WO2010001796A1 - Élément à base de borure d'un élément des terres rares et son procédé de fabrication - Google Patents

Élément à base de borure d'un élément des terres rares et son procédé de fabrication Download PDF

Info

Publication number
WO2010001796A1
WO2010001796A1 PCT/JP2009/061572 JP2009061572W WO2010001796A1 WO 2010001796 A1 WO2010001796 A1 WO 2010001796A1 JP 2009061572 W JP2009061572 W JP 2009061572W WO 2010001796 A1 WO2010001796 A1 WO 2010001796A1
Authority
WO
WIPO (PCT)
Prior art keywords
lab
present
temperature
boride
rare earth
Prior art date
Application number
PCT/JP2009/061572
Other languages
English (en)
Japanese (ja)
Inventor
忠弘 大見
哲也 後藤
幹郎 小西
和人 安藤
Original Assignee
国立大学法人東北大学
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 住友大阪セメント株式会社 filed Critical 国立大学法人東北大学
Publication of WO2010001796A1 publication Critical patent/WO2010001796A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0675Main electrodes for low-pressure discharge lamps characterised by the material of the electrode

Definitions

  • the present invention relates to a member formed of a rare earth element boride and a manufacturing method thereof, and more particularly to a LaB 6 member and a manufacturing method thereof.
  • members formed of rare earth element borides such as LaB 6 , YB 6 , GdB 6 , and CeB 6 have high emission efficiency over a long period of time with high durability and low current operation.
  • it is used as an emitter of a cold cathode fluorescent lamp constituting a liquid crystal backlight light source.
  • the emitter made of the rare earth boride is formed by pouring, drying, and sintering a cylindrical cup. That is, the rare earth element boride member is usually formed by sintering.
  • Patent Document 2 a rare-earth boride film having high brightness, high efficiency, and long life in Patent Document 2 by forming a rare-earth boride film, particularly a LaB 6 film, on an electrode member by sputtering. It was proposed that a cathode body could be obtained as a chemical member. Thus, when sputtering a rare earth boride member, a sputtering target member is required.
  • the sintered member has a large number of pores and the density is about 80% by volume. (That is, the porosity is about 20%), and it has been found that a large amount of oxygen derived from air and moisture and carbon derived from organic matter taken into the pores are contained.
  • the sputtered film contains a large amount of contaminants (organic matter and moisture).
  • contaminants in the sputtered film can be removed.
  • a LaB 6 film having a low resistance and work function could be obtained.
  • the LaB 6 target member cannot reduce contaminants in the sputtered film unless it is subjected to heat treatment at 800 ° C. before use to remove moisture and organic matter.
  • heat treatment at 800 ° C. before use to remove moisture and organic matter.
  • the surface of the target member is oxidized, and oxide is also formed on the surface of the pores. More specifically, when a target member having an oxidized surface is sputtered, even if the oxide on the surface of the target member can be removed by the first void sputtering, the sputtering proceeds and oxygen from the oxide on the void surface Or adhering organic substances are taken into the sputtered film and eventually contaminated with oxygen or carbon. Therefore, even if the target member is heat-treated before use, a low work function cannot be obtained unless the substrate is sputtered at a high temperature and the sputtered film is annealed at a high temperature.
  • Such a conventional problem has been found to be caused by a large number of pores inside the rare earth boride member, in particular, the LaB 6 member, and the present invention aims to solve such a problem.
  • a member which is substantially composed of a boride of a rare earth element and has a porosity of 8% by volume or less, preferably 7% by volume or less.
  • the rare earth element boride contains LaB 6 .
  • a member having a porosity of 1% by volume or less is obtained.
  • a member characterized in that there is substantially no hole on the surface and inside is obtained.
  • the member is any one of a sputtering target member, a cathode body member, and an electrode member. A member is obtained.
  • a sixth aspect of the present invention comprises the steps of molding a powder consisting essentially of LaB 6, and a step of compressing while heating the molded body produced in about ⁇ at hot pressing, LaB 6 LaB 6 member manufacturing method characterized by obtaining a member is obtained.
  • the step of compressing while heating is performed at a temperature of 1800 ° C. or higher and a pressure of 30 MPa or higher. A method is obtained.
  • the method according to the sixth or seventh aspect further comprising a step of performing isotropic compression with a high-pressure gas while heating after the step of compressing while heating.
  • the step of performing isotropic compression is performed at a temperature of 1850 ° C. or higher and a pressure of 150 MPa or higher. The manufacturing method is obtained.
  • the LaB 6 member is any one of a sputtering target member, a cathode member, and an electrode member. method of manufacturing a LaB 6 member according to any one of is obtained.
  • a member with less impurities such as organic matter, oxygen, and carbon when sputtering is performed using as a target, a member with less impurities such as organic matter, oxygen, and carbon can be obtained.
  • FIG. 1 it is a diagram illustrating an example of a hot press furnace for pressing the LaB 6 moldings.
  • A a temperature of 1800 ° C.
  • the LaB 6 moldings by hot pressing furnace shows an SEM image when the 1 hour pressed at a pressure of 40 MPa
  • (b) is a 1800 ° C.
  • the LaB 6 moldings by hot press furnace It is a figure which shows the SEM image at the time of pressing at temperature and the pressure of 30 Mpa for 1 hour. It is a graph which shows the relative density of the hot press body at the time of using the hot press furnace of FIG.
  • the LaB 6 hot-pressed body according to an embodiment of the present invention shows a mass spectrum when heated to 400 ° C..
  • the LaB 6 hot-pressed body according to an embodiment of the present invention shows a mass spectrum when heated to 800 ° C..
  • 4 is a SEM image of a member obtained by HIP processing a LaB 6 hot press body at a temperature of 1800 ° C. and a pressure of 150 MPa for 1 hour according to an embodiment of the present invention.
  • 4 is an SEM image of a member obtained by HIP processing a LaB 6 hot press body at a temperature of 1850 ° C. and a pressure of 150 MPa for 1 hour according to an embodiment of the present invention.
  • FIG. 1 is a SEM photograph showing the state of the LaB 6 member before performing the process according to the present invention.
  • an SEM image ( ⁇ 2000) of a sintered body obtained by sintering LaB 6 powder having a purity of 99% by volume is shown.
  • a large number of pores are formed on the surface of the sintered body.
  • the temperature of this sintered body was raised with the temperature rise profile shown in FIG. That is, after holding at room temperature for 10 hours, the temperature was raised to 800 ° C. at a temperature rising rate of 5 ° C./min, and kept at a temperature of 800 ° C. for 30 minutes.
  • API-MS measurement was performed while flowing high purity Ar gas during this temperature rise, a large amount of contaminants was observed at 400 ° C. as shown by the mass spectrum in FIG.
  • the present invention is based on the novel finding of a large amount of contaminants inherent in conventional LaB 6 sintered body according to the holes of a conventional LaB 6 sintered body (due to the relative density is low), the sintered body We propose to reduce vacancies, i.e., porosity, and techniques.
  • LaB 6 sintered body the present invention is not limited to LaB 6 members which are sintered.
  • the hot press furnace used in the embodiment of the present invention includes a heat introduction member 12 and a heater 14 in a furnace wall, a gas introduction system for introducing argon gas into the furnace, and an exhaust system capable of exhausting the inside of the furnace by a pump.
  • a die (die) 16 made of carbon is provided in the furnace, the die 16 is supported by a die receiving base 18, and a punch 22 is provided above the die 16.
  • the LaB 6 shaped body 20 disposed in the die 16 is pressed by a hydraulic pressure by the punch 22 and the die support 18.
  • FIG. 8 an SEM image of the hot press body is shown. As is clear from FIG. 8, the number of vacancies on the surface of the LaB 6 hot press body is greatly reduced.
  • the relative density of the LaB 6 hot press body after hot pressing is shown.
  • the horizontal axis of the figure indicates the temperature (° C.), the pressure (MPa), and the hot press time (hour) during hot pressing, and the vertical axis indicates the relative density.
  • the relative density is 92 to 95% (the porosity is 8 to 5%) at a hot press temperature of 1,800 ° C. or higher and a pressure of 30 MPa or higher.
  • the porosity is preferably 7% by volume or less, more preferably 1% by volume or less.
  • mass spectra are shown when the LaB6 hot press body after hot pressing is heat-treated at 400 ° C. and 800 ° C., and the contaminants are greatly reduced at any temperature. I understand.
  • a LaB 6 hot-pressed body after hot pressing a LaB 6 member with less contaminants can be formed compared to a conventionally used target.
  • the LaB 6 hot pressed body was subjected to HIP (Hot Isostatic Pressing) treatment.
  • HIP treatment can reduce pores by utilizing the synergistic effect of temperature and (isotropic) pressure from all directions.
  • FIG. 12 shows the surface enlargement of a LaB 6 hot-pressed body (density 93.5%) hot-pressed at 1,800 ° C. and 40 MPa. In this state, there are still some pores. This was processed in a HIP processing furnace at 1800 ° C. and 1850 ° C. for 1 hour at 150 MPa. Pressurization was performed using high-purity Ar gas. The results are shown in FIGS. 13 and 14, respectively. LaB 6 member treated at 1,800 ° C. has some pores, but LaB 6 member treated at 1850 ° C. has almost no voids. As a result, the density of the LaB 6 member shown in FIG. 14 was about 100% (99% or more).
  • the rare earth element boride member such as LaB 6 according to the present invention can be applied not only to a target member used for sputtering but also to form a cathode member of a cold cathode fluorescent lamp and other electrode members. Furthermore, the present invention can realize a LaB 6 thin film having a low work function without performing heat treatment. The present invention can be applied not only to LaB 6 but also to other rare earth boride elements (eg, LaB 4, YB 6 , GdB 6 , CeB 6 ) and the like.
  • rare earth boride elements eg, LaB 4, YB 6 , GdB 6 , CeB 6
  • Heat Insulating Material 14 Heater 16 Dies 18 Die Base 20 LaB 6 Sintered Body 22 Punch

Abstract

Des compacts frittés de borures d'éléments des terres rares, en particulier LaB6 se sont révélés inappropriés pour être utilisés comme élément de pulvérisation cathodique ou similaire en raison du fait qu'un polluant est présent dans ceux-ci dans une grande quantité. Sur la base d'une nouvelle position selon laquelle la contamination par des compacts frittés classiques de LaB6 est attribuée à l'existence d'une grande quantité de pores, un compact de LaB6 est pressé dans un four de compression à chaud puis soumis à une compression isostatique à chaud (HIP). Les pores sont ainsi diminués pour parvenir à une porosité de 7 % en volume ou moins, de préférence de 1 % en volume ou moins. Ainsi, un élément à teneur en polluant réduite peut être formé.
PCT/JP2009/061572 2008-07-02 2009-06-25 Élément à base de borure d'un élément des terres rares et son procédé de fabrication WO2010001796A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008173232A JP2011195337A (ja) 2008-07-02 2008-07-02 希土類元素ホウ化物部材およびその製造方法
JP2008-173232 2008-07-02

Publications (1)

Publication Number Publication Date
WO2010001796A1 true WO2010001796A1 (fr) 2010-01-07

Family

ID=41465893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061572 WO2010001796A1 (fr) 2008-07-02 2009-06-25 Élément à base de borure d'un élément des terres rares et son procédé de fabrication

Country Status (2)

Country Link
JP (1) JP2011195337A (fr)
WO (1) WO2010001796A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063487A (ja) * 2009-09-18 2011-03-31 Sumitomo Osaka Cement Co Ltd ホウ化ランタン焼結体、その焼結体を用いたターゲット及びその焼結体の製造方法
WO2011122100A1 (fr) * 2010-03-29 2011-10-06 住友大阪セメント株式会社 Corps fritté d'hexaborure de lanthane, cible et film d'hexaborure de lanthane le comprenant chacun, et procédé de fabrication du corps fritté
JP2012012249A (ja) * 2010-06-30 2012-01-19 Sumitomo Osaka Cement Co Ltd 六ホウ化ランタン微粒子の製造方法及び六ホウ化ランタン微粒子
JP2012214374A (ja) * 2011-03-29 2012-11-08 Sumitomo Osaka Cement Co Ltd 六ホウ化ランタン微粒子の製造方法、六ホウ化ランタン微粒子、六ホウ化ランタン焼結体、六ホウ化ランタン膜及び有機半導体デバイス
EP2703349A1 (fr) * 2012-09-03 2014-03-05 NGK Insulators, Ltd. Corps fritté de borure de lanthane et son procédé de production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434583B2 (ja) * 2009-12-28 2014-03-05 住友大阪セメント株式会社 金属ホウ化物焼結体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315403A (ja) * 1986-07-08 1988-01-22 Inoue Japax Res Inc 希土類磁石
JPS63241834A (ja) * 1987-03-30 1988-10-07 Denki Kagaku Kogyo Kk 熱陰極
JPH06248446A (ja) * 1993-02-26 1994-09-06 Mitsubishi Materials Corp スパッタリング用ターゲット及びその製造方法
JP2001098364A (ja) * 1999-09-28 2001-04-10 Nikko Materials Co Ltd スッパタリング用タングステンターゲット及びその製造方法
JP2005063857A (ja) * 2003-08-15 2005-03-10 Denki Kagaku Kogyo Kk 荷電粒子放射源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315403A (ja) * 1986-07-08 1988-01-22 Inoue Japax Res Inc 希土類磁石
JPS63241834A (ja) * 1987-03-30 1988-10-07 Denki Kagaku Kogyo Kk 熱陰極
JPH06248446A (ja) * 1993-02-26 1994-09-06 Mitsubishi Materials Corp スパッタリング用ターゲット及びその製造方法
JP2001098364A (ja) * 1999-09-28 2001-04-10 Nikko Materials Co Ltd スッパタリング用タングステンターゲット及びその製造方法
JP2005063857A (ja) * 2003-08-15 2005-03-10 Denki Kagaku Kogyo Kk 荷電粒子放射源

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063487A (ja) * 2009-09-18 2011-03-31 Sumitomo Osaka Cement Co Ltd ホウ化ランタン焼結体、その焼結体を用いたターゲット及びその焼結体の製造方法
WO2011122100A1 (fr) * 2010-03-29 2011-10-06 住友大阪セメント株式会社 Corps fritté d'hexaborure de lanthane, cible et film d'hexaborure de lanthane le comprenant chacun, et procédé de fabrication du corps fritté
JP5761178B2 (ja) * 2010-03-29 2015-08-12 住友大阪セメント株式会社 六ホウ化ランタン焼結体、それを用いたターゲット、六ホウ化ランタン膜、及び該焼結体の製造方法
US9346715B2 (en) 2010-03-29 2016-05-24 Sumitomo Osaka Cement Co., Ltd. Lanthanum hexaboride sintered body, target and lanthanum hexaboride film each comprising same, and process for production of the sintered body
JP2012012249A (ja) * 2010-06-30 2012-01-19 Sumitomo Osaka Cement Co Ltd 六ホウ化ランタン微粒子の製造方法及び六ホウ化ランタン微粒子
JP2012214374A (ja) * 2011-03-29 2012-11-08 Sumitomo Osaka Cement Co Ltd 六ホウ化ランタン微粒子の製造方法、六ホウ化ランタン微粒子、六ホウ化ランタン焼結体、六ホウ化ランタン膜及び有機半導体デバイス
EP2703349A1 (fr) * 2012-09-03 2014-03-05 NGK Insulators, Ltd. Corps fritté de borure de lanthane et son procédé de production
US9257210B2 (en) 2012-09-03 2016-02-09 Ngk Insulators, Ltd. Lanthanum boride sintered body and method for producing the same

Also Published As

Publication number Publication date
JP2011195337A (ja) 2011-10-06

Similar Documents

Publication Publication Date Title
WO2010001796A1 (fr) Élément à base de borure d'un élément des terres rares et son procédé de fabrication
JP2004515072A (ja) 窒素をドーピングした、焼結タンタルコンデンサーペレットまたは焼結にオブコンデンサーペレット、およびその製造方法
EP3061739B1 (fr) Siliziumnitrid-substrat und siliziumnitrid-leiterplatte mit diesem substrat
JP5761178B2 (ja) 六ホウ化ランタン焼結体、それを用いたターゲット、六ホウ化ランタン膜、及び該焼結体の製造方法
WO2017030360A1 (fr) Comprimé fritté de nitrure de silicium présentant une conductivité thermique élevée et procédé pour le fabriquer
KR102655133B1 (ko) 복합 소결체, 반도체 제조 장치 부재 및 복합 소결체의 제조 방법
JP2014172783A (ja) 酸化亜鉛粉末及びその製造方法
JP2015199657A (ja) 窒化ケイ素基板の製造方法
JP2006273586A (ja) セラミックス部材及びその製造方法
KR101114938B1 (ko) 질화알루미늄 소결체의 제조 방법
RU2721379C2 (ru) Спеченные непористые катодные электроды и содержащие их ионно-распылительные вакуумные насосы
EP2189431B1 (fr) Produit fritté de nitrure d'aluminium, procédé de sa production et mandrin électrostatique contenant ce produit
JP2007169789A (ja) 高密度の半製品又は構成要素を製造する方法
CN1873876B (zh) 电极材料
JP2008201670A (ja) 非酸化物セラミックス焼結体の製造方法
JP3764315B2 (ja) タングステン材料とその製造方法
JP3983362B2 (ja) 多孔質複合セラミックス、及びその製造方法
JP5434583B2 (ja) 金属ホウ化物焼結体の製造方法
JPWO2019155652A1 (ja) 半導体製造装置用ヒータ
KR102444340B1 (ko) 열간 가압 소결에 의한 투광성 이트리아의 제조 방법
US20060154827A1 (en) Aluminum nitride sintered compact
JP2005170728A (ja) Y2o3焼結体およびその製造方法
JP4638675B2 (ja) ニオブ線材、その製造法および該ニオブ線材の使用
NL1009716C2 (nl) Werkwijze ter vervaardiging van een kathode-onderdeel en elektronenbuis die daarmee is uitgerust.
US11056254B2 (en) Method of manufacturing magnetic material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP