WO2022097716A1 - 可逆的不死化細胞の製造方法 - Google Patents

可逆的不死化細胞の製造方法 Download PDF

Info

Publication number
WO2022097716A1
WO2022097716A1 PCT/JP2021/040757 JP2021040757W WO2022097716A1 WO 2022097716 A1 WO2022097716 A1 WO 2022097716A1 JP 2021040757 W JP2021040757 W JP 2021040757W WO 2022097716 A1 WO2022097716 A1 WO 2022097716A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
gene
cell
vector
immortalized
Prior art date
Application number
PCT/JP2021/040757
Other languages
English (en)
French (fr)
Inventor
光雄 押村
寿晃 田畑
康宏 香月
愛海 宇野
Original Assignee
株式会社Trans Chromosomics
国立大学法人鳥取大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Trans Chromosomics, 国立大学法人鳥取大学 filed Critical 株式会社Trans Chromosomics
Priority to CN202180075178.0A priority Critical patent/CN116419968A/zh
Priority to JP2022560822A priority patent/JPWO2022097716A1/ja
Priority to US18/251,805 priority patent/US20230407268A1/en
Priority to EP21889268.5A priority patent/EP4242317A1/en
Publication of WO2022097716A1 publication Critical patent/WO2022097716A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0665Blood-borne mesenchymal stem cells, e.g. from umbilical cord blood
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/04Immortalised cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18841Use of virus, viral particle or viral elements as a vector
    • C12N2760/18843Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to a method for producing a reversible immortalized cell, and more particularly to a method for producing a reversible immortalized cell using a chromosomal non-integrating RNA viral vector carrying a predetermined immortalizing gene.
  • the main cell sources used for regenerative medicine and cell therapy are somatic stem cells such as mesenchymal stem cells (MSC) and pluripotent stem cells such as ES cells and iPS cells.
  • MSC mesenchymal stem cells
  • ES cells pluripotent stem cells
  • iPS cells pluripotent stem cells
  • stem cells mesenchymal stem cells (MSCs) are cells that originally exist in the body, so there is little risk of rejection and tumorigenesis, and they are excellent in terms of safety, but because the number of cell divisions is limited. The challenge is to secure a sufficient number of cells to supply to the medical field.
  • telomerase reverse transcriptase genes that regulate the expression or activity of telomerase (for example, Myc gene, Ras gene, etc.), and viral genes (SV40T, HPV E6-E7, EBV, etc.) are known.
  • vectors such as plasmid DNA, lentiviral vector, retroviral vector, and adenoviral vector are used for introduction of these immortalizing genes into cells (Patent Document 1, Patent Document 2, Patent Document 3, etc.).
  • the virus vector is preferable in that the gene can be efficiently introduced by simply filtering the culture supernatant of the recombinant virus vector-producing cell and adding it to the target cell.
  • the plasmid DNA and the adenovirus vector have a vector genome of DNA and are integrated into the host chromosome.
  • the vector genome is RNA, but in the cell, the DNA is taken in the form of DNA by a reverse transcription enzyme and integrated into the chromosome of the host to express the loaded gene.
  • the vector generally used for immortalization has a risk of damaging the gene of the host cell by incorporating foreign DNA into the chromosome of the host cell and, in some cases, forming a tumor, and thus the safety of regenerative medicine.
  • the Sendai virus vector (SeV vector) is a non-chromosomally integrated RNA virus vector that does not take the form of DNA.
  • the SeV vector can be introduced into a wide range of cell types and easily expresses proteins, so that it is widely used for inducing iPS cells (Patent Document 4).
  • stem cells obtained from human tissues are a group of young cells and aged cells, and have various properties. They divide and age, so cells can be maintained at a constant quality. not. Therefore, there is a different problem that it is difficult to set quality standards, which are necessary elements for automation and mechanization.
  • iPS cells Attempts to isolate only cells with the desired properties from those different cell populations are beginning to be discussed.
  • Known methods for evaluating the quality of iPS cells include miRNA analysis, surface marker detection, cell morphology image analysis, and epigenome analysis, and MSC has also proposed the use of these techniques, but unlike iPS cells. Since MSCs do not grow indefinitely and cannot be cloned, they have not been put into practical use.
  • the present invention is a method for producing a reversible immortalized cell, which can proliferate the cell for a long period of time without damaging the chromosome of the cell into which the immortalizing gene has been introduced, and can remove the immortalizing gene. It is an object of the present invention to provide a method for obtaining a large amount of reversible immortalized cells that can be cloned and have stable quality.
  • the present inventors have obtained one or more immortalizing genes selected from the group consisting of Bmi-1 gene, TERT gene, and SV40T gene.
  • MSC mesenchymal stem cells
  • Sendai virus vector which is a non-chromosomal RNA vector that has not been used for cell immortalization
  • it has been used for more than 80 days. It was found that cell proliferation does not occur and that infinite cell proliferation (immortalization) is possible, and that the rate of cell proliferation increases at an early stage after gene transfer. It was also confirmed that the produced immortalized cells had no chromosomal abnormality, had pluripotency, and could easily remove the immortalized gene by temperature control.
  • the immortalized cells were successfully cloned from the obtained immortalized cell population, and 8 out of 10 clones of the cloned immortalized cells also showed normal nuclear type and were pluripotent. It was confirmed that immortalization can be induced in cells at any stage from young cells to senescent cells in which division has stopped, and that cloning is possible immediately after immortalization. The present invention has been completed based on such findings.
  • the present invention includes the following inventions.
  • a method for producing a reversible immortalized cell which comprises the following steps. (1) A step of introducing a chromosome-non-integrating RNA viral vector carrying an immortalizing gene into mammalian cells and expressing the immortalizing gene in the cells, and (2) culturing the cells obtained in step (1). And the process of growing [2] The method according to [1], wherein the immortalizing gene is one or more immortalizing genes selected from the group consisting of the Bmi-1 gene, the TERT gene, and the SV40T gene. [3] The method according to [1] or [2], wherein the immortalizing gene is any of the following (a) to (d).
  • RNA virus vector is a paramyxovirus vector.
  • paramyxovirus vector is a Sendai virus vector.
  • Sendai virus vector is a temperature sensitive Sendai virus vector.
  • chromosomal non-integrating RNA virus vector is a Sendai virus vector, further comprising a step of removing the Sendai virus vector after culturing in the step (2).
  • removal of the Sendai virus vector is performed by changing the culture temperature from 35 ° C to 37 ° C.
  • a cell that is difficult to mass-culture for example, a mesenchymal stem cell (MSC) used for regenerative medicine
  • MSC mesenchymal stem cell
  • a temperature-sensitive Sendai virus vector (SeV vector) as a non-chromosomal integrated RNA vector, the vector can be easily removed from cells only by changing the culture temperature without performing a complicated removal operation. Therefore, it is possible to supply a large amount of cells having excellent safety.
  • the immortalized cells obtained by the present invention can be used for regenerative medicine because they have no chromosomal abnormality and have pluripotency as before gene transfer.
  • it is difficult to clone non-immortalized cells because they have different lifespans and properties, but the immortalized cells produced by the present invention are easy to clone and can stably obtain high-quality cells. Therefore, the mechanization of cell manufacturing facilitates quality control, makes it possible to significantly reduce the manufacturing cost, which is an issue for industrialization, and contributes to the development of cell medicine and regenerative medicine.
  • the genomic structure of the SeV vector carrying the immortalizing factor gene is shown [A. SeV (18+) Bmi1 (HNL) OFP / TS15d ⁇ F, B. SeV (PM) hTERT (HNL) EGFP / TS15 ⁇ F, C. SeV (18+). ) SV40T / TS15 ⁇ F, D. SeV (HNL) E6-E7, BFP / TS15 ⁇ F].
  • Transmitted light and fluorescence (OFP) images of Bmi-1 solitary infected cells (MOI: 1,5,20), transmitted light and fluorescence (GFP) images of hTERT solitary infected cells (MOI: 1,5,20) show.
  • the transmitted light image and the fluorescence (OFP, GFP) image of the two-factor (Bmi-1 / hTERT) co-infected cell (MOI: 1,5,20) are shown.
  • the transmitted light image and the fluorescence (OFP, GFP) image of the three-factor (Bmi-1 / hTERT / SV40T) co-infected cell (MOI: 1,5,20) are shown.
  • the cell morphology and cell condition determination 59 days after the introduction of immortalizing factors (No. 1 to No. 16) are shown. Shows the cell proliferation curve of immortalizing factors (No. 1, No. 2, No. 4, No. 12, No. 16) introduced cells (up arrow: morphological (transmitted light) image and fluorescent image point (Fig. 5)).
  • the transmitted light image and the fluorescence (OFP, GFP) image of the three-factor (Bmi-1 / hTERT / SV40T) -introduced cell are shown.
  • the morphology (transmitted light) image of the three-factor (Bmi-1 / hTERT / SV40T) -introduced cell is shown (maintained at 35 ° C, temperature changed from 35 ° C to 37 ° C).
  • the chromosomal analysis results (normal karyotype) after 90 days of subculture of the three-factor (Bmi-1 / hTERT / SV40T) -introduced cells are shown (chromosome analysis point ( ⁇ ) in FIG. 7).
  • telomere analysis points (A) The results of quantitative analysis of telomeres in long-term culture samples of immortalizing factors (No.1, No.2, No.4, No.12, No.16) are shown (A. Effects of immortalizing factor combinations on telomeres). (Day0, Day40: Telomere analysis point in Fig. 6 (*)), B. After introduction of factor 3 (Bmi-1 / hTERT / SV40T), change in telomere amount due to factor non-removal / removal (Day0, Day40: Fig. 6) Telomere analysis points (*), Day85, Day98: Telomere analysis points in Fig. 7 (*)). Pictures of adipocytes differentiated from early cultured MSCs and immortalized MSCs are shown.
  • clone A10 The results of chromosomal analysis of cloned immortalized cells (clone A10) are shown (Day 80: Chromosome analysis point ( ⁇ ) in FIG. 18). It shows the differentiation potential of cloned immortalized cells (fat cell differentiation, neuronal cell differentiation, osteoblast differentiation).
  • Cryopreservation points of MSCs used in single-cell cloning studies (early MSCs: Day9, mid-term MSCs: Day24, late MSCs: Day49) and immortalization induction points by SeV vector infection (early MSCs: Day21, mid-term MSCs: Day36, late MSCs) : Day61) is shown. Photographs of SeV vector infected cells (early MSCs, middle MSCs, late MSCs) and SeV vector non-infected MSCs (controls) before single-cell cloning (immediately before 96-well plate seeding) are shown.
  • results of a single cell cloning test of cell populations of SeV vector non-infected MSC (control) and SeV vector infected cells (early MSC) are shown (numbers in wells: number of clones formed, culture days: 2 weeks).
  • results of a single cell cloning test of a cell population of SeV vector-infected cells are shown (numbers in wells: number of clones formed, number of culture days: 2 weeks).
  • Photographs of SeV vector infection test results for cells in which cell division has stopped Day 90 (cells immediately before SeV vector infection, SeV vector non-infected cells (control cells), and SeV vector infected cells (2 weeks after infection)) ).
  • the test results of single-cell cloning of arrested cells (Day 90) that started reproliferation by SeV vector infection are shown (numbers in wells: number of clones formed, number of culture days: 2 weeks).
  • the cell proliferation curve of adipose tissue-derived human MSC (non-infected cell line, SeV vector infected cell line) in serum-free culture is shown.
  • the cell proliferation curve of bone marrow-derived human MSC (non-infected cell line, SeV vector infected cell line) in serum-free culture is shown.
  • a transmitted light image and a fluorescence (OFP, GFP) image of a SeV vector-infected cell line of a serum-free cultured adipose tissue-derived human MSC (hMSC-AT) and a SeV vector-infected cell line of a bone marrow-derived human MSC (hMSC-BM) are shown.
  • hMSC-AT 16th and 58th days from the date of infection
  • hMSC-BM 24th and 50th days from the date of infection
  • the cell proliferation curve of rat MSC non-infected cell line, SeV vector infected cell line # 1, # 2 is shown.
  • Transmission light images and fluorescence (OFP, GFP) images of SeV vector-infected cell lines of immortalized rat MSC are shown (2nd, 9th, and 58th days from the day of infection).
  • the cell proliferation curve of HFL1 non-infected cell line # 1, # 2, SeV vector infected cell line # 1, # 2, 37 ° C cultured SeV vector infected cell line # 1, # 2) is shown.
  • HUVEC non-infected cell line # 1, SeV vector infected cell line # 1, # 2 cultured at 35 ° C, SeV vector infected cell line # 1, # 2 cultured at 37 ° C
  • Immortalized HUVEC [35 ° C culture (7 days, 36, 72 days from infection date), 35 ° C culture + 37 ° C culture (35 days + 37 days from infection date)] transmitted light images and fluorescence (OFP, GFP) images are shown. .. It is a photograph showing the result of FISH analysis of immortalized MSC by introduction of a multiproliferative factor-inserted human artificial chromosome vector (in the lower right frame: DAPI-stained image of arrow cells). The results of a healing effect test of an enteritis model by transplantation of immortalized MSCs are shown.
  • the present invention is a method for producing reversible immortalized cells, wherein the method (1) introduces a chromosomal non-integrating RNA virus vector carrying an immortalizing gene into mammalian cells. Then, the step of expressing the immortalizing gene in the cell and the step of (2) culturing and proliferating the cell obtained in the step (1) are included.
  • the "cell” refers to all somatic cells other than germline cells (egg and sperm, oocyte, ES cell, etc.) and totipotent cells (iPS cells).
  • the "somatic cell” may be any of a primary cultured cell, a subcultured cell, and an established cell line.
  • the somatic cells may be naturally derived or artificially produced by differentiating from iPS cells or the like. Specific examples of somatic cells include cells that form tissues (fat cells, fibroblasts, nerve cells, skin cells, blood cells, muscle cells, osteoblasts, cartilage cells, hepatocytes, pancreatic cells, and renal cells.
  • Myocardial cells brain cells, lung cells, splenocytes, adrenal cells, gingival cells, root membrane cells) or their precursor cells, immune system cells (B cells, T cells, monocytic cells) (Cells, etc.), somatic stem cells [mesophageal stem cells (adipose-derived stem cells, bone marrow-derived stem cells, umbilical cord blood-derived stem cells, placenta-derived stem cells, etc.), hematopoietic stem cells, nerve stem cells, epidermal stem cells, intestinal epithelial stem cells, dental pulp stem cells, tooth roots, etc. Membrane stem cells, etc.] and the like.
  • the origin of the cells is not particularly limited as long as it is a mammal, and examples thereof include humans, mice, rats, guinea pigs, hamsters, rabbits, dogs, cats, pigs, cows, and horses.
  • the "immortalized cell” refers to a cell whose proliferation does not stop even if cell division is repeated, that is, a cell having an infinite proliferation ability, unlike a primary cultured cell or a cell cultured under normal culture conditions.
  • the "immortalized cell” in the present invention means a cell capable of infinite proliferation by introducing a predetermined immortalizing gene, and a cell whose infinite proliferation ability does not decrease even if it is repeatedly subcultured and cultured. ..
  • the “immortalized cells” according to the present invention have different growth rates and growth periods depending on the origin of the cells or the culture conditions, but as a result of subculture, untreated cells proliferate or cease under the same culture conditions.
  • the immortalized cells of the present invention include both the cell population capable of infinite proliferation as described above and the immortalized cell line cloned from the cell population.
  • reversible immortalization means that a cell proliferation is stopped or attenuated by introducing an immortalizing gene into a cell, making the cell proliferative indefinitely, and then removing the immortalizing gene. It means to let.
  • “Immortalization” means to release the limit of the number of cell divisions and cell aging of early cells, and to impart continuous cell division ability and proliferation ability. Specifically, under standard cell culture conditions, usually 5 or more passages, preferably 7 or more passages, 8 or more passages, 9 or more passages, 10 or more passages, 12 or more passages, 15 passages or more. As mentioned above, it means that more than 20 passages have become possible.
  • Cells having a confluent number of passages of 0 can be amplified and cultured by subculturing using a method known to those skilled in the art. The cells obtained by one passage operation are called “passage number 1 (or second generation)" cells, and “passage number 2, 3, 4 " corresponding to the number of passage operations. It can be expressed as "n (n (integer) is the number of passages) (n + 1th generation)".
  • a step of freezing the cells may be included between each passage operation.
  • the immortalized cell of the present invention is produced by introducing a predetermined immortalizing gene into a cell using a chromosome non-integrating RNA viral vector.
  • the "immortalizing gene” refers to a gene that immortalizes a cell to acquire infinite proliferation ability and does not induce cell death.
  • the immortalizing gene is an extrinsic gene and means an immortalizing gene newly introduced from the outside of the cell.
  • the immortalizing gene may be an immortalizing gene derived from other than human, or may be an immortalizing gene modified into a form expressible in a target cell.
  • the immortalizing gene one or more genes selected from the group consisting of the Bmi-1 gene, the TERT gene, and the SV40T gene can be used, but a combination of the two genes can be used. Preferably, a combination of three genes is more preferred.
  • the TERT gene is preferable, and examples of a preferable combination when two or more kinds of genes are combined include a combination of Bmi-1 gene and TERT gene, and a combination of TERT gene and SV40T gene.
  • the "gene” includes not only a structural gene that defines the primary structure of a protein but also a region on a nucleic acid having a control function such as a promoter or an operator. Therefore, in the present invention, the term “gene” is used without distinguishing between a regulatory region, a coding region, an exon, and an intron, unless otherwise specified.
  • Bmi-1 (B lymphoma Mo-MLV insertion region 1 homolog) gene
  • PRC1 polycomb repressive complex 1
  • Bmi-1 is involved in the regulation of expression of various genes including Hox gene by controlling chromatin remodeling and histone modification.
  • Bmi-1 has the effect of controlling cell proliferation by suppressing the expression of p16 and p19Arf involved in the cell cycle, and plays an important role in maintaining self-renewal by being involved in cell division of hematopoietic stem cells and nerve stem cells. It is known to play.
  • TERT telomerase reverse transcriptase gene
  • TERT Telomerase reverse transcriptase gene
  • Telomerase RNA component extends specific repeat sequences of eukaryotic chromosome ends (telomeres) from telomere RNA components (Telomerase RNA: TR or Telomerase RNA component: TERC) and other regulatory subunits. It constitutes the enzyme telomerase. It is known that TERT has a role in maintaining telomere length, whereas cell aging has a telomere length monitoring mechanism and cell senescence is caused by telomere shortening.
  • the "SV40T (simianvirus 40large Tantigen) gene” is a gene encoding the Simian virus 40 large T antigen.
  • the genome of SV40 (simianvacuolating virus40) is divided into an early region that is expressed immediately after infection, a late region that is expressed during replication of the viral genome after infection, and a regulatory region that includes transcriptional regulation and the origin of replication.
  • the early region encodes a large T antigen involved in the initiation of viral genome replication and inactivation of p53 and pRB, which are tumor suppressor gene products, and a small t antigen that binds to and inhibits the protein dephosphorylation enzyme PP2A.
  • a specific example of the Bmi-1 gene used in the present invention is the mouse BMI1 gene (SEQ ID NO: 1)
  • a specific example of the TERT gene is the human TERT gene (SEQ ID NO: 2)
  • a specific example of the SV40T gene is SV40 large.
  • the T antigen gene (SEQ ID NO: 3) can be mentioned.
  • the Bmi-1 gene, TERT gene, and SV40T gene may also be these transcriptional variants, splicing variants and their orthologs.
  • the above Bmi-1 gene, TERT gene, and SV40T gene are 80% or more, preferably 90% or more, relative to each of the nucleotide sequences of SEQ ID NOs: 1, 2, and 3 as long as they have the same functions and activities.
  • the Bmi-1 gene, TERT gene, and SV40T gene are artificially modified so that the product of the gene is expressed as a fusion protein with other proteins or peptides as long as it has the same function and activity. It may be a gene.
  • a "chromosome non-integrating RNA virus vector” is used as a vector for introducing and expressing the immortalization gene in cells.
  • the viral vector means a vector having a genomic nucleic acid derived from the virus and capable of expressing the gene by incorporating a transgene into the nucleic acid.
  • the "chromosome non-integrated RNA virus vector” is a virus vector derived from a virus and capable of introducing a gene into a target cell, and the introduced gene is integrated into a host chromosome (nuclear-derived chromosome). A non-hazardous carrier.
  • RNA virus vector refers to a vector consisting of a virus containing RNA of minus strand (antisense strand complementary to the sense strand encoding the viral protein) as a genome, and minus strand RNA is also called negative strand RNA. ..
  • a single-stranded negative-strand RNA virus also referred to as a non-segmented negative-strand RNA virus is particularly preferable.
  • Single-stranded negative-strand RNA virus refers to a virus having a single-stranded negative-strand (minus-strand) RNA in its genome, for example, Paramyxoviridae; Paramyxovirus, Morbillivirus, Rubulavirus, Pneumovirus, etc. Includes), Rhabdoviridae (including Rhabdoviridae; Vesculovirus, Lyssavirus, and Ephemerovirus genus), and viruses belonging to the family Filoviridae.
  • minus-strand RNA viruses examples include Paramyxoviridae virus Sendai virus, Newcastle disease virus, Mumps virus, and measles virus.
  • RS virus Respiratory syncytial virus
  • cattle epidemic virus Rinderpest virus
  • distemper virus distemper virus
  • salparainfluenza virus SV5
  • human parainfluenza virus type 1,2,3, orthomixovirus family Orthomyxoviridae influenza virus (Influenza virus), Rhabdoviridae (Rhabdoviridae) vesicular stomatitis virus (Vesicular stomatitis virus), mad dog disease virus (Rabies virus) and the like can be mentioned, but Sendai virus (Sendai virus) is preferable.
  • Sendai virus vector SeV vector
  • a Sendai virus (SeV) vector is used as the non-chromosomal integrated RNA vector.
  • the immortalizing factor genes of the Bmi-1 gene, TERT gene, and SV40T gene may be inserted separately into the SeV vector, or may be inserted together into a single SeV vector.
  • Sendai virus is a type of virus belonging to the genus Respirovirus of the Paramyxoviridae family, and contains a single minus strand (antisense strand against the sense strand encoding the viral protein) RNA as a genome.
  • the Sendai virus genome consists of NP (nucleocapsid) gene, P (phospho) gene, M (matrix) gene, F (fusion) gene, and HN (hemogglutinin / neuraminidase) in order from the 3'end to the 5'end. ) Gene and L (large) gene are included. Of these, Sendai virus can sufficiently function as a vector if it has the NP gene, P gene, and L gene, and can replicate the genome in cells and express the loaded gene. Since the Sendai virus has minus-strand RNA in its genome, the 3'side of the genome is upstream and the 5'side is downstream, which is the opposite of the normal case.
  • the SeV vector can be used as a natural strain, a wild strain, a mutant strain, or a commercially available product.
  • the virus may be a virus having a structure similar to that of a virus isolated from nature, or a virus artificially modified by genetic recombination, as long as the desired function can be achieved.
  • any gene possessed by the wild-type virus may be mutated or deleted.
  • a non-propagating vector ( ⁇ F) in which the F gene is deleted from the genome and no infectious particles are formed from the gene-introduced cells, and the F gene is deleted, and the M and / or HN gene is deleted.
  • a vector that further deletes or has a mutation in the M and / or HN gene is preferably used in the present invention.
  • a vector in which the F gene is deleted, the M or HN gene is further deleted, and the remaining M and / or HN gene is further mutated is also preferably used in the present invention (patented). See No. 5763340, etc.).
  • the SeV vector used in the method of the present invention is preferably temperature sensitive.
  • “Temperature sensitivity” means that the activity is significantly reduced at a normal cell culture temperature (for example, 37 to 38 ° C) as compared with a low temperature (for example, 30 to 36 ° C).
  • Sendai virus TS7 L protein Y942H / L1361C / L1558I mutation
  • TS12 P protein D433A / R434A / K437A mutation
  • TS13 P protein D433A / R434A / K437A mutation and L protein L1558I mutation
  • TS14 P.
  • Mutations such as protein D433A / R434A / K437A mutations and L protein L1361C) and TS15 are temperature-sensitive mutations and are preferred in the present invention. These mutations can be utilized. It is preferable to further introduce these mutations into the above-mentioned F gene-deficient SeV vector.
  • SeV vectors refer to Japanese Patent No. 5763340, WO2015 / 046229, etc. be able to.
  • the SeV vector in the present invention is a complex consisting of an infectious virus particle, a virus core, a complex of a virus genome and a virus protein, a non-infectious virus particle, and the like, and is loaded by introduction into cells. Includes a complex capable of expressing a gene that does.
  • a ribonucleoprotein core part of a virus consisting of a Sendai virus genome and Sendai virus proteins (NP, P, and L proteins) that bind to it expresses the introduced gene in the cell by introducing it into the cell.
  • the introduction into cells may be carried out by appropriately using a transfection reagent or the like. Therefore, such a ribonucleoprotein (RNP) is also included in the SeV vector in the present invention.
  • the position where the immortalizing gene (Bmi-1 gene, TERT gene, and SV40T gene) is integrated is not particularly limited, but when each immortalizing gene is inserted into multiple separate vectors, the Bmi-1 gene is the NP gene. Upstream, the TERT gene is preferably inserted between the P and M genes, and the SV40T gene is preferably inserted upstream of the NP gene. Also, two or more genes (Bmi-1 and TERT, TERT and SV40T, or Bmi-1 and TERT and SV40T) may be inserted into a single vector.
  • the SeV vector carrying the immortalization gene obtained as described above is introduced into the cells by adding the vector (Sendai virus particles) to the medium of the somatic cells and infecting the cells with the virus. .. Since the dose of the vector varies depending on the cell type, cell density, and amount of medium, the MOI whose infection efficiency is close to 100% may be investigated and determined in advance for each cell to be used.
  • the SeV vector when in the form of RNP, it can be introduced into cells by a method such as an electroporation method, a lipofection method, or a microinjection method.
  • the method for culturing cells into which an immortalizing gene has been introduced can be carried out according to the method and conditions for culturing normal mammalian somatic cells.
  • the medium used for culturing is not particularly limited, and a medium generally used for maintenance culture or expansion culture of cells and suitable for virus infection may be used, and either a commercially available medium or a self-made medium may be used. good.
  • a basal medium containing components necessary for cell survival and proliferation inorganic salts, carbohydrates, hormones, essential amino acids, non-essential amino acids, vitamins, fatty acids
  • D-MEM Dulbecco's Modified Eagle's Medium
  • Dulbecco's Modified Eagle's Medium Natural Mixture F-12 (D-MEM / F-12) Medium, Glassgow MEM (G-MEM) Medium, Basal Medium Eagle (BME) Medium, Minimum Essential Medium (MEM) Medium, Eagle's minimal essential Examples include medium (EMEM) medium, Iscove's Modified Dulbecco's Medium (IMDM) medium, RPMI 1640 medium, Medium 199 medium, ⁇ MEM medium, ham medium, Fischer medium, and a mixed medium thereof.
  • D-MEM / F-12 Natural Mixture F-12
  • G-MEM Basal Medium Eagle
  • MEM Minimum Essential Medium
  • the medium may contain growth factors (FGF, EGF, etc.), interleukins, insulin, transferase, heparin, heparan sulfate, collagen, fibronectin, progesterone, selenite, B27-supplement, N2-supplement, antibiotics, if necessary. It may contain a substance (penicillin, streptomycin, etc.) and the like. Further, the medium may be a serum-containing medium or a serum-free medium. From the viewpoint of preventing contamination of heterologous animal-derived components, it is preferable to use serum that does not contain serum or that is derived from the same animal as the cells to be cultured. Alternatively, a serum substitute such as albumin may be used.
  • the culture method is not limited, but is limited to three-dimensional culture under non-adhesive conditions, for example, suspension culture (for example, dispersion culture, aggregate suspension culture, etc.), or two-dimensional culture under adhesive conditions, for example, flat plate. Examples thereof include culture and culture in which three-dimensional culture and two-dimensional culture are combined.
  • the incubator used for culturing cells is not particularly limited as long as it can cultivate cells, and examples thereof include flasks, petri dishes, dishes, plates, chamber slides, tubes, trays, culture bags, and roller bottles. ..
  • the incubator may be cell non-adhesive or adhesive, and is appropriately selected depending on the intended purpose.
  • cell adhesion incubator one treated with a cell-supporting substrate or the like using an extracellular matrix or the like may be used for the purpose of improving the adhesion to cells.
  • the cell-supporting substrate include collagen, gelatin, poly-L-lysine, poly-D-lysine, laminin, fibronectin and the like.
  • the culture temperature is 30 ° C to 36 ° C, preferably 32 ° C to 35 ° C, and more preferably 33 to 35 ° C. Culturing is carried out in an atmosphere of CO 2 containing air, for example, at a CO 2 concentration of 2% to 5%.
  • the culture temperature for removing the immortalizing gene is 37 ° C to 38 ° C, preferably 37 ° C to 37.5 ° C.
  • the immortalized cells prepared as described above can be induced to differentiate into specific tissue cells by culturing them in a differentiation-inducing medium.
  • the immortalized cell when it is a mesenchymal stem cell, it can be differentiated into adipocyte, osteoblast, nerve cell, chondrocyte and the like.
  • composition of the medium for inducing the differentiation of the immortalized cells according to the present invention into the target cells, the differentiation-inducing factor, the culture method, the passage method, etc. can be appropriately set from well-known and conventional techniques.
  • the differentiation-inducing medium can be appropriately selected according to the type of cells targeted for differentiation-inducing. Differentiation-inducing media for various tissues (mediums to which at least one type of differentiation-inducing or promoting factor according to the target cell for differentiation-inducing is added) are commercially available, and these commercially available media may be used.
  • the medium for inducing the differentiation of immortalized cells according to the present invention into adipocytes is a commercially available adipocyte-inducing medium or a commercially available animal cell medium containing insulin, dexamesazone, indomethacin, or 3-isobutyl-1-methylxanthin. , A medium containing troglycazone, biotin, etc. can be used.
  • Examples of commercially available media include Mesenchymal Stem Cell Adipogenic Differentiation Medium 2 (manufactured by PromoCell), Human Mesenchymal Stem Cell Adipogenic Differentiation Medium BulletKit8 (manufactured by Lonza), and the like.
  • the medium for inducing the differentiation of the cells according to the present invention into osteoblasts includes dexamesazone, ascorbic acid, ⁇ -glycerophosphate, hydrocortisone, BMP4, in a commercially available osteoblast-inducing medium or a commercially available animal cell medium.
  • a medium containing BMP2 etc. can be used.
  • Examples of commercially available media include Mesenchymal Stem Cell Osteogenic Differentiation Medium (manufactured by PromoCell), Human Mesenchymal Stem Cell Osteogenic Differentiation Medium Bullet Kit (manufactured by Lonza), and the like.
  • a medium for inducing differentiation of immortalized cells into nerve cells according to the present invention, a commercially available nerve cell culture medium or nerve differentiation medium (for example, Mesenchymal Stem Cell Neurogenic Differentiation Medium (manufactured by PromoCell), etc.) can be used.
  • the nerve cell culture medium or the nerve differentiation inducing medium preferably contains a nerve cell inducing factor (for example, brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF)).
  • BDNF brain-derived neurotrophic factor
  • FGF fibroblast growth factor
  • chondrocyte-inducing medium a commercially available chondrocyte-inducing medium or a commercially available animal cell medium containing dexamesazone, ascorbic acid, and TGF- ⁇ 3 is used.
  • examples of commercially available media include MesenchymalStemCellChondrogenic DifferentiationMedium (manufactured by PromoCell), HumanMesenchymalStemCellChondrogenicDifferentiationMedium BulletKit (manufactured by Lonza), and the like.
  • the culture conditions for inducing differentiation are the same as the culture conditions for culturing normal stem cells.
  • the culture period for inducing differentiation is also not particularly limited, but is generally 5 to 20 days, preferably 7 to 18 days.
  • stem cells have been induced to differentiate into the target cells can be confirmed by examining the expression of markers specific to each differentiated cell. For example, differentiation into adipocytes can be confirmed by oil red 0 staining, differentiation into osteoblasts by alkaline phosphatase staining, differentiation into nerve cells by NeuroFluorNeuO staining, and differentiation into chondrocytes by alcian blue staining.
  • the immortalized cells and tissue cells induced to differentiate from immortalized (stem) cells obtained by the present invention can be used, for example, by transplanting cells to a diseased or damaged site, and can be provided as a product for regenerative medicine.
  • products for regenerative medicine include cultured skin, cultured cartilage, cultured corneal epithelium, various cell sheets (for example, epidermal cell sheet, fibroblast sheet, corneal endothelial cell sheet, myocardial cell sheet, osteoblast sheet, myoblast).
  • the serum-containing medium for culturing human mesenchymal stem cells is D-MEM (Low Gulucose), 20% FBS, 0.01 mol / L Hepes, Penicillin 100units / ml, Streptomycin 100 ⁇ g / It was prepared with a composition of ml and bFGF 20 ng / ml. Since bFGF has a very short half-life, Gibco Heat Stable Recombinant Human bFGF (Thermo Fisher Scientific), which has excellent stability, was used. MSCs were cultured in the above medium in a 5% CO 2 incubator. The human MSC used in the experiment is either bone marrow-derived, adipose tissue-derived, cord blood-derived, or umbilical cord matrix-derived.
  • Example 1 Preparation of seV vector carrying an immortalizing gene and examination of infection conditions
  • a SeV vector carrying an immortalizing gene Bmi-1 B lymphoma Mo-MLV insertion region 1 homolog
  • Bmi-1 B lymphoma Mo-MLV insertion region 1 homolog
  • HTERT human telomerase reverse transcriptase
  • SV40T simian virus 40 large T antigen
  • E6 / E7 human papillomavirus 16 E6 protein and E7 protein
  • Bmi was used as the SeV vector for the non-chromosomal RNA virus vector.
  • FIG. 1 shows the structure of each vector.
  • Bmi-1, SV40T is the vector genome. It was installed at the most upstream of. The mounting positions of hTERT and E6 / E7 were changed downstream due to the decrease in vector production efficiency, which is thought to be due to high expression.
  • SeV vector For the SeV vector, we used a TS15 ⁇ F type vector that was improved so that the viral vector disappeared from the cells by changing the culture temperature from 35 ° C to 37 ° C (Efficient generation of transgene-free human induced pluripotent stem cells).
  • iPSCs by temperature-sensitive Sendai virus vectors. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S, Nishikawa . 2011 Aug 23; 108 (34): 14234-9.).
  • bone marrow-derived mesenchymal stem cells product name: ultra-high-purity human mesenchymal stem cells (REC), PuREC Co., Ltd.
  • REC ultra-high-purity human mesenchymal stem cells
  • PuREC Co., Ltd. are placed in a 48-well plate (FALCON 353230) supplemented with a medium of 200 ⁇ l / well in 5 ⁇ 10 4 Sprinkle individual / well (70-80% confluent) and add 4 types of immortalizing factor gene-laden SeV vectors to the cells so that the MOI of each vector becomes 1,5,20 by single or multiple co-infection. , Incubated overnight. The next day, the medium was replaced with fresh medium, and the medium was replaced every 2 days thereafter. The medium was expanded to a 12-well plate (FALCON 353043) on the 5th day after the vector infection, and the cells were observed 9 days after the infection.
  • Example 2 Selection of immortalizing factor MSC by infecting MSC with a SeV vector carrying four kinds of immortalizing factor (Bmi-1, hTERT, SV40T, E6 / E7) genes alone and culturing for a long period of time. The factors necessary for immortalization of the disease were selected.
  • immortalizing factor Bmi-1, hTERT, SV40T, E6 / E7
  • MSC derived from umbilical cord blood (product name: Umbilical Cord-Derived Mesenchymal Stem Cells; Normal, Human (ATCC PCS-500-010)) was used for the study, and one or a combination of two or more SeV vectors carrying the immortalizing factor gene was used. (15 ways in total) were infected with the above MSC (48 well plate, 3 ⁇ 10 4 / well, MOI: 20). MSCs not infected with SeV vector were used as negative controls.
  • the cells are expanded and cultured in the order of 48 well ⁇ 12 well ⁇ 6 well, and after that, when the cells become confluent (the adhesive surface of the plate is 100% of the cells), the number of cells is measured and subcultured to obtain a total of 16 types of cells. At the same time as measuring the growth rate of the cells, the morphology of the cells was observed under a microscope.
  • the cell proliferation rate was measured over 80 days from the introduction of the immortalizing gene (number of cells at the time of introduction: 3 ⁇ 10 4 cells).
  • the results (No. 1 to No. 16) arranged in descending order of the number of cells at 80 days are shown in Table 1 below together with the number of cells.
  • the cell condition was observed at about 2 months (59th day) when the cell proliferation of the negative control stopped, and the uniformity of cell size and the degree of dead cells detached from the culture plate were observed in two stages. Judgment was made (Fig. 5). The judgment results are shown in Table 1 (cell size is uniform and cell peeling is small: ⁇ , cell size is non-uniform and cell peeling is large: ⁇ , presence or absence of immortalizing factor is present. Notated by + or-).
  • FIG. 6 shows the cell growth curve.
  • the growth stopped after about 2 months (66 days), but the growth of the immortalizing factor-introduced cells (No. 1, 2, 4, 12) was prolonged.
  • the growth of hTERT gene-introduced cells (No. 12) was prolonged, the growth rate gradually decreased after 2 months, and further growth could not be expected.
  • the combination-introduced cells (No. 1, 2, 4) of Bmi-1 and hTERT, hTERT and SV40T, and Bmi-1 and hTERT and SV40T proliferated stably without slowing down even on the 80th day. was observed.
  • the growth rate of the combination of the three factors Bmi-1, hTERT and SV40T was the fastest.
  • human umbilical cord matrix-derived mesenchymal stem cells product name: HumanMesenchymal Stem Cells from Umbilical Cord Matrix (hMSC-UC), Promo Cell, product code C-12971
  • hMSC-UC HumanMesenchymal Stem Cells from Umbilical Cord Matrix
  • Promo Cell product code C-12971
  • Example 3 Analysis of immortalized cultured cells using a SeV vector carrying a 3-factor (Bmi-1 / hTERT / SV40T) gene (1) Preparation of 3-factor (Bmi-1 / hTERT / SV40T) -introduced immortalized cells In the examination of MSCs derived from different tissues, it was judged that the SeV vector carrying the three-factor (Bmi-1 / hTERT / SV40T) gene was the most suitable for immortalization, and detailed property analysis of the MSCs immortalized with this vector was performed. ..
  • the cells used were MSCs derived from cord blood (product name: Umbilical Cord-Derived Mesenchymal Stem Cells; Normal, Human (ATCC PCS-500-010)) used in the selection of immortalizing factors, but the cells were longer than those used in the selection. Cultured (less than 1 month) cells were used. A 3-factor (Bmi-1 / hTERT / SV40T) gene-loaded SeV vector was introduced under the same MOI: 20 conditions as in Example 2. MSCs without gene transfer with SeV vector were simultaneously cultured as a negative control.
  • the immortalized cell line introduced with 3 factors (Bmi-1 / hTERT / SV40T) was cultured in a CO 2 incubator at 35 ° C using a 6 cm dish, and the plates adhered. When the surface was grown to about 80% of the cells, 1/5 was subcultured to a new 6 cm dish, and the culture was continued for 75 days.
  • the SeV vector carrying the immortalization gene is a temperature-sensitive vector, and it is possible to rapidly eliminate the intracellular SeV vector genome by raising the culture temperature from 35 ° C to 37 ° C (Efficient generation of transgene-free).
  • human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa Natl Acad Sci U S A. 2011 Aug 23; 108 (34): 14234-9).
  • Chromosome analysis of cells was performed by the quinacrine-Hoechst fractionation method at the point ⁇ in FIG.
  • the chromosome slide is first immersed in 50 ml of Macylben solution (280 ml of 0.1 M citrate solution and 220 ml of 0.2 M disodium hydrogen phosphate solution are mixed and autoclaved), and then 50 ml of Macylben. It was soaked in a solution of Hoechst 33258 (cat: B-2883-25MG, Sigma) at 10 ng / ml for 30 minutes.
  • the immortalized cell line was the parent strain at all points. It was a normal karyotype as well (Fig. 10).
  • telomere length was evaluated at the points marked with * in FIGS. 6 and 7.
  • the telomere length was evaluated by performing real-time PCR using genomic DNA as a template and by relative quantification of telomere sequences. Genomic DNA extraction from cells was performed using Gentra® Puregene® Kit (Qiagen) with reference to the manufacturer's procedure.
  • Gentra® Puregene® Kit Qiagen
  • the Telomere primer set and Single copy reference primer set attached to the Relative Human Telomere Length Quantification qPCR Assay Kit (ScienCell Research Laboratories) were used as primers, and FastStart Essential DNA Green Master (Roche) was used as the PCR reagent.
  • the PCR reaction conditions were as recommended by the manufacturer. StepOnePlus (Life Technologies Japan) was used for PCR reaction and data acquisition, and data analysis was performed with StepOne Software v2.3.
  • Example 4 Differentiation ability of immortalized population cells Regarding the immortalized cells (MSC) introduced with the three factors (Bmi-1 / hTERT / SV40T) prepared in Example 3, fat cells, osteoblasts, nerve cells, and chondrocytes. The ability to differentiate into cells was investigated.
  • MSC (ATCC PCS-500-010) derived from cord blood that was immortalized with three factors of Bmi-1, hTERT, and SV40T and cultured for a long period of time (cultured for 4 months after gene transfer) was used. Four months is a difficult period for culturing in general MSCs that are not immortalized.
  • a commercially available (PromoCell) differentiation kit was used for MSC differentiation.
  • Mesenchymal Stem Cell Adipogenic Differentiation Medium 2 (product code C-28016) for adipose cell differentiation
  • Mesenchymal Stem Cell Osteogenic Differentiation Medium (product code C-28013) for osteoblast differentiation
  • Mesenchymal Stem Cell Neurogenic Differentiation for nerve cell differentiation.
  • Medium (product code C-28015) and Mesenchymal Stem Cell Chondrogenic Differentiation Medium (product code C-28012) were used for cartilage cell differentiation, and the operation method was carried out according to the attached protocol.
  • the confirmation of adipocyte differentiation was performed using the fluorescent dye Lipi-Green (Doujin Kagaku: product code LD02), which specifically stains lipid droplets, which is an index of adipocyte differentiation. Osteoblast differentiation was confirmed by alkaline phosphatase staining. Nerve cell differentiation was confirmed using the fluorescent dye NeuroFluor NeuO (VERITAS: product code ST-01801), which specifically stains nerve cells. Chondrocyte differentiation was confirmed by alcian blue staining.
  • Lipi-Green Doujin Kagaku: product code LD02
  • Osteoblast differentiation was confirmed by alkaline phosphatase staining.
  • Nerve cell differentiation was confirmed using the fluorescent dye NeuroFluor NeuO (VERITAS: product code ST-01801), which specifically stains nerve cells. Chondrocyte differentiation was confirmed by alcian blue staining.
  • MSCs that retain the differentiation potential and have not been gene-introduced in the logarithmic growth phase were used as positive controls, and compared with the differentiation potential of immortalized MSCs that had passed 4 months, fat.
  • lipid droplets which are indicators of differentiation, were observed in both cases.
  • the immortalized MSC had a lower degree of differentiation than the positive control (Fig. 12).
  • osteoblast differentiation staining with alkaline phosphatase was confirmed in both immortalized MSC and positive control, and the cells were differentiated into osteoblasts (Fig. 13).
  • Immortalized MSCs had a higher differentiation rate than positive controls.
  • Example 5 Cloning test of immortalized MSCs For the three-factor (Bmi-1 / TERT / SV40T) -introduced immortalized cells (MSCs) prepared in Example 3, whether cloning is possible or whether the MSCs are not immortalized We conducted a confirmation experiment to see how difficult cloning is.
  • MSC (ATCCPCS-500-010) derived from umbilical cord blood that retains differentiation potential and has not been gene-introduced in the logarithmic growth phase in early cells cultured for about 2 weeks after purchase, has just been gene-introduced ( Cloning was performed using three types of MSCs: an immortalized MSC (2 weeks old) and an immortalized MSC (4 months old) cultured for a long time after gene transfer.
  • the three types of MSCs that had been cultured and maintained were once completely separated into single cells, and the number of cells was measured.
  • the cells were seeded at a variable number such as 32 cells / 100 ⁇ l, and cultured in a 5% CO 2 incubator at 35 ° C until single cells formed colonies. For medium exchange, half the amount was exchanged every 3 days so as not to disturb colonization.
  • Non-immortalized early growth MSCs corresponded to common MSCs, but only 2 wells of 32 cells / well compartments were formed.
  • MSCs into which the immortalizing gene was introduced with the SeV vector colonies were formed at a high frequency of 9 well / 24 well even at a low density of 4 cells / well in the two weeks immediately after the introduction (Fig. 16). After 4 months, colonies were formed in 16 wells / 24 wells and more than half of the wells even at a low density of 4 cells / well (Fig. 17).
  • Example 6 Various analyzes of clone immortalized MSC (1) Proliferative ability of cloned cells Five clones of MSC cloned as a single cell 2 weeks after infection with SeV vector were divided into 35 ° C and 37 ° C after culturing for 60 days. Was cultured. Three of the five clones proliferated and decreased with the removal of the SeV vector at 37 ° C. A growth curve is shown for clone A10 among them (Fig. 18).
  • Example 7 Immortalization and single-cell cloning of MSCs with different cell ages (aging degree) Since the cell populations grown from one MSC have the same genetic properties, the quality is constant and quality control becomes easy. In that respect, single-cell cloning has important significance in regenerative medicine, and single-cell cloning is indispensable in that when a gene is introduced from the outside, only the target cell is selected.
  • MSC isolated from the human body is a mixture of cells of various stages, from young cells to aged cells. The ratio also varies from individual to individual, and it is difficult to extract and proliferate only cells at a specific time (youth). Conversely, if MSCs can be immortalized at any time from young cells to senescent cells and can be further cloned, their application range will be greatly expanded in regenerative medicine.
  • the cells used were MSCs derived from umbilical cord blood (product name: Umbilical Cord-Derived Mesenchymal Stem Cells; Normal, Human (ATCC PCS-500-010)).
  • the purchased cells were cultured for a long period of about 80 days at 37 ° C until proliferation stopped. During that time, a part of the cells was cryopreserved at about every other week of passage (Fig. 21).
  • the cells were transferred to a CO 2 incubator at 37 ° C to 35 ° C and expanded and cultured for 8 days (24 well ⁇ 6 well). After that, the immortalized cells were seeded on a 96-well plate so that the number of cells per well was 1, 2, or 4, and the number of non-immortalized control cells was 5, 10 per well. The cells were seeded to 15 or 20 cells, cultured for about 2 weeks until one cell divided and proliferated and a cell population (colony) appeared, and the number of colonies generated by microscopic observation was counted.
  • Example 8 Confirmation of effect on MSCs in which proliferation has stopped The effect of the SeV vector carrying an immortalizing gene on MSCs in which cell division has completely stopped due to aging was confirmed.
  • SeV vector non-infected cells control cells
  • SeV vector-infected cells no change was observed for several days, but after one week, many cells changed roundly and seemed to die as they were, but small adhesive cells were observed. After 2 weeks, the cells changed to a vigorously proliferating cell population similar to immortalized cells (Fig. 24).
  • Infected cells and infected cells were cultured in a medium containing serum from the day of infection to the 11th and 17th days, respectively.
  • a medium having a composition of D-MEM (Low Gulucose), 20% FBS, 0.01 mol / L Hepes, Penicillin 100units / ml, Streptomycin 100 ⁇ g / ml, and bFGF 20 ng / ml was used. Then, it was replaced with a serum-free medium and the culture was continued.
  • Stem Fit For Mesenchymal Stem Cell (AJINOMOTO; A3) medium was used as the serum-free medium.
  • As the culture dish a 6 cm dish (CORNING; 353004) coated with iMatrix-511 silk (Matrixome; 892 091) was used.
  • Infection with the SeV vector was performed on 2 ⁇ 10 5 hMSC-AT cells or hMSC-BM cells under the condition of MOI: 40.
  • the non-infection condition and the infection condition were carried out once each.
  • the medium was changed 24 hours after infection and maintenance culture was continued.
  • Cell culture was performed in a 5% CO 2 incubator at 35 ° C.
  • the non-infected cell line was found to have a decrease in the number of cells, so the culture was terminated 52 days after the day of infection.
  • the SeV vector-infected cell line continued to proliferate after the 52nd day (Fig. 26).
  • Example 10 Examination of cell proliferation of immortalized rat MSC Rat subcutaneous fat-derived mesenchymal stem cells rMSC cells (Cosmo Bio Co., Ltd., MSA01C) are media for proliferation of rat subcutaneous fat-derived mesenchymal stem cells (Cosmo Bio Co., Ltd.). Cultivated in MSA-GM).
  • Infection with the SeV vector was performed on 2 ⁇ 10 5 rMSC cells under the condition of MOI: 40.
  • the non-infected condition was once and the infected cell line was twice.
  • the medium was changed 24 hours after infection and maintenance culture was continued.
  • Culture dishes were placed in a collagen coated dish (IWAKI, 4810-010) and maintained at 35 ° C. in a 5% CO 2 incubator.
  • cells with advanced cellular senescence may exhibit characteristics such as an increase in cell size, a flat shape, and the formation of vacuoles.
  • Infected cells cultured at 35 ° C showed no characteristic of cellular senescence compared to infected cells cultured at 37 ° C. From this result, it was confirmed that the cells continued to be cultured at 35 ° C. did not undergo cell senescence in terms of cell morphology.
  • Example 12 Examination of cell proliferation of immortalized HUVEC Human umbilical vein endothelial cells (HUVEC cells, Promocell, C-12205) were cultured in an endothelial cell medium (ScienCell; 1001).
  • Infection with the SeV vector was performed on 2 ⁇ 10 5 HUVEC cells under MOI: 40 conditions. The non-infection condition was once and the infection condition was twice. The medium was changed 24 hours after infection and maintenance culture was continued. Infected cells were divided into two conditions, one was to culture at 35 ° C and the other was to culture at 37 ° C on the 35th day after infection (Fig. 33, arrow). Cell culture was performed at each temperature in a 5% CO 2 incubator.
  • the non-infected cells were found to have a decrease in the number of cells, so the culture was terminated on the 39th day from the day of infection. On the other hand, the infected cells continued to proliferate even 74 days after the infection (Fig. 33). From this, it was confirmed that cell proliferation can be prolonged even in HUVEC cells by SeV vector infection.
  • Example 14 Verification of enteritis healing effect of immortalized MSC in an inflammatory bowel disease model (1) CD4 positive CD45RB high positive CD25 negative (CD4 + CD45RB High + CD25- ) Isolation of T cells 8 weeks old BALB / cAJcl ( After acclimatization of 30 females of Claire Japan) for 1 week, blood was removed by cardiac blood sampling under anesthesia, and the spleen and mesenteric lymph nodes were collected. The spleen was hemolyzed after tissue dispersion using the MACS system (Miltenyi Biotech). The mesenteric lymph nodes were crushed with a 1 mL syringe plunger and filtered through a 40 ⁇ m cell strainer.
  • Antibodies to isolate CD4 + CD45RB High + CD25-T cells after combining spleen and mesenteric lymph node cells and separating CD4 positive cells by CD4 microbeads (Miltenyi Biotech) treatment. Labeled with mouse CD4 antibody (BD), FITC Rat Anti-Mouse CD45RB antibody (BD), PE / Cy7 anti-mouse CD25 antibody (BioLegend)) and fractionated by flow cytometer (MoFlo XDP, BECKMAN).
  • CD4 + CD45RB High + CD25 --T cell transfer 9-week-old female SCID CB-17 / lcr-scid / scidJcl: Japan Marie
  • Cells were transplanted by tail vein injection (cell transplant group: 1 group 8 animals x 5 groups, untreated group (PBS administration): 1 group x 7 animals). After transplantation, body weight was measured three times a week and the coat and stool condition were observed. Twenty-one days after cell administration, randomization was performed using the "multivariable block allocation" system of the statistical analysis software JMP based on body weight changes, and the cell transplantation group was divided into groups. At that time, individuals who deviated from the average relative body weight of ⁇ 2 SD were excluded.
  • hMSC-UC parent MSC
  • immortalized MSC were cultured under each cell culture condition.
  • MSC administration (therapeutic cell transplantation)
  • parental MSC and immortalized MSC were administered 1.0 ⁇ 10 6 per mouse by tail vein injection.
  • Dexamethasone (Sigma): Dex (1 mg / kg, 100 ⁇ L / animal) was subcutaneously administered from the 21st day to the 14th day. Dex solution was prepared at the time of use based on the group average body weight on the 21st and 28th days.
  • the present invention can be used in the fields of cell medicine and regenerative medicine.
  • the cell immortalization technique of the present invention can be used not only for normal cells with slow cell proliferation but also for cancer cells and the like, and can also be used in the field of basic research. Furthermore, single-cell cloning, which is essential for gene transfer and chromosome transfer, is also possible.
  • the cells obtained by the present invention continue to proliferate without aging, which facilitates quality control, promotes mechanization of culture, significantly reduces cell production costs, and handles a large number of cells. Is possible. Therefore, the present invention expands the range of applicable diseases in cell medicine and regenerative medicine, and contributes to the activation of domestic and foreign medical-related industries. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Hematology (AREA)
  • Rheumatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、不死化遺伝子を導入した細胞の染色体を傷つけることなく、長期間にわたって該細胞を増殖させることができ、かつ、不死化遺伝子の除去が可能である、可逆的不死化細胞の製造方法を提供すること、およびクローニングが可能で品質が安定した可逆的不死化細胞を大量に得る方法を提供することを課題とする。 本発明によれば、Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子よりなる群から選択される1種又は2種以上の不死化遺伝子を搭載した染色体非組み込み型RNAウイルスベクターを哺乳類の細胞に導入し、該細胞で不死化遺伝子を発現させる工程、及び得られた細胞を培養し、増殖させる工程を含む、可逆的不死化細胞の製造方法が提供される。

Description

可逆的不死化細胞の製造方法
 本発明は、可逆的不死化細胞の製造方法、より詳細には、所定の不死化遺伝子を搭載した染色体非組み込み型RNAウイルスベクターを用いる可逆的不死化細胞の製造方法に関する。
 再生医療や細胞治療に用いる細胞ソースとしては、間葉系幹細胞(MSC)などの体性幹細胞、ES細胞やiPS細胞などの多能性幹細胞が中心となっている。幹細胞のなかでも間葉系幹細胞(MSC)は、元来体に存在する細胞のため、拒絶反応や腫瘍化のリスクが少なく、安全面で優れているが、細胞分裂回数に限度があるため、医療現場に供給するのに必要な十分な細胞数を確保することが課題となっている。
 そのため、不死化遺伝子を細胞に導入して無限増殖させるという試みが行われている。不死化遺伝子としては、テロメラーゼ逆転写酵素(TERT)遺伝子、テロメラーゼの発現又は活性を調節する遺伝子(例えば、Myc遺伝子、Ras遺伝子等)、ウイルス遺伝子(SV40T、HPV E6-E7、EBV等)が知られている。これらの不死化遺伝子の細胞への導入には、プラスミドDNAやレンチウイルスベクター、レトロウイルスベクター、アデノウイルスベクター等のベクターが用いられている(特許文献1、特許文献2、特許文献3等)。ウイルスベクターは、組み換えウイルスベクター産生細胞の培養上清をろ過し、目的とする細胞に添加するだけで効率よく遺伝子導入ができる点においては好ましい。上記ベクターのうち、プラスミドDNA、アデノウイルスベクターは、ベクターゲノムがDNAであり、宿主の染色体に組み込まれる。また、レンチウイルスベクター、レトロウイルスベクターは、ベクターゲノムはRNAであるが、細胞内では逆転写酵素によりDNAの形を取り、宿主の染色体に組み込まれることにより、搭載遺伝子を発現させる。このように一般に不死化に使用されるベクターには、外来DNAが宿主細胞の染色体へ組み込まれることによって宿主細胞の遺伝子を傷つけ、場合によっては腫瘍化するリスクが存在するため、再生医療の安全性において大きな問題となっている。一方、センダイウイルスベクター(SeVベクター)は、DNAの形をとらない染色体非組み込み型のRNAウイルスベクターである。SeVベクターは、幅広い細胞種に遺伝子導入が可能で、蛋白質を高発現させ易いことからiPS細胞の誘導等には汎用されている(特許文献4)。しかしながら、間葉系幹細胞(MSC)のように分裂回数に限界があって2ヵ月以上では分裂が停止する細胞の場合、SeVベクターでは、導入遺伝子の長期間の発現が難しいと認識されていたため、SeVベクターの用途は一時的な高発現に限定され、不死化遺伝子の細胞導入には使用されていなかった。
 一方、不死化遺伝子を導入して細胞を不死化し、増殖した後に該不死化遺伝子を部位特異的組換え酵素を用いて切り出すことができる可逆的(条件的)不死化細胞も研究されている(非特許文献1等)。しかしながら、不死化遺伝子を部位特異的組換え酵素を用いて切り出したとしても、得られた細胞は遺伝子操作を行った細胞であり、このような細胞が宿主に腫瘍を形成するなどの悪影響が懸念され、安全性が確保されているとはいえない。
 また、人の組織から得られた幹細胞は、若い細胞や老化した細胞が混在した集団であり、性質が様々で、分裂を重ねると共に老化していくため、一定品質で細胞を維持することが出来ない。そのため自動化・機械化に必要な要素である品質基準の設定が難しいという異なる課題も存在する。
 それらの異なる細胞集団から目的の性質を持った細胞のみを分離しようとする試みも議論され始めている。iPS細胞の品質を評価する方法は、miRNA解析、表面マーカーの検出、細胞形態の画像解析、エピゲノム解析が知られており、MSCにもそれら技術の利用が提案されているが、iPS細胞と異なりMSCは無限増殖せず、クローニングも出来ないことから、実用化には至っていない。
 また、分裂を重ねることなく継代数の浅いMSCを分離する場合は、MSCが含まれる組織が大量に必要となり、必要な細胞数を確保することも難しく、製造コストが高騰する要因となっている。そのため大量に細胞数を必要とする治療は困難であり、自家細胞での治療が中心で、他家細胞による安価な再生医療の実施が困難な状況にある。
特許第3953399号公報 WO2017/078176号 特開2017-221219号公報 特許第5763340号公報
Fang-Ying Meng, et al., Reversible immortalizationof human hepatocytes mediated by retroviral transfer and site-specific recombination. World Journal of Gastroenterology, 01 Sep 2014, 20(36):13119-13126
 本発明は、不死化遺伝子を導入した細胞の染色体を傷つけることなく、長期間にわたって該細胞を増殖させることができ、かつ、不死化遺伝子の除去が可能である、可逆的不死化細胞の製造方法を提供すること、およびクローニングが可能で品質が安定した可逆的不死化細胞を大量に得る方法を提供することを課題とする。
 本発明者らは、上記課題を解決するため鋭意研究を行った結果、Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子よりなる群から選択される1種又は2種以上の不死化遺伝子を、体細胞の不死化にはこれまで使用されていなかった染色体非組み込み型RNAベクターであるセンダイウイルスベクターに搭載して間葉系幹細胞(MSC)に導入したところ、驚くべきことに、80日以上細胞の分裂停止が起こらず、細胞の無限増殖(不死化)が可能であること、また遺伝子導入後早期の段階で細胞増殖の速度が上昇することを見出した。また、作製された不死化細胞は、染色体異常がなく、多分化能を有し、温度制御により容易に不死化遺伝子が除去できることを確認した。さらに、得られた不死化細胞集団から不死化細胞のクローン化に成功し、クローン化された不死化細胞もまた、10クローン中8クローンは正常核型を示し、多分化能を有すること、また、若い細胞から分裂の停止した老化細胞までのどの段階の細胞でも不死化誘導が可能で、不死化直後にクローニングが可能であることを確認した。本発明はかかる知見により完成されたものである。
 すなわち、本発明は、以下の発明を包含する。
[1]以下の工程を含む、可逆的不死化細胞の製造方法。
(1)不死化遺伝子を搭載する染色体非組み込み型RNAウイルスベクターを哺乳類の細胞に導入し、該細胞で不死化遺伝子を発現させる工程、及び
(2)工程(1)で得られた細胞を培養し、増殖させる工程
[2]前記不死化遺伝子が、Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子よりなる群から選択される1種又は2種以上の不死化遺伝子である、[1]に記載の方法。
[3]前記不死化遺伝子が以下の(a)~(d)のいずれかである、[1]又は[2]に記載の方法。
(a) Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子の組み合わせ
(b) Bmi-1遺伝子とTERT遺伝子の組み合わせ
(c) TERT遺伝子とSV40T遺伝子の組み合わせ
(d) TERT遺伝子
[4]前記細胞が、体細胞である、[1]~[3]のいずれかに記載の方法。
[5]前記体細胞が、体性幹細胞である、[4]に記載の方法。
[6]前記体性幹細胞が、間葉系幹細胞である、[5]に記載の方法。
[7]前記染色体非組み込み型RNAウイルスベクターが、マイナス鎖RNAウイルスベクターである、[1]~[6]のいずれかに記載の方法。
[8]前記マイナス鎖RNAウイルスベクターが、パラミクソウイルスベクターである、[7]に記載の方法。
[9]前記パラミクソウイルスベクターが、センダイウイルスベクターである、[8]に記載の方法。
[10]前記センダイウイルスベクターが、温度感受性センダイウイルスベクターである、[9]に記載の方法。
[11]前記染色体非組み込み型RNAウイルスベクターがセンダイウイルスベクターであり、前記工程(2)の培養後、該センダイウイルスベクターを除去する工程をさらに含む、[1]に記載の方法。
[12]前記センダイウイルスベクターの除去が、培養温度を35℃から37℃に変更することにより行われる、[11]に記載の方法。
[13]前記工程(2)の培養後、不死化細胞をクローニングする工程をさらに含む、[1]~[12]のいずれかに記載の方法。
[14][1]~[13]のいずれかに記載の方法により得られる不死化細胞。
[15]Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子よりなる群から選択される1種又は2種以上の不死化遺伝子を搭載するセンダイウイルスベクターを除去可能な状態で含む、不死化細胞。
[16][14]又は[15]に記載の不死化細胞を含む再生医療用製品。
[17]Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子よりなる群から選択される1種又は2種以上の不死化遺伝子を搭載する、温度感受性センダイウイルスベクター。
[18][17]に記載の温度感受性センダイウイルスベクターを含む、可逆的不死化細胞作製用キット。
 本願は、2020年11月6日に出願された日本国特許出願2020-186146号の優先権を主張するものであり、該特許出願の明細書に記載される内容を包含する。
 本発明によれば、染色体非組み込み型RNAベクターを用いて不死化遺伝子を細胞に導入することにより、大量培養が難しい細胞、例えば、再生医療に使用される間葉系幹細胞(MSC)をその染色体を傷つけることなく、不死化(無限増殖)させることが可能である。この不死化は、不死化させる細胞の分裂回数および不死化の際の細胞分裂回数を問わず可能である。また、染色体非組み込み型RNAベクターとして、温度感受性センダイウイルスベクター(SeVベクター)を使用することにより、煩雑な除去操作をすることなく培養温度の変更のみにより容易に当該ベクターを細胞から除去できる。よって、安全性に優れた細胞を、大量に供給することができる。また、本発明で得られた不死化細胞は、染色体異常がなく、遺伝子導入前と同様に多分化能を有しているため再生医療に使用することができる。また、不死化していない細胞は寿命や性質が異なる細胞集団のため、クローニングが困難であるが、本発明で作製された不死化細胞はクローニングが容易であり、品質の高い細胞を安定に取得できるため、細胞製造の機械化により品質管理が容易になり、産業化の課題となっている製造コストを大幅に下げることが可能となり、細胞医療や再生医療の発展に貢献できる。
不死化因子遺伝子を搭載したSeVベクターのゲノム構造を示す[A. SeV(18+)Bmi1(HNL)OFP/TS15dΔF、B. SeV(PM)hTERT(HNL)EGFP/TS15ΔF、C. SeV(18+)SV40T/TS15ΔF、D. SeV(HNL)E6-E7,BFP/TS15ΔF]。 Bmi-1単独感染細胞(MOI:1,5,20)の透過光画像及び蛍光(OFP)画像、hTERT単独感染細胞(MOI:1,5,20)の透過光画像及び蛍光(GFP)画像を示す。 2因子(Bmi-1/hTERT)共感染細胞(MOI:1,5,20)の透過光画像及び蛍光(OFP,GFP)画像を示す。 3因子(Bmi-1/hTERT/SV40T)共感染細胞(MOI:1,5,20)の透過光画像及び蛍光(OFP,GFP)画像を示す。 不死化因子(No.1~No.16)導入59日後の細胞の形態及び細胞の状態判定を示す。 不死化因子(No.1、No.2、No.4、No.12、No.16)導入細胞の細胞増殖曲線を示す(上矢印:形態(透過光)画像及び蛍光画像ポイント(図5)、*:テロメア解析ポイント(図11A、B)、▽:染色体解析ポイント)。 3因子(Bmi-1/hTERT/SV40T)導入細胞の細胞増殖曲線を示す(NC:不死化遺伝子非導入、上矢印:形態(透過光)画像及び蛍光画像ポイント(図8)、両矢印:形態(透過光)画像ポイント(図9)、*:テロメア解析ポイント(図11B)、▽:染色体解析ポイント(図10))。 3因子(Bmi-1/hTERT/SV40T)導入細胞の透過光画像及び蛍光(OFP,GFP)画像を示す。 3因子(Bmi-1/hTERT/SV40T)導入細胞の形態(透過光)画像を示す(35℃維持、35℃から37℃に温度変化)。 3因子(Bmi-1/hTERT/SV40T)導入細胞の継代培養90日後における染色体解析結果(正常核型)を示す(図7の染色体解析ポイント(▽))。 不死化因子(No.1、No.2、No.4、No.12、No.16)導入細胞の長期培養サンプルにおけるテロメア定量解析結果を示す(A. 不死化因子の組み合わせのテロメアへの影響(Day0, Day40:図6のテロメア解析ポイント(*))、B. 3因子(Bmi-1/hTERT/SV40T)導入後、因子未除去/除去でのテロメア量の変化(Day0, Day40:図6のテロメア解析ポイント(*)、Day85, Day98:図7のテロメア解析ポイント(*))。 培養初期MSC及び不死化MSCから分化させた脂肪細胞の写真を示す。 培養初期MSC及び不死化MSCから分化させた骨芽細胞の写真を示す。 培養初期MSC及び不死化MSCから分化させた神経細胞の写真を示す。 培養初期MSC及び不死化MSCから分化させた軟骨細胞の写真を示す。 不死化細胞集団(不死化遺伝子導入2週間後)のクローニング試験結果1を示す(ウェル内の数字:形成されたクローン数)。 不死化細胞集団(不死化遺伝子導入4カ月後)のクローニング試験結果2を示す(ウェル内の数字:形成されたクローン数)。 クローン化不死化細胞(クローンA10)の細胞増殖曲線を示す(▽:染色体解析ポイント)。 クローン化不死化細胞(クローンA10)の染色体解析結果を示す(Day80:図18の染色体解析ポイント(▽))。 クローン化不死化細胞の分化能(脂肪細胞分化、神経細胞分化、骨芽細胞分化)を示す。
シングルセルクローニング試験に使用したMSCの凍結保存ポイント(初期MSC:Day9、中期MSC:Day24、後期MSC:Day49)及びSeVベクター感染による不死化誘導ポイント(初期MSC:Day21、中期MSC:Day36、後期MSC:Day61)を示す。 SeVベクター感染細胞(初期MSC、中期MSC、後期MSC)及びSeVベクター非感染MSC(コントロール)のシングルセルクローニング前(96ウェルプレート撒種直前)の写真を示す。 SeVベクター非感染MSC(コントロール)及びSeVベクター感染細胞(初期MSC)の細胞集団のシングルセルクローニング試験結果を示す(ウェル内の数字:形成されたクローン数、培養日数:2週間)。 SeVベクター感染細胞(中期MSC、後期MSC)の細胞集団のシングルセルクローニング試験結果を示す(ウェル内の数字:形成されたクローン数、培養日数:2週間)。 細胞分裂が停止した細胞(Day90)に対するSeVベクター感染試験結果を示す(SeVベクター感染直前の細胞、SeVベクター非感染細胞(コントロール細胞)、SeVベクター感染細胞(感染日から2週間後)の各写真)。 SeVベクター感染により、再増殖を開始した分裂停止細胞(Day90)のシングルセルクローニングの試験結果を示す(ウェル内の数字:形成されたクローン数、培養日数:2週間)。 無血清培養における脂肪組織由来ヒトMSC(非感染細胞株、SeVベクター感染細胞株)の細胞増殖曲線を示す。 無血清培養における骨髄由来ヒトMSC(非感染細胞株、SeVベクター感染細胞株)の細胞増殖曲線を示す。 無血清培養した脂肪組織由来ヒトMSC(hMSC-AT)のSeVベクター感染細胞株及び骨髄由来ヒトMSC(hMSC-BM)のSeVベクター感染細胞株の透過光画像及び蛍光(OFP,GFP)画像を示す(hMSC-AT:感染日から16日目、58日目、hMSC-BM:感染日から24日目、50日目)。 ラットMSC(非感染細胞株、SeVベクター感染細胞株#1、#2)の細胞増殖曲線を示す。 不死化ラットMSCのSeVベクター感染細胞株の透過光画像及び蛍光(OFP,GFP)画像を示す(感染日から2日目、9日目、58日目)。 HFL1(非感染細胞株#1、#2、35℃培養のSeVベクター感染細胞株#1、#2、37℃培養のSeVベクター感染細胞株#1、#2)の細胞増殖曲線を示す。 不死化HFL1[35℃培養(感染日から10日、34、255日)、35℃培養+37℃培養(感染日から34日+221日)]の透過光画像及び蛍光(OFP,GFP)画像を示す。 HUVEC(非感染細胞株#1、35℃培養のSeVベクター感染細胞株#1、#2、37℃培養のSeVベクター感染細胞株#1、#2)の細胞増殖曲線を示す。 不死化HUVEC[35℃培養(感染日から7日、36、72日)、35℃培養+37℃培養(感染日から35日+37日)]の透過光画像及び蛍光(OFP,GFP)画像を示す。 複数増殖因子挿入型ヒト人工染色体ベクター導入による不死化MSCのFISH解析の結果を示す写真である(右下の枠内:矢印の細胞のDAPI染色画像)。 不死化MSCの移植による腸炎モデルの治癒効果試験結果を示す。
1.可逆的不死化細胞の製造方法
 本発明は、可逆的不死化細胞の製造方法であって、該方法は、(1)不死化遺伝子を搭載する染色体非組み込み型RNAウイルスベクターを哺乳類の細胞に導入し、該細胞で不死化遺伝子を発現させる工程、及び(2)工程(1)で得られた細胞を培養し、増殖させる工程を含む。
(細胞)
 本発明において、「細胞」とは、生殖系列細胞(卵子及び精子、卵母細胞、ES細胞など)及び分化全能性細胞(iPS細胞)以外の全ての体細胞をいう。また、「体細胞」は、初代培養細胞、継代細胞、及び株化細胞のいずれであってもよい。さらに、体細胞は、天然由来であっても、iPS細胞等より分化させて人工的に作製されたものであってもよい。体細胞としては、具体的には、組織を形成する細胞(脂肪細胞、線維芽細胞、神経細胞、皮膚細胞、血液細胞、筋肉細胞、骨芽細胞、軟骨細胞、肝細胞、膵細胞、腎細胞、心筋細胞、脳細胞、肺細胞、脾細胞、副腎細胞、歯肉細胞、歯根膜細胞)などの分化した細胞、又はそれらの前駆細胞等、免疫系の細胞(B細胞、T細胞、単球系の細胞等)、体性幹細胞[間葉系幹細胞(脂肪由来幹細胞、骨髄由来幹細胞、臍帯血由来幹細胞、胎盤由来幹細胞等)、造血幹細胞、神経幹細胞、表皮幹細胞、腸管上皮幹細胞、歯髄幹細胞、歯根膜幹細胞等]などが挙げられる。細胞の由来は哺乳動物であれば特に限定はされず、例えば、ヒト、マウス、ラット、モルモット、ハムスター、ウサギ、イヌ、ネコ、ブタ、ウシ、ウマ等が挙げられる。
(可逆的不死化細胞)
 「不死化細胞」とは、初代培養細胞や通常の培養条件で培養された細胞とは異なり、細胞分裂を繰り返しても増殖が停止しない細胞、すなわち、無限増殖能を有する細胞をいう。本発明における「不死化細胞」とは、所定の不死化遺伝子の導入によって無限増殖が可能となった細胞で、かつ繰り返し継代して培養しても、その無限増殖能が低下しない細胞をいう。本発明に係る「不死化細胞」は、細胞の由来あるいは培養条件により増殖速度や増殖期間は異なるが、継代培養の結果、同一の培養条件下において、無処理の細胞が増殖低下又は停止する時期以降も、20日以上、好ましくは60日以上、より好ましくは80日以上指数増殖を続けることが可能である。また、本発明の不死化細胞は、上記のような無限増殖が可能な細胞集団、及び当該細胞集団よりクローニングされた不死化細胞株のいずれをも包含する。また、「可逆的不死化」とは、不死化遺伝子を細胞に導入して、当該細胞を無限に増殖可能な状態にした後、当該不死化遺伝子を除去することによって、細胞増殖を停止又は減弱させることをいう。
 「不死化」とは、初期細胞の細胞分裂数の限界や細胞老化を解除し、連続的な細胞分裂能及び増殖能を付与することをいう。具体的には、標準的な細胞培養条件下において、通常5継代以上、好ましくは7継代以上、8継代以上、9継代以上、10継代以上、12継代以上、15継代以上、20継代以上の継代が可能となった状態をいう。コンフルエントになった継代回数0の細胞を、当業者に公知の手法で継代操作することにより、増幅培養することが可能である。1度の継代操作により得られた細胞は、「継代回数1(又は第2世代)」の細胞といい、継代操作数に対応して「継代回数2、3、4・・・n(n(整数)は継代回数)(第n+1世代)」と表現することができる。また、各継代操作の間に、細胞を凍結処理する工程が含まれていてもよい。
(不死化遺伝子)
 本発明の不死化細胞は、細胞に所定の不死化遺伝子を染色体非組み込み型RNAウイルスベクターを用いて導入することによって作製される。ここで「不死化遺伝子」とは、細胞を不死化して無限増殖能を獲得させ、かつ細胞死を誘導しない遺伝子をいう。また、不死化遺伝子は、外因性遺伝子であり、細胞外から新たに導入される不死化遺伝子を意味する。さらに、不死化遺伝子は、ヒト以外に由来する不死化遺伝子であってもよく、標的細胞内で発現可能な形態に改変された不死化遺伝子であってもよい。本発明においては、不死化遺伝子として、Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子よりなる群から選択される1種又は2種以上の遺伝子を用いることができるが、2種の遺伝子の組み合わせが好ましく、3種の遺伝子の組み合わせがより好ましい。1種の遺伝子を用いる場合はTERT遺伝子が好ましく、2種以上の遺伝子を組み合わせる場合の好ましい組み合わせの例としては、Bmi-1遺伝子とTERT遺伝子の組み合わせ、TERT遺伝子とSV40T遺伝子の組み合わせが挙げられる。
 本発明において、「遺伝子」には、特に言及しない限り、タンパク質の一次構造を規定している構造遺伝子だけでなく、プロモーター、オペレーター等の制御機能を有する核酸上の領域も包含される。従って、本発明において「遺伝子」とは、特に言及しない限り、調節領域、コード領域、エクソン、及びイントロンを区別することなく示すものとする。
 「Bmi-1 (B lymphoma Mo-MLV insertion region 1 homolog)遺伝子」は、二つの核局在シグナルを有し、細胞質又は核に局在するポリコーム抑制複合体1(polycomb repressive complex 1:PRC1)の一つとして機能するタンパク質をコードする遺伝子である。Bmi-1は、PRC1の一つとして、クロマチンリモデリングやヒストン修飾の制御によりHox遺伝子を含めた様々な遺伝子の発現制御に関わっている。Bmi-1は、細胞周期に関わるp16やp19Arfの発現を抑制することによって細胞増殖を制御する作用を有すること、造血幹細胞や神経幹細胞の細胞分裂に関わることで自己複製の維持に重要な役割を果たすことが知られている。
 「TERT(telomerase reverse transcriptase)遺伝子」は、テロメア逆転写酵素(Telomerase Reverse Transcriptase:TERT)をコードする遺伝子である。テロメア逆転写酵素(TERT)は、テロメアRNA構成要素(Telomerase RNA: TR or Telomerase RNA component: TERC)とその他の制御サブユニットから、真核生物の染色体末端(テロメア)の特異的反復配列を伸長させる酵素であるテロメラーゼを構成する。細胞にはテロメア長の監視機構が存在し、細胞老化はテロメアの短縮によって引き起こされるところ、TERTはテロメア長を維持する役割を有することが知られている。
 「SV40T (simian virus 40 large T antigen)遺伝子」は、シミアンウイルス40ラージT抗原をコードする遺伝子である。SV40(simian vacuolating virus 40)のゲノムは感染後すぐに発現するearly regionと、感染後ウイルスゲノムの複製時に発現するlate region、及び転写制御や複製起点などを含むregulatory regionに分かれる。early regionは、ウイルスゲノム複製開始やがん抑制遺伝子産物であるp53やpRBの不活性化にかかわるlarge T抗原とタンパク質脱リン酸化酵素PP2Aに結合して阻害するsmall t抗原をコードする。
 本発明において用いるBmi-1遺伝子の具体例としては、マウスBMI1遺伝子(配列番号1)、TERT遺伝子の具体例としては、ヒトTERT遺伝子(配列番号2)、SV40T遺伝子の具体例としては、SV40ラージT抗原遺伝子(配列番号3)が挙げられる。Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子はまた、これらの転写変異体、スプライシング変異体及びそれらのオルソログであってもよい。
 上記のBmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子は、これらと同等な機能及び活性を有する限り、配列番号1、2、及び3の各塩基配列に対して80%以上、好ましくは90%以上、より好ましくは95%以上の配列同一性を有する塩基配列からなる遺伝子や、配列番号1、2、及び3の各塩基配列において数個(例えば1~30個、好ましくは1~20、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1から3個)の塩基が置換、挿入、付加及び/又は欠失した遺伝子であってもよく、そのようなホモログ遺伝子も、本発明にいう不死化遺伝子に包含されるものとする。また、Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子は、同等な機能及び活性を有する限り、当該遺伝子の産物が他のタンパク質やペプチドとの融合タンパク質として発現されるように人為的に修飾を加えた遺伝子でも良い。
(染色体非組み込み型RNAウイルスベクター)
 本発明においては、上記不死化遺伝子を細胞に導入し、発現させるためのベクターとして「染色体非組み込み型RNAウイルスベクター」を用いる。本発明において、ウイルスベクターとは、当該ウイルスに由来するゲノム核酸を有し、該核酸に導入遺伝子を組み込むことにより、該遺伝子を発現させることができるベクターを意味する。また、「染色体非組み込み型RNAウイルスベクター」は、ウイルスに由来し、遺伝子を標的細胞に導入することができるウイルスベクターであって、導入された遺伝子が宿主の染色体(核由来染色体)に組み込まれる危険性のない運搬体のことをいう。
 本発明において用いる染色体非組み込み型RNAウイルスベクターとしては、マイナス鎖RNAウイルスベクターが挙げられる。「マイナス鎖RNAウイルスベクター」とは、マイナス鎖(ウイルス蛋白質をコードするセンス鎖に相補的なアンチセンス鎖)のRNAをゲノムとして含むウイルスからなるベクターをいい、マイナス鎖RNAはネガティブ鎖RNAとも呼ばれる。本発明において用いられるマイナス鎖RNAウイルスとしては、特に一本鎖マイナス鎖RNAウイルス(非分節型(non-segmented)マイナス鎖RNAウイルスとも言う)が好ましい。「一本鎖ネガティブ鎖RNAウイルス」とは、一本鎖ネガティブ鎖(マイナス鎖)RNAをゲノムに有するウイルスをいい、例えば、パラミクソウイルス科(Paramyxoviridae; Paramyxovirus, Morbillivirus, Rubulavirus, 及びPneumovirus属等を含む)、ラブドウイルス科(Rhabdoviridae; Vesiculovirus, Lyssavirus, 及びEphemerovirus属等を含む)、フィロウイルス科(Filoviridae)などの科に属するウイルスが含まれる。
 本発明において用いることのできるマイナス鎖RNAウイルスの例としては、パラミクソウイルス科(Paramyxoviridae)ウイルスのセンダイウイルス(Sendai virus)、ニューカッスル病ウイルス(Newcastle disease virus)、おたふくかぜウイルス(Mumps virus)、麻疹ウイルス(Measles virus)、RSウイルス(Respiratory syncytial virus)、牛疫ウイルス(Rinderpest virus)、ジステンパーウイルス(Distemper virus)、サルパラインフルエンザウイルス(SV5)、ヒトパラインフルエンザウイルス1,2,3型、オルトミクソウイルス科(Orthomyxoviridae)のインフルエンザウイルス(Influenza virus)、ラブドウイルス科(Rhabdoviridae)の水疱性口内炎ウイルス(Vesicular stomatitis virus)、狂犬病ウイルス(Rabies virus)等が挙げられるが、センダイウイルス(Sendai virus)が好ましい。
(センダイウイルスベクター:SeVベクター)
 本発明の好ましい態様において、染色体非組み込み型RNAベクターとして、センダイウイルス(Sendai virus, SeV)ベクターを用いる。前記Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子の各不死化因子遺伝子は別々にSeVベクターに挿入してもよく、また単一のSeVベクターに一緒に挿入してもよい。
 センダイウイルス (Sendai virus) は、パラミクソウイルス科レスピロウイルス属のウイルスの一種であり、1本のマイナス鎖(ウイルスタンパク質をコードするセンス鎖に対するアンチセンス鎖)のRNAをゲノムとして含んでいる。
 SeVベクターは、(i)ヒトを含む様々な哺乳動物細胞への遺伝子導入・発現効率が極めて高いこと、(ii)染色体非組み込み型ウイルスベクターであって、ベクターは細胞質中で発現されるので、導入遺伝子が宿主の染色体に組み込まれることがなく、染色体の構造変化の危険性がないこと、(iii)ヒトの病原ウイルスではないこと、(iv)ベクターへの挿入位置の変更によって遺伝子発現量の調整や複数遺伝子の同時発現が可能であること、(v)目的達成後に導入細胞からベクターを除去することが可能であること、等の特徴を有する。
 センダイウイルスのゲノムは、3’端から5’端に向けて順に、NP(ヌクレオキャプシド)遺伝子、P(ホスホ)遺伝子、M(マトリックス)遺伝子、F(フュージョン)遺伝子、HN(赤血球凝集素/ノイラミニダーゼ)遺伝子、及びL(ラージ)遺伝子が含まれている。このうち、センダイウイルスは、NP遺伝子、P遺伝子、及びL遺伝子があればベクターとして十分機能でき、細胞中でゲノムを複製し、搭載されている遺伝子を発現させることができる。なお、センダイウイルスは、マイナス鎖RNAをゲノムに持つことから、通常とは逆で、ゲノムの3’側が上流にあたり、5’側が下流にあたる。
 本発明においてSeVベクターは、天然株、野生株、変異株、市販品のいずれも使用可能である。当該ウイルスは、目的とする機能を達成できる限り、天然から単離されたウイルスと同様の構造を持つウイルスであっても、遺伝子組み換えにより人為的に改変したウイルスであってもよい。例えば、野生型ウイルスが持ついずれかの遺伝子に変異や欠損があるものであってよい。具体的には、F遺伝子をゲノムから欠失し、遺伝子導入細胞からの感染性粒子の形成のない非伝搬型のベクター(ΔF)、また、F遺伝子を欠失し、M及び/又はHN 遺伝子をさらに欠失するか、M及び/又はHN遺伝子に変異(例えば温度感受性変異)をさらに有するベクターは、本発明において好適に用いられる。また、例えばF遺伝子を欠失し、M又はHN遺伝子をさらに欠失し、残るM及び/又はHN遺伝子に変異(例えば温度感受性変異)をさらに有するベクターも、本発明において好適に用いられる(特許第5763340号公報等参照)。
 また、本発明の方法で使用するSeVベクターは、温度感受性であることが好ましい。「温度感受性」とは、低温(例えば30~36℃)に比べ、通常の細胞培養温度(例えば37~38℃)において有意に活性が低下することをいう。例えばセンダイウイルスのTS7(Lタンパク質のY942H/L1361C/L1558I変異)、TS12(Pタンパク質のD433A/R434A/K437A変異、TS13(Pタンパク質のD433A/R434A/K437A変異及びLタンパク質のL1558I変異、TS14(Pタンパク質のD433A/R434A/K437A変異及びLタンパク質のL1361C)、TS15(Pタンパク質のD433A/R434A/K437A変異及びLタンパク質のL1361C/L1558I)などの変異は、温度感受性変異であり、本発明で好適に利用することができる。これらの変異は、前記のF遺伝子欠失型SeVベクターにさらに導入することが好ましい。これらのSeVベクターについては、特許第5763340号公報、WO2015/046229号公報等を参照することができる。
 本発明におけるSeVベクターには、感染性ウイルス粒子の他、ウイルスコア、ウイルスゲノムとウイルスタンパク質との複合体、又は非感染性ウイルス粒子などからなる複合体であって、細胞に導入することにより搭載する遺伝子を発現する能力を持つ複合体が含まれる。例えば、センダイウイルスゲノムとそれに結合するセンダイウイルスタンパク質(NP、P、及びLタンパク質)からなるリボヌクレオタンパク質(ウイルスのコア部分)は、細胞に導入することにより該細胞内で導入遺伝子を発現することができる。細胞への導入は、適宜トランスフェクション試薬等を用いて行えばよい。従って、このようなリボヌクレオタンパク質(RNP)も本発明におけるSeVベクターに包含されるものとする。
(不死化遺伝子搭載SeVベクターの構築)
 不死化遺伝子(Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子)が組み込まれる位置は特に制限されないが、各不死化遺伝子を別個の複数のベクターに挿入する場合、Bmi-1遺伝子は、NP遺伝子の上流、TERT遺伝子は、P遺伝子とM遺伝子の間、SV40T遺伝子は、NP遺伝子の上流に挿入することが好ましい。また2つ以上(Bmi-1とTERT、TERTとSV40T、又はBmi-1とTERTとSV40T)の遺伝子が単一のベクターに挿入されていてもよい。
 また、上記不死化遺伝子搭載SeVベクターは、キット化してもよく、当該キットには、例えば、細胞培養のための培地や容器、キットの使用方法を記載した指示書等を含めることができる。
(不死化遺伝子の細胞への導入)
 上記のようにして得られる不死化遺伝子を搭載したSeVベクターは、該ベクター(センダイウイルス粒子)を体細胞の培地に添加して該細胞にウイルスを感染させることにより、該細胞内に導入される。ベクターの用量は細胞の種類や細胞密度、培地の量によって異なるため、感染効率が100%に近いMOIを、使用する細胞毎に予め調査して決定すればよい。
 あるいは、SeVベクターがRNPの形態である場合には、例えばエレクトロポレーション法、リポフェクション法、マイクロインジェクション法などの手法によって細胞内に導入することができる。
(不死化遺伝子導入細胞の培養)
 本発明において不死化遺伝子を導入した細胞を培養する方法は、通常の哺乳動物の体細胞の培養の方法及び条件に従って行うことができる。培養に用いる培地は特に限定されず、細胞の維持培養又は拡大培養のために一般的に使用され、ウイルス感染に適した培地を用いればよく、市販の培地、自製した培地のいずれであってもよい。例えば、細胞の生存及び増殖に必要な成分(無機塩、炭水化物、ホルモン、必須アミノ酸、非必須アミノ酸、ビタミン、脂肪酸)を含む基本培地、具体的には、Dulbecco's Modified Eagle's Medium (D-MEM)培地、Dulbecco's Modified Eagle's Medium:Nutient Mixture F-12(D-MEM/F-12) 培地、Glasgow MEM(G-MEM)培地、Basal Medium Eagle (BME)培地、Minimum Essential Medium(MEM)培地、Eagle's minimal essential medium(EMEM)培地、Iscove's Modified Dulbecco's Medium (IMDM)培地、RPMI 1640培地、Medium 199培地、αMEM培地、ハム培地、Fischer培地、及びこれらの混合培地などが挙げられる。また、培地には、必要に応じて、増殖因子(FGF、EGF等)、インターロイキン類、インスリン、トランスフェリン、ヘパリン、ヘパラン硫酸、コラーゲン、フィブロネクチン、プロゲステロン、セレナイト、B27-サプリメント、N2-サプリメント、抗生物質(ペニシリン、ストレプトマイシン等)等を含有してもよい。また、培地は、血清含有培地であっても無血清培地であってもよい。異種動物由来成分の混入防止の観点からは血清を含有しないか、培養する細胞と同種動物由来の血清を用いることが好ましい。また、アルブミン等の血清代替物を用いてもよい。
 培養方法は、限定するものではないが、非接着性条件下での三次元培養、例えば浮遊培養(例えば、分散培養、凝集浮遊培養など)、又は接着性条件下での二次元培養、例えば平板培養、あるいは、三次元培養と二次元培養とを組合せた培養が挙げられる。細胞の培養に用いる培養器は、細胞の培養が可能なものであれば特に限定されないが、例えば、フラスコ、シャーレ、ディッシュ、プレート、チャンバースライド、チューブ、トレイ、培養バッグ、ローラーボトルなどが挙げられる。培養器は、細胞非接着性であっても接着性であってもよく、目的に応じて適宜選択される。細胞接着性の培養器は、細胞との接着性を向上させる目的で、細胞外マトリックス等による細胞支持用基質などで処理したものを用いてもよい。細胞支持用基質としては、例えば、コラーゲン、ゼラチン、ポリ-L-リジン、ポリ-D-リジン、ラミニン、フィブロネクチンなどが挙げられる。
 培養温度は、30℃~36℃、好ましくは32℃~35℃、より好ましくは33~35℃である。培養は、CO2含有空気の雰囲気下、例えばCO2濃度2%~5%にて行う。また、不死化遺伝子を除去するための培養温度としては、37℃~38℃、好ましくは37℃~37.5℃である。
2.分化誘導
 本発明によれば、上記のようにして作製した不死化細胞を分化誘導培地で培養することにより特定の組織細胞に分化誘導することができる。例えば、不死化細胞が間葉系幹細胞である場合、脂肪細胞、骨芽細胞、神経細胞、軟骨細胞等に分化させることできる。
 本発明に係る不死化細胞を目的の細胞に分化誘導するための培地の組成、分化誘導因子、培養方法、継代方法等は、周知・慣用技術から適宜設定できる。
 分化誘導培地は、分化誘導の目的とする細胞の種類に応じて適宜選択することができる。種々の組織への分化誘導培地(分化誘導の目的とする細胞に応じた分化誘導又は促進因子を少なくとも1種添加した培地)が市販されており、これらの市販培地を用いてもよい。例えば、本発明に係る不死化細胞を脂肪細胞に分化誘導するための培地には、市販の脂肪細胞誘導培地又は市販の動物細胞の培地にインシュリン、デキサメサゾン、インドメタシン、3-イソブチル-1-メチルキサンチン、トログリタゾン、ビオチン等を含めた培地が使用できる。市販の培地としては、例えば、Mesenchymal Stem Cell Adipogenic Differentiation Medium 2(PromoCell社製)、Human Mesenchymal Stem Cell Adipogenic Differentiation Medium BulletKit8 (Lonza社製)等が挙げられる。本発明に係る前記細胞を骨芽細胞に分化誘導するための培地には、市販の骨芽細胞誘導培地又は市販の動物細胞の培地にデキサメサゾン、アスコルビン酸、β-グリセロリン酸、ハイドロコルチゾン、BMP4、BMP2等を含めた培地が使用できる。市販の培地としては、例えば、Mesenchymal Stem Cell Osteogenic Differentiation Medium(PromoCell社製)、Human Mesenchymal Stem Cell Osteogenic Differentiation Medium BulletKit(Lonza社製)等が挙げられる。本発明に係る不死化細胞を神経細胞に分化誘導するための培地には、市販の神経細胞培養培地又は神経分化培地(例えば、Mesenchymal Stem Cell Neurogenic Differentiation Medium(PromoCell社製)等)が使用できる。また、神経細胞培養培地又は神経分化誘導培地は、神経細胞誘導因子(例えば、脳由来神経成長因子(BDNF)、線維芽細胞成長因子(FGF))を含むことが好ましい。また、本発明に係る不死化細胞を軟骨細胞に分化誘導するための培地には、市販の軟骨細胞誘導培地又は市販の動物細胞の培地にデキサメサゾン、アスコルビン酸、TGF-β3を含めた培地が使用できる。市販の培地としては、例えば、Mesenchymal Stem Cell Chondrogenic Differentiation Medium(PromoCell社製)、Human Mesenchymal Stem Cell Chondrogenic Differentiation Medium BulletKit(Lonza社製)等が挙げられる。
 分化誘導のための培養条件は、通常の幹細胞を培養する際の培養条件と同様である。分化誘導のための培養期間も特に限定されないが、一般的には5日~20日であり、好ましくは7日~18日である。
 幹細胞が目的の細胞へ分化誘導したか否かは、各分化細胞に特異的なマーカーの発現を調べることにより確認できる。例えば、脂肪細胞への分化はオイルレッド0染色、骨芽細胞への分化はアルカリフォスファターゼ染色、神経細胞への分化は、NeuroFluor NeuO染色、軟骨細胞への分化はアルシアンブルー染色により確認できる。
 本発明で得られる不死化細胞、不死化(幹)細胞より分化誘導した組織細胞は、例えば、疾患又は損傷部位に細胞移植すること等により使用でき、再生医療用製品として提供できる。再生医療用製品としては、例えば、培養皮膚、培養軟骨、培養角膜上皮、各種細胞シート(例えば、表皮細胞シート、繊維芽細胞シート、角膜内皮細胞シート、心筋細胞シート、骨芽細胞シート、筋芽細胞シート、神経細胞シート、軟骨細胞シート、肝細胞シート、膵島細胞シート、歯根膜細胞シート等)などが挙げられる。
 以下に本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 以降の実施例において、ヒト間葉系幹細胞(MSC:mesenchymal stem cell)を培養する血清含有培地は、D-MEM(Low Gulucose), 20%FBS, 0.01mol/L Hepes, Penicillin100units/ml, Streptomycin100μg/ml, bFGF 20ng/mlの組成で作製した。bFGFは非常に半減期が短いので、安定性に優れたGibco Heat Stable Recombinant Human bFGF(Thermo Fisher Scientific)を使用した。MSCは上記培地にて、5%CO2インキュベーター内で培養を行った。なお、実験に使用したヒトのMSCは、骨髄由来、脂肪組織由来、臍帯血由来、及び臍帯マトリックス由来のいずれかである。
(実施例1)不死化遺伝子搭載SeVベクターの作製及び感染条件の検討
(1)不死化遺伝子搭載SeVベクターの作製
 不死化因子として汎用されているBmi-1(B lymphoma Mo-MLV insertion region 1 homolog)、hTERT(human telomerase reverse transcriptase)、SV40T(simian virus 40 large T antigen)、E6/E7(human papillomavirus 16 E6 protein and E7 protein)を選択し、染色体非組み込み型RNAウイルスベクターのSeVベクターに、Bmi-1遺伝子(配列番号1)、hTERT遺伝子(配列番号2)、SV40T遺伝子(配列番号3)、E6/E7遺伝子(配列番号4)をそれぞれ組み込んだ。SeVベクターへの不死化遺伝子搭載とベクターの製造は、株式会社IDファーマ(本社:つくば市)に依頼した。また4種類のベクターのうち3種類のベクターについては、蛍光色素遺伝子のORF(赤色)、GFP(緑色)、BFP(青色)も同時に搭載し、遺伝子発現(ベクターゲノム)の有無が顕微鏡で容易に確認出来るようにした。図1に各ベクターの構造を示す。SeVベクターへ搭載する不死化遺伝子の位置については、高発現のほうが結果的に長期発現し、SeVベクターにおいてはベクターゲノムの上流に搭載したほうが高発現になるため、Bmi-1,SV40Tはベクターゲノムの最も上流に搭載した。hTERTとE6/E7は高発現に起因すると思われるベクター生産効率低下のため搭載位置を下流に変更した。
 SeVベクターは、培養温度を35℃から37℃に変化させることにより、細胞内からウイルスベクターが消失するよう改良されたTS15ΔFタイプのベクターを用いた(Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S, Nishikawa S.Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14234-9.)。
(2)SeVベクター感染条件の検討
 SeVベクターで遺伝子導入する際は、細胞タイプの違いにより感染効率が大きく変化する。また、過剰に感染させると細胞の種類によっては障害が生じることもある。よって、使用する細胞種で事前に感染MOI(Multiplicity of Infection:1細胞に対するベクター粒子の数)を決定するため、最初にMSCでの感染MOIを検討した。
 市販の骨髄由来の間葉系幹細胞(製品名:超高純度ヒト間葉系幹細胞(REC)、PuREC株式会社)を、200μl/wellの培地を添加した48wellプレート(FALCON 353230)に5×10個/well(70-80%コンフルエント)撒き、同細胞に、4種類の不死化因子遺伝子搭載SeVベクターを単独又は複数の共感染で、各ベクターのMOIが1,5,20になるように加え、一晩インキュベートした。翌日新鮮な培地に交換し、以後2日おきに培地を交換し、ベクター感染後5日目に12wellプレート(FALCON 353043)に拡大し、感染9日後に細胞観察を行った。
 結果を図2~4に示す。SeVベクター感染から9日後では、全てのウェルにおいて細胞障害は認められず、また、MOI:20(SeVベクター自体としてはMOI:80)でも異常は認められなかった。蛍光色素の発現によって、SeVベクターの感染効率を倒立型蛍光顕微鏡(ニコン)で観察したところ、単独ベクター感染では、MOI:20でほとんどの細胞に蛍光色素の発現が認められた(図2)。Bmi-1とhTERTの2因子共感染でも同様の結果が得られた(図3)。Bmi-1,hTERT,SV40Tの3因子共感染でも同様の結果が得られた(図4)。このことから、MOI:20で感染させるとほぼ100%の細胞に遺伝子導入が可能と考えられた。よって以降のMSCへのSeVベクター感染のMOIは20と決定した。
 また、検討したSeVベクターの組み合わせのうち、Bmi-1,hTERT,SV40Tの3種のベクターの共感染については、高い感染割合のMOI:20において、未感染のコントロールを含む他の組み合わせより、細胞数が明らかに増加することが確認された(図4)。MOI:20の盛んに分裂している細胞は、MOI:1の蛍光が認められない細胞より大きさが小さく、かつORFとGFPの蛍光が同時に陽性であった。つまり、この細胞増殖の促進は、Bmi-1とhTERTとSV40Tの3つ不死化因子の働きによるものであると推測された。
(実施例2)不死化因子の選定
 4種の不死化因子(Bmi-1, hTERT, SV40T, E6/E7)遺伝子を単独搭載したSeVベクターをMSCに感染させ、長期間培養することにより、MSCの不死化に必要な因子を選定した。
 検討には臍帯血由来のMSC(製品名:Umbilical Cord-Derived Mesenchymal Stem Cells; Normal, Human(ATCC PCS-500-010))を用い、不死化因子遺伝子搭載SeVベクター1種又は2種以上の組み合わせ(計15通り)を上記MSCに感染(48wellプレート、3×10個/well、MOI:20)させた。SeVベクター感染をさせないMSCをネガティブコントロールとした。MSCの増殖に伴い、48well→12well→6wellと拡大培養し、それ以降はコンフルエント(プレートの接着面が細胞で100%)になったら細胞数を測定し継代することにより、合計16種類の細胞の増殖速度を測定すると同時に、細胞の形態を顕微鏡で観察した。
 細胞の増殖速度は不死化遺伝子導入(導入時の細胞数:3×104個)から80日間にわたり測定した。80日時点で細胞数が多い順に並べた結果(No.1~No.16)を、その細胞数とともに下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 細胞の状態をネガティブコントロールの細胞増殖が停止した約2か月(59日目)の時点で観察し、細胞の大きさの均一性及び培養プレートから細胞の剥がれた死細胞の程度を2段階で判定した(図5)。その判定結果を表1に合わせて示す(細胞の大きさが均一で、細胞の剥がれが少ない:〇、細胞の大きさが不均一で、細胞の剥がれが多い:×、不死化因子の有無は+あるいは-で表記)。
 表1及び図5に示されるように、細胞の形態異常は全てhTERT因子のない組み合わせ(ネガティブコントロールを含む)で認められ、SeVベクターを用いた細胞不死化にはhTERTは必須であると考えられた。また、細胞数と不死化因子の組み合わせを比較した結果、4種の不死化因子のうち、E6/E7の細胞増殖効果は殆ど認められなかった。
 以上の結果から、SeVベクターを用いた不死化に好適な不死化因子の組み合わせを表1より抽出し、表2に纏めた(No.16はネガティブコントロールとして比較のため表記する)。
Figure JPOXMLDOC01-appb-T000002
 図6に細胞の増殖曲線を示す。ネガティブコントロール(No.16)では約2か月(66日)後に増殖が停止したが、不死化因子導入細胞(No.1、2、4、12)は増殖が延長した。hTERT遺伝子単独導入細胞(No.12)は、増殖が延長しているものの、2か月以降は増殖速度が徐々に低下しており、それ以上の増殖は期待できなかった。これに対し、Bmi-1とhTERT、hTERTとSV40T、Bmi-1とhTERTとSV40Tの組み合わせ導入細胞(No.1、2、4)は、80日目でも増殖速度が落ちることなく、安定した増殖が観察された。なかでも、Bmi-1とhTERTとSV40T の3因子の組み合わせの増殖速度が最も速かった。
 上記の臍帯血由来のMSCに代えて、ヒト臍帯マトリックス由来間葉系幹細胞(製品名:Human Mesenchymal Stem Cells from Umbilical Cord Matrix (hMSC-UC)、Promo Cell社、製品コード C-12971)を用いて不死化因子の組み合わせの検討を行ったところ、同様にBmi-1とhTERTとSV40Tの組み合わせで不死化した細胞の増殖が最も良く、顕微鏡観察でも細胞が均一で状態が最も良かった。
(実施例3)3因子(Bmi-1/hTERT/SV40T)遺伝子搭載SeVベクターによる不死化培養細胞の分析
(1)3因子(Bmi-1/hTERT/SV40T)導入不死化細胞の作製
 3種類の異なる組織由来のMSCの検討において、3因子(Bmi-1/hTERT/SV40T)遺伝子搭載SeVベクターが最も不死化に適していると判断し、このベクターで不死化したMSCの詳しい性状解析を行った。細胞は不死化因子の選定で用いた臍帯血由来のMSC(製品名:Umbilical Cord-Derived Mesenchymal Stem Cells; Normal, Human(ATCC PCS-500-010))を使用したが、選定の際よりも長期培養(1か月弱)した細胞を用いた。3因子(Bmi-1/hTERT/SV40T)遺伝子搭載SeVベクターで実施例2と同様にMOI:20の条件で遺伝子導入した。SeVベクターで遺伝子導入していないMSCをネガティブコントロールとして同時に培養した。
(2)培養温度の変化による増殖速度の比較
 3因子(Bmi-1/hTERT/SV40T)導入不死化細胞株は、6cm dishを使用して35℃のCO2インキュベーター内で培養し、プレートの接着面が細胞で80%程度になるまで増殖した時期に新しい6cm dishに1/5を継代する方法で、75日間培養を続けた。
 不死化遺伝子を搭載したSeVベクターは温度感受性ベクターで、培養温度を35℃から37℃に上げることにより、細胞内のSeVベクターゲノムを急速に消失させることが可能である(Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S, Nishikawa S.Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14234-9)。そこで、MSCにおいてもSeVベクターゲノムの除去が可能であるかを確認するため、上記3因子(Bmi-1/hTERT/SV40T)導入不死化細胞の培養において温度変化を行い、細胞数の変化を調べた。
 温度変化によるSeVベクター除去の検討には、未処理MSCの増殖能が低下した時期の不死化細胞(75日目)を使用した。78日目の細胞継代の際、同じ細胞数を播種した2枚のシャーレを作製し、1枚は35℃のまま維持し、もう一方は37℃に培養温度を上げて、両者の増殖パターンを比較した。結果を図7に示す。37℃で培養した細胞は、SeVベクターが除去(蛍光がなくなる)され、増殖が急激に低下したが、35℃で培養した細胞は特に変化なく、遺伝子導入後130日を超えても盛んに増殖を続けた(図7)。
(3)培養温度の変化による蛍光タンパク質発現及び細胞の形態の比較
 温度変化から10日後に蛍光顕微鏡で蛍光タンパク質の発現を確認したところ、OFP(Bmi-1同時搭載)とGFP(hTERT同時搭載)の蛍光は、培養温度を35℃に維持した細胞においては確認されたものの、37℃に上げた細胞ではその発現がほとんど確認出来なくなった(図8)。
 細胞の形態を継代培養から2週間後(培養開始から92日目)に確認したところ、35℃では細胞の状態に変化は認められずに盛んに分裂していたのに対し、37℃では細胞の分裂速度が目に見えて低下し、細胞の大きさにばらつきが発生して、35℃の均一性とは大きな違いが観察された(図9)。
 以上の結果より、35℃から37℃の温度変化により、既にiPS細胞で明らかになっているSeVベクターの温度感受性効果がMSCでも確認されたと同時に、不死化3因子の除去により、細胞の不死化もリセットされ有限増殖の細胞に戻ったと考えられた。
(4)染色体解析
 細胞の染色体解析をキナクリン・ヘキスト分染法により、図7の▽のポイントで行った。キナクリン・ヘキスト分染法は、まず、50mlのマキルベン溶液(0.1M クエン酸溶液 280 mlと0.2M リン酸水素二ナトリウム溶液 220mlを混合し、オートクレーブする)に染色体スライドを浸し、ついで50 mlのマキルベン溶液に10ng/mlになるようにHoechst 33258(cat : B-2883-25MG, Sigma)を溶解したものに30分間浸した。染色体スライドの裏面から水流の弱い水道水を伝わらせて洗浄後、再びマキルベン溶液に5分間浸した後、マキルベン封入液(マキルベンとグリセロールを1:1で混合する)を用いてカバーガラスで覆い封入した。染色体解析顕微鏡(型式:AxioImager Z2, ZEISS)及び染色体解析ソフト(型式:Ikaros V5.7.4 CM/V5.4.12, Metasystems)を用いて解析を行った結果、不死化細胞株は、すべてのポイントで親株と同様に正常核型であった(図10)。
(5)テロメア長の評価
 テロメア長の評価を図6及び図7の*のポイントで行った。テロメア長の評価は、ゲノムDNAを鋳型にリアルタイムPCRを実施し、テロメア配列の相対定量により行った。細胞からのゲノムDNA抽出はGentra(登録商標)Puregene(登録商標)Kit (Qiagen)を用い、メーカーの手順を参照し実施した。リアルタイムPCRについて、プライマーはRelative Human Telomere Length Quantification qPCR Assay Kit (ScienCell Research Laboratories)付属のTelomere primer setとSingle copy reference primer setを用い、PCR試薬はFastStart Essential DNA Green Master (Roche)を用いた。PCR反応条件はメーカーの推奨条件に従った。PCR反応とデータ取得はStepOnePlus (ライフテクノロジーズジャパン)を使用し、StepOne Software v2.3にてデータ解析を行った。
 結果を図11に示す。Bmi-1,hTERT,SV40Tの3因子の組み合わせ、及びBmi-1とhTERTの2因子の組み合わせで、テロメアの伸長が確認されたが、hTERT単独では伸長がみられなかった(図11A)。また、不死化因子除去後の長期培養で、テロメアの顕著な短縮が見られた(図11B)。不死化因子未除去(35℃)でも短縮が見られるものの、最終サンプルリングにおいても初期のhMSCのテロメア長と同程度であった。以上の結果より、増殖能との対比から不死化にはhTERTは必要であるが、十分条件ではないと考えられた。
(実施例4)不死化集団細胞の分化能
 実施例3で作製した3因子(Bmi-1/hTERT/SV40T)導入不死化細胞(MSC)について、脂肪細胞、骨芽細胞、神経細胞、軟骨細胞へ分化への分化能を調べた。分化試験には、Bmi-1とhTERTとSV40Tの3因子で不死化し、長期にわたり培養した(遺伝子導入から4カ月培養した)臍帯血由来のMSC(ATCC PCS-500-010)を使用した。4カ月は不死化していない一般のMSCでは培養困難な期間である。
 MSCの分化には市販(Promo Cell社)の分化用キットを使用した。脂肪細胞分化にはMesenchymal Stem Cell Adipogenic Differentiation Medium 2(製品コード C-28016)、骨芽細胞分化にはMesenchymal Stem Cell Osteogenic Differentiation Medium(製品コード C-28013)、神経細胞分化にはMesenchymal Stem Cell Neurogenic Differentiation Medium(製品コード C-28015)、軟骨細胞分化にはMesenchymal Stem Cell Chondrogenic Differentiation Medium(製品コード C-28012)を使用し、操作方法は添付のプロトコールに従って実施した。
 脂肪細胞分化の確認には脂肪細胞分化の指標となる脂肪滴を特異的に染色する蛍光色素Lipi-Green(同人化学:製品コード LD02)を用いて行った。骨芽細胞分化はアルカリフォスファターゼ染色で確認した。神経細胞分化の確認は神経細胞を特異的に染色する蛍光色素NeuroFluor NeuO (VERITAS:製品コード ST-01801)を用いて行った。軟骨細胞分化はアルシアンブルー染色で確認した。
 購入から2週間程度培養した初期の細胞で、分化能を保持し、対数増殖期にある遺伝子導入していないMSCをポジティブコントロールとして、4カ月経過した不死化MSCの分化能と比較したところ、脂肪細胞分化においては両者とも分化の指標である脂肪滴が観察された。不死化MSCはポジティブコントロールに比べて分化程度が低かった(図12)。骨芽細胞分化においては、不死化MSCとポジティブコントロールの両者においてアルカリフォスファターゼの染色が確認され、骨芽細胞へ分化していた(図13)。不死化MSCはポジティブコントロールよりも分化率が高かった。神経細胞分化では不死化MSCとポジティブコントロールの両方で、ほぼすべての細胞において蛍光が観察され、神経細胞へ分化していることが分かった(図14)。軟骨細胞分化については、不死化MSCとポジティブコントロールとの分化程度の比較はできないものの、ネガティブコントロールの分化誘導なしと比較すると、分化誘導したMSCは明らかにアルシアンブルーで濃く染まり、軟骨細胞への分化が確認された(図15)。以上の結果より、3因子(Bmi-1/hTERT/SV40T)導入不死化細胞(MSC)は、不死化して4カ月も経過したMSCでも、ポジティブコントロールのMSCと同様に多分化能を維持していることが確認された。
(実施例5)不死化MSCのクローニング試験
 実施例3で作製した3因子(Bmi-1/TERT/SV40T)導入不死化細胞(MSC)について、クローニングが可能かどうか、あるいは不死化していないMSCがどの程度クローニングが難しいのか確認実験を行った。
 購入から2週間程度培養した初期の細胞で、分化能を保持し、対数増殖期にある遺伝子導入していない臍帯血由来のMSC(ATCC PCS-500-010)、遺伝子導入して間もない(2週間経過した)不死化MSC、遺伝子導入から長期培養した(4カ月経過した)不死化MSCの3種類のMSCを用いてクローニングを行った。
 培養して維持していた3種類のMSCは、一度完全にバラバラのシングルセルにして細胞数を測定し、24wellずつ4つの区画に分けた96wellプレートに、各区画1well当たり4cells, 8cells, 16cells, 32cells/100μlのように細胞数を変化させて播種し、35℃, 5%CO2インキュベーターでシングルセルがコロニーを形成するまで培養を行った。培地交換は、コロニー形成を乱さないように3日ごとに半量を交換した。
 10日間培養して顕微鏡観察したところ、シングルセルは十分な大きさのコロニーまで増殖していた。そこで、ウェルごとに形成されたコロニーの数を測定し、その様子を模式的に図にまとめた(図16、図17)。図の96well内の数字は、形成されたコロニー数を示す。
 この結果を見ると、一目でコロニーの出来やすさを判断することが出来る。不死化していない増殖初期MSCは一般的なMSCに該当するものであるが、形成されたコロニーは32cells/wellの区画のわずか2wellのみであった。一方SeVベクターで不死化遺伝子を導入したMSCでは、導入間もない2週間では4cells/wellの低密度でも9well/24wellの高頻度でコロニーが形成された(図16)。4カ月経過では4cells/wellの低密度でも16well/24wellと半数以上のwellでコロニーが形成された(図17)。
 以上の結果から、クローニングが難しいMSCでもSeVベクターで3種の不死化遺伝子を導入すると、その後の経過時間に関わらず、容易にクローニングが可能であることが判明した。どの時期でもクローニングが可能であることは、再生医療の品質管理の観点で、非常に有用である。
(実施例6)クローン不死化MSCの各種分析
(1)クローン細胞の増殖能
 SeVベクター感染2週間後にシングルセルにしてクローニングした5クローンのMSCについて、60日間培養後に、35℃と37℃に分けて培養した。5クローンのうち3クローンは、37℃でSeVベクターの除去とともに増殖低下した。そのうちのクローンA10について増殖曲線を示す(図18)。
(2)温度変化によるSeVベクター除去の確認
 35℃においては、集団培養実験と同様にSeVベクターの存在は蛍光観察で確認できたが、37℃のグループはSeVベクターの存在は確認出来なかった。
(3)クローン細胞の染色体解析
 クローニングした10クローンについて染色体解析を行った結果、8クローンが正常核型であった。その中で図18に示した細胞増殖を示すクローンA10について、核型解析の結果を示す(図19)。
(4)クローン不死化MSCの分化能
 クローニングした不死化MSCのうち、5クローンについて実施例4と同じ方法で、脂肪細胞・骨芽細胞・神経細胞への分化能を調べた。その結果、クローンによって形態に違いが見られたのと同様に、分化程度にも違いが認められた。しかしいずれのクローンにおいても脂肪細胞・骨芽細胞・神経細胞への分化が認められ、多分化能が維持されていた(図20)。クローンによっては、クローニングする前の細胞より分化状態の非常に良いものもあり、神経分化においては、神経マーカーの発現だけでなく、神経突起が網目状に広がった神経ネットワークを形成している様子も観察された。
(実施例7)細胞齢(老化度)の異なるMSCの不死化及びシングルセルクローニング
 1個のMSCから増殖した細胞集団は遺伝的性質が同じため、品質が一定になり、品質管理が容易になる点においてシングルセルクローニングは再生医療において重要な意味を持ち、また、外部から遺伝子導入した場合、目的細胞のみ選択する点においても、シングルセルクローニングは不可欠である。
 ヒトの体内から単離したMSCは、若い細胞から老化した細胞まで様々な時期の細胞が混在している。その割合も個人毎に異なり、特定の時期(若さ)の細胞のみを取り出して増殖させることは困難である。逆に言えば、若い細胞から老化細胞に至るどの時期のMSCでも不死化することが出来、更にクローニングすることが可能であれば、再生医療においてその応用範囲は大幅に拡大する。
 そこで、若い細胞から老化した細胞、あるいはその中間の時期の3種類の細胞を不死化して、更にシングルセルクローニングが可能かどうか調査した。
 細胞は臍帯血由来のMSC(製品名:Umbilical Cord-Derived Mesenchymal Stem Cells; Normal, Human(ATCC PCS-500-010))を使用した。購入した細胞を増殖が停止するまで、37℃で約80日間長期培養した。その間、継代約1週間おきに細胞の一部を凍結保存した(図21)。
 その凍結保存した細胞の中から、初期・中期・後期(Day9,24,49)の3種類の細胞を同時に融解し、凍結融解の影響を抑えるために11日間培養して24wellプレートに播種した(24well、1×105個/well)後、その翌日に3因子(Bmi-1/hTERT/SV40T)遺伝子搭載SeVベクターをMOI:20で感染させ不死化を行った(Day21,36,61)。
 不死化誘導後、細胞を37℃から35℃のCO2インキュベーターへ移し、8日間拡大培養した(24well→6well)。その後、不死化誘導した細胞は、96wellプレートへ1well当たり細胞が1個、2個、4個になるように播種し、不死化誘導していないコントロールの細胞は、1well当たり5個、10個、15個、20個になるように播種し、1個の細胞が分裂・増殖して細胞集団(コロニー)が現れるまで約2週間培養し、顕微鏡観察により発生したコロニーの数をカウントした。
 3種類の細胞齢(初期、中期、後期)の異なるMSCのSeVベクター感染細胞とSeVベクター非感染細胞の形態を、96wellプレート播種直前(SeVベクター感染8日後)に観察したところ、見た目にもその違いが顕著に現れた(図22)。
 図22に示されるように、細胞数を反映する細胞密度が細胞が若いほど高く、細胞増殖が盛んであることが分かる。SeVベクター感染の有無による細胞数の違いは顕著には現れていないが、後期の細胞では明らかにSeVベクター感染細胞では細胞数が増えているのが観察された。特に細胞の形態や大きさに関しては変化が顕著であり、SeVベクター非感染のコントロールにおいては、時間の経過とともに細胞が巨大化して分裂速度が低下するが、SeVベクター感染細胞においては、分裂が活発になり、細胞の大きさが同程度になり、初期、中期、後期の区別が大きさではできなくなった。
 96wellによるクローニングの結果は、SeVベクター非感染細胞では1well当たり5個の細胞ではコロニーが出現せず、クローニングが実施例5と同様に困難であることが確認された。SeVベクター感染細胞においては、1well当たり1個の割合で播種したシングルセルクローニングのプレートにおいても多くのコロニーが観察された(図23-1、図23-2)。
 初期の細胞においては、96well当たり30wellでコロニーが観察され、中期では47well、後期では27wellで観察された。この結果により、SeVベクターで不死化誘導したMSCは、その老化程度に関わらず1個の細胞に由来する細胞集団を容易に取得することが可能であることが明らかとなった。
(実施例8)増殖が停止したMSCに対する効果確認
 老化し、完全に細胞分裂が停止したMSCに対する不死化遺伝子を搭載したSeVベクターの効果を確認した。
 凍結保存した細胞増殖がほぼ停止した状態の細胞(Day72)を凍結融解して、24wellプレートに播種し、凍結融解の影響を抑えると共に、細胞増殖しないことを確認した細胞(Day90)にSeVベクターを感染させた(24well、1×105個/well、MOI:20)。その後、細胞の変化を顕微鏡で観察した。
 SeVベクター非感染細胞(コントロール細胞)においては、大きな変化は全く無く、全部の細胞が丸くなり死んでいく様子が観察された。一方、SeVベクター感染細胞においては、数日間は変化が見られなかったが、1週間後には多くの細胞が丸く変化し、そのまま死滅すると思われたが、その中から接着性の小さな細胞が観察されるようになり、2週間後には不死化細胞と同じような盛んに増殖する細胞集団へと変化した(図24)。
 再増殖を開始した細胞を、実施例7と同様にシングルセルクローニングを行った。その結果、前述のシングルセルの図23-1、23-2の結果より割合は低いものの、96well中17wellにおいて、増殖した細胞集団が確認され、完全に分裂停止した細胞においてもSeVベクターを感染させることにより再び分裂を開始し、シングルセルクローニングが可能になることが確認された(図25)。
 この変化は、細胞の不死化に伴う細胞増殖と異なり、細胞増殖に不要な細胞質を除去していると考えられた。詳しいメカニズムは不明であるが、老化により増殖が完全に停止した細胞を再増殖させることから、この場合においては、「不死化」というより「細胞の若返り」という表現が合致している。
(実施例9)無血清培地におけるヒト間葉系幹細胞の細胞増殖の検討
 脂肪組織由来ヒト間葉系幹細胞hMSC-AT(PromoCell; C-12977)及び骨髄由来ヒト間葉系幹細胞hMSC-BM(PromoCell; C-12974)を実験に使用した。hMSC-AT及びhMSC-BMのSeVベタクー感染実施日を「感染日」とすると、hMSC-AT非感染細胞と感染細胞は、それぞれ感染日より13日目と11日目まで、hMSC-BMの非感染細胞と感染細胞は、それぞれ感染日から11日目と17日目まで血清入り培地で培養した。血清入り培地は、D-MEM(Low Gulucose), 20%FBS, 0.01mol/L Hepes, Penicillin100units/ml, Streptomycin100μg/ml, bFGF 20ng/mlの組成の培地を使用した。その後、無血清培地に置換して培養を継続した。無血清培地には、Stem Fit For Mesenchymal Stem Cell(AJINOMOTO; A3)培地を使用した。培養皿は、iMatrix-511 silk(マトリクソーム; 892 091)でコーティングした6cm dish(CORNING; 353004)を使用した。
 SeVベクターの感染は、2×105細胞のhMSC-AT細胞又はhMSC-BM細胞にSeVベクターをMOI:40の条件で行った。非感染条件と感染条件を、それぞれ1回実施した。感染の24時間後に培地を交換し、維持培養を続けた。細胞培養は35℃、5% CO2インキュベーターで行った。
 hMSC-AT細胞の実験では、非感染細胞株は、細胞数の減少が認められたため感染日から52日目に培養を終了した。一方で、SeVベクター感染細胞株は、52日目以降も増殖を続けた(図26)。
 hMSC-BM細胞の実験においても、非感染細胞株は、感染日から40日目以降は細胞増殖が停止し増殖しなくなり、72日目で細胞数を測定した。その結果、細胞数は検出限界以下であったため、この時点で細胞培養を終了した。一方で、SeVベクター感染細胞株は、40日目でも増殖を続けていた(図27)。
 以上の結果から、SeVベクター感染により脂肪組織由来、骨髄由来のMSC細胞でも臍帯血由来のMSC細胞と同様に細胞分裂能を延長できること、また感染細胞でも、血清入り培地と同様に無血清培地で増殖を続けられることが確認された。
 SeVベクター感染後、GFP(hTERT)とOFP(Bmi-1)の蛍光観察を行った。hMSC-AT細胞及びhMSC-BM細胞で無血清培地での培養初期の時点(感染日から16日目、24日目)と、無血清培地で培養を続けた時点(感染日から58日目、50日目)を比較したところ、GFP及びOFPの発現が維持されていることが認められた(図28)。この結果より、血清入り培地での培養と同様に、無血清培地で培養を続けてもSeVが維持されることが確認された。
(実施例10)不死化ラットMSCの細胞増殖の検討
 ラット皮下脂肪由来間葉系幹細胞rMSC細胞(コスモ・バイオ株式会社, MSA01C)はラット皮下脂肪由来間葉系幹細胞増殖用培地(コスモ・バイオ株式会社, MSA-GM)で培養した。
 SeVベクターの感染は、2×105細胞のrMSC細胞にSeVベクターをMOI:40の条件で行った。非感染条件は1回、感染細胞株は2回実施した。感染の24時間後に培地を交換し、維持培養を続けた。培養皿はコラーゲンコートディッシュ(IWAKI, 4810-010)で行い、35℃、5% CO2インキュベーターで維持した。
 長期培養を実施したところ、本来数回の継代で増殖能が低下するrMSC細胞株が、非感染細胞で増殖を続ける現象が認められた(図29)。これは、偶発的にrMSC細胞株が不死化したためと考えられる。しかしながら、75日間培養した結果、感染細胞の方が非感染細胞と比較して、増殖速度が2倍以上速いことが認められた。
 SeVベクター感染後、GFP(hTERT)とOFP(Bmi-1)の蛍光観察を行った。蛍光写真は、オールインワン顕微鏡(KEYENCE; BZ-X800)で撮影した。写真撮影は、倍率は20倍、GFPとOFPの露光時間はそれぞれ1/5秒と1/20秒の条件で行った。蛍光観察の結果、感染後58日間培養したあとでも35℃の条件ではOFP(Bmi-1) とGFP(hTERT)の発現が認められた(図30)。
(実施例11)不死化HFL1の細胞増殖の検討
 ヒト線維芽細胞(HFL1細胞,理研:RCB0521)はハム-F12培地(Nakalai; 17458-65)に、非働化したFetal bovine serum(NICHIREI; 175012)を15%(v/v)、ペニシリン-ストレプトマイシン溶液(富士フィルム和光; 168-23191)を100units/mLになるように添加した培地で培養した。
 SeVベクターの感染は、2×105細胞のHFL1細胞にSeVベクターをMOI:40の条件で行った。非感染条件と感染条件は、それぞれ2回実施した。感染の24時間後に培地を交換し、維持培養を続けた。感染細胞は、感染後34日目に35℃で培養する条件と37℃で培養する条件の2つに分けた(図31、矢印)。細胞培養は各温度、5% CO2インキュベーターで行った。
 非感染細胞は、細胞数の減少が認められたため、感染日から148日目に培養を終了した。一方で、感染細胞株は、37℃で培養している細胞が増殖しなくなったため、感染日から259日目又は273日目に培養を終了した(図31)。このことから、SeVベクター感染によりHFL1細胞でも細胞分裂能を延長できることが明らかとなった。
 計算によって培養を開始してからどれだけ細胞が増殖したかを調べた。その結果、非感染細胞では細胞数が17オーダーで増殖が停止したのに対し、SeVベクター感染37℃培養では31オーダーで増殖が停止した。SeVベクター感染35℃培養では培養期間内でも増殖停止すること無く43オーダー付近まで増殖し、260日間でSeVベクター非感染細胞との細胞数比較では26オーダーの差が生じた。以上の結果より、ヒト線維芽細胞HFL1では、SeVベクター感染によって細胞をより多く増殖させることができることが確認された。
 SeVベクター感染後、GFP(hTERT)とOFP(Bmi-1)の蛍光観察を行った。その結果を図32に示す。感染日から34日目の時点では、感染日から10日目の細胞と同様のGFP及びOFPの蛍光シグナルを示していた。35℃と37℃のそれぞれの条件でさらに221日間培養した。35℃で培養を続けた細胞は、34日目及び255日目の細胞と比較すると、GFPの発現は著しく減少しているが、OFPは10日目及び34日目と同様に維持されていた。一方で、37℃で培養した細胞では、10日目及び34日目の細胞と比較してGFPもOFPも陽性率が著しく減少していた。これらの結果から、温度感受性的にSeVが除去されていることが確認された。
 また、一般的に細胞老化が進んだ細胞は、細胞の大きさが大きくなる、平らな形をする、空胞を形成するといった特徴を示すことがある。35℃で培養した感染細胞の方が37℃で培養した感染細胞と比較して細胞老化の特徴を示さなかった。この結果から、35℃で培養を続けた細胞の方が、細胞形態的に細胞老化が進んでいないことが確認された。
(実施例12)不死化HUVECの細胞増殖の検討
 ヒト臍帯静脈内皮細胞(HUVEC細胞,Promocell社,C-12205)は内皮細胞用培地(ScienCell; 1001)で培養した。
 SeVベクターの感染は、2×105細胞のHUVEC細胞にMOI:40の条件で行った。非感染条件は1回、感染条件は2回実施した。感染の24時間後に培地を交換し、維持培養を続けた。感染細胞は、感染後 35日目に35℃で培養する条件と37℃で培養する条件の2つに分けた(図33、矢印)。細胞培養は各温度、5% CO2インキュベーターで行った。
 非感染細胞は、細胞数の減少が認められたため感染日から39日目に培養を終了した。一方で、感染細胞は、感染日から74日目でも増殖を続けていた(図33)。このことから、SeVベクター感染よりHUVEC細胞でも細胞増殖を延長出来ることが確かめられた。
 計算によって培養を開始してからどれだけ細胞が増殖したかを調べた。その結果、非感染細胞では細胞数が8オーダー付近で増殖が停止したのに対し、SeVベクター感染37℃培養では18オーダーまで増殖した。SeVベクター感染35℃培養では、細胞は増殖を続け21オーダー付近まで増殖し、74日間でSeVベクター非感染細胞との細胞数に13オーダーの差が生じた。以上の結果より、ヒト臍帯静脈内皮細胞HUVEC細胞では、SeVベクター感染によって細胞をより多く増殖させることが出来ることが確認された。
 SeVベクター感染後、GFP(hTERT)とOFP(Bmi-1)の蛍光観察を行った。その結果を図34に示す。感染日から36日目の時点では、35℃で培養を続けた細胞は、感染日から7日目の細胞と同様のGFP及びOFPの蛍光シグナルを示していた。その後、35℃と37℃のそれぞれの条件で、さらに37日間培養したところ、35℃で培養を続けた細胞は、感染日から7日目や36日目の細胞と比較すると蛍光陽性細胞の割合は減少しているが、多くの細胞で蛍光シグナルが認められた。一方で、37℃で培養した細胞では、7日目や36日目の細胞と比較して蛍光陽性細胞の割合が著しく減少していた。このことから、温度感受性的にSeVが除去されていることが確認された。
(実施例13)複数増殖因子挿入型ヒト人工染色体ベクターの不死化MSC細胞への導入と長期培養後の安定性及び分化誘導
(1)微小核細胞融合による染色体導入と薬剤耐性クローンの単離
 染色体供与細胞としてWatanabe at al.(Mol Ther Nucleic Acids. 2015)に記載のHGF (hgf), GDNF (gdnf), IGF-1 (igf-1), 及びluciferase (e-luc)が搭載された21HAC2を保持するCHO細胞を用い、染色体受容細胞としては実施例1記載の不死化MSC細胞であるhMSC-UC No.3細胞を用い、Katoh et al. (BMC Biotechnology, 2010, 10:37)に記載の方法で微小核細胞融合及び培養を行った。BS選択培養下で1週間培養すると、耐性コロニーが出現し、4回の融合で得た合計9個のコロニーを単離し増殖させ、以後の解析を行った。
(2)移入染色体の確認
(2-1)蛍光顕微鏡観察
 クローニングした9個のコロニーを蛍光顕微鏡下にて観察したところ、全てのクローンにてGFP陽性細胞が観察され、その陽性率は50~100%であった。
(2-2)FISH解析
 PCR解析で確認した4クローン(クローン名:hMSC-UC No.3 #1-01、#1-02、#2-01、#3-01)をHGF (hgf), GDNF (gdnf), IGF-1 (igf-1), 及びluciferase (e-luc)を保持するPACをプローブにしてFISH解析を行ったところ、核型異常を起こさず、ヒト人工染色体を保持するクローンが2クローンあることが確かめられた(図35、hMSC-UC No.3、#3-01)。
(3)インビトロ分化誘導
 PCR解析で確認した上記4クローンについて、Okamotoら(BBRC, 295:354, 2002)の手法に従い、骨、軟骨、脂肪細胞へ分化誘導を行い、親株と同等の分化能を維持しているか否かを確認できる。
 以上の(1)~(3)の解析結果から、微小核細胞融合により複数増殖因子挿入型ヒト人工染色体ベクターを保持する不死化MSCが2クローン得られたことが確認できた。
(実施例14)炎症性腸疾患モデルにおける不死化MSCの腸炎治癒効果の検証
(1)CD4陽性CD45RB高陽性CD25陰性(CD4+CD45RBHigh+CD25-)T細胞の単離
 8週齢BALB/cAJcl(日本クレア)の雌30匹を1週間の馴化後、麻酔下で心採血により脱血し、脾臓及び腸間膜リンパ節を採取した。脾臓はMACS system(Miltenyi Biotech)を用いて組織分散後に溶血処理した。腸間膜リンパ節は、1 mLシリンジ用プランジャーを用いて潰し、40μmセルストレーナーでろ過した。脾臓及び腸間膜リンパ節細胞を合わせ、CD4マイクロビーズ(Miltenyi Biotech)処理によりCD4陽性細胞を分離した後、CD4+CD45RBHigh+CD25-T細胞を単離するため、抗体(APC-H7 Rat anti-mouse CD4抗体(BD)、FITC Rat Anti-Mouse CD45RB抗体(BD)、PE/Cy7 anti-mouse CD25抗体(BioLegend))で標識し、フローサイトメーター(MoFlo XDP, BECKMAN)により分取した。
(2)CD4+CD45RBHigh+CD25-T細胞移入
 9週齢雌のSCID(C.B-17/lcr-scid/scidJcl:日本クレア)に、1匹当たり4.0×105個のCD4+CD45RBHigh+CD25-T細胞を尾静脈注射により移植した(細胞移植群:1群8匹×5群、未処置群(PBS投与):1群×7匹)。移植後は、週3回の体重測定および毛並みと便状態の観察を実施した。細胞投与から21日後に体重変化に基づき、統計解析ソフトウェアJMPの「多変数によるブロック割り付け」システムを利用したランダム化割り付けを行い、細胞移植群を群分けした。その際、相対体重平均±2SDから外れた個体は除外した。
(3)移植細胞培養
 移植用細胞を得るため、hMSC-UC(親MSC)及び不死化MSCを各細胞培養条件により培養した。
(4)MSC投与(治療用細胞移植)
 CD4+CD45RB High+CD25-T細胞を移植後21日目、28日目、35日目に、親MSC、不死化MSCをマウス1匹当たり1.0×106個を尾静脈注射により投与した。ポジティブコントロールとして、Dexamethasone (Sigma): Dex(1 mg/kg、100μL/匹)を21日目から14日間、皮下投与した。Dex溶液は21日目及び28日目の群平均体重を基に用時調製した。
(5)採材
 実験開始から42日目に、全採血し、血清を調製した(-80℃保存)。さらに幽門輪から肛門(結腸~直腸)間の消化管を採材し、状態の評価と重量及び長さの測定を実施後、10%ホルマリンで固定した。
 結果を図36に示す。SCIDマウスを用いた養子免疫移植IBDモデルに対し、MSC移植による腸炎治療効果を見た結果、Dex投与群、親MSC投与群、不死化MSC投与群では、非処置群と比べてクリニカルスコア値(体重減少スコア、肥厚スコア、便スコア、毛並みスコアの各値)は大きく減少した。特に、親MSC投与群では、1/2近く減少しており、腸炎改善への高い効果が期待された。不死化MSC投与群では親MSC投与群と顕著な差はなく、Dex投与相当であったため、不死化および不死化による長期培養後においても、MSC親株の腸炎治癒効果は保たれていることが分かった。移植用細胞の培養について、培養初期の親細胞と比べても不死化細胞の方が、顕著に増殖が良く、細胞の調製に手間取ることはなかった。
 本発明は、細胞医療や再生医療の分野において利用できる。本発明の細胞不死化技術は細胞増殖の遅い正常細胞ばかりでなく、癌細胞などにも利用でき、基礎研究の分野においても利用できる。更に、遺伝子導入や染色体導入に必須であるシングルセルクローニング化も可能である。加えて、本発明により得られる細胞は老化することなく増殖し続けることから品質管理が容易になり、培養の機械化を促進し、細胞の製造コストを大幅に低減し、大量の細胞数を扱うことが可能となる。よって、本発明は、細胞医療や再生医療における適用疾患の範囲を拡大し、国内外の医療関連産業の活性化に寄与する。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書に組み入れるものとする。

Claims (18)

  1.  以下の工程を含む、可逆的不死化細胞の製造方法。
    (1)不死化遺伝子を搭載する染色体非組み込み型RNAウイルスベクターを哺乳類の細胞に導入し、該細胞で不死化遺伝子を発現させる工程、及び
    (2)工程(1)で得られた細胞を培養し、増殖させる工程
  2.  前記不死化遺伝子が、Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子よりなる群から選択される1種又は2種以上の不死化遺伝子である、請求項1に記載の方法。
  3.  前記不死化遺伝子が以下の(a)~(d)のいずれかである、請求項1又は2に記載の方法。
    (a) Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子の組み合わせ
    (b) Bmi-1遺伝子とTERT遺伝子の組み合わせ
    (c) TERT遺伝子とSV40T遺伝子の組み合わせ
    (d) TERT遺伝子
  4.  前記細胞が、体細胞である、請求項1~3のいずれか1項に記載の方法。
  5.  前記体細胞が、体性幹細胞である、請求項4に記載の方法。
  6.  前記体性幹細胞が、間葉系幹細胞である、請求項5に記載の方法。
  7.  前記染色体非組み込み型RNAウイルスベクターが、マイナス鎖RNAウイルスベクターである、請求項1~6のいずれか1項に記載の方法。
  8.  前記マイナス鎖RNAウイルスベクターが、パラミクソウイルスベクターである、請求項7に記載の方法。
  9.  前記パラミクソウイルスベクターが、センダイウイルスベクターである、請求項8に記載の方法。
  10.  前記センダイウイルスベクターが、温度感受性センダイウイルスベクターである、請求項9に記載の方法。
  11.  前記染色体非組み込み型RNAウイルスベクターがセンダイウイルスベクターであり、前記工程(2)の培養後、該センダイウイルスベクターを除去する工程をさらに含む、請求項1に記載の方法。
  12.  前記センダイウイルスベクターの除去が、培養温度を35℃から37℃に変更することにより行われる、請求項11に記載の方法。
  13.  前記工程(2)の培養後、不死化細胞をクローニングする工程をさらに含む、請求項1~12のいずれか1項に記載の方法。
  14.  請求項1~13のいずれか1項に記載の方法により得られる不死化細胞。
  15.  Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子よりなる群から選択される1種又は2種以上の不死化遺伝子を搭載するセンダイウイルスベクターを除去可能な状態で含む、不死化細胞。
  16.  請求項14又は15に記載の不死化細胞を含む再生医療製品。
  17.  Bmi-1遺伝子、TERT遺伝子、及びSV40T遺伝子よりなる群から選択される1種又は2種以上の不死化遺伝子を搭載する、温度感受性センダイウイルスベクター。
  18.  請求項17に記載の温度感受性センダイウイルスベクターを含む、可逆的不死化細胞作製用キット。
PCT/JP2021/040757 2020-11-06 2021-11-05 可逆的不死化細胞の製造方法 WO2022097716A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180075178.0A CN116419968A (zh) 2020-11-06 2021-11-05 可逆性永生化细胞的制备方法
JP2022560822A JPWO2022097716A1 (ja) 2020-11-06 2021-11-05
US18/251,805 US20230407268A1 (en) 2020-11-06 2021-11-05 Method for producing reversibly immortalized cell
EP21889268.5A EP4242317A1 (en) 2020-11-06 2021-11-05 Method for producing reversibly immortalized cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-186146 2020-11-06
JP2020186146 2020-11-06

Publications (1)

Publication Number Publication Date
WO2022097716A1 true WO2022097716A1 (ja) 2022-05-12

Family

ID=81458329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040757 WO2022097716A1 (ja) 2020-11-06 2021-11-05 可逆的不死化細胞の製造方法

Country Status (5)

Country Link
US (1) US20230407268A1 (ja)
EP (1) EP4242317A1 (ja)
JP (1) JPWO2022097716A1 (ja)
CN (1) CN116419968A (ja)
WO (1) WO2022097716A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174870A (ja) * 2001-10-12 2003-06-24 Naoya Kobayashi 不死化骨髄間葉系幹細胞
JP2009291157A (ja) * 2008-06-06 2009-12-17 Hidetoshi Yamashita 結膜上皮細胞株
WO2010008054A1 (ja) * 2008-07-16 2010-01-21 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
WO2010084970A1 (ja) * 2009-01-23 2010-07-29 国立大学法人大阪大学 標的細胞誘導用フィーダー細胞
WO2015046229A1 (ja) 2013-09-24 2015-04-02 ディナベック株式会社 多能性幹細胞の誘導効率を改善する方法
WO2017078176A1 (ja) 2015-11-05 2017-05-11 株式会社Quarrymen&Co. 不死化幹細胞、及びその作製方法
JP2017221219A (ja) 2005-10-18 2017-12-21 ナショナル ジューイッシュ ヘルスNational Jewish Health) 条件的に不死化された長期幹細胞ならびにそのような細胞を作製する方法および使用する方法。
JP2020186146A (ja) 2019-05-13 2020-11-19 キヤノン株式会社 ガラスの製造方法および光学素子の製造方法
JP2021061773A (ja) * 2019-10-11 2021-04-22 国立研究開発法人農業・食品産業技術総合研究機構 豚感染ウイルスの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174870A (ja) * 2001-10-12 2003-06-24 Naoya Kobayashi 不死化骨髄間葉系幹細胞
JP3953399B2 (ja) 2001-10-12 2007-08-08 直哉 小林 不死化骨髄間葉系幹細胞
JP2017221219A (ja) 2005-10-18 2017-12-21 ナショナル ジューイッシュ ヘルスNational Jewish Health) 条件的に不死化された長期幹細胞ならびにそのような細胞を作製する方法および使用する方法。
JP2009291157A (ja) * 2008-06-06 2009-12-17 Hidetoshi Yamashita 結膜上皮細胞株
WO2010008054A1 (ja) * 2008-07-16 2010-01-21 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
JP5763340B2 (ja) 2008-07-16 2015-08-12 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
WO2010084970A1 (ja) * 2009-01-23 2010-07-29 国立大学法人大阪大学 標的細胞誘導用フィーダー細胞
WO2015046229A1 (ja) 2013-09-24 2015-04-02 ディナベック株式会社 多能性幹細胞の誘導効率を改善する方法
WO2017078176A1 (ja) 2015-11-05 2017-05-11 株式会社Quarrymen&Co. 不死化幹細胞、及びその作製方法
JP2020186146A (ja) 2019-05-13 2020-11-19 キヤノン株式会社 ガラスの製造方法および光学素子の製造方法
JP2021061773A (ja) * 2019-10-11 2021-04-22 国立研究開発法人農業・食品産業技術総合研究機構 豚感染ウイルスの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
B AN, H. ET AL.: "Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors", PNAS, vol. 108, no. 34, 23 August 2011 (2011-08-23), pages 14234 - 14239, XP002684868, Retrieved from the Internet <URL:https://www.pnas.org/content/108/34/14234> DOI: 10.1073/PNAS.1103509108 *
BAN HNISHISHITA NFUSAKI NTABATA TSAEKI KSHIKAMURA MTAKADA NINOUE MHASEGAWA MKAWAMATA S, PROC NATL ACAD SCI U S A., vol. 108, no. 34, 23 August 2011 (2011-08-23), pages 14234 - 9
BAN HNISHISHITA NFUSAKI NTABATA TSAEKI KSHIKAMURA MTAKADA NINOUE MHASEGAWA MKAWAMATA S, PROC NATL ACAD SCI USA., vol. 108, no. 34, 23 August 2011 (2011-08-23), pages 14234 - 9
FANG-YING MENG ET AL.: "Reversible immortalization of human hepatocytes mediated by retroviral transfer and site-specific recombination", WORLD JOURNAL OF GASTROENTEROLOGY, vol. 20, no. 36, 1 September 2014 (2014-09-01), pages 13119 - 13126
OKAMOTO ET AL., BBRC, vol. 295, 2002, pages 354

Also Published As

Publication number Publication date
EP4242317A1 (en) 2023-09-13
US20230407268A1 (en) 2023-12-21
JPWO2022097716A1 (ja) 2022-05-12
CN116419968A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US10568911B2 (en) Multipotent stem cells and uses thereof
Sun et al. Stem cell-based therapies for Duchenne muscular dystrophy
Otsu et al. Differentiation of induced pluripotent stem cells into dental mesenchymal cells
Narita et al. Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage
EP2137300B1 (en) Pluripotent autologous stem cells from oral or gastrointestinal mucosa
US8574567B2 (en) Multipotent stem cells and uses thereof
JP2012509072A (ja) 分化万能性状態への細胞の再プログラミング
JP2022513355A (ja) 条件付き不死化に関する制御可能な導入遺伝子を含む人工多能性細胞
US20070243608A1 (en) Platelet bioreactor
WO2016072446A1 (ja) ウイルスベクター、細胞およびコンストラクト
WO2022097716A1 (ja) 可逆的不死化細胞の製造方法
US20210284966A1 (en) Method of differentiation into mesenchymal stem cells through continuous subculture of dedifferentiated stem cells
JP2010051326A (ja) 中胚葉幹細胞を神経系細胞に分化誘導する方法
JP2019076008A (ja) 骨細胞、軟骨細胞、脂肪細胞、または神経細胞に分化可能な前駆細胞、その作製方法、およびその使用方法
CN115505573A (zh) 一种迁移活力增强的基因工程间充质干细胞及在干细胞治疗、干细胞美容中的应用
JP2008119003A (ja) 中胚葉幹細胞もしくはes細胞、または不死化した中胚葉幹細胞から神経系細胞への分化誘導方法
JP2019103393A (ja) 骨格筋幹細胞誘導方法
JP2019170393A (ja) iPS細胞の作製方法
WO2014038655A1 (ja) 腸上皮由来体性幹細胞の製造方法
Liu et al. Human telomerase reverse transcriptase gene-transfected effects on biological characteristics of Schwann cells
WO2014038653A1 (ja) 腎臓由来体性幹細胞の製造方法
Curini et al. Nucleofection of Ovine Amniotic Fluid-Derived Mesenchymal Stem Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560822

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18251805

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021889268

Country of ref document: EP

Effective date: 20230606