WO2010008054A1 - 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法 - Google Patents

染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法 Download PDF

Info

Publication number
WO2010008054A1
WO2010008054A1 PCT/JP2009/062911 JP2009062911W WO2010008054A1 WO 2010008054 A1 WO2010008054 A1 WO 2010008054A1 JP 2009062911 W JP2009062911 W JP 2009062911W WO 2010008054 A1 WO2010008054 A1 WO 2010008054A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
vector
cells
cell
virus
Prior art date
Application number
PCT/JP2009/062911
Other languages
English (en)
French (fr)
Inventor
ノエミ 房木
浩志 伴
長谷川 護
米満 吉和
Original Assignee
ディナベック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディナベック株式会社 filed Critical ディナベック株式会社
Priority to EP09797978.5A priority Critical patent/EP2322611B1/en
Priority to EP16161002.7A priority patent/EP3075850B1/en
Priority to CA2731007A priority patent/CA2731007A1/en
Priority to JP2010520896A priority patent/JP5763340B6/ja
Priority to DK09797978.5T priority patent/DK2322611T3/en
Priority to KR1020117003451A priority patent/KR20110046472A/ko
Priority to CN200980136168.2A priority patent/CN102159710B/zh
Priority to US13/054,022 priority patent/US9127256B2/en
Publication of WO2010008054A1 publication Critical patent/WO2010008054A1/ja
Priority to US14/812,108 priority patent/US9695445B2/en
Priority to US15/063,929 priority patent/US11136594B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18611Respirovirus, e.g. Bovine, human parainfluenza 1,3
    • C12N2760/18622New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18611Respirovirus, e.g. Bovine, human parainfluenza 1,3
    • C12N2760/18641Use of virus, viral particle or viral elements as a vector
    • C12N2760/18643Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18611Respirovirus, e.g. Bovine, human parainfluenza 1,3
    • C12N2760/18641Use of virus, viral particle or viral elements as a vector
    • C12N2760/18645Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18611Respirovirus, e.g. Bovine, human parainfluenza 1,3
    • C12N2760/18661Methods of inactivation or attenuation
    • C12N2760/18662Methods of inactivation or attenuation by genetic engineering
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18822New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18841Use of virus, viral particle or viral elements as a vector
    • C12N2760/18843Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to a method for producing a reprogrammed cell, a cell produced by the method, a composition used in the method, and the like.
  • the present invention relates to a method for producing pluripotent stem cells from differentiated somatic cells and pluripotent stem cells prepared by the method.
  • Embryonic stem cells are stem cells established from the inner cell mass of mammalian blastocysts and can be expanded indefinitely while maintaining the ability to differentiate into all cells (differentiation pluripotency). . Because of this characteristic, stem cell therapy is expected in which cardiomyocytes and nerve cells derived and prepared in large quantities from ES cells are transplanted and treated in patients with myocardial infarction or Parkinson's disease. It is also expected to be used as a development tool in basic research on pathology and pharmacology and drug discovery. However, this ES cell has an ethical problem of using and sacrificing human fertilized eggs. There is also the problem of immune rejection where the limited histocompatibility antigens of fertilized eggs do not match the patient.
  • tissue stem cells such as neural stem cells, hematopoietic stem cells, and mesenchymal stem cells exist in each tissue of a living body. Since tissue stem cells do not use fertilized eggs, there are few or no ethical problems, and immune rejection can be avoided because the patient's own cells can be used. However, tissue stem cells are difficult to isolate because their properties are not always clear, and the number is very small. Proliferative ability and differentiation ability are also limited so that they cannot be compared with ES cells. If somatic cells such as tissue stem cells and differentiated cells can be converted into cells similar to ES cells having high proliferation ability and differentiation pluripotency (called ES-like cells) by some means, this ES-like cell is It is an ideal stem cell for clinical applications.
  • somatic cells such as tissue stem cells and differentiated cells can be converted into cells similar to ES cells having high proliferation ability and differentiation pluripotency (called ES-like cells) by some means, this ES-like cell is It is an ideal stem cell for clinical applications.
  • mammalian cells especially patient somatic cells (skin, stomach and lung tissues, blood cells, etc.) are collected and cultured, and these cells are used as nuclear reprogramming factors (nuclear early stage). Stimulated with a factor that induces nuclear reprogramming), sometimes called ES-like cells (“artificial pluripotent stem cells”, “induced pluripotent stem cells (iPS cells)” or “embryonic stem cell-like cells”) ).
  • ES-like cells artificial pluripotent stem cells”, “induced pluripotent stem cells (iPS cells)” or “embryonic stem cell-like cells”.
  • ES-like cells artificial pluripotent stem cells”, “induced pluripotent stem cells (iPS cells)” or “embryonic stem cell-like cells”. It is expected that the prepared product is stored as it is or as a cell bank and applied clinically as a stem cell, or used for basic research including pharmacology and pathology (Patent Document 1). It is also possible to conduct a drug eff
  • nuclear reprogramming factors examples include Oct gene, Klf gene, Myc gene, Sox gene, Nanog gene, Lin28 gene, TERT gene, and SV40 LargeT gene (Patent Document 2, Non-Patent Document). References 1-7).
  • Non-Patent Documents 1 to 7 Gamma retroviral vector or lentiviral vector containing Oct3 / 4 gene (hereinafter collectively referred to as “retroviral vector”) (2) Retroviral vector containing Klf4 gene (3) Retroviral vector containing c-Myc gene (4) Retroviral vector containing Sox2 gene
  • the ES-like cells prepared using the retroviral vector have structurally modified chromosomes due to vector integration into the host chromosome.
  • the cause is the use of retroviral vectors.
  • the vector When using a retroviral vector, the vector is randomly integrated into the chromosome of the introduced cell, inactivating the tumor suppressor gene in the chromosome or activating the gene involved in canceration adjacent to the insertion site. (Experimental Medicine Vol.26 No.5 (extra number): pp.35-40, 2008).
  • it when it is incorporated into another gene or a gene that modifies the expression of the gene, it may change into a cell having unexpected properties.
  • non-encrypted regions of chromosomes have recently been assumed to have a certain chromosomal function, it is also necessary to consider undesirable results brought about by the incorporation of retroviral vectors into the non-encrypted regions.
  • retroviral vectors when a vector is inserted into a gene that is involved in the differentiation of pluripotent stem cells, treatment and research using cells obtained by differentiating the stem cells will result in cells not being differentiated. There is also a possibility that it cannot be implemented because it is not possible.
  • the cell reprogramming by the conventional method has a problem of safety in the treatment using the obtained ES-like cell, and also in the pharmacological effect and pathological analysis using the ES-like cell established from the patient, Consideration must be given to the inactivation and activation of genes originally functioning in cells due to the insertion of foreign genes into the cell, and the analysis is extremely difficult.
  • retroviral vectors when retroviral vectors are used, even if they are the same researcher, for each lot, or even if different producers make the same protocol, the established ES-like cells are located at different locations in the chromosome. Since the vector is inserted, there is a problem that the uniformity of induced pluripotent stem cells cannot be guaranteed.
  • the present invention has been made with the intention of fundamentally solving such a situation.
  • An ES-like cell in which a foreign gene is not integrated into a chromosome, that is, a non-chromosomal non-recombinant ES cell can be easily and efficiently obtained.
  • a method of manufacturing is provided.
  • the present invention also provides a gene transfer composition useful for inducing reprogramming in the method.
  • the present invention also provides pluripotent stem cells obtained by the method of the present invention.
  • the present inventors have found that pluripotent stem cells in which a foreign gene is not integrated into a chromosome can be produced by using a non-chromosomal integration vector. That is, the present invention relates to a method for producing pluripotent stem cells using a non-chromosomal integration vector, and ES-like cells prepared by the method of the present invention, and more specifically, the inventions described in the respective claims.
  • An invention composed of any combination of two or more of the inventions recited in the claims that refer to the same claim is also an invention intended in the present specification.
  • the present invention [1] A method for introducing a gene in cell reprogramming, which comprises introducing the gene into a cell using a non-chromosomal viral vector, [2] The method according to [1], wherein the reprogramming is induction of pluripotent stem cells, [3] The method according to [1] or [2], wherein the non-chromosomal viral vector is an RNA viral vector, [4] The method according to [3], wherein the RNA viral vector is a minus-strand RNA viral vector, [5] The method according to [4], wherein the minus-strand RNA viral vector is a paramyxovirus vector, [6] The method according to [5], wherein the paramyxovirus vector is a Sendai virus vector, [7] The method according to any one of [1] to [6], wherein the gene is selected from the group consisting of the following (1) to (8): (1) Oct gene (2) Klf gene (3) Myc gene (4) Sox gene (5) Nanog gene (6) Lin,
  • the present invention also provides [1] A method for producing a reprogrammed cell, comprising the step of bringing a differentiated cell into contact with at least one non-chromosomal viral vector; [2] The method according to [1], wherein the reprogrammed cell is an induced pluripotent stem cell, [3] The method according to [1] or [2], wherein the vector is at least one non-chromosomal viral vector carrying at least one gene encoding a nuclear reprogramming factor, [4] The method according to [3], wherein the gene is selected from the group consisting of the following (1) to (8): (1) Oct gene (2) Klf gene (3) Myc gene (4) Sox gene (5) Nanog gene (6) Lin28 gene (7) SV40 LargeT antigen gene (8) TERT gene [5] At least in the cell The vectors are combined so that three types of Oct gene, Klf gene and Sox gene, or at least four types of Oct gene, Sox gene, Nanog gene and Lin28 gene are expressed endogenously or exogen
  • the present invention also provides [1] A non-chromosomal viral vector carrying a gene selected from the group consisting of the following (1) to (8): (1) Oct gene (2) Klf gene (3) Myc gene (4) Sox gene (5) Nanog gene (6) Lin28 gene (7) SV40 LargeT antigen gene (8) TERT gene [2]
  • Non-chromosomal virus The vector according to [1], wherein the vector is an RNA virus vector, [3] The vector according to [2], wherein the RNA virus vector is a minus-strand RNA virus vector, [4] The vector according to [3], wherein the minus-strand RNA viral vector is a paramyxovirus vector, [5] The vector according to [4], wherein the paramyxovirus vector is a Sendai virus vector.
  • the cells produced by the method according to the present invention are not only useful for testing and research using the cells, but also in the treatment of diseases, because the foreign gene is not integrated into the chromosome. It is expected to be able to avoid problems of immune rejection and ethical problems, and to avoid the risk of canceration based on genotoxicity, unexpected side effects due to changes in chromosomal function, and changes in cell properties. Furthermore, according to the method of the present invention, pluripotent stem cells can be induced from a desired cell type including adult skin cells with a significantly higher efficiency (for example, about 10 times) than conventional methods using retroviruses. Is possible.
  • retroviruses are generally highly directional.
  • the method of the present invention can be applied to a wide range of animal species (mammals in general). For example, it can also be applied to species having great demand as disease model animals such as monkeys and pigs.
  • the control is a negative control without template DNA. It is the result of having detected the telomerase activity of the cell obtained by the method which concerns on this invention. It is the result which showed the pluripotency of the cell obtained by the method which concerns on this invention. The result of the embryoid body formation experiment was shown. It is the result which showed the pluripotency (invitro) of the cell obtained by the method which concerns on this invention.
  • FIG. 5 shows the results of the pluripotency of cells obtained by the method according to the present invention.
  • a various differentiated tissues
  • b costal cartilage and secretory cells (black arrow)
  • c rib tissue
  • d costal secretory tissue (black arrow) and retina-like tissue differentiated from neuroepithelium (white arrow)
  • e salmon transitional epithelial tissue (center)
  • f Bone bone and myeloid tissue (white arrow)
  • g Gastrointestinal tract-like tissue
  • i Acupuncture myocardium-like tissue It is the result which showed the epigenetics of the cell obtained by the method which concerns on this invention.
  • A The activation state of a human ES cell-specific promoter region was analyzed by the bisulfite sequencing method for Oct3 / 4 and Nanog, respectively.
  • the activated demethylated region is indicated by a white circle, and the methylated region is indicated by a black circle.
  • SeV-iPS clones HNL1 and HNLs derived from parental human neonatal foreskin cells BJ and SeV-iPS clone 7H5 derived from human adult skin cell HDF were analyzed. In both SeV-iPS cells, activation of the relevant promoter was observed in both regions.
  • BJ-derived clones: HNLs, HNL1-6, HNLp Decreased expression of the introduced foreign gene in was measured over time by RT-PCR using primers recognizing the sequence of the vector part (P represents the number of passages) ). As passage progressed, the phenomenon of 4 introduction initialization factors decreasing to 3 and 2 was recognized.
  • Alkaline phosphatase (ALP) positive ES-like cell colonies were obtained.
  • B iPS cell induction by 4 factors of Thomson (Oct3 / 4, Sox2, Nanog, Lin28 ⁇ F / TS / SeV). Other than Yamanaka's 4 factors (Oct3 / 4, Sox2, Klf4, c-Myc) (left panel), Thomson's 4 factors (Oct3 / 4, Sox2, Nanog, Lin28 ⁇ F / TS / SeV) (right panel) Cells were induced.
  • the present invention provides a method for inducing reprogramming of differentiated cells using a non-chromosomal viral vector, particularly a method for producing pluripotent stem cells from somatic cells.
  • This method includes, for example, a step of bringing a non-chromosomal viral vector carrying a gene encoding a nuclear reprogramming factor (s) to be introduced into contact with a differentiated cell such as a somatic cell.
  • the present invention relates to a method for introducing a gene in reprogramming of a cell, a method for introducing the gene into a cell in need thereof using a non-chromosomal viral vector, and therefore A non-chromosomal non-integrating viral vector is provided.
  • the pluripotent stem cell refers to a stem cell made from an inner cell mass of an embryo at the blastocyst stage of an animal or a cell having a phenotype similar to that.
  • the pluripotent stem cell induced in the present invention is a cell that expresses alkaline phosphatase, which is an indicator of ES-like cells.
  • the pluripotent stem cell forms a flat colony composed of cells having a higher nucleus ratio than the cytoplasm by culturing. The culture may be performed with a feeder as appropriate.
  • pluripotent stem cells can be passaged for a long time, for example, 15 times or more, preferably 20 times or more every 3 days. It can be confirmed that the growth is not lost even after passage 25 times or more, 30 times or more, 35 times or more, or 40 times or more.
  • the pluripotent stem cells preferably express endogenous Oct3 / 4 or Nanog, more preferably both.
  • the pluripotent stem cell preferably expresses TERT and exhibits telomerase activity (activity for synthesizing telomeric repeat sequences).
  • the pluripotent stem cells preferably have the ability to differentiate into three germ layers (endoderm, mesoderm, ectoderm) (for example in teratoma formation and / or embryoid body formation). More preferably, pluripotent stem cells generate germline chimeras by transplanting into blastocysts. A pluripotent stem cell capable of Germline transmission is called a germline-competent pluripotent stem cell. Confirmation of these phenotypes can be performed by a well-known method (WO2007 / 69666; Ichisaka T et al., Nature 448 (7151): 313-7,) 2007).
  • the term “differentiated” means, for example, that the cells are differentiated more than pluripotent stem cells, the state that still has the ability to differentiate into a plurality of cell lineages (eg, somatic stem cells), and the terminally differentiated cells. Includes state.
  • Differentiated cells are cells derived from pluripotent stem cells (other than pluripotent stem cells). Differentiated cells may have no ability to differentiate into, for example, three germ layers (endoderm, mesoderm, ectoderm). Such cells do not have the ability to form three germ layers unless reprogrammed.
  • the differentiated cell may be a cell that cannot generate cells other than the germ layer type to which it belongs, for example. Differentiated cells may be somatic cells, for example, cells other than germ cells.
  • reprogramming means that a differentiated state of a cell is changed to an undifferentiated state, for example, that a differentiated cell is dedifferentiated, for example, from a cell having no differentiation pluripotency. Inducing cells possessed, such as pluripotent stem cells.
  • dedifferentiation refers to making a certain cell immature (for example, undifferentiated). Dedifferentiation may mean returning a cell to its initial or developing state. In addition, dedifferentiation may mean that a cell that cannot generate cells other than the germ layer type to which it belongs can be differentiated into cells of other germ layers. Dedifferentiation includes, for example, that cells that do not have the ability to differentiate from three germ layers acquire the ability to differentiate from three germ layers. Dedifferentiation also includes the generation of pluripotent stem cells.
  • somatic cells are cells other than pluripotent stem cells, for example.
  • Somatic cells include, for example, cells other than pluripotent stem cells among cells constituting multicellular organisms, and cultured cells thereof.
  • Somatic cells include, for example, somatic stem cells and terminally differentiated cells.
  • a viral vector is a vector that has a genomic nucleic acid derived from the virus and can express the gene by incorporating a transgene into the nucleic acid.
  • a non-chromosomal viral vector for producing pluripotent stem cells is a viral vector derived from a virus and capable of introducing a gene into a target cell, wherein the introduced gene is a host.
  • a carrier that has no danger of being incorporated into the chromosome nuclear-derived chromosome.
  • the viral vector is a complex composed of a virus core, a complex of a virus genome and a virus protein, or a non-infectious virus particle in addition to an infectious virus particle, and is loaded by introduction into a cell.
  • a complex capable of expressing the gene to be expressed for example, in an RNA virus, a ribonucleoprotein (virus core portion) comprising a viral genome and a viral protein that binds to it can be introduced into the cell to express the transgene in the cell (WO00 / 70055). The introduction into the cells may be appropriately performed using a transfection reagent or the like.
  • ribonucleoprotein (RNP) is also included in the viral vector in the present invention.
  • “there is no risk of integration into the host chromosome” means that the frequency of integration into the host chromosome is sufficiently low when a viral vector is introduced.
  • the frequency of integration into the chromosome of the host is, for example, 5 ⁇ 10 ⁇ 4 or less when the human fibrosarcoma-derived cell line HT1080 (ATCC CCL121) is infected at 10 PFU / cell, more preferably 10 ⁇ 4. Or less, more preferably 10 ⁇ 5 or less, more preferably 10 ⁇ 6 or less, and even more preferably 10 ⁇ 7 or less.
  • the non-integrating viral vector used in the present invention is particularly preferably an RNA virus.
  • RNA virus refers to a virus having an RNA genome and having no DNA phase in its life cycle.
  • RNA viruses do not have reverse transcriptase (ie, do not include retroviruses). That is, in virus propagation, the viral genome is replicated by RNA-dependent RNA polymerase without DNA. Since RNA viruses do not have a DNA phase, the risk of integration into the host chromosome can be minimized by using RNA virus vectors.
  • RNA viruses include single stranded RNA viruses (including positive and negative stranded RNA viruses) and double stranded RNA viruses.
  • RNA viruses specifically include viruses belonging to the following families.
  • Arenaviridae such as Lassa virus Orthomyxoviridae, such as influenza virus Coronaviridae such as SARS virus Togaviridae such as rubella virus Paramyxoviridae such as mumps virus, measles virus, Sendai virus, RS virus Picornaviridae such as Poliovirus, Coxsackie virus, Echovirus Filoviridae, such as Marburg virus and Ebola virus Flaviviridae such as yellow fever virus, dengue virus, hepatitis C virus, hepatitis G virus Bunyaviridae (including Bunyaviridae; Bunyavirus, Hantavirus, Nairovirus, and Phlebovirus genera, etc.) Rhabdoviridae such as rabies virus Reoviridae
  • the non-chromosomal non-integrated virus vector used in the present invention is, for example, a minus-strand RNA virus vector.
  • a minus-strand RNA viral vector is a vector consisting of a virus containing, as a genome, a minus-strand (antisense strand against a sense strand encoding a viral protein) RNA. Negative strand RNA is also called negative strand RNA. Examples of minus-strand RNA viruses listed as examples in the present invention include single-strand minus-strand RNA viruses (also referred to as non-segmented minus-strand RNA viruses).
  • Single-stranded negative strand RNA virus refers to a virus having a single-stranded negative strand [ie, minus strand] RNA in the genome.
  • viruses include paramyxovirus (including Paramyxoviridae; Paramyxovirus, Morbillivirus, Rubulavirus, and Pneumovirus), rhabdoviridae; Vesiculovirus, Lyssavirus, Lyssavirus, and Ephemerovirus etc.
  • minus-strand RNA viral vectors listed as examples in the present invention include paramyxovirus vectors.
  • Paramyxovirus vectors are viral vectors derived from the Paramyxoviridae virus.
  • the Sendai virus of Paramyxoviridae virus can be mentioned.
  • Newcastle disease virus (Newcastle disease virus), mumps virus (Mumps virus), measles virus (Measles virus), RS virus (Respiratory syncytial virus), rinderpest virus, distemper virus (distemper virus) , Simian parainfluenza virus (SV5), human parainfluenza virus types 1,2,3, orthomyxoviridae influenza virus (Influenza virus), rhabdoviridae vesicular stomatitis virus (Vesicular stomatitis virus) ), And rabies virus (Rabies virus).
  • Sendai virus SeV
  • HPIV-1 human parainfluenza virus-1
  • HPIV-3 human parainfluenza virus-3
  • PDV canine
  • Sendai virus SeV
  • human parainfluenza virus-1 HPIV-1
  • human parainfluenza virus-3 HPIV-3
  • phocine distemper virus PDV
  • canine distemper virus CDV
  • dolphin molbillivirus DMV
  • Peste-des-petits-ruminants virus PDPR
  • melesles virus MV
  • rinderpest virus RSV
  • Hendra virus Hendra
  • the vector used in the present invention is, for example, a virus belonging to the Paramyxovirus subfamily (including the Respirovirus genus, Rubravirus genus, and Morbillivirus genus) or a derivative thereof, such as the Respirovirus genus (genus Respirovirus). ) (Also referred to as Paramyxovirus) or a derivative thereof.
  • Derivatives include viruses in which viral genes have been modified, chemically modified viruses, and the like so as not to impair the ability to introduce genes by viruses.
  • respirovirus viruses to which the present invention can be applied examples include human parainfluenza virus type 1 (HPIV-1), human parainfluenza virus type 3 (HPIV-3), and bovine parainfluenza virus type 3 (BPIV-3).
  • HPIV-1 human parainfluenza virus type 1
  • HPIV-3 human parainfluenza virus type 3
  • BPIV-3 bovine parainfluenza virus type 3
  • Sendai virus also referred to as mouse murine parainfluenza virus type 1
  • SPIV-10 simian parainfluenza virus type 10
  • the minus-strand RNA virus listed as an example in the present invention includes Sendai virus.
  • the genome of the wild type Sendai virus follows the 3 'short leader region, followed by the nucleocapsid (N) gene, phospho (P) gene, matrix (M) gene, fusion (F) gene, hemagglutinin-neuraminidase (HN) gene, And the large (L) gene and the short 5 'trailer region in this order.
  • N nucleocapsid
  • P phospho
  • M matrix
  • F fusion
  • HN hemagglutinin-neuraminidase
  • L large gene and the short 5 'trailer region in this order.
  • Production of recombinant vectors corresponding to wild-type viruses and various mutant vectors is already known.
  • the non-chromosomal integration virus in the present invention may be derived from natural strains, wild strains, mutant strains, laboratory passage strains, artificially constructed strains, and the like. That is, as long as the target reprogramming can be induced, the virus may be a virus vector having the same structure as a virus isolated from nature, or a virus artificially modified by genetic recombination. . For example, any gene possessed by the wild-type virus may be mutated or defective. It is also possible to use incomplete viruses such as DI particles (J. Virol. 68: 8413-8417, 1994). For example, a virus having a mutation or deletion in at least one gene encoding a viral envelope protein or outer shell protein can be preferably used.
  • Such a viral vector is, for example, a viral vector that can replicate the genome in infected cells but cannot form infectious viral particles.
  • a replication-defective virus vector is highly safe because there is no concern of spreading infection around it.
  • minus-strand RNA viruses that do not contain at least one gene encoding an envelope protein or spike protein such as F, H, HN, or G, or a combination thereof can be used (WO00 / 70055 and WO00 / 70070; Li, H.-O. et al., J. Virol. 74 (14) 6564-65692000 (2000)).
  • proteins necessary for genome replication for example, N, P, and L proteins
  • the genome can be amplified in infected cells.
  • a defective gene product or a protein capable of complementing it is supplied exogenously in virus-producing cells (WO00 / 70055 and WO00 / 70070; Li, H.-O. et al., J. Virol. 74 (14) 6654-6569 (2000)).
  • a method of recovering a viral vector as a non-infectious viral particle (VLP) without completely complementing a defective viral protein is also known (WO00 / 70070).
  • VLP non-infectious viral particle
  • the vector can be produced without complementing the envelope protein.
  • the present invention provides a method for gene transfer in reprogramming and a method for producing reprogrammed cells, particularly using an RNA viral vector having a mutation and / or deletion in a viral gene.
  • an RNA viral vector having a mutation and / or deletion in a viral gene For example, many mutations including an attenuation mutation and a temperature-sensitive mutation are known in envelope proteins and outer shell proteins.
  • An RNA virus having these mutant protein genes can be preferably used in the present invention.
  • LDH lactate dehydrogenase
  • a vector whose cytotoxicity is significantly attenuated compared to the wild type can be used.
  • the degree of attenuation of cytotoxicity is, for example, the amount of LDH released in the culture medium in which HeLa (ATCC CCL-2) or monkey CV-1 (ATCC CCL 70) is infected with MOI 3 and cultured for 3 days is wild type.
  • a significantly reduced vector such as 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 50% or more can be used.
  • mutations that reduce cytotoxicity include temperature-sensitive mutations.
  • a temperature-sensitive mutation is a mutation whose activity is significantly reduced at a normal temperature (eg, 37 ° C.
  • a virus vector having a temperature-sensitive mutation useful in the present invention has a growth rate or gene expression level of at least 1/2 or less when infected at 37 ° C. compared to, for example, infection at 30 ° C. in cultured cells. It is preferably 1/3 or less, more preferably 1/5 or less, more preferably 1/10 or less, and more preferably 1/20 or less.
  • the non-chromosomal viral vector used in the present invention may be wild-type as long as it does not inhibit reprogramming and can induce reprogramming by a reprogramming factor, and is preferably at least 1, more preferably at least 2, 3 Has deletions or mutations in 4, 5, or more viral genes. Deletions and mutations may be introduced in any combination for each gene.
  • the mutation may be a reduced function mutation or a temperature-sensitive mutation, and at least at 37 ° C., the virus growth rate or the expression level of the loaded gene is preferably 1/2 or less, more preferably, compared to the wild type.
  • the mutation is reduced to 1/3 or less, more preferably 1/5 or less, more preferably 1/10 or less, more preferably 1/20 or less.
  • modified viral vectors can be particularly important for the induction of pluripotent stem cells.
  • at least two viral genes are deleted or mutated.
  • Such viruses have at least two viral genes deleted, at least two viral genes mutated, at least one viral gene mutated and at least one viral gene deleted Is included.
  • the at least two viral genes that are mutated or deleted are preferably genes that encode envelope-constituting proteins.
  • a vector having the F gene deleted, the M or HN (or H) gene further deleted, and the remaining M and / or HN (or H) gene further having a mutation (for example, a temperature-sensitive mutation) It is suitably used in the invention.
  • at least three viral genes are deleted or mutated.
  • Such viral vectors have at least 3 genes deleted, at least 3 genes mutated, at least 1 gene mutated and at least 2 genes deleted And those in which at least two genes are mutated and at least one gene is deleted.
  • a vector that lacks the F gene and further deletes the M and HN (or H) genes, or further has a mutation (for example, a temperature-sensitive mutation) in the M and HN (or H) genes. is preferably used in the present invention.
  • a vector having the F gene deleted, the M or HN (or H) gene further deleted, and the remaining M or HN (or H) gene further having a mutation (for example, a temperature sensitive mutation) is suitable in the present invention. Used for.
  • Such a mutant virus can be prepared according to a known method.
  • the temperature-sensitive mutation of the M gene of the minus-strand RNA virus is a site arbitrarily selected from the group consisting of positions 69 (G69), 116 (T116), and 183 (A183) in the Sendai virus M protein.
  • amino acid substitutions at homologous sites of other minus-strand RNA virus M proteins can be mentioned (Inoue, M. et al., J.Virol. 2003, 77: 3238-3246).
  • the amino acid at the homologous site of other minus-strand RNA virus M protein can be easily identified.
  • human parainfluenza virus-1 HPIV-1 (the parentheses are abbreviations) G69, human parainfluenza virus-3 (HPIV-3) G73, phocine distemper virus (PDV) and canine distemper virus (CDV) G70, dolphin molbillivirus ( DM71), G71 for peste-des-petits-ruminants virus (PDPR), melesles virus (MV), and rinderpest virus (RPV), G70 for Hendra virus (Hendra) and Nipah virus (Nipah) G81, human parainfluenza virus-2 (HPIV-2) G70, human parainfluenza virus-4a (HPIV-4a) and human parainfluenza virus-4b (HPIV-4b) E47, mumps virus (Mumps) E72 (letters
  • homologous sites of each M protein corresponding to T116 of SeV M protein are T116 for human parainfluenza virus-1 (HPIV-1), T120 for humanphoparainfluenza virus-3 (HPIV-3), phocine T104 for distemper virus (PDV) and canine distemper virus (CDV), T105 for dolphin molbillivirus (DMV), peste-des-petits-ruminants virus (PDPR), measles virus (MV) and rinderpest virus (RPV) T104, Hendra virus (Hendra) and Nipah virus (Nipah) T120, human parainfluenza virus-2 (HPIV-2) and siman parainfluenza virus 5 (SV5) T117, human parainfluenza virus-4a ( T121 for HPIV-4a) and human parainfluenza virus-4b (HPIV-4b), T119 for mumps virus (Mumps), and S120 for Newcastle disease virus (NDV).
  • HPIV-1 human parainfluenza virus-1
  • HPIV-3
  • the homologous sites of each M protein corresponding to A183 of SeV M protein are A183 for human parainfluenza virus-1 (HPIV-1), F187 for human parainfluenza virus-3 (HPIV-3), phocine distemper virus (PDV) and canine distemper virus (CDV) Y171, dolphin molbillivirus (DMV) Y172, peste-des-petits-ruminants virus (PDPR), measles virus (MV) and rinderpest virus (RPV) Y171, Y187 for Hendra virus (Hendra) and Nipah virus (Nipah), Y184 for human parainfluenza virus-2 (HPIV-2), F184 for siman parainfluenza virus 5 (SV5), human parainfluenza virus- F188 for 4a 4 (HPIV-4a) and human parainfluenza virus-4b (HPIV-4b), F186 for mumps virus (Mumps), and Y187 for Newcastle disease virus (NDV).
  • HPIV-1 human para
  • each M protein is a mutant M protein in which any one of the above three sites, preferably a combination of any two sites, and more preferably all amino acids in all three sites are replaced with other amino acids.
  • a virus having a genome encoding is preferably used in the present invention.
  • the amino acid mutation is preferably substitution with another amino acid having a different side chain chemistry, for example, BLOSUM62 matrix (Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919) is substituted with an amino acid having a value of 3 or less, preferably 2 or less, more preferably 1 or less, more preferably 0 or less.
  • BLOSUM62 matrix Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919
  • an amino acid having a value of 3 or less preferably 2 or less, more preferably 1 or less, more preferably 0 or less.
  • the homologous sites of Sendai virus M protein G69, T116, and A183 or other viral M proteins can be replaced with Glu (E), Ala (A), and Ser (S), respectively.
  • HN a site arbitrarily selected from the group consisting of positions 262 (A262), 264 (G264), and 461 (K461) of the HN protein of Sendai virus
  • a virus having a genome encoding a mutant HN protein in which any one of the three sites, preferably a combination of any two sites, more preferably amino acids in all three sites are substituted with other amino acids, is used in the present invention. Preferably used.
  • the substitution of amino acids is preferably substitution with other amino acids having different side chain chemical properties.
  • the homologous sites of Sendai virus ⁇ HN protein A262, G264, and K461 or other viral HN proteins are replaced with Thr (T), Arg (R), and Gly (G) ⁇ ⁇ ⁇ ⁇ , respectively.
  • mutations can be introduced into amino acids 464 and 468 of the HN protein with reference to the mumps virus temperature-sensitive vaccine strain Urabe AM9 (Wright, K. E. et al., Virus Res. 2000: 67). ; 49-57).
  • the minus-strand RNA virus may have a mutation in the P gene and / or L gene.
  • mutations include the 86th Glu (E86) mutation of the SeV P protein, the substitution of the 511st Leu (L511) of the SeV P protein with other amino acids, or other negative strands.
  • Examples include substitution of homologous sites of RNA virus P protein.
  • the substitution of amino acids is preferably substitution with other amino acids having different side chain chemical properties. Specific examples include substitution of the 86th amino acid with Lys and substitution of the 511st amino acid with Phe.
  • the substitution of an amino acid is preferably a substitution with another amino acid having a different side chain chemical property.
  • Specific examples include substitution of the 1197th amino acid with Ser and substitution of the 1795th amino acid with Glu.
  • Mutations in the P gene and L gene can significantly enhance the effects of persistent infectivity, suppression of secondary particle release, or suppression of cytotoxicity. Furthermore, by combining mutations and / or deletions in the envelope protein gene, these effects can be dramatically increased.
  • the L gene includes substitution of the 1214th Tyr (Y1214) and / or 1602 Met (M1602) of the SeV L protein with other amino acids, or substitution of homologous sites of other minus-strand RNA virus L proteins.
  • the substitution of an amino acid is preferably a substitution with another amino acid having a different side chain chemical property. Specific examples include substitution of amino acid 1214 with Phe, substitution of amino acid 1602 with Leu, and the like. The mutations exemplified above can be arbitrarily combined.
  • At least 69-position G of SeV ⁇ M protein, 116-position T, 183-position A, SeV HN protein at least 262-position A, 264-position G, 461-position K, and SeV P protein at least 511.
  • Each homologous protein has a substitution mutation at the homologous site, an F gene deletion or deletion vector in which the F gene is deleted or deleted, and cytotoxicity is the same as or less than these, and / or temperature sensitivity.
  • F gene-deficient or deleted minus-strand RNA viral vectors similar to or more than these are particularly suitable for expressing nuclear reprogramming factors in the present invention.
  • specific substitutions include, for example, substitution of G69E, T116A, and A183S for the M protein, substitution of A262T, G264, and K461G for the HN protein, substitution of L511F for the P protein, and L As for proteins, N1197S and K1795E substitutions can be mentioned.
  • Genes encoding nuclear reprogramming factors can be arranged, for example, at the most upstream (3 ′ side) of the minus-strand RNA genome (for example, 3 ′ side of N gene).
  • the Myc gene may be arranged at other positions, for example, behind the minus-strand RNA genome, that is, on the 5 ′ side. For example, it can be inserted between the HN gene and the L gene.
  • the substitution of the amino acid at the site arbitrarily selected from positions 942 (Y942), 1361 (L1361), and 1558 (L1558) of the SeV L protein, or other The substitution of the homologous site of the minus-strand RNA virus L protein is also included.
  • the substitution of amino acids is preferably substitution with other amino acids having different side chain chemical properties. Specific examples include substitution of the 942nd amino acid with His, substitution of the 1361st amino acid with Cys, substitution of the 1558th amino acid with Ile, and the like.
  • L protein substituted at least at positions 942 or 1558 can be used preferably.
  • a mutant L protein in which the 1361 position is substituted with another amino acid in addition to the 1558 position is also suitable.
  • a mutant L protein in which positions 1558 and / or 1361 are substituted with other amino acids is also suitable.
  • These mutations can increase the temperature sensitivity of the L protein.
  • part arbitrarily chosen from 433 position (D433), 434 position (R434), and 437 position (K437) of SeV P protein, or other Examples include substitution of a homologous site of a minus-strand RNA virus P protein.
  • the substitution of amino acids is preferably substitution with other amino acids having different side chain chemical properties.
  • a P protein in which all of these three sites are substituted can be preferably used. These mutations can increase the temperature sensitivity of P protein.
  • Mutant P protein in which at least 433-position D, 434-position R, and 437-position K in SeV P protein were substituted with other amino acids, and L in at least 1558-position in SeV L protein were substituted A homologous site in a Sendai virus vector that lacks or deletes the F gene, and that encodes a mutant L protein (preferably a mutant L protein in which at least L at position 1361 is also substituted with another amino acid), and other minus-strand RNA viruses Mutated F gene-deficient or deleted vectors, and minus-strand RNA viruses that lack or delete F genes with similar or less cytotoxicity and / or temperature sensitivity Vectors are also preferably used in the present invention.
  • Each viral protein may have a mutation in other amino acids (for example, within 10, within 5, within 4, within 3, within 2, or 1 amino acid) in addition to the above mutation.
  • the vectors having the mutations shown above are highly temperature sensitive, after reprogramming is completed, the cells are cultured at a slightly high temperature (eg, 37.5 to 39 ° C, preferably 38 to 39 ° C, or 38.5 to 39 ° C). Thus, the vector can be easily removed.
  • Nuclear reprogramming factors can be appropriately inserted at an appropriate position in the genome. For example, the nuclear reprogramming factors are inserted into the uppermost stream (3 ′ side) of the genome (for example, 3 ′ side of the NP gene).
  • the Myc gene is, for example, 5 ′ end from the center of the genome of the minus-strand RNA virus (5 ′ end from the middle gene), for example, 5 ′ side or 3 ′ side of the L gene, especially 3 ′ side of the L gene (For example, between HN and L) may be inserted.
  • the cytotoxicity of the vector can be measured, for example, by quantifying the release of lactate dehydrogenase (LDH) from the cells. Specifically, for example, the amount of LDH released in a culture solution obtained by infecting HeLa (ATCC CCL-2) or monkey CV-1 (ATCC CCL 70) with MOI 3 and culturing for 3 days is measured. The smaller the amount of LDH released, the lower the cytotoxicity.
  • the temperature sensitivity can be determined by measuring the virus growth rate or the expression level of the loaded gene at the normal temperature of the virus host (eg, 37 ° C. to 38 ° C.). It is judged that the temperature sensitivity is higher as the growth rate of the virus and / or the expression level of the loaded gene are lower than those without the mutation.
  • a virus containing a protein different from the envelope protein inherent in the virus may be used.
  • a virus containing this can be produced by expressing a desired foreign envelope protein in a virus-producing cell during virus production.
  • Proteins such as a desired adhesion factor, a ligand, and a receptor which provide the infectious ability to a mammalian cell, are used.
  • Specific examples include G protein (VSV-G) of vesicular stomatitis virus (VSV).
  • VSV-G protein may be derived from any VSV strain.
  • a VSV-G protein derived from a Indiana serotype strain J. Virology 39: 519-528 (1981)
  • the minus-strand RNA viruses listed as examples in the present invention can contain any combination of envelope proteins derived from other viruses.
  • RNA viruses having nuclear reprogramming factors may be performed using known methods.
  • the minus-strand RNA virus listed as an example of the present invention typically, (a) a cDNA encoding a minus-strand RNA virus genomic RNA (minus strand) or its complementary strand (plus strand) is used. , A step of transcription in cells expressing viral proteins (N, P, and L) necessary for virus particle formation, and (b) a step of recovering the culture supernatant containing the produced virus.
  • Viral proteins necessary for particle formation may be expressed from transcribed viral genomic RNA or supplied to trans from other than genomic RNA.
  • expression plasmids encoding N, P, and L proteins can be introduced into cells and supplied. If the genomic RNA lacks a viral gene necessary for particle formation, the viral gene is separately expressed in virus-producing cells to complement particle formation.
  • a vector in which DNA encoding the protein or genomic RNA is linked downstream of an appropriate promoter that functions in the host cell is introduced into the host cell. Transcribed genomic RNA is replicated in the presence of viral proteins to form infectious viral particles.
  • the defective virus or other viral protein capable of complementing its function is expressed in the virus-producing cell.
  • production of the minus-strand RNA virus as an example of the present invention can be carried out using the following known methods (WO97 / 16539; WO97 / 16538; WO00 / 70055; WO00 / 70070; WO01 / 18223 ; WO03 / 025570; WO2005 / 071092; WO2006 / 137517; WO2007 / 083644; WO2008 / 007581; Hasan, M. K. et al., J. Gen. Virol. 78: 2813-2820, 1997, Kato, A. et al., 1997, EMBO J. 16: 578-587 and Yu, D.
  • RNA viruses including parainfluenza, vesicular stomatitis virus, rabies virus, measles virus, Linder pest virus, Sendai virus and the like can be reconstituted from DNA.
  • Examples of the method for producing a plus (+) strand RNA virus include the following examples. 1) Coronavirus Enjuanes L, Sola I, Alonso S, Escors D, Zuniga S. Coronavirus reverse genetics and development of vectors for gene expression. Curr Top Microbiol Immunol. 2005; 287: 161-97. Review. 2) Toga virus Yamanaka R, Zullo SA, Ramsey J, Onodera M, Tanaka R, Blaese M, Xanthopoulos KG. Induction of therapeutic antitumor antiangiogenesis by intratumoral injection of genetically engineered endostatin-producing Semliki Forest virus. Cancer Gene Ther. 2001 Oct; 8 (10): 796-802.
  • RNA virus propagation methods and recombinant virus production methods refer to Virology Experimental Studies, 2nd revised edition (edited by National Institute of Preventive Health, Alumni Association, Maruzen, 1982).
  • the above non-chromosomal viral vector can be appropriately loaded with a gene for cell reprogramming.
  • the gene to be mounted may be a desired gene involved in induction of various stem cells such as pluripotent stem cells from differentiated cells.
  • genes that are essential for reprogramming or genes that increase the efficiency of reprogramming can be mounted. That is, the present invention uses the non-chromosomal viral vector of the present invention for introducing a gene in cell reprogramming, and for expressing a reprogramming factor in a cell and inducing reprogramming of the cell. Provide use.
  • the present invention also includes an agent for introducing a gene in cell reprogramming (introduction agent, gene introduction agent) and an agent for expressing a reprogramming factor in a cell, including the non-chromosomal viral vector of the present invention.
  • the present invention also relates to an agent for expressing a reprogramming factor in a cell and inducing reprogramming of the cell, comprising the non-chromosomal viral vector of the present invention.
  • the vector of the present invention is also useful for expressing a desired gene in a cell when performing nuclear reprogramming of the cell.
  • Non-integrating viral vectors carrying a gene encoding one or more nuclear reprogramming factors can be used for cell reprogramming in accordance with the present invention.
  • the present invention can be used for medical and non-medical applications and is useful in medical and non-medical embodiments.
  • the present invention can be used for therapeutic, surgical, and / or diagnostic, or non-therapeutic, non-surgical, and / or non-diagnostic purposes.
  • a nuclear reprogramming factor is a gene used to induce a differentiation state of a cell to a more undifferentiated state, or a product thereof, alone or in combination with a plurality of factors.
  • a gene or product thereof used to induce dedifferentiation of differentiated cells the nuclear reprogramming factor includes a factor essential for nuclear reprogramming and an auxiliary factor (cofactor) that increases the efficiency of nuclear reprogramming.
  • a desired gene for use in nuclear reprogramming may be mounted on a vector.
  • a gene for use in the production of pluripotent stem cells can be mounted.
  • nuclear reprogramming factors for inducing pluripotent stem cells are expressed in, for example, ES cells and early embryos, but not expressed in many differentiated somatic cells or expressed. Can be used, such as ES cell-specific genes. Such a gene is preferably a gene encoding a transcription factor, a nuclear protein or the like. Methods for identifying nuclear reprogramming genes (nuclear reprogramming factors) are already known (WO2005 / 80598). In fact, genes identified using this method are useful for reprogramming into pluripotent stem cells Is shown (WO2007 / 69666).
  • genes include DPPA5 (developmental pluripotency associated 5, ES cell specific gene 1 (ESG1); accession numbers NM_001025290, NM_025274, XM_236761), F-box protein 15 (Fbx15, NM_152676, NM_798 NM_024865, AB093574), ECAT1 (ES cell associated transcript 1; AB211062, AB211060), ERAS (ES cell expressed Ras; NM_181532, NM_181548), DNMT3L (DNA (cytosine-5-)-methyltransferase 3-like; NM_013369, NM_194348, ECAT8 (AB211063, AB211061), GDF3 (growth differentiation factor 3; NM_020634, NM_008108), SOX15 (SRY (sex determining region Y) -box 15; NM_006942, NM_009235), DPPA4 (developmental pl4 (NM_)-
  • a non-chromosomal viral vector carrying any of these genes is useful for use in the induction of cell dedifferentiation in the present invention, and is particularly suitable for the induction of pluripotent stem cells.
  • RNA viral vector carrying any of these genes, such as an RNA viral vector
  • Each of these genes may be incorporated into another vector, or a plurality of genes may be integrated into one vector.
  • each gene may be incorporated into one type of vector, or different types of vectors (including chromosomally integrated viral vectors and / or non-viral vectors) may be used in combination with non-chromosomally integrated viral vectors. .
  • kits or compositions containing the vectors also can be used for cell reprogramming, particularly for pluripotent stem cells. It can use suitably in manufacture.
  • the vector may be appropriately mixed in sterilized water, pH buffer solution, physiological saline, culture solution or the like. In these systems, a part or most of the nuclear reprogramming gene can be replaced with a protein that is an expression product thereof.
  • composition and kit of the present invention include at least one non-chromosomal viral vector, another vector (chromosomal viral vector and / or non-viral vector) that expresses the reprogramming factor and / or reprogramming. It may contain compounds, proteins, etc. Factors necessary for reprogramming may be expressed from all non-chromosomal viral vectors, or only a part may be expressed from non-chromosomal viral vectors, and others may be expressed by other vectors and / or compounds (for example, You may supply by protein and a low molecular weight compound).
  • the method for producing a reprogrammed cell of the present invention is not limited to a method in which all gene transfer is performed using a non-chromosomal viral vector. That is, the method of the present invention may use at least one non-chromosomal viral vector, and induces other vectors (chromosomal viral vectors and / or non-viral vectors) that express reprogramming factors and / or reprogramming. It is included to use a compound to be used in combination.
  • the present invention relates to a composition for use in cell reprogramming, comprising a non-chromosomal viral vector as an expression vector.
  • the present invention also relates to the use of a non-chromosomal viral vector for reprogramming differentiated cells.
  • the present invention provides the use of a non-chromosomal viral vector for introducing a gene into a cell in need of cell reprogramming.
  • the present invention also relates to a method for introducing a gene in reprogramming of a cell, wherein the gene is introduced into a cell in need thereof using a non-chromosomal viral vector.
  • the present invention also includes a composition for use in gene transfer in cell reprogramming, including a non-chromosomal viral vector, and an agent for use in gene transfer in cell reprogramming (used for gene transfer in cell reprogramming). And a gene transfer agent for cell reprogramming).
  • the present invention also relates to the use of a non-chromosomal viral vector for use in the manufacture of a medicament for introducing a gene into a cell in need of cell reprogramming.
  • the present invention also provides a gene introduction agent (gene expression agent or expression vector) for use in cell reprogramming, including a non-chromosomal viral vector.
  • the present invention also provides a reprogramming gene introduction agent (gene expression agent or expression vector) containing a non-chromosomal viral vector.
  • the present invention also includes a nuclear reprogramming factor expression agent (a nuclear reprogramming gene, an a nuclear nuclear reprogramming gene, a nuclear nuclear reprogramming gene, and a non-chromosomal viral vector. Expression vector).
  • the present invention also provides a pluripotent stem cell inducing agent and a pluripotent stem cell inducing agent comprising a non-chromosomal viral vector encoding a nuclear reprogramming factor.
  • the present invention also provides the use of a non-chromosomal viral vector for reprogramming of differentiated cells.
  • the invention also provides the use of a non-chromosomally integrated viral vector in the manufacture of a medicament, reagent and / or medicament for reprogramming differentiated cells.
  • the present invention also relates to the use of a non-chromosomal integration-type viral vector in the production of a nuclear reprogramming factor introduction agent for differentiated cells.
  • reprogramming may be, for example, induction of pluripotent stem cells from differentiated cells.
  • the vector is used by incorporating a gene encoding a factor for reprogramming.
  • Examples of the gene encoding the reprogramming factor include a gene encoding any of the factors described above and below.
  • the factor to be introduced may be appropriately selected according to the origin of the cell to be reprogrammed, and may be derived from other mammals, for example, from primates such as mice, rats, rabbits, pigs, monkeys, etc. It may be.
  • the gene and protein sequences do not necessarily have to be wild-type sequences, and may have any mutation as long as reprogramming can be induced.
  • an example of producing pluripotent stem cells using a mutant gene is known (WO2007 / 69666).
  • amino acids eg, several, within 3, within 5, within 10, within 15, within 20, within 25
  • a gene encoding an amino acid sequence and capable of inducing reprogramming can be used in the present invention.
  • the biological activity for example, 1 to several residues (for example, 2, 3, 4, 5, 6, 10, 15 or 20 at the N-terminus and / or C-terminus)
  • a polypeptide in which one or more residues (for example, 2, 3, 4, 5, 6, 10, 15 or 20 residues) are substituted, etc. Can also be used.
  • Variants that can be used include, for example, fragments of natural proteins, analogs, derivatives, and fusion proteins with other polypeptides (eg, those added with heterologous signal peptides or antibody fragments). Specifically, it includes a sequence in which one or more amino acids of the wild-type amino acid sequence are substituted, deleted, and / or added, and has a biological activity equivalent to that of the wild-type protein (eg, activity that induces reprogramming). ). When a wild-type protein fragment is used, it is usually 70% or more, preferably 80% or more, 85% or more, more preferably 90% or more, 95% of the wild-type polypeptide (in the case of a secreted protein, the mature form). % Or more than 98% continuous area.
  • Amino acid sequence variants can be prepared, for example, by introducing mutations into DNA encoding the natural polypeptide (Walker and Gaastra, eds. Techniques in Molecular Biology (MacMillan Publishing Company, New York, k1983); Kunkel Proc. Natl. Acad. Sci. USA 82: 488-492, 1985; Kunkel et al., Methods Enzymol. 154: 367-382, 1987; Sambrook et al., Molecular Cloning: A Laboratory Press, Plainview, NY), 1989; US Pat. No. 4,873,192).
  • Guidance for substitution of amino acids so as not to affect biological activity includes, for example, Dayhoff et al. (Dayhoffhet al., In Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found.,. Washington, ingtonDC ), 1978).
  • the number of amino acids to be modified is not particularly limited, but for example, within 30%, preferably within 25%, more preferably within 20%, more preferably within 15%, more preferably within the total amino acids of a natural mature polypeptide. It is within 10%, within 5%, or within 3%, for example within 15 amino acids, preferably within 10 amino acids, more preferably within 8 amino acids, more preferably within 5 amino acids, more preferably within 3 amino acids.
  • substituting an amino acid it can be expected to maintain the activity of the protein by substituting an amino acid having a similar side chain property. Such substitution is referred to as conservative substitution in the present invention.
  • Conservative substitutions include, for example, basic amino acids (eg, lysine, arginine, histidine), acidic amino acids (eg, aspartic acid, glutamic acid), uncharged polar amino acids (eg, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), non- Polar amino acids (eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), ⁇ -branched amino acids (eg threonine, valine, isoleucine), and aromatic amino acids (eg tyrosine, phenylalanine, tryptophan, histidine) Examples include substitution between amino acids in the group.
  • basic amino acids eg, lysine, arginine, histidine
  • acidic amino acids eg, aspartic acid, glutamic acid
  • uncharged polar amino acids eg,
  • the modified protein shows high homology with the amino acid sequence of the wild type protein.
  • High homology is, for example, an amino acid sequence having 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 93% or more, 95% or more, or 96% or more identity.
  • Amino acid sequence identity can be determined, for example, using the BLASTP program (Altschul, S. F. et al., J. Mol. Biol. 215: 403-410, 1990). For example, on the BLAST web page of NCBI (National Center ch Biothchnology Information), search can be performed using default parameters (Altschul SF et al., Nature Genet.
  • blast2sequences program (Tatiana A et al., FEMS Microbiol Lett. 174: 247-250, 1999) that compares two sequences can create an alignment of the two sequences and determine the identity of the sequences. Gaps are treated in the same way as mismatches, and for example, the identity value for the entire amino acid sequence of a natural cytokine (the mature form after secretion) is calculated. Specifically, the ratio of the number of matching amino acids in the total number of amino acids of wild type protein cocoon (or mature type in the case of secreted protein) cocoon is calculated.
  • silent mutations can be introduced into genes so as not to change the encoded amino acid sequence.
  • AT ⁇ ⁇ ⁇ rich genes by substituting 5 or more consecutive A or T bases with G or C so as not to change the encoded amino acid sequence, stable high expression of the gene can be obtained. Can do.
  • the modified protein or the protein used for reprogramming is a protein encoded by a nucleic acid that hybridizes under stringent conditions with part or all of the coding region of the gene encoding the wild type protein, and is equivalent to the wild type protein.
  • examples thereof include proteins having activity (activity for inducing reprogramming).
  • a probe is prepared from either a nucleic acid containing a sequence of the coding region of a wild-type protein gene or a complementary sequence thereof, or a nucleic acid to be hybridized, and whether it hybridizes to the other nucleic acid. Can be identified by detecting.
  • stringent hybridization conditions are: 5xSSC, 7% (W / V) SDS, 100 micro-g / ml denatured salmon sperm DNA, 5x Denhardt solution (1x Denhardt solution is 0.2% polyvinylpyrrolidone, 0.2% bovine serum In a solution containing albumin and 0.2% Ficoll), preferably at 60 ° C., preferably at 65 ° C., more preferably at 68 ° C., and then in 2 ⁇ SSC, preferably in 1 ⁇ SSC at the same temperature as the hybridization. Is a condition of washing in 0.5xSSC, more preferably 0.1xSSC for 2 hours with shaking.
  • Examples of particularly preferred genes for inducing cell reprogramming include F-box protein 15 (Fbx15, NM_152676, NM_015798), Nanog (NM_024865, AB093574), ERAS (ES cell expressed Ras; NM_181532, NM_181548), DPPA2 (NM_138815, NM_028615), Oct3 / 4 (also called POU5F1; NM_002701, NM_203289, NM_013633, NM_001009178), Sox2 (NM_003106, NM_011443, XM_574919), TCL1A (T-cell leukemia / lyNM 1966 -like factor 4; NM_004235, NM_010637), catenin ⁇ 1 (cadherin-associated protein beta 1; NM_001904, NM_007614; S33Y mutant included), and c-Myc (NM_002467, NM_010849; T58
  • the non-chromosomal viral vector carrying any of these is useful for use in the induction of cell reprogramming in the present invention, and can be particularly suitably used for the induction of pluripotent stem cells.
  • Individual viral vectors can be used in combination at the time of use. Moreover, it is good also as a kit collectively, or it is good also as a composition by mixing. Also included in the present invention are one or more non-chromosomal viral vectors containing any combination (or all) of these genes, and kits or compositions containing the vectors.
  • one of the particularly preferred gene combinations for the induction of pluripotent stem cells is a combination comprising at least four genes, Sox gene, KLF gene, Myc gene, and Oct gene (Takahashi, K. and Yamanaka S ., Cell 126, 663-676, 2006; Lowry WE et al., Proc Natl Acad Sci U S A, 105 (8): 2883-8, 2008; Masaki, H. et al., Stem Cell Res. 1: 105-115, 2008; WO2007 / 69666).
  • the Sox protein, the KLF protein, the Myc protein, and the Oct protein and their genes refer to member proteins and genes belonging to the Sox family, the KLF family, the Myc family, and the Oct family, respectively. It has been reported that pluripotent stem cells can be induced from various differentiated cells by adjusting one or more of these four family members to be expressed. For example, with regard to the Sox family of genes, it has been reported that pluripotent stem cells can be induced using any of the genes Sox1, Sox2, Sox3, Sox15, and Sox17 (WO2007 / 69666). As for the KLF family, pluripotent stem cells could be induced by either KLF4 or KLF2 (WO2007 / 69666).
  • pluripotent stem cells could be induced not only by wild type c-Myc but also by T58A mutant, N-Myc, and L-Myc (WO2007 / 69666; Blelloch R. et al., Cell Stem Cell , 1: 245-247, 2007).
  • T58A mutant N-Myc
  • L-Myc L-Myc
  • wild-type c-Myc was found to have less expression from RNA virus vectors such as Sendai virus vectors.
  • RNA virus vectors such as Sendai virus vectors.
  • the gene can be stably expressed at a high level.
  • the modified c-Myc gene shown in SEQ ID NO: 45 can be preferably used.
  • a desired site can be selected for the insertion position of the gene in the vector.
  • the Myc gene is located behind the minus-strand RNA genome (5 'side), that is, in the multiple protein coding sequences placed on the genome, at a position earlier counted from the 5' side than from the 3 'side. You may do (refer an Example).
  • the Myc gene can be arranged, for example, on the most 5 ′ side (that is, the first from the 5 ′ side) or the second or third from the 5 ′ side.
  • the Myc gene may be arranged between the second gene from the 5 ′ side of the genome, specifically, the L gene at the 5 ′ most side of the genome and the HN gene next to it.
  • the Myc gene can be substituted with a continuous A or T base sequence by appropriately introducing a silent mutation so as not to change the encoded amino acid sequence.
  • the minus-strand RNA viral vector in which the Myc gene is arranged at the rear (5 ′ side) of the minus-strand RNA genome can be used in combination with a minus-strand RNA viral vector encoding another nuclear reprogramming factor.
  • these nuclear reprogramming factors are placed forward (3 ′ side), ie, on the genome, in the minus-strand RNA genome of each vector.
  • it can be arranged at a position earlier when counted from the 3 ′ side than from the 5 ′ side.
  • a gene encoding a nuclear reprogramming factor other than Myc is the first or second from the 5 ′ side of the genome in each minus-strand RNA viral vector, more preferably Arranged first.
  • a gene encoding a nuclear reprogramming factor can be arranged at the 3 ′ end of the 3 ′ end of the NP gene in the genome.
  • cells from which the vector has been removed can be selected as appropriate.
  • a cell from which the vector has been naturally removed may be selected.
  • negative selection can be performed with an antibody specific to a viral vector (for example, an anti-HN antibody).
  • a temperature sensitive vector the vector can be easily removed by culturing at a high temperature (eg, 37.5 to 39 ° C., preferably 38 to 39 ° C., or 38.5 to 39 ° C.).
  • the KLF family includes Klf1 (NM_006563, NM_010635), Klf2 (NM_016270, NM_008452), Klf4 (NM_004235, NM_010637), Klf5 (NM_001730, NM_009769), and the Myc family includes c-Myc ( NM_002467, NM_010849, T58A mutant included), N-Myc (NM_005378, NM_008709), L-Myc (NM_005376, NM_005806) are included, and Oct1A (NM_002697, NM_198934), Oct3 / 4 (NM_002701, NM_203289, NM_013633, _NM_001009178), Oct6 (NM_002699, NM_011141), and the Sox family includes Sox1 (NM_005986, NM_009233), Sox2 (NM_003106, NM_01
  • Myc family genes are not essential for induction of pluripotent stem cells, and pluripotent stem cells can be induced by only three family genes except Myc family genes (Nakagawa M. et al., Nat Biotechnol. 26 ( 1): 101-6, 2008; Wering M. et al., Cell Stem Cell 2 (1): 10-2, 2008; Example 5).
  • Myc gene is not expressed, for example, p53 ⁇ siRNA and UTF1 can significantly increase the induction efficiency of pluripotent stem cells (Y. Zhao et al., Cell Stem Cell, 3 (5): 475-479, 2008; N. Maherali, and K. Hochedlinger, Cell Stem Cell, 3 (6): 595-605, 2008).
  • pluripotent stem cells can be induced only by genes of three families excluding genes of KLF family (Park IH et al., Nature, 451 (7175): 141-6, 2008).
  • KLF family Park IH et al., Nature, 451 (7175): 141-6, 2008.
  • Klf gene Klf gene
  • Sox gene Sox gene
  • fetal-derived NPC a G9a histone methyltransferase inhibitor
  • pluripotent stem cells can be induced by only three genes of Myc gene (Shi Y et al., Cell Stem Cell, 2 (6): 525-8, 2008).
  • any of the Sox gene, KLF gene, and Oct gene, or any of the Sox gene, Myc gene, and Oct gene, or a combination of the Sox gene, Myc gene, and Klf gene are particularly useful for use in the induction of cell reprogramming in the present invention, and can be suitably used for the induction of pluripotent stem cells.
  • Viral vectors encoding each gene may be prepared separately as a single unit. They can be used in combination at the time of use. Arbitrary combinations or all may be combined into a kit, or may be mixed to form a composition.
  • the invention also relates to one or more non-chromosomal viral vectors containing any combination (or all) of these genes, and kits or compositions for reprogramming containing the vectors. Furthermore, some of the recombinant vectors included in this kit can be replaced with proteins, synthetic compounds, and the like having considerable functions.
  • neural progenitor cells express endogenous Sox family genes, so that pluripotent stem cells could be induced only by introducing Oct3 / 4 and Klf4 (Shi Y et al., Cell Stem Cell, 2 (6): 525-8, 2008).
  • pluripotent stem cells from mouse embryonic fibroblasts (MEF) using 3 genes of Oct4, Sox2, Esrrb (estrogen-related receptor beta, NM_004452.2, NP_004443.2, NM_011934.3, NP_036064.2) It has been reported that Esrrb ⁇ can complement the function of Klf (Feng, B. et al., Nat Cell Biol. 11 (2): 197-203, 2009).
  • pluripotent stem cells can be induced from embryonic fibroblasts only by introducing Oct3 / 4 and Klf4 (Shi Y et al ., Cell Stem Cell, 3 (5): 568-574, 2008).
  • Oct3 / 4 and Klf4 Sort al ., Cell Stem Cell, 3 (5): 568-574, 2008.
  • NSCs neural stem cells
  • pluripotent stem cells can be induced (Kim, JB et al., Nature, doi: 10.1038 / nature07061; Published online 29 June 2008; Nature. 2008, 454 (7204): 646-50). Also, by adjusting the culture period, pluripotent stem cells can be induced with only Oct4 (Jeong Beom Kim et al., Cell, 136 (3): 411-419, 2009). As needed, only non-chromosomal viral vectors encoding reprogramming factors may be used. In addition, if endogenous expression of the endogenous reprogramming factor is induced by expression of another gene or compound treatment, etc., it can be combined with the introduction of a vector that expresses the other gene or compound treatment.
  • a non-chromosomal viral vector encoding a reprogramming factor that cannot be induced may be introduced.
  • Combining vectors so that they are expressed endogenously or exogenously means, for example, that a reprogramming factor is not only endogenously expressed in the natural state but also introduces a vector or compound that expresses other genes,
  • a reprogramming factor is not only endogenously expressed in the natural state but also introduces a vector or compound that expresses other genes
  • combinations containing 4 genes, Oct gene, Sox gene, NANOG gene (NM_024865, AB093574), and LIN28 gene (NM_024674), also induce pluripotent stem cells.
  • NM_024865, AB093574 NANOG gene
  • LIN28 gene NM_024674
  • a combination of the Myc gene and the KLF gene with these genes is also suitable (Liao J et al., Cell Res. 18 (5): 600-3, 2008).
  • a non-chromosomal viral vector carrying any of these genes is particularly useful for use in inducing cell dedifferentiation in the present invention, and can be suitably used for inducing pluripotent stem cells.
  • One or more non-chromosomal viral vectors containing any combination (or all) of these genes, and kits or compositions containing the vectors, can also be used for cell reprogramming, particularly for the production of pluripotent stem cells. Can be suitably used.
  • a vector for expressing the genes may or may not be introduced.
  • some of the recombinant vectors included in this kit can be replaced with proteins, synthetic compounds, and the like having considerable functions.
  • genes include TERT (NM_198253, NM_009354) and / or SV40 large T antigen (NC_001669.1, Fiers, W. (05-11-1978) Nature 273: (5658) 113-120) ( Park IH. Et al., Nature, 451 (7175): 141-6, 2008).
  • TERT NM_198253, NM_009354
  • One or more genes selected from the group consisting of HPV16 E6, HPV16 E7, and Bmil NM_005180, NM_007552
  • Fbx15 Mol Cell Biol.
  • ECAT1 (AB211062, AB211060), DPPA5 (NM_001025290, NM_025274, XM_236761), DNMT3L (NM_013369, NM_019448), ECAT8 (AB211063, AB211061), GDF3 (NM_020634, NM_008108) _0 NM_028610), FTHL17 (NM_031894, NM_031261), SALL4 (NM_020436, NM_175303), Rex-1 (NM_174900, NM_009556), Utf1 (NM_003577, NM_009482), DPPA3 (NM_199286, NM_139218, STAT3, One or more genes selected from the group consisting of GRB2 (NM_002086, NM_008163) may be combined.
  • pluripotent stem cells By additionally expressing these genes, induction of pluripotent stem cells can be promoted (WO2007 / 69666).
  • the myeloid transcription factor C / EBP ⁇ CCAAT / enhancer-binding-protein ⁇
  • the B cell transcription factor Pax5 paired box 5
  • NM_016734 B cell transcription factor
  • these factors can also be expressed using the non-chromosomal viral vector of the present invention.
  • some of the recombinant vectors included in this kit can be replaced with proteins, synthetic compounds, and the like having considerable functions.
  • the efficiency of reprogramming can be improved by combining, for example, addition of a compound.
  • bFGF basic fibroblast growth factor
  • SCF stem cell factor
  • a compound for example, bFGF (basic fibroblast growth factor) and / or SCF (stem cell factor) can promote the induction of pluripotent stem cells, and can further replace the function of c-Myc in the induction of pluripotent stem cells (WO2007) / 69666).
  • a MAP kinase inhibitor (PD98056) is also useful for establishing pluripotent stem cells closer to ES cells (WO2007 / 69666).
  • DNA methylase (Dnmt) inhibitors and / or histone deacetylase (HDAC) inhibitors improve the induction efficiency of pluripotent stem cells (Huangfu D et al., Nat Biotechnol. (Published online: 22 June 2008, doi: 10.1038 / nbt1418); Nat. Biotechnol. 26, 795-797 (2008)).
  • HDAC histone deacetylase
  • pluripotent stem cells can be induced by introduction of only two genes, Oct4 and Sox2 (Huangfu, D. et al., Nat Biotechnol. 2008 26 (11): 1269 -75).
  • the vector of the present invention is useful as an agent for expressing these genes or partial genes thereof.
  • Dnmt inhibitor for example, 5-azacytidine and the like
  • HDAC inhibitor for example, suberolanilide hydrozamic acid (SAHA), trichostatin A (TSA), valproic acid (VPA) and the like are useful.
  • SAHA suberolanilide hydrozamic acid
  • TSA trichostatin A
  • VPA valproic acid
  • the efficiency can be increased by using glucocorticoid (dexamethasone) in combination.
  • the above-described vector or the like is introduced into the cell.
  • the introduction is preferably performed simultaneously. Specifically, within 48 hours, preferably within 36 hours, more preferably after the first vector or compound is added. All vectors and / or encoding reprogramming factors within 24 hours, 18 hours, 12 hours, 10 hours, 8 hours, 6 hours, 3 hours, 2 hours, or 1 hour It is preferred to complete the addition of the compound.
  • the dose of the vector can be appropriately adjusted, but preferably MOI 0.3-100, more preferably MOI 0.5-50, more preferably MOI 1-30, more preferably MOI 1-10, more preferably MOI 1-5 More preferably, the MOI is infected at about 3.
  • the induced pluripotent stem cells form a flat colony similar to ES cells and express alkaline phosphatase.
  • the induced pluripotent stem cells may express undifferentiated cell markers such as Nanog, Oct4, and / or Sox2.
  • the induced pluripotent stem cells preferably express TERT and / or exhibit telomerase activity.
  • the present invention relates to a method for producing a cell that expresses alkaline phosphatase, preferably further expressing the undifferentiated cell markers Nanog and / or TERT, and non-chromosomal integration in the production of the cell and in the manufacture of a drug that induces the cell It also relates to the use of type virus vectors.
  • a colony of pluripotent stem cells from desired cells including adult skin cells and neonatal foreskin cells for example 0.3 ⁇ 10 ⁇ 5 or more, 0.5 ⁇ 10 ⁇ 5 or more, 0.8 ⁇ 10 ⁇ 5 or more, or Appearance rate of 1 ⁇ 10 -5 or higher (eg 1.7 ⁇ 10 -5 to 2.4 ⁇ 10 -3 ), preferably 1.5 ⁇ 10 -5 or higher, 1.7 ⁇ 10 -5 or higher, 2.0 ⁇ 10 -5 or higher, 2.5 ⁇ 10 -5 or more, 3 x 10 -5 or more, 4 x 10 -5 or more, 5 x 10 -5 or more, 8 x 10 -5 or more, 1 x 10 -4 or more, 2 x 10 -4 or more, 3 x 10 -4 or more, 5 x 10 -4 or more, 8 x 10 -4 or more, 1 x 10 -3 or more, 1.5 x 10 -3 or more, 2 x 10 -3 or more, or 2.3 x
  • somatic cells there are no particular limitations on the differentiated cells that are the targets for inducing reprogramming, and desired somatic cells can be used. It has been shown that the generation of pluripotent stem cells from somatic cells is possible not only from cells derived from mouse embryos but also from differentiated cells collected from the tail of adult mice, hepatocytes and gastric mucosa cells This suggests that it does not depend on cell type or differentiation state (WO2007 / 069666; Aoi T. et al., Science [Published Online February 14, 2008]; Science. 2008; 321 (5889): 699-702) .
  • pluripotent stem cells are not dependent on the underlying cells.
  • the method of the present invention can be applied.
  • differentiated cells to be reprogrammed include fibroblasts, synovial cells, mucosal cells such as the oral cavity or stomach, hepatocytes, bone marrow cells, tooth germ cells, and other desired cells. It is.
  • the cells may also be derived, for example, from embryonic, fetal, neonatal, child, adult or elderly cells.
  • the origin of the animal is not particularly limited, and includes humans and non-human primates (such as monkeys), rodents such as mice and rats, and mammals including non-rodents such as cows, pigs and goats, etc. It is.
  • the cells produced by the method of the present invention are useful for differentiating into various tissues and cells, and can be used in desired tests, research, diagnosis, examinations, treatments, and the like.
  • induced stem cells are expected to be used in stem cell therapy.
  • reprogramming is induced using somatic cells collected from a patient, and then somatic stem cells and other somatic cells obtained by inducing differentiation can be transplanted into the patient.
  • the method of inducing cell differentiation is not particularly limited, and differentiation can be induced by, for example, retinoic acid treatment, various growth factors / cytokine treatments, or hormone treatments.
  • the obtained cells can be used for detecting the effect of a desired drug or compound, and through this, screening of the drug or compound can be performed.
  • SeV18 + / TS ⁇ F refers to mutations of G69E, T116A, and A183S in the M protein, mutations of A262T, G264, and K461G in the HN protein, L511F mutation in the P protein, and N1197S and K1795E mutations in the L protein.
  • This is a F gene-deficient Sendai virus vector having the expression (WO2003 / 025570).
  • This vector has a transgene insertion site (NotI site) upstream of the NP gene (3 ′ side of genome; also referred to as “18 + position”).
  • cell lysis buffer (10 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1.5 mM MgCl 2 , 0.65% NP-40) was added, pipetted, and suspended by vortex. Centrifugation was performed at 6000 rpm for 3 minutes, the supernatant was transferred to another 1.5 ml Eppendorf tube, and 200 ⁇ l of extraction buffer was added. After fully suspending with vortex, 400 ⁇ l of phenol / chloroform / isoamyl alcohol (25: 24: 1) was added, and further well suspended with vortex. Centrifugation was performed at 15000 rpm and 4 ° C.
  • the supernatant was transferred to another 1.5 ml Eppendorf tube, 400 ⁇ l of isopropanol was added, and the suspension was sufficiently suspended by vortexing and then cooled at ⁇ 20 ° C. for 30 minutes. Centrifugation was performed at 15000 rpm, 4 ° C. for 15 minutes, the supernatant was removed, 1 ml of 70% ethanol was added to the precipitate, suspended by vortexing, and then centrifuged at 15000 rpm, 4 ° C. for 5 minutes. After removing the supernatant and drying at room temperature, it was dissolved in 100 ⁇ l of nuclease-free water to obtain a total RNA solution of Jurkat cells.
  • Oct3 / 4 gene from human embryonic cancer cell NCCIT cells (ATCC number CRL-2073; Damjanov I, et al., Lab. Invest. 1993, 68 (2): 220-32)
  • Total RNA was recovered by the same method as described above.
  • CDNA was synthesized from the recovered total RNA using SuperScript III Reverse Transcriptase (Invitrogen catalog number 18080-044). 1 ⁇ g of total RNA was made up to 100 ⁇ g of random hexamer, 1 ⁇ l of 10 mM dNTP mixed solution and 13 ⁇ l with nuclease-free water. The mixture was heat-treated at 65 ° C. for 5 minutes and placed on ice for 1 minute to cool. Next, add 4 ⁇ l of 5xFirst-Strand Buffer, 1 ⁇ l of 0.1M DTT, 1 ⁇ l of RNaseOUT and 1 ⁇ l of Superscript III RT, mix by pipetting, spin down, 25 ° C for 5 minutes, 50 ° C for 60 minutes, 70 ° C. was reacted for 15 minutes. 180 ⁇ l of TE (pH 8.0) was added to obtain a cDNA library.
  • TE pH 8.0
  • This PCR product was diluted 100-fold with TE, and 1 ⁇ l was diluted with c-Myc-F (5′-GATGCCCCTCAACGTTAGCTTCACC-3 ′ (SEQ ID NO: 3)) and c-Myc-R (5′-GTTACGCACAAGAGTTCCGTAGCTG-3 ′ (PCR was performed using the primer of SEQ ID NO: 4)).
  • PCR products were separated by 1% agarose gel electrophoresis, and a band of about 1.3 kbp was excised and purified with Qiaquick Gel Extraction Kit (QIAGEN, Cat. No. 28706).
  • the clone was cloned into the SwaI site of pCAGGS-BSX (WO2005 / 071092), sequenced to select a clone with the correct sequence, and pCAGGS-BSX-c-Myc was obtained.
  • NotI-c-Myc F (5'-ATTGCGGCCGCATGCCCCTCAACGTTAGCTTCAC-3 '(SEQ ID NO: 5)
  • NotI-c-Myc R 5'-ATTGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACTCGTGTTAGTGTGTGTTTC PCR was carried out with the primer '(SEQ ID NO: 6)).
  • the PCR product was purified using Qiaquick PCR Purification kit (Qiagen Cat. No. 28106), followed by Not I digestion (3 hours at 37 ° C.). Purify using Qiaquick PCR Purification kit (Qiagen, Catalog No. 28106), clone to Not I site of bluescript plasmid vector, confirm gene sequence by sequencing, select clone with correct sequence and select pBS-KS-c- Got Myc. pBS-KS-c-Myc was digested with Not I (3 hours at 37 ° C.), separated by 1% agarose gel electrophoresis, excised band of approximately 1.5 kbp, Qiaquick Gel Extraction Kit (Qiagen, Catalog No. 28706) ).
  • the Not I fragment containing this c-Myc gene was cloned into the Not I site of the pSeV18 + / TS ⁇ F vector encoding the antigenome of the Sendai virus vector (SeV18 + / TS ⁇ F), and the correct sequence clone was selected by sequencing, and pSeV18 + c-Myc / TS ⁇ F was obtained.
  • This PCR product was diluted 100-fold with TE, and 1 ⁇ l was diluted with Sox2-F (5′-GATGTACAACATGATGGAGACGGAGC-3 ′ (SEQ ID NO: 9)) and Sox2-R (5′-GTCACATGTGTGAGAGGGGCAGTG-3 ′ (SEQ ID NO: PCR was performed using the primers of 10)).
  • Sox2-F 5′-GATGTACAACATGATGGAGACGGAGC-3 ′
  • Sox2-R 5′-GTCACATGTGTGAGAGGGGCAGTG-3 ′
  • the clone was cloned into the SwaI site of pCAGGS-BSX and sequenced to select a clone with the correct sequence to obtain pCAGGS-BSX-SOX2.
  • Not I Sox-2F (5'-ATTGCGGCCGCATGTACAACATGATGGAGACG-3 '(SEQ ID NO: 11)
  • Not I Sox-2R 5'-ATTGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTCACATGTCGCGTGTTGTCTGCATGTCGTG : PCR was performed with the primers of 12)).
  • the PCR product was purified using Qiaquick PCR Purification kit (Qiagen Cat. No. 28106), followed by Not I digestion (3 hours at 37 ° C.). Purify using the Qiaquick PCR Purification kit (Qiagen, Cat.No. 28106), clone it into the Not I site of the bluescript plasmid vector, confirm the gene sequence by sequencing, select the correct clone and select pBS-KS-Sox2. Obtained. pBS-KS-Sox2 digested with Not I (3 hours at 37 ° C), separated by 1% agarose gel electrophoresis, excised band of approximately 1k bp, purified with Qiaquick Gel Extraction Kit (Qiagen, catalog number 28706) did.
  • the Not I fragment containing the Sox2 gene was cloned into the Not I site of the pSeV18 + / TS ⁇ F vector, and a clone with the correct sequence was selected by sequencing to obtain pSeV18 + Sox2 / TS ⁇ F.
  • This PCR product was diluted 100-fold with TE, and 1 ⁇ l was diluted with KIF4-F (5′-GATGGCTGTCAGCGACGCGCTGCTCCC-3 ′ (SEQ ID NO: 15)) and KIF4-R (5′-GTTAAAAATGCCTCTTCATGTGTAAGGCGAG-3 ′ (SEQ ID NO: 16 )) Primers were used for PCR. PCR products were separated by 1% agarose gel electrophoresis, and a band of about 1.4 kbp was excised and purified with Qiaquick Gel Extraction Kit (QIAGEN, Cat. No. 28706).
  • the PCR product was purified using a Qiaquick PCR Purification kit (Qiagen Cat. No. 28106) and cloned into the SwaI site of pCAGGS-BSX. After confirming the sequence, a clone with the correct sequence was selected to obtain pCAGGS-BSX-KLF4.
  • NotI-KIF4-F (5'-ATTGCGGCCGCGACATGGCTGTCAGCGACGCGCTG-3 '(SEQ ID NO: 17)
  • NotI-KIF4-R 5'-ATTGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTTAGGAAAATGCCTCTTCATGT : PCR was performed with the primers of 18).
  • the PCR product was purified using Qiaquick PCR Purification kit (Qiagen Cat. No. 28106), followed by Not I digestion (3 hours at 37 ° C.).
  • pBS-KS-KLF4 was digested with Not I (3 hours at 37 ° C), separated by 1% agarose gel electrophoresis, the approximately 1.5 kbp band was excised, and the Qiaquick Gel Extraction Kit (Qiagen, catalog number 28706) was used. Purified.
  • the Not I fragment containing the KLF4 gene was cloned into the Not I site of the pSeV18 + / TS ⁇ F vector, and a clone with the correct sequence was selected by sequencing to obtain pSeV18 + KLF4 / TS ⁇ F.
  • Not I-Oct-3 / 4F 5′-GCCGCGGCCGCACCATGGCGGGACACCTGGCTTC-3 ′ (SEQ ID NO: 23)
  • Not I-Oct-3 / 4R 5 ′ -PCR with GCCGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTCAGTTTGAATGCATGGGAGAGCCCAGAGTGGTGAC-3 '(SEQ ID NO: 24)) PCR (94 °C -3min ⁇ 98 °C -10sec, 55 °C -15sec, 72 °C -2min 25 cycles ⁇ 72 °C -7min) Went.
  • the PCR product was purified using a Qiaquick PCR Purification kit (Qiagen Cat. No. 28106), followed by Not I digestion (2 hours at 37 ° C.). Purify using the Qiaquick PCR Purification kit (Qiagen, Cat.No. 28106), clone the Not I fragment containing the Oct3 / 4 gene into the Not I site of the pSeV18 + / TS ⁇ F vector, select the correct sequence clone by sequencing, and pSeV18 + Oct3 / 4 / TS ⁇ F was obtained.
  • Qiaquick PCR Purification kit Qiagen Cat.No. 28106
  • Sendai virus vector loaded with human transcription factor
  • Sendai virus vector carrying pCAGGS-NP, pCAGGS-P4C (-), pCAGGS-L (TDK), pCAGGS-T7, pCAGGS-F5R (WO2005 / 071085) and the above-mentioned human transcription factors in 293T / 17 cells
  • Sendai virus vector carrying pCAGGS-NP, pCAGGS-P4C (-), pCAGGS-L (TDK), pCAGGS-T7, pCAGGS-F5R (WO2005 / 071085) and the above-mentioned human transcription factors in 293T / 17 cells
  • Mix plasmids (pSeV18 + c-Myc / TS ⁇ F or pSeV18 + Sox2 / TS ⁇ F or pSeV18 + KLF4 / TS ⁇ F or pSeV18 + Oct3 / 4 /
  • the cells were cultured for 2 days in a 37 ° C. CO 2 incubator. Subsequently, cells expressing the Sendai virus fusion protein (F protein) LLC-MK2 / F / A (Li, H.-O. et al., J. Virology 74. 6564-6569 (2000), WO00 / 70070) was layered on 293T / 17 cells transfected at a rate of 10 6 cells per well and cultured in a CO 2 incubator at 37 ° C. for 1 day.
  • F protein Sendai virus fusion protein
  • the cell culture medium is removed, the cells are washed once with 1 ml of MEM medium (hereinafter referred to as PS / MEM) supplemented with penicillin streptomycin, and PS / MEM medium containing 2.5 ⁇ g / ml trypsin (hereinafter referred to as Try / PS / MEM).
  • PS / MEM MEM medium
  • Try / PS / MEM PS / MEM medium containing 2.5 ⁇ g / ml trypsin
  • A F gene-deficient Sendai virus vector carrying the Oct3 / 4 gene (hereinafter referred to as “SeV18 + Oct3 / 4 / TS ⁇ F vector”)
  • B F gene-deficient Sendai virus vector carrying the Sox2 gene (hereinafter referred to as “SeV18 + Sox2 / TS ⁇ F vector”)
  • C F gene-deficient Sendai virus vector carrying the Klf4 gene (hereinafter referred to as “SeV18 + Klf4 / TS ⁇ F vector”)
  • D F gene deletion type Sendai virus vector carrying the c-Myc gene (hereinafter referred to as “SeV18 + c-Myc / TS ⁇ F vector”)
  • Example 1 Production of ES-like cells by Sendai virus vector carrying a foreign gene First, human neonatal foreskin-derived fibroblasts (BJ) (ATCC (http://www.atcc.org), CRL-2522) ( Human adult skin-derived fibroblasts HDF (Applications, Inc.
  • mitomycin-treated feeder cells for example, MEF
  • 5.0 ⁇ 10 5 (cells) prepared in a gelatin-coated 10 cm culture dish and 5.0 ⁇ 10 4 (cells) to 1.0 ⁇ 10 5 of the introduced cells detached with 0.25% trypsin. 6 pieces were cultured on it.
  • the medium was changed from DMEM, 10% FBS to a medium for primate ES (ReproCell, RCHEMD001) (bFGF was added to 4 ng / ml), and cultured in a 3% CO 2 incubator.
  • the medium was changed every day or once every two days.
  • the medium may be a feeder cell conditioned medium.
  • Example 2 Alkaline phosphatase staining of cells obtained by the above-described initialization experiment
  • the activity of alkaline phosphatase, an undifferentiated marker of ES cells, is expressed in NBCT / BCIP (PIERCE, NBT / BCIP, 1-Step, # 34042). When stained, a blue-stained colony positive for alkaline phosphatase was observed (FIG. 2).
  • Example 3 Verification of expression level of specific gene in cells of cells obtained by the above-mentioned culture Extracting RNA by collecting a plurality of alkaline phosphatase positive colonies (ALP (+)) shown in Example 2 above (ALP (+) in FIG. 3 (a)). Reverse transcription reaction was performed with random primers, and PCR was performed with each primer (FIG. 3 (a)).
  • Primer sequences are Fw: 5'-GATCCTCGGACCTGGCTAAGC-3 '(SEQ ID NO: 25) and Rv: 5'-GCTCCAGCTTCTCCTTCTCCAGC-3' (SEQ ID NO: 26) for Oct3 / 4, Fw: 5'-AGCGCTGCACATGAAGGAGCACC for Sox2 -3 '(SEQ ID NO: 27) and Rv: 5'-ATGCGCTGGTTCACGCCCGCGCCCAGG-3' (SEQ ID NO: 28), for KLF4 Fw: 5'-GCTGCACACGACTTCCCCCTG-3 '(SEQ ID NO: 29) and Rv: 5'- GGGGATGGAAGCCGGGAGGAAGCGG-3 '(SEQ ID NO: 30), c-myc for Fw: 5'-TCTCAACGACAGCAGCTCGC-3' (SEQ ID NO: 31) and Rv: 5'-CAGGAGCCTGCCTCTTTTCCACAGA-3 '(SEQ ID NO:
  • Nanog is a marker for ES cells, was induced to be induced like fetal carcinoma cells (NCCIT), which is a positive control (ALP (+) in FIG. 3 (a)).
  • NCCIT fetal carcinoma cells
  • ALP (+) in FIG. 3 (a) Nanog is a newly identified homeodomain protein (Cell, Vol.
  • Example 4 Production of inducible pluripotent stem cells using mutant c-Myc Production of silent mutation-introduced human transcription factor c-Myc (hereinafter referred to as c-rMyc) Using pBS-KS-c-Myc as a template 6 types of primers (c-rMyc1-F (5'-CGGACGACGAGACCTTCATCAAGAACATCATCATCCAGGACTG-3 '(SEQ ID NO: 39)), c-rMyc1-F using PrimeStar HS DNA polymerase (Takara Bio Inc.
  • the PCR product was treated with DpnI at 37 ° C. for 2 hours. Transformation was performed using 5 ⁇ l of this reaction solution E. coli DH5 ⁇ (ToYoBo Code No. DNA-903). Sixteen colonies of E. coli were picked up, minipreped, and clones with the correct sequence were selected by sequencing to obtain pBS-KS-c-rMyc. pBS-KS-c-rMyc was digested with Not I (3 hours at 37 ° C.), separated by 1% agarose gel electrophoresis, excised band of approximately 1.5 kbp, and Qiaquick Gel Extraction Kit (Qiagen, catalog number 28706). ).
  • c-rMyc has the mutations a378g, t1122c, t1125c, a1191g, and a1194g.
  • the PCR product is treated with Pac I and Dpn I continuously, and the product is ligated (self-ligated), sequenced to select a plasmid from which the correct GFP gene has been removed, and Litmus SalINheIfrg PmutMtsHNts ⁇ F-GFP DelGFP was obtained.
  • HNLNOTI-F 5'-GGGTGAATGGGAAGCGGCCGCTAGGTCATGGATGG-3 '(SEQ ID NO: 49) and HNLNOTI-R: 5'-CCATCCATGACCTAGCGGCCGCTTCCCATTCACCC-3' PCR (94 ° C.-3 minutes ⁇ 98 ° C.-10 seconds, 55 ° C.-15 seconds, 72 ° C.-12 minutes, 25 cycles ⁇ 72 ° C.-7 minutes) was performed.
  • Sendai virus vector (SeV (HNL) -c-rMyc / TS ⁇ F vector) loaded with c-rMyc Seed 10 6 293T / 17 cells per well in a 6-well plate the day before transfection at 37 ° C The cells were cultured in a CO 2 incubator (under 5% CO 2 condition).
  • Sendai virus vector plasmid pSeV carrying pCAGGS-NP, pCAGGS-P4C (-), pCAGGS-L (TDK), pCAGGS-T7, pCAGGS-F5R and the human transcription factor c-rMyc shown above in the 293T / 17 cells (HNL) -c-rMyc / TS ⁇ F was mixed with 0.5 ⁇ g, 0.5 ⁇ g, 2 ⁇ g, 0.5 ⁇ g, 0.5 ⁇ g and 5.0 ⁇ g, respectively, and transfection was performed using 15 ⁇ l of TransIT-LT1 (Mirus). The cells were cultured for 2 days in a 37 ° C. CO 2 incubator.
  • Example 5 iPS induction efficiency by Sendai virus vector loaded with reprogramming factor
  • the iPS induction efficiency by Sendai virus vector loaded with reprogramming factor is shown in the table.
  • the number of appearance of ES-like colonies is shown with respect to the number of Sendai virus-infected cells placed on feeder cells.
  • the experiment was performed in the same manner as in Example 1 except that the above-mentioned c-rMyc-loaded vector was used as a vector.
  • the reprogramming factors Oct3 / 4, Sox2, Klf4, and c-Myc
  • the maximum number of colonies was obtained when the modified c-Myc (c-rMyc) mounted on the HNL site of the vector was used.
  • Example 6 Expression of ES marker in iPS cell Expression of ES marker in iPS cell induced by Sendai virus vector loaded with reprogramming factor was confirmed. Induction of iPS cells was performed in the same manner as in Example 1 except that the above-mentioned c-rMyc-loaded vector was used as a vector. Each ES cell-like colony was isolated and passaged under a microscope using a stem cell knife (Nippon Medical Instruments). RNA was extracted from each strain, and RT reaction and PCR were performed as in FIG.
  • TERT F2847 TGCCCGGACCTCCATCAGAGCCAG (SEQ ID NO: 37) and TERT R3399 (TCAGTCCAGGATGGTCTTGAAGTCTG (SEQ ID NO: 38)) for TERT
  • GDF3 F GGCGTCCGCGGGAATGTACTTC (SEQ ID NO: 51)
  • GDF3 R TGGCTTAGGGGT 52
  • TDGF1-F1 ATGGACTGCAGGAAGATGGCCCGC (SEQ ID NO: 53)
  • TDGF1-R567 TTAATAGTAGCTTTGTATAGAAAGGC (SEQ ID NO: 54)
  • Zfp42-F1 ATGAGCCAGCAACTGAAGAAACGGGCAAAG (SEQ ID NO: 55)
  • Zfp42 R933 CACTTTCCCTCTTGTTCATTCTTGTTCG (SEQ ID NO: 56)
  • Sall4 F AAACCCCAGCACATCAACTC (SEQ ID NO: 57)
  • Sall4 F AAACC
  • telomerase activity of iPS cells Telomerase activity was measured in order to confirm the infinite proliferation ability of iPS cells induced by Sendai virus vector loaded with reprogramming factor. Induction of iPS cells was performed in the same manner as in Example 1 except that the above-described c-rMyc-loaded vector (indicated as HNL) was used as a vector.
  • TRAPEZE TM Telomerase Detection Kit CHEMICON Cat. No. S7700
  • the cells were collected, 200 ⁇ l of 1X CAPS Lysis buffer attached to the kit was added, and suspended by pipetting.
  • the cells were cultured for 30 minutes on ice, and centrifuged at 12000 rpm for 20 minutes at 4 ° C. in a cooled microcentrifuge. 160 ⁇ l of the supernatant was transferred to another Eppendorf tube, and the protein concentration of this cell lysate was measured. Before performing the assay, an amount corresponding to 1 ⁇ g protein of the cell lysate was taken in an Eppendorf tube and heat-treated at 85 ° C. for 10 minutes. Samples with and without heat treatment were used in the TRAP assay.
  • Example 8 Multipotency of iPS cells
  • iPS cell induction was performed in the same manner as in Example 1.
  • Three iPS clones 4BJ1, B1 (BJ-derived), and 7H5 (HDF-derived) colonies were detached from the petri dish with collagenase IV (Invitrogen, 17104-019), and the cell mass was transferred to MPC-coated wells (Nunc, 145383).
  • RPMI1640 Suspension culture was performed for several days in 10% FBS, and the formation of embryoid bodies was confirmed under a microscope.
  • Sendai virus vector-derived iPS has differentiation ability, and each iPS formed an embryoid body, and on the 7th day, a number of cyst-like embryoid bodies that were further differentiated were observed (FIG. 6). .
  • SeV-iPS clones from which SeV vector was removed were detached from feeder cells with 1 mg / ml collagenase IV, and in the case of cardiomyocyte induction, DMEM, 20% FBS in the presence of 0.1 mM vitamin C on NPC coated plate The suspension was cultured for 6 days, and after embryoid body formation, it was transferred onto a 0.1% gelatin-coated plate and cultured for 1 week, and pulsating myocardium was obtained (Takahashi, T. et.al., Circulation 107, 1912). -1916, 2003).
  • iPS cells are similarly isolated and seeded on confluent PA6 feeder cells (RIKEN BRC) on a 0.1% gelatin-coated plate, followed by 2 mM L-glutamine, non-essential amino acids, and 2-mercaptoethanol. Incubate for 16 days in 10% KSR, GMEM medium (Invitrogen) with a final concentration of 1 x 10 -4 M, fix the cells with 10% formalin solution, stain with anti- ⁇ III tubulin antibody (SantaCruz; 2G10) and anti-Tyrosine Hydroxilase antibody (Chemicon; P07101) staining confirmed that it was a dopaminergic neuron (Kawasaki, H.
  • SeV-iPS cells were cultured on MMC-treated MEF feeder cells in the presence of RPMI1640, 2% FBS medium, 100 ng / ml activin A (R & D Systems) for 4 days, and N2 and B27 supplements, 2 Culturing was carried out for 8 days in a DMEM / F12 medium supplemented with mM L-glutamine, a non-essential amino acid, 2-mercaptoethanol 1 ⁇ 10 ⁇ 4 M and 0.5 mg / ml BSA (Invitrogen).
  • SeV-iPS cells are inoculated subcutaneously in SCID mice. After about 1 month, the formation of mass is confirmed. After about 2 months, specimens are collected, fixed with 10% formalin, embedded in paraffin, and stained with hematoxylin and eosin. Performed and confirmed the three germ layer differentiation. ( Figure 8)
  • Example 9 Promoter analysis of iPS cells Methylation analysis was performed by the following bisulfite sequencing method on activation states of gene promoters Oct3 / 4 and Nanog expressed in ES cells in iPS cells. As a result, the control parent strains BJ and HDF showed a lot of methylation of Oct3 / 4 promoter (-2330 to -21010 region) and Nanog promoter (-685 to -120 region), but each clone of SeV-iPS cells. In, many demethylations were observed, and it became clear that SeV-iPS cells were activated by Oct3 / 4 and Nanog promoters as in ES cells (FIG. 9).
  • Genomic DNA was extracted from iPS cells using QIAamp DNA Mini Kit (50) (Qiagen, catalog number: 51304) according to the protocol of the kit.
  • bisulfite modification was performed using BisulFast DNA Modification Kit for Methylated DNA Detection (Toyobo, catalog number: MDD-101) based on 1 ⁇ g of the extracted genomic DNA according to the protocol of the kit.
  • PCR was carried out using specific primers with bisulfite modified genomic DNA as a template and targeting the promoter region of Oct3 / 4 gene and Nanog gene.
  • PCR products were separated by agarose gel electrophoresis, and the target band was purified with QIAquick Gel Extraction Kit (Qiagen, catalog number: 28704).
  • the purified PCR product was subjected to TA-cloning using pGEM-T Easy Vector System I (Promega, catalog number: A1360) according to the kit protocol.
  • colony PCR was performed using specific primers targeting the promoter region of Oct3 / 4 gene and Nanog gene. Agarose gel electrophoresis was performed, and about 10 clones with the correct band size were selected.
  • plasmid DNA was extracted by miniprep and sequenced using T7 primer and SP6 primer. Comparison with the target sequence after bisulfite modification was performed to evaluate the methylation state of the promoter region.
  • Oct3 / 4 gene promoter region amplification and colony PCR primers J. Biol. Chem., 2005, Vol. 280, 6257-6260
  • mOct4-5F 5'-AATAGATTTTGAAGGGGAGTTTAGG-3 '(SEQ ID NO: 73)
  • mOct4-5R 5'-TTCCTCCTTCCTCTAAAAAACTCA-3 '(SEQ ID NO: 74)
  • Primer for Nanog gene promoter region amplification and colony PCR (Stem cell Research, Vol. 1, 105-115; Cell, 2007, Vol.
  • Nanog-z1-L 5'-GGAATTTAAGGTGTATGTATTTTTTATTTT-3 '(SEQ ID NO: 75) mehNANOG-F1-AS: 5'-AACCCACCCTTATAAATTCTCAATTA-3 '(SEQ ID NO: 76) Sequence primer T7: 5'-TAATACGACTCACTATAGGG-3 '(SEQ ID NO: 77) SP6: 5'-CATACGATTTAGGTGACACTATAG-3 '(SEQ ID NO: 78) Bisulfast DNA Modification Kit for Methylated DNA Detection BisalFast DNA Modification Kit for Methylated DNA Detection (Toyobo, catalog number: MDD-101)
  • iPS cells The gene expression profiles of iPS cells (SeV-iPS cells) induced by Sendai virus vectors were analyzed using parental BJ cells, human ES cells, and already established human iPS cells (GSM241846; Takahashi , K. et al., Cell, 131, 1-12, 2007).
  • Control gene expression information was obtained from GEO DetaSets and compared to that of SeV-iPS cells: human ES cells hES-H9 (GSM194390; Teser PJ, et al, Nature 448, 196-199, 2007), and human iPS The cells were hiPS derived from HDF (GSM241846; Takahashi, K. et al., Cell, 131, 1-12, 2007).
  • a temperature-dependent inactivating mutagenesis vector (Vector production method) Construction of a plasmid for preparing a temperature-dependent inactivating mutation-introduced Sendai virus vector L Y942H-F (5'-CAAATGTTGGAGGATTCAACCACATGTCTACATCTAGATG-3 '(SEQ ID NO: 79)), L Y942H based on Litmus SalINheIfrg PmutMtsHNts ⁇ F-GFP (WO2003 / 025570) -R (5'- CATCTAGATGTAGACATGTGGTTGAATCCTCCAACATTTG-3 '(SEQ ID NO: 80)), and L Y942H-F, L Y942H-R, P2-F (5'- CATCACAGCTGCAGGTGGCGCGACTGACAAC -3' (SEQ ID NO: 81)), PCR (94 ° C-3 minutes ⁇ 98 ° C-10 seconds, 55
  • the PCR product was digested with Dpn I at 37 ° C. for 1 hour, and 20 ⁇ l of this reaction solution was transformed with E. coli DH5 ⁇ (ToYoBo Code No. DNA-903). The colonies that emerged were picked up, minipreped, sequenced to select clones with the correct sequence, and Litmus38TS ⁇ F-GFP-LY942H and Litmus38TS ⁇ F-GFP-P2LY942H were obtained, respectively.
  • Litmus38TS ⁇ F-GFP-P2LY942H was digested with StuI and separated by agarose gel electrophoresis, and a 1.9 kbp band was cut out and purified.
  • Litmus SalINheIfrg PmutMtsHNts ⁇ F-GFP was digested with StuI and separated by agarose gel electrophoresis, and a 9.8 kbp band was cut out and purified. These two purified fragments were ligated to obtain Litmus38TS ⁇ F-GFP-P2.
  • Litmus38TS ⁇ F-GFP-P2LY942H was digested with NcoI and separated by agarose gel electrophoresis, and a 7.1 kbp band was cut out and purified.
  • Litmus SalINheIfrg PmutMtsHNts ⁇ F-GFP delGFP was digested with NcoI, separated by agarose gel electrophoresis, and a 3.7 kbp band was cut out and purified. Ligation was performed using these purified bands, and the structure was confirmed by colony PCR and NcoI-PacI double digestion to obtain Litmus38TS ⁇ F-P2LY942H ⁇ GFP.
  • PSeV (HNL) / TS ⁇ F was digested with NcoI, separated by agarose gel electrophoresis, and a 3.7 kbp band was cut out and purified. This band was ligated with the 7.1 kbp NcoI fragment of Litmus38TS ⁇ F-GFP-P2LY942H described above to obtain Litmus38TS ⁇ F-P2LY942H (HNL) ⁇ GFP.
  • Litmus38TS ⁇ F-GFP-P2 was digested with NcoI, separated by agarose gel electrophoresis, and a 7.1 kbp band was cut out and purified. This band was ligated with the above-mentioned Litmus SalINheIfrg PmutMtsHNts ⁇ F-GFP delGFP NcoI digested purified fragment (3.7kbp) or pSeV (HNL) / TS ⁇ F NcoI digested purified fragment (3.7kbp), respectively, and Litmus38TS ⁇ F-P2 ⁇ GFP and Litmus38TS ⁇ F-P (HNL) ⁇ GFP was obtained.
  • L L1361C-F (5'- GGTTCCTTAGGGAAGCCATGTATATTGCACTTACATCTTA -3 '(SEQ ID NO: 83)) and L L1361C-R (5'- TAAGATGTAAGTGCAATATAACCGGGATCTCTAAGCATACCGACT84' )
  • L L1558I-F (5'- CCTGTGTATGGGCCTAACATCTCAAATCAGGATAAGATAC -3 '(SEQ ID NO: 85)
  • L L1558I-R (5'- GTATCTTATCCTGATTTGAGATGTTAGGCCCATACACAGG -3' (SEQ ID NO: 86)
  • L L1361C-F, L L1361C-R, L L1558I-F and L L1558I-R PCR (94 ° C-3 min ⁇ 98 ° C-10 sec, 55 °
  • the PCR product was digested with Dpn I at 37 ° C for 1 hour, and 20 ⁇ l of this reaction solution was transformed with E. coli DH5 ⁇ (ToYoBooCode No. DNA-903). The colonies that emerged were picked up, minipreped, sequenced to select clones with the correct sequence, and pSeV / TS ⁇ F-Linker L1361C, pSeV / TS ⁇ F-Linker L1558I, and pSeV / TS ⁇ F-Linker L1361CL1558I were obtained, respectively.
  • Litmus38TS ⁇ F-P2LY942H (HNL) ⁇ GFP and pSeV / TS ⁇ F-Linker L1361CL1558I were each digested with SalI-NheI and separated by agarose gel electrophoresis, and the bands of 8.0 kbp and 8.3 kbp were cut out and purified. These purified fragments were ligated to obtain pSeV (HNL) / TS8 ⁇ F.
  • PSeV (HNL) / TS8 ⁇ F and pSeV (HNL) / TS ⁇ F were digested with NotI-XhoI and separated by agarose gel electrophoresis, and the bands of 4.9 kbp and 11.4 kbp were cut out and purified. These purified fragments were ligated to obtain pSeV (HNL) / TS7 ⁇ F.
  • pSeV (HNL) / TS7 ⁇ F vector Not I site was introduced by digestion with pNot-I digested from pBS-KS-c-rMyc by digestion with NotI. / TS7 ⁇ F was obtained.
  • Litmus38TS ⁇ F-P2LY942H ⁇ GFP and pSeV / TS ⁇ F-Linker L1361CL1558I were each digested with SalI-NheI and then separated by agarose gel electrophoresis, and the bands of 8.0 kbp and 8.3 kbp were cut out and purified. These purified fragments were ligated to obtain pSeV18 + BSSHII / TS8 ⁇ F.
  • the pSeV18 + BSSHII / TS8 ⁇ F and pSeV18 + Oct3 / 4 / TS ⁇ F were digested with AatII-SphI, respectively, and 15.2 kbp and 2.3 kbp bands were cut out and purified. These purified fragments were ligated to obtain pSeV18 + Oct3 / 4 / TS8 ⁇ F.
  • pSeV18 + Oct3 / 4 / TS8 ⁇ F and pSeV18 + / TS ⁇ F were each digested with PacI-SphI and separated by agarose gel electrophoresis, and the bands of 13.3 kbp and 4.2 kbp were cut out and purified.
  • Litmus38TS ⁇ F-P2 (HNL) ⁇ GFP and pSeV / TS ⁇ F-Linker L1361C were each digested with SalI-NheI and then separated by agarose gel electrophoresis, and the bands of 8.0 kbp and 8.3 kbp were cut out and purified. These purified fragments were ligated to obtain pSeV (HNL) / TS14 ⁇ F.
  • Litmus38TS ⁇ F-P2 (HNL) ⁇ GFP and pSeV / TS ⁇ F-Linker L1558I were each digested with SalI-NheI and then separated by agarose gel electrophoresis, and the 8.0 kbp and 8.3 kbp bands were cut out and purified. These purified fragments were ligated to obtain pSeV (HNL) / TS13 ⁇ F.
  • This pSeV (HNL) / TS13 ⁇ F Not I site was digested by digestion with NotI from pBS-KS-c-rMyc, and the Not I fragment containing the purified c-rMyc gene was introduced, and pSeV (HNL) -c-rMyc / TS13 ⁇ F was obtained.
  • Litmus38TS ⁇ F-P2 (HNL) ⁇ GFP and pSeV / TS ⁇ F-Linker L1361CL1558I were each digested with SalI-NheI and separated by agarose gel electrophoresis, and the bands of 8.0 kbp and 8.3 kbp were cut out and purified. These purified fragments were ligated to obtain pSeV (HNL) / TS15 ⁇ F.
  • This pSeV (HNL) / TS15 ⁇ F Not I site was introduced from pBS-KS-c-rMyc by digestion with NotI, and a Not I fragment containing the purified c-rMyc gene was introduced, and pSeV (HNL) -c-rMyc / TS15 ⁇ F was obtained.
  • Litmus38TS ⁇ F-P2 ⁇ GFP and pSeV / TS ⁇ F-Linker L1361C were each digested with SalI-NheI and then separated by agarose gel electrophoresis, and the 8.0 kbp and 8.3 kbp bands were cut out and purified. These purified fragments were ligated to obtain pSeV18 + BSSHII / TS14 ⁇ F. This pSeV18 + BSSHII / TS14 ⁇ F AatII-SphI was digested to excise and purify a 15.2 kbp band.
  • This purified fragment and the AatII-SphI fragment (2.3 kbp) of pSeV18 + Oct3 / 4 / TS ⁇ F described above were ligated to obtain pSeV18 + Oct3 / 4 / TS14 ⁇ F.
  • pSeV18 + Oct3 / 4 / TS14 ⁇ F was digested with NotI, separated by agarose gel electrophoresis, and then a 16.4 kbp band was cut out and purified.
  • Litmus38TS ⁇ F-P2 ⁇ GFP and pSeV / TS ⁇ F-Linker® L1558I were each digested with SalI-NheI and then separated by agarose gel electrophoresis, and the 8.0 kbp and 8.3 kbp bands were cut out and purified. These purified fragments were ligated to obtain pSeV18 + BSSHII / TS13 ⁇ F. This pSeV18 + BSSHII / TS13 ⁇ F AatII-SphI was digested, and a 15.2 kbp band was cut out and purified.
  • This purified fragment was ligated with the AatII-SphI fragment (2.3 kbp) of pSeV18 + Oct3 / 4 / TS ⁇ F described above to obtain pSeV18 + Oct3 / 4 / TS13 ⁇ F.
  • pSeV18 + Oct3 / 4 / TS13 ⁇ F was digested with NotI, separated by agarose gel electrophoresis, and then a 16.4 kbp band was cut out and purified.
  • Litmus38TS ⁇ F-P2 ⁇ GFP and pSeV / TS ⁇ F-Linker L1361CL1558I were each digested with SalI-NheI and then separated by agarose gel electrophoresis, and the 8.0 kbp and 8.3 kbp bands were cut out and purified. These purified fragments were ligated to obtain pSeV18 + BSSHII / TS15 ⁇ F. This pSeV18 + BSSHII / TS15 ⁇ F AatII-SphI was digested, and a 15.2 kbp band was cut out and purified.
  • This purified fragment was ligated with the above-mentioned ASeII-SphI fragment (2.3 kbp) of pSeV18 + Oct3 / 4 / TS ⁇ F to obtain pSeV18 + Oct3 / 4 / TS15 ⁇ F.
  • pSeV18 + Oct3 / 4 / TS15 ⁇ F was digested with NotI, separated by agarose gel electrophoresis, and then a 16.4 kbp band was cut out and purified.
  • Litmus38TS ⁇ F-P2 ⁇ GFP and pSeV / ⁇ SalINheIfrg Lmut were each digested with SalI-NheI and separated by agarose gel electrophoresis, and the 8.0 kbp and 8.3 kbp bands were cut out and purified. These purified fragments were ligated to obtain pSeV18 + BSSHII / TS12 ⁇ F. This pSeV18 + BSSHII / TS12 ⁇ F AatII-SphI was digested, and a 15.2 kbp band was cut out and purified.
  • This purified fragment was ligated with the above-mentioned ASeII-SphI fragment (2.3 kbp) of pSeV18 + Oct3 / 4 / TS ⁇ F to obtain pSeV18 + Oct3 / 4 / TS12 ⁇ F.
  • pSeV18 + Oct3 / 4 / TS12 ⁇ F was digested with NotI, separated by agarose gel electrophoresis, and then a 16.4 kbp band was cut out and purified.
  • This purified product and the NotI fragment containing Sox2, KLF4, and c-rMyc gene were ligated to obtain pSeV18 + Sox2 / TS12 ⁇ F, pSeV18 + KLF4 / TS12 ⁇ F, and pSeV18 + c-rMyc / TS12 ⁇ F.
  • the activated mutation-introduced F gene-deficient Sendai virus vector plasmid was mixed with 0.5 ⁇ g, 0.5 ⁇ g, 2 ⁇ g, 0.5 ⁇ g and 5.0 ⁇ g, respectively, and transfection was performed using 15 ⁇ l of TransIT-LT1 (Mirus).
  • the cells were cultured for 2 to 3 days in a 37 ° C. CO 2 incubator. After that, cells transfected with Sendai virus fusion protein (F protein) LLC-MK2 / F / A were layered on 293T / 17 cells transfected at a rate of 10 6 cells per well, and CO 2 at 37 ° C. The cells were cultured for 1 day in an incubator.
  • the cell culture medium is removed, the cells are washed once with 1 ml of MEM medium (hereinafter PS / MEM) supplemented with penicillin streptomycin, and then PS / MEM medium containing 2.5 ⁇ g / ml trypsin (hereinafter Try / PS / MEM). 1 ml per well was added and cultured in a CO 2 incubator at 32 ° C. While changing the medium every 3 to 4 days, in some cases, the culture was continued while being subcultured with LLC-MK2 / F / A cells.
  • PS / MEM MEM medium
  • Try / PS / MEM PS / MEM medium containing 2.5 ⁇ g / ml trypsin
  • Example 12 Removal of vector Colonies from which SeV vectors were naturally removed from SeV-iPS cells were obtained. Moreover, Sendai virus negative clones were obtained when iPS was induced at 37 ° C using a temperature sensitive vector and then shifted to 39 ° C. Furthermore, SeV negative clones were obtained by using HN antigen expressed on the cell surface by infection with SeV as an index and negative selection with anti-HN antibody.
  • SeV vector negative cells can be actively collected.
  • SeV vector-removed clones can be obtained with anti-HN antibodies using HN antigen expressed on the cell surface as a result of infection with SeV.
  • Anti-HN monoclonal antibody (IL4.1) was reacted on ice for 30 minutes with collagenase IV and trypsin treatment and suspension operation, and after washing with medium, secondary antibody bound to eg magnetic beads Anti-mouse IgG1 antibody (Anti-Mouse IgG1 Particles, BD) was similarly reacted on ice for 30 minutes, and unbound fraction was collected in a magnet (IMagnet Cell Separation Magnet, BD) (negative selection).
  • IMagnet Cell Separation Magnet, BD IMagnet Cell Separation Magnet
  • the mounted gene is most highly expressed at 32 ° C., is expressed at 35-36 ° C., is slightly weak at 37 ° C., and is not expressed at 38.5 ° C. or 39 ° C.
  • These vectors were loaded with reprogramming factors in the same manner (previous description), iPS was induced at 37 ° C., and the temperature was shifted after iPS cells were prepared, allowing easy removal of SeV.
  • HNL-Myc replication superiority As shown in 1 above, when iPS induction was performed with a combination of SeV-18 + Oct3 / 4, Klf4, Sox2 and SeV-HNL-c-rMyc, the c-rMyc gene was HN and L SeV-HNL-c-rMyc inserted in between is advantageous for replication compared to SeV vector with other factors inserted at 18+ position (upstream of NP gene), and c-Myc is the cell Of the four factors loaded on SeV, only SeV-HNL-c-rMyc remained at the end because of its advantageous growth characteristics.
  • SeV-HNL-c-rMyc-induced SeV-iPS cells were easy to establish as clones due to their excellent proliferation ability, and only one vector remained at the end, which was also easy to remove spontaneously. . Therefore, to remove by temperature shift using a temperature sensitive strain, only HNL-c-rMyc needs to be temperature sensitive, and in fact the last remaining HNL-c-rMyc vector is removed by temperature shift. (Figs. 12 and 13).
  • iPS cells could be induced by placing an initialization factor (Oct3 / 4, Sox2, Klf4, c-Myc) on TS7 ⁇ F, TS13 ⁇ F, and TS15 ⁇ F in Example 12-5. It was confirmed as follows that iPS cells can be similarly induced using another ⁇ F vector backbone L mutant Y1214F (WO2008 / 096811). (Construction of Lm ⁇ F / SeV) Plasmid construction pSeV18 + LacZ / ⁇ F-1214 (WO2008 / 096811) was digested with NotI and purified.
  • an initialization factor Oct3 / 4, Sox2, Klf4, c-Myc
  • pSeV18 + / ⁇ F-1214 also referred to as “Lm (Y1214F) ⁇ F / SeV” or simply “Lm ⁇ F / SeV”.
  • pSeV18 + / ⁇ F-1214 was digested with NotI and purified, and loaded with NotI fragments of the above-mentioned initialization 4 factors Oct3 / 4, Klf4, Sox2 and c-rMyc, respectively, and plasmid pSeV18 + Oct3 for constructing a viral vector.
  • the Sendai virus vector plasmid was mixed with 0.5 ⁇ g, 0.5 ⁇ g, 2 ⁇ g, 0.5 ⁇ g and 5.0 ⁇ g, respectively, and transfection was performed using 15 ⁇ l of TransIT-LT1 (Mirus). The cells were cultured for 2 to 3 days in a 37 ° C. CO 2 incubator.
  • the cell culture medium is removed, the cells are washed once with 1 ml of MEM medium (hereinafter referred to as PS / MEM) to which penicillin streptomycin has been added, and PS / MEM medium containing 2.5 ⁇ g / ml trypsin (hereinafter referred to as Try / PS / 1 ml of MEM) was added per well, and cultured in a CO 2 incubator at 32 ° C. While changing the medium every 3 to 4 days, in some cases, the culture was continued while being subcultured with LLC-MK2 / F / A cells.
  • PS / MEM MEM medium
  • Example 14 Feeder-free iPS induction method Since the expression of reprogramming factor by Sendai virus vector is high, it can be induced not only by the conventional method of induction on feeder cells but also by feeder-free. Induction factor-incorporated SeV was induced on a plastic petri dish until 15 days after infection, and the culture medium was changed from DMEM / 10% FBS to the medium for ES cells from the time when iPS-like colonies appeared. After reaching the size, the cells were detached from the petri dish with collagenase IV, reapplied on new feeder cells, and iPS cells were established.
  • Example 15 iPS induction by 4 factors of Thomson (Oct3 / 4, Sox2, Lin28, Nanog) 4 factors of Yamanaka (Oct3 / 4, Sox2, Klf4, c-Myc) (Takahashi, K. and Yamanaka S., In addition to Cell 126, 663-676, 2006), Thomson's four factors (Oct3 / 4, Sox2, Lin28, Nanog) (Yu J et al., Science. 2007, 318 (5858): 1917-20) Even when mounted on SeV, it was possible to induce iPS cells from human fibroblasts (FIG. 15B). Examples of the construction of Nanog and Lin28 vectors are shown below.
  • NotI-Nanog-F (5'-GCGCGGCCGCACCACCATGAGTGTGGATCCAGCTTGTCC-3 '(SEQ ID NO: 89)
  • NotI-Nanog-R 5'-GCGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTCTAGACTTTTTACCATGGTGCAT : PCR was performed with the primers of 90)).
  • the PCR product was purified using Qiaquick® PCR® Purification® kit® (Qiagen Cat. No. 28106), followed by NotI digestion. Purification was performed using Qiaquick PCR-Purification Kit (Qiagen, Cat. No.
  • KS-Lin28 was obtained.
  • NotI-Lin28-F (5'-GCGCGGCCGCACCACCATGGGCTCCGTGTCCAACCAGC-3 '(SEQ ID NO: 93)
  • NotI-Lin28-R 5'-GCGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTCGGTGTTCTTACGCGGTAGGG PCR was performed with the primer of No. 94)).
  • the PCR product was purified using a Qiaquick PCR Purification kit (Qiagen Cat. No. 28106) followed by Not I digestion. It was purified using Qiaquick PCR Purification kit (Qiagen, catalog number 28106), cloned into the Not I site of the pSeV18 + / TS ⁇ F vector, and a clone with the correct sequence was selected by sequencing to obtain pSeV18 + Lin 28 / TS ⁇ F. Using this plasmid, the F gene-deficient Sendai virus vector (referred to as “SeV18 + Lin 28 / TS ⁇ F vector”) retaining the Lin 28 gene by the method described above.
  • ES-like cells pluripotent stem cells
  • the obtained ES-like cells do not have foreign genes integrated into their chromosomes, they are not only convenient for testing and research using these cells, but also for immune rejection and ethical issues in disease treatment. It is possible to avoid the risk of canceration based on genotoxicity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Transplantation (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 本発明は、外来遺伝子が染色体に組み込まれていないES様細胞を、簡便にかつ効率的に製造するためのベクターを提供することを目的とする。染色体非組み込み型ウイルスベクターを用いて、体細胞からES様細胞を作製する方法を見出した。上記作製されたES様細胞は、外来遺伝子が染色体に組み込まれていないため、本細胞を利用した試験、研究に好都合であるばかりでなく、疾病の治療においても、免疫拒絶の問題や倫理面の問題を回避できる可能性がある。

Description

染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
 本発明は、リプログラムされた細胞の製造方法、該方法により製造された細胞、および該方法において用いられる組成物等に関する。特に本発明は、分化した体細胞から、多能性幹細胞を製造する方法とその方法により調製された多能性幹細胞に関する。
 胚性幹細胞(ES細胞)は哺乳動物胚盤胞の内部細胞塊より樹立した幹細胞であり、すべての細胞へと分化する能力(分化多能性)を維持したまま、無限に増殖させることができる。この特性から、ES細胞から大量に誘導、調製した心筋細胞や神経細胞を心筋梗塞やパーキンソン病患者に移植して治療する幹細胞療法が期待されている。また、病理、薬理の基礎研究や、創薬での開発ツールとしての利用も期待されている。しかしこのES細胞にはヒト受精卵を利用し、犠牲にするという倫理的問題が存在する。また限られたドナー受精卵の組織適合抗原が患者と一致しないという免疫拒絶の問題もある。一方、生体の各組織には神経幹細胞、造血幹細胞、間葉系幹細胞などの組織幹細胞が存在する。組織幹細胞は受精卵を使わないので倫理的問題が少なく、または無く、また患者自身の細胞が使えるので免疫拒絶反応も回避することができる。しかし組織幹細胞はその性質が必ずしも明らかでないため単離が難しく、数もきわめて少ない。増殖能や分化能もES細胞に比べると比べものにならないほど限られている。組織幹細胞や分化細胞等の体細胞を何らかの手段により高い増殖能と分化多能性を有するES細胞に類似した細胞(ES様細胞と称す)に変換することができたなら、このES様細胞は臨床応用等にとって理想的な幹細胞となる。
 具体的には、哺乳動物の細胞、特に患者の体細胞(皮膚、胃や肺などの組織、血液細胞など)を採取し、培養したこれら細胞を核初期化因子(nuclear reprogramming factors)(核初期化 (nuclear reprogramming) を誘導する因子)で刺激してES様細胞(「人工多能性幹細胞」、「誘導多能性幹細胞(iPS細胞)」又は「胚性幹細胞様細胞」と呼ばれる場合もある)を作製する。この作製したものをそのまま、もしくは細胞バンクとして蓄え、幹細胞として臨床応用する、或は薬理、病理を含む基礎研究に使用することが期待される(特許文献1)。また患者から樹立した人工多能性幹細胞を用い薬効確認実験を行うことも可能である。
 核初期化因子(nuclear reprogramming factors)としては、例えば、Oct遺伝子、Klf遺伝子、Myc遺伝子、Sox遺伝子、Nanog遺伝子、Lin28遺伝子、TERT遺伝子、及びSV40 LargeT遺伝子などが挙げられる(特許文献2、非特許文献1~7)。
 例えば、下記4つの組換えウイルスベクターを用いて、上記体細胞から上記ES様細胞が作製することができることが知られている(非特許文献1~7)。上記作製されたES様細胞は、臨床的に利用される場合には免疫拒絶の問題や倫理面の問題を回避できる可能性がある。
 (1)Oct3/4遺伝子を含むガンマレトロウイルスベクター又はレンチウイルスベクター(以下、これらを合わせて「レトロウイルスベクター」と総称する)
 (2)Klf4遺伝子を含むレトロウイルスベクター
 (3)c-Myc遺伝子を含むレトロウイルスベクター
 (4)Sox2遺伝子を含むレトロウイルスベクター
 上記特許文献、非特許文献は以下の通りである。
国際公開WO2005/080598 国際公開WO2007/069666
Cell. 2007 Nov 30;131(5):861-872 Science. 2007 Dec 21;318(5858):1917-1920 Nat Biotechnol. 2008 Jan;26(1):101-106 Science. 2007 Dec 21;318(5858):1920-1923 Nature. 2008 Jan 10;451(7175):141-146 PNAS. 2008 Feb 26;105(8):2883-2888 Cell. 2008 Apr 18;133(2):250-264
 しかし、上記レトロウイルスベクターを用いて作製したES様細胞は、宿主染色体へのベクターのインテグレーションにより染色体が構造的に改変されていることに注目しなくてはならない。予期せぬ染色体機能異常を来たしている可能性があり、特に癌細胞化する恐れがある。原因としては、レトロウイルスベクターを用いたことである。レトロウイルスベクターを用いる場合、導入した細胞の染色体にベクターがランダムに組み込まれることにより、染色体内のがん抑制遺伝子を不活性化したり、挿入部位に隣接するがん化に関与する遺伝子を活性化したりする危険性があるためである(実験医学 Vol.26 No.5(増刊):pp. 35-40, 2008)。また、それ以外の遺伝子あるいはその遺伝子の発現を修飾する遺伝子に組込まれた場合も、予期せぬ性質の細胞に変化する可能性がある。更には、最近染色体のいわゆる非暗号化領域も一定の染色体機能を担っているとされているので、非暗号化領域へのレトロウイルスベクターの組み込みがもたらす好ましからぬ結果も考慮する必要がある。加えて、ベクターが多能性幹細胞の分化に関与する遺伝子に挿入した場合には、幹細胞を分化させて得られる細胞を用いての治療や研究が、分化が行われないことにより、細胞が得られないために実施できないという可能性もある。このように、従来法による細胞リプログラミングでは、得られたES様細胞を用いる治療に安全性の問題が残る他、患者から樹立したES様細胞を用いての薬効、病態解析においても、染色体内に外来遺伝子が挿入されることによる、本来細胞で機能している遺伝子の不活性化や活性化による影響についても考慮しなくてはならず、かつその解析は極めて困難な作業となる。またレトロウイルスベクターを用いた場合、同一の研究者でも、そのロットごとに、また、異なる作製者が同じプロトコールで作製しても、確立されるES様細胞は染色体内の異なった箇所にレトロウイルスベクターが挿入されることになるため、人工多能性幹細胞の均一性について保証が出来ないという問題も存在する。
 本発明はこのような事情を根本的に解決することを意図してなされたもので、外来遺伝子が染色体に組み込まれていないES様細胞、つまり染色体非組換えES細胞を簡便にかつ効率的に製造する方法を提供する。また本発明は、該方法においてリプログラミングを誘導するために有用な遺伝子導入組成物を提供する。また、本発明は、本発明の方法により得られた多能性幹細胞を提供する。
 本発明者らは、染色体非組み込み型ベクターを用いることにより、外来遺伝子が染色体に組み込まれていない多能性幹細胞を製造できることを見出した。
 すなわち本発明は、染色体非組み込み型ベクターを用いた多能性幹細胞の製造方法、および本発明の方法により作製されたES様細胞等に関し、より具体的には請求項の各項に記載の発明に関する。なお同一の請求項を引用する請求項に記載の発明の2つまたはそれ以上の任意の組み合わせからなる発明も、本明細書において意図された発明である。すなわち本発明は、
〔1〕細胞のリプログラミングにおいて遺伝子を導入するための方法であって、染色体非組み込み型ウイルスベクターを用いて細胞に該遺伝子を導入することを特徴とする方法、
〔2〕リプログラミングが多能性幹細胞の誘導である、〔1〕に記載の方法、
〔3〕染色体非組み込み型ウイルスベクターがRNAウイルスベクターである、〔1〕または〔2〕に記載の方法、
〔4〕RNAウイルスベクターがマイナス鎖RNAウイルスベクターである、〔3〕に記載の方法、
〔5〕マイナス鎖RNAウイルスベクターがパラミクソウイルスベクターである、〔4〕に記載の方法、
〔6〕パラミクソウイルスベクターがセンダイウイルスベクターである、〔5〕に記載の方法、
〔7〕該遺伝子が下記(1)~(8)からなる群より選択される、〔1〕から〔6〕のいずれかに記載の方法、
 (1)Oct遺伝子
 (2)Klf遺伝子
 (3)Myc遺伝子
 (4)Sox遺伝子
 (5)Nanog遺伝子
 (6)Lin28遺伝子
 (7)SV40 LargeT抗原遺伝子
 (8)TERT遺伝子
〔8〕染色体非組み込み型ウイルスベクターを含む、細胞のリプログラミングにおける遺伝子導入に用いるための組成物、
〔9〕リプログラミングが多能性幹細胞の誘導である、〔8〕に記載の組成物、
〔10〕染色体非組み込み型ウイルスベクターがRNAウイルスベクターである、〔8〕または〔9〕に記載の組成物、
〔11〕RNAウイルスベクターがマイナス鎖RNAウイルスベクターである、〔10〕に記載の組成物、
〔12〕マイナス鎖RNAウイルスベクターがパラミクソウイルスベクターである、〔11〕に記載の組成物、
〔13〕パラミクソウイルスベクターがセンダイウイルスベクターである、〔12〕に記載の組成物、
〔14〕該遺伝子が下記(1)~(8)からなる群より選択される、〔8〕から〔13〕のいずれかに記載の組成物、
 (1)Oct遺伝子
 (2)Klf遺伝子
 (3)Myc遺伝子
 (4)Sox遺伝子
 (5)Nanog遺伝子
 (6)Lin28遺伝子
 (7)SV40 LargeT抗原遺伝子
 (8)TERT遺伝子
に関する。また本発明は、
〔1〕リプログラムされた細胞の製造方法であって、分化した細胞に少なくとも一つの染色体非組み込み型ウイルスベクターを接触させる工程を含むことを特徴とする方法、
〔2〕リプログラムされた細胞が人工多能性幹細胞である、〔1〕に記載の方法、
〔3〕該ベクターが、核初期化因子をコードする遺伝子を少なくとも一つ搭載する、少なくとも一つの染色体非組み込み型ウイルスベクターである、〔1〕または〔2〕に記載の方法、
〔4〕該遺伝子が、下記(1)~(8)からなる群より選択される、〔3〕に記載の方法、
 (1)Oct遺伝子
 (2)Klf遺伝子
 (3)Myc遺伝子
 (4)Sox遺伝子
 (5)Nanog遺伝子
 (6)Lin28遺伝子
 (7)SV40 LargeT抗原遺伝子
 (8)TERT遺伝子
〔5〕細胞内で、少なくともOct遺伝子、Klf遺伝子およびSox遺伝子の3種、あるいは少なくともOct遺伝子、Sox遺伝子、Nanog遺伝子、Lin28遺伝子の4種が内在性または外来性に発現するようにベクターが組み合わされる、〔1〕から〔4〕のいずれかに記載の方法、
〔6〕細胞内で、少なくともOct遺伝子、Klf遺伝子、Sox遺伝子およびMyc遺伝子の4種が内在性または外来性に発現するようにベクターが組み合わされる、〔5〕に記載の方法、
〔7〕染色体非組み込み型ウイルスベクターがRNAウイルスベクターである、〔1〕から〔6〕のいずれかに記載の方法、
〔8〕RNAウイルスベクターがマイナス鎖RNAウイルスベクターである、〔7〕に記載の方法、
〔9〕マイナス鎖RNAウイルスベクターがパラミクソウイルスベクターである、〔8〕に記載の方法、
〔10〕パラミクソウイルスベクターがセンダイウイルスベクターである、〔9〕に記載の方法、
〔11〕〔1〕から〔10〕のいずれかに記載の方法により製造された細胞を分化させる工程をさらに含む、分化した細胞の製造方法、
〔12〕〔1〕から〔11〕のいずれかに記載の方法により製造された細胞、
〔13〕リプログラミングの工程によりベクターが染色体に組み込まれていない、〔12〕に記載の細胞、
〔14〕染色体非組み込み型ウイルスベクターを発現ベクターとして含む、細胞のリプログラミングに用いるための組成物、
〔15〕リプログラミングが、分化した細胞からの多能性幹細胞の誘導である、〔14〕に記載の組成物、
〔16〕染色体非組み込み型ウイルスベクターがRNAウイルスベクターである、〔14〕または〔15〕に記載の組成物、
〔17〕RNAウイルスベクターがマイナス鎖RNAウイルスベクターである、〔16〕に記載の組成物、
〔18〕マイナス鎖RNAウイルスベクターがパラミクソウイルスベクターである、〔17〕に記載の組成物、
〔19〕パラミクソウイルスベクターがセンダイウイルスベクターである、〔18〕に記載の組成物、
〔20〕ベクターが、下記(1)~(8)からなる群より選択される初期化因子をコードする遺伝子を少なくとも搭載する、〔14〕から〔19〕のいずれかに記載の組成物、
 (1)Oct遺伝子
 (2)Klf遺伝子
 (3)Myc遺伝子
 (4)Sox遺伝子
 (5)Nanog遺伝子
 (6)Lin28遺伝子
 (7)SV40 LargeT抗原遺伝子
 (8)TERT遺伝子
〔21〕染色体非組み込み型ウイルスベクターの、分化した細胞のリプログラミングのための薬剤の製造における使用、
〔22〕リプログラミングが、分化した細胞からの多能性幹細胞の誘導である、〔21〕に記載の使用、
〔23〕染色体非組み込み型ウイルスベクターがRNAウイルスベクターである、〔21〕または〔22〕に記載の使用、
〔24〕RNAウイルスベクターがマイナス鎖RNAウイルスベクターである、〔23〕に記載の使用、
〔25〕マイナス鎖RNAウイルスベクターがパラミクソウイルスベクターである、〔24〕に記載の使用、
〔26〕パラミクソウイルスベクターがセンダイウイルスベクターである、〔25〕に記載の使用、
〔27〕ベクターが、下記(1)~(8)からなる群より選択される初期化因子をコードする遺伝子を少なくとも搭載する、〔21〕から〔26〕のいずれかに記載の使用、
 (1)Oct遺伝子
 (2)Klf遺伝子
 (3)Myc遺伝子
 (4)Sox遺伝子
 (5)Nanog遺伝子
 (6)Lin28遺伝子
 (7)SV40 LargeT抗原遺伝子
 (8)TERT遺伝子、
に関する。また本発明は、
〔1〕下記(1)~(8)からなる群より選択される遺伝子を搭載する、染色体非組み込み型ウイルスベクター、
 (1)Oct遺伝子
 (2)Klf遺伝子
 (3)Myc遺伝子
 (4)Sox遺伝子
 (5)Nanog遺伝子
 (6)Lin28遺伝子
 (7)SV40 LargeT抗原遺伝子
 (8)TERT遺伝子
〔2〕染色体非組み込み型ウイルスベクターがRNAウイルスベクターである、〔1〕に記載のベクター、
〔3〕RNAウイルスベクターがマイナス鎖RNAウイルスベクターである、〔2〕に記載のベクター、
〔4〕マイナス鎖RNAウイルスベクターがパラミクソウイルスベクターである、〔3〕に記載のベクター、
〔5〕パラミクソウイルスベクターがセンダイウイルスベクターである、〔4〕に記載のベクター、に関する。
 なお、本明細書に記載した任意の発明要素およびその任意の組み合わせは、本明細書に意図されている。また、それらの発明において、本明細書に記載の任意の要素またはその任意の組み合わせを除外した発明も、本明細書に意図されている。また本発明に関して、明細書中に記載されたある特定の態様は、それを開示するのみならず、その態様を含むより上位の本明細書に開示された発明から、その態様を除外した発明も開示するものである。
 以上説明したように、本発明に係る方法により作製された細胞は、外来遺伝子が染色体に組み込まれていないため、本細胞を利用した試験、研究に好都合であるばかりでなく、疾病の治療においても免疫拒絶の問題や倫理面の問題を回避でき、さらに遺伝毒性に基づく癌化の危険性、染色体機能変化による予期せぬ副作用、細胞の性質の変化を回避できることが期待される。さらに本発明の方法によれば、成人皮膚細胞を含む所望の細胞種から、レトロウイルスを用いた従来の方法に比べ有意に高い効率(例えば約10倍)で多能性幹細胞を誘導することが可能である。さらにレトロウイルスを用いた従来の方法は、例え全く同じプロトコールで細胞を作製したとしても、確立されるES様細胞は染色体内の異なった箇所にレトロウイルスベクターが挿入されることになるため、人工多能性幹細胞の均一性は保証されないのに対し、本発明の方法ではベクターは染色体に挿入されないことから、遺伝的により均一な細胞を安定して作製することが可能である。またレトロウイルスは一般に指向性が強く、例えば現在一般的な初期化方法に使われているecotropic(同種指向性)レトロウイルスベクターでは、レトロウイルス受容体の存在もしくは外部導入が初期化に先立って必要となり、それが発現していない動物種での人工多能性幹細胞の樹立を難しくしていた。これに対して本発明の方法は、幅広い動物種(哺乳動物全般)に応用が可能であり、例えばサルやブタなどの疾患モデル動物として需要が大きい生物種への応用も可能になる。
本発明に係る方法により得られた細胞の形態を示す写真である。上段の中央および右のパネルは、ベクター導入後23日のコロニーを表す。下段のパネルは継代後のコロニーを表す。 本発明に係る方法により得られた細胞のアルカリフォスファターゼによる染色による結果である。 本発明に係る方法により得られた細胞の細胞内での特定遺伝子の発現量を示した結果である。アルカリホスファターゼ陽性のコロニー群(ALP(+))から調製したmRNA(パネル(a))および単一のコロニーから調製したmRNA(パネル(b))を用いたRT-PCRの結果を示す。これらの細胞では、Oct3/4、Sox2、Klf4、およびc-Mycの発現が認められたのに加え、ES細胞マーカーであるNanogの発現も観察された(パネル(a)および(b))。また、単一クローンから継代した細胞には、無限増殖能を示すテロメラーゼの活性化指標であるhTERTの発現が認められた(パネル(b))。BJ:ベクターを導入していない細胞。NCCIT:胎児性カルシノーマ細胞 (ポジティブコントロール)。対照はテンプレートDNA無しのネガティブコントロールである。 本発明に係る方法により得られた細胞のESマーカーの発現を示した結果である。BJ:ベクターを導入していない細胞。NCCIT:胎児性カルシノーマ細胞 (ポジティブコントロール)。対照はテンプレートDNA無しのネガティブコントロールである。 本発明に係る方法により得られた細胞のテロメラーゼ活性を検出した結果である。 本発明に係る方法により得られた細胞の多分化能を示した結果である。胚様体形成実験の結果を示した。 本発明に係る方法により得られた細胞の多分化能(in vitro)を示した結果である。ヒトBJ細胞より本発明のベクターにより誘導したウイルスフリーの誘導多能性幹(iPS)細胞のin vitroにおける中胚葉(心筋、血球細胞)、外胚葉(TH陽性ドーパミン産生ニューロン)、内胚葉(Sox17陽性細胞およびPDX1陽性膵β細胞)由来の有用細胞への分化を示す。 本発明に係る方法により得られた細胞の多分化能 (in vivo) を示した結果である。ヒトBJ細胞より本発明のベクターにより誘導したウイルスフリーのiPS細胞HNLs, HNL1を免疫不全マウスの皮下に投与して作製された奇形腫。a:多様な分化組織 b: 軟骨および分泌細胞(黒矢印) c: 骨組織 d: 分泌組織(黒矢印)および神経上皮より分化した網膜様組織(白矢印) e: 移行上皮組織(中央) f: 硬骨および骨髄様組織(白矢印) g: 消化管様組織 h: 球形組織 i: 心筋様組織 本発明に係る方法により得られた細胞のエピジェネティクスを示した結果である。 a: ヒトES細胞特異的プロモーター領域の活性化状態を、それぞれOct3/4とNanogについてバイサルファイトシークエンス法にて解析した。活性化した脱メチル化領域を白い丸で、メチル化領域を黒い丸で示した。親株ヒト新生児包皮細胞BJ由来のSeV-iPSクローンHNL1およびHNLs、ヒト成人皮膚細胞HDF由来のSeV-iPSクローン7H5について解析を行った。SeV-iPS細胞はいずれも両領域において、該当プロモータの活性化が認められた。 b: ヒトBJ細胞よりSeVにより誘導したウイルスフリーiPS細胞HNL1について、マイクロアレイにて遺伝子発現解析を行い、親株であるBJ細胞およびヒトES細胞H9株との比較を行った。rにて相関係数を示した。その結果、すでに報告のあるレトロウイルスより誘導されたヒトiPS細胞HDF-iPSよりも、外来遺伝子フリーになったSeV-iPSは、よりヒトES細胞H9株に近いプロファイルを示した(相関係数r=0.9789)。 導入外来遺伝子およびセンダイウイルス(SeV)ベクターの細胞増殖を通した除去。導入外来遺伝子およびセンダイウイルス(SeV)ベクターが、細胞増殖と共に希釈・除去されることを示した図である。(A) 新生児細胞 (BJ) 由来もしくは成人細胞 (HDF) 由来のSeV-iPS細胞 (18+c-Mycを用いたBJ由来クローン: 4BJ1, B1; HDF由来クローン:7H5、HNL-c-Mycを用いたBJ由来クローン:HNLs, HNL1~6, HNLp) 中における導入外来遺伝子の発現減少を、ベクター部分の配列を認識するプライマーを用いたRT-PCRにて経時的に測定した(Pは継代数を表す)。継代が進むにつれ、4つの導入初期化因子が3つ、2つと減少していく現象が認められた。18+位に外来遺伝子を導入した場合は、c-Mycが最初に除去され、HNL位にc-Mycを導入した場合は、c-Mycが最後まで残る傾向が認められ、4つのベクターの間で組合せにより、一定の複製優位性があることが示唆された。また、HNL-c-Mycで誘導したクローンHNLsとHNL1においては外来遺伝子が完全にフリーになっていた。(B) iPS細胞内のSeVゲノムの経時的減少。Aと同様に各iPS細胞クローンにおけるSeVゲノムの経時的減少を定量RT-PCRにて測定した。その結果、SeVゲノムは定量PCRでも継代と共に減少する事が確認され、HNL1とHNLsクローンにおいてはSeVゲノムの消失が明らかになった。(C) iPS細胞内のSeV蛋白質の消失。A, Bで確認されたSeV由来遺伝子のHNL1およびHNLsにおける消失は、抗SeV抗体によるウェスタンブロットでも確認され、ゲノムのみならずSeV由来蛋白質も消失していることが確認された。 抗ウイルス蛋白質抗体によるウイルスベクター陰性細胞集団の回収。(上パネル)iPSコロニー内でのウイルスベクター希釈を示す。SeV-iPS細胞コロニーの抗HN抗体による染色により、コロニー内にはSeV陽性細胞と陰性細胞が混在しており、左の模式図に示した通り、ウイルス粒子の少ない部分を選択することにより、陰性集団を回収することが可能であることが示唆された(P:継代数)。(下パネル)実際に、SeV感染細胞表面に現れるHN抗原を指標に、抗HN抗体によりSeV陽性細胞を除去することが可能であった。SeV-iPS細胞集団(c-Myc/SeVが残存する株:HNLp4 parent)を抗HN抗体と反応させ、IMag (BD)マグネットビーズに結合させ、その陰性フラクションを回収し、RT-PCRにてSeV陰性になっていることを確認した(HNL4p-)。また、SeV陽性集団を濃縮することも可能であった(HNL4p+)。 新温度感受性株(TS)の特性。実施例1で使用したTS株は、37℃での細胞毒性は少ないが、搭載されたGFP蛋白の発現は、35℃から39℃までシフトしても変化は比較的少ない (対照 TS/ΔF)。しかし、新たに構築したTS7(Y942H, L1361C, L1558I)は38℃以上でのGFPの発現は認められず、TS13 (P2, L1558I) では37℃での発現が35℃に比べ低く、TS15 (P2, L1361C, L1558I) では、37℃では殆どGFPの発現が見られない。 温度感受性株TS7, TS13, TS15/ΔF/SeVを利用したヒトiPS細胞誘導とウイルス除去。A. TS7, TS13もしくはTS15のHNL位(HN遺伝子とL遺伝子の間)にc-Mycを搭載したΔF/TS/SeVと、Oct3/4, Sox2, Klf4をTSに搭載したΔF/TS/SeVを、新生児包皮細胞BJに同時感染させ、ヒトiPS細胞を誘導した。単離されたiPS細胞は、A. RT-PCRの結果、半数以上が外来遺伝子フリーになり、B. 外来遺伝子フリーのiPS細胞クローン中のSeV蛋白質を確認したところ、蛋白レベルでも完全にウイルスフリーになっていた。(4BJ1およびB1: SeV発現iPS細胞、対照: SeV感染LLC-MK2細胞)。 温度感受性株TS7, TS13, TS15/ΔF/SeVにより誘導されたヒトiPS細胞のESマーカー発現。図13に示した実験において外来遺伝子およびウイルスフリーが確認されたiPS細胞クローンについて、ESマーカーの発現を、RT-PCRによって確認した。すべてのウイルスフリーのiPS細胞において、調べたESマーカーすべての発現が認められた。 他のSeVベクターや初期化因子によって誘導されるSeV-iPS細胞。(A) 実施例1で用いたTS ΔF/SeVとは異なるベクター骨格である、Lm (Y1214F) ΔF/ SeVにOct3/4, Sox2, Oct4, Nanogを搭載し、iPS細胞誘導を行ったところ、アルカリホスファターゼ(ALP)陽性のES様細胞コロニーが得られた。(B) Thomsonの4因子 (Oct3/4, Sox2, Nanog, Lin28 ΔF/ TS/ SeV) によるiPS細胞誘導。Yamanakaの4因子(Oct3/4, Sox2, Klf4, c-Myc)(左パネル)以外でも、Thomsonの4因子(Oct3/4, Sox2, Nanog, Lin28 ΔF/ TS/ SeV) (右パネル)により iPS細胞が誘導された。
 以下、本発明の実施の形態について詳細に説明する。
 本発明は、染色体非組み込み型ウイルスベクターを用いて分化した細胞のリプログラミングを誘導する方法、特に体細胞から多能性幹細胞を製造する方法を提供する。この方法は、例えば導入したい核初期化因子(nuclear reprogramming factor(s))をコードする遺伝子を保持する染色体非組み込み型ウイルスベクターを、体細胞等の分化した細胞に接触させる工程を含む方法である。より具体的には本発明は、細胞のリプログラミングにおいて遺伝子を導入するための方法であって、その必要のある細胞に、染色体非組み込み型ウイルスベクターを用いて該遺伝子を導入する方法、およびそのための染色体非組み込み型ウイルスベクターを含む組成物を提供する。本発明において多能性幹細胞とは、動物の胚盤胞期の胚の内部細胞塊より作られる幹細胞またはそれと類似した表現型を有する細胞を言う。具体的には、本発明において誘導される多能性幹細胞は、ES様細胞の指標であるアルカリホスファターゼを発現する細胞である。また好ましくは、多能性幹細胞は、培養することにより、細胞質に比べ核の比率が高い細胞からなる扁平なコロニーを形成する。培養は、適宜フィーダーと共に培養してよい。またMEFなどの培養細胞が数週間で増殖が停止するのに対し、多能性幹細胞は長期間の継代が可能であり、例えば3日ごとの継代で15回以上、好ましくは20回以上、25回以上、30回以上、35回以上、または40回以上継代しても、増殖性が失なわれないことにより確認することができる。また多能性幹細胞は、好ましくは内在性のOct3/4またはNanog、より好ましくはその両方を発現する。また多能性幹細胞は、好ましくはTERTを発現し、テロメラーゼ活性(テロメリックリピート配列を合成する活性)を示す。また多能性幹細胞は、好ましくは三胚葉(内胚葉、中胚葉、外胚葉)に分化する能力(例えばテラトーマ形成および/または胚様体形成において)を持つ。より好ましくは、多能性幹細胞は、胚盤胞に移植することにより生殖系列キメラを生成する。Germline transmissionが可能な多能性幹細胞は、germline-competentな多能性幹細胞と言う。これらの表現型の確認は、周知の方法により実施することができる(WO2007/69666; Ichisaka T et al., Nature 448(7151):313-7, 2007)。
 また本発明において分化したとは、例えば多能性幹細胞よりも分化していることを言い、複数の細胞系列に分化する能力をまだ持っている状態(例えば体性幹細胞など)、および最終分化した状態を含む。分化した細胞とは、多能性幹細胞から由来する(多能性幹細胞以外の)細胞である。分化した細胞は、例えば三胚葉(内胚葉、中胚葉、外胚葉)に分化する能力を持たないものであってよい。このような細胞は、初期化(reprogramming)されなければ三胚葉を形成する能力を持たない。また分化した細胞は、例えば自身が属する胚葉型以外の細胞を生成できない細胞であってよい。分化した細胞は体細胞であってよく、例えば生殖細胞以外の細胞であってよい。
 本発明において初期化(reprogramming)とは、ある細胞の分化状態を、それより未分化な状態にすることを言い、例えば分化した細胞が脱分化すること、例えば分化多能性を持たない細胞から持つ細胞、例えば多能性幹細胞を誘導することが含まれる。また本発明において脱分化とは、ある細胞を、より未熟な(例えば未分化な)状態にすることを言う。脱分化とは、ある細胞が分化して来た最初または途上の状態に戻すことであってよい。また脱分化とは、自身が属する胚葉型以外の細胞を生成できない細胞から、他の胚葉の細胞にも分化できる状態になることであってよい。脱分化には、例えば三胚葉分化能を持たない細胞が、三胚葉分化能を獲得することが含まれる。また脱分化には、多能性幹細胞の生成が含まれる。
 また本発明において体細胞とは、例えば多能性幹細胞以外の細胞である。体細胞には、例えば多細胞生物を構成する細胞のうち多能性幹細胞以外の細胞、およびその培養細胞が含まれる。体細胞には、例えば体性幹細胞および最終分化した細胞が含まれる。
 本発明においてウイルスベクターは、当該ウイルスに由来するゲノム核酸を有し、該核酸に導入遺伝子を組み込むことにより、該遺伝子を発現させることができるベクターである。また本明細書において多能性幹細胞を製造するための染色体非組み込み型ウイルスベクターとは、ウイルスに由来し、遺伝子を標的細胞に導入することができるウイルスベクターであって、導入された遺伝子が宿主の染色体(核由来染色体)に組み込まれる危険性のない運搬体のことをいう。外来遺伝子を保持する様な染色体非組み込み型ウイルスベクターを構築することによって、本発明で用いる組換え非組み込み型ウイルスベクターを得ることができる。また本発明においてウイルスベクターには、感染ウイルス粒子の他、ウイルスコア、ウイルスゲノムとウイルス蛋白質との複合体、または非感染性ウイルス粒子などからなる複合体であって、細胞に導入することにより搭載する遺伝子を発現する能力を持つ複合体が含まれる。例えばRNAウイルスにおいて、ウイルスゲノムとそれに結合するウイルス蛋白質からなるリボヌクレオ蛋白質(ウイルスのコア部分)は、細胞に導入することにより細胞内で導入遺伝子を発現することができる(WO00/70055)。細胞への導入は、適宜トランスフェクション試薬等を用いて行えばよい。このようなリボヌクレオ蛋白質(RNP)も本発明においてウイルスベクターに含まれる。
 本発明において、宿主の染色体に組み込まれる危険性がないとは、ウイルスベクターを導入した場合に、宿主染色体に組み込まれる頻度が十分に低いことを言う。好ましくは、宿主の染色体への組み込み頻度は、例えばヒト線維肉腫由来細胞株 HT1080 (ATCC CCL121)に10 PFU/cellで感染させた場合に 5×10-4 以下であり、より好ましくは 10-4 以下であり、より好ましくは 10-5 以下であり、より好ましくは 10-6 以下であり、より好ましくは 10-7 以下である。本発明において用いられる非組み込み型ウイルスベクターは、特にRNAウイルスが好ましい。本発明においてRNAウイルスとは、RNAゲノムを有し、ライフサイクルにおいてDNAのフェーズを持たないウイルスを言う。本発明においてRNAウイルスは、逆転写酵素を持たない(すなわちレトロウイルスは含まれない)。すなわちウイルス増殖において、ウイルスゲノムはDNAを介さずに、RNA依存性RNAポリメラーゼにより複製される。RNAウイルスはDNAフェーズを持たないため、RNAウイルスベクターを用いることにより、宿主染色体への組み込みのリスクを最小限に抑えることが可能となる。RNAウイルスには、一本鎖RNAウイルス(プラス鎖RNAウイルスおよびマイナス鎖RNAウイルスを含む)、および二本鎖RNAウイルスを含む。またエンベロープを有するウイルス(エンベロープウイルス;enveloped viruses)およびエンベロープを有さないウイルス(非エンベロープウイルス;non-enveloped viruses)を含むが、好ましくはエンベロープウイルスに由来するベクターが用いられる。本発明においてRNAウイルスには、具体的には以下の科に属するウイルスが含まれる。
  ラッサウィルスなどのアレナウイルス科(Arenaviridae)
  インフルエンザウイルスなどのオルソミクソウイルス科(Orthomyxoviridae)
  SARSウイルスなどのコロナウイルス科(Coronaviridae)
  風疹ウイルスなどのトガウイルス科(Togaviridae)
  ムンプスウイルス、麻疹ウイルス、センダイウイルス、RSウイルスなどのパラミクソウイルス科(Paramyxoviridae)
  ポリオウイルス、コクサッキーウイルス、エコーウイルスなどのピコルナウイルス科(Picornaviridae)
  マールブルグウイルス、エボラウイルスなどのフィロウイルス科(Filoviridae)
  黄熱病ウイルス、デング熱ウイルス、C型肝炎ウイルス、G型肝炎ウイルスなどのフラビウイルス科(Flaviviridae)
  ブンヤウイルス科(Bunyaviridae; Bunyavirus, Hantavirus, Nairovirus, および Phlebovirus属等を含む)
  狂犬病ウイルスなどのラブドウイルス科(Rhabdoviridae)
  レオウイルス科(Reoviridae)
 本発明において用いられる染色体非組み込み型ウイルスベクターは、例えば、マイナス鎖RNAウイルスベクターである。マイナス鎖RNAウイルスベクターとは、マイナス鎖(ウイルス蛋白質をコードするセンス鎖に対するアンチセンス鎖)のRNAをゲノムとして含むウイルスからなるベクターである。マイナス鎖RNAはネガティブ鎖RNAとも呼ばれる。本発明において例示として掲げられるマイナス鎖RNAウイルスとして、特に一本鎖マイナス鎖RNAウイルス(非分節型(non-segmented)マイナス鎖RNAウイルスとも言う)が挙げられる。「一本鎖ネガティブ鎖RNAウイルス」とは、一本鎖ネガティブ鎖[すなわちマイナス鎖]RNAをゲノムに有するウイルスを言う。このようなウイルスとしては、パラミクソウイルス(Paramyxoviridae; Paramyxovirus, Morbillivirus, Rubulavirus, および Pneumovirus属等を含む)、ラブドウイルス(Rhabdoviridae; Vesiculovirus, Lyssavirus, および Ephemerovirus属等を含む)、フィロウイルス(Filoviridae)などの科に属するウイルスが含まれ、分類学上モノネガウイルス目(Mononegavirales)に属している(ウイルス 第57巻 第1号、pp29-36、2007; Annu. Rev. Genet. 32, 123-162, 1998; Fields virology fourth edition, Philadelphia, Lippincott-Raven, 1305-1340,2001; Microbiol. Immunol. 43, 613-624, 1999; Field Virology, Third edition pp1205-1241 1996)。
 本発明において例示として掲げられるマイナス鎖RNAウイルスベクターとしては、パラミクソウイルスベクターが挙げられる。パラミクソウイルスベクターは、パラミクソウイルス科(Paramyxoviridae)ウイルスに由来するウイルスベクターである。例えばパラミクソウイルス科(Paramyxoviridae)ウイルスのセンダイウイルス(Sendai virus)を挙げることができる。他の例としては、ニューカッスル病ウイルス(Newcastle disease virus)、おたふくかぜウイルス(Mumps virus)、麻疹ウイルス(Measles virus)、RSウイルス(Respiratory syncytial virus)、牛疫ウイルス(rinderpest virus)、ジステンパーウイルス(distemper virus)、サルパラインフルエンザウイルス(SV5)、ヒトパラインフルエンザウイルス1,2,3型、オルトミクソウイルス科 (Orthomyxoviridae)のインフルエンザウイルス(Influenza virus)、ラブドウイルス科(Rhabdoviridae)の水疱性口内炎ウイルス(Vesicular stomatitis virus)、狂犬病ウイルス(Rabies virus)等が挙げられる。
 本発明において用い得るウイルスをさらに例示すれば、例えば Sendai virus (SeV)、human parainfluenza virus-1 (HPIV-1)、human parainfluenza virus-3 (HPIV-3)、phocine distemper virus (PDV)、canine distemper virus (CDV)、dolphin molbillivirus (DMV)、peste-des-petits-ruminants virus (PDPR)、measles virus (MV)、rinderpest virus (RPV)、Hendra virus (Hendra)、Nipah virus (Nipah)、human parainfluenza virus-2 (HPIV-2)、simian parainfluenza virus 5 (SV5)、human parainfluenza virus-4a (HPIV-4a)、human parainfluenza virus-4b (HPIV-4b)、mumps virus (Mumps)、およびNewcastle disease virus (NDV) などが含まれる。より好ましくは、Sendai virus (SeV)、human parainfluenza virus-1 (HPIV-1)、human parainfluenza virus-3 (HPIV-3)、phocine distemper virus (PDV)、canine distemper virus (CDV)、dolphin molbillivirus (DMV)、peste-des-petits-ruminants virus (PDPR)、measles virus (MV)、rinderpest virus (RPV)、Hendra virus (Hendra)、および Nipah virus (Nipah) からなる群より選択されるウイルスが挙げられる。
 本発明において用いられるベクターは、例えば、パラミクソウイルス亜科(レスピロウイルス属、ルブラウイルス属、およびモルビリウイルス属を含む)に属するウイルスまたはその誘導体であり、例えばレスピロウイルス属(genus Respirovirus)(パラミクソウイルス属(Paramyxovirus)とも言う)に属するウイルスまたはその誘導体である。誘導体には、ウイルスによる遺伝子導入能を損なわないように、ウイルス遺伝子が改変されたウイルス、および化学修飾されたウイルス等が含まれる。本発明を適用可能なレスピロウイルス属ウイルスとしては、例えばヒトパラインフルエンザウイルス1型(HPIV-1)、ヒトパラインフルエンザウイルス3型(HPIV-3)、ウシパラインフルエンザウイルス3型(BPIV-3)、センダイウイルス(Sendai virus; マウスパラインフルエンザウイルス1型とも呼ばれる)、およびサルパラインフルエンザウイルス10型(SPIV-10)などが含まれる。
 本発明で例示として掲げられるマイナス鎖RNAウイルスとしては、より具体的にはセンダイウイルスが挙げられる。野生型センダイウイルスのゲノムは、3'の短いリーダー領域に続き、ヌクレオキャプシド(N)遺伝子、ホスホ(P)遺伝子、マトリックス(M)遺伝子、フュージョン(F)遺伝子、ヘマグルチニン-ノイラミニダーゼ(HN)遺伝子、およびラージ(L)遺伝子、及び短い5'トレイラー領域をこの順序で含んでいる。野生型ウイルスに相当する組み換えベクターや、様々な変異型ベクターの作製が既に知られている。さらには、そのエンベロープを除いたRNPのみでも遺伝子導入が可能であることが示されている(WO00/70055)。よって、RNPによるリプログラミングも本発明に含まれる。他のウイルスのRNPについても同様である。
 本発明における染色体非組み込み型ウイルスは、天然株、野生株、変異株、ラボ継代株、および人為的に構築された株などに由来してもよい。つまり、当該ウイルスは、目的とするリプログラミングを誘導できる限り、天然から単離されたウイルスと同様の構造を持つウイルスベクターであっても、遺伝子組み換えにより人為的に改変したウイルスであってもよい。例えば、野生型ウイルスが持ついずれかの遺伝子に変異や欠損があるものであってよい。また、DI粒子(J.Virol. 68: 8413-8417, 1994)などの不完全ウイルスを用いることも可能である。例えば、ウイルスのエンベロープ蛋白質または外殻蛋白質をコードする少なくとも1つの遺伝子に変異または欠損を有するウイルスを好適に用いることができる。このようなウイルスベクターは、例えば感染細胞においてはゲノムを複製することはできるが、感染性ウイルス粒子を形成できないウイルスベクターである。このような複製能欠損型のウイルスベクターは、周囲に感染を拡大する懸念がないので安全性が高い。例えば、F、H、HN、またはGなどのエンベロープ蛋白質またはスパイク蛋白質をコードする少なくとも1つの遺伝子、あるいはそれらの組み合わせが含まれていないマイナス鎖RNAウイルスを用いることができる (WO00/70055 および WO00/70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000))。ゲノム複製に必要な蛋白質(例えば N、P、およびL蛋白質)をゲノムRNAにコードしていれば、感染細胞においてゲノムを増幅することができる。欠損型ウイルスを製造するには、例えば、欠損している遺伝子産物またはそれを相補できる蛋白質をウイルス産生細胞において外来的に供給する(WO00/70055 および WO00/70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000))。また、欠損するウイルス蛋白質を完全に相補することなく、非感染性のウイルス粒子(VLP)としてウイルスベクターを回収する方法も知られている(WO00/70070)。また、ウイルスベクターをRNP(例えば N、L、P蛋白質、およびゲノムRNAからなるRNP)として回収する場合は、エンベロープ蛋白質を相補することなくベクターを製造することができる。
 また、変異型のウイルス蛋白質遺伝子を搭載するウイルスベクターを用いることも好ましい。本発明は、特にウイルス遺伝子に変異および/または欠失を有するRNAウイルスベクターを用いた、リプログラミングにおける遺伝子導入方法、およびリプログラムされた細胞の製造方法を提供する。例えば、エンベロープ蛋白質や外殻蛋白質において弱毒化変異や温度感受性変異を含む多数の変異が知られている。これらの変異蛋白質遺伝子を有するRNAウイルスを本発明において好適に用いることができる。本発明において望ましくは、細胞傷害性を減弱したベクターを用い得る。細胞傷害性は、例えば細胞からの乳酸デヒドロゲナーゼ(LDH)の放出を定量することにより測定することができる。例えば細胞傷害性が野生型に比べ有意に減弱化したベクターを用いることができる。細胞傷害性の減弱化の程度は、例えばHeLa(ATCC CCL-2)またはサルCV-1(ATCC CCL 70)にMOI 3で感染させて3日間培養した培養液中のLDH放出量が野生型に比べ有意に低下したもの、例えば20%以上、25%以上、30%以上、35%以上、40%以上、または50%以上低下したベクターを用いることができる。また細胞傷害性を低下させる変異には、温度感受性変異も含まれる。温度感受性変異とは、低温 (例えば30℃ないし32℃) に比べ、ウイルス宿主の通常の温度(例えば37℃ないし38℃)において有意に活性が低下する変異のことである。このような、温度感受性変異を持つ蛋白質は、許容温度(低温)下でウイルスを作製することができるので便利である。本発明において有用な温度感受性変異を持つウイルスベクターは、例えば培養細胞において30℃で感染させた場合に比べ、37℃で感染させた場合に、増殖速度または遺伝子発現レベルが、少なくとも1/2以下、好ましくは1/3以下、より好ましくは1/5以下、より好ましくは1/10以下、より好ましくは1/20以下である。
 本発明において用いられる染色体非組み込み型ウイルスベクターは、リプログラミングを阻害せず、リプログラミング因子によるリプログラミングを誘導できる限り野生型でもよく、また、好ましくは少なくとも1つ、より好ましくは少なくとも2、3、4、5、またはそれ以上のウイルス遺伝子に欠失または変異を有する。欠失と変異は、各遺伝子に対して任意に組み合わせ導入してよい。ここで変異とは、機能低下型の変異または温度感受性変異であってよく、少なくとも37℃において、野生型に比べウイルスの増殖速度または搭載遺伝子の発現レベルを好ましくは1/2以下、より好ましくは1/3以下、より好ましくは1/5以下、より好ましくは1/10以下、より好ましくは1/20以下に低下させる変異である。このような改変ウイルスベクターを用いることは、特に多能性幹細胞の誘導には重要であり得る。例えば本発明において好適に用いられるマイナス鎖RNAウイルスベクターは、少なくとも2つのウイルス遺伝子が、欠失または変異している。このようなウイルスには、少なくとも2つのウイルス遺伝子が欠失しているもの、少なくとも2つのウイルス遺伝子が変異しているもの、少なくとも1つのウイルス遺伝子が変異しており少なくとも1つのウイルス遺伝子が欠失しているものが含まれる。変異または欠失している少なくとも2つのウイルス遺伝子は、好ましくはエンベロープ構成蛋白質をコードする遺伝子である。例えばF遺伝子を欠失し、Mおよび/またはHN (またはH) 遺伝子をさらに欠失するか、Mおよび/またはHN (またはH) 遺伝子に変異(例えば温度感受性変異)をさらに有するベクターは、本発明において好適に用いられる。また、例えばF遺伝子を欠失し、MまたはHN (またはH) 遺伝子をさらに欠失し、残るMおよび/またはHN (またはH) 遺伝子に変異(例えば温度感受性変異)をさらに有するベクターも、本発明において好適に用いられる。本発明において用いられるベクターは、より好ましくは、少なくとも3つのウイルス遺伝子(好ましくはエンベロープ構成蛋白質をコードする少なくとも3つの遺伝子)が、欠失または変異している。このようなウイルスベクターには、少なくとも3つの遺伝子が欠失しているもの、少なくとも3つの遺伝子が変異しているもの、少なくとも1つの遺伝子が変異しており少なくとも2つの遺伝子が欠失しているもの、少なくとも2つの遺伝子が変異しており少なくとも1つの遺伝子が欠失しているものが含まれる。より好ましい態様を挙げれば、例えばF遺伝子を欠失し、MおよびHN (またはH) 遺伝子をさらに欠失するか、MおよびHN (またはH) 遺伝子に変異(例えば温度感受性変異)をさらに有するベクターは、本発明において好適に用いられる。また例えばF遺伝子を欠失し、MあるいはHN (またはH) 遺伝子をさらに欠失し、残るMあるいはHN (またはH) 遺伝子に変異(例えば温度感受性変異)をさらに有するベクターは、本発明において好適に用いられる。このような変異型のウイルスは、公知の方法に従って作製することが可能である。
 例えば、マイナス鎖RNAウイルスのM遺伝子の温度感受性変異としては、センダイウイルスのM蛋白質における69位(G69)、116位(T116)、および183位(A183)からなる群より任意に選択される部位または他のマイナス鎖RNAウイルスM蛋白質の相同な部位のアミノ酸置換が挙げられる(Inoue, M. et al., J.Virol. 2003, 77: 3238-3246)。他のマイナス鎖RNAウイルスM蛋白質の相同な部位のアミノ酸は容易に同定できるが、具体的に示せば、例えばSeV M蛋白質のG69に相当するM蛋白質の相同部位としては、human parainfluenza virus-1 (HPIV-1)(括弧は略称)であればG69、human parainfluenza virus-3 (HPIV-3) であればG73、phocine distemper virus (PDV)およびcanine distemper virus (CDV)であればG70、dolphin molbillivirus (DMV)であればG71、peste-des-petits-ruminants virus (PDPR)、measles virus (MV)、およびrinderpest virus (RPV)であればG70、Hendra virus (Hendra)およびNipah virus (Nipah)であればG81、human parainfluenza virus-2 (HPIV-2)であればG70、human parainfluenza virus-4a (HPIV-4a)およびhuman parainfluenza virus-4b (HPIV-4b)であればE47、mumps virus (Mumps)であればE72が挙げられる(文字と番号はアミノ酸とその位置を表す)。また、SeV M蛋白質のT116に相当する各M蛋白質の相同部位としては、human parainfluenza virus-1 (HPIV-1)であればT116、human parainfluenza virus-3 (HPIV-3)であればT120、phocine distemper virus (PDV)およびcanine distemper virus (CDV)であればT104、dolphin molbillivirus (DMV)であればT105、peste-des-petits-ruminants virus (PDPR)、measles virus (MV)およびrinderpest virus (RPV)であればT104、Hendra virus (Hendra)およびNipah virus (Nipah)であればT120、human parainfluenza virus-2 (HPIV-2)およびsimian parainfluenza virus 5 (SV5)であればT117、human parainfluenza virus-4a (HPIV-4a)およびhuman parainfluenza virus-4b (HPIV-4b)であればT121、mumps virus (Mumps)であればT119、Newcastle disease virus (NDV)であればS120が挙げられる。SeV M蛋白質のA183に相当する各M蛋白質の相同部位としては、human parainfluenza virus-1 (HPIV-1)であればA183、human parainfluenza virus-3 (HPIV-3)であればF187、phocine distemper virus (PDV)およびcanine distemper virus (CDV)であればY171、dolphin molbillivirus (DMV)であればY172、peste-des-petits-ruminants virus (PDPR)、measles virus (MV)およびrinderpest virus (RPV)であればY171、Hendra virus (Hendra)およびNipah virus (Nipah)であればY187、human parainfluenza virus-2 (HPIV-2)であればY184、simian parainfluenza virus 5 (SV5)であればF184、human parainfluenza virus-4a (HPIV-4a)およびhuman parainfluenza virus-4b (HPIV-4b)であればF188、mumps virus (Mumps)であればF186、Newcastle disease virus (NDV)であればY187が挙げられる。ここに挙げたウイルスにおいて、それぞれのM蛋白質に上記の3つの部位のいずれか、好ましくは任意の2部位の組み合わせ、さらに好ましくは3つの部位全てのアミノ酸が他のアミノ酸に置換された変異M蛋白質をコードするゲノムを有するウイルスは、本発明において好適に用いられる。
 アミノ酸変異は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましく、例えばBLOSUM62マトリックス(Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919)の値が3以下、好ましくは2以下、より好ましくは1以下、より好ましくは0以下のアミノ酸に置換する。具体的には、センダイウイルスM蛋白質のG69、T116、およびA183あるいは他のウイルスM蛋白質の相同部位を、それぞれGlu (E)、Ala (A)、およびSer (S) へ置換することができる。また、麻疹ウイルス温度感受性株 P253-505(Morikawa, Y. et al., Kitasato Arch. Exp. Med. 1991: 64; 15-30)のM蛋白質の変異と相同な変異を利用することも可能である。変異の導入は、例えばオリゴヌクレオチド等を用いて、公知の変異導入方法に従って 実施すればよい。
 また、HN(またはH)遺伝子の温度感受性変異としては、例えばセンダイウイルスのHN蛋白質の262位(A262)、264位(G264)、および461位(K461)からなる群より任意に選択される部位または他のマイナス鎖RNAウイルスM蛋白質の相同な部位のアミノ酸置換が挙げられる(Inoue, M. et al., J.Virol. 2003, 77: 3238-3246)。3つの部位のいずれか1つ、好ましくは任意の2部位の組み合わせ、さらに好ましくは3つの部位全てのアミノ酸が他のアミノ酸に置換された変異HN蛋白質をコードするゲノムを有するウイルスは、本発明において好適に用いられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。好ましい一例を挙げれば、センダイウイルス HN蛋白質のA262、G264、およびK461あるいは他のウイルスHN蛋白質の相同部位を、それぞれThr (T)、Arg (R)、およびGly (G) へ置換する。また、例えば、ムンプスウイルスの温度感受性ワクチン株 Urabe AM9を参考に、HN蛋白質の464及び468番目のアミノ酸に変異導入することもできる(Wright, K. E. et al., Virus Res. 2000: 67; 49-57)。
 またマイナス鎖RNAウイルスは、P遺伝子および/またはL遺伝子に変異を有していてもよい。このような変異としては、具体的には、SeV P蛋白質の86番目のGlu(E86)の変異、SeV P蛋白質の511番目のLeu(L511)の他のアミノ酸への置換、または他のマイナス鎖RNAウイルスP蛋白質の相同部位の置換が挙げられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、86番目のアミノ酸のLysへの置換、511番目のアミノ酸のPheへの置換などが例示できる。またL蛋白質においては、SeV L蛋白質の1197番目のAsn(N1197)および/または1795番目のLys(K1795)の他のアミノ酸への置換、または他のマイナス鎖RNAウイルスL蛋白質の相同部位の置換が挙げられ、上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、1197番目のアミノ酸のSerへの置換、1795番目のアミノ酸のGluへの置換などが例示できる。P遺伝子およびL遺伝子の変異は、持続感染性、2次粒子放出の抑制、または細胞傷害性の抑制の効果を顕著に高めることができる。さらに、エンベロープ蛋白質遺伝子の変異および/または欠損を組み合わせることで、これらの効果を劇的に上昇させることができる。またL遺伝子は、SeV L蛋白質の1214番目のTyr(Y1214)および/または1602番目のMet(M1602)の他のアミノ酸への置換、または他のマイナス鎖RNAウイルスL蛋白質の相同部位の置換が挙げられ、上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、1214番目のアミノ酸のPheへの置換、1602番目のアミノ酸のLeuへの置換などが例示できる。以上に例示した変異は、任意に組み合わせることができる。
 例えば、SeV M蛋白質の少なくとも69位のG、116位のT、及び183位のA、SeV HN蛋白質の少なくとも262位のA,264位のG,及び461位のK、SeV P蛋白質の少なくとも511位のL、SeV L蛋白質の少なくとも1197位のN及び1795位のKが、それぞれ他のアミノ酸に置換されており、かつF遺伝子を欠損または欠失するセンダイウイルスベクター、他のマイナス鎖RNAウイルスの各相同蛋白質において、相同の部位に置換変異を有し、F遺伝子を欠損または欠失するF遺伝子欠損または欠失ベクター、ならびに、細胞傷害性がこれらと同様またはそれ以下、および/または温度感受性がこれらと同様またはそれ以上のF遺伝子欠損または欠失マイナス鎖RNAウイルスベクターは、本発明において核初期化因子(nuclear reprogramming factors)を発現させるために特に好適である。具体的な置換例を例示すれば、例えばM蛋白質についてはG69E,T116A,及びA183Sの置換を、HN蛋白質についてはA262T,G264,及びK461Gの置換を、P蛋白質についてはL511Fの置換を、そしてL蛋白質についてはN1197S及びK1795Eの置換を挙げることができる。核初期化因子(nuclear reprogramming factors)をコードする遺伝子は、例えばマイナス鎖RNAゲノムの最も上流(3'側)に配置することができる(例えばN遺伝子の3'側)。但しMyc遺伝子に関してはそれ以外の位置、例えばマイナス鎖RNAゲノムの後方、すなわちより5'側に配置してもよい。例えば、HN遺伝子とL遺伝子の間に挿入することができる。
 また、L蛋白質の変異としては、SeV L蛋白質の942位(Y942)、1361位(L1361)、および1558位(L1558)から任意に選択される部位のアミノ酸の他のアミノ酸への置換、または他のマイナス鎖RNAウイルスL蛋白質の相同部位の置換も挙げられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、942番目のアミノ酸のHisへの置換、1361番目のアミノ酸のCysへの置換、1558番目のアミノ酸のIleへの置換などが例示できる。特に少なくとも942位または1558位が置換されたL蛋白質を好適に用いることができる。例えば1558位に加え、1361位も他のアミノ酸に置換された変異L蛋白質も好適である。また、942位に加え、1558位および/または1361位も他のアミノ酸に置換された変異L蛋白質も好適である。これらの変異により、L蛋白質の温度感受性を上昇させることができる。
 またP蛋白質の変異としては、SeV P蛋白質の433位(D433)、434位(R434)、および437位(K437)から任意に選択される部位のアミノ酸の他のアミノ酸への置換、または他のマイナス鎖RNAウイルスP蛋白質の相同部位の置換が挙げられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、433番目のアミノ酸のAla (A) への置換、434番目のアミノ酸のAla (A) への置換、437番目のアミノ酸のAla (A) への置換などが例示できる。特にこれら3つの部位全てが置換されたP蛋白質を好適に用いることができる。これらの変異により、P蛋白質の温度感受性を上昇させることができる。
 SeV P蛋白質の少なくとも433位のD、434位のR、および437位のKの3箇所が、他のアミノ酸に置換された変異P蛋白質、およびSeV L蛋白質の少なくとも1558位のLが置換された変異L蛋白質(好ましくは少なくとも1361位のLも他のアミノ酸に置換された変異L蛋白質)をコードする、F遺伝子を欠損または欠失するセンダイウイルスベクター、および他のマイナス鎖RNAウイルスにおいて相同部位が変異しているF遺伝子欠損または欠失ベクター、ならびに、細胞傷害性がこれと同様またはそれ以下、および/または温度感受性がこれと同様またはそれ以上のF遺伝子を欠損または欠失するマイナス鎖RNAウイルスベクターも、本発明において好適に用いられる。各ウイルス蛋白質は、上記の変異以外に他のアミノ酸(例えば10以内、5以内、4以内、3以内、2以内、または1アミノ酸)に変異を有していてもよい。上記に示した変異を有するベクターは高い温度感受性を示すので、リプログラミングが完了した後、細胞をやや高温(例えば37.5~39℃、好ましくは38~39℃、または38.5~39℃)で培養することにより、ベクターを簡便に除去することができる。核初期化因子(nuclear reprogramming factors)は、適宜ゲノムの適当な位置に挿入され得るが、例えばゲノムの最上流(3'側)に挿入される(例えばNP遺伝子の3'側)。Myc遺伝子は、例えばマイナス鎖RNAウイルスのゲノムの中央よりも5'端側(真中の遺伝子よりも5'端側)、例えばL遺伝子の5'側または3'側、特にL遺伝子の3’側(例えばHN-L間)に挿入してもよい。
 ベクターの細胞傷害性は、例えば細胞からの乳酸デヒドロゲナーゼ(LDH)の放出を定量することにより測定することができる。具体的には、例えばHeLa(ATCC CCL-2)またはサルCV-1(ATCC CCL 70)にMOI 3で感染させて3日間培養した培養液中のLDH放出量を測定する。LDH放出量が少ないほど細胞傷害性は低い。また温度感受性は、ウイルス宿主の通常の温度(例えば37℃ないし38℃)におけるウイルスの増殖速度または搭載遺伝子の発現レベルを測定することにより決定することができる。変異を有さないものに比べ、ウイルスの増殖速度および/または搭載遺伝子の発現レベルが低下するほど、温度感受性は高いと判断される。
 またエンベロープウイルスを用いる場合は、ウイルスが本来持つエンベロープ蛋白質とは異なる蛋白質をエンベロープに含むウイルスを使用してもよい。例えば、ウイルス製造の際に、所望の外来性エンベロープ蛋白質をウイルス産生細胞で発現させることにより、これを含むウイルスを製造することができる。このような蛋白質に特に制限はなく、哺乳動物細胞への感染能を付与する所望の接着因子、リガンド、受容体等の蛋白質が用いられる。具体的には、例えば水疱性口内炎ウイルス(Vesicular stomatitis virus; VSV)のG蛋白質(VSV-G)を挙げることができる。VSV-G蛋白質は、任意のVSV株に由来するものであってよく、例えば Indiana血清型株(J. Virology 39: 519-528 (1981))由来のVSV-G蛋白を用いることができるが、これに限定されない。本発明において例示として掲げられるマイナス鎖RNAウイルスは、他のウイルス由来のエンベロープ蛋白質を任意に組み合わせて含むことができる。
 核初期化因子(nuclear reprogramming factors)を持つ組換えRNAウイルスの再構成は公知の方法を利用して行えばよい。本発明の例示として掲げるマイナス鎖RNAウイルスとしては、具体的な手順として、典型的には、(a)マイナス鎖RNAウイルスゲノムRNA(マイナス鎖)またはその相補鎖(プラス鎖)をコードするcDNAを、ウイルス粒子形成に必要なウイルス蛋白質(N、P、およびL)を発現する細胞で転写させる工程、(b)生成したウイルスを含む培養上清を回収する工程、により製造することができる。粒子形成に必要なウイルス蛋白質は、転写させたウイルスゲノムRNAから発現されてもよいし、ゲノムRNA以外からトランスに供給されてもよい。例えば、N、P、およびL蛋白質をコードする発現プラスミドを細胞に導入して供給することができる。ゲノムRNAにおいて粒子形成に必要なウイルス遺伝子が欠損している場合は、そのウイルス遺伝子をウイルス産生細胞で別途発現させ、粒子形成を相補する。ウイルス蛋白質やRNAゲノムを細胞内で発現させるためには、該蛋白質やゲノムRNAをコードするDNAを宿主細胞で機能する適当なプロモーターの下流に連結したベクターを宿主細胞に導入する。転写されたゲノムRNAは、ウイルス蛋白質の存在下で複製され、感染性ウイルス粒子が形成される。エンベロープ蛋白質などの遺伝子を欠損する欠損型ウイルスを製造する場合は、欠損する蛋白質またはその機能を相補できる他のウイルス蛋白質などをウイルス産生細胞において発現させる。
 例えば、本発明の例示としてのマイナス鎖RNAウイルスの製造は、以下の公知の方法を利用して実施することができる(WO97/16539; WO97/16538; WO00/70055; WO00/70070; WO01/18223; WO03/025570; WO2005/071092; WO2006/137517; WO2007/083644; WO2008/007581; Hasan, M. K. et al., J. Gen. Virol. 78: 2813-2820, 1997、Kato, A. et al., 1997, EMBO J. 16: 578-587 及び Yu, D. et al., 1997, Genes Cells 2: 457-466; Durbin, A. P. et al., 1997, Virology 235: 323-332; Whelan, S. P. et al., 1995, Proc. Natl. Acad. Sci. USA 92: 8388-8392; Schnell. M. J. et al., 1994, EMBO J. 13: 4195-4203; Radecke, F. et al., 1995, EMBO J. 14: 5773-5784; Lawson, N. D. et al., Proc. Natl. Acad. Sci. USA 92: 4477-4481; Garcin, D. et al., 1995, EMBO J. 14: 6087-6094; Kato, A. et al., 1996, Genes Cells 1: 569-579; Baron, M. D. and Barrett, T., 1997, J. Virol. 71: 1265-1271; Bridgen, A. and Elliott, R. M., 1996, Proc. Natl. Acad. Sci. USA 93: 15400-15404; Tokusumi, T. et al. Virus Res. 2002: 86; 33-38、Li, H.-O. et al., J. Virol. 2000: 74; 6564-6569)。これらの方法により、パラインフルエンザ、水疱性口内炎ウイルス、狂犬病ウイルス、麻疹ウイルス、リンダーペストウイルス、センダイウイルスなどを含むマイナス鎖RNAウイルスをDNAから再構成させることができる。
 プラス (+) 鎖RNAウイルスの製造方法としては、以下の例が挙げられる。
1)コロナウイルス
Enjuanes L, Sola I, Alonso S, Escors D, Zuniga S.
 Coronavirus reverse genetics and development of vectors for gene expression.
 Curr Top Microbiol Immunol. 2005;287:161-97. Review.
2)トガウイルス
Yamanaka R, Zullo SA, Ramsey J, Onodera M, Tanaka R, Blaese M, Xanthopoulos KG.
 Induction of therapeutic antitumor antiangiogenesis by intratumoral injection of genetically engineered endostatin-producing Semliki Forest virus.
 Cancer Gene Ther. 2001 Oct;8(10):796-802.
Datwyler DA, Eppenberger HM, Koller D, Bailey JE, Magyar JP.
 Efficient gene delivery into adult cardiomyocytes by recombinant Sindbis virus.
 J Mol Med. 1999 Dec;77(12):859-64.
3)ピコルナウイルス
Lee SG, Kim DY, Hyun BH, Bae YS.
 Novel design architecture for genetic stability of recombinant poliovirus: the manipulation of G/C contents and their distribution patterns increases the genetic stability of inserts in a poliovirus-based RPS-Vax vector system.
 J Virol. 2002 Feb;76(4):1649-62.
Mueller S, Wimmer E.
 Expression of foreign proteins by poliovirus polyprotein fusion: analysis of genetic stability reveals rapid deletions and formation of cardioviruslike open reading frames.
 J Virol. 1998 Jan;72(1):20-31.
4)フラビウイルス
Yun SI, Kim SY, Rice CM, Lee YM.
 Development and application of a reverse genetics system for Japanese encephalitis virus.
 J Virol. 2003 Jun;77(11):6450-65.
Arroyo J, Guirakhoo F, Fenner S, Zhang ZX, Monath TP, Chambers TJ.
 Molecular basis for attenuation of neurovirulence of a yellow fever Virus/Japanese encephalitis virus chimera vaccine (ChimeriVax-JE).
 J Virol. 2001 Jan;75(2):934-42.
5)レオウイルス
Roner MR, Joklik WK.
 Reovirus reverse genetics: Incorporation of the CAT gene into the reovirus genome.
 Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):8036-41. Epub 2001 Jun 26.
 その他のRNAウイルスの増殖方法および組み換えウイルスの製造方法については、ウイルス学実験学 各論、改訂二版(国立予防衛生研究所学友会編、丸善、1982)を参照のこと。
 上記の染色体非組み込み型ウイルスベクターには、適宜、細胞のリプログラミングのための遺伝子を搭載させることができる。搭載する遺伝子は、分化した細胞からの多能性幹細胞などの種々の幹細胞の誘導等に関与する所望の遺伝子であってよい。例えばそれらのリプログラミングに必須の遺伝子、またはリプログラミングの効率を上昇させる遺伝子を搭載させることができる。すなわち本発明は、本発明の染色体非組み込み型ウイルスベクターの、細胞のリプログラミングにおいて遺伝子を導入するための使用、そして、細胞においてリプログラミング因子を発現させ、該細胞のリプログラミングを誘導するための使用を提供する。また本発明は、本発明の染色体非組み込み型ウイルスベクターを含む、細胞のリプログラミングにおいて遺伝子を導入するための剤(導入剤、遺伝子導入剤)、細胞においてリプログラミング因子を発現させるための剤を提供する。また本発明は、本発明の染色体非組み込み型ウイルスベクターを含む、細胞においてリプログラミング因子を発現させ、該細胞のリプログラミングを誘導するための剤に関する。また本発明のベクターは、細胞の核初期化を行う際に、所望の遺伝子を該細胞において発現させるためにも有用である。1つまたはそれ以上の核初期化因子(a nuclear reprogramming factor)をコードする遺伝子を搭載する非組み込み型ウイルスベクターは、本発明に従い、細胞のリプログラミングのために利用することができる。本発明は、医学的用途および非医学的用途のために用いることができ、メディカルおよびノンメディカルの態様において有用である。例えば本発明は、治療、手術、および/または診断、あるいは非治療、非手術、および/または非診断の目的に用いることができる。
 本発明において核初期化因子(a nuclear reprogramming factor)とは、単独で、または複数の因子と共同して、ある細胞の分化状態をより未分化な状態に誘導するために用いられる遺伝子またはその産物を言い、例えば分化した細胞の脱分化を誘導するために用いられる遺伝子またはその産物が含まれる。本発明において核初期化因子(a nuclear reprogramming factor)には、核の初期化(reprogramming)に必須の因子、および核初期化の効率を上昇させる補助的な因子(補助因子)が含まれる。本発明においては、核初期化(nuclear reprogramming)に用いるための所望の遺伝子をベクターに搭載してよい。例えば多能性幹細胞の製造に用いるための遺伝子を搭載することができる。多能性幹細胞を誘導するための核初期化因子(nuclear reprogramming factors)としては、具体的には、例えばES細胞や初期胚などで発現するが、分化した多くの体細胞では発現しないか、発現が低下する遺伝子(ES細胞特異的遺伝子など)を用いることができる。このような遺伝子は、好ましくは転写因子や核蛋白質等をコードする遺伝子である。核初期化遺伝子(nuclear reprogramming factors)を同定する方法は既に知られており(WO2005/80598)、実際、この方法を用いて同定された遺伝子は、多能性幹細胞へのreprogrammingに有用であることが示されている(WO2007/69666)。
 そのような遺伝子の例を挙げれば、DPPA5 (developmental pluripotency associated 5, ES cell specific gene 1 (ESG1); accession numbers NM_001025290, NM_025274, XM_236761)、F-box protein 15 (Fbx15, NM_152676, NM_015798)、Nanog(NM_024865, AB093574)、ECAT1(ES cell associated transcript 1; AB211062, AB211060)、ERAS(ES cell expressed Ras; NM_181532, NM_181548)、DNMT3L(DNA (cytosine-5-)-methyltransferase 3-like; NM_013369, NM_019448)、ECAT8 (AB211063, AB211061)、GDF3(growth differentiation factor 3; NM_020634, NM_008108)、SOX15(SRY (sex determining region Y)-box 15; NM_006942, NM_009235)、DPPA4(developmental pluripotency associated 4; NM_018189, NM_028610)、DPPA2(NM_138815, NM_028615)、FTHL17(ferritin, heavy polypeptide-like 17; NM_031894, NM_031261)、SALL4(sal-like 4; NM_020436, NM_175303)、Oct3/4(POU5F1とも呼ばれる; NM_002701, NM_203289, NM_013633, NM_001009178)、Sox2(NM_003106, NM_011443, XM_574919)、Rex-1(ZFP42 (zinc finger protein 42 homolog); NM_174900, NM_009556)、Utf1(undifferentiated embryonic cell transcription factor 1; NM_003577, NM_009482)、TCL1A(T-cell leukemia/lymphoma 1A; NM_021966, NM_009337)、DPPA3(Stellaとも呼ばれる, NM_199286, NM_139218, XM_216263)、KLF4(Kruppel-like factor 4; NM_004235, NM_010637)、cateninβ1(cadherin-associated protein beta 1; NM_001904, NM_007614; S33Y変異体を含む)、c-Myc(NM_002467, NM_010849; T58A変異体を含む)、STAT3(signal transducer and activator of transcription 3; NM_139276, NM_213659)、GRB2(growth factor receptor-bound protein 2; NM_002086, NM_008163)、ならびにこれらの遺伝子が属するファミリーの他のメンバーの遺伝子などが挙げられる。これらの遺伝子は、細胞に導入することにより多能性幹細胞を誘導できることが示されている(WO2007/69666)。従って、これらの遺伝子のいずれかを搭載する染色体非組み込み型ウイルスベクター、例えばRNAウイルスベクターは、本発明において細胞の脱分化の誘導に用いるために有用であり、特に多能性幹細胞の誘導に好適に用いることができる。これらの遺伝子は、1つずつ別のベクターに組み込んでもよいし、複数の遺伝子をまとめて1つのベクターに組み込むこともできる。また、それぞれの遺伝子を一種類のベクターに組み込んでもよく、あるいは異なる種類のベクター(染色体組み込み型ウイルスベクターおよび/または非ウイルスベクターを含む)を、染色体非組込み型ウイルスベクターと組み合わせて用いてもよい。また個々のウイルスベクターは、別々にパッケージされており使用時に組み合わせて用いることができる。あるいは搭載する遺伝子が異なる複数のウイルスベクターを、予めまとめてキットとしたり、混合して組成物としてもよい。また、これらの遺伝子の任意の組み合わせ(または全て)を含む、1つまたはそれ以上の非組み込み型ウイルスベクター、および該ベクターを含むキットまたは組成物も、細胞のリプログラミング、特に多能性幹細胞の製造において好適に用いることができる。組成物の場合は、ベクターは適宜滅菌水、pH緩衝液、生理的食塩水、培養液等の中に混合されていてよい。尚、これらの系は、核初期化遺伝子の一部または大部分をその発現産物であるタンパク質に置き換えることもできる。すなわち本発明の組成物およびキットは、少なくとも一つの染色体非組み込み型ウイルスベクターを含む限り、リプログラム因子を発現する他のベクター(染色体組込み型ウイルスベクターおよび/または非ウイルスベクター)および/またはリプログラムを誘導する化合物、蛋白質等を含んでもよい。リプログラミングに必要な因子は、その全てを染色体非組み込み型ウイルスベクターから発現させてもよく、あるいは一部のみを染色体非組み込み型ウイルスベクターから発現させ、その他を他のベクターおよび/または化合物(例えば蛋白質や低分子化合物)により供給してもよい。また、本発明のリプログラムされた細胞の製造方法は、全ての遺伝子導入を染色体非組み込み型ウイルスベクターを用いて行う方法に限定されない。すなわち本発明の方法は、少なくとも一つの染色体非組み込み型ウイルスベクターを用いればよく、リプログラム因子を発現する他のベクター(染色体組込み型ウイルスベクターおよび/または非ウイルスベクター)および/またはリプログラムを誘導する化合物等を併用することが含まれる。
 本発明は、染色体非組み込み型ウイルスベクターを発現ベクターとして含む、細胞のリプログラミングに用いるための組成物に関する。また本発明は、染色体非組み込み型ウイルスベクターの、分化した細胞のリプログラミングに用いるための使用に関する。例えば本発明は、染色体非組み込み型ウイルスベクターの使用であって、細胞のリプログラミングにおいてその必要がある細胞に遺伝子を導入するための使用を提供する。また本発明は、細胞のリプログラミングにおいて遺伝子を導入するための方法であって、染色体非組み込み型ウイルスベクターを用いて、その必要がある細胞に該遺伝子を導入する方法に関する。また本発明は、染色体非組み込み型ウイルスベクターを含む、細胞のリプログラミングにおける遺伝子導入に用いるための組成物、細胞のリプログラミングにおける遺伝子導入に用いるための剤(細胞のリプログラミングにおける遺伝子導入に用いるための導入剤、細胞のリプログラミングにおける遺伝子導入剤)にも関する。また本発明は、染色体非組み込み型ウイルスベクターの使用であって、細胞のリプログラミングにおいてその必要がある細胞に遺伝子を導入するための薬剤の製造における使用にも関する。また本発明は、染色体非組み込み型ウイルスベクターを含む、細胞のリプログラミングに用いるための遺伝子導入剤(遺伝子発現剤、または発現ベクター)を提供する。また本発明は、染色体非組み込み型ウイルスベクターを含む、リプログラミング遺伝子導入剤(遺伝子発現剤、または発現ベクター)を提供する。また本発明は、染色体非組み込み型ウイルスベクターを含む、核初期化因子(a nuclear reprogramming factor)発現剤(核初期化遺伝子 (a nuclear reprogramming gene) 導入剤、核初期化遺伝子 (a nuclear reprogramming gene) 発現ベクター)を提供する。また本発明は、核初期化因子(a nuclear reprogramming factor)をコードする染色体非組み込み型ウイルスベクターを含む、多能性幹細胞誘導剤および多能性幹細胞誘導補助剤を提供する。また本発明は、染色体非組み込み型ウイルスベクターの、分化した細胞のリプログラミングのための使用を提供する。また本発明は、染色体非組み込み型ウイルスベクターの、分化した細胞のリプログラミングのための薬剤、試薬および/または医薬の製造における使用を提供する。また本発明は、染色体非組み込み型ウイルスベクターの、分化した細胞の核初期化因子(a nuclear reprogramming factor)導入剤の製造における使用にも関する。
 ここでリプログラミングは、例えば分化した細胞からの多能性幹細胞の誘導であってよい。ベクターは、リプログラミングのための因子をコードする遺伝子を組み込んで使用される。リプログラミング因子をコードする遺伝子としては、例えば上記、あるいは以下に例示した因子のいずれかをコードする遺伝子が挙げられる。
 なお、導入する因子は、リプログラムしたい細胞の由来に合わせて適宜選択すればよく、ヒト由来であっても、その他の哺乳動物由来、例えばマウス、ラット、ウサギ、ブタ、サル等の霊長類由来であってもよい。また、遺伝子および蛋白質の配列は必ずしも野生型の配列でなくてもよく、リプログラミングを誘導できる限り、いかなる変異を有していてもよい。実際に、変異型遺伝子を用いて多能性幹細胞を作製した例が知られている(WO2007/69666)。例えば、1または少数(例えば数個、3個以内、5個以内、10個以内、15個以内、20個以内、25個以内)のアミノ酸が付加、欠失、置換、および/または挿入されたアミノ酸配列をコードする遺伝子であって、リプログラミングを誘導できる遺伝子は、本発明において使用することができる。また生物学的活性(リプログラミングの誘導能)を維持している限り、例えばN末端および/またはC末端の1~数残基(例えば2、3、4、5、6、10、15または20残基)のアミノ酸が欠失または付加されたポリペプチド、及び1~数残基(例えば2、3、4、5、6、10、15または20残基)のアミノ酸が置換されたポリペプチドなども使用できる。使用し得るバリアントとしては、例えば天然の蛋白質の断片、アナログ、派生体、及び他のポリペプチドとの融合蛋白質(例えば異種シグナルペプチドまたは抗体断片を付加したもの等)が含まれる。具体的には、野生型のアミノ酸配列の1またはそれ以上のアミノ酸を置換、欠失、および/または付加した配列を含み、野生型蛋白質と同等の生物学的活性(例えばリプログラミングを誘導する活性)を有するポリペプチドが含まれる。野生型蛋白質の断片を用いる場合は、通常、野生型ポリペプチド(分泌蛋白質の場合は成熟型の形態)の70%以上、好ましくは80%以上、85%以上、より好ましくは90%以上、95%以上または98%以上の連続領域を含む。
 アミノ酸配列のバリアントは、例えば天然のポリペプチドをコードするDNAに変異を導入することにより調製することができる(Walker and Gaastra, eds. Techniques in Molecular Biology (MacMillan Publishing Company, New York, 1983); Kunkel, Proc. Natl. Acad. Sci. USA 82:488-492, 1985 ; Kunkel et al., Methods Enzymol. 154:367-382, 1987; Sambrook et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Plainview, N.Y.), 1989; U.S. Pat. No. 4,873,192)。生物学的活性に影響を与えないようにアミノ酸を置換するためのガイダンスとしては、例えばDayhoffら(Dayhoff et al., in Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.C.), 1978)が挙げられる。
 改変されるアミノ酸数に特に制限はないが、例えば天然の成熟型ポリペプチドの全アミノ酸の30%以内、好ましくは25%以内、より好ましくは20%以内、より好ましくは15%以内、より好ましくは10%以内、5%以内、または3%以内であり、例えば15アミノ酸以内、好ましくは10アミノ酸以内、より好ましくは8アミノ酸以内、より好ましくは5アミノ酸以内、より好ましくは3アミノ酸以内である。アミノ酸を置換する場合は、側鎖の性質が似たアミノ酸に置換することにより蛋白質の活性を維持することが期待できる。このような置換は、本発明において保存的置換という。保存的置換は、例えば塩基性アミノ酸(例えばリジン、アルギニン、ヒスチジン)、酸性アミノ酸 (例えばアスパラギン酸、グルタミン酸)、非荷電極性アミノ酸 (例えばグリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性アミノ酸 (例えばアラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐アミノ酸 (例えばスレオニン、バリン、イソロイシン)、及び芳香族アミノ酸 (例えばチロシン、フェニルアラニン、トリプトファン、ヒスチジン)などの各グループ内のアミノ酸間の置換などが挙げられる。また、例えば、BLOSUM62置換マトリックス(S. Henikoff and J.G. Henikoff, Proc. Acad. Natl. Sci. USA 89: 10915-10919, 1992)において、正の値の関係にあるアミノ酸間の置換が挙げられる。
 改変された蛋白質は、野生型蛋白質のアミノ酸配列と高いホモロジーを示す。高いホモロジーとは、例えば70%以上、75%以上、80%以上、85%以上、90%以上、93%以上、95%以上、または96%以上の同一性を有するアミノ酸配列である。アミノ酸配列の同一性は、例えばBLASTPプログラム(Altschul, S. F. et al., J. Mol. Biol. 215: 403-410, 1990)を用いて決定することができる。例えばNCBI(National Center for Biothchnology Information)のBLASTのウェブページにおいて、デフォルトのパラメータを用いて検索を行うことができる(Altschul S.F. et al., Nature Genet. 3:266-272, 1993; Madden, T.L. et al., Meth. Enzymol. 266:131-141, 1996; Altschul S.F. et al., Nucleic Acids Res. 25:3389-3402, 1997; Zhang J. & Madden T.L., Genome Res. 7:649-656, 1997)。例えば2つの配列の比較を行うblast2sequencesプログラム(Tatiana A et al., FEMS Microbiol Lett. 174:247-250, 1999)により、2配列のアライメントを作成し、配列の同一性を決定することができる。ギャップはミスマッチと同様に扱い、例えば天然型サイトカイン(分泌後の成熟型の形態)のアミノ酸配列全体に対する同一性の値を計算する。具体的には、野生型蛋白質 (分泌蛋白質の場合は成熟型) の全アミノ酸数における一致するアミノ酸数の割合を計算する。
 また遺伝子は、コードされるアミノ酸配列を変えないようにサイレント変異を導入することができる。特にAT richな遺伝子においては、5個以上の連続したAまたはTの塩基について、コードされるアミノ酸配列を変えないようにGまたはCに置換することにより、安定して遺伝子の高発現を得ることができる。
 また改変蛋白質あるいはリプログラミングに用いるタンパク質は、野生型蛋白質をコードする遺伝子のコード領域の一部または全部とストリンジェントな条件でハイブリダイズする核酸がコードする蛋白質であって、野生型蛋白質と同等の活性(リプログラミングを誘導する活性)を有する蛋白質が挙げられる。ハイブリダイゼーションにおいては、例えば野生型蛋白質遺伝子のコード領域の配列またはその相補配列を含む核酸、またはハイブリダイズの対象とする核酸のどちらかからプローブを調製し、それが他方の核酸にハイブリダイズするかを検出することにより同定することができる。ストリンジェントなハイブリダイゼーションの条件は、例えば 5xSSC、7%(W/V) SDS、100 micro-g/ml 変性サケ精子DNA、5xデンハルト液(1xデンハルト溶液は0.2%ポリビニールピロリドン、0.2%牛血清アルブミン、及び0.2%フィコールを含む)を含む溶液中、60℃、好ましくは65℃、より好ましくは68℃でハイブリダイゼーションを行い、その後ハイブリダイゼーションと同じ温度で2xSSC中、好ましくは1xSSC中、より好ましくは0.5xSSC中、より好ましくは0.1xSSC中で、振蘯しながら2時間洗浄する条件である。
 細胞のリプログラミングを誘導するために特に好ましい遺伝子を例示すれば、F-box protein 15 (Fbx15, NM_152676, NM_015798)、Nanog(NM_024865, AB093574)、ERAS(ES cell expressed Ras; NM_181532, NM_181548)、DPPA2(NM_138815, NM_028615)、Oct3/4(POU5F1とも呼ばれる; NM_002701, NM_203289, NM_013633, NM_001009178)、Sox2(NM_003106, NM_011443, XM_574919)、TCL1A(T-cell leukemia/lymphoma 1A; NM_021966, NM_009337)、KLF4(Kruppel-like factor 4; NM_004235, NM_010637)、cateninβ1(cadherin-associated protein beta 1; NM_001904, NM_007614; S33Y変異体を含む)、およびc-Myc(NM_002467, NM_010849; T58A変異体を含む)、ならびにこれらの遺伝子が属するファミリーの他のメンバーの遺伝子などが挙げられる。これらの遺伝子を導入した場合、誘導多能性幹細胞の形態を示したコロニーの割合は、次に述べる4種類の遺伝子(Oct3/4、Sox2、KLF4、およびc-Myc)の導入の場合よりも高いことが報告されている(WO2007/69666)。従って、これらのいずれかを搭載する染色体非組み込み型ウイルスベクターは、本発明において細胞のリプログラミングの誘導に用いるために有用であり、特に、多能性幹細胞の誘導に好適に用いることができる。個々のウイルスベクターは、使用時に組み合わせて用いることができる。また予めまとめてキットとしたり、混合して組成物としてもよい。また、これらの遺伝子の任意の組み合わせ(または全て)を含む、1つまたはそれ以上の染色体非組み込み型ウイルスベクター、および該ベクターを含むキットまたは組成物も本発明に含まれる。
 中でも、多能性幹細胞の誘導に特に好ましい遺伝子の組み合わせの1つは、Sox遺伝子、KLF遺伝子、Myc遺伝子、およびOct遺伝子の4種類の遺伝子を少なくとも含む組み合わせである(Takahashi, K. and Yamanaka S., Cell 126, 663-676, 2006; Lowry WE et al., Proc Natl Acad Sci U S A, 105(8):2883-8, 2008; Masaki, H. et al., Stem Cell Res. 1:105-115, 2008; WO2007/69666)。ここでSox蛋白質、KLF蛋白質、Myc蛋白質、およびOct蛋白質、ならびにそれらの遺伝子とは、それぞれSoxファミリー、KLFファミリー、Mycファミリー、およびOctファミリーに属するメンバーの蛋白質および遺伝子を言う。これらの4つのファミリーのメンバーをそれぞれ1つ以上発現するように調整することで、分化した様々な細胞から多能性幹細胞を誘導できることが報告されている。例えばSoxファミリーの遺伝子については、Sox1、Sox2、Sox3、Sox15、Sox17 のいずれの遺伝子を用いても、多能性幹細胞を誘導できることが報告されている(WO2007/69666)。またKLFファミリーについても、KLF4でもKLF2でも多能性幹細胞を誘導できた(WO2007/69666)。Mycファミリーについても、野生型c-Mycのみならず、T58A変異体や、N-Myc、L-Mycでも多能性幹細胞を誘導できた(WO2007/69666; Blelloch R. et al., Cell Stem Cell, 1: 245-247, 2007)。このように、ファミリーの遺伝子を様々に選択して使用することが可能であるので、上記の4種のファミリー遺伝子を適宜選択して、リプログラミングを誘導することができる。
 例えば野生型c-MycはセンダイウイルスベクターなどのRNAウイルスベクターからの発現量が少ないことが判明した。しかし野生型c-Mycに、a378g、t1122c、t1125c、a1191g、および a1194g から選択される1つ以上、好ましくは2以上、3以上、4以上、または5つ全ての変異を導入することにより、ベクターから遺伝子を安定して高発現させることが可能となる。本発明においては、例えば配列番号45に示した改変型c-Myc遺伝子を好適に用いることができる。遺伝子のベクター中の挿入位置は所望の部位を選択することができる。
 例えばMyc遺伝子は、マイナス鎖RNAゲノムの後方(5'側)、すなわちゲノム上に配置される複数の蛋白質コード配列において、3'側から数えるよりも5'側から数えた方が早い位置に配置してもよい(実施例参照)。Myc遺伝子は、例えば最も5'側(すなわち5'側から1番目)、あるいは5'側から2または3番目に配置することができる。Myc遺伝子は、例えばゲノムの5'側から2番目、具体的には、ゲノムの最も5'側にL遺伝子があり、その次にHN遺伝子がある場合に、その間に配置してもよい。Myc遺伝子は、コードされるアミノ酸配列を変えないように適宜サイレント変異を導入し、連続したAまたはTの塩基配列を置換することができる。
 Myc遺伝子をマイナス鎖RNAゲノムの後方(5'側)の配置したマイナス鎖RNAウイルスベクターは、他の核初期化因子をコードするマイナス鎖RNAウイルスベクターと組み合わせて用いることができる。この場合、他の核初期化因子をコードするマイナス鎖RNAウイルスベクターにおいては、それらの核初期化因子は、それぞれのベクターのマイナス鎖RNAゲノムにおいて前方(3'側)、すなわちゲノム上に配置される複数の蛋白質コード配列において、5'側から数えるよりも3'側から数えた方が早い位置に配置することができる。例えば最も3'側(すなわち3'側から1番目)、あるいは3'側から2または3番目に配置してよい。例えば、Myc以外の核初期化因子をコードする遺伝子(例えばOct遺伝子、Klf遺伝子およびSox遺伝子)は、それぞれのマイナス鎖RNAウイルスベクターにおいて、ゲノムの5'側から1番目または2番目、より好ましくは1番目に配置される。具体的には、ゲノムのNP遺伝子の3'側の、最も3'端側に核初期化因子をコードする遺伝子を配置することができる。
 リプログラミングが完了した細胞のコロニーからは、ベクターが除去された細胞を適宜選択することができる。例えばベクターが自然除去された細胞を選択すればよい。このために、例えばウイルスベクターに特異的な抗体(例えば抗HN抗体)でネガティブ選択を行うことができる。また、温度感受性ベクターを用いた場合は、高温(例えば37.5~39℃、好ましくは38~39℃、または38.5~39℃)で培養することによりベクターを簡便に除去することができる。
 具体的には、KLFファミリーとしては、Klf1(NM_006563, NM_010635)、Klf2(NM_016270, NM_008452)、Klf4(NM_004235, NM_010637)、Klf5(NM_001730, NM_009769)が含まれ、Mycファミリーとしては、c-Myc(NM_002467, NM_010849, T58A変異体を含む)、N-Myc(NM_005378, NM_008709)、L-Myc(NM_005376, NM_005806)が含まれ、Octファミリーとしては、Oct1A(NM_002697, NM_198934)、Oct3/4(NM_002701, NM_203289, NM_013633, NM_001009178)、Oct6(NM_002699, NM_011141)が含まれ、Soxファミリーとしては、Sox1(NM_005986, NM_009233)、Sox2(NM_003106, NM_011443, XM_574919)、Sox3(NM_005634, NM_009237)、Sox7(NM_031439, NM_011446)、Sox15(NM_006942, NM_009235)、Sox17(NM_022454, NM_011441)、Sox18(NM_018419, NM_009236)が含まれる。これらの遺伝子のいずれかを搭載する染色体非組み込み型ウイルスベクターは、本発明において細胞の脱分化の誘導に用いるために有用であり、特に多能性幹細胞の誘導に好適に用いることができる。
 なお、Mycファミリーの遺伝子は多能性幹細胞の誘導に必須ではなく、Mycファミリー遺伝子を除く3つのファミリーの遺伝子だけでも多能性幹細胞は誘導できる(Nakagawa M. et al., Nat Biotechnol. 26(1):101-6, 2008; Wering M. et al., Cell Stem Cell 2(1):10-2, 2008;実施例5)。Myc遺伝子を発現させない場合、例えばp53 siRNAおよびUTF1により多能性幹細胞の誘導効率を有意に上昇させることがでいる(Y. Zhao et al., Cell Stem Cell, 3 (5): 475-479, 2008; N. Maherali, and K. Hochedlinger, Cell Stem Cell, 3 (6): 595-605, 2008)。また、KLFファミリーの遺伝子を除く3つのファミリーの遺伝子だけでも多能性幹細胞を誘導できることが報告されている(Park IH et al., Nature, 451(7175):141-6, 2008)。また、G9aヒストンメチルトランスフェラーゼ阻害剤(BIX-01294; Kubicek, S. et al., Mol. Cell 25, 473-481, 2007)を併用することにより、胎児由来のNPCからKlf遺伝子、Sox遺伝子、およびMyc遺伝子の3つの遺伝子のみで多能性幹細胞を誘導できることが報告されている(Shi Y et al., Cell Stem Cell, 2(6):525-8, 2008)。従って、Sox遺伝子、KLF遺伝子、およびOct遺伝子の各遺伝子のいずれか、あるいはSox遺伝子、Myc遺伝子、およびOct遺伝子の各遺伝子のいずれか、あるいはSox遺伝子、Myc遺伝子、およびKlf遺伝子の組み合わせを搭載する1つまたは複数の染色体非組み込み型ウイルスベクターは、本発明において細胞のリプログラミングの誘導に用いるために特別に有用であり、多能性幹細胞の誘導に好適に用いることができる。それぞれの遺伝子をコードするウイルスベクターは別々に単体として準備されてもよい。それらは、使用時に組み合わせて用いることができる。また任意の組み合わせまたは全てをまとめてキットとしたり、混合して組成物としてもよい。また本発明は、これらの遺伝子の任意の組み合わせ(または全て)を含む、1つまたはそれ以上の染色体非組み込み型ウイルスベクター、および該ベクターを含むリプログラミングのためのキットまたは組成物にも関する。更には、このキットに含まれる一部の組換えベクターは、相当の機能を有するタンパク質、合成化合物などに置き換えることも可能である。
 なお、もともとの分化した細胞において、上記の遺伝子のうち1つまたは幾つかが、例えば内在的に既に発現している場合は、その遺伝子の導入を省略することができる。例えば神経前駆細胞(neural progenitor cells (NPCs))は内因性のSoxファミリー遺伝子を発現しているので、Oct3/4およびKlf4の導入だけで多能性幹細胞を誘導できた(Shi Y et al., Cell Stem Cell, 2(6):525-8, 2008)。また、Oct4, Sox2, Esrrb (estrogen-related receptor beta, NM_004452.2, NP_004443.2, NM_011934.3, NP_036064.2) の3遺伝子を用いてマウス胎仔線維芽細胞(MEF)から多能性幹細胞を誘導できることが報告されており、Esrrb は Klf の機能を補完できることが示唆されている(Feng, B. et al., Nat Cell Biol. 11(2):197-203, 2009)。またヒストンメチルトランスフェラーゼ阻害剤(BIX-01294)とカルシウムイオンチャンネルアゴニスト(BayK8644)を組み合わせることにより、Oct3/4およびKlf4の導入だけで胚線維芽細胞から多能性幹細胞を誘導できる(Shi Y et al., Cell Stem Cell, 3(5):568-574, 2008)。また成体マウス脳由来の神経幹細胞(neural stem cells; NSCs)を用いた実験においては、Oct3/4およびKlf4の組み合わせのみならず、Oct3/4およびc-Mycの2因子の遺伝子のみを導入することでも多能性幹細胞を誘導できることが報告されている(Kim, J.B. et al., Nature, doi:10.1038/nature07061; Published online 29 June 2008; Nature. 2008, 454(7204):646-50)。また培養期間を調整することにより、Oct4のみでも多能性幹細胞を誘導することができる(Jeong Beom Kim et al., Cell, 136(3): 411-419, 2009)。リプログラミング因子をコードする染色体非組み込み型ウイルスベクターは、適宜、必要なものだけを使用してもよい。また、内在性のリプログラミング因子の内在性の発現が、別の遺伝子の発現または化合物処理等により誘導されるのであれば、当該別の遺伝子を発現するベクターの導入や化合物処理を組み合わせて、それだけでは誘導できないリプログラミング因子をコードする染色体非組み込み型ウイルスベクターのみを導入してもよい。本発明において、少なくともOct遺伝子、Klf遺伝子およびSox遺伝子の3種、少なくともOct遺伝子、Klf遺伝子、Sox遺伝子およびMyc遺伝子の4種、あるいは少なくともOct遺伝子、Sox遺伝子、Nanog遺伝子、Lin28遺伝子の4種が内在性または外来性に発現するようにベクターを組み合わせるとは、例えばあるリプログラミング因子が自然の状態で内在性に発現している状態だけでなく、他の遺伝子を発現するベクターの導入や化合物、蛋白質処理等により、内在性のリプログラミング因子の発現を誘導できる場合に、その処理を組み合わせて、不足する因子のみを外来的に発現するように染色体非組み込み型ウイルスベクターを組み合わせる場合を包含する。
 また、上記4種類または3種類の組み合わせ以外に、Oct遺伝子、Sox遺伝子、NANOG遺伝子(NM_024865, AB093574)、および LIN28遺伝子 (NM_024674) の4種類の各遺伝子を含む組み合わせも、多能性幹細胞の誘導に有用である(Yu J. et al., Science, 318(5858):1917-20, 2007)。また、これらにMyc遺伝子およびKLF遺伝子をさらに組み合わせたものも好適である(Liao J et al., Cell Res. 18(5):600-3, 2008)。これらのいずれかの遺伝子を搭載する染色体非組み込み型ウイルスベクターは、本発明において細胞の脱分化の誘導に用いるために特に有用であり、多能性幹細胞の誘導に好適に用いることができる。これらの遺伝子の任意の組み合わせ(または全て)を含む、1つまたはそれ以上の染色体非組み込み型ウイルスベクター、および該ベクターを含むキットまたは組成物も、細胞のリプログラミング、特に多能性幹細胞の製造において好適に用いることができる。なお上記と同様に、対象とする細胞が既にこれらの遺伝子のうち一部を発現している場合には、その遺伝子を発現するベクターは導入してもしなくてもよい。更には、このキットに含まれる一部の組換えベクターは、相当の機能を有するタンパク質、合成化合物などに置き換えることも可能である。
 以上に記載した遺伝子の組み合わせに、さらに別の遺伝子を組み合わせて、リプログラミングの誘導効率を上昇させることもできる。このような遺伝子としては、TERT(NM_198253, NM_009354)および/またはSV40 large T antigen(NC_001669.1, Fiers,W. (05-11-1978) Nature 273:(5658)113-120)が挙げられる(Park IH. et al., Nature, 451(7175):141-6, 2008)。また、HPV16 E6、HPV16 E7、Bmil(NM_005180, NM_007552)からなる群より選択される1つ以上の遺伝子をさらに組み合わせてもよい。また、Fbx15(Mol Cell Biol. 23(8):2699-708, 2003)、Nanog(Cell 113: 631-642, 2003)、ERas(Nature 423, 541-545, 2003)、DPPA2(Development 130: 1673-1680, 2003)、TCL1A(Development 130: 1673-1680, 2003)、β-Catenin(Nat Med 10(1): 55-63, 2004)からなる群より選択される1つまたは任意の組み合わせを発現させてもよい。さらに、ECAT1(AB211062, AB211060)、DPPA5 (NM_001025290, NM_025274, XM_236761)、DNMT3L(NM_013369, NM_019448)、ECAT8 (AB211063, AB211061)、GDF3(NM_020634, NM_008108)、SOX15(NM_006942, NM_009235)、DPPA4(NM_018189, NM_028610)、FTHL17(NM_031894, NM_031261)、SALL4(NM_020436, NM_175303)、Rex-1(NM_174900, NM_009556)、Utf1(NM_003577, NM_009482)、DPPA3(NM_199286, NM_139218, XM_216263)、STAT3(NM_139276, NM_213659)、および GRB2(NM_002086, NM_008163)からなる群より選択される1つ以上の遺伝子を組み合わせてもよい。これらの遺伝子を付加的に発現させることで、多能性幹細胞の誘導を促進し得る(WO2007/69666)。成熟B細胞を対象とする場合は、例えば骨髄球系転写因子C/EBPα(CCAAT/enhancer-binding-protein α)(NM_004364)を異所発現させるか、あるいはB細胞系転写因子Pax5(paired box 5; NM_016734)の発現を抑制してリプログラミングを促進することができる(Hanna J, Cell. 133(2):250-64, 2008)。これらの因子も、本発明における染色体非組み込み型ウイルスベクターを用いて発現させることができる。更には、このキットに含まれる一部の組換えベクターは、相当の機能を有するタンパク質、合成化合物などに置き換えることも可能である。
 また、上記の因子を発現させる以外にも、例えば化合物の添加を組み合わせることでリプログラミングの効率を向上させることができる。例えば、bFGF(basic fibroblast growth factor)および/またはSCF(stem cell factor)は多能性幹細胞の誘導を促進し、さらに多能性幹細胞の誘導におけるc-Mycの機能を代替することができる(WO2007/69666)。またMAPキナーゼ阻害剤(PD98056)も、よりES細胞に近い多能性幹細胞の樹立等に有用である(WO2007/69666)。また、DNAメチル化酵素(Dnmt)阻害剤および/またはヒストン脱アセチル化酵素(HDAC)阻害剤により、多能性幹細胞の誘導効率が改善することが報告されている(Huangfu D et al., Nat Biotechnol. (Published online: 22 June 2008, doi:10.1038/nbt1418); Nat. Biotechnol. 26, 795-797 (2008))。例えばHDAC(VPA)を併用することにより、Oct4とSox2の2遺伝子のみの導入により多能性幹細胞を誘導することができる(Huangfu, D. et al., Nat Biotechnol. 2008 26(11):1269-75)。本発明のベクターは、これらの遺伝子またはその一部の遺伝子を発現させるための剤として有用である。Dnmt阻害剤としては、例えば5-アザシチジン等、HDAC阻害剤としては、例えばスベロイラニリド・ハイドロザミック酸(SAHA)、トリコスタチンA(TSA)、バルプロ酸(VPA)等が有用である。また5-アザシチジンを用いる場合、グルココルチコイド(デキサメタゾン)を併用することにより効率を上昇させることができる。
 細胞をリプログラミングさせるには、上記の組み合わせのベクター等を細胞に導入する。複数のベクターおよび/または化合物を組み合わせて導入する場合、導入は同時に行うことが好ましく、具体的には、最初のベクターまたは化合物等を添加してから48時間以内、好ましくは36時間以内、より好ましくは24時間以内、18時間以内、12時間以内、10時間以内、8時間以内、6時間以内、3時間以内、2時間以内、または1時間以内にリプログラミング因子をコードする全てのベクターおよび/または化合物の添加を完了することが好ましい。ベクターの用量は適宜調製することができるが、好ましくはMOI 0.3~100、より好ましくはMOI 0.5~50、より好ましくはMOI 1~30、より好ましくはMOI 1~10、より好ましくはMOI 1~5、より好ましくはMOIを約3で感染させる。誘導された多能性幹細胞は、ES細胞とよく似た扁平なコロニーを形成し、アルカリホスファターゼを発現する。また誘導された多能性幹細胞は、未分化細胞マーカーであるNanog、Oct4、および/またはSox2等を発現してよい。また誘導された多能性幹細胞は、好ましくはTERTを発現および/またはテロメラーゼ活性を示す。本発明は、アルカリホスファターゼを発現し、好ましくは未分化細胞マーカーであるNanogおよび/またはTERTをさらに発現する細胞の製造方法、および該細胞の製造および該細胞を誘導する薬剤の製造における染色体非組み込み型ウイルスベクターの使用にも関する。
 本発明によれば、成人皮膚細胞および新生児包皮細胞を含む所望の細胞から多能性幹細胞のコロニーを、例えば0.3×10-5 以上、0.5×10-5 以上、0.8×10-5 以上、または1×10-5 以上(例えば1.7×10-5 ~ 2.4×10-3)の出現率で、好ましくは1.5×10-5 以上、1.7×10-5 以上、2.0×10-5 以上、2.5×10-5 以上、3×10-5 以上、4×10-5 以上、5×10-5 以上、8×10-5 以上、1×10-4 以上、2×10-4 以上、3×10-4 以上、5×10-4 以上、8×10-4 以上、1×10-3 以上、1.5×10-3 以上、2×10-3 以上、または 2.3×10-3 以上の出現率で誘導することができる。
 リプログラミングを誘導する対象となる分化した細胞は、特に限定はなく、所望の体細胞等を用いることができる。体細胞からの多能性幹細胞の生成は、マウス胎児由来の細胞からのみならず、成体マウスの尾部から採取した分化した細胞や、肝細胞および胃粘膜細胞からでも可能であることが示されており、細胞型や分化状態によらないことが示唆される(WO2007/069666; Aoi T. et al., Science [Published Online February 14, 2008]; Science. 2008; 321(5889):699-702)。またヒトにおいても、成人の顔皮膚由来線維芽細胞、成人滑膜細胞、新生児包皮由来線維芽細胞、成人間葉系幹細胞、成人の手のひらの皮膚細胞、胎児細胞等の多様な細胞から、多能性幹細胞が誘導できることが確認されている(Takahashi K et al. (2007) Cell 131: 861-872; Park IH et al., Nature, 451(7175):141-6, 2008)。また、膵臓β細胞やBリンパ球のような最終分化した細胞からも、同様に多能性幹細胞が誘導できることが報告されている(Stadtfeld M et al., Curr Biol. 2008 May 21. [PubMed, PMID: 18501604]; Curr Biol. 2008;18(12):890-4; Hanna J. et al., Cell. 133(2):250-64, 2008)。これらの知見は、多能性幹細胞の誘導が、元になる細胞によらないことを示唆している。これらの所望の体細胞からの多能性幹細胞の誘導において、本発明の方法を適用することができる。具体的には、リプログラミングの対象となる分化した細胞としては、線維芽細胞、滑膜細胞、口腔または胃などの粘膜細胞、肝細胞、骨髄細胞、歯胚細胞、その他の所望の細胞が含まれる。また細胞は、例えば胚、胎児、新生児、子供、成人または老人の細胞に由来してよい。また、動物の由来は特に制限はなく、ヒトおよび非ヒト霊長類(サルなど)、マウス、ラットなどのげっ歯類、およびウシ、ブタ、ヤギなどの非げっ歯類を含む哺乳動物等が含まれる。
 本発明の方法により製造された細胞は、様々な組織や細胞に分化させるために有用であり、所望の試験、研究、診断、検査、治療等において用いることができる。例えば誘導した幹細胞は、幹細胞療法において利用されることが期待される。例えば患者から採取した体細胞を用いて初期化(reprogramming)を誘導し、その後、分化誘導して得られる体性幹細胞やその他の体細胞を患者に移植することができる。細胞の分化誘導の方法は特に限定されず、例えばレチノイン酸処理や、様々な増殖因子・サイトカイン処理、ホルモンによる処理により分化を誘導することができる。また得られた細胞は、所望の薬剤や化合物の効果を検出するために使用することができ、これを通して薬剤や化合物のスクリーニングを実施することが可能である。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。また、本明細書中に引用された文献およびその他の参照は、すべて本明細書の一部として組み込まれる。
<本発明で用いた外来遺伝子を保持するセンダイウイルスベクターの作製>
 本発明で用いた外来遺伝子を保持するセンダイウイルスベクターの作製方法を以下に示す。特に断らない限り、外来遺伝子の導入にはこのベクターを用いた。尚、下記SeV18+/TSΔFとは、M蛋白質にG69E,T116A,及びA183Sの変異を、HN蛋白質にA262T,G264,及びK461Gの変異を、P蛋白質にL511F変異を、そしてL蛋白質にN1197S及びK1795E変異を持つF遺伝子欠失型センダイウイルスベクターである(WO2003/025570)。このベクターは、NP遺伝子の上流(ゲノムの3'側;「18+位」とも言う)に導入遺伝子挿入部位(NotI部位)を有する。
(1)c-Myc遺伝子、Sox2遺伝子、KLF4遺伝子、及びOct3/4遺伝子の単離のためのcDNAライブラリーの作製
 c-Myc遺伝子、Sox2遺伝子、KLF4遺伝子、及びOct3/4遺伝子を単離するために、Jurkat細胞からトータルRNAを抽出した。1.0×106(個)細胞のJurkat細胞(Schneider U et al (1977) Int J Cancer 19 (5): 621-6)を8000rpm室温で1分間遠心して集めた。細胞溶解緩衝液(10 mM Tris-HCl(pH7.5), 150 mM NaCl, 1.5 mM MgCl2, 0.65 % NP-40)を200μl 添加し、ピペッティング後、ボルテクスにより懸濁した。6000rpm、で3分間遠心分離し、上清を別の1.5mlエッペンドルフチューブに移し、200μlの抽出緩衝液を添加した。ボルテクスで十分に懸濁した後、400μlのフェノール/クロロフォルム/イソアミルアルコール(25:24:1)を添加し、さらにボルテクスにより十分懸濁した。15000rpm、4℃、5分間遠心分離を行い、上清を別の1.5mlエッペンドルフチューブに移し、400μlのイソプロパノールを添加し、ボルテクスにより十分に懸濁後、-20℃にて30分間冷やした。15000rpm、4℃、15分間遠心分離を行い、上清を除き、沈殿物に70%エタノールを1ml添加し、ボルテクスにより懸濁後、15000rpm、4℃、5分間遠心分離を行った。上清を除き室温で乾燥後、100μlのヌクレアーゼフリー水に溶解し、Jurkat細胞のトータルRNA溶液を得た。
 KLF4遺伝子を単離するために、ヒト胎児腎細胞由来の293T/17細胞(Human embryonic kidney subclone 17, ATCC CRL-11286, Pear, W. S. et al., 1993, Proc. Natl. Acad. Sci. USA 90:8392-8396)より上記と同じ方法でトータルRNAを回収した。
 Oct3/4遺伝子を単離するために、ヒト胚性癌細胞のNCCIT細胞(ATCC number CRL-2073; Damjanov I, et al., Lab. Invest. 1993, 68(2):220-32)より上記と同じ方法でトータルRNAを回収した。
 回収したトータルRNAからSuperScript III Reverse Transcriptase(インビトロジェン カタログ番号18080-044)を用いてcDNAを合成した。トータルRNA 1μgをランダムヘキサマー100ng、10mM dNTP 混合液1μlおよびヌクレアーゼフリー水で13μlとした。65℃で5分間、熱処理し氷上に1分間置き冷却した。次に、5xFirst-Strand Bufferを4μl、0.1M DTTを1μl、RNaseOUTを1μlそしてSuperscript III RTを1μl添加し、ピペッティングで混合後、スピンダウンし、25℃を5分間、50℃を60分間、70℃を15分間反応させた。TE(pH8.0)を180μl添加し、cDNAライブラリーとした。
(2)ヒト転写因子c-Mycの単離およびc-Mycを搭載したセンダイウイルスベクタープラスミドの構築
 JurkatのcDNAライブラリーからPrimeStar(商標) HS DNA polymerase (タカラバイオ株式会社 カタログ番号R010A)を用いてc-Myc -21F(5’-AACCAGCAGCCTCCCGCGACG-3’(配列番号:1))およびc-Myc 1930R(5’-AGGACATTTCTGTTAGAAGGAATCG-3’(配列番号:2))のプライマーによりPCR(94℃-3分→98℃-10秒、55℃-15秒、72℃-2分を40サイクル→72℃-7分)を行った。このPCR産物をTEを用いて100倍希釈後、1μlをc-Myc-F(5’-GATGCCCCTCAACGTTAGCTTCACC-3’(配列番号:3))およびc-Myc-R(5’-GTTACGCACAAGAGTTCCGTAGCTG-3’(配列番号:4))のプライマーを使用して、PCRを行った。PCR産物を1%アガロースゲル電気泳動により分離し、約1.3 kbpのバンドを切り出し、Qiaquick Gel Extraction Kit (QIAGEN, Cat. No. 28706) で精製した。pCAGGS-BSX (WO2005/071092) のSwaIサイトにクローニングし、シークエンスを行い配列の正しいクローンを選択し、pCAGGS-BSX-c-Mycを得た。次に、pCAGGS-BSX-c-Mycを鋳型にして、NotI-c-Myc F(5’-ATTGCGGCCGCATGCCCCTCAACGTTAGCTTCAC-3’(配列番号:5))およびNotI-c-Myc R(5’-ATTGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTTACGCACAAGAGTTCCGTAGCTGTTCAAGTTTGTGTTTC-3’(配列番号:6))のプライマーでPCRを行った。PCR産物はQiaquick PCR Purification kit (キアゲンCat. No. 28106)を用いて精製し、その後Not I消化(37℃で3時間)を行った。Qiaquick PCR Purification kit (キアゲン、カタログ番号28106)を用いて精製し、ブルースクリプトプラスミドベクターのNot Iサイトにクローニングし、シークエンスにより遺伝子配列を確認し、配列の正しいクローンを選択しpBS-KS-c-Mycを得た。pBS-KS-c-MycをNot Iで消化(37℃で3時間)し、1%アガロースゲル電気泳動により分離し、約1.5k bpのバンドを切り出し、Qiaquick Gel Extraction Kit (キアゲン、 カタログ番号28706) で精製した。このc-Myc遺伝子を含むNot I断片を、センダイウイルスベクター(SeV18+/TSΔF)のアンチゲノムをコードするpSeV18+/TSΔFベクターのNot Iサイトにクローニングし、シークエンスにより配列の正しいクローンを選択し、pSeV18+c-Myc/TSΔFを得た。
(3)ヒト転写因子SOX2遺伝子の単離およびSOX2遺伝子を搭載したセンダイウイルスベクタープラスミドの構築
 JurkatのcDNAライブラリーからPrimeStar HS DNA polymerase (タカラバイオ株式会社 カタログ番号R010A)を用いてSOX2-64F(5’- CAAAGTCCCGGCCGGGCCGAGGGTCGG-3’(配列番号:7))およびSOX2-1404R(5’- CCCTCCAGTTCGCTGTCCGGCCC-3’(配列番号:8))のプライマーによりPCR(94℃-3分→98℃-10秒、55℃-15秒、72℃-2分を40サイクル→72℃-7分)を行った。このPCR産物をTEを用いて100倍希釈後、1μlをSox2-F(5’-GATGTACAACATGATGGAGACGGAGC-3’(配列番号:9))および、Sox2-R(5’-GTCACATGTGTGAGAGGGGCAGTG-3’(配列番号:10))のプライマーを使用して、PCRを行った。PCR産物を1%アガロースゲル電気泳動により分離し、約0.95 k bpのバンドを切り出し、Qiaquick Gel Extraction Kit (QIAGEN, Cat. No. 28706) で精製した。pCAGGS-BSXのSwaIサイトにクローニングし、シークエンスを行い配列の正しいクローンを選択し、pCAGGS-BSX-SOX2を得た。次に、pCAGGS-BSX-SOX2を鋳型にして、Not I Sox-2F(5’-ATTGCGGCCGCATGTACAACATGATGGAGACG-3’(配列番号:11))およびNot I Sox-2R(5’-ATTGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTCACATGTGTGAGAGGGGCAGTGTGCCGTTAATGGCCGTG-3’(配列番号:12))のプライマーでPCRを行った。PCR産物はQiaquick PCR Purification kit (キアゲンCat. No. 28106)を用いて精製し、その後Not I消化(37℃で3時間)を行った。Qiaquick PCR Purification kit (キアゲン、カタログ番号28106)を用いて精製し、ブルースクリプトプラスミドベクターのNot Iサイトにクローニングし、シークエンスにより遺伝子配列を確認し、配列の正しいクローンを選択しpBS-KS-Sox2を得た。pBS-KS-Sox2をNot Iで消化(37℃で3時間)し、1%アガロースゲル電気泳動により分離し、約1k bpのバンドを切り出し、Qiaquick Gel Extraction Kit (キアゲン、カタログ番号28706) で精製した。このSox2遺伝子を含むNot I断片をpSeV18+/TSΔFベクターのNot Iサイトにクローニングし、シークエンスにより配列の正しいクローンを選択し、pSeV18+Sox2/TSΔFを得た。
(4)ヒト転写因子KLF4遺伝子の単離およびKLF4遺伝子を搭載したセンダイウイルスベクタープラスミドの構築
 JurkatのcDNAライブラリーからPrimeStar HS DNA polymerase (タカラバイオ株式会社 カタログ番号R010A)を用いてKIF-4 -35F(5’-CCACATTAATGAGGCAGCCACCTGGC-3’(配列番号:13))およびKIF-4 1772R(5’-GCAGTGTGGGTCATATCCACTGTCTG-3’(配列番号:14))のプライマーによりPCR(94℃-3分→98℃-10秒、55℃-15秒、72℃-2分を40サイクル→72℃-7分)を行った。このPCR産物をTEを用いて100倍希釈後、1μlをKIF4-F(5’-GATGGCTGTCAGCGACGCGCTGCTCCC-3’(配列番号:15))およびKIF4-R(5’-GTTAAAAATGCCTCTTCATGTGTAAGGCGAG-3’(配列番号:16))のプライマーを使用して、PCRを行った。PCR産物を1%アガロースゲル電気泳動により分離し、約1.4 k bpのバンドを切り出し、Qiaquick Gel Extraction Kit (QIAGEN, Cat. No. 28706) で精製した。pCAGGS-BSXのSwaIサイトにクローニングし、pCAGGS-BSX-KLF4#19を得た。シークエンスの結果、pCAGGS-BSX-KLF4#19は1箇所にサイレント変異(c19t)が認められた。そこで、pCAGGS-BSX-KLF4#19を鋳型にして、NotI-KIF4-F(5’-ATTGCGGCCGCGACATGGCTGTCAGCGACGCGCTG-3’(配列番号:17))およびNotI-KIF4-R(5’-ATTGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTTAAAAATGCCTCTTCATGTGTAAGGCGAGGTGGTC-3’(配列番号:18))のプライマーでPCRを行った。PCR産物はQiaquick PCR Purification kit (キアゲンCat. No. 28106)を用いて精製し、pCAGGS-BSXのSwaIサイトにクローニングした。シークエンスの確認を行い配列の正しいクローンを選択し、pCAGGS-BSX-KLF4を得た。次に、pCAGGS-BSX-KLF4を鋳型にして、NotI-KIF4-F(5’-ATTGCGGCCGCGACATGGCTGTCAGCGACGCGCTG-3’(配列番号:17))およびNotI-KIF4-R(5’-ATTGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTTAAAAATGCCTCTTCATGTGTAAGGCGAGGTGGTC-3’(配列番号:18))のプライマーでPCRを行った。PCR産物はQiaquick PCR Purification kit (キアゲンCat. No. 28106)を用いて精製し、その後Not I消化(37℃で3時間)を行った。Qiaquick PCR Purification kit (キアゲン、カタログ番号28106)を用いて精製し、ブルースクリプトプラスミドベクターのNot Iサイトにクローニングし、シークエンスにより遺伝子配列を確認し、配列の正しいクローンを選択しpBS-KS-KLF4を得た。pBS-KS-KLF4をNot Iで消化(37℃で3時間)し、1%アガロースゲル電気泳動により分離し、約1.5k bpのバンドを切り出し、Qiaquick Gel Extraction Kit (キアゲン、カタログ番号28706) で精製した。このKLF4遺伝子を含むNot I断片をpSeV18+/TSΔFベクターのNot Iサイトにクローニングし、シークエンスにより配列の正しいクローンを選択し、pSeV18+KLF4/TSΔFを得た。
(5)ヒト転写因子Oct3/4遺伝子の単離およびOct3/4遺伝子を搭載したセンダイウイルスベクタープラスミドの構築
 NCCITのcDNAライブラリーからPrimeStar HS DNA polymerase (タカラバイオ株式会社 カタログ番号R010A)を用いてOct-3 -28F(5’-CACCATGCTTGGGGCGCCTTCCTTCC-3’(配列番号:19))およびOCT3/4 R301(5’-CATCGGAGTTGCTCTCCACCCCGAC-3’(配列番号:20))のプライマー、OCT3/4 F192(5’-CCCGCCGTATGAGTTCTGTGG-3’(配列番号:21))およびNotI-Oct-3/4R-DPN(5’-GCCGCGGCCGCGTTATCAGTTTGAATGCATGGGAGAGCCCAG-3’(配列番号:22))のプライマーによりPCR(94℃-3分→98℃-10秒、55℃-15秒、72℃-1分を35サイクル→72℃-7分)を行いOct3/4を2つの領域に分けて増幅した。これら2つのPCR産物はQiaquick PCR Purification kit (キアゲンCat. No. 28106)を用いて精製し、キットに付属の溶出液100μlに溶出した。溶出液をTEを用いて50倍に希釈した。これらのPCR産物1μlを混合し、 Not I-Oct-3/4F(5’-GCCGCGGCCGCACCATGGCGGGACACCTGGCTTC-3’(配列番号:23))およびNot I-Oct-3/4R-DPN(5’-GCCGCGGCCGCGTTATCAGTTTGAATGCATGGGAGAGCCCAG-3’(配列番号:22))のプライマーを使用して、PCRを行った(94℃-3分→98℃-10秒、55℃-15秒、72℃-1.5分を35サイクル→72℃-7分)。PCR産物はQiaquick PCR Purification kit (キアゲンCat. No. 28106)を用いて精製し、pCAGGS-BSXのSwaIサイトにクローニングし、シークエンスを行い配列の正しいクローンを選択しpCAGGS-BSX-Oct3/4を得た。次に、pCAGGS-BSX-Oct3/4を鋳型にして、Not I-Oct-3/4F(5’-GCCGCGGCCGCACCATGGCGGGACACCTGGCTTC-3’(配列番号:23))およびNot I-Oct-3/4R(5’- GCCGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTCAGTTTGAATGCATGGGAGAGCCCAGAGTGGTGAC-3’(配列番号:24))のプライマーでPCR (94℃-3分→98℃-10秒、55℃-15秒、72℃-2分を25サイクル→72℃-7分)を行った。PCR産物はQiaquick PCR Purification kit (キアゲンCat. No. 28106)を用いて精製し、その後Not I消化(37℃で2時間)を行った。Qiaquick PCR Purification kit (キアゲン、カタログ番号28106)を用いて精製し、Oct3/4遺伝子を含むNot I断片をpSeV18+/TSΔFベクターのNot Iサイトにクローニングし、シークエンスにより配列の正しいクローンを選択し、pSeV18+Oct3/4/TSΔFを得た。
(6)ヒト転写因子を搭載したセンダイウイルスベクターの作製
 トランスフェクションの前日に6ウェルプレートに1ウェル当たり106細胞の293T/17細胞を播種し、37℃のCO2インキュベーター(5%CO2条件下)で培養した。その293T/17細胞にpCAGGS-NP, pCAGGS-P4C(-), pCAGGS-L(TDK), pCAGGS-T7, pCAGGS-F5R (WO2005/071085) および上記で示したヒト転写因子を搭載したセンダイウイルスベクタープラスミド(pSeV18+c-Myc/TSΔFまたはpSeV18+Sox2/TSΔFまたはpSeV18+KLF4/TSΔFまたはpSeV18+Oct3/4/TSΔF)をそれぞれ0.5μg, 0.5μg, 2μg, 0.5μg, 0.5μg および5.0μgを混合し、TransIT-LT1 (Mirus)を15μl使用してトランスフェクションを行った。37℃のCO2インキュベーターで2日間培養した。その後、センダイウイルスの融合タンパク質(Fタンパク質)を発現する細胞LLC-MK2/F/A (Li, H.-O. et al., J. Virology 74. 6564-6569 (2000), WO00/70070) を1ウェル当たり106細胞の割合でトランスフェクションを行った293T/17細胞に重層し、37℃のCO2インキュベーターで1日間培養した。翌日、細胞の培養液を除き、ペニシリンストレプトマイシンを添加したMEM培地(以下PS/MEM)1mlで細胞を1度洗浄し、2.5 μg/mlのトリプシンを含むPS/MEM培地(以下Try/PS/MEMとする)を1ウェル当たり1ml添加し、32℃のCO2インキュベーターで2日間培養した。3~4日毎に培地交換を行いながら、場合によっては、LLC-MK2/F/A細胞で継代を行いながら培養を継続した。培養上清の一部を赤血球凝集分析によりベクター回収の有無を確認し、十分な赤血球凝集反応が得られた後に培養上清を回収した。回収した培養上清よりQIAamp Viral RNA Mini Kit (キアゲン カタログ番号52906)を用いてRNAを回収し、搭載した転写因子の領域を標的にRT-PCRを行った。得られたRT-PCR産物はシークエンスにより正しい塩基配列であることを確認し、下記(a)から(d)のベクターを作製できた。
 (a)Oct3/4遺伝子を保持するF遺伝子欠失型センダイウイルスベクター(以下「SeV18+Oct3/4/TSΔFベクター」という。)
 (b)Sox2遺伝子を保持するF遺伝子欠失型センダイウイルスベクター(以下「SeV18+ Sox2/TSΔFベクター」という。)
 (c)Klf4遺伝子を保持するF遺伝子欠失型センダイウイルスベクター(以下「SeV18+ Klf4/TSΔFベクター」という。)
 (d)c-Myc遺伝子を保持するF遺伝子欠失型センダイウイルスベクター(以下「SeV18+ c-Myc/TSΔFベクター」という。)
<実施例1> 外来遺伝子を保持するセンダイウイルスベクターによるES様細胞の作製
 先ず、ヒト新生児包皮由来線維芽細胞(BJ)( ATCC(http://www.atcc.org), CRL-2522) (ヒト成人皮膚由来線維芽細胞HDF(Applications, Inc. 106-05A-1388; 36歳成人白人女性頬由来), ヒト胎児肺細胞由来線維芽細胞(MRC5;ATCC, CCL-171)8.0x 105(個)を DMEM (GIBCO-BRL, 11995), 10 % FBS (GIBCO-BRL) 中で一日37℃、0.5 % CO2インキュベータにて培養した (DMEM (GIBCO-BRL, 11995), 10 % FBS (GIBCO-BRL))。
 培養後、MOI=3の濃度の下記(a)~(d)のベクターを上記培養した細胞に投与した。
 (a)SeV18+ Oct3/4/TSΔFベクター
 (b)SeV18+ Sox2/TSΔFベクター
 (c)SeV18+ Klf4/TSΔFベクター
 (d)SeV18+ c-Myc/TSΔFベクター
 上記ベクターを投与後、翌日に培地交換を行った(DMEM(GIBCO-BRL, 11995), 10 % FBS (GIBCO-BRL))。
 その後、7日~8日間、37℃、0.5 % CO2インキュベータにて培養した。その後、ゼラチンコート10cm培養皿に用意したマイトマイシン処理済みフィーダー細胞(例えばMEF) 5.0×105(個)に対し、0.25 %トリプシンで剥がした上記導入細胞の5.0×104(個)から1.0×106(個)をその上で培養した。翌日、DMEM, 10 % FBSから霊長類ES用培地(ReproCell社, RCHEMD001)(4 ng/ml になるようbFGFを添加した)に培地交換し、3 % CO2インキュベータで培養した。培地交換は毎日もしくは二日に一度行った。培地はフィーダー細胞のコンディションドメディウムでも構わない。
 コロニーは数日後から現れ、ほぼ20日程度培養することで、ヒトES細胞様のコロニーが出現した(図1;BJ由来)。
 図1の写真を見ると、誘導前の線維芽細胞(BJ)と明らかに異なる、ヒトES細胞に見られるのと同様の扁平なコロニーが見られた(実験医学 Vol.26, No.5 (増刊): pp. 35-40, 2008)。このコロニーは、ピックアップし、新しいフィーダー細胞上で培養し、ES細胞様剥離液で剥がし(トリプシン、コラゲナーゼ混合:ReproCell社、RCHETP002)継代し、増殖することが可能であった。
 上記初期化実験により得られた細胞が、ES細胞の特徴である未分化マーカーを発現しているか否かを明らかにするために、更に下記実験を行った。
<実施例2> 上記初期化実験により得られた細胞についてのアルカリホスファターゼ染色
 ES細胞の未分化マーカーであるアルカリホスファターゼの活性をNBCT/BCIP(PIERCE, NBT/BCIP, 1-Step, # 34042)にて染色すると、アルカリホスファターゼ陽性の青色に染まったコロニーが観察された(図2)。
<実施例3> 上記培養により得られた細胞の細胞内での特定遺伝子の発現量の検証
 上記実施例2で示したアルカリホスファターゼ陽性の複数のコロニー(ALP(+))をまとめてRNAを抽出した(図3(a)のALP(+))。ランダムプライマーにて逆転写反応を行い、それぞれのプライマーでPCRを行った(図3(a))。プライマー配列は、Oct3/4については Fw:5'-GATCCTCGGACCTGGCTAAGC-3'(配列番号:25)および Rv:5'-GCTCCAGCTTCTCCTTCTCCAGC-3'(配列番号:26)、Sox2については Fw:5'-AGCGCTGCACATGAAGGAGCACC-3'(配列番号:27)および Rv:5'-ATGCGCTGGTTCACGCCCGCGCCCAGG-3'(配列番号:28)、KLF4については Fw:5'-GCTGCACACGACTTCCCCCTG-3'(配列番号:29)および Rv:5'-GGGGATGGAAGCCGGGAGGAAGCGG-3'(配列番号:30)、c-mycについては Fw:5'-TCTCAACGACAGCAGCTCGC-3'(配列番号:31)および Rv:5'-CAGGAGCCTGCCTCTTTTCCACAGA-3'(配列番号:32)、Nanogについては Fw:5'-TACCTCAGCCTCCAGCAGAT-3'(配列番号:33)および Rv:5'-TGCGTCACACCATTGCTATT-3'(配列番号:34)、β-アクチンについては Fw:5'-CAACCGCGAGAAGATGAC-3'(配列番号:35)および Rv:5'-AGGAAGGCTGGAAGAGTG-3'(配列番号:36)を用いた。
 また単一のES様細胞コロニーを単離し、上記と同様の方法によりRT-PCRを行った(図3(b)の4BJ-1iPS)。このとき、プライマー Fw: 5'-tgcccggacctccatcagagccag-3'(配列番号:37)および Rv: 5'-tcagtccaggatggtcttgaagtctg-3’(配列番号:38)を用いてhTERTの発現も検出した。
 誘導前の線維芽細胞(BJ)では認められなかった導入遺伝子の発現が認められ(Oct3/4, Sox2, Klf4)、c-Mycの発現も増大していた。また、ES細胞のマーカーであるNanogの発現も、陽性コントロールである胎児性カルシノーマ細胞(NCCIT)のように発現誘導されていることが認められた(図3(a)のALP(+))。Nanogは新規に同定されたホメオドメインタンパク質(Cell, Vol. 113, 631-642, 2003)であり、ES細胞やEG細胞などの多能性幹細胞や初期胚に特異的に発現し、多能性と自己複製能維持のシグナル伝達系に関与している。また単一コロニー由来の細胞においても、未分化ES細胞のマーカー遺伝子発現が認められ、また無限増殖能を示すテロメラーゼの活性化指標であるhTERTの発現が認められた(図3(b)の4BJ-1iPS)。以上の通り、単離したコロニーの細胞は多能性幹細胞であることが支持された。
<実施例4> 変異型c-Mycを用いた誘導性多能性幹細胞の作製
サイレント変異導入ヒト転写因子c-Myc(以下c-rMycとする)の作製
 pBS-KS-c-Mycを鋳型にして、PrimeStar HS DNA polymerase (タカラバイオ株式会社 カタログ番号R010A) を用いて変異導入用の6種類のプライマー(c-rMyc1-F(5'-CGGACGACGAGACCTTCATCAAGAACATCATCATCCAGGACTG-3' (配列番号:39))、c-rMyc1-R(5'-CAGTCCTGGATGATGATGTTCTTGATGAAGGTCTCGTCGTCCG-3' (配列番号:40))、c-rMyc2-F(5'-GAACGAGCTAAAACGGAGCTTCTTCGCCCTGCGTGACCAGATCC-3' (配列番号:41))、c-rMyc2-R(5'-GGATCTGGTCACGCAGGGCGAAGAAGCTCCGTTTTAGCTCGTTC-3' (配列番号:42))、c-rMyc3-F(5'-CCCAAGGTAGTTATCCTTAAGAAGGCCACAGCATACATCCTGTC-3' (配列番号:43))およびc-rMyc3-R(5'-GACAGGATGTATGCTGTGGCCTTCTTAAGGATAACTACCTTGGG-3' (配列番号:44)))を入れ、PCR(94℃-3分→98℃-30秒、55℃-30秒、72℃-6分を25サイクル→72℃-7分)を行った。PCR産物をDpn Iで37℃、2時間処理した。この反応液5μl大腸菌DH5α(ToYoBo Code No. DNA-903)を用いてトランスフォーメーションを行った。16個の大腸菌のコロニーをピックアップし、ミニプレップを行い、シークエンスにより配列の正しいクローンを選択し、pBS-KS-c-rMycを得た。pBS-KS-c-rMycをNot Iで消化(37℃で3時間)し、1%アガロースゲル電気泳動により分離し、約1.5k bpのバンドを切り出し、Qiaquick Gel Extraction Kit (キアゲン、カタログ番号28706) で精製した。このc-rMyc遺伝子を含むNot I断片をpSeV(HNL)/TSΔFベクターのNot Iサイトにクローニングし、シークエンスにより配列の正しいクローンを選択し、pSeV(HNL)-c-rMyc/TSΔFを得た。c-rMycの塩基配列およびアミノ酸配列を配列番号:45および46に示した。c-rMycは、a378g、t1122c、t1125c、a1191g、および a1194gの変異を有する。
 pSeV(HNL)/TSΔFの構築は以下の通りに行った。Litmus SalINheIfrg PmutMtsHNts ΔF-GFP(国際公開番号:WO2003/025570)を基にdel GFP-Pac F (5’-GAGGTCGCGCGTTAATTAAGCTTTCACCTCAAACAAGCACAGATCATGG-3’(配列番号:47))およびdel GFP-Pac R (5’-GCATGTTTCCCAAGGGGAGAGTTAATTAACCAAGCACTCACAAGGGAC-3’(配列番号:48))でPCR(94℃-1分→94℃-30秒、55℃-1分、68℃-22分を30サイクル→68℃-7分)を行った。PCR産物をPac I処理、Dpn I処理を連続的に行い、その産物をライゲーション(セルフライゲーション)して、シークエンスを行い配列の正しいGFP遺伝子が除かれたプラスミドを選択し、Litmus SalINheIfrg PmutMtsHNts ΔF-GFP delGFPを得た。このLitmus SalINheIfrg PmutMtsHNts ΔF-GFP delGFPを鋳型にしてHNLNOTI-F:5’-GGGTGAATGGGAAGCGGCCGCTAGGTCATGGATGG-3’(配列番号:49) およびHNLNOTI-R:5’-CCATCCATGACCTAGCGGCCGCTTCCCATTCACCC-3’(配列番号:50) を用いてPCR(94℃-3分→98℃-10秒、55℃-15秒、72℃-12分を25サイクル→72℃-7分)を行った。PCR産物をDpn I処理後、この反応液20μlを大腸菌DH5α(ToYoBo Code No. DNA-903)を用いてトランスフォーメーションを行った。6個の大腸菌のコロニーをピックアップし、ミニプレップを行い、NotI消化によりNotI配列の導入されたプラスミドを選択し、次にシークエンスにより配列の正しいクローンを選択しLitmus SalINheIfrg PmutMtsHNts (HNL)-dFを得た。次にこのLitmus SalINheIfrg PmutMtsHNts (HNL)-dFをSal IおよびNheIで消化して回収したフラグメントとL遺伝子に二カ所の変異を有するプラスミドpSeV/ΔSalINheIfrg Lmut(国際公開番号:WO2003/025570)をSalI/NheIで消化して回収したフラグメントをライゲーションして、pSeV(HNL)/TSΔFを得た。このベクターは、SeV18+/TSΔFと同じウイルス蛋白質をコードし、HN遺伝子およびL遺伝子の間に導入遺伝子挿入部位(NotI部位)を有する。
c-rMycを搭載したセンダイウイルスベクター(SeV(HNL)-c-rMyc/TSΔFベクター)の回収
 トランスフェクションの前日に6ウェルプレートに1ウェル当たり106細胞の293T/17細胞を播種し、37℃のCO2インキュベーター(5%CO2条件下)で培養した。その293T/17細胞にpCAGGS-NP, pCAGGS-P4C(-), pCAGGS-L(TDK), pCAGGS-T7, pCAGGS-F5Rおよび上記で示したヒト転写因子c-rMycを搭載したセンダイウイルスベクタープラスミドpSeV(HNL)-c-rMyc/TSΔFをそれぞれ0.5μg, 0.5μg, 2μg, 0.5μg, 0.5μgおよび5.0μgを混合し、TransIT-LT1 (Mirus) を15μl使用してトランスフェクションを行った。37℃のCO2インキュベーターで2日間培養した。その後、センダイウイルスの融合タンパク質(Fタンパク質)を発現する細胞LLC-MK2/F/Aを1ウェル当たり106細胞の割合でトランスフェクションを行った293T/17細胞に重層し、37℃のCO2インキュベーターで1日間培養した。翌日、細胞の培養液を除き、ペニシリンストレプトマイシンを添加したMEM培地(以下PS/MEM)1 mlで細胞を一度洗浄し、2.5μg/mlのトリプシンを含むPS/MEM培地(以下Try/PS/MEMとする)を1ウェル当たり1 ml添加し、32℃のCO2インキュベーターで2日間培養した。3~4日毎に培地交換を行いながら、場合によっては、LLC-MK2/F/A細胞で継代を行いながら培養を継続した。培養上清の一部を赤血球凝集分析によりベクター回収の有無を確認し、十分な赤血球凝集反応が得られた後に培養上清を回収した。回収した培養上清よりQIAamp Viral RNA Mini Kit(キアゲン カタログ番号52906)を用いてRNAを回収し、搭載したc-rMycの領域を標的にRT-PCRを行った。得られたRT-PCR産物はシークエンスにより正しい塩基配列であることを確認し、SeV(HNL)-c-rMyc/TSΔFベクターを得た。
<実施例5> 初期化因子搭載センダイウイルスベクターによるiPS誘導効率
 初期化因子搭載センダイウイルスベクターによるiPS誘導効率を表に示した。フィーダー細胞に載せるセンダイウイルス感染細胞数に対し、ES様コロニーの出現数を示している。実験は、ベクターとして上記のc-rMyc搭載ベクターも用いた以外は実施例1と同様に行った。初期化因子Oct3/4, Sox2, Klf4, c-Mycのうち、ベクターのHNL部位に搭載した改変型c-Myc (c-rMyc) を用いた場合に最大のコロニー出現数が得られた。これはレトロウイルスベクターを用いた誘導効率に比べ約10倍高い効率である。また、Myc無しの3因子でもセンダイウイルスベクターによるiPS誘導が可能であった。さらに、ヒト新生児包皮由来細胞(BJ)のみならず、ヒト成人皮膚由来細胞HDFからもセンダイウイルスベクターによりiPSの誘導がBJと類似の効率で可能であった。この結果は、本発明の方法が高効率でiPS細胞を誘導できる、従来に比較して簡易な方法であることを示している。
Figure JPOXMLDOC01-appb-T000001
<実施例6> iPS細胞のESマーカー発現
 初期化因子搭載センダイウイルスベクターにより誘導されたiPS細胞のESマーカーの発現を確認した。iPS細胞の誘導は、ベクターとして上記のc-rMyc搭載ベクターも用いた以外は実施例1と同様に行った。それぞれES細胞様コロニーをステムセルナイフ(日本医化器械)を用いて顕微鏡下で単離し、継代した。それぞれの株からRNAを抽出し、RT反応およびPCRを図3同様に行った。ES細胞マーカーであるOct3/4, NanogおよびTert, ほか8遺伝子: GDF3, TDGF1, Zfp42, Sal4F, Dmmt3b, CABRB3, CYP26A1, FoxD3(Adewumi, O. et al, Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803-816, 2007)の発現および初期化因子Sox2, Klf4, c-Mycの発現をRT-PCRで確認した。方法は実施例3の通りである。5つすべてのクローンに於いて、すべてのマーカーの発現が確認された(図4)。
 なお使用した各プライマーは以下の通りである。TERTについてはTERT F2847(TGCCCGGACCTCCATCAGAGCCAG (配列番号:37))およびTERT R3399(TCAGTCCAGGATGGTCTTGAAGTCTG (配列番号:38))、GDF3についてはGDF3 F(GGCGTCCGCGGGAATGTACTTC (配列番号:51))およびGDF3 R(TGGCTTAGGGGTGGTCTGGCC (配列番号:52)、TDGF1についてはTDGF1-F1(ATGGACTGCAGGAAGATGGCCCGC (配列番号:53))およびTDGF1-R567(TTAATAGTAGCTTTGTATAGAAAGGC (配列番号:54))、Zfp42についてはZfp42-F1(ATGAGCCAGCAACTGAAGAAACGGGCAAAG (配列番号:55))およびZfp42-R933(CTACTTTCCCTCTTGTTCATTCTTGTTCG (配列番号:56))、Sall4についてはSall4 F(AAACCCCAGCACATCAACTC (配列番号:57))およびSall4 R(GTCATTCCCTGGGTGGTTC (配列番号:58))、Dmmt3bについてはDnmt3b F(GCAGCGACCAGTCCTCCGACT (配列番号:59))およびDnmt3b R(AACGTGGGGAAGGCCTGTGC (配列番号:60))、GABRB3についてはGABRB3 F(CTTGACAATCGAGTGGCTGA (配列番号:61))およびGABRB3 R(TCATCCGTGGTGTAGCCATA (配列番号:62))、CYP26A1についてはCYP26A1 F(AACCTGCACGACTCCTCGCACA (配列番号:63))およびCYP26A1 R(AGGATGCGCATGGCGATTCG (配列番号:64))、FOXD3についてはFoxD3-F418(GTGAAGCCGCCTTACTCGTAC (配列番号:65))およびFoxD3-R770(CCGAAGCTCTGCATCATGAG (配列番号:66))、SeV-Oct3/4についてはF6(ACAAGAGAAAAAACATGTATGG (配列番号:67))およびOCT3/4 R259(GAGAGGTCTCCAAGCCGCCTTGG (配列番号:68))、SeV-Sox2についてはSox2-F294(AGCGCTGCACATGAAGGAGCACC (配列番号:27))およびR150(AATGTATCGAAGGTGCTCAA (配列番号:69))、SeV-Klf4についてはF6(ACAAGAGAAAAAACATGTATGG (配列番号:67))およびKIF4-R405(CGCGCTGGCAGGGCCGCTGCTCGAC (配列番号:70))、SeV-c-MycについてはF6(ACAAGAGAAAAAACATGTATGG (配列番号:67))およびc-rMyc406(TCCACATACAGTCCTGGATGATGATG (配列番号:71))、c-Myc/HNLについてはF8424(TAACTGACTAGCAGGCTTGTCG (配列番号:72))およびc-rMyc406(TCCACATACAGTCCTGGATGATGATG (配列番号:71))。
<実施例7> iPS細胞のテロメラーゼ活性
 初期化因子搭載センダイウイルスベクターにより誘導されたiPS細胞の無限増殖能を確認するため、テロメラーゼ活性の測定を行った。iPS細胞の誘導は、ベクターとして上記のc-rMyc搭載ベクター(HNLと表記)も用いた以外は実施例1と同様に行った。テロメラーゼ活性の検出には、TRAPEZE(商標) Telomerase Detection Kit (CHEMICON Cat. No. S7700) を使用した。細胞を回収し、キットに付属の1X CAPS Lysis bufferを200μl添加し、ピペッティングにより懸濁した。氷上で30分間培養し、冷却微量遠心機にて4℃で12000rpm 20分間遠心を行った。上清160μlを別のエッペンドルフチューブに移し、この細胞溶解液のタンパク質濃度を測定した。アッセイを行う前に細胞溶解液の1μgタンパク質に相当する量をエッペンドルフチューブに採り、85℃で10分間熱処理を行った。熱処理を行ったサンプル、熱処理を行っていないサンプル1μgをTRAPアッセイに使用した。各アッセイ当たり、10X TRAP Reaction Buffer 5.0μL, 50X dNTP Mix 1.0μL, TS Primer 1.0μL, TRAP Primer Mix 1.0μL, H2O+細胞溶解液(1μgタンパク質)=40.6μL, Taq Polymerase 0.4μLの割合で反応液を調製し、PCR(30℃-30分、94℃-30秒、59℃-30秒、72℃-60秒を30サイクル)を行った。PCR反応液に6Xローディングダイを添加し、10%または12.5%のポリアクリルアミドゲルに20μLアプライし、電気泳動を行いエチジウムブロマイドにより染色を行った。
 すべてのiPSクローンに於いてテロメラーゼ活性が認められ、対照である親株のBJ, HDFおよび熱処理後のiPS細胞では活性が認められなかった(図5)。
<実施例8> iPS細胞の多分化能
 初期化因子搭載センダイウイルスベクターにより誘導されたiPS細胞の多分化能を確認するため、in vitroの胚様体形成実験を行った。iPS細胞の誘導は実施例1と同様に行った。3つのiPSクローン4BJ1, B1(BJ由来)、および7H5(HDF由来)コロニーをコラゲナーゼIV (Invitrogen, 17104-019)でシャーレから剥がし、細胞塊をMPCコートのウェル(Nunc, 145383)に移しRPMI1640, 10 % FBSにて数日間浮遊培養を行い、胚様体の形成を顕微鏡下で確認した。センダイウイルスベクター誘導iPSは分化能を持っており、いずれのiPSも胚様体を形成し、7日目ではさらに分化の進んだ、多数の嚢胞状の胚様体が認められた(図6)。
 センダイウイルスベクターにより誘導されたiPS細胞(SeV-iPS)の三胚葉への多分化能をさらに示すため、in vitroにて心筋細胞(中胚葉)、ドーパミン産生ニューロン(外胚葉)、膵細胞(内胚葉)への分化誘導を確認した。SeV-iPSのうちSeVベクターが除去されたクローンを1 mg/mlコラゲナーゼIVでfeeder細胞から剥離し、心筋細胞誘導の場合は、NPCコートプレート上で0.1 mMビタミンC存在下、DMEM, 20 % FBSにて6日間浮遊培養し、胚様体形成の後、0.1 %ゼラチンコートプレート上に移し1週間培養すると、拍動する心筋が得られた (Takahashi, T. et.al., Circulation 107, 1912-1916, 2003)。ドーパミン産生ニューロンの場合は、同様にiPS細胞を分離後、0.1 %ゼラチンコートプレート上のコンフルエントなPA6フィーダー細胞 (RIKEN BRC) 上に播種し、2 mM L-グルタミンと非必須アミノ酸と2-メルカプトエタノールを終濃度1 x 10-4 M加えた10 % KSR, GMEM培地 (Invitrogen) にて16日間培養し、10 %ホルマリン溶液で細胞を固定後、抗βIII tubulin抗体 (SantaCruz; 2G10) 染色と抗Tyrosine Hydroxilase抗体(Chemicon; P07101)染色でドーパミン産生ニューロンであることを確認した (Kawasaki, H. et al., Neuron 28, 31-40 (2000))。膵臓細胞の場合は、MMC処理MEF feeder細胞上でSeV-iPS細胞をRPMI1640, 2 % FBS培地、100 ng/mlアクチビンA (R&D Systems) 存在下で4日間培養し、さらにN2とB27 supplements、2 mM L-グルタミン、非必須アミノ酸、2-メルカプトエタノール 1 x 10-4 Mと0.5 mg/mlのBSA (Invitrogen) を加えたDMEM/F12培地で8日間培養を行った。10 %ホルマリン溶液で固定した細胞は、抗PDX抗体 (R&D Systems; AF2419)、抗SOX17抗体 (R&D Systems; 245013) 染色でそれぞれ膵β細胞と内胚葉系細胞を確認した (D’Amour, K.A. et al., Nat. Biotechnol. 23, 1534-1541 (2005))。(図7)
 またin vitroでの多分化能は免疫不全マウスへのテラトーマ形成で確認を行った。SeV-iPS細胞はSCIDマウス皮下に接種し、約1ヶ月後に腫瘤形成を確認し、約2ヶ月後に検体を回収し、10 %ホルマリン固定後、パラフィン包埋し、組織切片のヘマトキシリン・エオジン染色を行い、三胚葉分化を確認した。(図8)
<実施例9> iPS細胞のプロモーター解析
 ES細胞で発現する遺伝子プロモーターOct3/4とNanogのiPS細胞における活性化状況について、以下のバイサルファイトシークエンス法によりメチル化解析を行った。その結果、対照の親株BJおよびHDFではOct3/4プロモーター (-2330~-2110領域) およびNanogプロモーター (-685~-120領域) のメチル化が多く認められたが、SeV-iPS細胞の各クローンに於いては、多くの脱メチル化が認められ、SeV-iPS細胞はES細胞同様にOct3/4とNanogプロモーターの活性化が起きている事が明らかになった (図9)。
(バイサルファイトシークエンス法)
 iPS細胞よりQIAamp DNA Mini Kit (50)(キアゲン、カタログ番号:51304)を用いて、キットのプロトコールに従いゲノムDNAを抽出した。次に、抽出したゲノムDNA 1μgを基にしてBisulFast DNA Modification Kit for Methylated DNA Detection(東洋紡、カタログ番号:MDD-101)を用いて、キットのプロトコールに従いバイサルファイト修飾を行った。バイサルファイト修飾ゲノムDNAを鋳型としてOct3/4遺伝子、Nanog遺伝子のプロモーター領域を標的として特異的プライマーを用いてPCRを行った。PCR産物をアガロースゲル電気泳動にて分離し、目的バンドをQIAquick Gel Extraction Kit(キアゲン、カタログ番号:28704)にて精製した。精製したPCR産物は、pGEM-T Easy Vector System I(プロメガ、カタログ番号:A1360)を用いて、キットのプロトコールに従い、TA-クローニングを行った。次に、Oct3/4遺伝子、Nanog遺伝子のプロモーター領域を標的とした特異的プライマーを用いてコロニーPCRを行った。アガロースゲル電気泳動を行いバンドサイズの正しいクローンを約10クローン選択した。そのクローンについて、ミニプレップによりプラスミドDNAを抽出し、T7プライマー、SP6プライマーを用いてシークエンスを行った。バイサルファイト修飾後の標的配列との比較を行いプロモーター領域のメチル化状態を評価した。
Oct3/4遺伝子プロモーター領域増幅用およびコロニーPCR用プライマー(J. Biol. Chem., 2005, Vol. 280, 6257-6260)
mOct4-5F: 5’-AATAGATTTTGAAGGGGAGTTTAGG-3’(配列番号:73)
mOct4-5R: 5’-TTCCTCCTTCCTCTAAAAAACTCA-3’(配列番号:74)
Nanog遺伝子プロモーター領域増幅用およびコロニーPCR用プライマー(Stem cell Research, Vol. 1, 105-115; Cell, 2007, Vol. 131, 861-72)
Nanog-z1-L: 5’-GGAATTTAAGGTGTATGTATTTTTTATTTT-3’(配列番号:75)
mehNANOG-F1-AS: 5’-AACCCACCCTTATAAATTCTCAATTA-3’(配列番号:76)
シークエンス用のプライマー
T7: 5’-TAATACGACTCACTATAGGG-3’(配列番号:77)
SP6: 5’-CATACGATTTAGGTGACACTATAG-3’(配列番号:78)
使用キット
 バイサルファストディ-エヌエ-モディフィケーションキットフォーメチレイテットディーエヌエーディテクション
 BisulFast DNA Modification Kit for Methylated DNA Detection
(東洋紡、カタログ番号:MDD-101)
<実施例10> iPS細胞の遺伝子発現解析
 センダイウイルスベクターにより誘導したiPS細胞(SeV-iPS細胞)の遺伝子発現プロファイルを親株BJ細胞、ヒトES細胞および、すでに樹立されたヒトiPS細胞 (GSM241846; Takahashi, K. et al., Cell, 131, 1-12, 2007) と比較した。SeV-iPSとBJ細胞のトータルRNAはRNeasy Mini Kit (Qiagen) を用いて抽出し、Agilent社Quick Amp Labeling Kitを用いてcDNAからCyanine色素標識cRNAを合成し、Agilent社Gene Expression Hybridization Kitを用いてWhole Human Genome Oligo Microarray (4 x 44K) 上で17時間ハイブリダイズし、洗浄後、Agilent Microarray Scanner でDNAマイクロアレイのイメージを読み取り、Feature Extraction Software (v.9.5.3.1) にて各スポットの蛍光シグナルを数値化し、解析を行った。チップの総probe数は重複を除き、41078 probeを解析対象として行った(バイオマトリックス研究所)。対照の遺伝子発現情報はGEO DetaSetsから取得しSeV-iPS細胞の遺伝子発現と比較した:ヒトES細胞hES-H9 (GSM194390; Teser P. J., et al, Nature 448, 196-199, 2007)、およびヒトiPS細胞はHDFより誘導されたhiPS (GSM241846; Takahashi, K. et al., Cell, 131, 1-12, 2007)。その結果、SeV-iPSとBJとはr=8732, ヒトES細胞とはr=0.9658、ヒトiPS細胞とはr=0.9580の相関があり、ES細胞に発現するNanog, Sox2, Oct3/4遺伝子はSeV-iPSに発現し、BJとは非相関していたが、SeV-iPSとそれぞれヒトES細胞もしくはヒトiPS細胞とは相関線上にあり、完全に一致していた(図9)。
<実施例11> 温度依存不活化変異導入ベクターの作製
(ベクターの作製方法)
 温度依存不活化変異導入センダイウイルスベクター作製用プラスミドの構築
 Litmus SalINheIfrg PmutMtsHNts ΔF-GFP(WO2003/025570)を基にL Y942H-F(5’- CAAATGTTGGAGGATTCAACCACATGTCTACATCTAGATG-3’(配列番号:79))、L Y942H-R (5’- CATCTAGATGTAGACATGTGGTTGAATCCTCCAACATTTG-3’(配列番号:80))の組み合わせ、およびL Y942H-F、L Y942H-R、P2-F(5'- CATCACAGCTGCAGGTGGCGCGACTGACAAC -3' (配列番号:81))、P2-R(5’- GTTGTCAGTCGCGCCACCTGCAGCTGTGATG -3’ (配列番号:82))の組み合わせでPCR(94℃-3分→98℃-10秒、55℃-15秒、72℃-11分を25サイクル→72℃-7分)を行った。PCR産物をDpn Iで37℃で1時間消化し、この反応液20μlを大腸菌DH5α(ToYoBo Code No. DNA-903)を用いてトランスフォーメーションを行った。出てきたコロニーを拾って、ミニプレップ後、シークエンスを行い配列の正しいクローンを選択し、それぞれLitmus38TSΔF-GFP-LY942HおよびLitmus38TSΔF-GFP-P2LY942Hを得た。
 Litmus38TSΔF-GFP-P2LY942HをStuI消化後、アガロースゲル電気泳動にて分離し、1.9kbpのバンドを切り出し精製した。Litmus SalINheIfrg PmutMtsHNts ΔF-GFPをStuI消化後、アガロースゲル電気泳動にて分離し、9.8kbpのバンドを切り出し精製した。これら精製した2つの断片をライゲーションし、Litmus38TSΔF-GFP-P2を得た。
 Litmus38TSΔF-GFP-P2LY942HをNcoI消化後、アガロースゲル電気泳動にて分離し、7.1kbpのバンドを切り出し精製した。Litmus SalINheIfrg PmutMtsHNts ΔF-GFP delGFPをNcoI消化後、アガロースゲル電気泳動で分離し、3.7kbpのバンドを切り出し、精製した。これらの精製したバンドを用いてライゲーションを行いコロニーPCRおよびNcoI-PacI二重消化にて構造を確認し、Litmus38TSΔF-P2LY942HΔGFPを得た。
 pSeV(HNL)/TSΔFをNcoI消化後、アガロースゲル電気泳動にて分離し、3.7kbpのバンドを切り出し、精製した。このバンドと上記、Litmus38TSΔF-GFP-P2LY942Hの7.1kbpのNcoI断片とライゲーションし、Litmus38TSΔF-P2LY942H(HNL)ΔGFPを得た。
 Litmus38TSΔF-GFP-P2をNcoI消化後、アガロースゲル電気泳動にて分離し、7.1kbpのバンドを切り出し、精製した。このバンドと上記のLitmus SalINheIfrg PmutMtsHNts ΔF-GFP delGFPの NcoI消化精製断片(3.7kbp)またはpSeV(HNL)/TSΔFのNcoI消化精製断片(3.7kbp)、をライゲーションし、それぞれLitmus38TSΔF-P2ΔGFP、Litmus38TSΔF-P2(HNL)ΔGFPを得た。
 pSeV/ΔSalINheIfrg Lmut(WO2003/025570)を鋳型として、L L1361C-F(5’- GGTTCCTTAGGGAAGCCATGTATATTGCACTTACATCTTA -3’(配列番号:83))およびL L1361C-R (5’- TAAGATGTAAGTGCAATATACATGGCTTCCCTAAGGAACC -3’(配列番号:84))の組み合わせ、L L1558I-F(5’- CCTGTGTATGGGCCTAACATCTCAAATCAGGATAAGATAC -3’(配列番号:85))およびL L1558I-R (5’- GTATCTTATCCTGATTTGAGATGTTAGGCCCATACACAGG -3’(配列番号:86))の組み合わせ、そして、L L1361C-F、 L L1361C-R、 L L1558I-FおよびL L1558I-Rの組み合わせ、でPCR(94℃-3分→98℃-10秒、55℃-15秒、72℃-9分を25サイクル→72℃-7分)を行った。PCR産物をDpn Iで37℃で1時間消化し、この反応液20μlを大腸菌DH5α(ToYoBo Code No. DNA-903)を用いてトランスフォーメーションを行った。出てきたコロニーを拾って、ミニプレップ後、シークエンスを行い配列の正しいクローンを選択し、それぞれpSeV/TSΔF-Linker L1361C、pSeV/TSΔF-Linker L1558I、pSeV/TSΔF-Linker L1361CL1558Iを得た。
 Litmus38TSΔF-P2LY942H(HNL)ΔGFPおよびpSeV/TSΔF-Linker L1361CL1558IをそれぞれSalI-NheI消化後、アガロースゲル電気泳動により分離し、それぞれ8.0kbp、8.3kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV(HNL)/TS8ΔFを得た。
 pSeV(HNL)/TS8ΔFおよびpSeV(HNL)/TSΔFをNotI-XhoI消化後、アガロースゲル電気泳動により分離し、それぞれ4.9kbp、11.4kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV(HNL)/TS7ΔFを得た。pSeV(HNL)/TS7ΔFベクターのNot Iサイトに、pBS-KS-c-rMycより NotI消化により、切り出し、精製したc-rMyc遺伝子を含むNot I断片を導入し、pSeV(HNL)-c-rMyc/TS7ΔFを得た。
 Litmus38TSΔF-P2LY942HΔGFPおよびpSeV/TSΔF-Linker L1361CL1558IをそれぞれSalI-NheI消化後、アガロースゲル電気泳動により分離し、それぞれ8.0kbp、8.3kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV18+BSSHII/TS8ΔFを得た。このpSeV18+BSSHII/TS8ΔFおよびpSeV18+Oct3/4/TSΔFをそれぞれAatII-SphIで消化し、15.2kbpおよび2.3kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV18+Oct3/4/TS8ΔFを得た。pSeV18+Oct3/4/TS8ΔFおよびpSeV18+/TSΔFをそれぞれPacI-SphI消化後、アガロースゲル電気泳動により分離し、それぞれ13.3kbp、4.2kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV18+Oct3/4/TS7ΔFを得た。次にpSeV18+Oct3/4/TS7ΔFをNotI消化し、アガロースゲル電気泳動により分離後、16.4kbpのバンドを切り出し精製した。この精製物と前出のpBS-KS-Sox2、pBS-KS-KLF4、pBS-KS-c-rMycよりNotI消化により、切り出し、精製したSox2、KLF4、c-rMyc遺伝子を含むNot I断片をそれぞれライゲーションし、pSeV18+Sox2/TS7ΔF、pSeV18+KLF4/TS7ΔF、pSeV18+c-rMyc/TS7ΔFを得た。
 Litmus38TSΔF-P2(HNL)ΔGFPおよびpSeV/TSΔF-Linker L1361CをそれぞれSalI-NheI消化後、アガロースゲル電気泳動により分離し、それぞれ8.0kbp、8.3kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV(HNL)/TS14ΔFを得た。このpSeV(HNL)/TS14ΔFのNot IサイトにpBS-KS-c-rMycより NotI消化により、切り出し、精製したc-rMyc遺伝子を含むNot I断片を導入し、pSeV(HNL)-c-rMyc/TS14ΔFを得た。
 Litmus38TSΔF-P2(HNL)ΔGFPおよびpSeV/TSΔF-Linker L1558IをそれぞれSalI-NheI消化後、アガロースゲル電気泳動により分離し、それぞれ8.0kbp、8.3kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV(HNL)/TS13ΔFを得た。このpSeV(HNL)/TS13ΔFのNot IサイトにpBS-KS-c-rMycより NotI消化により、切り出し、精製したc-rMyc遺伝子を含むNot I断片を導入し、pSeV(HNL)-c-rMyc/TS13ΔFを得た。
 Litmus38TSΔF-P2(HNL)ΔGFPおよびpSeV/TSΔF-Linker L1361CL1558IをそれぞれSalI-NheI消化後、アガロースゲル電気泳動により分離し、それぞれ8.0kbp、8.3kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV(HNL)/TS15ΔFを得た。このpSeV(HNL)/TS15ΔFのNot IサイトにpBS-KS-c-rMycより NotI消化により、切り出し、精製したc-rMyc遺伝子を含むNot I断片を導入し、pSeV(HNL)-c-rMyc/TS15ΔFを得た。
 Litmus38TSΔF-P2ΔGFPおよびpSeV/TSΔF-Linker L1361CをそれぞれSalI-NheI消化後、アガロースゲル電気泳動により分離し、それぞれ8.0kbp、8.3kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV18+BSSHII/TS14ΔFを得た。このpSeV18+BSSHII/TS14ΔF AatII-SphIで消化し、15.2kbpのバンドを切り出し精製した。この精製断片と前出のpSeV18+Oct3/4/TSΔFのAatII-SphI断片(2.3kbp)をライゲーションし、pSeV18+Oct3/4/TS14ΔFを得た。次にpSeV18+Oct3/4/TS14ΔFをNotI消化し、アガロースゲル電気泳動により分離後、16.4kbpのバンドを切り出し精製した。この精製物と前出のpBS-KS-Sox2、pBS-KS-KLF4、pBS-KS-c-rMycよりNotI消化により、切り出し、精製したSox2、KLF4、c-rMyc遺伝子を含むNot I断片をそれぞれライゲーションし、pSeV18+Sox2/TS14ΔF、pSeV18+KLF4/TS14ΔF、 pSeV18+c-rMyc/TS14ΔFを得た。
 Litmus38TSΔF-P2ΔGFPおよびpSeV/TSΔF-Linker L1558IをそれぞれSalI-NheI消化後、アガロースゲル電気泳動により分離し、それぞれ8.0kbp、8.3kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV18+BSSHII/TS13ΔFを得た。このpSeV18+BSSHII/TS13ΔF AatII-SphIで消化し、15.2kbpのバンドを切り出し精製した。この精製断片と前出のpSeV18+Oct3/4/TSΔFのAatII-SphI断片(2.3kbp)をライゲーションし、pSeV18+Oct3/4/TS13ΔFを得た。次にpSeV18+Oct3/4/TS13ΔFをNotI消化し、アガロースゲル電気泳動により分離後、16.4kbpのバンドを切り出し精製した。この精製物と前出のSox2、KLF4、c-rMyc遺伝子を含むNot I断片をそれぞれライゲーションし、pSeV18+Sox2/TS13ΔF、pSeV18+KLF4/TS13ΔF、 pSeV18+c-rMyc/TS13ΔFを得た。
 Litmus38TSΔF-P2ΔGFPおよびpSeV/TSΔF-Linker L1361CL1558IをそれぞれSalI-NheI消化後、アガロースゲル電気泳動により分離し、それぞれ8.0kbp、8.3kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV18+BSSHII/TS15ΔFを得た。このpSeV18+BSSHII/TS15ΔF AatII-SphIで消化し、15.2kbpのバンドを切り出し精製した。この精製断片と前出のpSeV18+Oct3/4/TSΔFのAatII-SphI断片(2.3kbp)をライゲーションし、pSeV18+Oct3/4/TS15ΔFを得た。次にpSeV18+Oct3/4/TS15ΔFをNotI消化し、アガロースゲル電気泳動により分離後、16.4kbpのバンドを切り出し精製した。この精製物と前出のSox2、KLF4、c-rMyc遺伝子を含むNot I断片をそれぞれライゲーションし、pSeV18+Sox2/TS15ΔF、pSeV18+KLF4/TS15ΔF、 pSeV18+c-rMyc/TS15ΔFを得た。
 Litmus38TSΔF-P2(HNL)ΔGFPおよびpSeV/ΔSalINheIfrg LmutをそれぞれSalI-NheI消化後、アガロースゲル電気泳動により分離し、それぞれ8.0kbp、8.3kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV(HNL)/TS12ΔFを得た。このpSeV(HNL)/TS12ΔFのNot IサイトにpBS-KS-c-rMycより NotI消化により、切り出し、精製したc-rMyc遺伝子を含むNot I断片を導入し、pSeV(HNL)-c-rMyc/TS12ΔFを得た。
 Litmus38TSΔF-P2ΔGFPおよびpSeV/ΔSalINheIfrg LmutをそれぞれSalI-NheI消化後、アガロースゲル電気泳動により分離し、それぞれ8.0kbp、8.3kbpのバンドを切り出し精製した。これらの精製断片のライゲーションを行いpSeV18+BSSHII/TS12ΔFを得た。このpSeV18+BSSHII/TS12ΔF AatII-SphIで消化し、15.2kbpのバンドを切り出し精製した。この精製断片と前出のpSeV18+Oct3/4/TSΔFのAatII-SphI断片(2.3kbp)をライゲーションし、pSeV18+Oct3/4/TS12ΔFを得た。次にpSeV18+Oct3/4/TS12ΔFをNotI消化し、アガロースゲル電気泳動により分離後、16.4kbpのバンドを切り出し精製した。この精製物と前出のSox2、KLF4、c-rMyc遺伝子を含むNot I断片をそれぞれライゲーションし、pSeV18+Sox2/TS12ΔF、pSeV18+KLF4/TS12ΔF、pSeV18+c-rMyc/TS12ΔFを得た。
(温度依存不活化変異導入F遺伝子欠失型センダイウイルスベクターの回収)
 トランスフェクションの前日に6ウェルプレートに1ウェル当たり106細胞の293T/17細胞を播種し、37℃のCO2インキュベーター(5%CO2条件下)で培養した。その293T/17細胞にpCAGGS-NP, pCAGGS-P4C(-), pCAGGS-L(TDK), pCAGGS-T7, pCAGGS-F5R (WO2005/071085) および上記で示したヒト転写因子を搭載した温度依存不活化変異導入F遺伝子欠失型センダイウイルスベクタープラスミドをそれぞれ0.5μg, 0.5μg, 2μg, 0.5μgおよび5.0μgを混合し、TransIT-LT1 (Mirus) を15μl使用してトランスフェクションを行った。37℃のCO2インキュベーターで2から3日間培養した。その後、センダイウイルスの融合タンパク質(Fタンパク質)を発現する細胞LLC-MK2/F/Aを1ウェル当たり106細胞の割合でトランスフェクションを行った293T/17細胞に重層し、37℃のCO2インキュベーターで1日間培養した。翌日、細胞の培養液を除き、ペニシリンストレプトマイシンを添加したMEM培地(以下PS/MEM)1mlで細胞を1度洗浄し、2.5μg/mlのトリプシンを含むPS/MEM培地(以下Try/PS/MEMとする)を1ウェル当たり1ml添加し、32℃のCO2インキュベーターで培養した。3~4日毎に培地交換を行いながら、場合によっては、LLC-MK2/F/A細胞で継代を行いながら培養を継続した。培養上清の一部を赤血球凝集分析によりベクター回収の有無を確認し、十分な赤血球凝集反応が得られた後に培養上清を回収した。回収した培養上清よりQIAamp Viral RNA Mini Kit (キアゲン カタログ番号52906)を用いてRNAを回収し、搭載した遺伝子の領域を標的にRT-PCRを行った。得られたRT-PCR産物はシークエンスにより正しい塩基配列であることを確認し、各種ヒト転写因子を搭載した温度依存不活化変異導入F遺伝子欠失型センダイウイルスベクターを得た。
<実施例12> ベクターの除去
 SeV-iPS細胞からSeVベクターが自然除去するコロニーが得られた。また温度感受性ベクターを使ってiPSを37℃で誘導したのち39℃に温度シフトするとセンダイウイルス陰性クローンが得られた。さらに、SeVに感染する事で細胞表面に発現するHN抗原を指標にし、抗HN抗体でネガティブセレクションすることで、SeVネガティブなクローンが得られた。
1.自然脱落
 SeV-iPS細胞を継代培養するとベクターが自然に除去された細胞が増えていった。SeV-iPS細胞コロニーからRNAを抽出し、RT-PCRを行い、SeV由来の外来遺伝子発現を確認すると、18+の位置(ゲノムの最も3'側であるNP遺伝子の3'側)にSeV-Oct3/4, Sox2, Klf4, c-Myc (c-rMycおよびc-Myc) を挿入した場合(それぞれSeV18+Oct3/4/TSΔF、SeV18+Sox2/TSΔF、SeV18+Klf4/TSΔF、SeV18+c-Myc/TSΔF (またはSeV18+c-rMyc/TSΔF))、外来遺伝子は細胞分裂に伴い希釈され、これらのうち1種類もしくは2種類の発現に減っていくことが多く、野生型c-Mycは複製の劣位から一番最初に除去された。またHNLの位置にc-rMycを挿入した場合(HNL-c-rMyc/TSΔF)は、18+の位置に目的因子を挿入したベクターに対する複製優位性から、Myc遺伝子を搭載したベクターのみ残存することが多く、さらに導入された外来性初期化因子がすべて完全に除去されたクローンも得られた。RT-PCRのみならず、蛋白レベルでも完全に除去されていることが抗SeV-NP抗体によるウェスタンブロットで示された(図10)。RT-PCRのプライマーは実施例6に示した通りである。
2.抗HN抗体による除去
 SeVベクターは細胞分裂による希釈と継代により、自然に減少していくが、積極的にSeVベクターネガティブ細胞を集めることも可能である。SeVに感染する事で細胞表面に発現するHN抗原を指標にし、抗HN抗体によりSeVベクターの除去クローンが取得可能である。コラゲナーゼIVとトリプシン処理、懸濁操作により小さな細胞集団にした細胞に、抗HNモノクローナル抗体(IL4.1)を氷上で30分間反応させ、培地で洗浄後、2次抗体として例えばマグネットビーズに結合した抗マウスIgG1抗体(Anti-Mouse IgG1 Particles, BD)を同様に氷上で30分間反応させ、磁石 (IMagnet Cell Separation Magnet, BD) に非結合画分を集めた(ネガティブセレクション)。その結果、SeVベクターの発現が減弱した細胞集団が得られ、同操作を繰り返すことによりベクターネガティブなiPS細胞が得られた(図11)。またFACSにより抗HN抗体陰性集団を集める事も可能である。
3.温度感受性ベクターによるSeV除去技術
TS 7:L (Y942H/L1361C/L1558I)
TS 13:P(D433A/R434A/K437A), L(L1558I)
TS 14:P(D433A/R434A/K437A), L(L1361C)
TS 15:P(D433A/R434A/K437A), L(L1361C/L1558I)
 これらの変異をSeV18+/TSΔFベクターに導入した。これらのベクターは温度感受性であり、温度シフトにより複製が阻害される。すなわち、搭載された遺伝子は32℃で最も高く発現し、35~36℃でも発現し、37℃で発現がやや弱く、38.5℃もしくは39℃で発現しない。
 これらのベクターに初期化因子を同様(以前の記述)に搭載し、37℃でiPSを誘導し、iPS細胞が作製された後に温度シフトを行い、容易にSeVの除去を行うことができた。
4.HNL-Myc複製優位性
 1で示した通り、SeV-18+Oct3/4, Klf4, Sox2とSeV-HNL-c-rMycの組合せでiPS誘導を行った場合、c-rMyc遺伝子がHNとLの間に挿入されているSeV-HNL-c-rMycが、18+の位置(NP遺伝子の上流)に挿入した他の因子をもつSeVベクターに対して複製に有利であり、かつc-Mycが細胞増殖に有利であるという性質から、SeVに搭載した4因子のうちSeV-HNL-c-rMycだけが最後に残存した。またSeV-HNL-c-rMycで誘導したSeV-iPS細胞は、増殖能が優れているためクローンとして樹立しやすく、かつ最後に残ったベクターは1つだけであり、それも自然除去されやすかった。従って、温度感受性株を使った温度シフトによる除去を行うためには、HNL-c-rMycだけを温度感受性にすればよく、実際、最後に残ったHNL-c-rMycベクターは、温度シフトによって除去することができた(図12、13)。
5.温度感受性SeVベクターによるベクター除去容易なiPS細胞の作製
 上記TS7、TS13もしくはTS15のHN-Lの間にc-rMyc遺伝子を挿入したベクター(TS7ΔF、TS13ΔF、TS15ΔF)と、18+の位置にOct3/4, Klf4, Sox2をそれぞれ挿入したTSベクターを用いて線維芽細胞(BJ細胞)よりiPS誘導を行うと、上述のSeV-HNL-Myc複製優位により、温度感受性のSeV-HNL-Mycだけが残る。また温度感受性株は37℃での発現が弱いために、SeV-HNL-Mycだけになった場合、速やかに残存する最後のベクターも除去される。
 このようにしてiPS誘導を行うと、TS/18+ Oct3/4, Sox2, Klf4/TSΔFと、TS13ΔF/HNL-c-rMycの組合せの場合、4/6クローンが、またTS15ΔF/HNL-c-rMycの組合せの場合、3/6のクローンが、TS7ΔF/HNL-c-rMycの場合、2/12のクローンが、誘導後1ヶ月以内にSeVベクター陰性となった(図13)。得られたSeV陰性クローンはすべてヒトES細胞特異的マーカーを発現していた(図14)。
 この方法により、容易に染色体を傷つけず、かつSeV陰性な、無傷のiPS細胞を得る事が出来た。
<実施例13>
 上記TS ΔFベクター以外にも、実施例12の5にてTS7ΔF、TS13ΔF、TS15ΔFに初期化因子(Oct3/4, Sox2, Klf4, c-Myc)を載せてiPS細胞の誘導が可能であったが、別のΔFベクターバックボーンL変異体Y1214F(WO2008/096811)を用いても、同様にiPS細胞を誘導できることを以下のように確認した。
(LmΔF/SeVの構築)
プラスミド構築
 pSeV18+LacZ/ΔF-1214(WO2008/096811)をNotIで消化後、精製した。そして、ライゲーションを行いLacZ遺伝子の入っていないプラスミドを選択し、pSeV18+/ΔF-1214を得た(「Lm(Y1214F) ΔF/SeV」または単に「LmΔF/SeV」とも表記する)。次にpSeV18+/ΔF-1214をNotIで消化後精製し、前出の初期化4因子Oct3/4, Klf4, Sox2およびc-rMycのNotI断片をそれぞれ搭載し、ウイルスベクター作成用のプラスミドpSeV18+Oct3/4/ΔF-1214、pSeV18+Sox2/ΔF-1214、pSeV18+KLF4/ΔF-1214、pSeV18+c-rMyc/ΔF-1214を構築した。
LmΔF/SeVセンダイウイルスベクターの回収
 トランスフェクションの前日に6ウェルプレートに1ウェル当たり106細胞の293T/17細胞を播種し、37℃のCO2インキュベーター(5%CO2条件下)で培養した。その293T/17細胞にpCAGGS-NP, pCAGGS-P4C(-), pCAGGS-L(TDK), pCAGGS-T7, pCAGGS-F5R (WO2005/071085)および上記で示したヒト転写因子を搭載したLmΔF/SeVセンダイウイルスベクタープラスミドをそれぞれ0.5μg, 0.5μg, 2μg, 0.5μgおよび5.0μgを混合し、TransIT-LT1 (Mirus)を15μl使用してトランスフェクションを行った。37℃のCO2インキュベーターで2から3日間培養した。その後、センダイウイルスの融合タンパク質(Fタンパク質)を発現する細胞LLC-MK2/F/Aを1ウェル当たり106細胞の割合でトランスフェクションを行った293T/17細胞に重層し、37℃のCO2インキュベーターで1日間培養した。翌日、細胞の培養液を除き、ペニシリンストレプトマイシンを添加したMEM培地(以下PS/MEM)1 mlで細胞を1度洗浄し、2.5μg/mlのトリプシンを含むPS/MEM培地(以下Try/PS/MEMとする)を1ウェル当たり1ml添加し、32℃のCO2インキュベーターで培養した。3~4日毎に培地交換を行いながら、場合によっては、LLC-MK2/F/A細胞で継代を行いながら培養を継続した。培養上清の一部を赤血球凝集分析によりベクター回収の有無を確認し、十分な赤血球凝集反応が得られた後に培養上清を回収した。回収した培養上清よりQIAamp Viral RNA Mini Kit (キアゲン カタログ番号52906)を用いてRNAを回収し、搭載した遺伝子の領域を標的にRT-PCRを行った。得られたRT-PCR産物はシークエンスにより正しい塩基配列であることを確認し、各種ヒト転写因子を搭載したLmΔF/SeVセンダイウイルスベクターを得た。
 LmΔF/SeVに初期化4因子Oct3/4, Klf4, Sox2およびc-rMyc(TSΔF)を同様に18+の位置に搭載し、ウイルスベクターを作製した。
 ヒト線維芽細胞BJに4因子搭載LmΔF/SeVを感染させ、TSΔF SeVベクターと同様にiPS誘導を行った結果、TSΔF/SeVを用いた場合と同様、iPS様コロニーが出現し、ESマーカーであるALPを発現していた(図15A)。このことは、ひとつのベクターに限らずセンダイウイルスベクターの他の骨格でもiPS誘導可能であることを示す。
<実施例14> フィーダーフリーのiPS誘導法
 センダイウイルスベクターによる初期化因子発現が高いため、従来のフィーダー細胞上で誘導する方法だけでなく、フィーダーフリーでも誘導可能である。初期化因子搭載SeVを感染後15日まではそのままプラスチックシャーレ上で誘導し、iPS様コロニーが出現した頃から培養液をDMEM/10 % FBSからES細胞用の培地に変更し、コロニーが十分な大きさになった後、collagenase IVでシャーレから剥離し、新しいフィーダー細胞上にまき直し、iPS細胞を樹立できた。
<実施例15> Thomsonの4因子(Oct3/4, Sox2, Lin28, Nanog)によるiPS誘導
 Yamanakaの4因子(Oct3/4, Sox2, Klf4, c-Myc)(Takahashi, K. and Yamanaka S., Cell 126, 663-676, 2006)以外に、Thomsonの4因子(Oct3/4, Sox2, Lin28, Nanog)(Yu J et al., Science. 2007, 318(5858):1917-20)をTSΔF/SeVに搭載しても、ヒト線維芽細胞からiPS細胞誘導が可能であった(図15B)。以下に、NanogおよびLin28ベクターの構築例を示した。
(1)ヒト転写因子Nanogの単離およびNanogを搭載したセンダイウイルスベクタープラスミドの構築およびNanogを搭載したセンダイウイルスベクターの作製
 NCCIT細胞のcDNAライブラリーからPrimeStar(商標) HS DNA polymerase (タカラバイオ株式会社 カタログ番号R010A) を用いてNANOF-F(5’-CCACCATGAGTGTGGATCCAGCTTGTCC-3’(配列番号:87))およびNANOF-R(5’-CTCACACGTCTTCAGGTTGCATGTTC-3’(配列番号:88))のプライマーによりPCRを行った。PCR産物はQiaquick PCR Purification kit (キアゲンCat. No. 28106) を用いて精製した。ブルースクリプトプラスミドベクターのEco RVサイトにクローニングし、シークエンスにより遺伝子配列を確認し、配列の正しいクローンを選択しpBS-KS-Nanogを得た。
 次に、pBS-KS-Nanogを鋳型にして、NotI-Nanog-F(5’-GCGCGGCCGCACCACCATGAGTGTGGATCCAGCTTGTCC-3’(配列番号:89))およびNotI-Nanog-R(5’-GCGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTCACACGTCTTCAGGTTGCATGTTCATGGAGTAGTTTAG-3’(配列番号:90))のプライマーでPCRを行った。PCR産物はQiaquick PCR Purification kit (キアゲンCat. No. 28106) を用いて精製し、その後Not I消化を行った。Qiaquick PCR Purification kit (キアゲン、カタログ番号28106)を用いて精製し、pSeV18+/TSΔFベクターのNot Iサイトにクローニングし、シークエンスにより配列の正しいクローンを選択し、pSeV18+Nanog/TSΔFを得た。このプラスミドを用いて前出の方法にてNanog遺伝子を保持するF遺伝子欠失型センダイウイルスベクター(以下「SeV18+ Nanog/TSΔFベクター」という。)
(2)ヒトLin 28の単離およびNanogを搭載したセンダイウイルスベクタープラスミドの構築およびLin 28を搭載したセンダイウイルスベクターの作製
 NCCIT細胞のcDNAライブラリーからPrimeStar(商標) HS DNA polymerase (タカラバイオ株式会社 カタログ番号R010A)を用いてLIN28-F(5’-CCACCATGGGCTCCGTGTCCAACCAGC-3’(配列番号:91))およびLIN28-R(5’-GTCAATTCTGTGCCTCCGGGAGC-3’(配列番号:92))のプライマーによりPCRを行った。PCR産物はQiaquick PCR Purification kit (キアゲンCat. No. 28106)を用いて精製し、ブルースクリプトプラスミドベクターのEco RVサイトにクローニングし、シークエンスにより遺伝子配列を確認し、配列の正しいクローンを選択しpBS-KS-Lin28を得た。次に、pBS-KS-Lin 28を鋳型にして、NotI-Lin28-F(5’- GCGCGGCCGCACCACCATGGGCTCCGTGTCCAACCAGC-3’(配列番号:93))およびNotI-Lin28-R(5’- GCGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTCAATTCTGTGCCTCCGGGAGCAGGGTAGGGCTGTG-3’(配列番号:94))のプライマーでPCRを行った。PCR産物はQiaquick PCR Purification kit (キアゲンCat. No. 28106)を用いて精製し、その後Not I消化を行った。Qiaquick PCR Purification kit (キアゲン、カタログ番号28106)を用いて精製し、pSeV18+/TSΔFベクターのNot Iサイトにクローニングし、シークエンスにより配列の正しいクローンを選択し、pSeV18+Lin 28/TSΔFを得た。このプラスミドを用いて前出の方法にてLin 28遺伝子を保持するF遺伝子欠失型センダイウイルスベクター(「SeV18+ Lin 28/TSΔFベクター」という。)
 本発明により、宿主細胞の染色体に遺伝子を組み込むことなく、ES様細胞(多能性幹細胞)を製造することが可能となった。得られたES様細胞は、外来遺伝子が染色体に組み込まれていないため、本細胞を利用した試験、研究に好都合であるばかりでなく、疾病の治療においても免疫拒絶の問題や倫理面の問題を回避でき、さらに遺伝毒性に基づく癌化の危険性を回避することが期待できる。

Claims (39)

  1.  細胞のリプログラミングにおいて遺伝子を導入するための方法であって、染色体非組み込み型ウイルスベクターを用いて細胞に該遺伝子を導入することを特徴とする方法。
  2.  リプログラミングが多能性幹細胞の誘導である、請求項1に記載の方法。
  3.  染色体非組み込み型ウイルスベクターがRNAウイルスベクターである、請求項1または2に記載の方法。
  4.  RNAウイルスベクターがマイナス鎖RNAウイルスベクターである、請求項3に記載の方法。
  5.  マイナス鎖RNAウイルスベクターがパラミクソウイルスベクターである、請求項4に記載の方法。
  6.  パラミクソウイルスベクターがセンダイウイルスベクターである、請求項5に記載の方法。
  7.  該遺伝子が下記(1)~(8)からなる群より選択される、請求項1から6のいずれかに記載の方法。
     (1)Oct遺伝子
     (2)Klf遺伝子
     (3)Myc遺伝子
     (4)Sox遺伝子
     (5)Nanog遺伝子
     (6)Lin28遺伝子
     (7)SV40 LargeT抗原遺伝子
     (8)TERT遺伝子
  8.  染色体非組み込み型ウイルスベクターを含む、細胞のリプログラミングにおける遺伝子導入に用いるための組成物。
  9.  リプログラミングが多能性幹細胞の誘導である、請求項8に記載の組成物。
  10.  染色体非組み込み型ウイルスベクターがRNAウイルスベクターである、請求項8または9に記載の組成物。
  11.  RNAウイルスベクターがマイナス鎖RNAウイルスベクターである、請求項10に記載の組成物。
  12.  マイナス鎖RNAウイルスベクターがパラミクソウイルスベクターである、請求項11に記載の組成物。
  13.  パラミクソウイルスベクターがセンダイウイルスベクターである、請求項12に記載の組成物。
  14.  該遺伝子が下記(1)~(8)からなる群より選択される、請求項8から13のいずれかに記載の組成物。
     (1)Oct遺伝子
     (2)Klf遺伝子
     (3)Myc遺伝子
     (4)Sox遺伝子
     (5)Nanog遺伝子
     (6)Lin28遺伝子
     (7)SV40 LargeT抗原遺伝子
     (8)TERT遺伝子
  15.  染色体非組み込み型ウイルスベクターの、分化した細胞のリプログラミングのための薬剤の製造における使用。
  16.  リプログラミングが、分化した細胞からの多能性幹細胞の誘導である、請求項15に記載の使用。
  17.  染色体非組み込み型ウイルスベクターがRNAウイルスベクターである、請求項15または16に記載の使用。
  18.  RNAウイルスベクターがマイナス鎖RNAウイルスベクターである、請求項17に記載の使用。
  19.  マイナス鎖RNAウイルスベクターがパラミクソウイルスベクターである、請求項18に記載の使用。
  20.  パラミクソウイルスベクターがセンダイウイルスベクターである、請求項19に記載の使用。
  21.  ベクターが、下記(1)~(8)からなる群より選択される初期化因子をコードする遺伝子を少なくとも搭載する、請求項15から20のいずれかに記載の使用。
     (1)Oct遺伝子
     (2)Klf遺伝子
     (3)Myc遺伝子
     (4)Sox遺伝子
     (5)Nanog遺伝子
     (6)Lin28遺伝子
     (7)SV40 LargeT抗原遺伝子
     (8)TERT遺伝子
  22.  下記(1)~(8)からなる群より選択される遺伝子を搭載する、染色体非組み込み型ウイルスベクター。
     (1)Oct遺伝子
     (2)Klf遺伝子
     (3)Myc遺伝子
     (4)Sox遺伝子
     (5)Nanog遺伝子
     (6)Lin28遺伝子
     (7)SV40 LargeT抗原遺伝子
     (8)TERT遺伝子
  23.  染色体非組み込み型ウイルスベクターがRNAウイルスベクターである、請求項22に記載のベクター。
  24.  RNAウイルスベクターがマイナス鎖RNAウイルスベクターである、請求項23に記載のベクター。
  25.  マイナス鎖RNAウイルスベクターがパラミクソウイルスベクターである、請求項24に記載のベクター。
  26.  パラミクソウイルスベクターがセンダイウイルスベクターである、請求項25に記載のベクター。
  27.  リプログラムされた細胞の製造方法であって、分化した細胞に少なくとも一つの染色体非組み込み型ウイルスベクターを接触させる工程を含むことを特徴とする方法。
  28.  リプログラムされた細胞が人工多能性幹細胞である、請求項27に記載の方法。
  29.  該ベクターが、核初期化因子をコードする遺伝子を少なくとも一つ搭載する、少なくとも一つの染色体非組み込み型ウイルスベクターである、請求項27または28に記載の方法。
  30.  該遺伝子が、下記(1)~(8)からなる群より選択される、請求項29に記載の方法。
     (1)Oct遺伝子
     (2)Klf遺伝子
     (3)Myc遺伝子
     (4)Sox遺伝子
     (5)Nanog遺伝子
     (6)Lin28遺伝子
     (7)SV40 LargeT抗原遺伝子
     (8)TERT遺伝子
  31.  細胞内で、少なくともOct遺伝子、Klf遺伝子およびSox遺伝子の3種、あるいは少なくともOct遺伝子、Sox遺伝子、Nanog遺伝子、Lin28遺伝子の4種が内在性または外来性に発現するようにベクターが組み合わされる、請求項27から30のいずれかに記載の方法。
  32.  細胞内で、少なくともOct遺伝子、Klf遺伝子、Sox遺伝子およびMyc遺伝子の4種が内在性または外来性に発現するようにベクターが組み合わされる、請求項31に記載の方法。
  33.  染色体非組み込み型ウイルスベクターがRNAウイルスベクターである、請求項27から32のいずれかに記載の方法。
  34.  RNAウイルスベクターがマイナス鎖RNAウイルスベクターである、請求項33に記載の方法。
  35.  マイナス鎖RNAウイルスベクターがパラミクソウイルスベクターである、請求項34に記載の方法。
  36.  パラミクソウイルスベクターがセンダイウイルスベクターである、請求項35に記載の方法。
  37.  請求項27から36のいずれかに記載の方法により製造された細胞を分化させる工程をさらに含む、分化した細胞の製造方法。
  38.  請求項27から37のいずれかに記載の方法により製造された細胞。
  39.  リプログラミングの工程によりベクターが染色体に組み込まれていない、請求項38に記載の細胞。
PCT/JP2009/062911 2008-07-16 2009-07-16 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法 WO2010008054A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP09797978.5A EP2322611B1 (en) 2008-07-16 2009-07-16 Method for production of reprogrammed cell using chromosomally unintegrated virus vector
EP16161002.7A EP3075850B1 (en) 2008-07-16 2009-07-16 Method for production of reprogrammed cell using chromosomally unintegrated virus vector
CA2731007A CA2731007A1 (en) 2008-07-16 2009-07-16 Method for production of reprogrammed cell using chromosomally unintegrated virus vector
JP2010520896A JP5763340B6 (ja) 2008-07-16 2009-07-16 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
DK09797978.5T DK2322611T3 (en) 2008-07-16 2009-07-16 A process for producing reprogrammed cells using chromosomally non-integrated viral vector
KR1020117003451A KR20110046472A (ko) 2008-07-16 2009-07-16 염색체 비삽입형 바이러스 벡터를 사용해서 리프로그램된 세포를 제조하는 방법
CN200980136168.2A CN102159710B (zh) 2008-07-16 2009-07-16 使用染色体非整合型病毒载体制造经初始化的细胞的方法
US13/054,022 US9127256B2 (en) 2008-07-16 2009-07-16 Method for production of reprogrammed cell using chromosomally unintegrated virus vector
US14/812,108 US9695445B2 (en) 2008-07-16 2015-07-29 Method for production of reprogrammed cell using chromosomally unintegrated virus vector
US15/063,929 US11136594B2 (en) 2008-07-16 2016-03-08 Method for production of reprogrammed cell using chromosomally unintegrated virus vector

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-185049 2008-07-16
JP2008185049 2008-07-16
JP2008258883 2008-10-03
JP2008-258883 2008-10-03
JP2009126753 2009-05-26
JP2009-126753 2009-05-26

Related Child Applications (3)

Application Number Title Priority Date Filing Date
EP16161002.7A Previously-Filed-Application EP3075850B1 (en) 2008-07-16 2009-07-16 Method for production of reprogrammed cell using chromosomally unintegrated virus vector
US13/054,022 A-371-Of-International US9127256B2 (en) 2008-07-16 2009-07-16 Method for production of reprogrammed cell using chromosomally unintegrated virus vector
US14/812,108 Division US9695445B2 (en) 2008-07-16 2015-07-29 Method for production of reprogrammed cell using chromosomally unintegrated virus vector

Publications (1)

Publication Number Publication Date
WO2010008054A1 true WO2010008054A1 (ja) 2010-01-21

Family

ID=41550454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062911 WO2010008054A1 (ja) 2008-07-16 2009-07-16 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法

Country Status (8)

Country Link
US (3) US9127256B2 (ja)
EP (2) EP2322611B1 (ja)
JP (2) JP2015164434A (ja)
KR (1) KR20110046472A (ja)
CN (2) CN104962583B (ja)
CA (1) CA2731007A1 (ja)
DK (1) DK2322611T3 (ja)
WO (1) WO2010008054A1 (ja)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145615A1 (ja) * 2010-05-18 2011-11-24 タカラバイオ株式会社 多能性幹細胞の製造のための核酸
WO2012029770A1 (ja) 2010-08-30 2012-03-08 ディナベック株式会社 多能性幹細胞を誘導するための組成物およびその使用
EP2434012A1 (en) * 2009-05-18 2012-03-28 National Institute of Advanced Industrial Science And Technology Vector material for creating pluripotent stem cells, and pluripotent stem cell creation method using said vector material
WO2012105505A1 (ja) * 2011-01-31 2012-08-09 独立行政法人国立国際医療研究センター 多能性幹細胞由来高機能肝細胞とその製造方法及び薬剤代謝毒性試験方法
WO2012147853A1 (ja) * 2011-04-27 2012-11-01 独立行政法人国立国際医療研究センター 多能性幹細胞由来褐色脂肪細胞、多能性幹細胞由来細胞凝集物と、その製造方法及び細胞療法、内科療法
CN102906249A (zh) * 2010-05-25 2013-01-30 独立行政法人国立癌症研究中心 能够在体外自我复制的诱导性前癌干细胞或诱导性恶性干细胞,这些细胞的制备方法,及这些细胞的应用
WO2013058403A1 (ja) 2011-10-21 2013-04-25 国立大学法人京都大学 層流による多能性維持単一分散細胞培養法
WO2013077423A1 (ja) 2011-11-25 2013-05-30 国立大学法人京都大学 多能性幹細胞の培養方法
EP2669381A1 (en) 2012-05-30 2013-12-04 AmVac AG Method for expression of heterologous proteins using a recombinant negative-strand RNA virus vector comprising a mutated P protein
CN103562376A (zh) * 2011-04-08 2014-02-05 国家医疗保健研究所 复壮细胞的方法
WO2014123242A1 (ja) 2013-02-08 2014-08-14 国立大学法人京都大学 巨核球及び血小板の製造方法
WO2014136581A1 (ja) 2013-03-06 2014-09-12 国立大学法人京都大学 多能性幹細胞の培養システム及び多能性幹細胞の継代方法
WO2014148646A1 (ja) 2013-03-21 2014-09-25 国立大学法人京都大学 神経分化誘導用の多能性幹細胞
WO2014157257A1 (ja) 2013-03-25 2014-10-02 公益財団法人先端医療振興財団 細胞の選別方法
WO2014168264A1 (ja) 2013-04-12 2014-10-16 国立大学法人京都大学 肺胞上皮前駆細胞の誘導方法
WO2014185358A1 (ja) 2013-05-14 2014-11-20 国立大学法人京都大学 効率的な心筋細胞の誘導方法
WO2015020113A1 (ja) 2013-08-07 2015-02-12 国立大学法人京都大学 膵ホルモン産生細胞の製造法
WO2015034012A1 (ja) 2013-09-05 2015-03-12 国立大学法人京都大学 新規ドーパミン産生神経前駆細胞の誘導方法
WO2015046229A1 (ja) 2013-09-24 2015-04-02 ディナベック株式会社 多能性幹細胞の誘導効率を改善する方法
WO2015064754A1 (ja) 2013-11-01 2015-05-07 国立大学法人京都大学 新規軟骨細胞誘導方法
WO2016072446A1 (ja) * 2014-11-05 2016-05-12 国立大学法人九州大学 ウイルスベクター、細胞およびコンストラクト
US9365866B2 (en) 2009-06-03 2016-06-14 National Institute Of Advanced Industrial Science And Technology Vectors for generating pluripotent stem cells and methods of producing pluripotent stem cells using the same
WO2016114405A1 (ja) * 2015-01-16 2016-07-21 国立研究開発法人産業技術総合研究所 ステルス性を有するrnaを使った遺伝子発現系および当該rnaを含む遺伝子導入・発現ベクター
US9447432B2 (en) 2010-04-16 2016-09-20 Keio University Method for producing induced pluripotent stem cells
WO2017082174A1 (ja) * 2015-11-13 2017-05-18 株式会社Idファーマ 改良されたパラミクソウイルスベクター
WO2017183736A1 (ja) 2016-04-22 2017-10-26 国立大学法人京都大学 ドーパミン産生神経前駆細胞の製造方法
EP3305899A1 (en) 2011-07-25 2018-04-11 Kyoto University Method for screening induced pluripotent stem cells
WO2019017438A1 (ja) 2017-07-21 2019-01-24 株式会社Idファーマ 標的配列を改変するためのポリヌクレオチドおよびその使用
JP2019170393A (ja) * 2019-06-19 2019-10-10 国立大学法人九州大学 iPS細胞の作製方法
JPWO2018143243A1 (ja) * 2017-02-03 2019-11-21 国立大学法人神戸大学 人工多能性幹細胞の作製方法
WO2020017575A1 (ja) 2018-07-19 2020-01-23 国立大学法人京都大学 多能性幹細胞由来の板状軟骨およびその製造方法
WO2020022476A1 (ja) * 2018-07-27 2020-01-30 株式会社Idファーマ 標的配列を高効率で改変するシステム
WO2020022261A1 (ja) 2018-07-23 2020-01-30 国立大学法人京都大学 新規腎前駆細胞マーカーおよびそれを利用した腎前駆細胞の濃縮方法
WO2020036184A1 (ja) 2018-08-14 2020-02-20 国立研究開発法人国立国際医療研究センター 褐色脂肪細胞上清、その調製法、及び、使用
WO2020130147A1 (ja) 2018-12-21 2020-06-25 国立大学法人京都大学 ルブリシン局在軟骨様組織、その製造方法及びそれを含む関節軟骨損傷治療用組成物
US10947502B2 (en) 2015-10-20 2021-03-16 FUJIFILM Cellular Dynamics, Inc. Methods for directed differentiation of pluripotent stem cells to immune cells
US10961505B2 (en) 2016-10-05 2021-03-30 FUJIFILM Cellular Dynamics, Inc. Generating mature lineages from induced pluripotent stem cells with MECP2 disruption
JPWO2021149823A1 (ja) * 2020-01-24 2021-07-29
JPWO2021149822A1 (ja) * 2020-01-24 2021-07-29
WO2022014604A1 (ja) 2020-07-13 2022-01-20 国立大学法人京都大学 骨格筋前駆細胞及びその精製方法、筋原性疾患を治療するための組成物、並びに骨格筋前駆細胞を含む細胞群の製造方法
WO2022039279A1 (ja) 2020-08-18 2022-02-24 国立大学法人京都大学 ヒト始原生殖細胞/ヒト始原生殖細胞様細胞の維持増幅方法
WO2022050419A1 (ja) 2020-09-04 2022-03-10 Heartseed株式会社 iPS細胞の品質改善剤、iPS細胞の製造方法、iPS細胞、及びiPS細胞製造用組成物
WO2022075384A1 (ja) 2020-10-07 2022-04-14 マイキャン・テクノロジーズ株式会社 コロナウイルス感染性細胞及びその調製方法
WO2022097716A1 (ja) * 2020-11-06 2022-05-12 株式会社Trans Chromosomics 可逆的不死化細胞の製造方法
WO2022138964A1 (ja) 2020-12-25 2022-06-30 国立大学法人京都大学 体細胞からのナイーブ型ヒトiPS細胞製造方法
US11421248B2 (en) 2019-12-31 2022-08-23 Elixirgen Therapeutics, Inc. Temperature-based transient delivery of nucleic acids and proteins to cells and tissues
WO2023127871A1 (ja) 2021-12-27 2023-07-06 株式会社レプリテック 温度感受性のマイナス鎖rnaウイルスまたはウイルスベクターおよびそのrnaゲノム
WO2023153464A1 (ja) 2022-02-09 2023-08-17 住友ファーマ株式会社 多能性幹細胞から中脳底板領域の神経系細胞への分化における、培養液中の細胞の分化能を判定する方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029137B2 (ja) * 2010-12-03 2016-11-24 国立大学法人京都大学 効率的な人工多能性幹細胞の樹立方法
WO2015066488A2 (en) 2013-11-01 2015-05-07 New England Biolabs, Inc. Method for producing induced pluripotent stem cells
JP6948072B2 (ja) 2016-04-15 2021-10-13 国立大学法人京都大学 Cd8陽性t細胞を誘導する方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873192A (en) 1987-02-17 1989-10-10 The United States Of America As Represented By The Department Of Health And Human Services Process for site specific mutagenesis without phenotypic selection
WO1997016538A1 (fr) 1995-10-31 1997-05-09 Dnavec Research Inc. Vecteur de virus d'arn a brin negatif possedant une activite de replication autonome
WO1997016539A1 (fr) 1995-11-01 1997-05-09 Dnavec Research Inc. Virus sendai recombinant
WO2000070070A1 (fr) 1999-05-18 2000-11-23 Dnavec Research Inc. Vecteur de virus paramyxoviridae defectueux dans un gene enveloppe
WO2001018223A1 (fr) 1999-09-06 2001-03-15 Dnavec Research Inc. Paramoxyvirus possedant une sequence d'initiation de transcription modifiee
WO2003025570A1 (en) 2001-09-18 2003-03-27 Dnavec Research Inc. Method of examining (-) strand rna virus vector having lowered ability to form grains and method of constructing the same
WO2005071092A1 (ja) 2004-01-22 2005-08-04 Dnavec Research Inc. サイトメガロウイルスエンハンサーおよびニワトリβ-アクチンプロモーターを含むハイブリッドプロモーターを利用したマイナス鎖RNAウイルスベクターの製造方法
WO2005071085A1 (ja) 2004-01-22 2005-08-04 Dnavec Research Inc. ウイルスベクターの製造方法
WO2005080598A1 (ja) 2004-02-19 2005-09-01 Dainippon Sumitomo Pharma Co., Ltd. 体細胞核初期化物質のスクリーニング方法
WO2006137517A1 (ja) 2005-06-24 2006-12-28 Dnavec Corporation 幼少個体への遺伝子導入用ベクター
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2007083644A1 (ja) 2006-01-17 2007-07-26 Dnavec Corporation 新規タンパク質発現系
WO2008007581A1 (fr) 2006-07-13 2008-01-17 Dnavec Corporation Vecteur de virus paramyxoviridae non répliquant
WO2008096811A1 (ja) 2007-02-07 2008-08-14 Dnavec Corporation 弱毒化マイナス鎖rnaウイルス
WO2008133206A1 (ja) * 2007-04-19 2008-11-06 Dnavec Corporation 非複製型パラミクソウイルス科ウイルスベクター

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2368944C (en) 1999-05-18 2010-07-27 Dnavec Research Inc. Paramyxovirus-derived rnp
US20030166252A1 (en) 1999-05-18 2003-09-04 Kaio Kitazato Paramyxovirus-derived RNP
JP5728676B2 (ja) 2004-11-04 2015-06-03 オカタ セラピューティクス, インコーポレイテッド 胚性幹細胞の誘導
US20080254003A1 (en) 2004-12-22 2008-10-16 Robert Passier Differentiation of Human Embryonic Stem Cells and Cardiomyocytes and Cardiomyocyte Progenitors Derived Therefrom
GB2437689B (en) 2005-01-28 2009-10-28 Novathera Ltd Culture and screening methods
JP2008105946A (ja) * 2005-02-08 2008-05-08 Dnavec Corp 遺伝子導入造血細胞から血液細胞を再構築させる方法
WO2006126574A1 (ja) 2005-05-24 2006-11-30 Kumamoto University Es細胞の分化誘導方法
US8278104B2 (en) * 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
EP2143794A1 (en) * 2007-04-27 2010-01-13 Kyushu University, National University Corporation Viral vector for gene therapy
SG10201400329YA (en) * 2008-05-02 2014-05-29 Univ Kyoto Method of nuclear reprogramming
EP2464806B1 (de) 2009-08-13 2013-05-29 Gerhard Geiger GmbH & Co. Getriebe

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873192A (en) 1987-02-17 1989-10-10 The United States Of America As Represented By The Department Of Health And Human Services Process for site specific mutagenesis without phenotypic selection
WO1997016538A1 (fr) 1995-10-31 1997-05-09 Dnavec Research Inc. Vecteur de virus d'arn a brin negatif possedant une activite de replication autonome
WO1997016539A1 (fr) 1995-11-01 1997-05-09 Dnavec Research Inc. Virus sendai recombinant
WO2000070070A1 (fr) 1999-05-18 2000-11-23 Dnavec Research Inc. Vecteur de virus paramyxoviridae defectueux dans un gene enveloppe
WO2001018223A1 (fr) 1999-09-06 2001-03-15 Dnavec Research Inc. Paramoxyvirus possedant une sequence d'initiation de transcription modifiee
WO2003025570A1 (en) 2001-09-18 2003-03-27 Dnavec Research Inc. Method of examining (-) strand rna virus vector having lowered ability to form grains and method of constructing the same
WO2005071092A1 (ja) 2004-01-22 2005-08-04 Dnavec Research Inc. サイトメガロウイルスエンハンサーおよびニワトリβ-アクチンプロモーターを含むハイブリッドプロモーターを利用したマイナス鎖RNAウイルスベクターの製造方法
WO2005071085A1 (ja) 2004-01-22 2005-08-04 Dnavec Research Inc. ウイルスベクターの製造方法
WO2005080598A1 (ja) 2004-02-19 2005-09-01 Dainippon Sumitomo Pharma Co., Ltd. 体細胞核初期化物質のスクリーニング方法
WO2006137517A1 (ja) 2005-06-24 2006-12-28 Dnavec Corporation 幼少個体への遺伝子導入用ベクター
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2007083644A1 (ja) 2006-01-17 2007-07-26 Dnavec Corporation 新規タンパク質発現系
WO2008007581A1 (fr) 2006-07-13 2008-01-17 Dnavec Corporation Vecteur de virus paramyxoviridae non répliquant
WO2008096811A1 (ja) 2007-02-07 2008-08-14 Dnavec Corporation 弱毒化マイナス鎖rnaウイルス
WO2008133206A1 (ja) * 2007-04-19 2008-11-06 Dnavec Corporation 非複製型パラミクソウイルス科ウイルスベクター

Non-Patent Citations (115)

* Cited by examiner, † Cited by third party
Title
"'Anzen na iPS Saibo'", NI MICHI, THE YOMIURI SHIMBUN, 26 July 2008 (2008-07-26), pages 2, XP008138460 *
"Field Virology", 1996, pages: 1205 - 1241
"Fields virology fourth edition", 2001, LIPPINCOTT-RAVEN, pages: 1305 - 1340
"Gan Risk Sake iPS Saibo Kaihatsu", NIHON KEIZAI SHIMBUN, 12 May 2008 (2008-05-12), pages 13, XP008144398 *
"Idenshi Delivery Kenkyukai Dai 8 Kai Symposium Yoshishu", 9 May 2008, article MAHITO NAKANISHI ET AL.: "Jizoku Hatsugengata RNA Virus Vector no Kaihatsu to Oyo", pages: 5, XP008146593 *
"Sendai Virus Vector Riyo", GANKA SHINIKUI IPS SAIBOYO SAIBO O JURITSU·, 1 August 2008 (2008-08-01), XP008138459, Retrieved from the Internet <URL:http://www.yakuji.co.jp/entry7577.html> [retrieved on 20090903] *
"Techniques in Molecular Biology", 1983, MACMILLAN PUBLISHING COMPANY
AKIHIRO IIDA: "2. Sendai Virus Vector: Vector Kaihatsu to Iryo · Bio Bun'ya eno Oyo", VIRUS, vol. 57, no. 1, 2007, pages 29 - 36, XP008138477 *
ALTSCHUL S.F. ET AL., NATURE GENET., vol. 3, 1993, pages 266 - 272
ALTSCHUL S.F. ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402
ALTSCHUL, S. F. ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
ANNU. REV. GENET., vol. 32, 1998, pages 123 - 162
ANZEN NI TAISAIBO, RESET E, ASAHI SHIMBUN, 11 August 2008 (2008-08-11), pages 27, XP008144399 *
AOI T. ET AL., SCIENCE, 14 February 2008 (2008-02-14)
BARON, M. D.; BARRETT, T., J. VIROL., vol. 71, 1997, pages 1265 - 1271
BLELLOCH R. ET AL., CELL STEM CELL, vol. 1, 2007, pages 245 - 247
BRIDGEN, A.; ELLIOTT, R. M., PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 15400 - 15404
CANCER GENE THER., vol. 8, no. 10, October 2001 (2001-10-01), pages 796 - 802
CELL, vol. 113, 2003, pages 631 - 642
CELL, vol. 131, 2007, pages 861 - 72
CELL, vol. 133, no. 2, 18 April 2008 (2008-04-18), pages 250 - 264
CELL., vol. 131, no. 5, 30 November 2007 (2007-11-30), pages 861 - 872
CURR BIOL., vol. 18, no. 12, 2008, pages 890 - 4
CURR TOP MICROBIOL IMMUNOL., vol. 287, 2005, pages 161 - 97
DAMJANOV I ET AL., LAB. INVEST., vol. 68, no. 2, 1993, pages 220 - 32
D'AMOUR, K.A. ET AL., NAT. BIOTECHNOL., vol. 23, 2005, pages 1534 - 1541
DAYHOFF ET AL.: "Atlas of Protein Sequence and Structure", NATL. BIOMED. RES. FOUND., 1978
DEVELOPMENT, vol. 130, 2003, pages 1673 - 1680
DURBIN, A. P. ET AL., VIROLOGY, vol. 235, 1997, pages 323 - 332
FENG, B. ET AL., NAT CELL BIOL., vol. 11, no. 2, 2009, pages 197 - 203
GARCIN, D., EMBO J., vol. 14, 1995, pages 6087 - 6094
HANNA J, CELL., vol. 133, no. 2, 2008, pages 250 - 64
HANNA J., CELL, vol. 133, no. 2, 2008, pages 250 - 64
HASAN, M. K. ET AL., J. GEN. VIROL., vol. 78, 1997, pages 2813 - 2820
HENIKOFF, S.; HENIKOFF, J. G., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 10915 - 10919
HUANGFU D ET AL., NAT BIOTECHNOL., 22 June 2008 (2008-06-22)
HUANGFU, D. ET AL., NAT BIOTECHNOL., vol. 26, no. 11, 2008, pages 1269 - 75
ICHISAKA T. ET AL., NATURE, vol. 448, no. 7151, 2007, pages 313 - 7
INOUE, M. ET AL., J. VIROL., vol. 77, 2003, pages 3238 - 3246
J MOL MED., vol. 77, no. 12, December 1999 (1999-12-01), pages 859 - 64
J VIROL., vol. 72, no. 1, January 1998 (1998-01-01), pages 20 - 31
J VIROL., vol. 75, no. 2, January 2001 (2001-01-01), pages 934 - 42
J VIROL., vol. 76, no. 4, February 2002 (2002-02-01), pages 1649 - 62
J VIROL., vol. 77, no. 11, June 2003 (2003-06-01), pages 6450 - 65
J. BIOL. CHEM., vol. 280, 2005, pages 6257 - 6260
J. VIROL., vol. 68, 1994, pages 8413 - 8417
J. VIROLOGY, vol. 39, 1981, pages 519 - 528
JEONG BEOM KIM ET AL., CELL, vol. 136, no. 3, 2009, pages 411 - 419
JIKKEN IGAKU, EXPERIMENTAL MEDICINE, vol. 26, no. 5, 2008, pages 35 - 40
KATO, A. ET AL., GENES CELLS, vol. 1, 1996, pages 569 - 579
KATO, A., EMBO J., vol. 16, 1997, pages 578 - 587
KAWASAKI, H. ET AL., NEURON, vol. 28, 2000, pages 31 - 40
KEN NISHIMURA ET AL.: "Saiboshitsu Jizoku Hatsugengata RNA Vector no Seishitsu Kento to Iryo Oyo ni Muketa Kenkyu", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, 4 December 2008 (2008-12-04), XP008138458 *
KIM, J.B. ET AL., NATURE, 29 June 2008 (2008-06-29)
KUBICEK, S. ET AL., MOL. CELL, vol. 25, 2007, pages 473 - 481
KUNKEL ET AL., METHODS ENZYMOL., vol. 154, 1987, pages 367 - 382
KUNKEL, PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488 - 492
LAWSON, N. D. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 92, pages 4477 - 4481
LI, H.-O ET AL., J. VIROLOGY, vol. 74, 2000, pages 6564 - 6569
LI, H.-O. ET AL., J. VIROL., vol. 74, 2000, pages 6564 - 6569
LI, H.-O. ET AL., J. VIROL., vol. 74, no. 14, 2000, pages 6564 - 6569
LIAO J ET AL., CELL RES., vol. 18, no. 5, 2008, pages 600 - 3
LOWRY WE ET AL., PROC NATLACAD SCI U S A, vol. 105, no. 8, 2008, pages 2883 - 8
MADDEN, T.L. ET AL., METH. ENZYMOL., vol. 266, 1996, pages 131 - 141
MASAKI, H. ET AL., STEM CELL RES., vol. 1, 2008, pages 105 - 115
MICROBIOL. IMMUNOL., vol. 43, 1999, pages 613 - 624
MOL CELL BIOL., vol. 23, no. 8, 2003, pages 2699 - 708
MORIKAWA, Y. ET AL., KITASATO ARCH. EXP. MED., vol. 64, 1991, pages 15 - 30
N. MAHERALI; K. HOCHEDLINGER, CELL STEM CELL, vol. 3, no. 6, 2008, pages 595 - 605
NAKAGAWA M. ET AL., NAT BIOTECHNOL., vol. 26, no. 1, 2008, pages 101 - 6
NANOG, CELL, vol. 113, 2003, pages 631 - 642
NAT BIOTECHNOL., vol. 26, no. 1, January 2008 (2008-01-01), pages 101 - 106
NAT MED, vol. 10, no. 1, 2004, pages 55 - 63
NAT. BIOTECHNOL., vol. 25, 2007, pages 803 - 816
NAT. BIOTECHNOL., vol. 26, 2008, pages 795 - 797
NATURE, vol. 273, no. 5658, pages 113 - 120
NATURE, vol. 423, 2003, pages 541 - 545
NATURE, vol. 451, no. 7175, 10 January 2008 (2008-01-10), pages 141 - 146
NATURE, vol. 454, no. 7204, 2008, pages 646 - 50
NISHIMURA, K. ET AL.: "Persistent and Stable Gene Expression by a Cytoplasmic RNA Replicon Based on a Noncytopathic Variant Sendai Virus", J. BIOL. CHEM., vol. 282, no. 37, 2007, pages 27383 - 27391, XP008135575 *
PARK IH ET AL., NATURE, vol. 451, no. 7175, 2008, pages 141 - 6
PARK IH. ET AL., NATURE, vol. 451, no. 7175, 2008, pages 141 - 6
PEAR, W. S. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 8392 - 8396
PNAS, vol. 105, no. 8, 26 February 2008 (2008-02-26), pages 2883 - 2888
PROC NATL ACAD SCI USA., vol. 98, no. 14, 3 July 2001 (2001-07-03), pages 8036 - 41
RADECKE, F. ET AL., EMBO J., vol. 14, 1995, pages 5773 - 5784
S. HENIKOFF; J.G. HENIKOFF, PROC. ACAD. NATL. SCI. USA, vol. 89, 1992, pages 10915 - 10919
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SCHNEIDER U ET AL., INT J CANCER, vol. 19, no. 5, 1977, pages 621 - 6
SCHNELL. M. ET AL., EMBO J., vol. 13, 1994, pages 4195 - 4203
SCIENCE, vol. 318, no. 5858, 21 December 2007 (2007-12-21), pages 1917 - 1920
SCIENCE, vol. 318, no. 5858, 21 December 2007 (2007-12-21), pages 1920 - 1923
SCIENCE, vol. 321, no. 5889, 2008, pages 699 - 702
SHI Y ET AL., CELL STEM CELL, vol. 2, no. 6, 2008, pages 525 - 8
SHI Y ET AL., CELL STEM CELL, vol. 3, no. 5, 2008, pages 568 - 574
STADTFELD M ET AL., CURR BIOL., 21 May 2008 (2008-05-21)
STEM CELL RESEARCH, vol. 1, pages 105 - 115
TAKAHASHI K ET AL., CELL, vol. 131, 2007, pages 861 - 872
TAKAHASHI, K. ET AL., CELL, vol. 131, 2007, pages 1 - 12
TAKAHASHI, K.; YAMANAKA S., CELL, vol. 126, 2006, pages 663 - 676
TAKAHASHI, T., CIRCULATION, vol. 107, 2003, pages 1912 - 1916
TATIANA A ET AL., FEMS MICROBIOL LETT., vol. 174, 1999, pages 247 - 250
TESAR, P.J. ET AL.: "New cell lines from mouse epiblast share defining features with human embryonic stem cells", NATURE, vol. 448, no. 7150, 2007, pages 196 - 199, XP008135572 *
TESER P. J. ET AL., NATURE, vol. 448, 2007, pages 196 - 199
TOKUSUMI, T. ET AL., VIRUS RES., vol. 86, 2002, pages 33 - 38
VIRUS VOL., vol. 57, no. 1, 2007, pages 29 - 36
WERING M. ET AL., CELL STEM CELL, vol. 2, no. 1, 2008, pages 10 - 2
WHELAN, S. P. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 8388 - 8392
WRIGHT, K. E. ET AL., VIRUS RES., vol. 67, 2000, pages 49 - 57
Y. ZHAO ET AL., CELL STEM CELL, vol. 3, no. 5, 2008, pages 475 - 479
YU J ET AL., SCIENCE, vol. 318, no. 5858, 2007, pages 1917 - 20
YU J. ET AL., SCIENCE, vol. 318, no. 5858, 2007, pages 1917 - 20
YU, D. ET AL., GENES CELLS, vol. 2, 1997, pages 457 - 466
YU, J. ET AL.: "Induced pluripotent stem cell lines derived from human somatic cells", SCIENCE, vol. 318, no. 5858, 2007, pages 1917 - 1920, XP009105055 *
ZHANG J.; MADDEN T.L., GENOME RES., vol. 7, 1997, pages 649 - 656

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2434012A1 (en) * 2009-05-18 2012-03-28 National Institute of Advanced Industrial Science And Technology Vector material for creating pluripotent stem cells, and pluripotent stem cell creation method using said vector material
EP2434012A4 (en) * 2009-05-18 2013-11-06 Nat Inst Of Advanced Ind Scien VECTOR MATERIAL FOR GENERATING PLURIPOTENTAL STEM CELLS AND METHOD FOR GENERATING PLURIPOTENTAL STEM CELLS THROUGH THE VECTOR MATERIAL
US9365866B2 (en) 2009-06-03 2016-06-14 National Institute Of Advanced Industrial Science And Technology Vectors for generating pluripotent stem cells and methods of producing pluripotent stem cells using the same
US9447432B2 (en) 2010-04-16 2016-09-20 Keio University Method for producing induced pluripotent stem cells
WO2011145615A1 (ja) * 2010-05-18 2011-11-24 タカラバイオ株式会社 多能性幹細胞の製造のための核酸
CN102906249A (zh) * 2010-05-25 2013-01-30 独立行政法人国立癌症研究中心 能够在体外自我复制的诱导性前癌干细胞或诱导性恶性干细胞,这些细胞的制备方法,及这些细胞的应用
JP5908838B2 (ja) * 2010-08-30 2016-04-26 株式会社Idファーマ 多能性幹細胞を誘導するための組成物およびその使用
AU2011297075B2 (en) * 2010-08-30 2014-07-17 Dnavec Corporation Composition for inducing pluripotent stem cell, and use thereof
CN103189508B (zh) * 2010-08-30 2016-08-10 生物载体株式会社 用于诱导多能性干细胞的组合物及其用途
CN103189508A (zh) * 2010-08-30 2013-07-03 生物载体株式会社 用于诱导多能性干细胞的组合物及其用途
WO2012029770A1 (ja) 2010-08-30 2012-03-08 ディナベック株式会社 多能性幹細胞を誘導するための組成物およびその使用
US9090909B2 (en) 2010-08-30 2015-07-28 Dnavec Corporation Composition for inducing pluripotent stem cell, and use thereof
WO2012105505A1 (ja) * 2011-01-31 2012-08-09 独立行政法人国立国際医療研究センター 多能性幹細胞由来高機能肝細胞とその製造方法及び薬剤代謝毒性試験方法
CN103562376A (zh) * 2011-04-08 2014-02-05 国家医疗保健研究所 复壮细胞的方法
CN103517982B (zh) * 2011-04-27 2018-02-06 独立行政法人国立国际医疗研究中心 源自多能干细胞的褐色脂肪细胞、源自多能干细胞的细胞凝聚物,其制造方法以及细胞疗法、内科疗法
CN103517982A (zh) * 2011-04-27 2014-01-15 独立行政法人国立国际医疗研究中心 源自多能干细胞的褐色脂肪细胞、源自多能干细胞的细胞凝聚物,其制造方法以及细胞疗法、内科疗法
JP5998405B2 (ja) * 2011-04-27 2016-09-28 国立研究開発法人国立国際医療研究センター 多能性幹細胞由来褐色脂肪細胞、多能性幹細胞由来細胞凝集物と、その製造方法及び細胞療法、内科療法
WO2012147853A1 (ja) * 2011-04-27 2012-11-01 独立行政法人国立国際医療研究センター 多能性幹細胞由来褐色脂肪細胞、多能性幹細胞由来細胞凝集物と、その製造方法及び細胞療法、内科療法
EP3608423A1 (en) 2011-07-25 2020-02-12 Kyoto University Method for screening induced pluripotent stem cells
EP3305899A1 (en) 2011-07-25 2018-04-11 Kyoto University Method for screening induced pluripotent stem cells
WO2013058403A1 (ja) 2011-10-21 2013-04-25 国立大学法人京都大学 層流による多能性維持単一分散細胞培養法
WO2013077423A1 (ja) 2011-11-25 2013-05-30 国立大学法人京都大学 多能性幹細胞の培養方法
EP2669381A1 (en) 2012-05-30 2013-12-04 AmVac AG Method for expression of heterologous proteins using a recombinant negative-strand RNA virus vector comprising a mutated P protein
JP2018023388A (ja) * 2012-05-30 2018-02-15 アムファーク アクチェンゲゼルシャフト 組換えマイナス鎖rnaウイルスベクターを使用する異種タンパク質発現方法
JP2015523065A (ja) * 2012-05-30 2015-08-13 アムファーク アクチェンゲゼルシャフト 組換えマイナス鎖rnaウイルスベクターを使用する異種タンパク質発現方法
WO2013178344A1 (en) 2012-05-30 2013-12-05 Amvac Ag Method for expression of heterologous proteins using a recombinant negative-strand rna virus vector
WO2014123242A1 (ja) 2013-02-08 2014-08-14 国立大学法人京都大学 巨核球及び血小板の製造方法
WO2014136581A1 (ja) 2013-03-06 2014-09-12 国立大学法人京都大学 多能性幹細胞の培養システム及び多能性幹細胞の継代方法
WO2014148646A1 (ja) 2013-03-21 2014-09-25 国立大学法人京都大学 神経分化誘導用の多能性幹細胞
WO2014157257A1 (ja) 2013-03-25 2014-10-02 公益財団法人先端医療振興財団 細胞の選別方法
WO2014168264A1 (ja) 2013-04-12 2014-10-16 国立大学法人京都大学 肺胞上皮前駆細胞の誘導方法
WO2014185358A1 (ja) 2013-05-14 2014-11-20 国立大学法人京都大学 効率的な心筋細胞の誘導方法
WO2015020113A1 (ja) 2013-08-07 2015-02-12 国立大学法人京都大学 膵ホルモン産生細胞の製造法
US9796962B2 (en) 2013-08-07 2017-10-24 Kyoto University Method for generating pancreatic hormone-producing cells
WO2015034012A1 (ja) 2013-09-05 2015-03-12 国立大学法人京都大学 新規ドーパミン産生神経前駆細胞の誘導方法
US10975358B2 (en) 2013-09-24 2021-04-13 Id Pharma Co., Ltd. Method for improving efficiency of inducing pluripotent stem cell
JPWO2015046229A1 (ja) * 2013-09-24 2017-03-09 株式会社Idファーマ 多能性幹細胞の誘導効率を改善する方法
WO2015046229A1 (ja) 2013-09-24 2015-04-02 ディナベック株式会社 多能性幹細胞の誘導効率を改善する方法
WO2015064754A1 (ja) 2013-11-01 2015-05-07 国立大学法人京都大学 新規軟骨細胞誘導方法
KR20200066748A (ko) 2014-11-05 2020-06-11 고쿠리츠다이가쿠호진 규슈다이가쿠 바이러스 벡터, 세포 및 작제물
JP2016086744A (ja) * 2014-11-05 2016-05-23 国立大学法人九州大学 ウイルスベクター、細胞およびコンストラクト
WO2016072446A1 (ja) * 2014-11-05 2016-05-12 国立大学法人九州大学 ウイルスベクター、細胞およびコンストラクト
KR20170101926A (ko) 2015-01-16 2017-09-06 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 스텔스성을 가지는 rna를 사용한 유전자 발현계 및 당해 rna를 포함하는 유전자 도입ㆍ발현벡터
US10544431B2 (en) 2015-01-16 2020-01-28 National Institute Of Advanced Industrial Science And Technology Gene expression system using stealthy RNA, and gene introduction/expression vector including said RNA
JPWO2016114405A1 (ja) * 2015-01-16 2017-10-19 国立研究開発法人産業技術総合研究所 ステルス性を有するrnaを使った遺伝子発現系および当該rnaを含む遺伝子導入・発現ベクター
US11926840B2 (en) 2015-01-16 2024-03-12 National Institute Of Advanced Industrial Science And Technology Gene expression system using stealthy RNA, and gene introduction/expression vector including said RNA
KR102459458B1 (ko) 2015-01-16 2022-10-25 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 스텔스성을 가지는 rna를 사용한 유전자 발현계 및 당해 rna를 포함하는 유전자 도입ㆍ발현벡터
US11834667B2 (en) 2015-01-16 2023-12-05 National Institute Of Advanced Industrial Science And Technology Gene expression system using stealthy RNA, and gene introduction/expression vector including said RNA
WO2016114405A1 (ja) * 2015-01-16 2016-07-21 国立研究開発法人産業技術総合研究所 ステルス性を有するrnaを使った遺伝子発現系および当該rnaを含む遺伝子導入・発現ベクター
US12129486B2 (en) 2015-10-20 2024-10-29 FUJIFILM Cellular Dynamics, Inc. Methods for directed differentiation of pluripotent stem cells to immune cells
US10947502B2 (en) 2015-10-20 2021-03-16 FUJIFILM Cellular Dynamics, Inc. Methods for directed differentiation of pluripotent stem cells to immune cells
JPWO2017082174A1 (ja) * 2015-11-13 2018-08-30 株式会社Idファーマ 改良されたパラミクソウイルスベクター
WO2017082174A1 (ja) * 2015-11-13 2017-05-18 株式会社Idファーマ 改良されたパラミクソウイルスベクター
WO2017183736A1 (ja) 2016-04-22 2017-10-26 国立大学法人京都大学 ドーパミン産生神経前駆細胞の製造方法
US10961505B2 (en) 2016-10-05 2021-03-30 FUJIFILM Cellular Dynamics, Inc. Generating mature lineages from induced pluripotent stem cells with MECP2 disruption
JP7224021B2 (ja) 2017-02-03 2023-02-17 国立大学法人神戸大学 人工多能性幹細胞の作製方法
JPWO2018143243A1 (ja) * 2017-02-03 2019-11-21 国立大学法人神戸大学 人工多能性幹細胞の作製方法
WO2019017438A1 (ja) 2017-07-21 2019-01-24 株式会社Idファーマ 標的配列を改変するためのポリヌクレオチドおよびその使用
WO2020017575A1 (ja) 2018-07-19 2020-01-23 国立大学法人京都大学 多能性幹細胞由来の板状軟骨およびその製造方法
WO2020022261A1 (ja) 2018-07-23 2020-01-30 国立大学法人京都大学 新規腎前駆細胞マーカーおよびそれを利用した腎前駆細胞の濃縮方法
WO2020022476A1 (ja) * 2018-07-27 2020-01-30 株式会社Idファーマ 標的配列を高効率で改変するシステム
WO2020036184A1 (ja) 2018-08-14 2020-02-20 国立研究開発法人国立国際医療研究センター 褐色脂肪細胞上清、その調製法、及び、使用
WO2020130147A1 (ja) 2018-12-21 2020-06-25 国立大学法人京都大学 ルブリシン局在軟骨様組織、その製造方法及びそれを含む関節軟骨損傷治療用組成物
JP2019170393A (ja) * 2019-06-19 2019-10-10 国立大学法人九州大学 iPS細胞の作製方法
US12060568B2 (en) 2019-12-31 2024-08-13 Elixirgen Therapeutics, Inc. Temperature-based transient delivery of nucleic acids and proteins to cells and tissues
US11421248B2 (en) 2019-12-31 2022-08-23 Elixirgen Therapeutics, Inc. Temperature-based transient delivery of nucleic acids and proteins to cells and tissues
JPWO2021149823A1 (ja) * 2020-01-24 2021-07-29
WO2021149822A1 (ja) * 2020-01-24 2021-07-29 アイ ピース, インコーポレイテッド 人工多能性幹細胞の作製方法
JPWO2021149822A1 (ja) * 2020-01-24 2021-07-29
WO2022014604A1 (ja) 2020-07-13 2022-01-20 国立大学法人京都大学 骨格筋前駆細胞及びその精製方法、筋原性疾患を治療するための組成物、並びに骨格筋前駆細胞を含む細胞群の製造方法
WO2022039279A1 (ja) 2020-08-18 2022-02-24 国立大学法人京都大学 ヒト始原生殖細胞/ヒト始原生殖細胞様細胞の維持増幅方法
WO2022050419A1 (ja) 2020-09-04 2022-03-10 Heartseed株式会社 iPS細胞の品質改善剤、iPS細胞の製造方法、iPS細胞、及びiPS細胞製造用組成物
WO2022075384A1 (ja) 2020-10-07 2022-04-14 マイキャン・テクノロジーズ株式会社 コロナウイルス感染性細胞及びその調製方法
WO2022097716A1 (ja) * 2020-11-06 2022-05-12 株式会社Trans Chromosomics 可逆的不死化細胞の製造方法
WO2022138964A1 (ja) 2020-12-25 2022-06-30 国立大学法人京都大学 体細胞からのナイーブ型ヒトiPS細胞製造方法
WO2023127871A1 (ja) 2021-12-27 2023-07-06 株式会社レプリテック 温度感受性のマイナス鎖rnaウイルスまたはウイルスベクターおよびそのrnaゲノム
WO2023153464A1 (ja) 2022-02-09 2023-08-17 住友ファーマ株式会社 多能性幹細胞から中脳底板領域の神経系細胞への分化における、培養液中の細胞の分化能を判定する方法

Also Published As

Publication number Publication date
US9695445B2 (en) 2017-07-04
JP2016105729A (ja) 2016-06-16
US11136594B2 (en) 2021-10-05
EP2322611B1 (en) 2016-06-01
JP5763340B2 (ja) 2015-08-12
CN102159710A (zh) 2011-08-17
CA2731007A1 (en) 2010-01-21
CN102159710B (zh) 2015-09-02
US20110287538A1 (en) 2011-11-24
JP6402129B2 (ja) 2018-10-10
KR20110046472A (ko) 2011-05-04
CN104962583A (zh) 2015-10-07
JP2015164434A (ja) 2015-09-17
EP3075850B1 (en) 2019-02-06
EP2322611A4 (en) 2012-04-18
US9127256B2 (en) 2015-09-08
DK2322611T3 (en) 2016-09-05
EP2322611A1 (en) 2011-05-18
EP3075850A1 (en) 2016-10-05
CN104962583B (zh) 2019-11-01
JPWO2010008054A1 (ja) 2012-01-05
US20160177337A1 (en) 2016-06-23
US20150337334A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
JP6402129B2 (ja) 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
JP5908838B2 (ja) 多能性幹細胞を誘導するための組成物およびその使用
JP6543194B2 (ja) 多能性幹細胞の誘導効率を改善する方法
WO2017082174A1 (ja) 改良されたパラミクソウイルスベクター
JP5763340B6 (ja) 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136168.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797978

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2731007

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010520896

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117003451

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009797978

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13054022

Country of ref document: US