここで、筐体70の天井部に設けた酸化ガス供給機構110から筐体70内に酸化ガスとして例えばOガスが導入されているので、上記排気ガス中にはOガスが混入されている。従って、上記有害ガスであるCOは、高温状態にある触媒100の触媒作用によりOガスとの酸化反応が促進され、COとなって除害されることになる。
 一般的には、例えば図4Bに示すように、C、O、Hを含んだ配位子132はOガスと酸化され、COやHOやOとなって除害される。本実施の形態では、図5Bに示すように、CO成分が酸化されてCOとなって除害されることになる。このように除害されると、排気ガス中には、上記CO、HO、O等の大気中に放出しても人体上安全なガス成分のみとなり、従って、この金属回収装置66から排気された排気ガスはそのまま大気中に放出されることになる。
 そして、上記捕集片86に付着した金属成分は、この捕集ユニット80を定期的に交換することにより、金属成分は回収されて再利用されることになる。また、除害ユニット80の触媒100には付着するものがないので、この触媒100は半永久的に繰り返し使用されることになる。
 実際に、上記成膜装置2を用い、原料としてRu(CO)12を用いてRu薄膜を形成して排気ガス中のCO濃度を測定したところ、排気ガス中のCO濃度は金属回収装置66のガス入口72の部分では200ppmであったが(キャリアガスCO:100sccm、ドライポンプN:50リットル)、ガス出口74では0ppmであり、これにより、排気ガスを完全に除害できることを、確認することができた。
 このように、以上の実施の形態によれば、有機金属化合物の原料、例えばRu(CO)12よりなる原料ガスを用いて被処理体、例えば半導体ウエハWの表面に薄膜を形成する処理容器10から排出される排気ガス中から金属成分を回収するに際して、排気ガスを加熱された捕集部材に接触させることにより排気ガス中に含まれる未反応の原料ガスを熱分解させて原料ガス中に含まれている金属成分を捕集部材に付着させる捕集工程と、捕集工程を経た排気ガスを触媒100に接触させることにより排気ガス中に含まれる有害なガス成分を酸化して除害する除害工程とを有するようにしたので、省スペースで簡単な構造の金属回収装置を用いながら、被処理体の表面に薄膜を形成する処理容器から排出される排気ガス中から金属成分を回収し、且つ、排気ガスを除害することができる。
 また、回収された金属成分は、廃棄されることなく再利用されるので、その分、ランニングコストを削減することができる。また、再利用に関しては、複雑な精製作業を行う必要がなく、簡易に原料として取り出すことができる。
 また、有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する処理容器から排出される排気ガス中から金属成分を回収する金属回収装置において、排気ガスを高温に曝して排気ガス中に含まれる未反応の原料ガスを熱分解させて原料ガス中に含まれている金属成分を付着させる捕集部材84を有する捕集ユニット80と、捕集ユニットを通過した排気ガス中に含まれる有害なガス成分を酸化して除害する触媒100を有する除害ユニット82とを一体化させるようにしたので、設置スペースを大幅に削減することができる。
<捕集ユニット80の変形例>
 次に、上記捕集ユニット80の変形例について説明する。先の図2に示す金属回収装置66の捕集ユニット80では、捕集部材84として多数の例えば球体状の捕集片86を用いたが、これに限定されず、以下に説明するような構造としてもよい。図6Aおよび図6Bは捕集ユニットの変形例の構成を概略的に示す図である。尚、図6Aおよび図6B中において、図2に示す構成部分と同一に構成され得る構成部分については同一参照符号を付して、その説明を省略する。
 図6Aは、捕集ユニット80の一変形例を示し、ここでは捕集部材84として複数のパンチング板140を用いている。このパンチング板140には、複数の(多数)の通気孔140Aが全面に亘って形成されている。このパンチング板140は、排気ガスの流れ方向に沿って所定のピッチで配列されている。
 この際、上下に隣り合うパンチング板140は、その通気孔140Aが水平面内において左右方向、或いは前後方向へ位置ズレするように配置されており、排気ガスが直線的に流れないようにし、排気ガスがパンチング板140の表面と効率的に接触するようにしている。この各パンチング板140の側部には、捕集部材加熱機構94が設けられており、このパンチング板140を加熱し得るようになっている。このパンチング板140の材料としては、例えばステンレススチール、セラミック等を用いることができる。この第1の変形例によっても、上述の実施の形態で説明した作用効果と同様の作用効果を得ることができ、排気ガス中の金属成分を付着して捕集することができる。
 図6Bは捕集ユニット80の他の変形例を示し、ここでは捕集部材84として複数の金網146を用いている。この複数の金網146は、排気ガスの流れ方向に沿って所定のピッチで配列されている。
 この各金網146の側部には、捕集部材加熱機構94が設けられており、この金網146を加熱し得るようになっている。この金網146の材料としては、例えばステンレススチール、タングステン等を用いることができる。この第2の変形例によっても、上述の実施の形態で説明した作用効果と同様の作用効果を得ることができ、排気ガス中の金属成分を付着して捕集することができる。
 尚、以上の実施形態では、触媒100としてMnOやCaOを用いた場合を例にとって説明したが、これに限定されるものではなく、触媒100としては、MnO、CaO、MgO、HfO、Taよりなる群から選択される1以上の材料を用いることができる。また、以上の実施形態では、酸化ガスとしてOガスを用いたが、これに限定されず、O、O、HO、空気(酸素と窒素の混合ガス)よりなる群から選択される1以上のガスを用いることができる。
 また、以上の実施形態では、有機金属化合物の原料としてRu(CO)12を用いた場合を例にとって説明したが、これに限定されず、有機金属化合物の原料としては、ハロゲン元素を含まないRu(CO)12、TEMAT(テトラキスエチルメチルアミノチタニウム)、TAIMATA、Cu(EDMDD)、Ru(CO)12、W(CO)、TaCl、TMA(トリメチルアルミニウム)、TBTDET(ターシャリーブチルイミド-トリ-ジエチルアミドタンタル)、PET(ペンタエトキシタンタル)、TMS(テトラメチルシラン)、TEH(テトラキスエトキシハフニウム)、CpMn[=Mn(C]、(MeCp)Mn[=Mn(CH]、(EtCp)Mn[=Mn(C]、(i-PrCp)Mn[=Mn(C]、MeCpMn(CO)[=(CH)Mn(CO)]、(t-BuCp)Mn[=Mn(C]、CHMn(CO)、Mn(DPM)[=Mn(C1119]、Mn(DMPD)(EtCp)[=Mn(C11)]、Mn(acac)[=Mn(C]、Mn(DPM)[=Mn(C1119]、Mn(acac)[=Mn(C]よりなる群から選択される1以上の材料を用いることができる。
 上記各原料中には、金属成分の他に、例えばC、O、Hを含む配位子が含まれることになる。この場合、上記原料中にフッ素や塩素等のハロゲン元素が含まれると、複雑な精製工程(作業)が必要となるので好ましくない。また用いる原料の種類によっては、金属成分の捕集時に、酸化し易い金属、例えばMnやTa等のように金属の酸化物として回収する場合もあり、この場合には、図2に示したように酸化ガス供給機構110より酸化ガスを捕集ユニット80内へ必ず導入することが必要となる。更に、用いる原料の種類によっては、金属膜の成膜ために原料ガスの他に還元ガスを用いる場合もあり、この場合には還元ガスとしてHガス等が用いられ、このHガスも上述したように除害される。
 また、ここでは被処理体として半導体ウエハを例にとって説明したが、この半導体ウエハにはシリコン基板やGaAs、SiC、GaNなどの化合物半導体基板も含まれ、更にはこれらの基板に限定されず、液晶表示装置に用いるガラス基板やセラミック基板等にも本発明を適用することができる。

Claims (26)

  1.  有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する処理容器より排出される排気ガス中から、金属成分を回収して排気ガスを除害する金属回収方法であって、
     前記排気ガスを加熱された捕集部材に接触させることにより該排気ガス中に含まれる未反応の前記原料ガスを熱分解させ、前記原料ガス中に含まれている金属成分を前記捕集部材に付着させる捕集工程と、
     前記捕集工程を経た前記排気ガスを触媒に接触させることにより前記排気ガス中に含まれる有害なガス成分を酸化して除害する除害工程と、を有することを特徴とする金属回収方法。
  2.  前記除害工程は、酸化ガスの存在下で行われることを特徴とする請求項1記載の金属回収方法。
  3.  前記捕集工程は、酸化ガスの存在下で行われることを特徴とする請求項1記載の金属回収方法。
  4.  前記除害工程の前記触媒の温度は600~800℃の範囲内であることを特徴とする請求項1記載の金属回収方法。
  5.  前記捕集工程の前記捕集部材の温度は600~1000℃の範囲内であることを特徴とする請求項1記載の金属回収方法。
  6.  前記触媒は、MnO、CaO、MgO、HfO、Taよりなる群から選択される1以上の材料よりなることを特徴とする請求項1記載の金属回収方法。
  7.  前記酸化ガスは、O、O、HO、空気よりなる群から選択される1以上のガスよりなることを特徴とする請求項1記載の金属回収方法。
  8.  前記有機金属化合物は、Ru(CO)12、TEMAT(テトラキスエチルメチルアミノチタニウム)、TAIMATA、Cu(EDMDD)、Ru(CO)12、W(CO)、TaCl、TMA(トリメチルアルミニウム)、TBTDET(ターシャリーブチルイミド-トリ-ジエチルアミドタンタル)、PET(ペンタエトキシタンタル)、TMS(テトラメチルシラン)、TEH(テトラキスエトキシハフニウム)、CpMn[=Mn(C]、(MeCp)Mn[=Mn(CH]、(EtCp)Mn[=Mn(C]、(i-PrCp)Mn[=Mn(C]、MeCpMn(CO)[=(CH)Mn(CO)]、(t-BuCp)Mn[=Mn(C]、CHMn(CO)、Mn(DPM)[=Mn(C1119]、Mn(DMPD)(EtCp)[=Mn(C11)]、Mn(acac)[=Mn(C]、Mn(DPM)[=Mn(C1119]、Mn(acac)[=Mn(C]よりなる群から選択されるハロゲン元素を含まない1以上の材料よりなることを特徴とする請求項1記載の金属回収方法。
  9.  前記有機金属化合物はRu(CO)12であり、前記除害工程を経て排出されるガスはCOガスであることを特徴とする請求項1記載の金属回収方法。
  10.  有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する処理容器から排出される排気ガス中から、金属成分を回収して排気ガスを除害する金属回収装置であって、
     前記排気ガスを加熱して該排気ガス中に含まれる未反応の前記原料ガスを熱分解させて前記原料ガス中に含まれている金属成分を付着させるように構成された捕集部材を有する捕集ユニットと、
     前記捕集ユニットを通過した前記排気ガス中に含まれる有害なガス成分を酸化して除害する触媒を有する除害ユニットと、を備えたことを特徴とする金属回収装置。
  11.  前記捕集ユニットと前記除害ユニットとは筐体内に、前記排気ガスの流れ方向に沿って順に配列されていることを特徴とする請求項10記載の金属回収装置。
  12.  前記捕集ユニットは、前記捕集部材を加熱する捕集部材加熱機構を有することを特徴とする請求項10記載の金属回収装置。
  13.  前記除害ユニットは、前記触媒を加熱する触媒加熱機構を有することを特徴とする請求項10記載の金属回収装置。
  14.  前記捕集部材は、ケーシング内に収容された複数の捕集片と、を有することを特徴とする請求項10記載の金属回収装置。
  15.  前記捕集部材は、前記排気ガスの流れ方向に沿って配列された複数の金網を有することを特徴とする請求項10記載の金属回収装置。
  16.  前記捕集部材は、前記排気ガスの流れ方向に沿って配列された、通気孔を有する複数のパンチング板を有することを特徴とする請求項10記載の金属回収装置。
  17.  前記捕集ユニットに向けて酸化ガスを供給する酸化ガス供給機構を有することを特徴とする請求項10記載の金属回収装置。
  18.  前記除害ユニットに向けて酸化ガスを供給する酸化ガス供給機構を有することを特徴とする請求項10記載の金属回収装置。
  19.  前記触媒の温度は、600~800℃の範囲内であることを特徴とする請求項10記載の金属回収装置。
  20.  前記捕集部材の温度は、600~1000℃の範囲内であることを特徴とする請求項10記載の金属回収装置。
  21.  前記触媒は、MnO、CaO、MgO、HfO、Taよりなる群から選択される1以上の材料よりなることを特徴とする請求項10記載の金属回収装置。
  22.  前記酸化ガスは、O、O、HO、空気よりなる群から選択される1以上のガスよりなることを特徴とする請求項10記載の金属回収装置。
  23.  前記有機金属化合物は、Ru(CO)12、TEMAT(テトラキスエチルメチルアミノチタニウム)、TAIMATA、Cu(EDMDD)、Ru(CO)12、W(CO)、TaCl、TMA(トリメチルアルミニウム)、TBTDET(ターシャリーブチルイミド-トリ-ジエチルアミドタンタル)、PET(ペンタエトキシタンタル)、TMS(テトラメチルシラン)、TEH(テトラキスエトキシハフニウム)、CpMn[=Mn(C]、(MeCp)Mn[=Mn(CH]、(EtCp)Mn[=Mn(C]、(i-PrCp)Mn[=Mn(C]、MeCpMn(CO)[=(CH)Mn(CO)]、(t-BuCp)Mn[=Mn(C]、CHMn(CO)、Mn(DPM)[=Mn(C1119]、Mn(DMPD)(EtCp)[=Mn(C11)]、Mn(acac)[=Mn(C]、Mn(DPM)[=Mn(C1119]、Mn(acac)[=Mn(C]よりなる群から選択されるハロゲン元素を含まない1以上の材料よりなることを特徴とする請求項10記載の金属回収装置。
  24.  前記有機金属化合物はRu(CO)12であり、前記除害ユニットから排出されるガスはCOガスであることを特徴とする請求項10記載の金属回収装置。
  25.  有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する処理容器に接続し、前記処理容器から排出される排気ガス中から金属成分を回収して排気ガスを除害する排気系であって、
     前記処理容器の排気口に接続された排気通路と、
     前記排気通路に介設された真空ポンプと、
     前記排気通路に介設された請求項10記載の金属回収装置と、を備えたことを特徴とする排気系。
  26.  被処理体に対して成膜処理を施すための成膜装置において、
     真空排気が可能になされた処理容器と、
     前記処理容器内で前記被処理体を保持する保持機構と、
     前記被処理体を加熱する加熱機構と、
     前記処理容器内へガスを導入するガス導入機構と、
     前記ガス導入機構に接続された原料ガスの供給系と、
     前記処理容器に接続された請求項25に記載の排気系と、を備えたことを特徴とする成膜装置。
PCT/JP2009/063810 2008-08-09 2009-08-04 金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置 WO2010018768A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980130242XA CN102112206A (zh) 2008-08-09 2009-08-04 金属回收方法、金属回收装置、排气系统及使用其的成膜装置
US13/058,243 US8349283B2 (en) 2008-08-09 2009-08-04 Metal recovery method, metal recovery apparatus, gas exhaust system and film forming device using same
KR1020117002995A KR101291982B1 (ko) 2008-08-09 2009-08-04 금속 회수방법, 금속 회수장치, 배기계 및 이것을 이용한 성막장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-206474 2008-08-09
JP2008206474A JP5696348B2 (ja) 2008-08-09 2008-08-09 金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置

Publications (1)

Publication Number Publication Date
WO2010018768A1 true WO2010018768A1 (ja) 2010-02-18

Family

ID=41668913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063810 WO2010018768A1 (ja) 2008-08-09 2009-08-04 金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置

Country Status (5)

Country Link
US (1) US8349283B2 (ja)
JP (1) JP5696348B2 (ja)
KR (1) KR101291982B1 (ja)
CN (1) CN102112206A (ja)
WO (1) WO2010018768A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696348B2 (ja) * 2008-08-09 2015-04-08 東京エレクトロン株式会社 金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置
JP5501807B2 (ja) * 2009-03-31 2014-05-28 東京エレクトロン株式会社 処理装置
JP5763947B2 (ja) 2011-03-26 2015-08-12 東京エレクトロン株式会社 基板処理装置及び回収装置
JP5728341B2 (ja) * 2011-09-13 2015-06-03 東京エレクトロン株式会社 排気トラップ
CN103094159B (zh) * 2011-10-31 2016-02-24 细美事有限公司 基板处理设备及基板处理方法
KR102477302B1 (ko) * 2015-10-05 2022-12-13 주성엔지니어링(주) 배기가스 분해기를 가지는 기판처리장치 및 그 배기가스 처리방법
JP6602709B2 (ja) * 2016-03-23 2019-11-06 大陽日酸株式会社 排ガス処理装置、及び排ガス処理方法
CN107511042B (zh) * 2016-07-15 2020-06-16 杭州富阳何氏化纤助剂有限公司 一种去除石化工业废气中苯系物的处理方法
US10712005B2 (en) 2017-07-14 2020-07-14 Goodrich Corporation Ceramic matrix composite manufacturing
US10480065B2 (en) * 2017-09-19 2019-11-19 Goodrich Corporation Gas distribution for chemical vapor deposition/infiltration
US20210245098A1 (en) * 2018-07-11 2021-08-12 Lot Ces Co., Ltd. Piping apparatus having harmful gas treatment device, design method therefor, and harmful gas treatment facility comprising same
JP6901153B2 (ja) 2019-02-07 2021-07-14 株式会社高純度化学研究所 薄膜形成用金属ハロゲン化合物の固体気化供給システム。
JP6887688B2 (ja) 2019-02-07 2021-06-16 株式会社高純度化学研究所 蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システム
CN111036013B (zh) * 2019-08-14 2021-11-26 湖南红太阳光电科技有限公司 一种用于管式pecvd设备的尾气粉尘捕捉装置
JP2022551859A (ja) * 2019-10-08 2022-12-14 アプライド マテリアルズ インコーポレイテッド 航空宇宙用部品上に耐コーキング性保護コーティングを堆積させるための方法
KR20220167544A (ko) 2021-06-14 2022-12-21 정지우 이종 약을 수용한 병뚜껑
CN113975919B (zh) * 2021-09-30 2023-03-28 武汉悟拓科技有限公司 基于水泥窑协同处置含氯固废的氯组分干法回收工艺
NL2032864B1 (en) * 2022-08-26 2024-03-05 Levitech B V An exhaust abatement apparatus and a method for abating reactive gasses

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263355A (ja) * 1997-03-27 1998-10-06 Toshio Awaji 半導体製造工程の排ガス処理方法及び半導体製造工程の排ガス処理装置
JP2003105543A (ja) * 2001-09-28 2003-04-09 Taisei Giken Co Ltd Cvdソース物質回収装置及び回収方法
JP2004202421A (ja) * 2002-12-26 2004-07-22 Japan Pionics Co Ltd 有害ガスの浄化方法
JP2005003331A (ja) * 2003-06-16 2005-01-06 Japan Pionics Co Ltd 有害ガスの燃焼式除害装置
JP2005185961A (ja) * 2003-12-25 2005-07-14 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude 揮発性無機貴金属化合物の除去方法および装置
WO2007004808A1 (en) * 2005-07-01 2007-01-11 Newprotech Co., Ltd. Apparatus for trapping residual product of semiconductor manufacturing process
JP2007039751A (ja) * 2005-08-03 2007-02-15 Hitachi Kokusai Electric Inc 基板処理システム及びそのトラップ装置
JP2008028059A (ja) * 2006-07-20 2008-02-07 Tokyo Electron Ltd 半導体装置の製造方法、半導体装置の製造装置及び記憶媒体
JP2009062599A (ja) * 2007-09-10 2009-03-26 Tokyo Electron Ltd 成膜装置の排気系構造、成膜装置、および排ガスの処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773687B1 (en) * 1999-11-24 2004-08-10 Tokyo Electron Limited Exhaust apparatus for process apparatus and method of removing impurity gas
JP4599701B2 (ja) 1999-11-24 2010-12-15 東京エレクトロン株式会社 成膜装置の排気系構造及び不純物ガスの除去方法
JP4162366B2 (ja) 2000-03-31 2008-10-08 田中貴金属工業株式会社 Cvd薄膜形成プロセス及びcvd薄膜製造装置
JP4214717B2 (ja) * 2002-05-31 2009-01-28 株式会社日立製作所 過弗化物処理装置
US20060068098A1 (en) * 2004-09-27 2006-03-30 Tokyo Electron Limited Deposition of ruthenium metal layers in a thermal chemical vapor deposition process
JP2007061754A (ja) * 2005-08-31 2007-03-15 Kanken Techno Co Ltd 排ガス除害装置
US7976807B2 (en) * 2006-03-07 2011-07-12 Kanken Techno Co., Ltd. Method for detoxifying HCD gas and apparatus therefor
CN1818101A (zh) * 2006-03-17 2006-08-16 金川集团有限公司 一种从含羰基物的混合气体中回收金属元素的方法
JP5696348B2 (ja) * 2008-08-09 2015-04-08 東京エレクトロン株式会社 金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263355A (ja) * 1997-03-27 1998-10-06 Toshio Awaji 半導体製造工程の排ガス処理方法及び半導体製造工程の排ガス処理装置
JP2003105543A (ja) * 2001-09-28 2003-04-09 Taisei Giken Co Ltd Cvdソース物質回収装置及び回収方法
JP2004202421A (ja) * 2002-12-26 2004-07-22 Japan Pionics Co Ltd 有害ガスの浄化方法
JP2005003331A (ja) * 2003-06-16 2005-01-06 Japan Pionics Co Ltd 有害ガスの燃焼式除害装置
JP2005185961A (ja) * 2003-12-25 2005-07-14 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude 揮発性無機貴金属化合物の除去方法および装置
WO2007004808A1 (en) * 2005-07-01 2007-01-11 Newprotech Co., Ltd. Apparatus for trapping residual product of semiconductor manufacturing process
JP2007039751A (ja) * 2005-08-03 2007-02-15 Hitachi Kokusai Electric Inc 基板処理システム及びそのトラップ装置
JP2008028059A (ja) * 2006-07-20 2008-02-07 Tokyo Electron Ltd 半導体装置の製造方法、半導体装置の製造装置及び記憶媒体
JP2009062599A (ja) * 2007-09-10 2009-03-26 Tokyo Electron Ltd 成膜装置の排気系構造、成膜装置、および排ガスの処理方法

Also Published As

Publication number Publication date
JP5696348B2 (ja) 2015-04-08
KR101291982B1 (ko) 2013-08-09
US8349283B2 (en) 2013-01-08
US20110206585A1 (en) 2011-08-25
JP2010042330A (ja) 2010-02-25
CN102112206A (zh) 2011-06-29
KR20110038130A (ko) 2011-04-13

Similar Documents

Publication Publication Date Title
JP5696348B2 (ja) 金属回収方法、金属回収装置、排気系及びこれを用いた成膜装置
JP5277784B2 (ja) 原料回収方法、トラップ機構、排気系及びこれを用いた成膜装置
WO2010101191A1 (ja) 載置台構造、成膜装置、及び、原料回収方法
JP5482282B2 (ja) 載置台構造及び成膜装置
EP1450936B1 (en) Method and apparatus for treating exhaust gas comprising a fluorine compound and carbon monoxide
JP2001527158A (ja) Cvd装置用ガストラップ
JP2005536336A (ja) 廃棄ガス流の利用
JP2009062599A (ja) 成膜装置の排気系構造、成膜装置、および排ガスの処理方法
JP2013194278A (ja) トラップ装置及び成膜装置
KR20090005295A (ko) Pfc 및 hfc와 같은 불소화합물을 함유하는 배출물을 처리하는 방법
JP2006075743A (ja) 排ガス分解処理装置
JP2004223302A (ja) 排ガスの処理方法および装置
JP4629967B2 (ja) N2o含有排ガスの処理方法およびその装置
JP4228870B2 (ja) 触媒式pfc分解処理方法及び装置
JP5133231B2 (ja) 有機金属化合物を含む排ガスの処理装置および処理方法
TW200829327A (en) Apparatus for treating a gas stream
JP2005142377A (ja) クリーニングガスのリサイクルシステム
JP4188815B2 (ja) パーフルオロコンパウンドの分解処理方法および分解処理装置
JP2001353420A (ja) 化合物半導体の製造装置から生ずる排気ガスから半導体特殊材料ガスの回収
TWI811705B (zh) 半導體製造裝置及半導體裝置之製造方法
JP2000197807A (ja) 排気ガス処理装置
JP5557951B1 (ja) 分解機構を備える半田付け装置および分解方法
JP2005319401A (ja) Pfc分解処理方法と装置及び処理システム
JP5318336B2 (ja) Pfcガスの濃縮方法
KR100907444B1 (ko) 입자상 물질에 대한 저항성을 갖는 촉매식 과불화 화합물처리 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130242.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117002995

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13058243

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09806661

Country of ref document: EP

Kind code of ref document: A1