WO2010016520A1 - 非水電解液及びリチウム二次電池 - Google Patents

非水電解液及びリチウム二次電池 Download PDF

Info

Publication number
WO2010016520A1
WO2010016520A1 PCT/JP2009/063873 JP2009063873W WO2010016520A1 WO 2010016520 A1 WO2010016520 A1 WO 2010016520A1 JP 2009063873 W JP2009063873 W JP 2009063873W WO 2010016520 A1 WO2010016520 A1 WO 2010016520A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
carbonate
general formula
aqueous electrolyte
group
Prior art date
Application number
PCT/JP2009/063873
Other languages
English (en)
French (fr)
Inventor
野木 栄信
檜原 昭男
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US13/057,306 priority Critical patent/US9130243B2/en
Priority to EP09805003.2A priority patent/EP2320501B1/en
Priority to KR1020117003040A priority patent/KR101309931B1/ko
Priority to JP2010523877A priority patent/JP5274562B2/ja
Priority to CN200980130892.4A priority patent/CN102113163B/zh
Publication of WO2010016520A1 publication Critical patent/WO2010016520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/04Five-membered rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a lithium secondary battery.
  • positive electrode active materials for lithium secondary batteries.
  • the main component of the transition metal used as the positive electrode active material is cobalt or nickel. The reason why cobalt or nickel is frequently used is that it is easy to realize a long battery life as compared with other transition metals.
  • manganese which is cheaper and richer in resources than cobalt or nickel, is one of the potential next-generation cathode active material candidates.
  • a battery using a manganese positive electrode has a shorter life than a battery using a cobalt or nickel positive electrode.
  • the required performance in the large battery market, where a dramatic increase in demand is expected in the near future, is to extend the battery life.
  • Various techniques have been studied to meet this requirement (see, for example, Japanese Patent Laid-Open Nos. 11-339850, 3163078, 2004-71159, and 2007-165296). Further improvement is desired for the required performance of the battery market.
  • An object of the present invention is to provide a non-aqueous electrolyte capable of realizing a long life in a lithium secondary battery containing manganese as a positive electrode active material, and a lithium secondary battery using the non-aqueous electrolyte. .
  • the inventor of the present invention is a lithium secondary battery that includes manganese, which is cheaper and more abundant in resources, in the positive electrode active material than cobalt or nickel that has been widely used in the past.
  • the present inventors have found an electrolytic solution that can achieve a long life and a battery using the electrolytic solution, and completed the present invention.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a fluorine atom, or a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a fluorine atom.
  • n represents an integer of 0 to 3.
  • ⁇ 3> The nonaqueous electrolytic solution according to ⁇ 1> or ⁇ 2>, further comprising fluorinated ethylene carbonate, or vinylene carbonate or a vinylene carbonate derivative represented by the following general formula (3).
  • R 5 and R 6 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
  • ⁇ 4> The nonaqueous electrolytic solution according to any one of ⁇ 1> to ⁇ 3>, further containing a phosphoric acid silyl ester derivative represented by the following general formula (4).
  • R 7 , R 8 , and R 9 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • a lithium secondary battery using, as a positive electrode active material, a composite oxide in which 35 mol% or more of manganese is contained as a positive electrode active material, and using a non-aqueous electrolyte containing unsaturated sultone.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a fluorine atom, or a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a fluorine atom.
  • n represents an integer of 0 to 3.
  • R 5 and R 6 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
  • ⁇ 8> The lithium secondary battery according to any one of ⁇ 5> to ⁇ 7>, wherein the non-aqueous electrolyte further contains a phosphoric acid silyl ester derivative represented by the following general formula (4).
  • R 7 , R 8 , and R 9 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • the negative electrode active material metallic lithium, lithium-containing alloy, metal that can be alloyed with lithium, alloy that can be alloyed with lithium, oxide that can be doped / undoped with lithium ion, lithium ion Any one of ⁇ 5> to ⁇ 8>, wherein at least one selected from the group consisting of a transition metal nitride capable of doping / dedoping and a carbon material capable of doping / dedoping lithium ions is used Lithium secondary battery described in 1.
  • non-aqueous electrolyte capable of extending the life of a lithium secondary battery containing manganese as a positive electrode active material, and a lithium secondary battery using the non-aqueous electrolyte.
  • the nonaqueous electrolytic solution of the present invention is a nonaqueous electrolytic solution for a lithium secondary battery using a composite oxide in which 35 mol% or more of manganese contained in the transition metal is manganese as a positive electrode active material. Containing.
  • the “nonaqueous electrolytic solution” means a liquid containing a nonaqueous solvent and an electrolyte.
  • the lithium secondary battery of the present invention is a lithium secondary battery using the non-aqueous electrolyte of the present invention.
  • the nonaqueous electrolytic solution of the present invention contains unsaturated sultone.
  • the unsaturated sultone in the present invention is a sulfonic acid ester having a carbon-carbon unsaturated bond in the ring.
  • unsaturated sultone having a specific structure represented by the following general formula (1) is preferable.
  • R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom, a fluorine atom, or a hydrocarbon having 1 to 12 carbon atoms that may be substituted with a fluorine atom Represents a group, and n represents an integer of 0 to 3.
  • hydrocarbon group having 1 to 12 carbon atoms which may be substituted by a fluorine atom include a methyl group, an ethyl group, a vinyl group, an ethynyl group, a propyl group, an isopropyl group, and a 1-propenyl group.
  • 2-propenyl group 1-propynyl group, 2-propynyl group, butyl group, sec-butyl group, t-butyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 2-methyl-2- Propenyl group, 1-methylenepropyl group, 1-methyl-2-propenyl group, 1,2-dimethylvinyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, pentyl group, 1-methylbutyl group, 2 -Methylbutyl group, 3-methylbutyl group, 1-methyl-2-methylpropyl group, 2,2-dimethylpropyl group, phenyl group, methylphenyl group, ethylphenyl group, Nylphenyl, ethynylphenyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, unde
  • R 1 to R 4 are each independently a hydrogen atom, a fluorine atom, or a carbon atom having 1 to 1 carbon atoms that may be substituted with a fluorine atom. 4 is preferable, and a hydrogen atom, a fluorine atom, or a hydrocarbon group having 1 to 2 carbon atoms which may be substituted with a fluorine atom is more preferable. Among them, it is most desirable that all of R 1 to R 4 are hydrogen atoms. Further, n is preferably 1 or 2, and more preferably 1.
  • the most desirable compound is 1,3-prop-1-ene sultone represented by the following formula (2).
  • the non-aqueous electrolyte containing the unsaturated sultone according to the present invention has a high effect of suppressing reductive decomposition of the electrolyte on the negative electrode, and suppresses a decrease in battery capacity during a high-temperature storage test or a cycle test. Suppresses the generation of gas due to decomposition. Moreover, the rise of the interface impedance of the positive electrode at the time of a high temperature storage test or a cycle test is suppressed, and deterioration of load characteristics is suppressed.
  • the unsaturated sultone in the present invention is effective as an additive for an electrolytic solution, and can impart excellent characteristics to the electrolytic solution.
  • the mechanism of the effect of unsaturated sultone in the present invention is as follows: (1) Unsaturated bonds in some unsaturated sultone compounds react on the negative electrode and bond on the negative electrode to form a stable film; 2) Unsaturated sultone that did not form a film on the negative electrode decomposes the unsaturated sultone compound itself as the sultone group undergoes reductive decomposition on the negative electrode, and the sulfur compound produced by this decomposition undergoes an oxidation reaction on the positive electrode. It is conceivable that a film is also formed on the positive electrode. That is, it is considered that unsaturated sultone is a compound that can form a film on both the positive electrode and the negative electrode.
  • the present invention is not limited by the above mechanism. That is, as will be described later, it is considered that the unsaturated sultone in the present invention can suppress adverse effects on the positive electrode and the negative electrode due to manganese elution that can occur in the positive electrode containing manganese.
  • the 1,3-prop-1-ene sultone represented by the above formula (2) is particularly preferable among the unsaturated sultone represented by the general formula (1) in that the effect is easily obtained.
  • the amount of unsaturated sultone added to the non-aqueous electrolyte is preferably 0.0001% by mass to 30% by mass, more preferably 0.001% by mass to 10% by mass with respect to the non-aqueous electrolyte. Further, it is preferably 0.1% by mass to 7% by mass, more preferably 0.2% by mass to 5% by mass, and further preferably 0.2% by mass to 2.0% by mass.
  • the amount of unsaturated sultone added to the non-aqueous electrolyte is small, it is difficult to achieve the effect, and when it is too large, the interface impedance of the negative electrode may increase.
  • the nonaqueous electrolytic solution of the present invention contains a nonaqueous solvent.
  • Various known solvents can be appropriately selected as the non-aqueous solvent, and it is particularly preferable to include a cyclic aprotic solvent and / or a chain aprotic solvent.
  • the flash point of the non-aqueous solvent can be further increased.
  • the cyclic aprotic solvent may be used alone or as a mixture of two or more. Further, the cyclic aprotic solvent and the chain aprotic solvent may be mixed and used. However, when the cyclic aprotic solvent and the chain aprotic solvent are mixed and used, the mixing ratio of the chain aprotic solvent is 20 mass with respect to the whole nonaqueous solvent. It is desirable to be less than%.
  • cyclic aprotic solvent examples include cyclic carbonates such as ethylene carbonate, cyclic carboxylic acid esters such as ⁇ -butyrolactone, cyclic sulfones such as sulfolane, and cyclic ethers such as dioxolane.
  • cyclic carbonates include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and the like.
  • ethylene carbonate or propylene carbonate having a high dielectric constant is preferably used.
  • ethylene carbonate is particularly preferable.
  • cyclic carboxylic acid ester examples include ⁇ -butyrolactone, ⁇ -valerolactone, or alkyl-substituted products such as methyl ⁇ -butyrolactone, ethyl ⁇ -butyrolactone, and ethyl ⁇ -valerolactone.
  • the cyclic carboxylic acid ester has a low vapor pressure, a low viscosity, and a high dielectric constant. For this reason, the viscosity of the electrolytic solution can be lowered without lowering the flash point of the electrolytic solution and the degree of dissociation of the electrolyte.
  • the electroconductivity of the electrolyte which is an index related to the discharge characteristics of the battery can be increased without increasing the flammability of the electrolyte. Accordingly, from the viewpoint of further improving the flash point of the solvent, it is preferable to use a cyclic carboxylic acid ester as the cyclic aprotic solvent, and ⁇ -butyrolactone is most desirable.
  • the cyclic carboxylic acid ester is preferably used in combination with another cyclic aprotic solvent.
  • a form in which a cyclic carboxylic acid ester and a cyclic carbonate and / or a chain carbonate are used in combination can be considered.
  • Examples of combinations of cyclic carboxylic acid esters and cyclic carbonates and / or chain carbonates are specifically combinations of ⁇ -butyrolactone and ethylene carbonate, combinations of ⁇ -butyrolactone, ethylene carbonate and dimethyl carbonate, ⁇ - Combination of butyrolactone, ethylene carbonate and methyl ethyl carbonate, combination of ⁇ -butyrolactone, ethylene carbonate and diethyl carbonate, combination of ⁇ -butyrolactone and propylene carbonate, combination of ⁇ -butyrolactone, propylene carbonate and dimethyl carbonate, ⁇ - A combination of butyrolactone, propylene carbonate and methyl ethyl carbonate, ⁇ -butyrolactone, propylene carbonate and die Combination of til carbonate, combination of ⁇ -butyrolactone, ethylene carbonate and propylene carbonate, combination of ⁇ -butyrolactone, ethylene carbonate, propylene carbonate and dimethyl carbon
  • the content of the cyclic carboxylic acid ester in the non-aqueous solvent is preferably 100% by mass to 10% by mass, more preferably 90% by mass to 20% by mass, and particularly preferably 80% by mass to 30% by mass. By setting it as such a ratio, the conductivity of the non-aqueous electrolyte related to the charge / discharge characteristics of the battery can be increased.
  • cyclic sulfone examples include sulfolane, 2-methyl sulfolane, 3-methyl sulfolane, dimethyl sulfone, diethyl sulfone, dipropyl sulfone, methyl ethyl sulfone, methylpropyl sulfone and the like.
  • chain aprotic solvent examples include chain carbonates such as dimethyl carbonate, chain carboxylic acid esters such as methyl pivalate, chain ethers such as dimethoxyethane, and chain chains such as trimethyl phosphate. Examples include phosphate esters.
  • chain carbonate examples include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, Examples include ethyl pentyl carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, dioctyl carbonate, and methyltrifluoroethyl carbonate.
  • These chain carbonates may be used in combination of two or more.
  • the chain aprotic solvent can be used in combination of two or more from the viewpoint of increasing the flash point of the non-aqueous solvent.
  • Examples of the chain aprotic solvent include chain carbonates, chain carboxylates, and chain phosphates, and in particular, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, diheptyl carbonate. Chain carbonates such as methyl ethyl carbonate, methyl propyl carbonate, methyl butyl carbonate, and methyl heptyl carbonate are preferred.
  • nonaqueous solvent is a combination of a cyclic aprotic solvent and a chain aprotic solvent.
  • a cyclic carbonate as a cyclic aprotic solvent and a chain carbonate as a chain aprotic solvent from the electrochemical stability of the electrolytic solution.
  • the conductivity of the electrolyte solution related to the charge / discharge characteristics of the battery can also be increased by a combination of a cyclic carboxylic acid ester and a cyclic carbonate and / or a chain carbonate.
  • cyclic carbonate and chain carbonate specifically, a combination of ethylene carbonate and dimethyl carbonate, a combination of ethylene carbonate and methyl ethyl carbonate, a combination of ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, A combination of propylene carbonate and methyl ethyl carbonate, a combination of propylene carbonate and diethyl carbonate, a combination of ethylene carbonate, propylene carbonate and methyl ethyl carbonate, a combination of ethylene carbonate, propylene carbonate and diethyl carbonate, and ethylene carbonate.
  • Dimethyl carbonate and methyl ethyl carbonate Combinations of ethylene carbonate, dimethyl carbonate and diethyl carbonate, ethylene carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate and propylene carbonate , Dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate and dimethyl carbonate Combination of sulfonate and methyl ethyl carbonate and diethyl carbonate, and the like.
  • the ratio of the cyclic carbonate to the chain carbonate is expressed as a mass ratio, and the cyclic carbonate: chain carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30, and particularly preferably 15:85. ⁇ 55: 45.
  • the cyclic carbonate: chain carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30, and particularly preferably 15:85. ⁇ 55: 45.
  • the nonaqueous electrolytic solution according to the present invention may contain a solvent other than the above as a nonaqueous solvent.
  • solvents include amides such as dimethylformamide, chain carbamates such as methyl-N, N-dimethylcarbamate, cyclic amides such as N-methylpyrrolidone, N, N-dimethylimidazolidinone, and the like.
  • boron compounds such as cyclic urea, trimethyl borate, triethyl borate, tributyl borate, trioctyl borate, trimethylsilyl borate, and polyethylene glycol derivatives represented by the following general formula.
  • the nonaqueous electrolytic solution of the present invention may contain other additives in addition to the unsaturated sultone described above as long as the object of the present invention is not impaired. By doing so, it is possible to give more excellent characteristics to the non-aqueous electrolyte.
  • additives examples include fluorinated ethylene carbonate, or vinylene carbonate or vinylene carbonate derivative represented by the general formula (3).
  • R 5 and R 6 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
  • Fluorinated ethylene carbonate or vinylene carbonate or vinylene carbonate derivative represented by the general formula (3) is preferable in terms of forming a surface film of the negative electrode.
  • Examples of the vinylene carbonate or vinylene carbonate derivative represented by the general formula (3) include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, and dipropyl vinylene carbonate. Is done. Of these, vinylene carbonate is most preferred.
  • the fluorinated ethylene carbonate may be a known one, such as 4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4,4,5-trifluoroethylene carbonate.
  • 4,5-difluoroethylene carbonate and 4-fluoroethylene carbonate are most desirable.
  • the content of the fluorinated ethylene carbonate or the vinylene carbonate or vinylene carbonate derivative represented by the general formula (3) can be appropriately selected according to the purpose, but is 0.001% by mass with respect to the total amount of the non-aqueous electrolyte. Is preferably 10% by mass, and more preferably 0.5% by mass to 3% by mass.
  • Examples of other additives in the nonaqueous electrolytic solution of the present invention include phosphoric acid silyl ester derivatives represented by the general formula (4).
  • R 7 to R 9 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • the phosphoric acid silyl ester derivative represented by the general formula (4) is preferable in terms of the trap effect of moisture or acid content in the battery.
  • Examples of the phosphoric acid silyl ester derivative represented by the general formula (4) include tris (trimethylsilyl) phosphate, tris (triethylsilyl) phosphate, tris (triisopropylsilyl) phosphate, and tris (t-butyldimethylsilyl) phosphate. And the like.
  • the phosphoric acid silyl ester derivative represented by the following formula (5) that is, tris (trimethylsilyl) phosphate is most preferable.
  • the content of the phosphoric acid silyl ester derivative represented by the general formula (4) can be appropriately selected according to the purpose, but is 0.001% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolyte.
  • the content is preferably 0.1% by mass to 4.0% by mass, more preferably 0.1% by mass to 3.0% by mass.
  • the non-aqueous electrolyte of the present invention may contain one or more fluorinated ethylene carbonates or vinylene carbonates or vinylene carbonate derivatives represented by the general formula (3). Moreover, the non-aqueous electrolyte of this invention may contain 1 type (s) or 2 or more types of the phosphoric acid silyl ester derivative represented by General formula (4).
  • the non-aqueous electrolyte of the present invention is represented by the general formula (4) and one or more kinds of fluorinated ethylene carbonate or vinylene carbonate or vinylene carbonate derivative represented by the general formula (3). 1 type, or 2 or more types of phosphoric acid silyl ester derivatives may be included. For example, both vinylene carbonate and tris (trimethylsilyl) phosphate may be included.
  • the ratio of unsaturated sultone to other additives is preferably 1: 100 to 100: 1 by mass ratio, and 1:20 to 20: 1 is more preferable, and 1: 5 to 20: 1 is particularly preferable.
  • the total amount of unsaturated sultone and the other additives is preferably 30% by mass or less based on the entire nonaqueous electrolytic solution.
  • the nonaqueous electrolytic solution of the present invention contains unsaturated sultone, and further contains a nonaqueous solvent and an electrolyte.
  • electrolytes can be used for the nonaqueous electrolytic solution of the present invention, and any of them can be used as long as it is normally used as an electrolyte for a nonaqueous electrolytic solution.
  • lithium salt represented by the following general formula can also be used.
  • R 7 to R 13 may be the same as or different from each other, and are a C 1-8 perfluoroalkyl group.
  • the electrolyte in the present invention is usually preferably contained in the nonaqueous electrolyte at a concentration of 0.1 to 3 mol / liter, preferably 0.5 to 2 mol / liter.
  • the nonaqueous electrolytic solution of the present invention when a cyclic carboxylic acid ester such as ⁇ -butyrolactone is used as the nonaqueous solvent, it is desirable to contain LiPF 6 as the electrolyte. Since LiPF 6 has a high degree of dissociation, the conductivity of the electrolytic solution can be increased, and the reductive decomposition reaction of the electrolytic solution on the negative electrode can be suppressed. LiPF 6 may be used alone or in combination with LiPF 6 and other electrolytes. As the other electrolyte, any electrolyte can be used as long as it is normally used as an electrolyte for a non-aqueous electrolyte solution.
  • a lithium salt other than LiPF 6 is used.
  • the ratio of LiPF 6 in the lithium salt is 100 to 1% by mass, preferably 100 to 10% by mass, and more preferably 100 to 50% by mass.
  • Such an electrolyte is preferably contained in the non-aqueous electrolyte at a concentration of 0.1 to 3 mol / liter, preferably 0.5 to 2 mol / liter.
  • the non-aqueous electrolyte of the present invention is not only suitable as a non-aqueous electrolyte for a lithium secondary battery, but also a non-aqueous electrolyte for a primary battery, a non-aqueous electrolyte for an electrochemical capacitor, and an electric double layer capacitor. It can also be used as an electrolytic solution for aluminum electrolytic capacitors.
  • the lithium secondary battery of this invention is comprised including a negative electrode, a positive electrode, and the said non-aqueous electrolyte. Furthermore, a separator is provided between the negative electrode and the positive electrode as necessary.
  • Examples of the negative electrode active material constituting the negative electrode include metallic lithium, lithium-containing alloys, metals that can be alloyed with lithium, alloys that can be alloyed with lithium, and oxides that can be doped / undoped with lithium ions. At least one selected from the group consisting of a transition metal nitride capable of doping / dedoping lithium ions and a carbon material capable of doping / dedoping lithium ions can be used. Examples of the metal that can be alloyed with lithium ions or the alloy that can be alloyed with lithium include silicon, silicon alloys, tin, and tin alloys.
  • the negative electrode active material is preferably a carbon material that can be doped / undoped with lithium ions.
  • carbon materials include carbon black, activated carbon, graphite materials (for example, artificial graphite, natural graphite, etc.), amorphous carbon materials, and the like.
  • the form of the carbon material may be any of a fibrous form, a spherical form, a potato form, and a flake form.
  • Specific examples of the amorphous carbon material include hard carbon, coke, mesocarbon microbeads (MCMB) baked to 1500 ° C. or less, and mesopage bitch carbon fiber (MCF).
  • the graphite material include natural graphite and artificial graphite.
  • graphitized MCMB graphitized MCF, or the like is used.
  • a graphite material a graphite material containing boron can be used.
  • a graphite material coated with a metal such as gold, platinum, silver, copper, or tin, or a graphite material coated with amorphous carbon can be used.
  • a mixture of an amorphous carbon material and a graphite material can also be used.
  • the said carbon material may be used by 1 type and may be used in mixture of 2 or more types.
  • the carbon material is particularly preferably a carbon material having a (002) plane spacing d (002) of 0.340 nm or less as measured by X-ray analysis. Furthermore, as the carbon material, a graphite material having a true density of 1.70 g / cm 3 or more or a highly crystalline carbon material having properties close thereto is preferable. When such a carbon material is used, the energy density of the battery can be increased.
  • the positive electrode active material constituting the positive electrode in the present invention is a substance containing a transition metal that can be electrochemically doped / undoped with lithium ions, and a substance containing manganese as at least a part of the transition metal is used. It is done. Manganese is inexpensive and easily available, and is preferable as a positive electrode active material. Specifically, as the positive electrode active material in the present invention, a composite oxide in which 35 mol% or more of the contained transition metal is manganese is used. That is, as the positive electrode active material in the present invention, a composite oxide containing a transition metal and having a manganese content of 35 mol% or more in the transition metal is used.
  • the content of manganese in the transition metal is preferably 50 mol% or more, more preferably 70 mol% or more, and most preferably 100 mol%.
  • the composite oxide preferably contains lithium. That is, the composite oxide is preferably a composite oxide containing a transition metal containing 35 mol% or more of manganese and lithium.
  • the composite oxide represented by the following compositional formula (6) is included.
  • x represents a number satisfying 0 ⁇ x ⁇ 1.2
  • y represents a number satisfying 0 ⁇ y ⁇ 0.8
  • M 1 represents Ni, Co, Al, Fe
  • M 1 is preferably Ni, Co, or Fe.
  • x is preferably 0.2 ⁇ x ⁇ 1.15.
  • y is preferably 0 ⁇ y ⁇ 0.65.
  • composition formula (7) It is also preferable to include a composite oxide represented by the following composition formula (7).
  • x is a number satisfying 0 ⁇ x ⁇ 1.2
  • y is a number satisfying 0 ⁇ y ⁇ 0.8
  • M 2 is Ni, Co, Al, Fe, Ti, Mg, Cr
  • At least one element selected from the group consisting of Ga, Cu, Zn, and Nb is shown.
  • M 2 is preferably Ni, Co, Al, or Mg.
  • x is preferably 0.05 ⁇ x ⁇ 1.15.
  • y is preferably 0 ⁇ y ⁇ 0.7, more preferably 0 ⁇ y ⁇ 0.4, and particularly preferably 0 ⁇ y ⁇ 0.2.
  • Specific examples of those having the composition represented by the composition formula (7) include, for example, LiMn 1.8 Al 0.2 O 4 , LiMn 1.5 Ni 0.5 O 4 , LiMn 2.0 O 4 and the like. I can list them.
  • Said positive electrode active material may be used by 1 type, and may mix and use 2 or more types.
  • the positive electrode active material has insufficient conductivity, it can form a positive electrode together with a conductive auxiliary agent.
  • the conductive aid include carbon materials such as carbon black, amorphous whiskers, and graphite.
  • the positive electrode in the present invention contains a large amount of manganese.
  • the positive electrode has a spinel structure instead of a layered structure, but the positive electrode with a spinel structure elutes manganese in the positive electrode during battery charge / discharge, and deposits manganese compounds on the negative electrode, causing deterioration in resistance increase. It has been known. It is considered that the unsaturated sultone in the present invention forms a film on the positive electrode side to suppress elution of manganese, and further suppresses deposition of manganese compounds by the film on the negative electrode. Therefore, a lithium secondary battery using a positive electrode using the positive electrode active material has a large residual discharge capacity after high-temperature storage and a large capacity retention rate, and thus can achieve a long life.
  • the separator in the present invention is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include a porous film and a polymer electrolyte.
  • a microporous polymer film is preferably used as the porous film, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, and polyester.
  • porous polyolefin is preferable, and specific examples include a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and a polypropylene film.
  • other resin excellent in thermal stability may be coated.
  • Examples of the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swollen with an electrolytic solution, and the like.
  • the nonaqueous electrolytic solution of the present invention may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer.
  • the lithium secondary battery of this invention contains the said negative electrode active material, a positive electrode active material, and a separator.
  • the lithium secondary battery of the present invention can take various known shapes, and can be formed into a cylindrical shape, a coin shape, a square shape, a film shape, or any other shape. However, the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose.
  • An example of the lithium secondary battery of the present invention is a coin-type battery shown in FIG. In the coin-type battery shown in FIG. 1, a disc-shaped negative electrode 2, a separator 5 into which a non-aqueous electrolyte is injected, a disc-shaped positive electrode 1, and spacer plates 7 and 8 such as stainless steel or aluminum as necessary are arranged in this order.
  • the positive electrode can 3 (hereinafter also referred to as “battery can”) and the sealing plate 4 (hereinafter also referred to as “battery can lid”) are accommodated.
  • the positive electrode can 3 and the sealing plate 4 are caulked and sealed via a gasket 6.
  • the non-aqueous electrolyte of the present invention and the lithium secondary battery of the present invention are not particularly limited, and can be used for various known uses.
  • the non-aqueous electrolyte of the present invention and the lithium secondary battery of the present invention are used for notebook computers, mobile computers, mobile phones, headphone stereos, video movies, LCD TVs, handy cleaners, electronic notebooks, calculators, radios, and backup power supplies.
  • ⁇ Battery high temperature storage test> The test battery after 10 cycles was charged at a constant current of 1 mA and a constant voltage of 4.2 V in a constant temperature bath at 25 ° C., then discharged to 2.85 V at a constant current of 1 mA, and the discharge capacity before the high-temperature storage test [ mAh] was measured. Thereafter, after charging with a constant current of 1 mA and a constant voltage of 4.2 V, the temperature of the thermostat was set to 80 ° C., and a storage test of the battery was performed in two days (high temperature storage test).
  • the battery was not charged / discharged, only the voltage was measured, and the voltage drop of each battery during the high-temperature storage test was measured as a decrease in OCV [mV].
  • the temperature of the thermostatic chamber was returned to 25 ° C., then discharged to 2.85 V at a constant current of 1 mA, and the discharge capacity [mAh] after the high-temperature storage test (that is, after the high-temperature storage test) The remaining discharge capacity [mAh]) remaining in the battery was measured.
  • the capacity maintenance rate [%] before and after the high temperature storage test was calculated by the following formula.
  • discharge capacity after high-temperature storage test is expressed as “discharge capacity after high-temperature storage [mAh]”
  • capacity retention rate [%] before and after the high-temperature storage test is expressed as “high temperature It is expressed as “storage capacity maintenance rate [%]”.
  • Capacity maintenance rate before and after high temperature storage test [%] (Discharge capacity after high temperature storage test [mAh] / Discharge capacity before high temperature storage test [mAh]) ⁇ 100 [%]
  • Example 1 ⁇ Production of negative electrode> 20 parts by weight of artificial graphite, 80 parts by weight of natural graphite, 1 part by weight of carboxymethyl cellulose, and 2 parts by weight of SBR latex were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry. Next, the negative electrode mixture slurry is applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m, dried, and then compressed by a roll press to form a sheet formed of a negative electrode current collector and a negative electrode active material layer. The negative electrode was obtained. The coating density of the negative electrode active material layer at this time was 10 mg / cm 2 , and the packing density was 1.5 g / ml.
  • this positive electrode mixture slurry is applied to a positive electrode current collector made of a strip-shaped aluminum foil having a thickness of 20 ⁇ m, dried, and then compressed by a roll press to form a sheet-like positive electrode comprising a positive electrode current collector and a positive electrode active material Got.
  • the coating density of the positive electrode active material layer at this time was 30 mg / cm 2 , and the packing density was 2.5 g / ml.
  • EC and DEC were mixed as a non-aqueous solvent at a ratio of 5: 5 (mass ratio).
  • LiPF 6 as an electrolyte was dissolved in the obtained mixed solution so that the electrolyte concentration in the total amount of the nonaqueous electrolytic solution finally prepared was 1 mol / liter.
  • PRS was added as an additive so that the content in the total amount of the non-aqueous electrolyte was 0.5% by mass to obtain a non-aqueous electrolyte.
  • the above-mentioned negative electrode was 14 mm in diameter and the above-mentioned positive electrode was 13 mm in diameter, and each was punched into a disk shape to obtain coin-shaped electrodes (negative electrode and positive electrode). Further, a microporous polyethylene film having a thickness of 20 ⁇ m was punched into a disk shape having a diameter of 17 mm to obtain a separator.
  • the obtained coin-shaped negative electrode, separator, and coin-shaped positive electrode were stacked in this order in a stainless steel battery can (2032 size), and 20 ⁇ l of the non-aqueous electrolyte obtained above was injected into the separator. It was impregnated in the positive electrode and the negative electrode.
  • an aluminum plate (thickness 1.2 mm, diameter 16 mm) and a spring are placed on the positive electrode, and the battery is sealed by caulking the battery can lid through a polypropylene gasket.
  • a coin-type battery having a thickness of 3.2 mm was produced. The obtained coin-type battery was subjected to an initial characteristic evaluation and a high-temperature storage test.
  • Example 2 In Example 1, in the preparation of the non-aqueous electrolyte, instead of “adding PRS as an additive so that the content in the total amount of the non-aqueous electrolyte is 0.5 mass%”, as an additive A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that PRS and VC were added so that the content in the total amount of the non-aqueous electrolyte was 0.5% by mass, respectively, to obtain a coin-type battery. It was. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 3 In Example 1, in the preparation of the non-aqueous electrolyte, instead of “adding PRS as an additive so that the content in the total amount of the non-aqueous electrolyte is 0.5 mass%”, as an additive , PRS, VC, and TMSP were prepared in the same manner as in Example 1 except that 0.5 mass% of each was added to the total amount of the nonaqueous electrolyte solution, and a coin type was prepared. A battery was obtained. The obtained coin-type battery was subjected to an initial characteristic evaluation and a high-temperature storage test.
  • Example 4 In Example 1, in the preparation of the non-aqueous electrolyte, instead of “adding PRS as an additive so as to contain 0.5 mass% with respect to the total amount of the non-aqueous electrolyte”, PRS as an additive , VC, and TMSP were added in Example 1 except that the contents in the total amount of the non-aqueous electrolyte were PRS 0.1 mass%, VC 0.5 mass%, and TMSP 0.5 mass%, respectively. Similarly, a non-aqueous electrolyte was prepared to obtain a coin-type battery. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 5 In Example 1, in the preparation of the non-aqueous electrolyte, instead of “adding PRS as an additive so as to contain 0.5 mass% with respect to the total amount of the non-aqueous electrolyte”, PRS as an additive , VC, and TMSP were added in Example 1 except that the contents in the total amount of the non-aqueous electrolyte were PRS 0.2 mass%, VC 0.5 mass%, and TMSP 0.5 mass%, respectively. Similarly, a non-aqueous electrolyte was prepared to obtain a coin-type battery. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 6 In Example 1, in the preparation of the non-aqueous electrolyte, instead of “adding PRS as an additive so as to contain 0.5 mass% with respect to the total amount of the non-aqueous electrolyte”, PRS, Except for adding VC and TMSP so that the contents in the total amount of the non-aqueous electrolyte were PRS 1.0 mass%, VC 0.5 mass%, and TMSP 0.5 mass%, respectively, the same as in Example 1 A non-aqueous electrolyte was prepared to obtain a coin-type battery. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 7 In Example 1, in the preparation of the non-aqueous electrolyte, instead of “adding PRS as an additive so as to contain 0.5 mass% with respect to the total amount of the non-aqueous electrolyte”, PRS, Except for adding VC and TMSP so that the contents in the total amount of the non-aqueous electrolyte were PRS 1.5% by mass, VC 0.5% by mass, and TMSP 0.5% by mass, respectively, as in Example 1. A non-aqueous electrolyte was prepared to obtain a coin-type battery. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 8 In Example 1, in the preparation of the non-aqueous electrolyte, instead of “adding PRS as an additive so as to contain 0.5 mass% with respect to the total amount of the non-aqueous electrolyte”, PRS, Except that VC and TMSP were added so that the contents in the total amount of the non-aqueous electrolyte were PRS 2.0 mass%, VC 0.5 mass%, and TMSP 0.5 mass%, respectively, as in Example 1. A non-aqueous electrolyte was prepared to obtain a coin-type battery. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 9 In Example 1, in the preparation of the non-aqueous electrolyte, instead of “adding PRS as an additive so as to contain 0.5 mass% with respect to the total amount of the non-aqueous electrolyte”, PRS, Except that VC and TMSP were added so that the contents in the total amount of the non-aqueous electrolyte were PRS 0.5% by mass, VC 0.5% by mass, and TMSP 0.1% by mass, respectively, as in Example 1. A non-aqueous electrolyte was prepared to obtain a coin-type battery. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 10 In Example 1, in the preparation of the non-aqueous electrolyte, instead of “adding PRS as an additive so as to contain 0.5 mass% with respect to the total amount of the non-aqueous electrolyte”, PRS, Except that VC and TMSP were added so that the contents in the total amount of the non-aqueous electrolyte were PRS 0.5% by mass, VC 0.5% by mass, and TMSP 0.2% by mass, respectively, as in Example 1. A non-aqueous electrolyte was prepared to obtain a coin-type battery. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 11 In Example 1, in the preparation of the non-aqueous electrolyte, instead of “adding PRS as an additive so as to contain 0.5 mass% with respect to the total amount of the non-aqueous electrolyte”, PRS, Except for adding VC and TMSP so that the contents in the total amount of the non-aqueous electrolyte were 0.5 mass% PRS, 0.5 mass% VC, and 1.5 mass% TMSP, respectively, the same as in Example 1 A non-aqueous electrolyte was prepared to obtain a coin-type battery. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 12 In Example 1, in the preparation of the non-aqueous electrolyte, instead of “adding PRS as an additive so as to contain 0.5 mass% with respect to the total amount of the non-aqueous electrolyte”, PRS, Except that VC and TMSP were added so that the contents in the total amount of the non-aqueous electrolyte were PRS 0.5% by mass, VC 0.5% by mass, and TMSP 2.5% by mass, respectively, as in Example 1. A non-aqueous electrolyte was prepared to obtain a coin-type battery. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 1 a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that no additive was added in the preparation of the non-aqueous electrolyte to obtain a coin-type battery. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Table 1 shows the evaluation results of Examples 1 to 12 and Comparative Example 1.
  • the high-temperature storage characteristics of the lithium secondary battery were improved by the addition of PRS as compared with Comparative Example 1 in which no additive was added (Example 1). Further, it was confirmed that the high temperature storage characteristics were further improved by using PRS and VC together (Example 2). Furthermore, by using PRS, VC, and TMSP in combination, further improvement in high temperature storage characteristics was confirmed (Examples 3 to 12).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明では、含有される遷移金属のうち35モル%以上がマンガンである複合酸化物を正極活物質として用いるリチウム二次電池用の非水電解液であって、不飽和スルトンを含有する非水電解液が提供される。

Description

非水電解液及びリチウム二次電池
 本発明は、非水電解液及びリチウム二次電池に関する。
 リチウム二次電池用正極活物質としては、リチウムと遷移金属とを含む活物質が各種知られている。従来実用化されたリチウム二次電池の多くでは、正極活物質として用いられる遷移金属の主成分は、コバルトまたはニッケルであった。コバルトまたはニッケルが多用された背景としては、他の遷移金属に比較して電池長寿命を実現しやすい為である。
 しかし、従来多用されてきたコバルトまたはニッケルは、高価な上に資源量も限られている。近年のリチウム二次電池の大きな需要増加から、さらには、近い将来、自動車用途や新エネルギー関連の蓄電用途などの大型電池用途での劇的な需要増加が予想されることから、コバルトまたはニッケルに代わる、安価でかつ資源量の豊富な遷移金属正極活物質への転換が強く求められている。
 その中でも、コバルトまたはニッケルに比較して、安価で資源量が豊富なマンガンは有力な次世代正極活物質候補の一つではある。しかし、一般にマンガン正極を用いた電池は、コバルトまたはニッケル正極を用いた電池に比べ、短寿命である。一方、近い将来において劇的な需要増加が予想される大型電池市場における要求性能は、電池の長寿命化である。この要求に応えるべく様々な技術が検討されているが(例えば、特開平11-339850号公報、特許第3163078号公報、特開2004-71159号公報、特開2007-165296公報参照)、この大型電池市場の要求性能に対しては更なる改善が望まれている。
 本発明の課題は、マンガンを正極活物質に含むリチウム二次電池において、長寿命化を実現できる非水電解液、及び、その非水電解液を用いたリチウム二次電池を提供することである。
 本発明者は、上記課題に対して鋭意検討した結果、従来多用されてきたコバルトまたはニッケルと比較して、より安価で、より資源量の豊富なマンガンを正極活物質に含むリチウム二次電池において、長寿命化を実現できる電解液及びその電解液を用いた電池を見出し、本発明を完成した。
 すなわち本発明は以下の通りである。
<1> 含有される遷移金属のうち35モル%以上がマンガンである複合酸化物を正極活物質として用いるリチウム二次電池用の非水電解液であって、不飽和スルトンを含有する非水電解液。
<2> 前記不飽和スルトンが、下記一般式(1)で表される不飽和スルトンである<1>に記載の非水電解液。
Figure JPOXMLDOC01-appb-C000009

 
 一般式(1)中、R、R、R及びRは、それぞれ独立に、水素原子、フッ素原子、または、フッ素原子によって置換されていてもよい炭素数1~12の炭化水素基であり、nは0~3の整数を示す。
<3> 更に、フッ素化エチレンカーボネート、または、下記一般式(3)で表されるビニレンカーボネート若しくはビニレンカーボネート誘導体を含有する<1>または<2>に記載の非水電解液。
Figure JPOXMLDOC01-appb-C000010
 一般式(3)中、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基、またはプロピル基を示す。
<4> 更に、下記一般式(4)で表されるリン酸シリルエステル誘導体を含有する<1>~<3>のいずれか1つに記載の非水電解液。
Figure JPOXMLDOC01-appb-C000011

 
 一般式(4)中、R、R、及びRは、それぞれ独立に、炭素数1~6のアルキル基を示す。
<5> 含有される遷移金属のうち35モル%以上がマンガンである複合酸化物を正極活物質として用い、かつ、不飽和スルトンを含有する非水電解液を用いるリチウム二次電池。
<6> 前記不飽和スルトンが、下記一般式(1)で表される不飽和スルトンである<5>に記載のリチウム二次電池。
Figure JPOXMLDOC01-appb-C000012

 
 一般式(1)中、R、R、R及びRは、それぞれ独立に、水素原子、フッ素原子、または、フッ素原子によって置換されていてもよい炭素数1~12の炭化水素基であり、nは0~3の整数を示す。
<7> 前記非水電解液が、更に、フッ素化エチレンカーボネート、または、下記一般式(3)で表されるビニレンカーボネート若しくはビニレンカーボネート誘導体を含有する<5>または<6>に記載のリチウム二次電池。
Figure JPOXMLDOC01-appb-C000013

 
 一般式(3)中、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基、またはプロピル基を示す。
<8> 前記非水電解液が、更に、下記一般式(4)で表されるリン酸シリルエステル誘導体を含有する<5>~<7>のいずれか1つに記載のリチウム二次電池。
Figure JPOXMLDOC01-appb-C000014

 
 一般式(4)中、R、R、及びRは、それぞれ独立に、炭素数1~6のアルキル基を示す。
<9> 負極活物質として、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属、リチウムとの合金化が可能な合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料、からなる群から選ばれる少なくとも1種を用いる<5>~<8>のいずれか1つに記載のリチウム二次電池。
 本発明によれば、マンガンを正極活物質に含むリチウム二次電池において、長寿命化が実現できる非水電解液、及びその非水電解液を用いたリチウム二次電池を提供することができる。
本発明のリチウム二次電池の一例を示すコイン型電池の模式的断面図である。
 以下、本発明の非水電解液及びリチウム二次電池について具体的に説明する。
 本発明の非水電解液は、含有される遷移金属のうち35モル%以上がマンガンである複合酸化物を正極活物質として用いるリチウム二次電池用の非水電解液であって、不飽和スルトンを含有する。
 本発明において「非水電解液」は、非水溶媒と電解質とを含む液を意味する。
 また、本発明のリチウム二次電池は、前記本発明の非水電解液を用いたリチウム二次電池である。
<不飽和スルトン>
 本発明の非水電解液は、不飽和スルトンを含有する。
 本発明における不飽和スルトンは、環状スルホン酸エステルであって環内に炭素-炭素不飽和結合を有するスルトン化合物である。
 中でも、下記一般式(1)で表される特定構造の不飽和スルトンが好ましい。
Figure JPOXMLDOC01-appb-C000015

 
 一般式(1)中、R、R、R、及びRは、それぞれ独立に、水素原子、フッ素原子、または、フッ素原子によって置換されていてもよい炭素数1~12の炭化水素基を示し、nは0~3の整数を示す。
 前記「フッ素原子によって置換されていてもよい炭素数1~12の炭化水素基」として、具体的には、メチル基、エチル基、ビニル基、エチニル基、プロピル基、イソプロピル基、1-プロペニル基、2-プロペニル基、1-プロピニル基、2-プロピニル基、ブチル基、sec-ブチル基、t-ブチル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-2-プロペニル基、1-メチレンプロピル基、1-メチル-2-プロペニル基、1,2-ジメチルビニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-メチル-2-メチルプロピル基、2,2-ジメチルプロピル基、フェニル基、メチルフェニル基、エチルフェニル基、ビニルフェニル基、エチニルフェニル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ジフルオロメチル基、モノフルオロメチル基、トリフルオロメチル基、トリフルオロエチル基、ジフルオロエチル基、ペンタフルオロエチル基、ペンタフルオロプロピル基、テトラフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロシクロヘキシル基、パーフルオロヘプチル基、パーフルオロオクチル基、パーフルオロノニル基、パーフルオロデシル基、パーフルオロウンデシル基、パーフルオロドデシル基、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、パーフルオロフェニル基、トリフルオロメチルフェニル基、ナフチル基、ビフェニル基などが例示される。
 以上例示した中でも、非水電解液への溶解性の点からは、R~Rとしては、それぞれ独立に、水素原子、フッ素原子、またはフッ素原子によって置換されていてもよい炭素数1~4の炭化水素基であることが好ましく、水素原子、フッ素原子、またはフッ素原子によって置換されていてもよい炭素数1~2の炭化水素基であることがより好ましい。
 中でも、R~Rが全て水素原子であることが最も望ましい。また、nは1または2であることが好ましく、さらには1であることが好ましい。
 前記一般式(1)で表される不飽和スルトンのうち、最も望ましい化合物は、下記式(2)で表される1、3―プロパ-1-エンスルトンである。
Figure JPOXMLDOC01-appb-C000016

 
 この化合物は、以下の文献に記載される方法などで合成することができる。
 Angew. Chem. /70. Jahrg. 1958 / Nr. 16、Ger. Pat. 1146870 (1963) (CA 59, 11259 (1963))、Can. J. Chem. , 48, 3704 (1970)、Synlett, 1411 (1988)、Chem. Commun. , 611 (1997)、Tetrahedron 55, 2245 (1999)。
 本発明に係る不飽和スルトンを含有する非水電解液は、負極上の電解液の還元分解を抑制する効果が高く、高温保存試験時やサイクル試験時の電池の容量低下を抑制し、電解液の分解に伴うガスの発生を抑制する。また、高温保存試験時やサイクル試験時の正極の界面インピーダンスの上昇を抑制して、負荷特性の劣化を抑制する。
 以上のように、本発明における不飽和スルトンは電解液用添加剤として有効であり、電解液に優れた特性を付与することができる。
 本発明における不飽和スルトンの効果のメカニズムとしては、(1)一部の不飽和スルトン化合物中の不飽和結合が負極上で反応し、負極上に結合し、安定的な皮膜になること、(2)負極上の皮膜にならなかった不飽和スルトンは、スルトン基が負極上で還元分解することで不飽和スルトン化合物自体が分解し、この分解で生成した硫黄化合物が正極上で酸化反応を行い、正極上にも皮膜を生成することが考えられる。すなわち、不飽和スルトンは、正極、負極共に、皮膜を作ることが可能な化合物であると考えられる。
 但し、本発明は上記のメカニズムによって限定されることはない。
 すなわち、後述するが、本発明における不飽和スルトンは、マンガンを含む正極において起こりうるマンガン溶出による正極、負極への悪影響を抑制することができると考えられる。上記式(2)で表される1、3―プロパ-1-エンスルトンは、一般式(1)で表される不飽和スルトンの中でも、その効果が得られやすい点で特に好ましい。
 本発明における不飽和スルトンの非水電解液への添加量は、非水電解液に対して、0.0001質量%~30質量%が好ましく、さらに0.001質量%~10質量%が好ましく、さらに0.1質量%~7質量%が好ましく、さらに0.2質量%~5質量%が好ましく、さらに0.2質量%~2.0質量%が特に好ましい。
 不飽和スルトンの非水電解液への添加量が少ない場合は、効果が発現し難くなり、多すぎる場合には、負極の界面インピーダンスが上昇する場合がある。
<非水溶媒>
 本発明の非水電解液は、非水溶媒を含有する。
 前記非水溶媒としては、種々公知のものを適宜選択することができるが、特には、環状の非プロトン性溶媒及び/または鎖状の非プロトン性溶媒を含むことが好ましい。
 前記非水溶媒が、環状の非プロトン性溶媒を含むことにより、非水溶媒の引火点をより高くすることができる。
 前記環状の非プロトン性溶媒は単独で使用してもよいし、複数種混合して使用してもよい。
 また、前記環状の非プロトン性溶媒と前記鎖状の非プロトン性溶媒とを混合して使用してもよい。ただし、前記環状の非プロトン性溶媒と前記鎖状の非プロトン性溶媒とを混合して使用する場合には、鎖状の非プロトン性溶媒の混合比は、非水溶媒全体に対して20質量%未満であることが望ましい。
 環状の非プロトン性溶媒としては、エチレンカーボネートのような環状カーボネート、γ-ブチロラクトンのような環状カルボン酸エステル、スルホランのような環状スルホン、ジオキソランのような環状エーテルが例示される。
 環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、2,3-ペンチレンカーボネートなどが挙げられる。特に、誘電率が高い、エチレンカーボネートやプロピレンカーボネートが好適に使用される。負極活物質に黒鉛を使用した電池の場合は、特にエチレンカーボネートが好ましい。また、これら環状カーボネートは2種類以上混合して使用してもよい。
 環状カルボン酸エステルとして、具体的には、γ-ブチロラクトン、δ-バレロラクトン、あるいは、メチルγ-ブチロラクトン、エチルγ-ブチロラクトン、エチルδ-バレロラクトンなどのアルキル置換体などを例示することができる。
 環状カルボン酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率が高い。このため、電解液の引火点と電解質の解離度とを下げることなく電解液の粘度を下げることができる。このため、電解液の引火性を高くすることなく電池の放電特性に関わる指標である電解液の伝導度を高めることができるという特徴を有する。従って、溶媒の引火点の向上をより高くする観点からは、前記環状の非プロトン性溶媒として環状カルボン酸エステルを使用することが好ましく、特にγ-ブチロラクトンが最も望ましい。
 また、環状カルボン酸エステルは、他の環状の非プロトン性溶媒と組み合わせて用いることが好ましい。例えば、前記非水溶媒として、環状カルボン酸エステルと、環状カーボネート及び/または鎖状カーボネートと、を組み合わせて用いる形態が考えられる。
 環状カルボン酸エステルと環状カーボネート及び/または鎖状カーボネートとの組み合わせの例として、具体的には、γ-ブチロラクトンとエチレンカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとジエチルカーボネートとの組み合わせ、γ-ブチロラクトンとプロピレンカーボネートとの組み合わせ、γ-ブチロラクトンとプロピレンカーボネートとジメチルカーボネートとの組み合わせ、γ-ブチロラクトンとプロピレンカーボネートとメチルエチルカーボネートとの組み合わせ、γ-ブチロラクトンとプロピレンカーボネートとジエチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネートとジエチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネートとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートとの組み合わせ、γ-ブチロラクトンとスルホランとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとスルホランとの組み合わせ、γ-ブチロラクトンとプロピレンカーボネートとスルホランとの組み合わせ、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとスルホランとの組み合わせ、γ-ブチロラクトンとスルホランとジメチルカーボネートとの組み合わせ、などが挙げられる。
 非水溶媒中における環状カルボン酸エステルの含有率は、好ましくは100質量%~10質量%、さらに好ましくは90質量%~20質量%、特に好ましくは80質量%~30質量%である。このような比率にすることによって、電池の充放電特性に関わる非水電解液の伝導度を高めることができる。
 前記環状スルホンの例としては、スルホラン、2-メチルスルホラン、3―メチルスルホラン、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、メチルエチルスルホン、メチルプロピルスルホンなどが挙げられる。
 前記鎖状の非プロトン性溶媒としては、ジメチルカーボネートのような鎖状カーボネート、ピバリン酸メチルのような鎖状カルボン酸エステル、ジメトキシエタンのような鎖状エーテル、リン酸トリメチルのような鎖状のリン酸エステルが例示される。
 鎖状カーボネートとして具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、メチルトリフルオロエチルカーボネート、などが挙げられる。これら鎖状カーボネートは2種類以上混合して使用してもよい。
 前記鎖状の非プロトン性溶媒は、非水溶媒の引火点をより高くする観点より、2種以上を組み合わせて用いることができる。
 前記鎖状の非プロトン性溶媒としては、例えば、鎖状カーボネート、鎖状カルボン酸エステル、鎖状リン酸エステルが例示され、特に、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、ジヘプチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルブチルカーボネート、メチルヘプチルカーボネートなどの鎖状カーボネートが好ましい。
 本発明における非水溶媒は、1種類のみを用いてもよいし、複数種類を組み合わせて用いてもよい。
 また、環状の非プロトン性溶媒のみを1種類又は複数種類用いてもよいし、鎖状の非プロトン性溶媒のみを1種類又は複数種類用いてもよいし、環状の非プロトン性溶媒及び鎖状のプロトン性溶媒を組み合わせて用いてもよい。
 これらの中でも、電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒を環状の非プロトン性溶媒と鎖状の非プロトン性溶媒との組み合わせとすることが望ましい。さらに、電解液の電気化学的安定性から、環状の非プロトン性溶媒として環状カーボネートと、鎖状の非プロトン性溶媒として鎖状カーボネートと、を組み合わせることが特に好ましい。また、環状カルボン酸エステルと環状カーボネート及び/または鎖状カーボネートとの組み合わせによっても電池の充放電特性に関わる電解液の伝導度を高めることができる。
 環状カーボネートと鎖状カーボネートとの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネートとの組み合わせ、エチレンカーボネートとメチルエチルカーボネートとの組み合わせ、エチレンカーボネートとジエチルカーボネートとの組み合わせ、プロピレンカーボネートとジメチルカーボネートとの組み合わせ、プロピレンカーボネートとメチルエチルカーボネートとの組み合わせ、プロピレンカーボネートとジエチルカーボネートとの組み合わせ、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとの組み合わせ、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとの組み合わせ、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとの組み合わせ、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの組み合わせ、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネートとの組み合わせ、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートとの組み合わせ、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとの組み合わせ、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとの組み合わせ、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネートとの組み合わせ、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートとの組み合わせ、などが挙げられる。
 環状カーボネートと鎖状カーボネートとの比率は、質量比で表して、環状カーボネート:鎖状カーボネートが、5:95~80:20、さらに好ましくは10:90~70:30、特に好ましくは15:85~55:45である。このような比率にすることによって、電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温または低温での電気伝導性に優れた電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。
 本発明に係る非水電解液は、非水溶媒として、上記以外の他の溶媒を含んでいてもよい。他の溶媒としては、具体的には、ジメチルホルムアミドなどのアミド、メチル-N,N-ジメチルカーバメートなどの鎖状カーバメート、N-メチルピロリドンなどの環状アミド、N,N-ジメチルイミダゾリジノンなどの環状ウレア、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリブチル、ほう酸トリオクチル、ほう酸トリメチルシリル等のホウ素化合物、及び下記の一般式で表されるポリエチレングリコール誘導体などを挙げることができる。
 HO(CHCHO)
 HO[CHCH(CH)O]
 CHO(CHCHO)
 CHO[CHCH(CH)O]
 CHO(CHCHO)CH
 CHO[CHCH(CH)O]CH
 C19PhO(CHCHO)[CH(CH)O]CH
(Phはフェニル基)
 CHO[CHCH(CH)O]CO[OCH(CH)CHOCH
(前記式中、a~fは、5~250の整数、g~jは2~249の整数、5≦g+h≦250、5≦i+j≦250である)
<他の添加剤>
 本発明の非水電解液は、先に記載した不飽和スルトンのほかに、本発明の目的を損なわない範囲で、他の添加剤を含んでいてもよい。そうすることにより、非水電解液にさらに優れた特性を付与することが可能である。
 他の添加剤として、例えば、フッ素化エチレンカーボネート、または、一般式(3)で表されるビニレンカーボネート若しくはビニレンカーボネート誘導体が挙げられる。
Figure JPOXMLDOC01-appb-C000017

 
 前記一般式(3)中、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基、またはプロピル基を示す。
 フッ素化エチレンカーボネート、または、一般式(3)で表されるビニレンカーボネート若しくはビニレンカーボネート誘導体は、負極の表面皮膜の形成の点で好ましい。
 前記一般式(3)で表されるビニレンカーボネート又はビニレンカーボネート誘導体としては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、ブロピルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネートなどが例示される。これらのうちでビニレンカーボネートが最も好ましい。
 また、前記フッ素化エチレンカーボネートとしては公知のものを使用でき、たとえば、4-フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4,4,5-トリフルオロエチレンカーボネート、4,4,5,5-テトラフルオロエチレンカーボネートなどの、エチレンカーボネートにおいて1~4個の水素がフッ素により置換されたフッ素化エチレンカーボネートが挙げられる。これらの中でも、4,5-ジフルオロエチレンカーボネート、4-フルオロエチレンカーボネートが最も望ましい。
 フッ素化エチレンカーボネート、または、一般式(3)で表されるビニレンカーボネート若しくはビニレンカーボネート誘導体の含有量は、目的に応じて適宜選択できるが、非水電解液全量に対して、0.001質量%~10質量%が好ましく、0.5質量%~3質量%であることが更に好ましい。
 本発明の非水電解液における他の添加剤として、一般式(4)で表されるリン酸シリルエステル誘導体を挙げることができる。
Figure JPOXMLDOC01-appb-C000018

 
 一般式(4)中、R~Rは、それぞれ独立に、炭素数1~6のアルキル基を示す。
 一般式(4)で表されるリン酸シリルエステル誘導体は、電池中の水分、または、酸分のトラップ効果の点で好ましい。一般式(4)で表されるリン酸シリルエステル誘導体としては、リン酸トリス(トリメチルシリル)、リン酸トリス(トリエチルシリル)、リン酸トリス(トリイソプロピルシリル)、リン酸トリス(t-ブチルジメチルシリル)などが例示される。これらのうちで、以下の式(5)で表されるリン酸シリルエステル誘導体、即ち、リン酸トリス(トリメチルシリル)が最も好ましい。
Figure JPOXMLDOC01-appb-C000019
 一般式(4)で表されるリン酸シリルエステル誘導体の含有量は、目的に応じて適宜選択できるが、非水電解液全量に対して、0.001質量%~10質量%であることが好ましく、0.1質量%~4.0質量%であることがより好ましく、0.1質量%~3.0質量%が特に好ましい。
 本発明の非水電解液は、フッ素化エチレンカーボネート、または、一般式(3)で表されるビニレンカーボネート若しくはビニレンカーボネート誘導体を、1種又は2種以上含んでいてもよい。
 また、本発明の非水電解液は、一般式(4)で表されるリン酸シリルエステル誘導体を1種又は2種以上含んでいてもよい。
 また、本発明の非水電解液は、フッ素化エチレンカーボネート、または、一般式(3)で表されるビニレンカーボネート若しくはビニレンカーボネート誘導体の1種又は2種以上と、一般式(4)で表されるリン酸シリルエステル誘導体を1種又は2種以上と、を含んでいてもよい。例えば、ビニレンカーボネートとリン酸トリス(トリメチルシリル)の両方を含んでいてもよい。
 本発明の非水電解液が、上記の他の添加剤を含有する場合、不飽和スルトンと他の添加剤との比率は、質量比で1:100~100:1が好ましく、1:20~20:1がさらに好ましく、1:5~20:1が特に好ましい。また、本発明の非水電解液において、不飽和スルトンと上記の他の添加剤との合計量は、非水電解液全体に対して30質量%以下が好ましい。
<非水電解液>
 本発明の非水電解液は、不飽和スルトンを含み、更には、非水溶媒と電解質とを含む。
 本発明の非水電解液は、種々公知の電解質を使用することができ、通常、非水電解液用電解質として使用されているものであれば、いずれをも使用することができる。
 電解質の具体例としては、(CNPF、(CNBF、(CNClO、(CNAsF、(CSiF、(CNOSO(2k+1)〔k=1~8の整数〕、(CNPF[C(2k+1)(6-n)〔n=1~5の整数、k=1~8の整数〕などのテトラアルキルアンモニウム塩、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)〔k=1~8の整数〕、LiPF[C(2k+1)(6-n)〔n=1~5の整数、k=1~8の整数〕などのリチウム塩が挙げられる。
 また、次の一般式で表されるリチウム塩も使用することができる。
 LiC(SO)(SO)(SO)、LiN(SOOR10)(SOOR11)、LiN(SO12)(SO13)。
〔上記R~R13は互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基である。〕
 これらの電解質は単独で使用してもよく、また2種類以上を混合してもよい。
 これらのうち、特にリチウム塩が望ましく、さらには、LiPF、LiBF、LiOSO(2k+1)〔k=1~8の整数〕、LiClO、LiAsF、LiNSO[C(2k+1)〔k=1~8の整数〕、LiPF[C(2k+1)(6-n)〔n=1~5、k=1~8の整数〕が好ましい。
 本発明における電解質は、通常は、非水電解質中に0.1~3モル/リットル、好ましくは0.5~2モル/リットルの濃度で含むことが好ましい。
 本発明の非水電解液において、非水溶媒として、γ-ブチロラクトンなどの環状カルボン酸エステルを用いる場合には、電解質として、特にLiPFを含有することが望ましい。LiPFは、解離度が高いため、電解液の伝導度を高めることができ、さらに負極上での電解液の還元分解反応を抑制する作用がある。
 LiPFは単独で使用してもよいし、LiPFとそれ以外の電解質とを組み合わせて使用してもよい。前記それ以外の電解質としては、通常、非水電解液用電解質として使用されるものであれば、いずれも使用することができるが、前記したリチウム塩の具体例のうちLiPF以外のリチウム塩が好ましい。
 LiPFとそれ以外の電解質とを組み合わせの具体例としては、LiPFとLiBFとの組み合わせ、LiPFとLiN[SO(2k+1)(k=1~8の整数)との組み合わせ、LiPFとLiBFとLiN[SO(2k+1)](k=1~8の整数)との組み合わせ、などが例示される。
 リチウム塩中に占めるLiPFの比率は、100~1質量%、好ましくは100~10質量%、さらに好ましくは100~50質量%が望ましい。このような電解質は、0.1~3モル/リットル、好ましくは0.5~2モル/リットルの濃度で非水電解液中に含まれることが好ましい。
 本発明の非水電解液は、リチウム二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。
<リチウム二次電池>
 本発明のリチウム二次電池は、負極と、正極と、前記の非水電解液と、を含んで構成される。さらに、必要に応じ、負極と正極との間にセパレータが設けられて構成される。
 前記負極を構成する負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属、リチウムとの合金化が可能な合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を用いることができる。
 前記リチウムイオンとの合金化が可能な金属又は前記リチウムとの合金化が可能な合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。
 負極活物質としては、上記の中でも、リチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。
 このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(例えば、人造黒鉛、天然黒鉛、等)、非晶質炭素材料、等が挙げられる。
 また、前記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状のいずれの形態であってもよい。
 前記非晶質炭素材料として、具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソペーズビッチカーボンファイバー(MCF)などが例示される。
 前記黒鉛材料としては、天然黒鉛、人造黒鉛などが例示される。
 前記人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。
 また、前記黒鉛材料としては、ホウ素を含有する黒鉛材料なども用いることができる。
 また、金、白金、銀、銅、スズなどの金属で被覆した黒鉛材料や、非晶質炭素で被覆した黒鉛材料、を用いることもできる。
 また、非晶質炭素材料と黒鉛材料とを混合した物も使用することができる。
 前記炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
 また、前記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。
 さらには、前記炭素材料としては、真密度が1.70g/cm以上である黒鉛材料またはそれに近い性質を有する高結晶性炭素材料が好ましい。このような炭素材料を使用すると、電池のエネルギー密度を高くすることができる。
 本発明における正極を構成する正極活物質としては、電気化学的にリチウムイオンをドープ・脱ドープ可能な遷移金属を含有する物質であり、当該遷移金属の少なくとも一部としてマンガンを含有する物質が用いられる。マンガンは安価で入手が容易であり、正極活物質として好ましい。
 具体的には、本発明における正極活物質としては、含有される遷移金属のうち35モル%以上がマンガンである複合酸化物を用いる。即ち、本発明における正極活物質としては、遷移金属を含有する複合酸化物であって、前記遷移金属中におけるマンガンの含有率が35モル%以上である複合酸化物を用いる。
 前記遷移金属中におけるマンガンの含有率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、最も好ましくは100モル%である。
 さらに、前記複合酸化物はリチウムを含有することが好ましい。即ち、前記複合酸化物は、マンガンを35モル%以上含む遷移金属と、リチウムと、を含有する複合酸化物であることが好ましい。
 上記のマンガンを含有する正極活物質に特に制限はないが、例えば、下記の組成式(6)で表される複合酸化物を含むことが好ましい。
 LiMn(1-y)   … (6)
 前記組成式(6)中、xは0<x≦1.2を満たす数を示し、yは0≦y≦0.8を満たす数を示し、Mは、Ni、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn、及びNbからなる群より選ばれる少なくとも1種の元素を示す。
 組成式(6)において、Mは、Ni、Co、又はFeであることが好ましい。
 また、xは、0.2≦x≦1.15であることが好ましい。
 また、yは、0≦y≦0.65であることが好ましい。
 また、下記の組成式(7)で表される複合酸化物を含むことも好ましい。
 LiMn(2-y)   … (7)
 組成式(7)中、xは0<x≦1.2を満たす数、yは0≦y≦0.8を満たす数、MはNi、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn、及びNbからなる群より選ばれる少なくとも1種の元素を示す。
 組成式(7)において、Mは、Ni、Co、Al、又はMgであることが好ましい。
 また、xは0.05≦x≦1.15であることが好ましい。
 また、yは0≦y≦0.7であることが好ましく、さらには、0≦y≦0.4であることが好ましく、0≦y≦0.2であることが特に好ましい。
 組成式(7)で表される組成を有するものの具体例としては、例えば、LiMn1.8Al0.2、LiMn1.5Ni0.5、LiMn2.0等を挙げる事ができる。
 上記の正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。
 正極活物質は、導電性が不十分である場合には、導電性助剤とともに正極を構成することができる。
 前記導電助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
 本発明における正極は、マンガンを多く含む。
 正極は、層状構造ではなく、スピネル構造となるが、スピネル構造の正極は電池の充放電の際に正極中のマンガンが溶出し、マンガン化合物が負極上に堆積し、抵抗増大の劣化を引き起こすことが知られている。
 本発明における不飽和スルトンは、正極側での皮膜を形成してマンガンの溶出を抑制し、更に、負極上の皮膜でマンガン化合物の堆積を抑制しているものと考えられる。
 したがって、上記正極活物質を用いた正極を使用したリチウム二次電池は、高温保存後の残存放電容量が大きく、容量維持率が大きいので、長寿命化が実現できる。
 本発明におけるセパレータは、正極と負極とを電気的に絶縁し、且つ、リチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
 前記多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。特に、多孔性ポリオレフィンが好ましく、具体的には、多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、または多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
 前記高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
 本発明の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
 本発明のリチウム二次電池は、前記の負極活物質、正極活物質、及びセパレータを含む。本発明のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
 本発明のリチウム二次電池の例として、図1に示すコイン型電池が挙げられる。
 図1に示すコイン型電池では、円盤状負極2、非水電解液を注入したセパレータ5、円盤状正極1、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板7,8が、この順序に積層された状態で、正極缶3(以下、「電池缶」ともいう)と封口板4(以下、「電池缶蓋」ともいう)との間に収納される。正極缶3と封口板4とはガスケット6を介してかしめ密封する。
 本発明の非水電解液及び本発明のリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、本発明の非水電解液及び本発明のリチウム二次電池は、ノートパソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等に広く利用可能なものである。
 以下に実施例によって本発明をより具体的に説明するが、本発明はこれら実施例によって制限されるものではない。また、各化合物は、以下のように示す。
 EC:エチレンカーボネート
 DEC:ジエチルカーボネート
 PRS:1,3-プロパ-1-エンスルトン
 VC:ビニレンカーボネート
 TMSP:リン酸トリス(トリメチルシリル)
<電池の初期特性評価>
 試験用電池を、1mA定電流かつ4.2V定電圧で充電し、1mA定電流で2.85Vまで放電するサイクルを、10サイクル行った。
 その際、1サイクル目の充電容量[mAh]及び放電容量[mAh](後述の表1中では、「初回放電容量[mAh]」と表記する)から、初回の充放電効率[%](後述の表1中では、「初回効率[%]」と表記する)を下記式にて計算した。
 初回の充放電効率[%]
= (1サイクル目の放電容量[mAh]/1サイクル目の充電容量[mAh])×100[%]
<電池の高温保存試験>
 10サイクル後の試験用電池を、25℃の恒温槽中で、1mA定電流かつ4.2V定電圧で充電した後、1mA定電流で2.85Vまで放電し、高温保存試験前の放電容量[mAh]を測定した。その後、1mA定電流かつ4.2V定電圧充電を行った後、恒温槽の温度を80℃に設定し、2日間で電池の保存試験を行った(高温保存試験)。その際、電池の充放電は行わず、電圧のみ測定を行い、高温保存試験中の各電池の電圧降下をOCV[mV]の低下として、測定した。
 80℃2日間の高温保存試験後、恒温槽の温度を25℃に戻した後、1mA定電流で2.85Vまで放電し、高温保存試験後の放電容量[mAh](即ち、高温保存試験後に電池に残っている残存放電容量[mAh])を測定した。そして、下記式にて、高温保存試験前後の容量維持率[%]を算出した。
 なお、後述の表1中では、高温保存試験後の放電容量[mAh]を「高温保存後の放電容量[mAh]」と表記し、高温保存試験前後の容量維持率[%]を、「高温保存容量維持率[%]」と表記する。
 高温保存試験前後の容量維持率[%]
=(高温保存試験後の放電容量[mAh]/高温保存試験前の放電容量[mAh])×100[%]
(実施例1)
<負極の作製>
 人造黒鉛20質量部、天然黒鉛系黒鉛80質量部、カルボキシメチルセルロース1質量部、及びSBRラテックス2質量部を、水溶媒で混錬してペースト状の負極合剤スラリーを調製した。
 次に、この負極合剤スラリーを、厚さ18μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層とからなるシート状の負極を得た。
 このときの負極活物質層の塗布密度は10mg/cmであり、充填密度は1.5g/mlであった。
<正極の作製>
 LiMnを90質量部と、アセチレンブラック5質量部と、ポリフッ化ビニリデン5質量部と、をN-メチルピロリジノンを溶媒として混錬し、ペースト状の正極合剤スラリーを調製した。
 次に、この正極合剤スラリーを、厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮し、正極集電体と正極活物質とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は30mg/cmであり、充填密度は2.5g/mlであった。
<非水電解液の調製>
 非水溶媒としてECとDECとを、5:5(質量比)の割合で混合した。
 得られた混合液中に、電解質であるLiPFを、最終的に調製される非水電解液全量中における電解質濃度が1モル/リットルとなるように溶解させた。
 得られた溶液に対し、添加剤としてPRSを、非水電解液全量中における含有量が0.5質量%となるように添加し、非水電解液を得た。
<コイン型電池の作製>
 上述の負極を直径14mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜いて、コイン状の電極(負極及び正極)を得た。また、厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜き、セパレータを得た。
 得られたコイン状の負極、セパレータ、及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、上記で得られた非水電解液20μlを注入してセパレータと正極と負極とに含漬させた。更に、正極上に、アルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封し、直径20mm、高さ3.2mmのコイン型電池を作製した。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
(実施例2)
 実施例1中、非水電解液の調製において、「添加剤としてPRSを、非水電解液全量中における含有量が0.5質量%となるように添加」したことに代えて、添加剤としてPRS及びVCを、非水電解液全量中における含有量が、それぞれ0.5質量%となるように添加した以外は実施例1と同様にして非水電解液を調製し、コイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
(実施例3)
 実施例1中、非水電解液の調製において、「添加剤としてPRSを、非水電解液全量中における含有量が0.5質量%となるように添加」したことに代えて、添加剤として、PRS、VC、及びTMSPを、非水電解液全量に対し、それぞれ0.5質量%ずつ含有するように添加した以外は、実施例1と同様にして非水電解液を調製し、コイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
(実施例4)
 実施例1中、非水電解液の調製において、「添加剤としてPRSを、非水電解液全量に対して0.5質量%含有するように添加」したことに代えて、添加剤として、PRS、VC、及びTMSPを、非水電解液全量中における含有量がそれぞれ、PRS0.1質量%、VC0.5質量%、TMSP0.5質量%、となるように添加した以外は、実施例1と同様にして非水電解液を調製し、コイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
(実施例5)
 実施例1中、非水電解液の調製において、「添加剤としてPRSを、非水電解液全量に対して0.5質量%含有するように添加」したことに代えて、添加剤として、PRS、VC、及びTMSPを、非水電解液全量中における含有量がそれぞれ、PRS0.2質量%、VC0.5質量%、TMSP0.5質量%、となるように添加した以外は、実施例1と同様にして非水電解液を調製し、コイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
(実施例6)
 実施例1中、非水電解液の調製において、「添加剤としてPRSを非水電解液全量に対して0.5質量%含有するように添加」したことに代えて、添加剤として、PRS、VC、及びTMSPを、非水電解液全量中における含有量がそれぞれ、PRS1.0質量%、VC0.5質量%、TMSP0.5質量%、となるように添加した以外は、実施例1と同様にして非水電解液を調製し、コイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
(実施例7)
 実施例1中、非水電解液の調製において、「添加剤としてPRSを非水電解液全量に対して0.5質量%含有するように添加」したことに代えて、添加剤として、PRS、VC、及びTMSPを、非水電解液全量中における含有量がそれぞれ、PRS1.5質量%、VC0.5質量%、TMSP0.5質量%、となるように添加した以外は、実施例1と同様にして非水電解液を調製し、コイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
(実施例8)
 実施例1中、非水電解液の調製において、「添加剤としてPRSを非水電解液全量に対して0.5質量%含有するように添加」したことに代えて、添加剤として、PRS、VC、及びTMSPを、非水電解液全量中における含有量がそれぞれ、PRS2.0質量%、VC0.5質量%、TMSP0.5質量%となるように添加した以外は、実施例1と同様にして非水電解液を調製し、コイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
(実施例9)
 実施例1中、非水電解液の調製において、「添加剤としてPRSを非水電解液全量に対して0.5質量%含有するように添加」したことに代えて、添加剤として、PRS、VC、及びTMSPを、非水電解液全量中における含有量がそれぞれ、PRS0.5質量%、VC0.5質量%、TMSP0.1質量%、となるように添加した以外は、実施例1と同様にして非水電解液を調製し、コイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
(実施例10)
 実施例1中、非水電解液の調製において、「添加剤としてPRSを非水電解液全量に対して0.5質量%含有するように添加」したことに代えて、添加剤として、PRS、VC、及びTMSPを、非水電解液全量中における含有量がそれぞれ、PRS0.5質量%、VC0.5質量%、TMSP0.2質量%、となるように添加した以外は、実施例1と同様にして非水電解液を調製し、コイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
(実施例11)
 実施例1中、非水電解液の調製において、「添加剤としてPRSを非水電解液全量に対して0.5質量%含有するように添加」したことに代えて、添加剤として、PRS、VC、及びTMSPを、非水電解液全量中における含有量がそれぞれ、PRS0.5質量%、VC0.5質量%、TMSP1.5質量%、となるように添加した以外は、実施例1と同様にして非水電解液を調製し、コイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
(実施例12)
 実施例1中、非水電解液の調製において、「添加剤としてPRSを非水電解液全量に対して0.5質量%含有するように添加」したことに代えて、添加剤として、PRS、VC、及びTMSPを、非水電解液全量中における含有量がそれぞれ、PRS0.5質量%、VC0.5質量%、TMSP2.5質量%、となるように添加した以外は、実施例1と同様にして非水電解液を調製し、コイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
(比較例1)
 実施例1中、非水電解液の調製において、添加剤を無添加にしたこと以外は、実施例1と同様にして非水電解液を調製し、コイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び、高温保存試験を実施した。
 実施例1~12及び比較例1の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000020
 
 表1に示すように、リチウム二次電池は、添加剤を無添加とした比較例1と比べ、PRSの添加により、高温保存特性が改善した(実施例1)。また、PRSとVCとを併用することにより、高温保存特性がより改善することが確認された(実施例2)。さらには、PRS、VC、及びTMSPを併用することで、さらなる高温保存特性の改善が確認された(実施例3~12)。
 日本出願2008-202863の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (14)

  1.  含有される遷移金属のうち35モル%以上がマンガンである複合酸化物を正極活物質として用いるリチウム二次電池用の非水電解液であって、不飽和スルトンを含有する非水電解液。
  2.  前記不飽和スルトンが、下記一般式(1)で表される不飽和スルトンである請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000001

     
    〔一般式(1)中、R、R、R及びRは、それぞれ独立に、水素原子、フッ素原子、または、フッ素原子によって置換されていてもよい炭素数1~12の炭化水素基であり、nは0~3の整数を示す。〕
  3.  更に、フッ素化エチレンカーボネート、または、下記一般式(3)で表されるビニレンカーボネート若しくはビニレンカーボネート誘導体を含有する請求項2に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000002

     
    〔一般式(3)中、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基、またはプロピル基を示す。〕
  4.  更に、下記一般式(4)で表されるリン酸シリルエステル誘導体を含有する請求項2に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000003

     
    〔一般式(4)中、R、R、及びRは、それぞれ独立に、炭素数1~6のアルキル基を示す。〕
  5.  更に、下記一般式(4)で表されるリン酸シリルエステル誘導体を含有する請求項3に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000004

     
    〔一般式(4)中、R、R、及びRは、それぞれ独立に、炭素数1~6のアルキル基を示す。〕
  6.  含有される遷移金属のうち35モル%以上がマンガンである複合酸化物を正極活物質として用い、かつ、不飽和スルトンを含有する非水電解液を用いるリチウム二次電池。
  7.  前記不飽和スルトンが、下記一般式(1)で表される不飽和スルトンである請求項6に記載のリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000005

     
    〔一般式(1)中、R、R、R及びRは、それぞれ独立に、水素原子、フッ素原子、または、フッ素原子によって置換されていてもよい炭素数1~12の炭化水素基であり、nは0~3の整数を示す。〕
  8.  前記非水電解液が、更に、フッ素化エチレンカーボネート、または、下記一般式(3)で表されるビニレンカーボネート若しくはビニレンカーボネート誘導体を含有する請求項7に記載のリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000006

     
    〔一般式(3)中、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基、またはプロピル基を示す。〕
  9.  前記非水電解液が、更に、下記一般式(4)で表されるリン酸シリルエステル誘導体を含有する請求項7に記載のリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000007

    〔一般式(4)中、R、R、及びRは、それぞれ独立に、炭素数1~6のアルキル基を示す。〕
  10.  前記非水電解液が、更に、下記一般式(4)で表されるリン酸シリルエステル誘導体を含有する請求項8に記載のリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000008

     
    〔一般式(4)中、R、R、及びRは、それぞれ独立に、炭素数1~6のアルキル基を示す。〕
  11.  負極活物質として、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属、リチウムとの合金化が可能な合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料、からなる群から選ばれる少なくとも1種を用いる請求項7に記載のリチウム二次電池。
  12.  負極活物質として、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属、リチウムとの合金化が可能な合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料、からなる群から選ばれる少なくとも1種を用いる請求項8に記載のリチウム二次電池。
  13.  負極活物質として、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属、リチウムとの合金化が可能な合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料、からなる群から選ばれる少なくとも1種を用いる請求項9に記載のリチウム二次電池。
  14.  負極活物質として、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属、リチウムとの合金化が可能な合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料、からなる群から選ばれる少なくとも1種を用いる請求項10に記載のリチウム二次電池。
PCT/JP2009/063873 2008-08-06 2009-08-05 非水電解液及びリチウム二次電池 WO2010016520A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/057,306 US9130243B2 (en) 2008-08-06 2009-08-05 Non-aqueous electrolytic solution and lithium secondary battery
EP09805003.2A EP2320501B1 (en) 2008-08-06 2009-08-05 Nonaqueous electrolyte solution and lithium secondary battery
KR1020117003040A KR101309931B1 (ko) 2008-08-06 2009-08-05 비수전해액 및 리튬 이차전지
JP2010523877A JP5274562B2 (ja) 2008-08-06 2009-08-05 リチウム二次電池用非水電解液及びリチウム二次電池
CN200980130892.4A CN102113163B (zh) 2008-08-06 2009-08-05 非水电解液以及锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-202863 2008-08-06
JP2008202863 2008-08-06

Publications (1)

Publication Number Publication Date
WO2010016520A1 true WO2010016520A1 (ja) 2010-02-11

Family

ID=41663738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063873 WO2010016520A1 (ja) 2008-08-06 2009-08-05 非水電解液及びリチウム二次電池

Country Status (6)

Country Link
US (1) US9130243B2 (ja)
EP (1) EP2320501B1 (ja)
JP (1) JP5274562B2 (ja)
KR (1) KR101309931B1 (ja)
CN (1) CN102113163B (ja)
WO (1) WO2010016520A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044883A (ja) * 2008-08-08 2010-02-25 Mitsui Chemicals Inc 非水電解液及びリチウム二次電池
WO2015098471A1 (ja) * 2013-12-25 2015-07-02 旭化成株式会社 シリル基含有化合物を含む電解液添加用組成物、該組成物を含む非水蓄電デバイス用電解液、及び該電解液を含むリチウムイオン二次電池
JP2018106815A (ja) * 2016-12-22 2018-07-05 マクセルホールディングス株式会社 非水電解液電池の製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5192237B2 (ja) * 2005-10-12 2013-05-08 三井化学株式会社 リチウム二次電池用非水電解液、それを用いたリチウム二次電池
JP2013508927A (ja) * 2009-10-27 2013-03-07 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング リチウム硫黄バッテリ
JP5468505B2 (ja) 2010-09-22 2014-04-09 株式会社東芝 電極材料、その製造方法、非水電解質電池及び電池パック
FR2976735B1 (fr) * 2011-06-14 2014-06-20 Commissariat Energie Atomique Electrolyte liquide pour accumulateur au lithium, comprenant un melange ternaire de solvants organiques non aqueux.
WO2013166074A1 (en) * 2012-05-01 2013-11-07 Altairnano, Inc. Improved lithium titanate cell
BR112014030119A2 (pt) * 2012-06-05 2017-06-27 Nec Corp bateria secundária de lítio
CN103682436A (zh) * 2012-09-26 2014-03-26 江苏海四达电源股份有限公司 一种高抗老化含锰锂离子电池用电解液及其用途
US9570748B2 (en) 2012-10-12 2017-02-14 Ut-Battelle, Llc Lipon coatings for high voltage and high temperature Li-ion battery cathodes
JP6153124B2 (ja) * 2012-12-13 2017-06-28 日東電工株式会社 非水電解液二次電池およびその製造方法
CN105659425B (zh) 2013-10-28 2018-05-25 株式会社Lg化学 锂二次电池
KR102341408B1 (ko) * 2014-08-25 2021-12-20 삼성에스디아이 주식회사 리튬 전지용 전해질, 및 이를 포함하는 리튬 전지
JP6470070B2 (ja) 2014-08-25 2019-02-13 株式会社東芝 正極及び非水電解質電池
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102580002B1 (ko) * 2016-01-13 2023-09-19 에스케이온 주식회사 리튬 이차 전지
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN109428117A (zh) * 2017-08-23 2019-03-05 宁德时代新能源科技股份有限公司 锂离子电池及其电解液
WO2019208246A1 (ja) * 2018-04-27 2019-10-31 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
CN112421109B (zh) * 2020-11-19 2022-04-26 中节能万润股份有限公司 一种环状磺酸酯类锂离子电池电解液添加剂、其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339850A (ja) 1998-05-29 1999-12-10 Nec Mori Energy Kk リチウムイオン二次電池
JP3163078B2 (ja) 1998-08-31 2001-05-08 エヌイーシーモバイルエナジー株式会社 非水電解液電池
JP2002329528A (ja) * 2001-03-01 2002-11-15 Mitsui Chemicals Inc 非水電解液、それを用いた二次電池、および電解液用添加剤
JP2004071159A (ja) 2002-08-01 2004-03-04 Central Glass Co Ltd 非水電解質二次電池
JP2007165296A (ja) 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp リチウム二次電池
JP2007173113A (ja) * 2005-12-22 2007-07-05 Gs Yuasa Corporation:Kk 非水電解質二次電池
JP2007207723A (ja) * 2006-02-06 2007-08-16 Gs Yuasa Corporation:Kk 非水電解質二次電池
WO2008032657A1 (fr) * 2006-09-12 2008-03-20 Gs Yuasa Corporation Procédé pour fabriquer une batterie secondaire à électrolyte non aqueuse
JP2008202863A (ja) 2007-02-20 2008-09-04 Shibata Yosetsu Kosakusho:Kk 製氷装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240232A (ja) 1994-01-07 1995-09-12 Sony Corp 非水電解液二次電池
JP2001313075A (ja) * 2000-04-27 2001-11-09 Sony Corp ゲル状電解質及びゲル状電解質電池
US7527899B2 (en) * 2000-06-16 2009-05-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Electrolytic orthoborate salts for lithium batteries
JP4151060B2 (ja) 2001-11-14 2008-09-17 株式会社ジーエス・ユアサコーポレーション 非水系二次電池
JP4187959B2 (ja) 2001-10-24 2008-11-26 三井化学株式会社 非水電解液およびそれを用いた二次電池
JP3797197B2 (ja) * 2001-11-01 2006-07-12 株式会社ジーエス・ユアサコーポレーション 非水電解質二次電池
JP2003157900A (ja) 2001-11-19 2003-05-30 Sony Corp 電 池
JP2004047131A (ja) 2002-07-08 2004-02-12 Sony Corp 非水電解質電池
JP2004063145A (ja) 2002-07-25 2004-02-26 Toshiba Corp 非水電解質二次電池
JP2004087168A (ja) 2002-08-23 2004-03-18 Mitsui Chemicals Inc 非水電解液およびそれを含むリチウム二次電池
JP4608197B2 (ja) 2002-10-28 2011-01-05 三井化学株式会社 非水電解液およびそれを用いた二次電池
JP4450550B2 (ja) 2002-11-21 2010-04-14 三井化学株式会社 非水電解液およびそれを用いた二次電池
KR100515298B1 (ko) 2003-03-24 2005-09-15 삼성에스디아이 주식회사 비수성 전해질 및 이를 포함하는 리튬 이차 전지
JP4607488B2 (ja) 2003-04-25 2011-01-05 三井化学株式会社 リチウム電池用非水電解液およびその製造方法ならびにリチウムイオン二次電池
CN100459273C (zh) * 2003-07-15 2009-02-04 三星Sdi株式会社 用于锂二次电池的电解液和包括该电解液的锂二次电池
JP4647948B2 (ja) 2003-07-16 2011-03-09 三井化学株式会社 電気化学素子およびその製造方法
JP4690643B2 (ja) 2003-09-25 2011-06-01 株式会社東芝 非水電解質二次電池
JP4843936B2 (ja) * 2004-01-20 2011-12-21 ソニー株式会社 二次電池およびその充放電方法
JP4527605B2 (ja) * 2004-06-21 2010-08-18 三星エスディアイ株式会社 リチウムイオン二次電池用電解液及びこれを含むリチウムイオン二次電池
JP5055710B2 (ja) 2005-04-13 2012-10-24 ソニー株式会社 二次電池用電解液、二次電池および電子機器
JP5192237B2 (ja) * 2005-10-12 2013-05-08 三井化学株式会社 リチウム二次電池用非水電解液、それを用いたリチウム二次電池
JP4321584B2 (ja) * 2006-12-18 2009-08-26 ソニー株式会社 二次電池用負極および二次電池
US9728809B2 (en) * 2007-01-04 2017-08-08 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2008235146A (ja) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd 非水電解質二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339850A (ja) 1998-05-29 1999-12-10 Nec Mori Energy Kk リチウムイオン二次電池
JP3163078B2 (ja) 1998-08-31 2001-05-08 エヌイーシーモバイルエナジー株式会社 非水電解液電池
JP2002329528A (ja) * 2001-03-01 2002-11-15 Mitsui Chemicals Inc 非水電解液、それを用いた二次電池、および電解液用添加剤
JP2004071159A (ja) 2002-08-01 2004-03-04 Central Glass Co Ltd 非水電解質二次電池
JP2007165296A (ja) 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp リチウム二次電池
JP2007173113A (ja) * 2005-12-22 2007-07-05 Gs Yuasa Corporation:Kk 非水電解質二次電池
JP2007207723A (ja) * 2006-02-06 2007-08-16 Gs Yuasa Corporation:Kk 非水電解質二次電池
WO2008032657A1 (fr) * 2006-09-12 2008-03-20 Gs Yuasa Corporation Procédé pour fabriquer une batterie secondaire à électrolyte non aqueuse
JP2008202863A (ja) 2007-02-20 2008-09-04 Shibata Yosetsu Kosakusho:Kk 製氷装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM./70. JAHRG., no. 16, 1958
CAN. J. CHEM., vol. 48, 1970, pages 3704
CHEM. COMMUN., vol. 611, 1997
GER. PAT., 1963, pages 1146870
See also references of EP2320501A4 *
SYNLETT, vol. 1411, 1988
TETRAHEDRON, vol. 55, 1999, pages 2245

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044883A (ja) * 2008-08-08 2010-02-25 Mitsui Chemicals Inc 非水電解液及びリチウム二次電池
WO2015098471A1 (ja) * 2013-12-25 2015-07-02 旭化成株式会社 シリル基含有化合物を含む電解液添加用組成物、該組成物を含む非水蓄電デバイス用電解液、及び該電解液を含むリチウムイオン二次電池
JP2018106815A (ja) * 2016-12-22 2018-07-05 マクセルホールディングス株式会社 非水電解液電池の製造方法

Also Published As

Publication number Publication date
KR20110038131A (ko) 2011-04-13
JPWO2010016520A1 (ja) 2012-01-26
CN102113163B (zh) 2015-01-21
US20110136006A1 (en) 2011-06-09
EP2320501A1 (en) 2011-05-11
EP2320501B1 (en) 2015-09-30
KR101309931B1 (ko) 2013-09-17
CN102113163A (zh) 2011-06-29
EP2320501A4 (en) 2013-03-27
US9130243B2 (en) 2015-09-08
JP5274562B2 (ja) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5274562B2 (ja) リチウム二次電池用非水電解液及びリチウム二次電池
JP4450550B2 (ja) 非水電解液およびそれを用いた二次電池
JP4190162B2 (ja) 非水電解液、それを用いた二次電池、および電解液用添加剤
CN103443991B (zh) 二次电池和电解液
US9209479B2 (en) Nonaqueous electrolyte solution and lithium secondary battery using same
US9935337B2 (en) Lithium secondary battery
US20200127333A1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
CN101587971A (zh) 锂离子二次电池用电解液及包括该电解液的锂离子二次电池
US20210043971A1 (en) Nonaqueous electrolytic solution for battery and lithium secondary battery
WO2015020074A1 (ja) 非水電解液及び該電解液を有する電気化学デバイス
JP4968614B2 (ja) 二次電池用電解液およびそれを用いた二次電池
JP2010061851A (ja) ジイソチオシアナート誘導体を含有する非水電解液、及びその二次電池
JP2019175577A (ja) 電池用非水電解液及びリチウム二次電池
JP2019175578A (ja) 電池用非水電解液及びリチウム二次電池
EP3828981A1 (en) Nonaqueous electrolyte solution for batteries and lithium secondary battery
JP6957179B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7098276B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2004079335A (ja) 二次電池用電解液およびそれを用いた二次電池
JPWO2015037381A1 (ja) 新規化合物、電解液及び二次電池
JP2004087282A (ja) 非水電解液およびそれを用いた二次電池
US20220158247A1 (en) Nonaqueous electrolytic solution for battery and lithium secondary battery
JP7395816B2 (ja) 電池用非水電解液及びリチウム二次電池
EP3605699A1 (en) New components for electrolyte compositions
EP3605698A1 (en) New components for electrolyte compositions
JP2019179614A (ja) 電池用非水電解液及びリチウム二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130892.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523877

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13057306

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117003040

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009805003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1233/DELNP/2011

Country of ref document: IN