WO2010001673A1 - フルオロプロピレンカーボネートの製造法 - Google Patents

フルオロプロピレンカーボネートの製造法 Download PDF

Info

Publication number
WO2010001673A1
WO2010001673A1 PCT/JP2009/059585 JP2009059585W WO2010001673A1 WO 2010001673 A1 WO2010001673 A1 WO 2010001673A1 JP 2009059585 W JP2009059585 W JP 2009059585W WO 2010001673 A1 WO2010001673 A1 WO 2010001673A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
reaction
carbonate
represented
nmr
Prior art date
Application number
PCT/JP2009/059585
Other languages
English (en)
French (fr)
Inventor
明天 高
みちる 賀川
昭佳 山内
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020107029735A priority Critical patent/KR101271898B1/ko
Priority to CN200980125501.XA priority patent/CN102076675B/zh
Priority to JP2010518965A priority patent/JP5234109B2/ja
Priority to RU2011103166/04A priority patent/RU2470019C2/ru
Priority to US13/002,002 priority patent/US8519161B2/en
Priority to EP09773251.5A priority patent/EP2308862B1/en
Publication of WO2010001673A1 publication Critical patent/WO2010001673A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • C07D317/38Ethylene carbonate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates

Definitions

  • the present invention relates to a method for producing fluoropropylene carbonate.
  • Fluoropropylene carbonate is used as a solvent for non-aqueous electrolytes used in electrochemical devices such as secondary batteries and capacitors.
  • This fluoropropylene carbonate is produced by the following production method.
  • (2) Direct fluorination method of propylene carbonate using fluorine gas (Non-patent documents 3 to 5)
  • the object of the present invention is to provide a method for producing fluoropropylene carbonate in a safe and high yield using a fluorinating agent.
  • the present invention Formula (1): (Wherein X 1 , X 2 , X 3 and X 4 are the same or different, and all are hydrogen atoms or —CH 2 Y (Y is a group other than a hydrogen atom and is eliminated in a fluorination reaction), provided that X Wherein at least one of X 1 , X 2 , X 3 and X 4 is —CH 2 Y), wherein a fluorinating agent is allowed to act on the propylene carbonate derivative represented by formula (2): (Wherein R 1 , R 2 , R 3 and R 4 are the same or different and all are H or —CH 2 F; provided that at least one of R 1 , R 2 , R 3 and R 4 is —CH 2 F).
  • the fluorinating agent is preferably a compound represented by hydrofluoric acid, hydrofluoric acid salt, fluorine gas, or a formula: MF (wherein M is an alkali metal atom or a quaternary ammonium cation).
  • a chlorine atom, —OH or —OSO 2 R R is an aliphatic or aromatic group optionally containing a halogen atom, a nitrogen atom or an oxygen atom.
  • Group hydrocarbon group
  • the propylene carbonate derivative represented by the formula (1) is represented by the formula (1-1): (Wherein Y is the same as described above), which is represented by formula (2-1): It is suitable for the production of 3-fluoropropylene carbonate represented by
  • fluoropropylene carbonate can be produced safely at a high yield in one step (one pot).
  • Formula (2) of the present invention (Wherein R 1 , R 2 , R 3 and R 4 are the same or different and all are H or —CH 2 F; provided that at least one of R 1 , R 2 , R 3 and R 4 is —CH 2 F) is a group capable of easily leaving one of the —CH 3 hydrogen atoms of a propylene carbonate derivative as a starting material when a fluorinating agent is acted thereon.
  • the fluorination reaction can be carried out selectively and efficiently, and fluoropropylene carbonate can be produced in a safe and high yield.
  • the starting material used in the present invention is represented by the formula (1): (Wherein X 1 , X 2 , X 3 and X 4 are the same or different, and all are hydrogen atoms or —CH 2 Y (Y is a group other than a hydrogen atom and is eliminated in a fluorination reaction), provided that X 1 , at least one of X 2 , X 3 and X 4 is —CH 2 Y).
  • a plurality of X 1 , X 2 , X 3 and X 4 may be all —CH 2 Y, but one is —CH 2 Y from the viewpoint of low viscosity as a solvent of the nonaqueous electrolyte. Certain 3-substituted propylene carbonates are preferred.
  • the leaving group Y may be any group that is easily detached when a fluorinating agent is allowed to act and is replaced with a fluorine atom.
  • Preferable leaving group Y is, for example, a chlorine atom, —OH or —OSO 2 R (R is an aliphatic or aromatic hydrocarbon group which may contain a halogen atom, nitrogen atom or oxygen atom, preferably carbon number 1 to 8 hydrocarbon groups).
  • R include, for example, —CH 3 , —CH 2 CH 3 , —CH (CH 3 ) 2 , —CH 2 CH 2 CH 3 , —C (CH 3 ) 3 , —CH 2 CH (CH 3 ).
  • alkyl group which may have a fluorine atom having 1 to 4 carbon atoms, such as (CF 3 ) 2 , —CF 2 CF 2 CF 2 CF 3 ;
  • Aryl groups such as
  • a plurality of leaving groups Y may be the same or different, but preferably the same ones are preferable because the reaction can be facilitated by making the reactivity the same.
  • fluorinating agent a conventionally known fluorinating agent can be used.
  • hydrofluoric acid hydrofluoric acid salt, fluorine gas, a compound represented by the formula: MF (wherein M is an alkali metal atom or a quaternary ammonium cation), etc. It can be illustrated.
  • hydrofluoric acid salt examples include amine hydrofluoric acid salts such as triethylamine monohydrofluoric acid salt.
  • Examples of compounds represented by MF include metal fluorides such as KF, NaF, CsF, and LiF; (CH 3 CH 2 ) 2 NCF 2 CFHCF 3 , (CH 3 CH 2 ) 2 NSF 3 , CH 3 CH 2 CH 2 CH 2 A compound of a quaternary ammonium cation such as N + F ⁇ (TBAF) and a fluorine anion.
  • metal fluorides such as KF, NaF, CsF, and LiF
  • (CH 3 CH 2 ) 2 NCF 2 CFHCF 3 (CH 3 CH 2 ) 2 NSF 3 , CH 3 CH 2 CH 2 CH 2
  • a compound of a quaternary ammonium cation such as N + F ⁇ (TBAF) and a fluorine anion.
  • hydrofluoric acid, hydrofluoric acid salt, fluorine gas, and a compound represented by MF are preferable from the viewpoint of high reactivity, and a compound represented by MF is particularly preferable from the viewpoint of easy operation.
  • the fluorinating agent to be actuated is selected according to the type of the leaving group Y, and the fluorination reaction scheme is determined. Some of them will be described with reference to the production of 3-fluoropropylene carbonate.
  • the intermediate (I) can also be regarded as a starting material.
  • the leaving group Y is —CF (N (CH 2 CH 3 ) 2 ) (CFHCF 3 ), and the fluorinating agent is hydrofluoric acid. (HF).
  • fluorination proceeds in this reaction scheme is the case of using (CH 3 CH 2 ) 2 NSF 3 , SF 4 , SO 2 F 2 , COF 2 or the like as the fluorinating agent.
  • reaction solvent is not particularly required, but when (CH 3 CH 2 ) 2 NCF 2 CFHCF 3 , SF 4 , SO 2 F 2 , COF 2 , (CH 3 CH 2 ) 2 NSF 3 or the like is used as a fluorinating agent. May use polar solvents such as dichloromethane, chloroform, tetrahydrofuran, dimethylacetamide, dimethylformamide, glyme solvents, acetonitrile, acetone, toluene, ethyl acetate and the like.
  • the reaction is completed in 1 to 10 hours, and the desired 3-fluoropropylene carbonate (2-1) is obtained in a yield (80 to 99%) and a purity (GC measurement) of 90 to 99%.
  • 3-Hydroxypropylene carbonate (1-1) can be easily synthesized in a high yield by a known method in which glycerin and carbon dioxide are reacted. Also known are a method of reacting glycerin and phosgene (for example, JP-A-6-9610) and a method of reacting glycerin and ethylene carbonate using aluminum oxide as a catalyst (for example, JP-A-6-329663).
  • the production method of the present invention using 3-hydroxypropylene carbonate as a starting material is advantageous from the viewpoint of synthesis and availability of the starting material.
  • Reaction Scheme 2 Leaving group Y: —Cl, —OSO 2 R (R is an aliphatic or aromatic hydrocarbon group which may contain a halogen atom, a nitrogen atom or an oxygen atom)
  • Fluorinating agent metal fluoride (CsF, KF, NaF, LiF, etc.), hydrofluoric acid (HF), hydrofluoric acid salt Reaction scheme:
  • the fluorinating agent reacts directly with the leaving group at the 3-position of 3-Y substituted propylene carbonate (1-2).
  • the reaction temperature is preferably 50 to 150 ° C. with stirring.
  • a reaction solvent is preferably used, and examples thereof include polar solvents such as dichloromethane, chloroform, tetrahydrofuran, dimethylacetamide, dimethylformamide, glyme solvents, acetonitrile, acetone, toluene, and ethyl acetate.
  • the reaction is completed in 2 to 8 hours, and the desired 3-fluoropropylene carbonate (2-1) is obtained with a purity (GC measurement) of 90 to 99% in a yield of 70 to 99%.
  • the compound in which the leaving group Y is —OSO 2 R is, for example, 3-hydroxy of the formula (1-1) It can be easily synthesized by reacting propylene carbonate with a sulfonating agent (X-OSO 2 R (X is F, Cl, Br, I)) such as alkyl sulfonic acid halide and aryl sulfonic acid halide.
  • a sulfonating agent X-OSO 2 R (X is F, Cl, Br, I)
  • reaction solvent organic solvents such as dichloromethane, chloroform, tetrahydrofuran, dimethylacetamide, dimethylformamide, glyme solvents, polar solvents such as acetonitrile, acetone, toluene and ethyl acetate may be used. It is also preferable to use a base such as triethylamine or pyridine as the catalyst.
  • the reaction is completed in 1 to 5 hours, and the target 3-Y substituted propylene carbonate (1-2) is obtained with a yield (GC measurement) of 90 to 99% in a yield of 80 to 99%.
  • 3-Y substituted propylene carbonate (1-2) which is the starting material used in Reaction Scheme 2
  • a compound in which the leaving group Y is a chlorine atom, that is, 3-chloropropylene carbonate, is epichlorohydrin and CO 2.
  • Fluoropropylene carbonate obtained by the production method of the present invention has the effect of improving ion conductivity and rate characteristics as an additive for a non-aqueous electrolyte of a lithium secondary battery.
  • a reflux tube was attached to the top of a 500 mL glass three-necked flask equipped with a stirrer, and a reactor was assembled so that gas escaped outside the system through an alkali trap under a nitrogen flow, and 100 g of 3-hydroxypropylene carbonate was placed in the reactor. (850 mmol) was added and stirred in an ice bath. Thereafter, 190 g (850 mmol) of 1,1,2,3,3,3-hexafluoro-1-diethylaminopropane was added dropwise using a dropping funnel. At that time, an exotherm of about 20 ° C. was confirmed. After confirming the disappearance of the raw materials using GC, the reaction was stopped. Stirring was performed for 24 hours.
  • a reflux tube was attached to the top of a 500 mL glass three-necked flask equipped with a stirrer, and a reactor was assembled so that gas escaped outside the system through an alkali trap under a nitrogen flow, and 100 g of 3-hydroxypropylene carbonate was placed in the reactor. (850 mmol), dichloromethane was added, and the mixture was stirred at -78 ° C. Thereafter, 190 g (850 mmol) of diethylaminosulfur trifluoride was dropped using a dropping funnel. At that time, an exotherm of about 20 ° C. was confirmed. After confirming the disappearance of the raw materials using GC, the reaction was stopped. Stirring was performed for 2 hours.
  • the lower layer compound was measured by 1 H-NMR and found to be 3- (p-toluenesulfonyl) propylene carbonate (yield 83%, 192 g (706 mmol)).
  • a reflux tube was attached to the top of a 500 mL glass three-necked flask equipped with a stirrer, and a reactor equipped with a nitrogen balloon was assembled.
  • 116 g (850 mmol) of 3-chloropropylene carbonate and potassium fluoride (KF) 64 g (1.11 mol) and 200 mL of diglyme were added and stirred. Thereafter, the mixture was heated to 150 ° C. and stirred until the raw material disappeared. Stirring was performed for 2 hours. After the reaction, the mixture was allowed to stand at room temperature, diluted with ethyl acetate, and the resulting salt was filtered.
  • KF potassium fluoride
  • a reflux tube was attached to the top of a 500 mL glass three-necked flask equipped with a stirrer, and a reactor was assembled so that gas escaped outside the system through an alkali trap under a nitrogen flow, and 3,4-di ( Hydroxymethyl) ethylene carbonate 63.1 g (425 mmol) and dichloromethane were added and the mixture was stirred at -78 ° C. Thereafter, 190 g (850 mmol) of diethylaminosulfur trifluoride was dropped using a dropping funnel. At that time, an exotherm of about 20 ° C. was confirmed. After confirming the disappearance of the raw materials using GC, the reaction was stopped. Stirring was performed for 2 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Secondary Cells (AREA)
  • Epoxy Compounds (AREA)

Abstract

 1工程(ワンポット)で高収率にて安全にフルオロプロピレンカーボネートの製造法であって、フッ素化反応において脱離する基を有するプロピレンカーボネート誘導体にフッ素化剤を作用させることを特徴とするフルオロプロピレンカーボネートの製造法を提供する。

Description

フルオロプロピレンカーボネートの製造法
 本発明は、フルオロプロピレンカーボネートの製造法に関する。
 フルオロプロピレンカーボネートは、二次電池やキャパシタなどの電気化学デバイスに用いる非水電解液の溶媒として使用されている。
 このフルオロプロピレンカーボネート、特に3-フルオロプロピレンカーボネートは、つぎの製法で製造されている。
(1)エポキシ基含有含フッ素化合物(1-フルオロ-2,3-エポキシプロパン)と二酸化炭素との反応による方法(非特許文献1~2)
(2)プロピレンカーボネートのフッ素ガスを用いた直接フッ素化方法(非特許文献3~5)
Chemistry-A European Journal, 12, p1004-1015 (2006) Journal of Organic Chemistry, 70, p8583-8586 (2005) Electrochemistry, 76, p2-15 (2008) Chemistry Letters, 37, p476-477 (2008) 電気化学学会 第75回大会予稿集、p106 (2008年)
 本発明は、フッ素化剤を用いて安全かつ高収率でフルオロプロピレンカーボネートを製造する方法を提供することを目的とする。
 本発明は、
式(1):
Figure JPOXMLDOC01-appb-C000005
(式中、X1、X2、X3およびX4は同じかまたは異なり、いずれも水素原子または-CH2Y(Yは水素原子以外のフッ素化反応において脱離する基)。ただし、X1、X2、X3およびX4の少なくとも1つは-CH2Yである)で示されるプロピレンカーボネート誘導体にフッ素化剤を作用させることを特徴とする式(2):
Figure JPOXMLDOC01-appb-C000006
(式中、R1、R2、R3およびR4は同じかまたは異なり、いずれもHまたは-CH2F;ただし、R1、R2、R3およびR4の少なくとも1つは-CH2Fである)で示されるフルオロプロピレンカーボネートの製造法に関する。
 フッ素化剤としては、フッ酸、フッ酸塩、フッ素ガス、式:MF(式中、Mはアルカリ金属原子または4級アンモニウムカチオン)で示される化合物が好ましい。
 前記フッ素化反応において脱離する基(脱離性基)Yとしては、塩素原子、-OHまたは-OSO2R(Rはハロゲン原子、窒素原子または酸素原子を含んでいてもよい脂肪族または芳香族炭化水素基)が好ましい。
 本発明の製造法は、式(1)で示されるプロピレンカーボネート誘導体が、式(1-1):
Figure JPOXMLDOC01-appb-C000007
(式中、Yは前記と同じ)で示される3-Y置換プロピレンカーボネートであって、式(2-1):
Figure JPOXMLDOC01-appb-C000008
で示される3-フルオロプロピレンカーボネートの製造に好適である。
 本発明の製造法によれば、1工程(ワンポット)で高収率にて安全にフルオロプロピレンカーボネートを製造することができる。
 本発明の式(2):
Figure JPOXMLDOC01-appb-C000009
(式中、R1、R2、R3およびR4は同じかまたは異なり、いずれもHまたは-CH2F;ただし、R1、R2、R3およびR4の少なくとも1つは-CH2Fである)で示されるフルオロプロピレンカーボネートの製造法は、出発物質としてのプロピレンカーボネート誘導体の-CH3の水素原子の1つを、フッ素化剤を作用させたときに容易に脱離し得る基で置き換えることにより、フッ素化反応を選択的に効率よく行うことができ、安全かつ高収率でフルオロプロピレンカーボネートが製造できる。
 本発明で用いる出発物質は、式(1):
Figure JPOXMLDOC01-appb-C000010
(式中、X1、X2、X3およびX4は同じかまたは異なり、いずれも水素原子または-CH2Y(Yは水素原子以外のフッ素化反応において脱離する基)。ただし、X1、X2、X3およびX4の少なくとも1つは-CH2Yである)で示されるプロピレンカーボネート誘導体である。
 X1、X2、X3およびX4の複数、さらにはすべてが-CH2Yであってもよいが、非水電解液の溶媒としての粘性が低い点から、1つが-CH2Yである3-置換プロピレンカーボネートが好ましい。
 脱離性基Yとしては、フッ素化剤を作用させたときに容易に脱離し、フッ素原子に置き換わる基であればよい。好ましい脱離性基Yとしては、たとえば塩素原子、-OHまたは-OSO2R(Rはハロゲン原子、窒素原子または酸素原子を含んでいてもよい脂肪族または芳香族炭化水素基、好ましくは炭素数1~8の炭化水素基)などがあげられる。Rの具体例としては、たとえば-CH3、-CH2CH3、-CH(CH32、-CH2CH2CH3、-C(CH33、-CH2CH(CH32、-CH2CH2CH2CH3、-CF3、-CF2CF3、-CF(CF32、-CF2CF2CF3、-C(CF33、-CF2CF(CF32、-CF2CF2CF2CF3などの炭素数1~4のフッ素原子を有していてもよいアルキル基;
Figure JPOXMLDOC01-appb-C000011
などのアリール基などがあげられる。
 脱離性基Yが複数存在する場合は同じでも異なっていてもよいが、好ましくは、反応性を同じにして反応の進行を容易にできる点から同じものが好ましい。
 フッ素化剤としては従来公知のフッ素化剤が使用でき、たとえばフッ酸、フッ酸塩、フッ素ガス、式:MF(式中、Mはアルカリ金属原子または4級アンモニウムカチオン)で示される化合物などが例示できる。
 フッ酸塩としては、たとえばトリエチルアミンモノフッ酸塩などのアミンフッ酸塩などが例示できる。
 MFで示される化合物としては、KF、NaF、CsF、LiFなどの金属フッ化物;(CH3CH22NCF2CFHCF3、(CH3CH22NSF3、CH3CH2CH2CH2+-(TBAF)などの4級アンモニウムカチオンとフッ素アニオンとの化合物などがあげられる。
 なかでもフッ酸、フッ酸塩、フッ素ガス、MFで示される化合物が、反応性が高い点から好ましく、特にMFで示される化合物が、操作方法が簡易な点から好ましい。
 作用させるフッ素化剤は脱離性基Yの種類によって選定され、フッ素化反応スキームが決まる。そのいくつかを3-フルオロプロピレンカーボネートの製造を代表として説明する。
(反応スキーム1)
 脱離性基Y:-OH
 フッ素化剤:4級アンモニウムカチオンとフッ素アニオンとの化合物(たとえば、(CH3CH22NCF2CFHCF3
 反応スキーム:
Figure JPOXMLDOC01-appb-C000012
 この反応では、フッ素化剤と3-ヒドロキシプロピレンカーボネート(1-1)との反応で発生したフッ酸が最終的にプロピレンカーボネートの3位のヒドロキシ基をフッ素にする。この反応は中間体(I)が単離されることなくワンポットで進む。
 なお、中間体(I)を出発物質とみることもでき、その場合、脱離性基Yは-CF(N(CH2CH32)(CFHCF3)であり、フッ素化剤はフッ酸(HF)である。
 この反応スキームでフッ素化が進む例として、フッ素化剤として(CH3CH22NSF3、SF4、SO22、COF2などを用いる場合があげられる。
 この反応は発熱反応であるので、氷冷下に攪拌しながら行うことが好ましい。反応溶媒は特に必要としないが、フッ素化剤として(CH3CH22NCF2CFHCF3、SF4、SO22、COF2、(CH3CH22NSF3などを用いる場合には、ジクロロメタン、クロロホルム、テトラヒドロフラン、ジメチルアセトアミド、ジメチルホルムアミド、グライム系溶媒、アセトニトリル、アセトン、トルエン、酢酸エチルなどの極性溶媒を使用してもよい。
 反応は1~10時間で終了し、収率80~99%にて純度(GC測定)90~99%で目的とする3-フルオロプロピレンカーボネート(2-1)が得られる。
 ここで、この反応スキーム1で用いる出発物質である3-ヒドロキシプロピレンカーボネート(1-1)の合成について簡単に説明する。
 3-ヒドロキシプロピレンカーボネート(1-1)は、グリセリンと二酸化炭素とを反応させる公知の方法により容易に高収率で合成できる。また、グリセリンとホスゲンとを反応させる方法(たとえば特開平6-9610号公報)、グリセリンとエチレンカーボネートを酸化アルミニウムを触媒として反応させる方法(たとえば特開平6-329663号公報)も知られている。
 一方、従来法であるエポキシ基含有含フッ素化合物からフルオロプロピレンカーボネートを製造する方法(1)では、出発物質であるエポキシ基含有含フッ素化合物の製造に多段の工程を要したり、毒性の強い物質を使用したりしており、収率および安全性の面から問題がある。また、プロピレンカーボネートをフッ素ガスで直接フッ素化する方法(2)では、3位の炭素原子以外の炭素原子もフッ素化されるので副生成物が多く生じ、収率や分離の面で問題がある。
 したがって、出発物質として3-ヒドロキシプロピレンカーボネートを用いる本発明の製造法は、出発物質の合成・入手の面からも有利である。
(反応スキーム2)
 脱離性基Y:-Cl、-OSO2R(Rはハロゲン原子、窒素原子または酸素原子を含んでいてもよい脂肪族または芳香族炭化水素基)
 フッ素化剤:金属フッ化物(CsF、KF、NaF、LiFなど)、フッ酸(HF)、フッ酸塩
 反応スキーム:
Figure JPOXMLDOC01-appb-C000013
 この反応では、フッ素化剤が3-Y置換プロピレンカーボネート(1-2)の3位の脱離性基と直接反応する。
 この反応スキームでフッ素化が進む例として、フッ素化剤としてCsF、KF、NaF、LiF、HF、(CH3CH23N・m(HF)(m=1~3)、
Figure JPOXMLDOC01-appb-C000014
などを用いる場合があげられる。
 この反応の反応温度は50~150℃にて攪拌しながら行うことが好ましい。反応溶媒を用いることが好ましく、ジクロロメタン、クロロホルム、テトラヒドロフラン、ジメチルアセトアミド、ジメチルホルムアミド、グライム系溶媒、アセトニトリル、アセトン、トルエン、酢酸エチルなどの極性溶媒などがあげられる。
 反応は2~8時間で終了し、収率70~99%にて純度(GC測定)90~99%で目的とする3-フルオロプロピレンカーボネート(2-1)が得られる。
 この反応スキーム2で用いる出発物質である3-Y置換プロピレンカーボネート(1-2)のうち、脱離性基Yが-OSO2Rである化合物は、たとえば式(1-1)の3-ヒドロキシプロピレンカーボネートに、アルキルスルホン酸ハライド、アリールスルホン酸ハライドなどのスルホン化剤(X-OSO2R(XはF、Cl、Br、I))を反応させることによって容易に合成できる。
Figure JPOXMLDOC01-appb-C000015
 この反応は発熱反応であるので、氷冷下に攪拌しながら行うことが好ましい。反応溶媒としては、ジクロロメタン、クロロホルム、テトラヒドロフラン、ジメチルアセトアミド、ジメチルホルムアミド、グライム系溶媒、アセトニトリル、アセトン、トルエン、酢酸エチルなどの極性溶媒などの有機溶媒を使用してもよい。また、触媒として、トリエチルアミン、ピリジンなどの塩基を使用することも好ましい。
 反応は1~5時間で終了し、収率80~99%にて純度(GC測定)90~99%で目的とする3-Y置換プロピレンカーボネート(1-2)が得られる。
 反応スキーム2で用いる出発物質である3-Y置換プロピレンカーボネート(1-2)のうち、脱離性基Yが塩素原子である化合物、すなわち3-クロロプロピレンカーボネートは、エピクロロヒドリンとCO2とLiBrとを極性溶媒中で反応させることにより容易に合成できる。
 本発明の製造法で得られるフルオロプロピレンカーボネートは、リチウム二次電池の非水電解液の添加剤として、イオン伝導性の向上、レート特性の向上という効果を奏する。
 つぎに実施例をあげて本発明の製造法を説明するが、本発明はこれらの実施例に限定されるものではない。
 以下の実施例で使用した分析方法はつぎのものである。
(1)NMR
装置:BRUKER製のAC-300
測定条件:
 19F-NMR:282MHz(トリフルオロメチルベンゼン=-62.3ppm)
 1H-MNR:300MHz(トリフルオロメチルベンゼン=7.51ppm)
(2)GC
 (株)島津製作所製のGC-17Aを使用する。カラムはDB624(長さ60m、内径0.32mm、膜厚1.8mm)を使用する。
実施例1
Figure JPOXMLDOC01-appb-C000016
 撹拌装置を備えた500mLのガラス製3口フラスコの上部に還流管を取り付け、窒素フロー下でアルカリトラップを通して系外に気体が逃げるように反応装置を組み、反応器内に3-ヒドロキシプロピレンカーボネート100g(850mmol)を加え氷浴下で撹拌を行った。その後滴下ロートを用いて、1,1,2,3,3,3-ヘキサフルオロ-1-ジエチルアミノプロパン190g(850mmol)を滴下した。そのとき20℃程度の発熱を確認した。原料消失の確認をGCを用いて行った後、反応を止めた。撹拌は24時間行った。反応後、反応溶液をジクロロメタンで抽出し飽和重曹水溶液で中和し有機層を硫酸マグネシウムで乾燥後、蒸留を行い、目的生成物を87g(723mmol)得た。19F-NMR、1H-NMRで測定し、目的生成物が3-フルオロプロピレンカーボネートであることを確認した(収率85%、GC純度99.8%)。
19F-NMR:(重アセトン):-237.6~-237.0ppm(1F)
1H-NMR:(重アセトン):4.40~5.11ppm(5H)
実施例2
Figure JPOXMLDOC01-appb-C000017
 撹拌装置を備えた500mLのガラス製3口フラスコの上部に還流管を取り付け、窒素フロー下でアルカリトラップを通して系外に気体が逃げるように反応装置を組み、反応器内に3-ヒドロキシプロピレンカーボネート100g(850mmol)、ジクロロメタンを加え-78℃で撹拌を行った。その後滴下ロートを用いて、ジエチルアミノサルファートリフルオライド190g(850mmol)を滴下した。そのとき20℃程度の発熱を確認した。原料消失の確認をGCを用いて行った後、反応を止めた。撹拌は2時間行った。反応溶液を飽和重曹水溶液で中和し有機層を硫酸マグネシウムで乾燥後、蒸留を行い、目的生成物を82g(680mmol)得た。19F-NMR、1H-NMRで測定し、3-フルオロプロピレンカーボネートであることを確認した(収率80%、GC純度99.5%)。
19F-NMR:(重アセトン):-237.6~-237.0ppm(1F)
1H-NMR:(重アセトン):4.40~5.11ppm(5H)
実施例3
Figure JPOXMLDOC01-appb-C000018
(1段目)
 撹拌装置を備えた500mLのガラス製3口フラスコの上部に還流管を取り付け、窒素バルーンを取り付けた反応装置を組み、反応器内に3-ヒドロキシプロピレンカーボネート100g(850mmol)、テトラヒドロフラン125ml、トリエチルアミン86g(850mmol)を加え氷浴下で撹拌を行った。その後滴下ロートを用いて、メチルスルホン酸クロライド107g(935mmol)を滴下した。そのとき20℃程度の発熱を確認した。原料消失の確認をGCを用いて行った後、反応を止めた。反応溶液の撹拌は24時間行った。反応後、反応溶液を1N-HClでクエンチし、下層を硫酸マグネシウムで乾燥後、得られた化合物を2段目の反応に用いた。
 なお、下層の化合物を1H-NMRで測定したところ3-メチルスルホニルプロピレンカーボネートであることを確認した(収率85%、141g(723mmol))。
1H-NMR:(重アセトン):3.10~3.20ppm(3H)、4.35~4.71ppm(4H)、5.10~5.16ppm(1H)
(2段目)
 撹拌装置を備えた500mLのガラス製3口フラスコの上部に還流管を取り付け、窒素バルーンを取り付け反応装置を組み、反応器内にセシウムフロライド(CsF)143g(940mmol)、1段目の反応で得られた3-メチルスルホニルプロピレンカーボネート141g(723mmol)、ジグライム200mLを入れて撹拌を行った。その後150℃に加熱し、原料が消失するまで撹拌を行った。撹拌は2時間行った。反応後室温下まで放置し、酢酸エチルを用いて希釈し、生成した塩をろ過した。その後水洗を行い、硫酸マグネシウムで乾燥後、蒸留を行い、目的生成物を69g(578mmol)得た。19F-NMR、1H-NMRで測定し、3-フルオロプロピレンカーボネートであることを確認した。
 これら2段の合計収率は68%であり、GC純度は99.8%であった。
19F-NMR:(重アセトン):-237.6~-237.0ppm(1F)
1H-NMR:(重アセトン):4.40~5.11ppm(5H)
実施例4
Figure JPOXMLDOC01-appb-C000019
(1段目)
 撹拌装置を備えた500mLのガラス製3口フラスコの上部に還流管を取り付け、窒素バルーンを取り付けた反応装置を組み、反応器内に3-ヒドロキシプロピレンカーボネート100g(850mmol)、テトラヒドロフラン125ml、トリエチルアミン100g(850mmol)を加え氷浴下で撹拌を行った。その後滴下ロートを用いて、p-トルエンスルホン酸クロライド178g(935mmol)を滴下した。そのとき20℃程度の発熱を確認した。原料消失の確認をGCを用いて行った後、反応を止めた。反応溶液の撹拌は24時間行った。反応後、反応溶液を1N-HClでクエンチし、下層を硫酸マグネシウムで乾燥後、得られた化合物を2段目の反応に用いた。
 なお、下層の化合物を1H-NMRで測定したところ、3-(p-トルエンスルホニル)プロピレンカーボネートであることが分かった(収率83%、192g(706mmol))。
1H-NMR:(重アセトン):2.25~2.34ppm(3H)、4.35~4.71ppm(4H)、5.15~5.20ppm(1H)、7.23~7.82ppm(4H)
(2段目)
 撹拌装置を備えた500mLのガラス製3口フラスコの上部に還流管を取り付け、窒素バルーンを取り付け反応装置を組み、反応器内にセシウムフロライド(CsF)139g(918mmol)、1段目の反応で得られた3-(p-トルエンスルホニル)プロピレンカーボネート192g(706mmol)、ジグライム200mLを入れて撹拌を行った。その後150℃に加熱し、原料が消失するまで撹拌を行った。撹拌は2時間行った。反応後室温下まで放置し、酢酸エチルを用いて希釈し、生成した塩をろ過した。その後水洗を行い、硫酸マグネシウムで乾燥後、蒸留を行い、目的生成物を68g(565mmol)得た。19F-NMR、1H-NMRで測定し、3-フルオロプロピレンカーボネートであることを確認した。
 これら2段の合計収率は66%であり、GC純度は99.8%であった。
19F-NMR:(重アセトン):-237.6~-237.0ppm(1F)
1H-NMR:(重アセトン):4.40~5.11ppm(5H)
実施例5
Figure JPOXMLDOC01-appb-C000020
 撹拌装置を備えた500mLのガラス製3口フラスコの上部に還流管を取り付け、窒素バルーンを取り付けた反応装置を組み、反応器内に3-クロロプロピレンカーボネート116g(850mmol)、フッ化カリウム(KF)64g(1.11mol)、ジグライム200mLを加え撹拌を行った。その後150℃に加熱し、原料が消失するまで撹拌を行った。撹拌は2時間行った。反応後室温下まで放置し、酢酸エチルを用いて希釈し、生成した塩をろ過した。その後水洗を行い、硫酸マグネシウムで乾燥後、蒸留を行い、目的生成物を61g(510mmol)得た。19F-NMR、1H-NMRで測定し、3-フルオロプロピレンカーボネートであることを確認した(収率60%、GC純度99.5%)。
19F-NMR:(重アセトン):-237.6~-237.0ppm(1F)
1H-NMR:(重アセトン):4.40~5.11ppm(5H)
実施例6
Figure JPOXMLDOC01-appb-C000021
 撹拌装置を備えた500mLのガラス製3口フラスコの上部に還流管を取り付け、窒素フロー下でアルカリトラップを通して系外に気体が逃げるように反応装置を組み、反応器内に3,4-ジ(ヒドロキシメチル)エチレンカーボネート63.1g(425mmol)、ジクロロメタンを加え-78℃で撹拌を行った。その後滴下ロートを用いて、ジエチルアミノサルファートリフルオライド190g(850mmol)を滴下した。そのとき20℃程度の発熱を確認した。原料消失の確認をGCを用いて行った後、反応を止めた。撹拌は2時間行った。反応溶液を飽和重曹水溶液で中和し有機層を硫酸マグネシウムで乾燥後、蒸留を行い、目的生成物を51.7g(340mmol)得た。19F,1H-NMRで測定したところ、3,4-ジ(モノフルオロメチル)エチレンカーボネートであることを確認した(収率80%、GC純度99.5%)。
19F-NMR:(重アセトン):-237.3~-237.0ppm(2F)
1H-NMR:(重アセトン):4.40~5.00ppm(4H)
実施例7
Figure JPOXMLDOC01-appb-C000022
(1段目)
 撹拌装置を備えた500mLのガラス製3口フラスコの上部に還流管を取り付け、窒素バルーンを取り付けた反応装置を組み、反応器内に3-ヒドロキシプロピレンカーボネート100g(850mmol)、テトラヒドロフラン125ml、トリエチルアミン86g(850mmol)を加え氷浴下で撹拌を行った。その後滴下ロートを用いて、メチルスルホン酸クロライド107g(935mmol)を滴下した。そのとき20℃程度の発熱を確認した。原料消失の確認をGCを用いて行った後、反応を止めた。反応溶液の撹拌は24時間行った。反応後、反応溶液を1N-HClでクエンチし、下層を硫酸マグネシウムで乾燥後、得られた化合物を2段目の反応に用いた。
 なお、下層の化合物を1H-NMRで測定したところ3-メチルスルホニルプロピレンカーボネートであることを確認した(収率85%、141g(723mmol))。
1H-NMR:(重アセトン):3.10~3.20ppm(3H)、4.35~4.71ppm(4H)、5.10~5.16ppm(1H)
(2段目)
 撹拌装置を備えた500mLのガラス製3口フラスコの上部に還流管を取り付け、窒素バルーンを取り付け反応装置を組み、反応器内に、1段目で得られた3-メチルスルホニルプロピレンカーボネート141g(723mmol)、トリエチルアミンモノフッ酸塩114g(940mmol)、ジグライム200mLを入れて撹拌を行った。その後150℃に加熱し、原料が消失するまで撹拌を行った。撹拌は2時間行った。反応後室温下まで放置し、酢酸エチルを用いて希釈し、生成した塩をろ過した。その後水洗を行い、硫酸マグネシウムで乾燥後、蒸留を行い、目的生成物を56.1g(468mmol)得た。19F,1H-NMRで測定し、3-フルオロプロピレンカーボネートであることを確認した。
 これら2段の合計収率は結果65%であり、GC純度99.8%であった。
19F-NMR:(重アセトン):-237.6~-237.0ppm(1F)
1H-NMR:(重アセトン):4.40~5.11ppm(5H)

Claims (4)

  1.  式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、X1、X2、X3およびX4は同じかまたは異なり、いずれも水素原子または-CH2Y(Yは水素原子以外のフッ素化反応において脱離する基)。ただし、X1、X2、X3およびX4の少なくとも1つは-CH2Yである)で示されるプロピレンカーボネート誘導体にフッ素化剤を作用させることを特徴とする式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1、R2、R3およびR4は同じかまたは異なり、いずれもHまたは-CH2F;ただし、R1、R2、R3およびR4の少なくとも1つは-CH2Fである)で示されるフルオロプロピレンカーボネートの製造法。
  2.  フッ素化剤が、フッ酸、フッ酸塩、フッ素ガスまたは式:MF(式中、Mはアルカリ金属原子または4級アンモニウムカチオン)で示される化合物である請求項1記載の製造法。
  3.  フッ素化反応において脱離する基Yが、塩素原子、-OHまたは-OSO2R(Rはハロゲン原子、窒素原子または酸素原子を含んでいてもよい脂肪族または芳香族炭化水素基)である請求項1または2記載の製造法。
  4.  式(1)で示されるプロピレンカーボネート誘導体が、式(1-1):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Yは前記と同じ)で示される3-Y置換プロピレンカーボネートであり、式(2)で示されるフッ素化プロピレンカーボネートが式(2-1):
    Figure JPOXMLDOC01-appb-C000004
    で示される3-フルオロプロピレンカーボネートである請求項1~3のいずれかに記載の製造法。
PCT/JP2009/059585 2008-06-30 2009-05-26 フルオロプロピレンカーボネートの製造法 WO2010001673A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020107029735A KR101271898B1 (ko) 2008-06-30 2009-05-26 플루오로프로필렌카르보네이트의 제조법
CN200980125501.XA CN102076675B (zh) 2008-06-30 2009-05-26 氟代碳酸丙烯酯的制造方法
JP2010518965A JP5234109B2 (ja) 2008-06-30 2009-05-26 フルオロプロピレンカーボネートの製造法
RU2011103166/04A RU2470019C2 (ru) 2008-06-30 2009-05-26 Способ получения фторпропиленкарбоната
US13/002,002 US8519161B2 (en) 2008-06-30 2009-05-26 Process for preparing fluoropropylene carbonate
EP09773251.5A EP2308862B1 (en) 2008-06-30 2009-05-26 Manufacturing method for fluoropropylene carbonate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008171296 2008-06-30
JP2008-171296 2008-06-30

Publications (1)

Publication Number Publication Date
WO2010001673A1 true WO2010001673A1 (ja) 2010-01-07

Family

ID=41465776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059585 WO2010001673A1 (ja) 2008-06-30 2009-05-26 フルオロプロピレンカーボネートの製造法

Country Status (7)

Country Link
US (1) US8519161B2 (ja)
EP (1) EP2308862B1 (ja)
JP (1) JP5234109B2 (ja)
KR (1) KR101271898B1 (ja)
CN (1) CN102076675B (ja)
RU (1) RU2470019C2 (ja)
WO (1) WO2010001673A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216544A (ja) * 2011-03-31 2012-11-08 Daikin Ind Ltd 電気化学デバイス及び電気化学デバイス用非水電解液

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557848A (zh) * 2015-01-09 2015-04-29 山东师范大学 氟代碳酸丙烯酯的制备方法
CN115626907B (zh) * 2022-11-03 2024-04-16 多氟多新材料股份有限公司 一种4-三氟代甲基碳酸乙烯酯的制备方法
CN117219838B (zh) * 2023-11-09 2024-04-09 宁德时代新能源科技股份有限公司 钠二次电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100571A (ja) * 1983-11-06 1985-06-04 Kyoto Yakuhin Kogyo Kk ジオキソ−ル誘導体
JPH069610A (ja) 1993-02-02 1994-01-18 Neos Co Ltd 置換1,3−ジオキソラン−2−オン誘導体の製法
JPH06329663A (ja) 1993-05-25 1994-11-29 Nisso Maruzen Chem Kk グリセロールカーボネートの製造方法
JPH10233345A (ja) * 1997-02-20 1998-09-02 Mitsui Chem Inc 非水電解液
JP2007008826A (ja) * 2005-06-28 2007-01-18 Central Glass Co Ltd 高純度の4−フルオロ−1,3−ジオキソラン−2−オンの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3622534A1 (de) 1986-07-04 1988-01-07 Hoechst Ag Neue polyfluorierte cyclische carbonate, verfahren zu ihrer herstellung und ihrer verwendung
WO1996041801A1 (fr) 1995-06-09 1996-12-27 Mitsui Petrochemical Industries, Ltd. Carbonates fluores cycliques, solutions d'electrolyte et batteries contenant un tel carbonate
US5750730A (en) 1996-01-10 1998-05-12 Sanyo Chemical Industries, Ltd. Fluorine-containing dioxolane compound, electrolytic solution composition, battery and capacitor
JPH09286785A (ja) 1996-01-10 1997-11-04 Sanyo Chem Ind Ltd 含フッ素ジオキソラン、電解液用有機溶媒、リチウム二次電池および電気二重層コンデンサ
RU2228933C1 (ru) 2003-03-25 2004-05-20 Государственный научно-исследовательский институт органической химии и технологии Непрерывный способ получения пропиленкарбоната в реакции карбоксилирования окиси пропилена в присутствии фталоцианиновых катализаторов
US7126005B2 (en) * 2003-10-06 2006-10-24 Aurobindo Pharma Limited Process for preparing florfenicol
US7592486B2 (en) * 2004-09-16 2009-09-22 Board Of Regents Of The University Of Nebraska Anhydrous fluoride salts and reagents and methods for their production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100571A (ja) * 1983-11-06 1985-06-04 Kyoto Yakuhin Kogyo Kk ジオキソ−ル誘導体
JPH069610A (ja) 1993-02-02 1994-01-18 Neos Co Ltd 置換1,3−ジオキソラン−2−オン誘導体の製法
JPH06329663A (ja) 1993-05-25 1994-11-29 Nisso Maruzen Chem Kk グリセロールカーボネートの製造方法
JPH10233345A (ja) * 1997-02-20 1998-09-02 Mitsui Chem Inc 非水電解液
JP2007008826A (ja) * 2005-06-28 2007-01-18 Central Glass Co Ltd 高純度の4−フルオロ−1,3−ジオキソラン−2−オンの製造方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
CHEMISTRY LETTERS, vol. 37, 2008, pages 476 - 477
CHEMISTRY-A EUROPEAN JOURNAL, vol. 12, 2006, pages 1004 - 1015
ELECTROCHEMISTRY, vol. 76, 2008, pages 2 - 15
JIKKEN KAGAKU KOZA, 5 June 1992 (1992-06-05), pages 378 - 394, XP008141488 *
JOURNAL OF ORGANIC CHEMISTRY, vol. 70, 2005, pages 8583 - 8586
MAN, M.L. ET AL.: "Synthesis of heterobimetallic Ru-Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes", CHEMISTRY--A EUROPEAN JOURNAL, vol. 12, no. 4, 2006, pages 1004 - 1015, XP008141086 *
MAN,M.L. ET AL.: "Synthesis of heterobimetallic Ru-Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes", CHEMISTRY--A EUROPEAN JOURNAL, 2006, vol. 12, no. 4, pages 1004 - 1015, XP008141086 *
NANBU, N. ET AL.: "Temperature dependence of physical constants of monofluorinated propylene carbonate as highly polar liquid", CHEMISTRY LETTERS, vol. 37, no. 4, April 2008 (2008-04-01), pages 476 - 477, XP008141104 *
See also references of EP2308862A4
SIT, W.N. ET AL.: "Coupling Reactions of C02 with Neat Epoxides Catalyzed by PPN Salts To Yield Cyclic Carbonates", JOURNAL OF ORGANIC CHEMISTRY, vol. 70, no. 21, 2005, pages 8583 - 8586, XP002419247 *
THE ELECTROCHEMICAL SOCIETY OF JAPAN, PROCEEDINGS OF 75TH MEETING, 2008, pages 106

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216544A (ja) * 2011-03-31 2012-11-08 Daikin Ind Ltd 電気化学デバイス及び電気化学デバイス用非水電解液
JP2013201142A (ja) * 2011-03-31 2013-10-03 Daikin Ind Ltd 電気化学デバイス及び電気化学デバイス用非水電解液

Also Published As

Publication number Publication date
JPWO2010001673A1 (ja) 2011-12-15
EP2308862A1 (en) 2011-04-13
EP2308862B1 (en) 2015-10-28
US8519161B2 (en) 2013-08-27
EP2308862A4 (en) 2011-09-07
KR20110015032A (ko) 2011-02-14
US20110118485A1 (en) 2011-05-19
CN102076675B (zh) 2013-06-26
RU2470019C2 (ru) 2012-12-20
KR101271898B1 (ko) 2013-06-05
RU2011103166A (ru) 2012-08-10
CN102076675A (zh) 2011-05-25
JP5234109B2 (ja) 2013-07-10

Similar Documents

Publication Publication Date Title
JP2008230970A (ja) 含フッ素ジオール化合物の製造方法
JP5234109B2 (ja) フルオロプロピレンカーボネートの製造法
JP5061635B2 (ja) 4−フルオロ−1,3−ジオキソラン−2−オンの製造法
JP5609879B2 (ja) ビススルホニルイミドアンモニウム塩、ビススルホニルイミドおよびビススルホニルイミドリチウム塩の製造方法
JP5730513B2 (ja) 含フッ素スルホニルイミド化合物の製造方法
WO2011040497A9 (ja) エーテル構造を有するペルフルオロスルホン酸及びその誘導体の製造方法、並びに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤
JP2016124735A (ja) フルオロスルホニルイミド化合物の製造方法
JP5313579B2 (ja) 新規なフッ素化された1,2−オキサチオラン2,2−ジオキシドの製造方法
KR102476512B1 (ko) 비닐술폰산 무수물, 그 제조 방법 및 비닐술포닐플루오라이드의 제조 방법
JP2006219419A (ja) パーフルオロビニルエーテルモノマーの製造法
JP4993462B2 (ja) フッ素化合物の製造方法
US11897832B2 (en) Method for preparing partially fluorinated alcohol
JP2006131588A (ja) 含フッ素スルフィン酸塩の製造方法
JP5158073B2 (ja) ジフルオロメタンビス(スルホニルフルオリド)の製造方法
JP5558067B2 (ja) エーテル構造を有するペルフルオロスルホン酸及びその誘導体の製造方法、並びに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤
JP2006232704A (ja) 新規なフルオロスルホニル基含有化合物
JP2008222659A (ja) スルホンアミド化合物の製造方法
US20240182390A1 (en) Method for preparing partially fluorinated alcohol
JP2020066596A (ja) 含フッ素環状ジオールを原料としたエステル類およびアリルエーテル類の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125501.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773251

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010518965

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13002002

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107029735

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009773251

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011103166

Country of ref document: RU