WO2010016540A1 - イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法および製造方法 - Google Patents

イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法および製造方法 Download PDF

Info

Publication number
WO2010016540A1
WO2010016540A1 PCT/JP2009/063932 JP2009063932W WO2010016540A1 WO 2010016540 A1 WO2010016540 A1 WO 2010016540A1 JP 2009063932 W JP2009063932 W JP 2009063932W WO 2010016540 A1 WO2010016540 A1 WO 2010016540A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylenically unsaturated
group
oxygen gas
carboxylic acid
acid ester
Prior art date
Application number
PCT/JP2009/063932
Other languages
English (en)
French (fr)
Inventor
西村 憲人
慎一 萬谷
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020117005328A priority Critical patent/KR101303434B1/ko
Priority to US13/057,707 priority patent/US20110137066A1/en
Priority to CN2009801307033A priority patent/CN102119146A/zh
Priority to JP2010523885A priority patent/JPWO2010016540A1/ja
Priority to EP09805023.0A priority patent/EP2325166A4/en
Publication of WO2010016540A1 publication Critical patent/WO2010016540A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/16Preparation of derivatives of isocyanic acid by reactions not involving the formation of isocyanate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/18Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/02Derivatives of isocyanic acid having isocyanate groups bound to acyclic carbon atoms
    • C07C265/06Derivatives of isocyanic acid having isocyanate groups bound to acyclic carbon atoms of an unsaturated carbon skeleton

Definitions

  • the present invention relates to a polymerization inhibiting method and a production method for an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group. More specifically, a method for suppressing polymerization of an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group with an oxygen gas (O 2 ) in a liquid phase containing the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group, and The present invention relates to a method for producing an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group using the polymerization inhibiting method.
  • Ethylenically unsaturated compounds are highly susceptible to polymerization due to heat, light, and other factors, and in the production and purification processes, foreign substances such as polymers and oligomers are often generated due to polymerization, causing production equipment failures. Yes. If this foreign matter adheres to the production tanks, distillation towers and pipes of the ethylenically unsaturated compound production process and purification process, not only does this cause clogging by foreign matter and fixation of movable equipment, but also the production of ethylenically unsaturated compounds and It also hinders purification. The removal of the foreign matter adhering to the related equipment is inefficient due to work by human power. As a result, the operation is forced to be stopped for a long time, resulting in a large economic loss. In addition, it may cause a decrease in product quality.
  • molecular oxygen is effective as a method for preventing polymerization of ethylenically unsaturated compounds. Accordingly, many methods for supplying and managing molecular oxygen gas have been proposed or implemented as a method for preventing polymerization that suppresses the generation of foreign substances in the production facility for ethylenically unsaturated compounds.
  • Patent Document 1 For example, in the production method (Patent Document 1) by measuring and managing the oxygen concentration in the gas phase part, the oxygen concentration in the liquid phase part for the purpose of actually preventing polymerization is not directly managed. The liquid equilibrium is not reached and it cannot be detected whether or not sufficient oxygen is present in the liquid phase part.
  • Patent document 2 for managing the oxygen concentration in the system, it is described that a part of the liquid phase part is extracted from the manufacturing apparatus and the oxygen concentration is analyzed. In addition, since the analysis method is not disclosed, it is unclear whether or not the actual oxygen concentration in the liquid phase can be measured accurately.
  • An object of the present invention is to provide a method for inhibiting polymerization of an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group and a method for producing an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group using the polymerization inhibiting method.
  • the present inventors have found that controlling the oxygen gas (O 2 ) concentration in the liquid phase part contains an ethylenic group containing an isocyanate group. It has been found that it is effective for inhibiting polymerization of unsaturated carboxylic acid ester compounds, and the present invention has been completed. That is, the present invention relates to the following [1] to [14], for example.
  • An ethylenically unsaturated group containing an isocyanate group characterized by controlling an oxygen gas (O 2 ) concentration in a liquid phase containing an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group to 0.5 mg / L or more.
  • a method for inhibiting polymerization of a saturated carboxylic acid ester compound [2] The method for inhibiting polymerization of an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group as described in [1], wherein a gas containing oxygen gas (O 2 ) is introduced into the liquid phase.
  • the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group is a compound represented by the following formula (A) or (B): [1] to [6] Of inhibiting polymerization of an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group.
  • CH 2 ⁇ CR 5 —COO—R 6 —NCO (A) (In the formula, R 5 represents a hydrogen atom or a methyl group, and R 6 represents an alkylene group having 1 to 10 carbon atoms which may be branched, or carbon atoms before and after a cycloalkylene group having 3 to 6 carbon atoms. A hydrocarbon group having an alkylene group of 0 to 3 or an aromatic hydrocarbon ring having 6 to 8 carbon atoms.)
  • R 1 represents a linear or branched saturated aliphatic group having 1 to 10 carbon atoms
  • R 2 independently represents a hydrogen atom or a methyl group
  • R 3 each independently represents a carbon number.
  • 0 represents a linear or branched alkylene group is 5
  • R 4 each independently represent a hydrogen atom, a linear or branched alkyl group with a carbon number is 1 to 6 or an aryl group.
  • the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group is selected from the group consisting of 2-methacryloyloxyethyl isocyanate, 2-acryloyloxyethyl isocyanate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate, 2- (isocyanato The method for inhibiting polymerization of an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group according to [7], which is ethy
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkylene group having 1 to 10 carbon atoms which may be branched, or carbon atoms before and after a cycloalkylene group having 3 to 6 carbon atoms.
  • R 1 represents a linear or branched saturated aliphatic group having 1 to 10 carbon atoms
  • R 2 independently represents a hydrogen atom or a methyl group
  • R 3 each independently represents a carbon number.
  • 0 represents a linear or branched alkylene group is 5
  • R 4 each independently represent a hydrogen atom, a linear or branched alkyl group with a carbon number is 1 to 6 or an aryl group.
  • the manufacturing method of the ethylenically unsaturated carboxylic acid ester compound containing the isocyanate group characterized by including.
  • R 1 represents a linear or branched saturated aliphatic group having 1 to 10 carbon atoms
  • X 1 represents a mineral acid
  • R 3 represents Independently represents a linear or branched alkylene group having 0 to 5 carbon atoms
  • R 4 independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or an aryl group.
  • Y 1 represents a hydroxyl group, a chlorine atom, or R 6 O— (R 6 represents an alkyl group having 1 to 6 carbon atoms).
  • Z 1 and Z 2 are each independently a chlorine atom, a bromine atom, R 7 O— (R 7 is a linear or branched alkyl group having 1 to 6 carbon atoms, 1 to 6 carbon atoms) A linear or branched alkenyl group or an aryl group which may have a substituent.), An imidazole residue, or a pyrazole residue.
  • the concentration of oxygen gas (O 2 ) in the liquid phase containing an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group By controlling the concentration of oxygen gas (O 2 ) in the liquid phase containing an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group to be within a specific concentration range, the ethylenically unsaturated carboxylic acid ester containing an isocyanate group Polymerization of the compound can be suppressed.
  • the amount of oxygen gas (O 2 ) supplied to the liquid phase is controlled based on the measured value, so that the liquid phase oxygen gas (O 2 ) 2 )
  • the concentration can be maintained within a desired range, and the polymerization of the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group can be effectively suppressed.
  • the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group can be efficiently produced by the polymerization inhibiting method.
  • the “ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group” means a carboxylic acid ester compound having an ethylenically unsaturated group and an isocyanate group in the molecule. Also referred to as “unsaturated compound”. “(Meth) acryloyl” means acryloyl or methacryloyl, including those in which some of the hydrogen atoms are substituted.
  • the oxygen gas (O 2 ) concentration in the liquid phase containing the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group is specified. It is managed so that the concentration range is
  • the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group used in the present invention is not particularly limited as long as it is an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group that is liquid at around room temperature.
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkylene group having 1 to 10 carbon atoms which may be branched, or carbon atoms before and after a cycloalkylene group having 3 to 6 carbon atoms.
  • R 1 represents a linear or branched saturated aliphatic group having 1 to 10 carbon atoms
  • R 2 independently represents a hydrogen atom or a methyl group
  • R 3 each independently represents a carbon number.
  • 0 represents a linear or branched alkylene group is 5
  • R 4 each independently represent a hydrogen atom, a linear or branched alkyl group with a carbon number is 1 to 6 or an aryl group.
  • Specific examples of the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group include 2-methacryloyloxyethyl isocyanate, 3-methacryloyloxy-n-propyl isocyanate, 2-methacryloyloxyisopropyl isocyanate, 4-methacryloyloxy-n- Butyl isocyanate, 2-methacryloyloxy-tert-butyl isocyanate, 2-methacryloyloxybutyl-4-isocyanate,
  • 2-methacryloyloxyethyl isocyanate 4-methacryloyloxy-n-butyl isocyanate, 5-methacryloyloxy-n-pentyl isocyanate, 6-methacryloyloxy-n-hexyl isocyanate, 2-acryloyloxyethyl isocyanate, 3- Preferred are methacryloyloxyphenyl isocyanate, 4-methacryloyloxyphenyl isocyanate, 1,1-bis (methacryloyloxymethyl) ethyl isocyanate, 2- (isocyanatoethyloxy) ethyl methacrylate, and 2- (isocyanatoethyloxy) ethyl acrylate.
  • Arbitrary components such as a solvent and a polymerization inhibitor, may be contained in the liquid phase part containing the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group in the present invention or the liquid phase part in the production process thereof.
  • the polymerization inhibitor include phenol-based polymerization inhibitors such as BHT (2,6-ditert-butyl-p-cresol) and quinone, sulfur-based polymerization inhibitors such as phenothiazine, phosphorus-based polymerization inhibitors, TEMPO (2 , 2,6,6-tetramethylpiperidine-1-oxyl) and the like.
  • polymerization in addition to the formation of solids and the formation of polymers such as solidification of the liquid phase part (glass-like, gel-like), an isocyanate group-containing ethylenically unsaturated compound that does not produce solids. Also includes multimerization (eg oligomerization). Such polymerization is carried out by reducing the amount of isocyanate group-containing ethylenically unsaturated compounds and the amount of oligomers produced by general analytical methods (eg gas chromatography, high performance liquid chromatography, gel permeation chromatography, etc.). This can be confirmed by quantitative determination.
  • general analytical methods eg gas chromatography, high performance liquid chromatography, gel permeation chromatography, etc.
  • the decrease rate of the isocyanate group-containing ethylenically unsaturated compound is defined as the amount of the isocyanate group-containing ethylenically unsaturated compound at a certain point of time 100%, and the subsequent polymerization by heat, light, etc. The rate at which the content of the ethylenically unsaturated compound is reduced per unit time.
  • the level of residual rate / reduction rate required varies depending on the temperature, the amount of polymerization inhibitor, the amount of impurities, etc., but decreases, for example, under light-shielded storage conditions around room temperature as a product of an isocyanate group-containing ethylenically unsaturated compound.
  • the rate is usually 10% or less, preferably 5% or less, more preferably 2% or less in one year.
  • the reduction rate during the production of the isocyanate group-containing ethylenically unsaturated compound is preferably low from the viewpoint of economic or operational management, but for example, usually 1% or less per hour, preferably 0.5% or less, more preferably Is preferably 0.3% or less.
  • the liquid phase is mainly composed of an organic compound such as an organic solvent in addition to the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group, and it is preferable that the water content is small. Preferably it is 5 mass% or less, More preferably, it is 2 mass% or less.
  • Oxygen gas (O 2 ) Any gas containing oxygen gas (O 2 ) can be used without particular limitation, such as air, but considering the influence on reaction and storage, a dry gas such as dry air or dry oxygen is used. It is preferable. It is also possible to use diluted air or the like obtained by diluting dry air or the like with dry nitrogen, diluted oxygen or the like obtained by diluting dry oxygen or the like with dry nitrogen or the like.
  • the concentration of oxygen gas (O 2 ) in the liquid phase part is high, in reality, since a saturated concentration exists, management beyond that is difficult.
  • the saturation concentration varies depending on the vapor-liquid equilibrium and Henry's law, depending on the oxygen partial pressure, the type of the isocyanate group-containing ethylenically unsaturated compound, etc., but for general organic compounds, atmospheric pressure, 25 ° C., dry air (oxygen gas (O 2 (Contains 21% by volume) Under the conditions of blowing, the saturation concentration is about 20 to 80 mg / L.
  • the liquid phase can contribute to the stability of the ethylenically unsaturated group if dissolved oxygen gas (O 2 ) is substantially present.
  • the liquid phase oxygen gas (O 2 ) concentration is 0.5 mg / L to 80 mg / L, preferably 2 mg / L. It is managed to be ⁇ 70 mg / L, more preferably 6 mg / L to 50 mg / L.
  • oxygen gas (O 2 ) in the liquid phase in advance and then store it in a sealed state in order to manage it at the above-mentioned concentration.
  • oxygen gas (O 2 ) for example, 0.5 mg / L to 80 mg / L, preferably 5 mg / L to 70 mg / L, more preferably 10 mg / L to 50 mg / L of oxygen gas (O 2 ) is previously contained in the liquid phase. It is desirable to keep it.
  • the method for managing the oxygen gas (O 2 ) concentration in the liquid phase is as follows. Measuring the oxygen gas (O 2 ) concentration in the liquid phase; Controlling the supply amount of oxygen gas (O 2 ) by a gas containing oxygen gas (O 2 ) to be introduced based on the measurement result; Introducing a gas containing oxygen gas (O 2 ) into the liquid phase; It is preferable to have.
  • ⁇ Method for measuring oxygen gas (O 2 ) concentration of liquid organic compound As a method for measuring the oxygen gas (O 2 ) concentration in the liquid phase, a general method used for measuring the oxygen gas (O 2 ) concentration in the liquid can be used. Although it is desirable to directly measure the liquid phase, a part of the liquid phase may be taken out and measured while maintaining a vapor-liquid equilibrium state.
  • a commercially available dissolved oxygen meter for organic solvents can be used particularly for measuring the dissolved oxygen gas (O 2 ) concentration in an organic solvent having a low water content.
  • a UC-12-SOL type manufactured by Central Science Co., Ltd. can be used as a polaro electrode. The electrode is immersed in the liquid phase and the concentration of oxygen gas (O 2 ) in the liquid phase is measured.
  • a value determined by another method is used for the value measured for a solution obtained by sufficiently bubbling dry air in a liquid containing the target isocyanate group-containing ethylenically unsaturated compound.
  • a gas chromatograph (GC) method can be used as another method. An example of the measurement by the GC method is shown below.
  • the oxygen gas (O 2 ) concentration in the liquid phase As the factors constituting the oxygen gas (O 2 ) concentration in the liquid phase, the oxygen gas (O 2 ) -containing gas flow rate, the oxygen concentration in the oxygen gas (O 2 ) -containing gas, and the oxygen gas (O 2) It is considered that the dissolution efficiency factors in the liquid phase are related to each other.
  • the oxygen gas (O 2 ) -containing gas blown into the liquid phase part is improved in equipment by optimizing the liquid phase part blowing nozzle shape so that the dissolution rate is not limited.
  • the oxygen concentration in the gas containing oxygen gas (O 2 ) by controlling the oxygen concentration of the gas by controlling the amount of oxygen gas (O 2 ) containing gas supplied to the liquid phase by managing the gas flow rate, by pressure management
  • One or more automatic management methods in general manufacturing equipment such as controlling the dissolution efficiency of oxygen gas in the liquid phase can be used.
  • the control of the amount of oxygen supplied to the gas containing oxygen gas (O 2 ) using gas flow control is when the current value of the oxygen gas (O 2 ) concentration in the liquid phase is measured and is lower than its target value.
  • the flow rate of the oxygen gas (O 2 ) -containing gas blown into the liquid phase part is temporarily increased by PID control (a kind of feedback control) or the like.
  • the oxygen supply amount can be set.
  • the dissolved oxygen gas (O 2 ) in the liquid phase part can be managed to a target concentration.
  • the method is not particularly limited as long as a gas containing oxygen gas (O 2 ) can be introduced into the liquid phase.
  • a gas containing oxygen gas (O 2 ) from a factory pipe dry air or a cylinder through a gas introduction pipe can be introduced into the liquid phase.
  • the liquid phase temperature and the pressure in the system are not particularly limited, and can be introduced at room temperature or under heating, and oxygen gas (O 2 ) can be introduced under atmospheric pressure or reduced pressure.
  • the process in which the liquid phase oxygen gas (O 2 ) concentration management is performed includes all processes in which an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group exists in the liquid phase.
  • Processes that should be managed in particular include processes with high polymerizability of ethylenically unsaturated carboxylic acid ester compounds containing isocyanate groups (eg heating, reaction, distillation, product storage tanks, etc.), dissolved oxygen gas in the liquid phase ( Examples thereof include a process (such as reduced pressure and distillation) in which the O 2 ) concentration tends to decrease.
  • the liquid phase to be managed in particular includes the liquid part of the reaction vessel for producing the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group, and the distillation step for purifying the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group.
  • a bottom liquid part etc. are mentioned.
  • product containers drums, tank trucks, etc.
  • the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group is produced by a conventional production method using the polymerization inhibiting method of the present invention.
  • a conventional manufacturing method for example, it can be manufactured by an improved Reppe method, a propylene direct oxidation method or the like according to “Revised Manufacturing Process Diagram Complete Works II” (Chemical Industry Co., Ltd., Ministry of International Trade and Industry, Process Sheet Study Group).
  • a preferred (meth) acryloyl group-containing isocyanate compound as the ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group is produced by, for example, a method described in JP-A-2006-232797 and JP-A-2007-55993. Can do.
  • the method for inhibiting the polymerization of an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group may be included in the method for producing an ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group.
  • a (meth) acrylic acid ester derivative containing an isocyanate group represented by the formula (A) (hereinafter also referred to as “compound (A)”) has an isocyanate group represented by the following formula (a1):
  • the chloropropionic acid ester derivative (hereinafter also referred to as “compound (a1)”) is dehydrated in the presence of a basic nitrogen compound while controlling the liquid phase oxygen gas (O 2 ) concentration to 0.5 mg / L or more. It can be produced by a method including a step of hydrogen chloride.
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkylene group which may be branched having 1 to 10 carbon atoms or a cyclohexane having 3 to 6 carbon atoms.
  • a hydrocarbon group having an alkylene group having 0 to 3 carbon atoms before or after the alkylene group or an aromatic hydrocarbon ring having 6 to 8 carbon atoms is shown.
  • Said R 6 is preferably an alkylene group which may be branched having 1 to 10 carbon atoms, more preferably -CH 2 -CH 2 - (ethylene group), - CH 2 -CH 2 -CH 2 - ( Propylene group), particularly preferably —CH 2 —CH 2 — (ethylene group).
  • the compound (a1) can be produced, for example, by the method described in JP-A-2006-232797.
  • Dehydrochlorination is usually performed by allowing a basic compound to coexist.
  • a basic compound a compound having basic nitrogen is generally used, but if a hydrogen atom remains on the nitrogen, there is a possibility that it reacts with the raw material and the isocyanate group of the target product. The yield may decrease and the basicity of the nitrogen atom may disappear. Therefore, it is preferable to use a basic nitrogen compound having tertiary nitrogen.
  • the dehydrochlorination in the present invention may be carried out using the reaction solution obtained when the compound (a1) is synthesized as it is or after the synthesized compound (a1) is purified by a method such as distillation. May be.
  • the former method has an advantage that the number of steps can be reduced.
  • a basic nitrogen compound remains in the product containing the compound (A) obtained by the dehydrochlorination, it can cause the polymerization reaction of the compound (A) to proceed. It is preferable to purify.
  • the above dehydrochlorination can theoretically be carried out by using 1 mole equivalent of the basic nitrogen compound per 1 mole of the compound (a1).
  • the basic nitrogen compound may be used in excess, depending on the conditions, the remaining basic nitrogen compound may accelerate the polymerization reaction.
  • the usage-amount of a basic nitrogen compound is too small, there exists a possibility that the said compound (a1) may remain
  • the optimum amount of the basic nitrogen compound used for maximizing the isolation yield of the target compound (A) varies depending on the reaction conditions and the like.
  • dehydrochlorination is carried out using the reaction solution as it is without separating and purifying the compound (a1) from the reaction solution when the compound (a1) is synthesized, more factors are involved. Therefore, it is difficult to obtain the optimum value of the basic nitrogen compound.
  • alkali-decomposable chlorine it is desirable to measure the amount of alkali-decomposable chlorine in the reaction solution and determine the amount of basic nitrogen compound used according to the measured amount.
  • the amount of alkali-decomposable chlorine is measured, and the basic nitrogen compound is 0.5 to 10 molar equivalents, preferably 0.8 to 5.0 molar equivalents per 1 mol of the alkali-decomposable chlorine. More preferably, by performing dehydrochlorination in the range of 0.9 to 2.0 molar equivalents, a (meth) acrylic acid ester derivative containing an isocyanate group can be obtained with a high isolation yield.
  • alkali-decomposable chlorine refers to chlorine that can be quantified under analysis conditions described later.
  • the basic nitrogen compound is added to 0.1 mol with respect to 1 mol of the obtained compound (a1). It can be used in the range of 5 to 10 molar equivalents, preferably 0.8 to 5.0 molar equivalents, more preferably 0.9 to 2.0 molar equivalents.
  • the dehydrochlorination in the production method of the present invention is performed by maintaining a certain temperature in the presence of a basic nitrogen compound. If the reaction temperature is high, the product compound (A) may be polymerized. Therefore, it is desirable that the reaction temperature is 40 to 120 ° C, preferably 40 to 100 ° C, more preferably 45 to 90 ° C.
  • the reaction time varies depending on the reaction temperature and the basic strength of the basic nitrogen compound, but is usually about 10 minutes to 40 hours, preferably 30 minutes to 30 hours, more preferably 1 hour to 10 hours.
  • a solvent that does not react with the isocyanate group for example, a hydrocarbon such as toluene or xylene; an acetate such as ethyl acetate, propyl acetate, or butyl acetate; an aprotic solvent such as a chlorinated solvent such as methylene chloride; be able to.
  • the solvent also preferably has a boiling point lower than that of the product.
  • oxygen (O 2) gas in the liquid phase concentration was measured, the oxygen gas in the liquid phase (O 2) oxygen gas in liquid phase to a concentration of 0.5 mg / L or more (O 2) Is introduced.
  • the method for managing the liquid-phase oxygen gas (O 2 ) concentration to be 0.5 mg / L or more is the same as the method described above.
  • the hydrochloride is removed and the remaining basic nitrogen compound is separated, and then the above compound (A) is further distilled, crystallized, extracted, column-treated or the like, preferably distilled.
  • hydrolyzable chlorine can be reduced by treating a (meth) acrylic acid ester derivative containing an isocyanate group with the basic nitrogen compound as necessary.
  • the basic nitrogen compound in this case is an amount in the range of 0.1 to 10 molar equivalents, preferably 0.2 to 5 molar equivalents, more preferably 0.3 to 2 molar equivalents per 1 mol of hydrolyzable chlorine. Can be used.
  • the treatment is carried out by maintaining a certain temperature in the presence of the basic nitrogen compound. If the treatment temperature is high, the ester derivative may be polymerized, so that it is desirable that the treatment temperature be 10 to 120 ° C., preferably 10 to 100 ° C., more preferably 20 to 80 ° C. Further, the liquid phase oxygen gas (O 2 ) concentration is controlled to 0.5 mg / L or more by the same method as in the production process.
  • the ester derivative may be polymerized, so that it is desirable that the treatment temperature be 10 to 120 ° C., preferably 10 to 100 ° C., more preferably 20 to 80 ° C.
  • the liquid phase oxygen gas (O 2 ) concentration is controlled to 0.5 mg / L or more by the same method as in the production process.
  • An ethylenically unsaturated carboxylic acid ester compound containing an isocyanate group represented by the formula (B) (hereinafter also referred to as “compound (B)”) has a liquid-phase oxygen gas (O 2 ) concentration of 0.5 mg /
  • the isocyanate compound represented by the following formula (b1) (hereinafter also referred to as “compound (b1)”) is dehydrochlorinated in the presence of a basic nitrogen compound while being controlled to be L or more. It can manufacture by the method including the process of obtaining the ethylenically unsaturated carboxylic acid ester compound containing the isocyanate group represented by this.
  • R 1 represents a linear or branched saturated aliphatic group having 1 to 10 carbon atoms
  • R 2 independently represents a hydrogen atom or a methyl group
  • R 3 each independently represents a carbon number.
  • 0 represents a linear or branched alkylene group is 5
  • R 4 each independently represent a hydrogen atom, a linear or branched alkyl group with a carbon number is 1 to 6 or an aryl group.
  • the compound (b1) can be produced, for example, by the method described in JP2007-55993A.
  • the reaction temperature in the above production process varies depending on the type of compound used, but is usually 0 to 150 ° C., preferably 20 to 100 ° C. If the reaction temperature is low, the reaction rate may be slow. On the other hand, when the reaction temperature is high, the unsaturated bond generated by the deHCl reaction may be polymerized.
  • Whether or not to use a solvent in the above production process depends on the type of compound used. When compound (b1) is liquid or melts, the reaction can be carried out without using a solvent. On the other hand, when the compound (b1) is solid or does not melt, it is desirable to carry out the reaction using a solvent.
  • the solvent include esters such as methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate and butyl acetate; chain ethers such as diethyl ether, dipropyl ether and dibutyl ether; cyclics such as dioxane, dioxolane and tetrahydrofuran Ethers; aromatic hydrocarbons such as toluene, xylene, ethylbenzene, mesitylene, cumene; aliphatic hydrocarbons such as propane, hexane, heptane, cyclohexane; methylene chloride, 1,2-dichloroethane, 1,2- And halogen-based hydrocarbons such as dichlorobenzene.
  • esters such as methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate and butyl acetate
  • chain ethers such
  • the amount used is usually such that the compound (b1) is 0.5 to 80% by mass, preferably 5 to 50% by mass, based on the total amount of the compound (b1) and the solvent. is there. If the amount of solvent used is small, stirring during the reaction may not be successful and the reaction rate may be slow. Moreover, it may be difficult to remove the generated salt. On the other hand, if the amount of solvent used is large, the reaction is not affected, but the amount of solvent to be discarded increases, which may increase the burden on the environment.
  • the basic nitrogen compound used in the above production process a general compound containing basic nitrogen can be used, but when a hydrogen atom remains in basic nitrogen, the isocyanate group in compound (b1) and Since the reaction may occur, the yield may decrease as a result.
  • the basic nitrogen compound is preferably a basic nitrogen compound containing tertiary nitrogen.
  • a weakly basic nitrogen compound such as quinoline in which an aromatic ring is directly bonded to a nitrogen atom is insufficient, and a certain degree of basicity is required. Therefore, it is desirable that the basic nitrogen compound contains tertiary nitrogen and the tertiary nitrogen atom has one or more substituents other than the aromatic ring such as an alkyl group. Further, it is desirable that the number of aromatic rings substituted with tertiary nitrogen atoms is 1 or less.
  • basic nitrogen compounds used in the above production process include trimethylamine, triethylamine, tripropylamine, dimethylethylamine, dimethylisopropylamine, diethylmethylamine, dimethylbutylamine, dimethylhexylamine, diisopropylethylamine, dimethylcyclohexylamine, tetra Methyldiaminomethane, dimethylbenzylamine, tetramethylethylenediamine, tetramethyl-1,4-diaminobutane, tetramethyl-1,3-diaminobutane, tetramethyl-1,6-diaminohexane, pentamethyldiethylenetriamine, 1-methylpiperidine 1-ethylpiperidine, N, N-methylpiperazine, N-methylmorpholine, 1,8-diazabicyclo [5.4.0.
  • DBU 1,5-diazabicyclo [4.3.0] -5-nonene
  • DBN 2,4-diazabicyclo [2.2.2] octane
  • N N- Examples thereof include dimethylaniline, N, N-diethylaniline, and ion exchange resins containing tertiary nitrogen.
  • trimethylamine, triethylamine, tripropylamine, and tetramethylenediamine are preferable.
  • said basic nitrogen compound may be used independently and may be used in combination of 2 or more types.
  • the amount of basic nitrogen compound used in the above production process varies depending on the type of compound used, but usually the amount of alkali-decomposable chlorine present in the reaction solution after completion of the reaction obtained in the above production process.
  • the amount of alkali decomposable chlorine obtained as a result of the measurement is 0.5 to 10 mole times, preferably 0.8 to 5.0 mole times, more preferably 0.9 to 2. The amount is 0 mole times. If the amount of basic nitrogen compound used is small, the yield may decrease. On the other hand, if the amount of basic nitrogen compound used is large, the stability of the resulting compound (B) may be reduced. Moreover, the cost required for industrial production increases.
  • the amount of alkali-decomposable chlorine used here is determined by diluting the reaction solution obtained in the production process with a methanol / water mixed solvent, adding an aqueous sodium hydroxide solution, then heating, and then using a silver nitrate solution. It is a value obtained by measuring by the potentiometric titration method.
  • oxygen (O 2) gas in the liquid phase concentration was measured, the oxygen gas in the liquid phase (O 2) oxygen gas in liquid phase to a concentration of 0.5 mg / L or more (O 2) Is introduced.
  • the method for managing the liquid-phase oxygen gas (O 2 ) concentration to be 0.5 mg / L or more is the same as the method described above.
  • the compound (B) obtained in the above production process can be purified by general operations such as filtration, extraction, recrystallization, distillation and the like.
  • the liquid phase oxygen gas (O 2 ) concentration is controlled to 0.5 mg / L or more by the same method as in the production process.
  • compound (b3) a compound represented by the following formula (b3)
  • compound (b4) an ester compound represented by the following formula (b4)
  • a method including a step of obtaining a compound (B ′) by reacting a compound (b4) and a compound represented by the following formula (b5) (hereinafter also referred to as “compound (b5)”). Can do.
  • R 1 represents a linear or branched saturated aliphatic group having 1 to 10 carbon atoms
  • X 1 represents a mineral acid
  • R 3 represents a linear or branched chain having 0 to 5 carbon atoms
  • R 4 represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or an aryl group
  • Y 1 represents a hydroxyl group, a chlorine atom, or R 6 O— (R 6 Represents an alkyl group having 1 to 6 carbon atoms.) Indicates. )
  • Z 1 and Z 2 are each independently a chlorine atom, a bromine atom, R 7 O— (R 7 is a linear or branched alkyl group having 1 to 6 carbon atoms, 1 to 6 carbon atoms) A linear or branched alkenyl group or an aryl group which may have a substituent.), An imidazole residue, or a pyrazole residue.
  • the compound (b2) can be produced, for example, by the method described in JP2007-55993A.
  • the compound (b3) used in the first step a commercially available product can be used and is easily available.
  • Specific examples of the compound (b3) include methacrylic acid, 3-methyl-3-butenonic acid, tiglic acid, 4-methyl-4-pentenoic acid, ⁇ -methylcinnamic acid, and an acid chloride compound of the above carboxylic acid, Ester compounds composed of an acid and a linear or branched alcohol compound having 1 to 6 carbon atoms, such as methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, pentyl ester, hexyl ester, cyclohexyl ester, etc. Can be mentioned.
  • Compound (b3) can also be used after the carboxylic acid is used as a carboxylic acid chloride compound.
  • Methods for converting a carboxylic acid to a carboxylic acid chloride compound are generally known.
  • Japanese Patent Publication No. 57-026497, Japanese Patent Application Laid-Open No. 52-089617, and Japanese Patent Application Laid-Open No. 11-199540 disclose a carboxylic acid.
  • the reaction temperature in the first step varies depending on the type of compound used, but is usually 30 to 150 ° C, preferably 50 to 120 ° C. If the reaction temperature is low, the reaction rate may be slow. On the other hand, if the reaction temperature is high, impurities may increase and unsaturated bonds may polymerize.
  • Whether or not a solvent is used in the first step depends on the type of compound used.
  • compound (b2) and / or compound (b3) and / or compound (b4) are liquid or melt, the reaction can be carried out without using a solvent.
  • the compound (b2) and / or the compound (b3) and / or the compound (b4) are solid or do not melt, it is desirable to carry out the reaction using a solvent.
  • the solvent include esters such as methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate and butyl acetate; chain ethers such as diethyl ether, dipropyl ether and dibutyl ether; cyclics such as dioxane, dioxolane and tetrahydrofuran Ethers; aromatic hydrocarbons such as toluene, xylene, ethylbenzene, mesitylene, cumene; aliphatic hydrocarbons such as propane, hexane, heptane, cyclohexane; methylene chloride, 1,2-dichloroethane, 1,2- And halogen-based hydrocarbons such as dichlorobenzene.
  • esters such as methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate and butyl acetate
  • chain ethers such
  • the amount used is usually 1 to 50% by mass, preferably 5 to 30% by mass of the compound (b2) based on the total amount of the compound (b2), the compound (b3) and the solvent. More preferably, the amount is 10 to 20% by mass. If the amount of solvent used is small, stirring during the reaction may not be successful and the reaction rate may be slow. On the other hand, if the amount of solvent used is large, the reaction is not affected, but the amount of solvent to be discarded increases, which may increase the burden on the environment.
  • the amount of the compound (b3) with respect to the compound (b2) varies depending on the kind of the compound used, but is usually 2 to 10 mole times, preferably 2 to 5 mole times. If the amount of the compound (b3) used is small, the yield may decrease and the amount of impurities may increase. On the other hand, when the amount of the compound (b3) used is large, the reaction is not affected at all, but the amount of waste increases, which may increase the burden on the environment.
  • oxygen (O 2) gas in the liquid phase concentration was measured, the oxygen gas in the liquid phase (O 2) oxygen gas in liquid phase to a concentration of 0.5 mg / L or more (O 2) Is introduced.
  • the method for managing the liquid-phase oxygen gas (O 2 ) concentration to be 0.5 mg / L or more is the same as the method described above.
  • the compound (b4) obtained in the first step can be purified by general operations such as extraction, recrystallization, distillation and the like.
  • the liquid phase oxygen gas (O 2 ) concentration is controlled to 0.5 mg / L or more in the same manner as in the production process. Further, it can be used for the reaction in the next third step without purification.
  • reaction temperature in the second step varies depending on the type of compound used, but is usually 30 to 150 ° C., preferably 50 to 120 ° C. If the reaction temperature is low, the reaction rate may be slow. On the other hand, if the reaction temperature is high, impurities may increase and unsaturated bonds may polymerize.
  • Whether or not a solvent is used in the second step depends on the type of compound used. When compound (b4) is liquid or melts, the reaction can be carried out without using a solvent. On the other hand, when the compound (b4) is solid or does not melt, it is desirable to carry out the reaction using a solvent.
  • the solvent include esters such as methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate and butyl acetate; chain ethers such as diethyl ether, dipropyl ether and dibutyl ether; cyclics such as dioxane, dioxolane and tetrahydrofuran Ethers; aromatic hydrocarbons such as toluene, xylene, ethylbenzene, mesitylene, cumene; aliphatic hydrocarbons such as propane, hexane, heptane, cyclohexane; methylene chloride, 1,2-dichloroethane, 1,2- And halogen-based hydrocarbons such as dichlorobenzene.
  • esters such as methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate and butyl acetate
  • chain ethers such
  • the amount used is usually 0.5 to 80% by mass, preferably 5 to 80% by mass of compound (b4) with respect to the total amount of compound (b4), compound (b5) and solvent.
  • the amount is 50% by mass. If the amount of solvent used is small, stirring during the reaction may not be successful and the reaction rate may be slow. On the other hand, if the amount of solvent used is large, the reaction is not affected, but the amount of solvent to be discarded increases, which may increase the burden on the environment.
  • Z1 and Z2 in the compound (b5) used in the second step are as described in JP-A-2007-55993. It is also possible to use a dimer or trimer of compound (b5).
  • the amount of compound (b5) used relative to compound (b4) varies depending on the type of compound used, but theoretically, the reaction between compound (b4) and compound (b5) is performed at a molar ratio of 1: 1. proceed. However, in order to allow the reaction to proceed smoothly, it is desirable to use an excess amount of compound (b5).
  • the amount of compound (b5) to be used with respect to compound (b4) is usually 1 to 10 mol times, preferably 1 to 5 mol times. When the amount of compound (b5) used is small, unreacted compound (b4) remains, and the yield may be reduced. In addition, impurities may increase. On the other hand, if the amount of compound (b5) used is large, the reaction will not be affected at all, but a special exclusion device or the like may be required, and the burden on the environment may be increased.
  • oxygen (O 2) gas in the liquid phase concentration was measured, the oxygen gas in the liquid phase (O 2) oxygen gas in liquid phase to a concentration of 0.5 mg / L or more (O 2) Is introduced.
  • the method for managing the liquid-phase oxygen gas (O 2 ) concentration to be 0.5 mg / L or more is the same as the method described above.
  • the compound (B ′) obtained in the second step can be purified by general operations such as extraction, recrystallization, distillation and the like.
  • the liquid phase oxygen gas (O 2 ) concentration is controlled to 0.5 mg / L or more in the same manner as in the production process.
  • the measurement conditions in the examples are as follows.
  • Dry air oxygen gas (O 2 ) concentration: 21 vol%) was introduced at 1 mL / min from the gas inlet tube, and the remaining amount of methyl acrylate monomer was determined over time by gas chromatography up to 10 hours. About 0.12% / hour. This decrease in monomer is due to polymerization (oligomerization) by heat. During this operation, the indicated electrode value of the dissolved oxygen gas (O 2 ) concentration was always in the range of 30 to 32 mg / L.
  • Reference Example 3 Reference Example 1 except that the gas outlet at the tip of the cooling condenser was connected to a vacuum pump instead of opening to atmospheric pressure, and the pressure was adjusted with nitrogen using a needle valve so that the indicated value of the mercury manometer was 100 mmHg.
  • the remaining amount of methyl acrylate monomer was evaluated over time by the method described up to 10 hours, it decreased on average at a rate of about 0.17% / hour.
  • the indicated electrode value of the dissolved oxygen gas (O 2 ) concentration was always in the range of 4 to 5 mg / L.
  • Reference Example 4 The method described in Reference Example 3 except that instead of introducing dry air at 1 mL / min, dry air (oxygen gas (O 2 ) concentration 4% by volume) diluted 5 times with dry nitrogen was introduced at 5 mL / min. When the remaining amount of methyl acrylate monomer was evaluated over time up to 10 hours, the average amount decreased at a rate of about 0.21% / hour. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 1.1 to 1.3 mg / L.
  • Example 1 A time-lapse was measured by the method described in Reference Example 3 except that 2-acryloyloxyethyl isocyanate (Karenz AOI (registered trademark) manufactured by Showa Denko KK, purity 99.7% by gas chromatography) was used in place of the methyl acrylate monomer.
  • 2-acryloyloxyethyl isocyanate Karl AOI (registered trademark) manufactured by Showa Denko KK, purity 99.7% by gas chromatography
  • the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 6.5 to 7.0 mg / L.
  • Example 2 As an isocyanate group-containing ethylenically unsaturated compound monomer, instead of 2-acryloyloxyethyl isocyanate (Karenz AOI (registered trademark), Showa Denko KK, purity 99.7% by gas chromatography), 2-acryloyloxyethyl isocyanate The remaining amount of 2-acryloyloxyethyl isocyanate monomer was evaluated over time by the method described in Example 1 except that the reaction solution (purity of 78.8% by gas chromatography) was used. About 0.16% / hour. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 4.8 to 5.2 mg / L.
  • 2-acryloyloxyethyl isocyanate Karenz AOI (registered trademark), Showa Denko KK, purity 99.7% by gas chromatography
  • 2-acryloyloxyethyl isocyanate The remaining amount of 2-
  • Example 3 100 g of a reaction solution of 2-acryloyloxyethyl isocyanate (AOI) (purity of 78.8% by gas chromatography) was introduced into a gas introduction tube (a single glass tube with an inner diameter of 4 mm), an Allen-type cooling condenser (gas outlet was a vacuum pump, Put in a 300 mL glass flask equipped with a pressure gauge, a thermometer, and a pre-calibrated dissolved oxygen meter for organic compounds (UC-12-SOL type manufactured by Central Science Co., Ltd.) Heated in a 100 ° C. oil bath.
  • AOI 2-acryloyloxyethyl isocyanate
  • the reaction vessel While introducing dry air (oxygen gas (O 2 ) concentration: 21 vol%) from the gas introduction pipe at 1 mL / min, the reaction vessel was set to 2.2 kPa with a vacuum pump and a pressure control valve. At this time, the temperature of the internal liquid was 92 ° C., and AOI was refluxed in a cooling tube, so that the situation was the same as the bottom liquid of the distillation column. When the remaining amount of the AOI monomer was quantitatively determined over time by gas chromatography up to 10 hours, it decreased on average at a rate of about 0.58% / hour. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 1.8 to 2.0 mg / L.
  • AOI monomer remained over time by the method described in Example 3 except that dry air (oxygen gas (O 2 ) concentration 2 vol%) diluted 10 times with dry nitrogen was used instead of introducing dry air.
  • dry air oxygen gas (O 2 ) concentration 2 vol%) diluted 10 times with dry nitrogen was used instead of introducing dry air.
  • O 2 oxygen gas
  • the reduction rate of AOI monomer at the time of 5 hours was about 0.97% / hour.
  • the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 0.1 to 0.2 mg / L.
  • Example 4 The method described in Example 2 except that instead of introducing dry air at 1 mL / min, dry air (oxygen gas (O 2 ) concentration 4 vol%) diluted 5 times with dry nitrogen was introduced at 5 mL / min. When the residual amount of 2-acryloyloxyethyl isocyanate monomer was evaluated over time, it decreased at a rate of about 0.35% / hour. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 0.9 to 1.2 mg / L.
  • Example 5 2-acryloyloxyethyl isocyanate monomer over time by the method described in Example 2 except that diluted dry oxygen (diluted gas: dry nitrogen) having an oxygen gas (O 2 ) concentration of 40 vol% was used instead of dry air As a result, the residual amount was reduced at a rate of about 0.02% / hour.
  • the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 10 to 11 mg / L.
  • dissolved oxygen (O 2) gas concentration in the dissolved oxygen meter was measured dissolved oxygen (O 2) gas concentration in the dissolved oxygen meter, since 1.5 hours dissolved oxygen (O 2) gas concentration is stabilized to 38 mg / L.
  • the 1 L can was sealed with a lid and stored at a constant temperature of 30 ° C.
  • 99.4% remained in 1 year. This decrease in monomer is due to polymerization (oligomerization) during storage.
  • the dissolved oxygen gas (O 2 ) concentration by the dissolved oxygen meter was 18 mg / L.
  • Example 6 The dissolved oxygen gas (O 2 ) was measured by the method described in Reference Example 5 except that 2-acryloyloxyethyl isocyanate (purity 99.6% by gas chromatography) obtained by distillation under reduced pressure was used. / L. 1.0 kg of this 2-acryloyloxyethyl isocyanate is put into a SUS container (1 L can), and dry air (oxygen gas (O 2 ) concentration 21% by volume) is blown in a glass tube at a flow rate of 1 L / min, 30 minutes When the dissolved oxygen gas (O 2 ) concentration was measured with the above dissolved oxygen meter every other time, the dissolved oxygen gas (O 2 ) concentration stabilized at 41 mg / L after 1 hour.
  • 2-acryloyloxyethyl isocyanate purity 99.6% by gas chromatography
  • the 1 L can was sealed with a lid and stored at a constant temperature of 30 ° C.
  • 98.4% remained in 1 year.
  • the dissolved oxygen gas (O 2 ) concentration by the dissolved oxygen meter was 21 mg / L.
  • Example 7 As described in Example 6, except that dry air (oxygen gas (O 2 ) concentration of 10 vol%) diluted twice with dry nitrogen was used instead of dry air (oxygen gas (O 2 ) concentration of 21 vol%).
  • the dissolved oxygen gas (O 2 ) concentration was measured with the above dissolved oxygen meter every 30 minutes from the start of diluting air blowing, and the dissolved oxygen gas (O 2 ) concentration was 20 mg after 2.5 hours. / L stabilized.
  • the 1 L can was sealed with a lid and stored at a constant temperature of 30 ° C.
  • the amount of 2-acryloyloxyethyl isocyanate remaining after storage for one year was quantified by gas chromatography, and 93.2% remained in one year.
  • the dissolved oxygen gas (O 2 ) concentration by the dissolved oxygen meter was 7 mg / L.
  • Example 8 250 mL of toluene, 59 g (0.33 mol) of 3-chloropropionic acid (2-isocyanatoethyl) ester obtained by the method described in JP-A-2006-232797, 50 g of triethylamine (boiling point: 89.4 ° C.) .49 mol) is a gas inlet tube (single glass tube with an inner diameter of 4 mm), cooling condenser (gas outlet is open to atmospheric pressure and fitted with granular calcium chloride tube), thermometer, pre-calibrated dissolved oxygen for organic compounds The mixture was placed in a three-necked flask equipped with a total (UC-12-SOL type manufactured by Central Science Co., Ltd.), heated and stirred at 50 ° C.
  • a gas inlet tube single glass tube with an inner diameter of 4 mm
  • cooling condenser gas outlet is open to atmospheric pressure and fitted with granular calcium chloride tube
  • thermometer pre-calibrated
  • the reaction solution was held at 50 ° C. for 10 hours while introducing dry air (oxygen gas (O 2 ) concentration: 21% by volume) from the gas introduction tube at 1 mL / min, and the residual amount of acryloyloxyethyl isocyanate was gas chromatographed over time. As a result of quantification by the tograph method, it decreased on average at a rate of about 0.07% / hour. This decrease in monomer is due to polymerization (oligomerization) by heat. During this operation, the indicated electrode value of the dissolved oxygen gas (O 2 ) concentration was always in the range of 40 to 42 mg / L.
  • Example 9 250 mL of toluene, 59 g (0.33 mol) of 3-chloropropionic acid (2-isocyanatoethyl) ester obtained by the method described in JP-A-2006-232797, 50 g of triethylamine (boiling point: 89.4 ° C.) .49 mol) is a gas inlet tube (single glass tube with an inner diameter of 4 mm), cooling condenser (gas outlet is open to atmospheric pressure and fitted with granular calcium chloride tube), thermometer, pre-calibrated dissolved oxygen for organic compounds The mixture was placed in a three-necked flask equipped with a total (UC-12-SOL type, manufactured by Central Science Co., Ltd.), heated and stirred at 50 ° C.
  • a gas inlet tube single glass tube with an inner diameter of 4 mm
  • cooling condenser gas outlet is open to atmospheric pressure and fitted with granular calcium chloride tube
  • thermometer pre-calib
  • Example 10 In Example 1, instead of 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate (Karenz MOI (registered trademark) manufactured by Showa Denko KK, purity 99.8% by gas chromatography) was used. When the residual amount of MOI monomer was evaluated over time by the method described in No. 1 up to 10 hours, it decreased on average at a rate of about 0.07% / hour. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 6.6 to 7.0 mg / L.
  • Karenz MOI registered trademark
  • O 2 dissolved oxygen gas
  • Example 10 In Example 10, instead of dry air, MOI monomer was changed over time by the method described in Example 10 except that dry air (oxygen gas (O 2 ) concentration 1 vol%) diluted 20 times with dry nitrogen was introduced. When the remaining amount was evaluated up to 10 hours, it decreased on average at a rate of about 1.1% / hour. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 0.1 to 0.4 mg / L.
  • dry air oxygen gas (O 2 ) concentration 1 vol%) diluted 20 times with dry nitrogen was introduced.
  • the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 0.1 to 0.4 mg / L.
  • Example 11 In Example 3, instead of the reaction solution of 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate (Karenz MOI (registered trademark) manufactured by Showa Denko KK, purity 99.8% by gas chromatography) was used. When the residual amount of MOI monomer was quantified by gas chromatographic method over time by the method described in Example 3, it was decreased at a rate of about 0.49% / hour on average. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 2.0 to 2.2 mg / L.
  • Karenz MOI registered trademark
  • O 2 dissolved oxygen gas
  • Example 11 In Example 11, instead of dry air, MOI monomer was changed over time by the method described in Example 11 except that dry air (oxygen gas (O 2 ) concentration 2% by volume) diluted 10 times with dry nitrogen was introduced. When the remaining amount was evaluated up to 10 hours, it decreased on average at a rate of about 2.1% / hour. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 0.1 to 0.3 mg / L.
  • dry air oxygen gas (O 2 ) concentration 2% by volume
  • Example 12 instead of introducing dry air at 1 mL / min in Example 10, Example 10 was carried out except that dry air (oxygen gas (O 2 ) concentration 4 vol%) diluted 5 times with dry nitrogen was introduced at 5 mL / min.
  • O 2 oxygen gas
  • the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 1.1 to 1.3 mg / L.
  • Example 13 In Example 10, instead of dry air, diluted dry oxygen (diluted gas: dry nitrogen) having an oxygen gas (O 2 ) concentration of 40% by volume was used, and the MOI monomer was changed over time by the method described in Example 10. When the remaining amount was evaluated up to 10 hours, it decreased on average at a rate of about 0.02% / hour. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 10 to 11 mg / L.
  • diluted dry oxygen diluted gas: dry nitrogen
  • O 2 oxygen gas
  • Example 14 In Example 6, instead of 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate (Karenz MOI (registered trademark) manufactured by Showa Denko KK, purity 99.8% by gas chromatography) was used.
  • the dissolved oxygen gas (O 2 ) in the monomer liquid was measured in advance by the method described in No. 6 and found to be 0.3 mg / L.
  • 1.0 kg of this MOI solution is put into a SUS container (1 L can), and dry air (oxygen gas (O 2 ) concentration 21% by volume) is blown in a glass tube at a flow rate of 1 L / min.
  • the dissolved oxygen gas (O 2 ) concentration stabilized at 44 mg / L after 1 hour.
  • the 1 L can was sealed with a lid and stored at a constant temperature of 30 ° C.
  • the residual amount of MOI monomer after storage for one year was quantified by gas chromatography, it was 99.0% remaining in one year.
  • the dissolved oxygen gas (O 2 ) concentration by the dissolved oxygen meter was 17 mg / L.
  • Example 12 The MOI was stored by the method described in Example 14 except that the 1 L can was sealed without being blown with dry air. The remaining amount after one year from the start of storage was 83.9%. there were. At this time, the dissolved oxygen gas (O 2 ) concentration by the dissolved oxygen meter was 0.2 mg / L.
  • Example 15 In Example 1, instead of 2-acryloyloxyethyl isocyanate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate (Karenz BEI (registered trademark), Showa Denko KK, purity 99.2% by gas chromatography) was used. When the remaining amount of BEI monomer was evaluated over time by the method described in Example 1 except that it was used up to 10 hours, it was reduced at an average rate of about 0.08% / hour. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 6.5 to 6.7 mg / L.
  • O 2 dissolved oxygen gas
  • Example 15 In Example 15, instead of dry air, BEI monomer was changed over time by the method described in Example 15 except that dry air (oxygen gas (O 2 ) concentration 1% by volume) diluted 20 times with dry nitrogen was introduced. When the remaining amount was evaluated up to 10 hours, it decreased on average at a rate of about 1.3% / hour. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 0.1 to 0.2 mg / L.
  • dry air oxygen gas (O 2 ) concentration 1% by volume
  • Example 16 In Example 3, instead of the reaction solution of 2-acryloyloxyethyl isocyanate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate (Karenz BEI (registered trademark) manufactured by Showa Denko KK), purity 99.2 by gas chromatography was used. %) was used to determine the residual amount of BEI monomer over time by the gas chromatographic method according to the method described in Example 3, and it decreased on average at a rate of about 0.60% / hour. It was. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 1.7 to 1.9 mg / L.
  • Karenz BEI registered trademark
  • O 2 dissolved oxygen gas
  • Example 14 The BEI monomer was changed over time by the method described in Example 16, except that dry air (oxygen gas (O 2 ) concentration of 2% by volume) diluted 10 times with dry nitrogen was introduced instead of dry air in Example 16. When the remaining amount was evaluated up to 10 hours, it decreased on average at a rate of about 2.3% / hour. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 0.1 to 0.3 mg / L.
  • Example 17 Instead of introducing dry air at 1 mL / min in Example 15, Example 15 except that dry air (oxygen gas (O 2 ) concentration: 4 vol%) diluted with 5-fold volume with dry nitrogen was introduced at 5 mL / min. When the remaining amount of BEI monomer was evaluated over time by the method described in 1), it was decreased at an average rate of about 0.29% / hour. During this operation, the electrode indication value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 1.3 to 1.5 mg / L.
  • Example 18 In Example 15, instead of dry air, diluted dry oxygen (diluted gas: dry nitrogen) having an oxygen gas (O 2 ) concentration of 40% by volume was used, and the BEI monomer was changed over time by the method described in Example 15. When the remaining amount was evaluated up to 10 hours, it decreased on average at a rate of about 0.04% / hour. During this operation, the indicated electrode value of the dissolved oxygen gas (O 2 ) concentration by the oxygen concentration meter was always in the range of 9 to 10 mg / L.
  • diluted dry oxygen diluted gas: dry nitrogen
  • O 2 oxygen gas
  • Example 19 In Example 6, instead of 2-acryloyloxyethyl isocyanate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate (Karenz BEI (registered trademark) manufactured by Showa Denko KK, purity 99.2% by gas chromatography) was used. The dissolved oxygen gas (O 2 ) in the monomer liquid was measured in advance by the method described in Example 6 except that it was used, and the result was 0.4 mg / L. 1.0 kg of this BEI solution is put into a SUS container (1 L can), and dry air (oxygen gas (O 2 ) concentration: 21 vol%) is blown into the glass tube at a flow rate of 1 L / min.
  • Karenz BEI registered trademark
  • O 2 oxygen gas
  • the residual amount of BEI monomer after storage for one year was quantified by gas chromatography, it was found to remain 98.3% in one year.
  • the dissolved oxygen gas (O 2 ) concentration by the dissolved oxygen meter was 15 mg / L.
  • Example 15 The BEI solution was stored by the method described in Example 19 except that the 1 L can was sealed without being blown with dry air, and the remaining amount after one year from the start of storage was 80.4%. Met. At this time, the dissolved oxygen gas (O 2 ) concentration by the dissolved oxygen meter was 0.1 mg / L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

[課題]イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法および該重合抑制方法を用いたイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法を提供することを目的とする。 [解決手段]本発明のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法は、イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を含有する液相の酸素ガス(O2)濃度が0.5mg/L以上であることを特徴とする。好ましくは、前記液相に酸素ガス(O2)を含有する気体を導入することを特徴とする。さらに好ましくは、前記液相の酸素ガス(O2)濃度を前記液相中に浸漬した電極により測定することを特徴とする。

Description

イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法および製造方法
 本発明は、イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法および製造方法に関する。さらに詳しくは、イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を含有する液相中の酸素ガス(O2)によりイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合を抑制する方法、および、前記重合抑制方法を用いたイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法に関する。
 エチレン性不飽和化合物は、熱、光およびその他の要因によりきわめて重合しやすく、製造工程および精製工程において、しばしば重合による高分子、オリゴマー等の異物が発生し、製造設備の故障の原因となっている。この異物がエチレン性不飽和化合物の製造工程および精製工程の製造タンク、蒸留塔および配管などに付着すると、異物による閉塞および可動設備の固着などが起こるだけでなく、エチレン性不飽和化合物の製造および精製にも支障をきたす。そして関連設備内に付着した異物の除去は、人力による作業によるために作業効率が悪く、その結果、長期間の運転停止を余儀なくされ、経済的損失が大きい。また、製品品質の低下の原因ともなる。
 一方、エチレン性不飽和化合物の重合防止方法として、分子状酸素が効果的であることは公知である。そこで、エチレン性不飽和化合物の製造設備内での異物の発生を抑制する重合防止方法としての、分子状酸素ガスの供給方法および管理方法などが数多く提案または実施されている。
 例えば、気相部の酸素濃度を測定管理することによる製造方法(特許文献1)においては、実際に重合防止を行うことを目的とする液相部の酸素濃度を直接管理していないため、気液平衡に達しておらず液相部に充分な酸素が存在しているかどうかを検知できない。また、系中の酸素濃度を管理する製造方法(特許文献2)においては、液相部を製造装置から一部抜き出して酸素濃度を分析すると記載しているが、この際に気液平衡が崩れること、分析方法が開示されていないことから、実際の液相部の酸素濃度を正確に測定できているか否か不明である。
 以上より、エチレン性不飽和化合物の効果的な重合防止方法の出現が強く望まれている。
特開平9-67311号公報 特開2007-284355号公報
 イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法および該重合抑制方法を用いたイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法を提供することを目的とする。
 本発明者らは、イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合特性を詳細に検討した結果、液相部の酸素ガス(O2)濃度を制御することがイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制に効果的であることを見出し、本発明を完成するに至った。すなわち本発明は、たとえば以下の[1]~[14]に関する。
[1]イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を含有する液相の酸素ガス(O2)濃度を0.5mg/L以上に管理することを特徴とするイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
[2]前記液相に酸素ガス(O2)を含有する気体を導入することを特徴とする[1]に記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
[3]前記酸素ガス(O2)を含有する気体が空気、希釈空気または希釈酸素であることを特徴とする[2]に記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
[4]液相中の酸素ガス(O2)濃度を測定するステップと、
前記測定結果に基づき、導入する酸素ガス(O2)を含有する気体による酸素ガス(O2)供給量を制御するステップとを有することを特徴とする[2]または[3]に記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
[5]前記液相の酸素ガス(O2)濃度を前記液相中に浸漬した電極により測定することを特徴とする[1]~[4]のいずれかに記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
[6]前記液相が蒸留工程のボトム液部であることを特徴とする[1]~[5]のいずれかに記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
[7]前記イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物が、下記式(A)または(B)で表わされる化合物であることを特徴とする[1]~[6]のいずれかに記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
CH2=CR5-COO-R6-NCO    …(A)
(式中、R5は、水素原子またはメチル基を示し、R6は、炭素数1~10の分岐していてもよいアルキレン基、または、炭素数3~6のシクロアルキレン基の前後に炭素数0~3のアルキレン基を有する炭化水素基、または、炭素数6~8の芳香族炭化水素環を示す。)
Figure JPOXMLDOC01-appb-C000007
(式中、R1は炭素数が1~10である直鎖もしくは分岐の飽和脂肪族基を示し、R2はそれぞれ独立に水素原子またはメチル基を示し、R3はそれぞれ独立に炭素数が0~5である直鎖もしくは分岐のアルキレン基を示し、R4はそれぞれ独立に水素原子、炭素数が1~6である直鎖もしくは分岐のアルキル基、またはアリール基を示す。)
[8]前記イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物が、2-メタクリロイルオキシエチルイソシアネート、2-アクリロイルオキシエチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート、2-(イソシアナトエチルオキシ)エチルメタクリレートまたは2-(イソシアナトエチルオキシ)エチルアクリレートである[7]に記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
[9]液相の水分が5質量%以下であることを特徴とする[1]~[8]のいずれかに記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
[10][1]~[9]のいずれかに記載の重合抑制方法を含むことを特徴とするイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法。
[11]下記式(a1)で表されるイソシアネート基を含む3-クロロプロピオン酸エステル誘導体を、塩基性窒素化合物の存在下で脱塩化水素する工程と、
 液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する工程とを、
含むことを特徴とする下記式(A)で表わされるイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法。
Cl-CH2-CHR5-COO-R6-NCO  …(a1)
CH2=CR5-COO-R6-NCO      …(A)
(式中、R5は、水素原子またはメチル基を示し、R6は、炭素数1~10の分岐していてもよいアルキレン基、または、炭素数3~6のシクロアルキレン基の前後に炭素数0~3のアルキレン基を有する炭化水素基、または、炭素数6~8の芳香族炭化水素環を示す。)
[12]下記式(b1)で表されるイソシアネート化合物を、塩基性窒素化合物の存在下で脱塩化水素する工程と、
 液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する工程とを、
含むことを特徴とする下記式(B)で表わされるイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法。
Figure JPOXMLDOC01-appb-C000008
(式中、R1は炭素数が1~10である直鎖もしくは分岐の飽和脂肪族基を示し、R2はそれぞれ独立に水素原子またはメチル基を示し、R3はそれぞれ独立に炭素数が0~5である直鎖もしくは分岐のアルキレン基を示し、R4はそれぞれ独立に水素原子、炭素数が1~6である直鎖もしくは分岐のアルキル基、またはアリール基を示す。)
Figure JPOXMLDOC01-appb-C000009
(式中、R1~R4は上記と同義である。)
[13]下記式(b2)で表されるジヒドロキシアミン鉱酸塩化合物、および下記式(b3)で表される化合物から、下記式(b4)で表されるエステル化合物を得る工程と、
 下記式(b4)で表わされるエステル化合物、および下記式(b5)で表される化合物から、下記式(B')で表されるイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を得る工程と、
 液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する工程とを、
含むことを特徴とするイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法。
Figure JPOXMLDOC01-appb-C000010
(式(b2)、(b3)、(b4)中、R1は炭素数が1~10である直鎖もしくは分岐の飽和脂肪族基を示し、X1は鉱酸を示し、R3はそれぞれ独立に炭素数が0~5である直鎖もしくは分岐のアルキレン基を示し、R4はそれぞれ独立に水素原子、炭素数が1~6である直鎖もしくは分岐のアルキル基、またはアリール基を示し、Y1は水酸基、塩素原子、またはR6O-(R6は炭素数が1~6であるアルキル基を示す。)を示す。)
Figure JPOXMLDOC01-appb-C000011
(式中、Z1およびZ2はそれぞれ独立に、塩素原子、臭素原子、R7O-(R7は炭素数が1~6である直鎖もしくは分岐のアルキル基、炭素数が1~6である直鎖もしくは分岐のアルケニル基、または置換基を有していてもよいアリール基を示す。)、イミダゾール類の残基、またはピラゾール類の残基を示す。)
Figure JPOXMLDOC01-appb-C000012
(式中、R1、R3、およびR4は上記と同義である。)
[14]前記液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する工程が、
液相中の酸素ガス(O2)濃度を測定するステップと、
前記測定結果に基づき、導入する酸素ガス(O2)を含有する気体による酸素ガス(O2)供給量を制御するステップと、
液相に酸素ガス(O2)を含有する気体を導入するステップとを、
有することを特徴とする[11]~[13]のいずれかに記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法。
 イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を含有する液相の酸素ガス(O2)濃度を特定の濃度範囲となるように管理することにより、イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合を抑制することができる。すなわち、酸素ガス(O2)の液中濃度を正確に測定することにより、測定値に基づき液相に供給される酸素ガス(O2)の量を制御して、液相の酸素ガス(O2)濃度を所望の範囲に保つことができ、効果的にイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合を抑制することができる。また、該重合抑制方法により、イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を効率的に製造できる。
 以下、本発明について具体的に説明する。
 なお、本明細書において「イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物」は、エチレン性不飽和基およびイソシアネート基を分子内に持つカルボン酸エステル化合物を意味し、以下「イソシアネート基含有エチレン性不飽和化合物」ともいう。「(メタ)アクリロイル」はアクリロイルまたはメタクリロイルを意味し、その一部の水素原子が置換されているものも含む。
 本発明に係るイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法では、イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を含有する液相の酸素ガス(O2)濃度を、特定の濃度範囲となるように管理する。
 <イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物>
 本発明で用いられるイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物は、室温付近で液体のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物であれば、特に限定されないが、たとえば下記式(A)または(B)で表わされる化合物が挙げられる。
CH2=CR5-COO-R6-NCO    …(A)
(式中、R5は、水素原子またはメチル基を示し、R6は、炭素数1~10の分岐していてもよいアルキレン基、または、炭素数3~6のシクロアルキレン基の前後に炭素数0~3のアルキレン基を有する炭化水素基、または、炭素数6~8の芳香族炭化水素環を示す。)
Figure JPOXMLDOC01-appb-C000013
(式中、R1は炭素数が1~10である直鎖もしくは分岐の飽和脂肪族基を示し、R2はそれぞれ独立に水素原子またはメチル基を示し、R3はそれぞれ独立に炭素数が0~5である直鎖もしくは分岐のアルキレン基を示し、R4はそれぞれ独立に水素原子、炭素数が1~6である直鎖もしくは分岐のアルキル基、またはアリール基を示す。)
 上記イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の具体例としては、2-メタクリロイルオキシエチルイソシアネート、3-メタクリロイルオキシ-n-プロピルイソシアネート、2-メタクリロイルオキシイソプロピルイソシアネート、4-メタクリロイルオキシ-n-ブチルイソシアネート、2-メタクリロイルオキシ-tert-ブチルイソシアネート、2-メタクリロイルオキシブチル-4-イソシアネート、2-メタクリロイルオキシブチル-3-イソシアネート、
 2-メタクリロイルオキシブチル-2-イソシアネート、2-メタクリロイルオキシブチル-1-イソシアネート、5-メタクリロイルオキシ-n-ペンチルイソシアネート、6-メタクリロイルオキシ-n-ヘキシルイソシアネート、7-メタクリロイルオキシ-n-ヘプチルイソシアネート、2-(イソシアナトエチルオキシ)エチルメタクリレート、3-メタクリロイルオキシフェニルイソシアネート、4-メタクリロイルオキシフェニルイソシアネート、2-アクリロイルオキシエチルイソシアネート、3-アクリロイルオキシ-n-プロピルイソシアネート、2-アクリロイルオキシイソプロピルイソシアネート、4-アクリロイルオキシ-n-ブチルイソシアネート、2-アクリロイルオキシ-tert-ブチルイソシアネート、2-アクリロイルオキシブチル-4-イソシアネート、2-アクリロイルオキシブチル-3-イソシアネート、2-アクリロイルオキシブチル-2-イソシアネート、2-アクリロイルオキシブチル-1-イソシアネート、5-アクリロイルオキシ-n-ペンチルイソシアネート、
  6-アクリロイルオキシ-n-ヘキシルイソシアネート、7-アクリロイルオキシ-n-ヘプチルイソシアネート、2-(イソシアナトエチルオキシ)エチルアクリレート、3-アクリロイルオキシフェニルイソシアネート、4-アクリロイルオキシフェニルイソシアネート、1,1-ビス(メタクリロイルオキシメチル)メチルイソシアネート、1,1-ビス(メタクリロイルオキシメチル)エチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)メチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート、これらのアルキル基水素原子のフッ素置換体などが挙げられる。
 これらの中では2-メタクリロイルオキシエチルイソシアネート、4-メタクリロイルオキシ-n-ブチルイソシアネート、5-メタクリロイルオキシ-n-ペンチルイソシアネート、6-メタクリロイルオキシ-n-ヘキシルイソシアネート、2-アクリロイルオキシエチルイソシアネート、3-メタクリロイルオキシフェニルイソシアネート、4-メタクリロイルオキシフェニルイソシアネート、1,1-ビス(メタクリロイルオキシメチル)エチルイソシアネート、2-(イソシアナトエチルオキシ)エチルメタクリレート、2-(イソシアナトエチルオキシ)エチルアクリレートが好ましい。
 <その他の成分>
 本発明におけるイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を含む液相部あるいはその製造工程における液相部には、溶媒、重合防止剤等の任意成分が含まれていてもよい。重合防止剤として、たとえば、BHT(2,6-ジ第三ブチル-p-クレゾール)、キノンなどのフェノール系重合防止剤、フェノチアジンなどの硫黄系重合防止剤、りん系重合防止剤、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)などのN-オキシル化合物などが挙げられる。
 <重合>
 本発明における「重合」には、固形物の生成、液相部の固化(ガラス状、ゲル状)などの高分子の生成に加えて、固形物を生成しないイソシアネート基含有エチレン性不飽和化合物の多量化(例えばオリゴマー化)も含む。このような重合は、一般的分析方法(例えばガスクロマトグラフ法、高速液体クロマトグラフ法、ゲルパーミエーションクロマトグラフ法など)により、イソシアネート基含有エチレン性不飽和化合物の減少量や、オリゴマーの生成量を定量することにより確認することができる。
 <イソシアネート基含有エチレン性不飽和化合物モノマーの残存率/減少率>
 イソシアネート基含有エチレン性不飽和化合物の減少率とは、イソシアネート基含有エチレン性不飽和化合物のある時点の量を100%として、それ以後の熱・光などによる前記重合により、単量体のイソシアネート基含有エチレン性不飽和化合物が単位時間当たりに減少する割合をいう。
 イソシアネート基含有エチレン性不飽和化合物の残存率は、残存率(%)=100(%)-減少率(%)により導き出すことができる。イソシアネート基含有エチレン性不飽和化合物の重合抑制の観点からは、残存率は高い(100%に近い)こと、減少率は低い(0%に近い)ことが好ましい。温度・重合防止剤の量・不純物の量などにより、求められる残存率/減少率のレベルは異なるが、例えば、イソシアネート基含有エチレン性不飽和化合物の製品としての室温付近の遮光保管条件では、減少率は1年間で通常10%以下、好ましくは5%以下、より好ましくは2%以下であることが望ましい。イソシアネート基含有エチレン性不飽和化合物の製造時における減少率は、経済的または運転管理上の観点から低いことが好ましいが、例えば1時間当たり通常1%以下、好ましくは0.5%以下、より好ましくは0.3%以下が望ましい。
 <液相の水分量>
 液相は、イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の他、有機溶媒等主に有機化合物からなり、その含有する水分量は少ない方が良い。好ましくは5質量%以下、より好ましくは2質量%以下である。
 <酸素ガス(O2)>
 酸素ガス(O2)が含有されている気体であれば、空気等特に制限なく用いることができるが、反応、保存への影響を考慮すると、乾燥した気体、例えば乾燥空気、乾燥酸素などを用いることが好ましい。また、乾燥空気等を乾燥窒素等で希釈した希釈空気等や、乾燥酸素等を乾燥窒素等で希釈した希釈酸素等を使用することも可能である。
 <液相酸素ガス(O2)濃度の範囲>
 液相に溶存する分子状酸素は、重合防止効果を発現するためにイソシアネート基含有エチレン性不飽和化合物により消費されていく。この分子状酸素消費量よりも、液相部へ分子状酸素がとけ込む量が大きければ理論上充分であるが、溶存酸素ガス(O2)濃度の管理値を定める必要がある。
 液相部の酸素ガス(O2)濃度は高い方が好ましいが、実際には飽和濃度が存在するためそれ以上では管理が困難である。気液平衡、ヘンリーの法則により、飽和濃度は酸素分圧、イソシアネート基含有エチレン性不飽和化合物の種類などにより異なるが、一般的有機化合物では大気圧、25℃、乾燥空気(酸素ガス(O2)21容量%含有)吹き込みの条件では飽和濃度は20~80mg/L程度である。一方、液相は、溶存酸素ガス(O2)が実質的に存在していればエチレン性不飽和基の安定性に寄与できる。そこで、ラジカル発生によるイソシアネート基含有エチレン性不飽和化合物の減少を抑えるために、本発明では、液相の酸素ガス(O2)濃度が0.5mg/L~80mg/L、好ましくは2mg/L~70mg/L、より好ましくは6mg/L~50mg/Lとなるように管理する。
 また、長期間の保存においては、上述の濃度で管理するために、あらかじめ酸素ガス(O2)を液相中に含有させた後、密閉保管することが望ましい。この場合、例えば、あらかじめ液相中に0.5mg/L~80mg/L、好ましくは5mg/L~70mg/L、より好ましくは10mg/L~50mg/Lの酸素ガス(O2)を含有させておくことが望ましい。
 上述のように液相部の酸素ガス(O2)濃度を管理する方法は、
液相中の酸素ガス(O2)濃度を測定するステップと、
前記測定結果に基づき、導入する酸素ガス(O2)を含有する気体による酸素ガス(O2)供給量を制御するステップと、
液相に酸素ガス(O2)を含有する気体を導入するステップとを、
有することが好ましい。
 <液相有機化合物の酸素ガス(O2)濃度測定方法>
 液相の酸素ガス(O2)濃度を測定する方法としては、液中の酸素ガス(O2)濃度測定に用いられる一般的な方法を用いることができる。液相を直接測定することが望ましいが、液相の一部を、気液平衡の状態を維持したまま取り出して測定してもよい。
 液相を直接測定する手段としては、特に水分が少ない有機溶媒中の溶存酸素ガス(O2)濃度測定として、市販の有機溶媒用溶存酸素計を用いることができる。例えば、ポーラロ方式電極として、セントラル科学株式会社製UC-12-SOL型を用いることができる。電極は、液相中に浸漬して液相の酸素ガス(O2)濃度を測定する。電極の校正用に、目的とするイソシアネート基含有エチレン性不飽和化合物を含有する液中に乾燥空気を充分にバブリングしたものについて測定した値に対して、別の方法にて定量した値を用いる。別の方法としては、例えばガスクロマトグラフ(GC)法を用いることができる。GC法の測定としての一例を以下に示す。
 装置:GC-9A(島津製作所株式会社製)
 カラム:Porapak Q 50/80mesh 長さ0.5m、径3.0mm  と Molecular Sieve 5A 30/60mesh長さ3m、径3.0mm の直列
 キャリアガス:ヘリウム
 検出器タイプ:TCD
 温度:注入口200℃、カラム40℃一定、検出器150℃
 検量線は、乾燥窒素にて希釈した乾燥空気を用いる。
 <液相酸素ガス(O2)濃度の測定結果に基づく、導入する酸素ガス(O2)を含有する気体による酸素供給量の制御>
 上述の方法により液相中の酸素ガス(O2)濃度を測定し、測定結果に基づき、液相の酸素ガス(O2)濃度が上述した濃度範囲となるよう、導入する酸素ガス(O2)を含有する気体による酸素ガス(O2)供給量を制御する。
 ここで、液相中の酸素ガス(O2)濃度を構成する因子としては、酸素ガス(O2)含有ガス流量、酸素ガス(O2)含有気体中の酸素濃度、および酸素ガス(O2)の液相への溶解効率の因子が相互に関連していると考えられる。
 したがって、導入する酸素ガス(O2)を含有する気体による酸素ガス(O2)供給量の制御手段としては上記因子を調整する一般的な方法を制限なく用いることが出来る。具体的には、溶解速度律速とならないための液相部吹き込みノズル形状の最適化などにより酸素ガスの溶解効率を設備的に改善することや、液相部に吹き込む酸素ガス(O2)含有気体の酸素濃度管理により酸素ガス(O2)含有気体中の酸素濃度を制御すること、ガス流量管理により液相に供給される酸素ガス(O2)含有気体の量を制御すること、圧力管理により酸素ガスの液相への溶解効率を制御することなど一般的製造設備における自動管理方法を1種以上用いることが出来る。
 例えばガス流量管理を用いた酸素ガス(O2)含有気体の供給酸素量の制御は、液相中の酸素ガス(O2)濃度の現在値を測定し、その目的値と比較して低い場合にはPID制御(フィードバック制御の一種)などにより液相部に吹き込む酸素ガス(O2)含有ガスの流量を一時的に上昇させることにより、目的とする酸素ガス(O2)濃度とするための酸素供給量とすることができる。
 このような管理方法により、液相部の溶存酸素ガス(O2)を目的とする濃度に管理することが出来る。
 <酸素ガス(O2)を含有する気体の液相への導入方法>
 酸素ガス(O2)を含有する気体を液相中へ導入できる方法であれば特に制限はないが、例えば工場の配管乾燥空気やボンベからガス導入管により酸素ガス(O2)を含有する気体を液相へ導入することができる。
 液相温度および系内の圧力については、特に制限はなく、室温でも加熱下でも導入可能であり、また、大気圧下でも減圧下でも酸素ガス(O2)を導入することができる。
 <液相酸素ガス(O2)濃度管理が行われる工程>
 液相酸素ガス(O2)濃度管理が行われる工程としては、イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物が液相で存在する工程すべてが対象となる。特に管理すべき工程としては、イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合可能性が高い工程(例えば加熱、反応、蒸留、製品貯蔵タンク等)や、液相中の溶存酸素ガス(O2)濃度が低下しやすい工程(減圧、蒸留等)などが挙げられる。従って、特に管理すべき液相としては、イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を生成する反応槽の液部、イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を精製する蒸留工程のボトム液部などが挙げられる。また製品容器等(ドラム缶、タンクローリー車など)については、通常は溶存酸素ガス(O2)濃度を管理できる設備が設置困難なため、保管時の安定性向上のためには製品容器等に充填前に充分溶存酸素ガス(O2)濃度を高めた状態で充填することが好ましい。
 <イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法>
 イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物は、本発明の重合抑制方法を採用して、従来の製造方法により製造する。従来の製造方法としては例えば、「改訂製造工程図全集II」(化学工業社発行、通産省プロセスシート研究会)に従って、改良レッペ法、プロピレン直接酸化法等により製造することができる。なお、上記イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物として好ましい(メタ)アクリロイル基含有イソシアネート化合物は、例えば特開2006-232797号公報および特開2007-55993号公報記載の方法で製造することができる。
 イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法に、上記イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法を含むことができる。
 以下、具体的に説明する。
 (1)式(A)で表わされるイソシアネート基を含む(メタ)アクリル酸エステル誘導体(以下「化合物(A)」ともいう。)は、下記式(a1)で表わされる、イソシアネート基を含む3-クロロプロピオン酸エステル誘導体(以下「化合物(a1)」ともいう。)を、液相の酸素ガス(O2)濃度を0.5mg/L以上に管理しながら、塩基性窒素化合物の存在下で脱塩化水素する工程を含む方法により製造することができる。
 Cl-CH2-CHR5-COO-R6-NCO ・・・(a1)
 CH2=CR5-COO-R6-NCO・・・(A)
 式(A)および(a1)中、R5は、水素原子またはメチル基を示し、R6は、炭素数1~10の分岐していてもよいアルキレン基、または、炭素数3~6のシクロアルキレン基の前後に炭素数0~3のアルキレン基を有する炭化水素基、または、炭素数6~8の芳香族炭化水素環を示す。
 上記R6は、好ましくは炭素数1~10の分岐していてもよいアルキレン基であり、より好ましくは-CH2-CH2-(エチレン基)、-CH2-CH2-CH2-(プロピレン基)であり、特に好ましくは-CH2-CH2-(エチレン基)である。
 上記化合物(a1)は、例えば、特開2006-232797号公報に記載の方法で製造することができる。
 脱塩化水素は、通常、塩基性化合物を共存させることにより行われる。このような塩基性化合物としては、一般的に塩基性の窒素を有する化合物が用いられるが、該窒素上に水素原子が残っていると、原料および目的物のイソシアネート基と反応するおそれがあり、収率が低下することや窒素原子の塩基性が消失することがある。従って第3級窒素を有する塩基性窒素化合物を用いることが好ましい。
 本発明における脱塩化水素は、化合物(a1)を合成した際の反応液をそのまま用いて実施してもよく、あるいは、合成した化合物(a1)を、蒸留などの方法により精製してから実施してもよい。なお、工業的な面を考慮すれば、前者の方法は、工程を削減できるなどの利点を有している。
 上記脱塩化水素により得られた化合物(A)を含む生成物中に、塩基性窒素化合物が残留していると、該化合物(A)の重合反応が進行する原因となり得ることから、蒸留により分離精製することが好ましい。
 上記脱塩化水素は、理論的には、上記化合物(a1)1モルに対して上記塩基性窒素化合物を1モル当量用いることで行うことができる。なお、塩基性窒素化合物を過剰に用いてもよいが、条件によっては残余の塩基性窒素化合物が重合反応を促進するおそれがある。一方、塩基性窒素化合物の使用量が過少の場合は、上記化合物(a1)が残存し、反応が完結しないおそれがある。特に、イソシアネート化の際に発生した塩化水素などに由来するアルカリ分解性塩素が反応液中に多く含まれている場合は、このような状況になりやすい。
 したがって、目的物である上記化合物(A)の単離収率が最大となる塩基性窒素化合物の使用量の最適値は、その反応条件などにより異なってくる。特に、上記化合物(a1)を合成した際の反応液から該化合物(a1)を分離精製することなく、該反応液をそのまま用いて脱塩化水素を行う場合は、さらに多くの要素が関連してくるため、塩基性窒素化合物の最適値を求めることが困難である。
 このような場合は、たとえば、上記反応液中のアルカリ分解性塩素量を測定し、その測定量に応じて塩基性窒素化合物の使用量を決定することが望ましい。具体的には、上記アルカリ分解性塩素量を測定し、該アルカリ分解性塩素1モルに対して、塩基性窒素化合物を0.5~10モル当量、好ましくは0.8~5.0モル当量、さらに好ましくは0.9~2.0モル当量の範囲で用いて脱塩化水素を行うことにより、高い単離収率でイソシアネート基を含む(メタ)アクリル酸エステル誘導体を得ることができる。なお、本明細書における「アルカリ分解性塩素」とは、後述する分析条件で定量できる塩素のことをいう。
 また、上記化合物(a1)を合成した際の反応液を蒸留などにより精製処理してから脱塩化水素を行う場合は、得られた化合物(a1)1モルに対して塩基性窒素化合物を0.5~10モル当量、好ましくは0.8~5.0モル当量、さらに好ましくは0.9~2.0モル当量の範囲で用いることができる。
 本発明の製造方法における脱塩化水素は、塩基性窒素化合物の存在下、ある程度の温度に保つことによりなされる。反応温度は、高温であると生成物の化合物(A)が重合するおそれがあるので、40~120℃、好ましくは40~100℃、より好ましくは45~90℃であることが望ましい。
 反応時間は、反応温度、塩基性窒素化合物の塩基性の強さなどにより異なるが、通常、10分~40時間程度、好ましくは30分~30時間、より好ましくは1時間~10時間である。
 反応には、イソシアネート基と反応しない溶媒、たとえば、トルエン、キシレン等の炭化水素;酢酸エチル、酢酸プロピル、酢酸ブチル等の酢酸エステル類;塩化メチレン等の塩素系溶剤などの非プロトン性溶媒を用いることができる。溶媒についても生成物より沸点が低いものが好ましい。
 上記製造工程中、液相の酸素ガス(O2)濃度を測定し、液相の酸素ガス(O2)濃度が0.5mg/L以上となるように液相中に酸素ガス(O2)を導入する。ここで、液相の酸素ガス(O2)濃度を0.5mg/L以上となるように管理する方法としては、上述した方法と同様である。
 脱塩化水素後、必要に応じて塩酸塩を除去し、残余の塩基性窒素化合物を分離した後、さらに上記化合物(A)を、蒸留、結晶化、抽出、カラム処理などの方法、好ましくは蒸留により単離する。蒸留時、生成物の重合を防止する目的として、製造工程と同様の方法で、液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する。
 上記のようにして単離することにより、加水分解性塩素の含有量が300ppm以下のイソシアネート基を含む(メタ)アクリル酸エステル誘導体が高収率で得られる。
 また、必要に応じてイソシアネート基を含む(メタ)アクリル酸エステル誘導体を上記塩基性窒素化合物で処理することにより、加水分解性塩素を低減させることができる。このときの塩基性窒素化合物は、加水分解性塩素1モルに対して0.1~10モル当量、好ましくは0.2~5モル当量、さらに好ましくは0.3~2モル当量の範囲の量で用いることができる。
 上記処理は、上記塩基性窒素化合物の存在下、ある程度の温度に保つことによりなされる。処理温度は、高温であると上記エステル誘導体が重合するおそれがあるので、10~120℃、好ましくは10~100℃、さらに好ましくは20~80℃であることが望ましい。また、製造工程と同様の方法で、液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する。
 (2)式(B)で表わされるイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物(以下「化合物(B)」ともいう)は、液相の酸素ガス(O2)濃度を0.5mg/L以上に管理しながら、下記式(b1)で表されるイソシアネート化合物(以下「化合物(b1)」ともいう)を、塩基性窒素化合物の存在下で脱塩化水素することにより、下記式(B)で表されるイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を得る工程を含む方法により製造することができる。
Figure JPOXMLDOC01-appb-C000014
(式中、R1は炭素数が1~10である直鎖もしくは分岐の飽和脂肪族基を示し、R2はそれぞれ独立に水素原子またはメチル基を示し、R3はそれぞれ独立に炭素数が0~5である直鎖もしくは分岐のアルキレン基を示し、R4はそれぞれ独立に水素原子、炭素数が1~6である直鎖もしくは分岐のアルキル基、またはアリール基を示す。)
Figure JPOXMLDOC01-appb-C000015
(式中、R1~R4は上記と同義である。)
 上記化合物(b1)は、例えば、特開2007-55993号公報に記載の方法で製造することができる。
 上記製造工程の反応温度は、使用する化合物の種類によって異なるが、通常は0~150℃、好ましくは20~100℃である。反応温度が低いと、反応速度が遅くなる可能性がある。一方、反応温度が高いと、脱HCl反応により生成した不飽和結合が重合する可能性がある。
 上記製造工程において溶媒を使用するか否かは、使用する化合物の種類等に依存する。化合物(b1)が液体であるかまたは溶融する場合は、溶媒を使用しなくても反応を行うことができる。一方、化合物(b1)が固体であるかまたは溶融しない場合は、溶媒を使用して反応を行うことが望ましい。
 溶媒の具体例としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチルなどのエステル類;ジエチルエーテル、ジプロピルエーテル、ジブチルエーテルなどの鎖状エーテル類;ジオキサン、ジオキソラン、テトラヒドロフランなどの環状エーテル類;トルエン、キシレン、エチルベンゼン、メシチレン、クメンなどの芳香族系炭化水素類;プロパン、ヘキサン、ヘプタン、シクロヘキサンなどの脂肪族系炭化水素類;塩化メチレン、1、2-ジクロロエタン、1、2-ジクロロベンゼンなどのハロゲン系炭化水素類などが挙げられる。
 溶媒を使用する場合、その使用量は、通常は、化合物(b1)および溶媒の合計量に対して化合物(b1)が0.5~80質量%、好ましくは5~50質量%となる量である。使用する溶媒量が少ないと、反応を行う際の撹拌がうまく行かず、反応速度が遅くなる可能性がある。また、生成する塩の除去が困難となる可能性がある。一方、使用する溶媒量が多いと、反応には影響を与えないが、廃棄する溶媒量が増えるため、環境に対する負荷が高くなる可能性がある。
 上記製造工程で用いられる塩基性窒素化合物としては、塩基性の窒素を含有する一般的な化合物が使用できるが、塩基性の窒素に水素原子が残っていると、化合物(b1)におけるイソシアネート基と反応する可能性があるため、その結果収率が低下するおそれがある。
 したがって、塩基性窒素化合物としては、三級窒素を含有する塩基性窒素化合物が好ましい。また、脱HCl反応を効率良く行うためには、窒素原子に芳香環が直接結合したキノリンなどの弱塩基性窒素化合物では不充分であり、ある程度の塩基性の強さが必要である。よって、塩基性窒素化合物としては、三級窒素を含有し、三級窒素原子が、例えばアルキル基などの、芳香環以外の置換基を1個以上有していることが望ましい。また、三級窒素原子に置換されている芳香環は1個以下であることが望ましい。
 上記製造工程で用いられる塩基性窒素化合物の具体例としては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、ジメチルエチルアミン、ジメチルイソプロピルアミン、ジエチルメチルアミン、ジメチルブチルアミン、ジメチルヘキシルアミン、ジイソプロピルエチルアミン、ジメチルシクロヘキシルアミン、テトラメチルジアミノメタン、ジメチルベンジルアミン、テトラメチルエチレンジアミン、テトラメチル-1,4-ジアミノブタン、テトラメチル-1,3-ジアミノブタン、テトラメチル-1,6-ジアミノヘキサン、ペンタメチルジエチレントリアミン、1-メチルピペリジン、1-エチルピペリジン、N,N-メチルピペラジン、N-メチルモルフォリン、1,8-ジアザビシクロ[5.4.0.]-7-ウンデセン(DBU)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、2,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、N,N-ジメチルアニリン、N,N-ジエチルアニリン、三級窒素を含有するイオン交換樹脂などが挙げられる。
 これらの中でも、トリメチルアミン、トリエチルアミン、トリプロピルアミン、テトラメチレンジアミンが好ましい。また、上記の塩基性窒素化合物は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 上記製造工程で用いられる塩基性窒素化合物の使用量は、使用する化合物の種類によって異なるが、通常は、上述した製造工程で得られた反応終了後の反応液に存在するアルカリ分解性塩素の量を測定し、測定の結果得られたアルカリ分解性塩素の量に対して0.5~10モル倍量、好ましくは0.8~5.0モル倍量、より好ましくは0.9~2.0モル倍量である。塩基性窒素化合物の使用量が少ないと、収率が低下する可能性がある。一方、塩基性窒素化合物の使用量が多いと、生成する化合物(B)の安定性が低下する可能性がある。また、工業的な生産に要する費用が高くなる。
 なお、ここでいうアルカリ分解性塩素の量は、製造工程で得られた反応液をメタノール/水混合溶媒で希釈し、さらに水酸化ナトリウム水溶液を加え、次いで加熱を行い、その後、硝酸銀溶液を用いて電位差滴定法により測定することにより得られた値のことである。
 上記製造工程中、液相の酸素ガス(O2)濃度を測定し、液相の酸素ガス(O2)濃度が0.5mg/L以上となるように液相中に酸素ガス(O2)を導入する。ここで、液相の酸素ガス(O2)濃度を0.5mg/L以上となるように管理する方法としては、上述した方法と同様である。
 上記製造工程で得られた化合物(B)は、一般的な操作、例えば濾過、抽出、再結晶、蒸留などにより精製できる。蒸留時、生成物の重合を防止する目的として、製造工程と同様の方法で、液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する。
 (3)上記式(B)におけるR2がメチル基である、式(B')で表わされるイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物(以下「化合物(B')」ともいう。)は、液相の酸素ガス(O2)濃度を0.5mg/L以上に管理しながら、下記式(b2)で表されるジヒドロキシアミン鉱酸塩化合物(以下「化合物(b2)」ともいう。)および下記式(b3)で表わされる化合物(以下「化合物(b3)」ともいう。)を反応させ、下記式(b4)で表わされるエステル化合物(以下「化合物(b4)」ともいう。)を得る工程、さらに化合物(b4)および下記式(b5)で表わされる化合物(以下「化合物(b5)」ともいう。)を反応させ、化合物(B')を得る工程を含む方法によっても製造することができる。
 [第1工程]
 化合物(b2)および化合物(b3)から、化合物(b4)を得る工程。
Figure JPOXMLDOC01-appb-C000016
(式中、R1は炭素数が1~10である直鎖もしくは分岐の飽和脂肪族基を示し、X1は鉱酸を示し、R3は炭素数が0~5である直鎖もしくは分岐のアルキレン基を示し、R4は水素原子、炭素数が1~6である直鎖もしくは分岐のアルキル基、またはアリール基を示し、Y1は水酸基、塩素原子、またはR6O-(R6は炭素数が1~6であるアルキル基を示す。)
を示す。)
Figure JPOXMLDOC01-appb-C000017
(式中、R1、R3、R4およびX1は上記と同義である。R3、R4はいずれもそれぞれ独立である。)
 [第2工程]
 化合物(b4)および化合物(b5)から、化合物(B')を得る工程。
Figure JPOXMLDOC01-appb-C000018
(式中、Z1およびZ2はそれぞれ独立に、塩素原子、臭素原子、R7O-(R7は炭素数が1~6である直鎖もしくは分岐のアルキル基、炭素数が1~6である直鎖もしくは分岐のアルケニル基、または置換基を有していてもよいアリール基を示す。)、イミダゾール類の残基、またはピラゾール類の残基を示す。)
Figure JPOXMLDOC01-appb-C000019
(式中、R1、R3、およびR4は上記と同義である。)
 上記化合物(b2)は、例えば、特開2007-55993号公報に記載の方法で製造することができる。
 (3-i)第1工程
 第1工程で用いられる化合物(b3)は、市販されているものを使用でき、容易に入手可能である。化合物(b3)の具体例としては、メタクリル酸、3-メチル-3-ブテノン酸、チグリン酸、4-メチル-4-ペンテン酸、α-メチルシンナム酸、および上記カルボン酸の酸クロリド化合物、上記カルボン酸と炭素数1~6の直鎖もしくは分岐のアルコール化合物とからなるエステル化合物、例えばメチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、ペンチルエステル、ヘキシルエステル、シクロヘキシルエステルなどが挙げられる。
 化合物(b3)は、上記カルボン酸を、カルボン酸クロリド化合物としてから用いることもできる。カルボン酸をカルボン酸クロリド化合物にする方法は一般的に知られており、例えば、特公昭57-026497号公報、特開昭52-089617号公報、特開平11-199540号公報には、カルボン酸と、塩化チオニル、五塩化リン、またはホスゲン等と、からカルボン酸クロリド化合物を得る方法が開示されている。
 第1工程の反応温度は、使用する化合物の種類によって異なるが、通常は30~150℃、好ましくは50~120℃である。反応温度が低いと、反応速度が遅くなる可能性がある。一方、反応温度が高いと、不純物が増える可能性があり、また、不飽和結合が重合する可能性がある。
 第1工程において溶媒を使用するか否かは、使用する化合物の種類等に依存する。化合物(b2)および/または化合物(b3)および/または化合物(b4)が、液体であるかまたは溶融する場合は、溶媒を使用しなくても反応を行うことができる。一方、化合物(b2)および/または化合物(b3)および/または化合物(b4)が、固体であるかまたは溶融しない場合は、溶媒を使用して反応を行うことが望ましい。
 溶媒の具体例としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチルなどのエステル類;ジエチルエーテル、ジプロピルエーテル、ジブチルエーテルなどの鎖状エーテル類;ジオキサン、ジオキソラン、テトラヒドロフランなどの環状エーテル類;トルエン、キシレン、エチルベンゼン、メシチレン、クメンなどの芳香族系炭化水素類;プロパン、ヘキサン、ヘプタン、シクロヘキサンなどの脂肪族系炭化水素類;塩化メチレン、1、2-ジクロロエタン、1、2-ジクロロベンゼンなどのハロゲン系炭化水素類などが挙げられる。
 溶媒を使用する場合、その使用量は、通常は、化合物(b2)、化合物(b3)、および溶媒の合計量に対して化合物(b2)が1~50質量%、好ましくは5~30質量%、より好ましくは10~20質量%となる量である。使用する溶媒量が少ないと、反応を行う際の撹拌がうまく行かず、反応速度が遅くなる可能性がある。一方、使用する溶媒量が多いと、反応には影響を与えないが、廃棄する溶媒量が増えるため、環境に対する負荷が高くなる可能性がある。
 化合物(b2)に対する化合物(b3)の量は、使用する化合物の種類によって異なるが、通常は2~10モル倍、好ましくは2~5モル倍である。化合物(b3)の使用量が少ないと、収率が低下する可能性があり、また不純物が多くなる可能性がある。一方、化合物(b3)の使用量が多いと、反応には何ら影響を与えないが、廃棄物が増えるため、環境に対する負荷が高くなる可能性がある。
 上記製造工程中、液相の酸素ガス(O2)濃度を測定し、液相の酸素ガス(O2)濃度が0.5mg/L以上となるように液相中に酸素ガス(O2)を導入する。ここで、液相の酸素ガス(O2)濃度を0.5mg/L以上となるように管理する方法としては、上述した方法と同様である。
 第1工程で得られた化合物(b4)は、一般的な操作、例えば抽出、再結晶、蒸留などにより精製できる。蒸留時、重合を防止する目的として、製造工程と同様の方法で、液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する。また、精製せずに次の第3工程の反応に使用することも可能である。
 (3-ii)第2工程
 第2工程の反応温度は、使用する化合物の種類によって異なるが、通常は30~150℃、好ましくは50~120℃である。反応温度が低いと、反応速度が遅くなる可能性がある。一方、反応温度が高いと、不純物が増える可能性があり、また、不飽和結合が重合する可能性がある。
 第2工程において溶媒を使用するか否かは、使用する化合物の種類等に依存する。化合物(b4)が液体であるかまたは溶融する場合は、溶媒を使用しなくても反応を行うことができる。一方、化合物(b4)が固体であるかまたは溶融しない場合は、溶媒を使用して反応を行うことが望ましい。
 溶媒の具体例としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチルなどのエステル類;ジエチルエーテル、ジプロピルエーテル、ジブチルエーテルなどの鎖状エーテル類;ジオキサン、ジオキソラン、テトラヒドロフランなどの環状エーテル類;トルエン、キシレン、エチルベンゼン、メシチレン、クメンなどの芳香族系炭化水素類;プロパン、ヘキサン、ヘプタン、シクロヘキサンなどの脂肪族系炭化水素類;塩化メチレン、1,2-ジクロロエタン、1,2-ジクロロベンゼンなどのハロゲン系炭化水素類などが挙げられる。
 溶媒を使用する場合、その使用量は、通常は、化合物(b4)、化合物(b5)、および溶媒の合計量に対して、化合物(b4)が0.5~80質量%、好ましくは5~50質量%となる量である。使用する溶媒量が少ないと、反応を行う際の撹拌がうまく行かず、反応速度が遅くなる可能性がある。一方、使用する溶媒量が多いと、反応には影響を与えないが、廃棄する溶媒量が増えるため、環境に対する負荷が高くなる可能性がある。
 第2工程で使用される化合物(b5)におけるZ1およびZ2の具体例は、特開2007-55993号公報に記載のとおりである。また、化合物(b5)の2量体または3量体を使用することも可能である。
 化合物(b4)に対する化合物(b5)の使用量は、使用する化合物の種類によって異なるが、理論的には、化合物(b4)と、化合物(b5)との反応は、1対1のモル比で進行する。しかし、反応を円滑に進行させるためには、化合物(b5)を過剰量使用することが望ましい。化合物(b4)に対する化合物(b5)の使用量は、通常は1~10モル倍、好ましくは1~5モル倍である。化合物(b5)の使用量が少ないと、未反応の化合物(b4)が残り、収率が低下する可能性がある。また、不純物が多くなる可能性がある。一方、化合物(b5)の使用量が多いと、反応には何ら影響を与えないが、特殊な除外装置等が必要となる可能性があり、また、環境に対する負荷が高くなる可能性がある。
 上記製造工程中、液相の酸素ガス(O2)濃度を測定し、液相の酸素ガス(O2)濃度が0.5mg/L以上となるように液相中に酸素ガス(O2)を導入する。ここで、液相の酸素ガス(O2)濃度を0.5mg/L以上となるように管理する方法としては、上述した方法と同様である。
 第2工程で得られた化合物(B')は、一般的な操作、例えば抽出、再結晶、蒸留などにより精製できる。蒸留時、重合を防止する目的として、製造工程と同様の方法で、液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する。
 以下、本発明の実施例を挙げてさらに詳細に説明するが、本発明はこれら実施例によってなんら制限されるものではない。
 実施例における測定条件は以下の通りである。
 <モノマー分析条件:ガスクロマトグラフ法>
 カラム:J&W社 DB-1(長さ30m×内径0.32mm×膜厚1μm)
 試料注入部温度:300℃
 検出器温度:300℃
 検出器:FID(水素炎式検出器)
 昇温プログラム:50℃→10℃/分で昇温→320℃(5分間保持)
 流量:1.2mL/分
 試料希釈溶媒:塩化メチレン
 [参考例1]
 アクリル酸メチルモノマー(純正化学株式会社製試薬)100gを、ガス導入管(内径4mmのガラス単管)、冷却コンデンサ(ガス出口は大気圧開放で、粒状塩化カルシウム管を取り付けたもの)、温度計、事前に校正済みの有機化合物用溶存酸素計(セントラル科学株式会社製UC-12-SOL型)を付けた300mL容量のガラスフラスコに入れ、オイルバスにて100℃に加熱した。ガス導入管より乾燥空気(酸素ガス(O2)濃度21容量%)を1mL/分で導入し、経時的にアクリル酸メチルモノマーの残存量をガスクロマトグラフ法により10時間まで定量したところ、平均して約0.12%/時間の割合で減少していた。このモノマーの減少分は熱により重合(オリゴマー化)したことに因る。この操作中の溶存酸素ガス(O2)濃度の電極指示値は常に30~32mg/Lの範囲であった。
 [比較例1]
 乾燥空気の代わりに、乾燥窒素で20倍容量希釈した乾燥空気(酸素ガス(O2)濃度1容量%)を用いた以外は参考例1に記載の方法で経時的にアクリル酸メチルモノマーの残存量を10時間まで評価したところ、平均して約0.75%/時間の割合で減少していた。この操作中の酸素ガス(O2)濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に0.2~0.3mg/Lの範囲であった。
 [参考例2]
 アクリル酸メチルモノマーの代わりにアクリル酸メチルの反応液(アクリル酸メチル含量83質量%)を用いた以外は参考例1に記載の方法で経時的にアクリル酸メチルモノマーの残存量を10時間まで評価したところ、平均して約0.14%/時間の割合で減少していた。この操作中の溶存酸素ガス(O2)濃度の電極指示値は常に28~29mg/Lの範囲であった。
 [参考例3]
 冷却コンデンサの先端のガス出口を、大気圧開放ではなく真空ポンプに繋ぎ、水銀マノメータの指示値が100mmHgとなるようにニードル弁にて窒素で圧力調整した減圧反応装置とした以外は参考例1に記載の方法で経時的にアクリル酸メチルモノマーの残存量を10時間まで評価したところ、平均して約0.17%/時間の割合で減少していた。この操作中の溶存酸素ガス(O2)濃度の電極指示値は常に4~5mg/Lの範囲であった。
 [比較例2]
 乾燥空気を導入する代わりに、乾燥窒素で20倍容量希釈した乾燥空気(酸素ガス(O2)濃度1容量%)を用いた以外は参考例3に記載の方法で経時的にアクリル酸メチルモノマーの残存量を10時間まで評価したところ、平均して約0.89%/時間の割合で減少していた。この操作中の溶存酸素ガス(O2)濃度電極指示値は常に0.1~0.2mg/Lの範囲であった。
 [参考例4]
 乾燥空気を1mL/分で導入する代わりに、乾燥窒素で5倍容量希釈した乾燥空気(酸素ガス(O2)濃度4容量%)を5mL/分で導入した以外は参考例3に記載の方法で経時的にアクリル酸メチルモノマーの残存量を10時間まで評価したところ、平均して約0.21%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に1.1~1.3mg/Lの範囲であった。
 [実施例1]
 アクリル酸メチルモノマーの代わりに2-アクリロイルオキシエチルイソシアネート(昭和電工株式会社製カレンズAOI(登録商標)、ガスクロマトグラフ法による純度99.7%)を用いた以外は参考例3に記載の方法で経時的に2-アクリロイルオキシエチルイソシアネートモノマーの残存量を10時間まで評価したところ、平均して約0.08%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に6.5~7.0mg/Lの範囲であった。
 [比較例3]
 乾燥空気を導入する代わりに、乾燥窒素で20倍容量希釈した乾燥空気(酸素ガス(O2)濃度1容量%)を用いた以外は実施例1に記載の方法で経時的に2-アクリロイルオキシエチルイソシアネートモノマーの残存量を10時間まで評価したところ、平均して約1.1%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に0.1~0.3mg/Lの範囲であった。
 [実施例2]
 イソシアネート基含有エチレン性不飽和化合物モノマーとして、2-アクリロイルオキシエチルイソシアネート(昭和電工株式会社製カレンズAOI(登録商標)、ガスクロマトグラフ法による純度99.7%)の代わりに、2-アクリロイルオキシエチルイソシアネートの反応液(ガスクロマトグラフ法による純度78.8%)を用いた以外は実施例1に記載の方法で経時的に2-アクリロイルオキシエチルイソシアネートモノマーの残存量を10時間まで評価したところ、平均して約0.16%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に4.8~5.2mg/Lの範囲であった。
 [比較例4]
 乾燥空気を導入する代わりに、乾燥窒素で20倍容量希釈した乾燥空気(酸素ガス(O2)濃度1容量%)を用いた以外は実施例2に記載の方法で経時的に2-アクリロイルオキシエチルイソシアネートモノマーの残存量を10時間まで評価したところ、平均して約0.97%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に0.2~0.3mg/Lの範囲であった。
 [実施例3]
 2-アクリロイルオキシエチルイソシアネート(AOI)の反応液(ガスクロマトグラフ法による純度78.8%)100gを、ガス導入管(内径4mmのガラス単管)、アリーン氏式冷却コンデンサ(ガス出口は真空ポンプ、圧力調節弁、圧力計を設置したもの)、温度計、事前に校正済みの有機化合物用溶存酸素計(セントラル科学株式会社製UC-12-SOL型)を付けた300mL容のガラスフラスコに入れ、100℃のオイルバスにて加熱した。ガス導入管より乾燥空気(酸素ガス(O2)濃度21容量%)を1mL/分で導入しながら、反応容器中を真空ポンプ、圧力調節弁により2.2kPaとした。このときの内液温度は92℃で、冷却管にてAOIを還流させ、蒸留塔のボトム液と同様の状況とした。経時的にAOIモノマーの残存量をガスクロマトグラフ法により10時間まで定量したところ、平均して約0.58%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に1.8~2.0mg/Lの範囲であった。
 [比較例5]
 乾燥空気を導入する代わりに、乾燥窒素で10倍容量希釈した乾燥空気(酸素ガス(O2)濃度2容量%)を用いた以外は実施例3に記載の方法で経時的にAOIモノマーの残存量を評価したところ、8時間で内液が固化し重合した。5時間の時点でのAOIモノマーの減少率は約0.97%/時間であった。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に0.1~0.2mg/Lの範囲であった。
 [実施例4]
 乾燥空気を1mL/分で導入する代わりに、乾燥窒素で5倍容量希釈した乾燥空気(酸素ガス(O2)濃度4容量%)を5mL/分で導入した以外は実施例2に記載の方法で経時的に2-アクリロイルオキシエチルイソシアネートモノマーの残存量を評価したところ、約0.35%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に0.9~1.2mg/Lの範囲であった。
 [実施例5]
 乾燥空気の代わりに、酸素ガス(O2)濃度40容量%の希釈乾燥酸素(希釈ガス:乾燥窒素)を用いた以外は実施例2に記載の方法で経時的に2-アクリロイルオキシエチルイソシアネートモノマーの残存量を評価したところ、約0.02%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に10~11mg/Lの範囲であった。
 [参考例5]
 減圧蒸留により取得したアクリル酸メチル(ガスクロマトグラフ法による純度99.8%)中の溶存酸素ガス(O2)を、室温、大気中にて、事前にGC法にて校正した有機溶剤用溶存酸素計(セントラル科学株式会社製UC-12-SOL型)にて溶存酸素ガス(O2)を測定したところ0.3mg/Lであった。このアクリル酸メチルをSUS製容器(1L缶)に0.8kg入れ、ガラス管にて乾燥空気(酸素ガス(O2)濃度21容量%)を1L/分の流速で吹き込み、30分おきに上記溶存酸素計にて溶存酸素ガス(O2)濃度を測定したところ、1.5時間以降は溶存酸素ガス(O2)濃度が38mg/Lに安定した。この1L缶にフタをして密閉し、30℃定温で保管した。1年間保管後のアクリル酸メチル残存量をガスクロマトグラフ法にて定量したところ、1年間で99.4%残存していた。このモノマーの減少分は保管時の重合(オリゴマー化)に因る。このときの溶存酸素計による溶存酸素ガス(O2)濃度は18mg/Lであった。
 [比較例6]
 乾燥空気を吹き込まないでそのまま1L缶にフタをして密閉した以外は、参考例5に記載の方法でアクリル酸メチルの保管を実施したところ、保管開始から192日目に容器内でアクリル酸メチルが重合し、その重合熱により容器口部から内容物が噴出していた。内容物は液体とポップコーン状固体(重合物)が共存した状態であった。
 [実施例6]
 減圧蒸留により取得した2-アクリロイルオキシエチルイソシアネート(ガスクロマトグラフ法による純度99.6%)を用いた以外は、参考例5に記載の方法で溶存酸素ガス(O2)を測定したところ0.3mg/Lであった。この2-アクリロイルオキシエチルイソシアネートをSUS製容器(1L缶)に1.0kg入れ、ガラス管にて乾燥空気(酸素ガス(O2)濃度21容量%)を1L/分の流速で吹き込み、30分おきに上記溶存酸素計にて溶存酸素ガス(O2)濃度を測定したところ、1時間以降は溶存酸素ガス(O2)濃度が41mg/Lに安定した。この1L缶にフタをして密閉し、30℃定温で保管した。1年間保管後の2-アクリロイルオキシエチルイソシアネート残存量をガスクロマトグラフ法にて定量したところ、1年間で98.4%残存していた。このときの溶存酸素計による溶存酸素ガス(O2)濃度は21mg/Lであった。
 [比較例7]
 乾燥空気を吹き込まないでそのまま1L缶にフタをして密閉した以外は、実施例6に記載の方法で2-アクリロイルオキシエチルイソシアネートの保管を実施したところ、保管開始から1年後の残存量は82.8%であった。このときの溶存酸素計による溶存酸素ガス(O2)濃度は0.1mg/Lであった。
 [実施例7]
 乾燥空気(酸素ガス(O2)濃度21容量%)の代わりに、乾燥窒素で2倍希釈した乾燥空気(酸素ガス(O2)濃度10容量%)を用いた以外は実施例6に記載の方法で実施したところ、希釈空気吹き込み開始から30分おきに上記溶存酸素計にて溶存酸素ガス(O2)濃度を測定したところ、2.5時間以降は溶存酸素ガス(O2)濃度が20mg/Lに安定した。この1L缶にフタをして密閉し、30℃定温で保管した。1年間保管後の2-アクリロイルオキシエチルイソシアネート残存量をガスクロマトグラフ法にて定量したところ、1年間で93.2%残存していた。このときの溶存酸素計による溶存酸素ガス(O2)濃度は7mg/Lであった。
 [実施例8]
 トルエン250mL、特開2006-232797号公報に記載の方法で得られた3-クロロプロピオン酸(2-イソシアナトエチル)エステル59g(0.33mol)、トリエチルアミン(沸点;89.4℃)50g(0.49mol)をガス導入管(内径4mmのガラス単管)、冷却コンデンサ(ガス出口は大気圧開放で、粒状塩化カルシウム管を取り付けたもの)、温度計、事前に校正済みの有機化合物用溶存酸素計(セントラル科学株式会社製UC-12-SOL型)を付けた三口フラスコに入れ、50℃で6時間加熱撹拌した後、室温まで冷却し、生成した塩酸塩をろ過した。このときのろ液中のアクリロイルオキシエチルイソシアネートの収率は86%であった。この反応液にガス導入管より乾燥空気(酸素ガス(O2)濃度21容量%)を1mL/分で導入しながら50℃で10時間ホールドし、経時的にアクリロイルオキシエチルイソシアネートの残存量をガスクロマトグラフ法により定量したところ、平均して約0.07%/時間の割合で減少していた。このモノマーの減少分は熱により重合(オリゴマー化)したことに因る。この操作中の溶存酸素ガス(O2)濃度の電極指示値は常に40~42mg/Lの範囲であった。
 [比較例8]
 乾燥空気の代わりに、乾燥窒素で20倍容量希釈した乾燥空気(酸素ガス(O2)濃度1容量%)を用いた以外は実施例8に記載の方法でろ液中のアクリロイルオキシエチルイソシアネートの残存量を経時的に評価したところ、平均して約0.44%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に0.2~0.3mg/Lの範囲であった。
 [実施例9]
 トルエン250mL、特開2006-232797号公報に記載の方法で得られた3-クロロプロピオン酸(2-イソシアナトエチル)エステル59g(0.33mol)、トリエチルアミン(沸点;89.4℃)50g(0.49mol)をガス導入管(内径4mmのガラス単管)、冷却コンデンサ(ガス出口は大気圧開放で、粒状塩化カルシウム管を取り付けたもの)、温度計、事前に校正済みの有機化合物用溶存酸素計(セントラル科学株式会社製UC-12-SOL型)を付けた三口フラスコに入れ、50℃で6時間加熱撹拌した後、室温まで冷却し、生成したトリエチルアミン塩酸塩をろ過した。次いで、過剰のトリエチルアミンおよびトルエンを留去した後、蒸留(62~67℃/0.7kPa)を4時間実施してアクリロイルオキシエチルイソシアネート(沸点;200℃)39g(0.28mol)を得た(収率85%)。反応及び蒸留を行っている間、ガス導入管より乾燥空気(酸素ガス(O2)濃度21容量%)を1mL/分で導入し、溶存酸素ガス(O2)濃度の電極指示値は常に42~46mg/Lの範囲であった。
 [比較例9]
 乾燥空気の代わりに、乾燥窒素で20倍容量希釈した乾燥空気(酸素ガス(O2)濃度1容量%)を用いた以外は実施例9に記載の方法で反応及び蒸留を行ったところ、2-アクリロイルオキシエチルイソシアネート36g(0.26mol)を得た(収率79%)。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に0.2~3mg/Lの範囲であった。
 [実施例10]
 実施例1において2-アクリロイルオキシエチルイソシアネートの代わりに、2-メタクリロイルオキシエチルイソシアネート(昭和電工株式会社製カレンズMOI(登録商標)、ガスクロマトグラフ法による純度99.8%)を用いた以外は実施例1に記載の方法で経時的にMOIモノマーの残存量を10時間まで評価したところ、平均して約0.07%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に6.6~7.0mg/Lの範囲であった。
 [比較例10]
 実施例10において乾燥空気の代わりに、乾燥窒素で20倍容量希釈した乾燥空気(酸素ガス(O2)濃度1容量%)を導入した以外は実施例10に記載の方法で経時的にMOIモノマーの残存量を10時間まで評価したところ、平均して約1.1%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に0.1~0.4mg/Lの範囲であった。
 [実施例11]
 実施例3において2-アクリロイルオキシエチルイソシアネートの反応液の代わりに、2-メタクリロイルオキシエチルイソシアネート(昭和電工株式会社製カレンズMOI(登録商標)、ガスクロマトグラフ法による純度99.8%)を用いた以外は実施例3に記載の方法で経時的にMOIモノマーの残存量をガスクロマトグラフ法により10時間まで定量したところ、平均して約0.49%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に2.0~2.2mg/Lの範囲であった。
 [比較例11]
 実施例11において乾燥空気の代わりに、乾燥窒素で10倍容量希釈した乾燥空気(酸素ガス(O2)濃度2容量%)を導入した以外は実施例11に記載の方法で経時的にMOIモノマーの残存量を10時間まで評価したところ、平均して約2.1%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に0.1~0.3mg/Lの範囲であった。
 [実施例12]
 実施例10において乾燥空気を1mL/分で導入する代わりに、乾燥窒素で5倍容量希釈した乾燥空気(酸素ガス(O2)濃度4容量%)を5mL/分で導入した以外は実施例10に記載の方法で経時的にMOIモノマーの残存量を10時間まで評価したところ、平均して約0.28%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に1.1~1.3mg/Lの範囲であった。
 [実施例13]
 実施例10において乾燥空気の代わりに、酸素ガス(O2)濃度40容量%の希釈乾燥酸素(希釈ガス:乾燥窒素)を用いた以外は実施例10に記載の方法で経時的にMOIモノマーの残存量を10時間まで評価したところ、平均して約0.02%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に10~11mg/Lの範囲であった。
 [実施例14]
 実施例6において2-アクリロイルオキシエチルイソシアネートの代わりに、2-メタクリロイルオキシエチルイソシアネート(昭和電工株式会社製カレンズMOI(登録商標)、ガスクロマトグラフ法による純度99.8%)を用いた以外は実施例6に記載の方法で事前にモノマー液の溶存酸素ガス(O2)を測定したところ0.3mg/Lであった。このMOI液をSUS製容器(1L缶)に1.0kg入れ、ガラス管にて乾燥空気(酸素ガス(O2)濃度21容量%)を1L/分の流速で吹き込み、30分おきに上記溶存酸素計にて溶存酸素ガス(O2)濃度を測定したところ、1時間以降は溶存酸素ガス(O2)濃度が44mg/Lに安定した。この1L缶にフタをして密閉し、30℃定温で保管した。1年間保管後のMOIモノマーの残存量をガスクロマトグラフ法にて定量したところ、1年間で99.0%残存していた。このときの溶存酸素計による溶存酸素ガス(O2)濃度は17mg/Lであった。
 [比較例12]
 乾燥空気を吹き込まないでそのまま1L缶にフタをして密閉した以外は、実施例14に記載の方法でMOIの保管を実施したところ、保管開始から1年後の残存量は83.9%であった。このときの溶存酸素計による溶存酸素ガス(O2)濃度は0.2mg/Lであった。
 [実施例15]
 実施例1において2-アクリロイルオキシエチルイソシアネートの代わりに、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート(昭和電工株式会社製カレンズBEI(登録商標)、ガスクロマトグラフ法による純度99.2%)を用いた以外は実施例1に記載の方法で経時的にBEIモノマーの残存量を10時間まで評価したところ、平均して約0.08%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に6.5~6.7mg/Lの範囲であった。
 [比較例13]
 実施例15において乾燥空気の代わりに、乾燥窒素で20倍容量希釈した乾燥空気(酸素ガス(O2)濃度1容量%)を導入した以外は実施例15に記載の方法で経時的にBEIモノマーの残存量を10時間まで評価したところ、平均して約1.3%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に0.1~0.2mg/Lの範囲であった。
 [実施例16]
 実施例3において2-アクリロイルオキシエチルイソシアネートの反応液の代わりに、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート(昭和電工株式会社製カレンズBEI(登録商標)、ガスクロマトグラフ法による純度99.2%)を用いた以外は実施例3に記載の方法で経時的にBEIモノマーの残存量をガスクロマトグラフ法により10時間まで定量したところ、平均して約0.60%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に1.7~1.9mg/Lの範囲であった。
 [比較例14]
 実施例16において乾燥空気の代わりに、乾燥窒素で10倍容量希釈した乾燥空気(酸素ガス(O2)濃度2容量%)を導入した以外は実施例16に記載の方法で経時的にBEIモノマーの残存量を10時間まで評価したところ、平均して約2.3%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に0.1~0.3mg/Lの範囲であった。
 [実施例17]
 実施例15において乾燥空気を1mL/分で導入する代わりに、乾燥窒素で5倍容量希釈した乾燥空気(酸素ガス(O2)濃度4容量%)を5mL/分で導入した以外は実施例15に記載の方法で経時的にBEIモノマーの残存量を10時間まで評価したところ、平均して約0.29%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に1.3~1.5mg/Lの範囲であった。
 [実施例18]
 実施例15において乾燥空気の代わりに、酸素ガス(O2)濃度40容量%の希釈乾燥酸素(希釈ガス:乾燥窒素)を用いた以外は実施例15に記載の方法で経時的にBEIモノマーの残存量を10時間まで評価したところ、平均して約0.04%/時間の割合で減少していた。この操作中の酸素濃度計による溶存酸素ガス(O2)濃度の電極指示値は常に9~10mg/Lの範囲であった。
 [実施例19]
 実施例6において2-アクリロイルオキシエチルイソシアネートの代わりに、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート(昭和電工株式会社製カレンズBEI(登録商標)、ガスクロマトグラフ法による純度99.2%)を用いた以外は実施例6に記載の方法で事前にモノマー液の溶存酸素ガス(O2)を測定したところ0.4mg/Lであった。このBEI液をSUS製容器(1L缶)に1.0kg入れ、ガラス管にて乾燥空気(酸素ガス(O2)濃度21容量%)を1L/分の流速で吹き込み、30分おきに上記溶存酸素計にて溶存酸素ガス(O2)濃度を測定したところ、1時間以降は溶存酸素ガス(O2)濃度が39mg/Lに安定した。この1L缶にフタをして密閉し、30℃定温で保管した。1年間保管後のBEIモノマーの残存量をガスクロマトグラフ法にて定量したところ、1年間で98.3%残存していた。このときの溶存酸素計による溶存酸素ガス(O2)濃度は15mg/Lであった。
 [比較例15]
 乾燥空気を吹き込まないでそのまま1L缶にフタをして密閉した以外は、実施例19に記載の方法でBEI液の保管を実施したところ、保管開始から1年後の残存量は80.4%であった。このときの溶存酸素計による溶存酸素ガス(O2)濃度は0.1mg/Lであった。

Claims (14)

  1.  イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を含有する液相の酸素ガス(O2)濃度を0.5mg/L以上に管理することを特徴とするイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
  2.  前記液相に酸素ガス(O2)を含有する気体を導入することを特徴とする請求項1に記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
  3.  前記酸素ガス(O2)を含有する気体が空気、希釈空気または希釈酸素であることを特徴とする請求項2に記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
  4.  液相中の酸素ガス(O2)濃度を測定するステップと、
    前記測定結果に基づき、導入する酸素ガス(O2)を含有する気体による酸素ガス(O2)供給量を制御するステップとを有することを特徴とする請求項2または3に記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
  5.  前記液相の酸素ガス(O2)濃度を前記液相中に浸漬した電極により測定することを特徴とする請求項1~4のいずれかに記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
  6.  前記液相が蒸留工程のボトム液部であることを特徴とする請求項1~5のいずれかに記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
  7.  前記イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物が、下記式(A)または(B)で表わされる化合物であることを特徴とする請求項1~6のいずれかに記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
    CH2=CR5-COO-R6-NCO    …(A)
    (式中、R5は、水素原子またはメチル基を示し、R6は、炭素数1~10の分岐していてもよいアルキレン基、または、炭素数3~6のシクロアルキレン基の前後に炭素数0~3のアルキレン基を有する炭化水素基、または、炭素数6~8の芳香族炭化水素環を示す。)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は炭素数が1~10である直鎖もしくは分岐の飽和脂肪族基を示し、R2はそれぞれ独立に水素原子またはメチル基を示し、R3はそれぞれ独立に炭素数が0~5である直鎖もしくは分岐のアルキレン基を示し、R4はそれぞれ独立に水素原子、炭素数が1~6である直鎖もしくは分岐のアルキル基、またはアリール基を示す。)
  8.  前記イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物が、2-メタクリロイルオキシエチルイソシアネート、2-アクリロイルオキシエチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート、2-(イソシアナトエチルオキシ)エチルメタクリレートまたは2-(イソシアナトエチルオキシ)エチルアクリレートである請求項7に記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
  9.  液相の水分が5質量%以下であることを特徴とする請求項1~8のいずれかに記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法。
  10.  請求項1~9のいずれかに記載の重合抑制方法を含むことを特徴とするイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法。
  11.  下記式(a1)で表されるイソシアネート基を含む3-クロロプロピオン酸エステル誘導体を、塩基性窒素化合物の存在下で脱塩化水素する工程と、
     液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する工程とを、
    含むことを特徴とする下記式(A)で表わされるイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法。
    Cl-CH2-CHR5-COO-R6-NCO  …(a1)
    CH2=CR5-COO-R6-NCO      …(A)
    (式中、R5は、水素原子またはメチル基を示し、R6は、炭素数1~10の分岐していてもよいアルキレン基、または、炭素数3~6のシクロアルキレン基の前後に炭素数0~3のアルキレン基を有する炭化水素基、または、炭素数6~8の芳香族炭化水素環を示す。)
  12.  下記式(b1)で表されるイソシアネート化合物を、塩基性窒素化合物の存在下で脱塩化水素する工程と、
     液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する工程とを、
    含むことを特徴とする下記式(B)で表わされるイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は炭素数が1~10である直鎖もしくは分岐の飽和脂肪族基を示し、R2はそれぞれ独立に水素原子またはメチル基を示し、R3はそれぞれ独立に炭素数が0~5である直鎖もしくは分岐のアルキレン基を示し、R4はそれぞれ独立に水素原子、炭素数が1~6である直鎖もしくは分岐のアルキル基、またはアリール基を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1~R4は上記と同義である。)
  13.  下記式(b2)で表されるジヒドロキシアミン鉱酸塩化合物、および下記式(b3)で表される化合物から、下記式(b4)で表されるエステル化合物を得る工程と、
     下記式(b4)で表わされるエステル化合物、および下記式(b5)で表される化合物から、下記式(B')で表されるイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物を得る工程と、
     液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する工程とを、
    含むことを特徴とするイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式(b2)、(b3)、(b4)中、R1は炭素数が1~10である直鎖もしくは分岐の飽和脂肪族基を示し、X1は鉱酸を示し、R3はそれぞれ独立に炭素数が0~5である直鎖もしくは分岐のアルキレン基を示し、R4はそれぞれ独立に水素原子、炭素数が1~6である直鎖もしくは分岐のアルキル基、またはアリール基を示し、Y1は水酸基、塩素原子、またはR6O-(R6は炭素数が1~6であるアルキル基を示す。)を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Z1およびZ2はそれぞれ独立に、塩素原子、臭素原子、R7O-(R7は炭素数が1~6である直鎖もしくは分岐のアルキル基、炭素数が1~6である直鎖もしくは分岐のアルケニル基、または置換基を有していてもよいアリール基を示す。)、イミダゾール類の残基、またはピラゾール類の残基を示す。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R1、R3、およびR4は上記と同義である。)
  14.  前記液相の酸素ガス(O2)濃度を0.5mg/L以上に管理する工程が、
    液相中の酸素ガス(O2)濃度を測定するステップと、
    前記測定結果に基づき、導入する酸素ガス(O2)を含有する気体による酸素ガス(O2)供給量を制御するステップと、
    液相に酸素ガス(O2)を含有する気体を導入するステップとを、
    有することを特徴とする請求項11~13のいずれかに記載のイソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の製造方法。
PCT/JP2009/063932 2008-08-08 2009-08-06 イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法および製造方法 WO2010016540A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117005328A KR101303434B1 (ko) 2008-08-08 2009-08-06 이소시아네이트기를 포함하는 에틸렌성 불포화 카르복실산 에스테르 화합물의 중합 억제 방법 및 제조 방법
US13/057,707 US20110137066A1 (en) 2008-08-08 2009-08-06 Process of inhibiting polymerization of isocyanate group-containing, ethylenically unsaturated carboxylate compounds, and process for producing the compounds
CN2009801307033A CN102119146A (zh) 2008-08-08 2009-08-06 包含异氰酸酯基的烯属不饱和羧酸酯化合物的聚合抑制方法和制造方法
JP2010523885A JPWO2010016540A1 (ja) 2008-08-08 2009-08-06 イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法および製造方法
EP09805023.0A EP2325166A4 (en) 2008-08-08 2009-08-06 METHOD FOR INHIBITING THE POLYMERIZATION OF AN ISOCYANATE-GROUP-CONTAINING ETHYLENE DISCOVERY CARBOXYLIC ACID ESTER COMPOUND, AND METHOD FOR PRODUCING AN ETHYLENE-UNSATURATED CARBOXYLIC ACID ESTER COMPOUND CONTAINING AN ISOCYANATE GROUP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-205738 2008-08-08
JP2008205738 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010016540A1 true WO2010016540A1 (ja) 2010-02-11

Family

ID=41663756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063932 WO2010016540A1 (ja) 2008-08-08 2009-08-06 イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法および製造方法

Country Status (7)

Country Link
US (1) US20110137066A1 (ja)
EP (1) EP2325166A4 (ja)
JP (1) JPWO2010016540A1 (ja)
KR (1) KR101303434B1 (ja)
CN (1) CN102119146A (ja)
TW (1) TW201026650A (ja)
WO (1) WO2010016540A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111446A1 (ja) * 2011-02-15 2012-08-23 昭和電工株式会社 安定化されたイソシアネート基含有エチレン性不飽和化合物
WO2012111445A1 (ja) * 2011-02-15 2012-08-23 昭和電工株式会社 安定化されたイソシアネート基含有エチレン性不飽和化合物
JP2020503325A (ja) * 2016-12-29 2020-01-30 ハンワ ケミカル コーポレイション 脂肪族イソシアネートの製造方法
WO2020040050A1 (ja) * 2018-08-20 2020-02-27 昭和電工株式会社 組成物、組成物の製造方法および不飽和化合物の製造方法
JP2022511618A (ja) * 2018-12-26 2022-02-01 万華化学集団股▲フン▼有限公司 気相でイソシアネートを調製する方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529156B2 (ja) * 2015-02-18 2019-06-12 昭和電工株式会社 組成物、組成物の製造方法および不飽和化合物の製造方法
EP3842415A4 (en) * 2018-08-20 2022-04-20 Showa Denko K.K. COMPOSITION, METHOD FOR PRODUCTION THEREOF, AND METHOD FOR PRODUCTION OF UNSATURATED COMPOUND
JP7276341B2 (ja) * 2018-08-20 2023-05-18 株式会社レゾナック 組成物、組成物の製造方法および不飽和化合物の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289617A (en) 1976-01-20 1977-07-27 Basf Ag Method of manufacturing betaa chlorocarboxylic chloride
JPS5726497B2 (ja) 1973-04-26 1982-06-04
JPH0967311A (ja) 1995-08-31 1997-03-11 Nippon Shokubai Co Ltd アクリル酸エステル類の重合防止方法
JPH11199540A (ja) 1998-01-13 1999-07-27 Sumikin Chemical Co Ltd 3−クロロプロピオン酸クロライドの製造方法
JP2005060393A (ja) * 2003-07-31 2005-03-10 Showa Denko Kk 高純度(メタ)アクリロイルオキシアルキルイソシアネートの製造方法
JP2006232797A (ja) 2004-03-25 2006-09-07 Showa Denko Kk イソシアネート基を有する(メタ)アクリル酸エステル誘導体の製造方法
JP2006291188A (ja) * 2005-03-15 2006-10-26 Showa Denko Kk (メタ)アクリロイル基含有芳香族イソシアネート化合物およびその製造方法
JP2007055993A (ja) 2004-11-04 2007-03-08 Showa Denko Kk エチレン性不飽和基含有イソシアネート化合物およびその製造方法、ならびに反応性モノマー、反応性(メタ)アクリレートポリマーおよびその用途
JP2007284355A (ja) 2006-04-12 2007-11-01 Nippon Synthetic Chem Ind Co Ltd:The カルボン酸ビニルの重合抑制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB573175A (en) * 1943-01-22 1945-11-09 Ici Ltd Improvements in or relating to the manufacture of unsaturated organic compounds
US7241916B2 (en) * 2003-02-07 2007-07-10 Mitsubishi Rayon Co., Ltd. Process for producing methacrylic ester
KR100568569B1 (ko) * 2004-10-26 2006-04-07 주식회사 이녹스 폴리이미드 접착제용 조성물 및 이를 이용한 폴리이미드접착테이프
JP2006185864A (ja) * 2004-12-28 2006-07-13 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726497B2 (ja) 1973-04-26 1982-06-04
JPS5289617A (en) 1976-01-20 1977-07-27 Basf Ag Method of manufacturing betaa chlorocarboxylic chloride
JPH0967311A (ja) 1995-08-31 1997-03-11 Nippon Shokubai Co Ltd アクリル酸エステル類の重合防止方法
JPH11199540A (ja) 1998-01-13 1999-07-27 Sumikin Chemical Co Ltd 3−クロロプロピオン酸クロライドの製造方法
JP2005060393A (ja) * 2003-07-31 2005-03-10 Showa Denko Kk 高純度(メタ)アクリロイルオキシアルキルイソシアネートの製造方法
JP2006232797A (ja) 2004-03-25 2006-09-07 Showa Denko Kk イソシアネート基を有する(メタ)アクリル酸エステル誘導体の製造方法
JP2007055993A (ja) 2004-11-04 2007-03-08 Showa Denko Kk エチレン性不飽和基含有イソシアネート化合物およびその製造方法、ならびに反応性モノマー、反応性(メタ)アクリレートポリマーおよびその用途
JP2006291188A (ja) * 2005-03-15 2006-10-26 Showa Denko Kk (メタ)アクリロイル基含有芳香族イソシアネート化合物およびその製造方法
JP2007284355A (ja) 2006-04-12 2007-11-01 Nippon Synthetic Chem Ind Co Ltd:The カルボン酸ビニルの重合抑制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2325166A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539160B1 (ko) * 2011-02-15 2015-07-23 쇼와 덴코 가부시키가이샤 안정화된 이소시아네이트기 함유 에틸렌성 불포화 화합물
JP5657710B2 (ja) * 2011-02-15 2015-01-21 昭和電工株式会社 安定化されたイソシアネート基含有エチレン性不飽和化合物
WO2012111446A1 (ja) * 2011-02-15 2012-08-23 昭和電工株式会社 安定化されたイソシアネート基含有エチレン性不飽和化合物
CN103380106A (zh) * 2011-02-15 2013-10-30 昭和电工株式会社 被稳定化了的带异氰酸酯基的烯属不饱和化合物
CN103380106B (zh) * 2011-02-15 2016-04-27 昭和电工株式会社 被稳定化了的带异氰酸酯基的烯属不饱和化合物
JP5657709B2 (ja) * 2011-02-15 2015-01-21 昭和電工株式会社 安定化されたイソシアネート基含有エチレン性不飽和化合物
US9040736B2 (en) 2011-02-15 2015-05-26 Showa Denko K.K. Stabilized isocyanate group-containing ethylenically unsaturated compound
KR101538566B1 (ko) * 2011-02-15 2015-07-21 쇼와 덴코 가부시키가이샤 안정화된 이소시아네이트기 함유 에틸렌성 불포화 화합물
CN103370303A (zh) * 2011-02-15 2013-10-23 昭和电工株式会社 被稳定化了的带异氰酸酯基的烯属不饱和化合物
WO2012111445A1 (ja) * 2011-02-15 2012-08-23 昭和電工株式会社 安定化されたイソシアネート基含有エチレン性不飽和化合物
JP2020503325A (ja) * 2016-12-29 2020-01-30 ハンワ ケミカル コーポレイション 脂肪族イソシアネートの製造方法
WO2020040050A1 (ja) * 2018-08-20 2020-02-27 昭和電工株式会社 組成物、組成物の製造方法および不飽和化合物の製造方法
JPWO2020040050A1 (ja) * 2018-08-20 2021-08-12 昭和電工株式会社 組成物、組成物の製造方法および不飽和化合物の製造方法
JP7396285B2 (ja) 2018-08-20 2023-12-12 株式会社レゾナック 組成物、組成物の製造方法および不飽和化合物の製造方法
JP2022511618A (ja) * 2018-12-26 2022-02-01 万華化学集団股▲フン▼有限公司 気相でイソシアネートを調製する方法
JP7285924B2 (ja) 2018-12-26 2023-06-02 万華化学集団股▲フン▼有限公司 気相でイソシアネートを調製する方法
US11814339B2 (en) 2018-12-26 2023-11-14 Wanhua Chemical Group Co., Ltd. Method for preparing isocyanate in gaseous phase

Also Published As

Publication number Publication date
JPWO2010016540A1 (ja) 2012-01-26
KR20110051230A (ko) 2011-05-17
CN102119146A (zh) 2011-07-06
EP2325166A1 (en) 2011-05-25
TW201026650A (en) 2010-07-16
EP2325166A4 (en) 2015-05-06
KR101303434B1 (ko) 2013-09-05
US20110137066A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
WO2010016540A1 (ja) イソシアネート基を含むエチレン性不飽和カルボン酸エステル化合物の重合抑制方法および製造方法
KR100848433B1 (ko) 이소시아네이트기를 갖는 (메트)아크릴산에스테르 유도체의제조 방법
RU2271356C2 (ru) Виниленкарбонатная смесь и способ ее получения
EP2292579B1 (en) Process for production of halogenated alpha-fluoroethers
JPH11228523A (ja) イソシアナトアルキル(メタ)アクリレートの製造方法
EP3153495B1 (en) Method for producing carboxylic acid anhydride, and method for producing carboxylic acid ester
JP5274454B2 (ja) エーテル結合を有するエチレン性不飽和基含有イソシアネート化合物の製造方法
KR20130127509A (ko) 안정화된 이소시아네이트기 함유 에틸렌성 불포화 화합물
JPWO2011093439A1 (ja) N,n’−ジアリル−1,3−ジアミノプロパンの製造方法
JPH09323968A (ja) イソシアナート化合物の精製方法
TWI829987B (zh) 具有異氰酸基之(甲基)丙烯酸酯化合物及其製造方法
JP4632759B2 (ja) α−置換アクリル酸ノルボルナニル類の製造方法
TWI249523B (en) Process for preparing high purity (meth)acryloyloxyalkyl isocyanate
US9040736B2 (en) Stabilized isocyanate group-containing ethylenically unsaturated compound
JP2016020311A (ja) チオセミカルバゾン及びセミカルバゾン
EP4048661B1 (en) Process for preparing glycerol carbonate (meth)acrylate
WO2017013683A1 (en) Process for the preparation of fluoroacrylic acid esters
RU2730856C1 (ru) Способ получения сложных норборниловых эфиров (мет)акриловой кислоты
JP2008105955A (ja) (メタ)アクリル酸エステルの製造方法
JP6738018B2 (ja) 1,4−シクロヘキサンジカルボン酸ジクロリドの製造方法
JP3247783B2 (ja) メタクリル酸グリシジルの精製方法
JP2016216437A (ja) 不飽和カルボン酸シリルエステルの蒸留方法
US20110118493A1 (en) Method for preventing polymerization of unsaturated organosilicon compounds
JP3247778B2 (ja) メタクリル酸グリシジルの精製方法
JP2010111632A (ja) 光学活性α−アシルオキシリン酸エステル誘導体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130703.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805023

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523885

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009805023

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009805023

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13057707

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117005328

Country of ref document: KR

Kind code of ref document: A