WO2009150887A1 - 硬質皮膜層及びその形成方法 - Google Patents

硬質皮膜層及びその形成方法 Download PDF

Info

Publication number
WO2009150887A1
WO2009150887A1 PCT/JP2009/056706 JP2009056706W WO2009150887A1 WO 2009150887 A1 WO2009150887 A1 WO 2009150887A1 JP 2009056706 W JP2009056706 W JP 2009056706W WO 2009150887 A1 WO2009150887 A1 WO 2009150887A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
hard coating
group
elements
forming
Prior art date
Application number
PCT/JP2009/056706
Other languages
English (en)
French (fr)
Inventor
山本 兼司
アルビール エー レイヤス
Original Assignee
株式会社神戸製鋼所
イスカーリミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, イスカーリミテッド filed Critical 株式会社神戸製鋼所
Priority to CN2009801214556A priority Critical patent/CN102057073B/zh
Priority to KR1020117000373A priority patent/KR101211256B1/ko
Priority to US12/997,082 priority patent/US8460803B2/en
Priority to ES09762318T priority patent/ES2730880T3/es
Priority to PL09762318T priority patent/PL2295616T3/pl
Priority to DE112009001396T priority patent/DE112009001396T5/de
Priority to BRPI0913221 priority patent/BRPI0913221B1/pt
Priority to EP09762318.5A priority patent/EP2295616B1/en
Publication of WO2009150887A1 publication Critical patent/WO2009150887A1/ja
Priority to IL209811A priority patent/IL209811A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Definitions

  • the present invention relates to a hard coating layer used for applications requiring excellent wear resistance, such as cutting tools and sliding members, and a method for forming the same.
  • Non-Patent Document 1 a SiC film layer is formed on the surface of a base material by exciting cluster ions from a SiC sintered body by RF magnetron sputtering or the like and depositing the generated cluster ions on the base material.
  • an SiC film layer is formed by a magnetron sputter ion plating method. JP 2007-90483 A (paragraphs [0031] and [0035], Examples 1 and 2) Knotek et al., “Amorphous SiC PVD Coatings”, Diamond and Related Materials, 2 (1993), pp528-530
  • Non-Patent Document 1 describes that an amorphous SiC film layer is crystallized by being heat-treated at a high temperature.
  • Non-Patent Document 1 describes that when a SiC film layer is crystallized, there is a problem that cracks occur in the SiC film layer. An SiC film layer having such cracks cannot be put to practical use.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a hard coating layer that is free from cracks and has both high hardness and excellent wear resistance, and a method for forming the same.
  • crystalline means that the half width of the SiC peak observed at a diffraction angle of 34 to 36 ° when X-ray diffraction (XRD) is performed using CuK ⁇ rays is 3 ° or less. It is not limited to those that can be regarded substantially as SiC crystals, but includes those in which SiC crystals and amorphous SiC are present to form a composite structure.
  • the hard coating layer according to claim 1 of the present invention is a hard coating layer formed by a PVD method and covering a predetermined substrate, Si and C are essential components, and element M [one or more elements selected from Group 3A, Group 4A, Group 5A, Group 6A, B, Al, and Ru] and N are selected.
  • element M one or more elements selected from Group 3A, Group 4A, Group 5A, Group 6A, B, Al, and Ru] and N are selected.
  • element M one or more elements selected from Group 3A, Group 4A, Group 5A, Group 6A, B, Al, and Ru] and N are selected.
  • As a component it has a composition of Si x C 1-xyz N y M z (0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.1, 0 ⁇ z ⁇ 0.2)
  • the half width of the SiC peak observed at a diffraction angle of 34 to 36 ° is 3 ° or less.
  • the hard coating layer covering the base material a crystalline SiC coating layer
  • the hardness of the hard coating layer is remarkably increased and excellent wear resistance is obtained.
  • N in the above specified range By adding N in the above specified range to the hard coating layer, only the Young's modulus of the hard coating layer can be reduced while maintaining the hardness of the hard coating layer. Thereby, the amount of elastic deformation when an external stress is applied to the hard coating layer increases, and the occurrence of cracks and the like in the hard coating layer is suppressed.
  • the element M is strongly bonded to C and N, which are non-metallic elements, the hardness of the hard coating layer can be increased by adding the element M to the hard coating layer within the specified range. .
  • the hard coating layer according to claim 2 of the present invention is the hard coating layer according to claim 1, wherein the crystal structure of Si x C 1-xyz N y M z is cubic. It belongs to.
  • the hardness of the hard coating layer can be further increased.
  • the hard coating layer according to claim 3 of the present invention is formed by a PVD method, and has a structure in which at least one first coating layer and at least one second coating layer are alternately laminated.
  • the first coating layer is a hard coating layer that is formed on the surface of a predetermined substrate to cover the substrate, and the first coating layer is composed of a 4A group element, a 5A group element, and a 6A group element.
  • the second coating layer contains Si and C as essential components, and one or more elements selected from the elements M [3A group element, 4A group element, 5A group element, 6A group element, B, Al and Ru.
  • Si x C 1-x- y-z N y M z (0 4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.1, 0 ⁇ z ⁇ 0.2), and a diffraction angle of 34 to 36 ° when X-ray diffraction is performed using CuK ⁇ rays.
  • the full width at half maximum of the SiC peak observed at 3 is 3 ° or less.
  • the compound constituting the first film layer is superior in adhesion to the substrate as compared with the second film layer. Therefore, by setting it as such a structure, the adhesiveness of a base material and a hard film layer is improved. Moreover, since the first coating layer is higher in hardness than the cemented carbide or high-speed tool steel used in ordinary cutting tools, when the hard coating layer according to the present invention is applied to a cutting tool, By having the first coating layer, the deformation of the substrate with respect to external force is reduced. Thereby, the crack and peeling of the whole hard coating layer are suppressed, and the outstanding durability is obtained. Further, when the hard coating layer has a multilayer structure having two or more first coating layers and second coating layers, the entire hard coating layer is introduced by introducing an interface structure inside the hard coating layer. The hardness of is increased.
  • the invention according to claims 4 and 5 is the method of forming a hard coating layer according to claims 1 and 2 and the claims. It is also the formation method of the 2nd membrane
  • Hard film having a composition of [elements or more of seeds] and having a half-value width of SiC peak observed at a diffraction angle of 34 to 36 ° when X-ray diffraction is performed using CuK ⁇ rays is 3 ° or less
  • a method of forming a layer wherein the substrate is held at a predetermined temperature of 400 to 800 ° C., and a predetermined bias voltage of ⁇ 30 to ⁇ 300 V is applied to the substrate and held, and PVD is used.
  • the hard coating layer is formed on the surface of the base material.
  • the film is formed by the PVD method while the base material is maintained at a predetermined temperature and a predetermined bias voltage is applied, high hardness can be obtained without generating cracks.
  • a crystalline hard coating layer can be formed.
  • the invention according to claim 5 of the present invention uses a magnetron sputtering method as the PVD method, and has the above-described effects, that is, the suppression of crack generation and the high hardness of the crystalline hard coating layer.
  • the formation effect can be remarkably obtained.
  • the invention according to claim 6 of the present invention is a method for forming a first coating layer constituting the hard coating layer according to claim 3 of the present invention. That is, the hard film layer forming method according to claim 6 of the present invention is one type selected from the group 4A element, the group 5A element and the group 6A element before the formation of the hard film layer.
  • “another hard coating layer” corresponds to the first coating layer.
  • the invention according to claim 7 of the present invention is the method for forming a hard coating layer according to claim 6, wherein the film formation of another hard coating layer and the film formation of the hard coating layer are alternately performed. It is characterized in that it is performed several times.
  • the SiC film layer having no crack and having high hardness is formed on the base material, it has excellent wear resistance. Is obtained.
  • the first coating layer is formed on the surface of the base material, and the SiC coating layer having high hardness is formed as the second coating layer on the first coating layer. By doing so, a hard coating layer having excellent adhesion can be obtained.
  • the hardness of the whole hard coating layer can be further raised by setting it as the structure provided with the 1st coating layer and the 2nd coating layer 2 or more each.
  • a crystalline hard coating layer having high hardness and excellent wear resistance can be obtained without generating cracks.
  • a hard coating layer having excellent adhesion to the substrate is formed by forming another hard coating layer as the first coating layer.
  • a hard coating layer having a higher hardness is formed by forming a multilayer structure including a plurality of hard coating layers and another hard coating layer. can do.
  • (A) is a schematic sectional drawing of the member provided with the hard film layer which concerns on 1st Embodiment of this invention
  • (b) is the schematic cross section of the member provided with the hard film layer which concerns on 2nd Embodiment of this invention.
  • (c) is a schematic sectional drawing of the member provided with the hard film layer based on 3rd Embodiment of this invention.
  • It is a schematic block diagram of a composite film-forming apparatus.
  • 3 is an XRD chart of a sample in which a TiAlN film and a cubic SiC film are formed on the surface of a substrate made of a cemented carbide.
  • Hard coating layer (single layer structure) 4 First coating layer 5 Second coating layer 6 Hard coating layer (two-layer structure) 7 Hard coating layer (multilayer structure) DESCRIPTION OF SYMBOLS 10 Chamber 12 Gas supply mechanism 14 Stage 16 Heater 18 Sputter evaporation source 22 Arc evaporation source 24 Bias power supply 26 Sputter power supply 28 Arc power supply 100 Composite film-forming apparatus
  • FIG. 1A shows a schematic cross-sectional view of a member provided with a hard coating layer according to the first embodiment of the present invention.
  • This member 1 ⁇ / b> A has a structure in which the surface of the substrate 2 is covered with the hard coating layer 3.
  • a metal material such as an iron-based alloy or a cemented carbide, cermet, or ceramic is preferably used.
  • a cemented carbide is particularly preferably used as the base material 2.
  • the hard coating layer 3 has a single layer structure.
  • the hard coating layer 3 contains Si (silicon) and C (carbon) as essential components, and N (nitrogen) and the element M as optional components, and Si x C 1-xyz N y M z (0 4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.1, 0 ⁇ z ⁇ 0.2).
  • the element M is one or more elements selected from the group 3A elements, group 4A elements, group 5A elements, group 6A elements, B, Al, and Ru in the periodic table.
  • the hard coating layer 3 is crystalline.
  • “crystalline” means the half-width (FWHM: Full) of the SiC peak observed at a diffraction angle (2 ⁇ ) of 34 to 36 ° when X-ray diffraction (XRD) is performed using CuK ⁇ rays.
  • Width Half Maximum is 3 ° or less, not limited to those that can be substantially regarded as SiC crystals, and those in which SiC crystals and amorphous SiC are present to form a composite structure Including.
  • the peak observed at the diffraction angle of 34 to 36 ° corresponds to the peak of the [111] plane of cubic SiC.
  • Si x C 1-xyz N y M z as the hard coating layer 3 exhibits high hardness when the crystal structure belongs to a cubic system.
  • the atomic ratio x of Si is set to 0.4 or more and 0.6 or less.
  • N is added to the hard coating layer 3 as necessary. N dissolves in Si x C 1-x and occupies the C site.
  • the atomic ratio y of N exceeds 0.1, the hard coating layer 3 becomes amorphous, and thus the hardness decreases. Therefore, the atomic ratio y when adding N is set to 0.1 or less.
  • the atomic ratio y of N is preferably 0.05 or less.
  • the element M is strongly bonded to C and N which are nonmetallic elements.
  • the atomic ratio z of the element M By setting the atomic ratio z of the element M to 0 ⁇ z ⁇ 0.2 and the composition of the hard coating layer 3 to be Si x C 1-xz M z , the hardness of the hard coating layer 3 can be increased. it can. If the atomic ratio z of the element M exceeds 0.2, the hardness of the hard coating layer 3 decreases. Therefore, the atomic ratio z when adding the element M is set to 0.2 or less.
  • the atomic ratio z of the element M is preferably 0.05 or less.
  • preferable elements include B, Cr, V, and Ti. Among them, B is most preferable.
  • the above-described effect of adding N And the effect of adding the element M can be obtained.
  • the total amount (y + z) of the atomic ratio y of N and the atomic ratio z of the element M maintains the hard coating layer 3 in the crystal structure of cubic SiC. From the viewpoint, it is preferably 0.1 or less.
  • the thickness of the hard coating layer 3 is appropriately determined according to the use of the member 1A.
  • the thickness of the hard coating layer 3 is preferably 0.5 ⁇ m or more.
  • the thickness of the hard coating layer 3 is preferably 1 ⁇ m or more.
  • the thickness of the hard coating layer 3 is preferably 5 ⁇ m or less from the viewpoint of improving productivity.
  • the hard coating layer 3 is formed using a PVD method using components of the composition.
  • a target made of a predetermined component is always used.
  • “Using the component of the composition” means that the component of the composition is contained in the sputtering target or gas.
  • the PVD method for example, cathode discharge type arc ion plating using a SiC target, reactive deposition in which Si is dissolved and evaporated in a hydrocarbon atmosphere, etc. can be used.
  • magnetron sputtering particularly unbalanced magnetron sputtering is preferably used.
  • the unbalanced magnetron sputtering intentionally breaks the balance of the magnet provided on the back surface of the sputter target and enhances the ion irradiation to the substrate 2.
  • the film forming method will be described by taking magnetron sputtering as an example.
  • a sputter target containing at least Si as an essential component among the components of Si x C 1-xyZ N y M z which is the composition of the hard coating layer 3.
  • a component source of other components not included in the sputtering target containing at least Si another sputtering target or gas is used.
  • a gas containing C or a gas containing N may be used in combination.
  • the base material 2 is maintained at a predetermined temperature in the range of 400 to 800 ° C. in a predetermined reduced pressure atmosphere, and a predetermined bias voltage in the range of ⁇ 30 to ⁇ 300 V is applied to the base material 2. Hold. In this state, the hard coating layer 3 is formed on the surface of the substrate 2 by magnetron sputtering using a sintered body having a Si x C 1-x composition as a sputtering target.
  • the temperature of the substrate 2 is less than 400 ° C., an amorphous Si x C 1-x film layer is easily formed.
  • the temperature of the base material 2 exceeds 800 ° C., there is a high possibility that the base material 2 is thermally deteriorated. Therefore, the temperature of the substrate 2 is maintained at a predetermined temperature in the range of 400 to 800 ° C. From the viewpoint of promoting crystallization of the hard coating layer 3, the temperature of the substrate 2 is preferably set to 500 ° C. or higher.
  • the temperature of the base material 2 shall be 700 degrees C or less from a viewpoint of suppressing the thermal deterioration of the base material 2.
  • the hard coating layer 3 having the composition Si x C 1-x it is not always necessary to use a sintered body having the composition Si x C 1-x as the sputtering target.
  • a sintered body having the composition Si x C 1-x is used, and a gas containing carbon (for example, acetylene (C 2 H 2 ), methane (CH 4 ), etc.) is supplied as a C source to the sputtering treatment atmosphere, and magnetron sputtering is performed. You may go.
  • magnetron sputtering can be performed by supplying a gas containing a specific component to the sputtering treatment atmosphere.
  • the hard coating layer 3 having a composition different from the composition of the sputter target can be formed.
  • the hard coating layer 3 having a composition of Si x C 1-x (0.4 ⁇ x ⁇ 0.5) can be formed.
  • Si x C as a sputtering target
  • Si x C as a sputtering target
  • Si x C 1 as a sputtering target
  • Si x C 1 as a sputtering target
  • a method for performing magnetron sputtering there is a method of performing magnetron sputtering.
  • magnetron sputtering may be performed by simultaneously using a sputter target made of a Si x C 1-x sintered body and a sputter target made of the element M.
  • there is a method of performing magnetron sputtering by using a sputtering target made of Si and a sputtering target made of element M and supplying a gas containing carbon as a C source to the processing atmosphere.
  • a crystalline hard coating layer having a composition of Si x C 1-xyz N y M z (0 ⁇ y ⁇ 0.1, 0 ⁇ z ⁇ 0.2) by adding N and element M 3 is formed, for example, by supplying N 2 gas as an N source to the processing atmosphere in the above-described film forming method of Si x C 1-x Mz (0 ⁇ z ⁇ 0.2). And a method of performing magnetron sputtering. Further, magnetron sputtering may be performed using a Si x C 1-xyZ N y M z sintered body as a sputtering target.
  • FIG. 1B shows a schematic cross-sectional view of a member provided with a hard coating layer according to the second embodiment of the present invention.
  • This member 1 ⁇ / b> B has a structure in which the surface of the substrate 2 is covered with the hard coating layer 6.
  • the hard coating layer 6 has a two-layer structure including a first coating layer 4 formed on the surface of the substrate 2 and a second coating layer 5 provided on the first coating layer 4.
  • the base material 2 constituting the member 1B is the same as the base material 2 constituting the member 1A (FIG. 1A).
  • the second coating layer 5 constituting the hard coating layer 6 is substantially the same as the hard coating layer 3 constituting the above-described member 1A (FIG. 1A). That is, the member 1B can be considered as a configuration in which a layer corresponding to the first coating layer 4 is interposed between the base material 2 and the hard coating layer 3 constituting the member 1A.
  • detailed descriptions of the base material 2 and the second coating layer 5 are omitted.
  • the first coating layer 4 includes one or more elements selected from 4A group elements, 5A group elements and 6A group elements as essential components, and one or more elements selected from 3A group elements, Si, Al and B. It consists of nitride, carbonitride, or carbide containing these elements as selective components.
  • Such a first coating layer 4 exhibits better adhesion to the substrate 2 than the second coating layer 5.
  • the second coating layer 5 has better adhesion to the first coating layer 4 than to the substrate 2. Therefore, the hard coating layer 6 exhibits excellent adhesion to the substrate 2 by providing the first coating layer 4 on the surface of the substrate 2. That is, the member 1B can be said to be a member having improved adhesion between the base material 2 and the hard coating layer 3 in the member 1A. Cutting tools, jigs, and friction materials to which the configuration of the member 1B is applied show excellent durability.
  • the first coating layer 4 is preferably a nitride containing one or more of Ti and Cr as essential components and one or more selected from Y, Al and Si as selective components.
  • the first coating layer 4 is preferably any of TiN, CrN, TiC, TiAlN, CrAlN, TiCrAlN, TiCrAlSiN, TiAlSiN, and TiCrAlSiYN.
  • CrN, TiAlN, CrAlN, TiCrAlN, TiCrAlSiN, TiAlSiN, and TiCrAlSiYN containing Cr or Al are suitable for application to a cutting tool.
  • the first coating layer 4 is made of a compound of Ti and a selective component and does not contain Al, the oxidation resistance is lowered, and the cutting performance is deteriorated by oxidation due to high temperature during cutting. It is because it falls.
  • the thickness of the first coating layer 4 is preferably 5 nm or more.
  • the first coating layer is formed.
  • the thickness of the layer 4 is preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more.
  • the thickness of the first coating layer 4 is preferably 7 ⁇ m or less.
  • the thickness of the second coating layer 5 conforms to the thickness of the hard coating layer 3 formed on the member 1A.
  • Arc ion plating using a target having the composition of the first coating layer 4 is suitably used for forming the first coating layer 4 on the surface of the substrate 2.
  • a Si x C 1-xyZ N y M z film layer as the second coating layer 5 is formed by the magnetron sputtering described above.
  • a film forming apparatus capable of selectively performing magnetron sputtering and arc ion plating on the base material 2 placed in the chamber.
  • the second film layer 5 can be formed without moving the base material 2 after the first film layer 4 is formed, so that productivity is improved.
  • the first coating layer 4 can be formed by a CVD method.
  • FIG. 1 (c) shows a schematic cross-sectional view of a member provided with a hard coating layer according to the third embodiment of the present invention.
  • This member 1 ⁇ / b> C has a structure in which the surface of the substrate 2 is covered with the hard coating layer 7.
  • the hard coating layer 7 has a multilayer structure in which the first coating layers 4 and the second coating layers 5 are alternately stacked.
  • the first coating layer 4 and the second coating layer 5 constituting the hard coating layer 7 are substantially the same as the first coating layer 4 and the second coating layer 5 constituting the hard coating layer 6 formed on the member 1B, respectively. Are the same.
  • the first coating layer 4 having excellent adhesion to the substrate 2 is formed. Since the composition, crystal structure, selected material, and the like for each of the first coating layer 4 and the second coating layer 5 have been described above, description thereof is omitted here.
  • Multilayer structure means that the total number of layers of the first coating layer 4 and the second coating layer 5 is three or more.
  • the member 1C When the member 1C is applied to a cutting tool, it is preferable to form the second coating layer 5 having excellent wear resistance as a surface layer. Therefore, in the hard coating layer 7, the first coating layer 4 and the second coating layer 2 are substantially formed.
  • the total number of the coating layers 5 is preferably an even number of 4 or more. Since the hard coating layer 7 has a structure in which many interface structures are introduced therein, the hardness is further increased and the wear resistance is improved. Therefore, the cutting tool using the member 1C shows excellent durability.
  • the thicknesses of the first coating layer 4 and the second coating layer 5 are preferably sufficiently small with respect to the entire thickness of the hard coating layer 7. By forming many interface structures in the hard coating layer 7, the hardness can be increased.
  • the thicknesses of the first coating layer 4 and the second coating layer 5 are each preferably in the range of 5 to 500 nm, and more preferably in the range of 10 to 30 nm.
  • the thickness of the first coating layer 4 and the thickness of the second coating layer 5 need not be the same.
  • the thicknesses of the plurality of first coating layers 4 need not be the same, and the thicknesses of the plurality of second coating layers 5 need not be the same.
  • compositions of the plurality of first coating layers 4 need not be the same, and the compositions of the plurality of second coating layers 5 need not be the same.
  • the compositions, thicknesses, and number of layers of the first coating layer 4 and the second coating layer 5 are preferably set as appropriate so that the internal stress generated in the hard coating layer 7 is reduced by multilayering. .
  • the first coating layer 4 is formed by arc ion plating
  • the second coating layer 5 is formed by magnetron sputtering.
  • the hard coating layer 7 is formed by alternately forming the first coating layer 4 and the second coating layer 5 a predetermined number of times.
  • FIG. 2 shows a schematic configuration of a composite film forming apparatus used for forming the first coating layer 4 and the second coating layer 5 on the substrate.
  • the composite film forming apparatus 100 includes a chamber 10, a vacuum pump (not shown), a gas supply mechanism 12, a stage 14, a heater 16, and an unbalanced magnetron sputtering evaporation source (manufactured by Kobe Steel, model number: UBMS202).
  • sputter evaporation source 18 cathode discharge type arc ion plating evaporation source 22 (hereinafter referred to as “arc evaporation source 22”), bias power source 24, sputter power source 26, arc And a power supply 28.
  • a gas such as Ar, N 2 , or CH 4 is supplied from the gas supply mechanism 12 to the chamber 10 in accordance with the film forming process to be performed.
  • MFC1 to MFC4 shown in FIG. 2 are mass flow controllers.
  • a vacuum pump (not shown) adjusts the inside of the chamber 10 to a required degree of vacuum.
  • the substrate 2 for forming the first coating layer 4 and the second coating layer 5 is placed on the stage 14.
  • the substrate 2 placed on the stage 14 is heated by the heater 16.
  • a sputter target for forming the second coating layer 5 is attached to the sputter evaporation source 18.
  • a sputter target made of Si x C 1-x is attached to one sputter evaporation source 18, and a sputter target made of element M is attached to the other sputter evaporation source 18.
  • a target made of a metal or an alloy for forming the first coating layer 4 is attached to the arc evaporation source 22.
  • a bias voltage is applied to the stage 14 by the bias power supply 24. This bias voltage is applied to the substrate 2 placed on the stage 14.
  • the potential of the sputter evaporation source 18 is controlled by the sputter power source 26 so that atoms, ions or clusters are generated from the sputter evaporation source 18.
  • the electric potential of the arc evaporation source 22 is controlled by the arc power source 28 so that atoms, ions or clusters are generated from the arc evaporation source 22.
  • the composite film forming apparatus 100 further includes a filament type ion source 42, a heating AC power source 44 used for AC heating of the filament ion source 42, and a discharge for causing the filament ion source 42 to discharge.
  • DC power supply 46 is provided.
  • the ion source 42 is not used.
  • Samples 1 to 25 have the structure shown in FIG. Table 1 shows the configuration of the manufactured sample.
  • Sputter targets having different composition ratios of Si and C (hereinafter collectively referred to as “SiC targets”) were mounted on the sputter evaporation source 18.
  • a target made of TiAl was attached to the arc evaporation source 22.
  • As the base material 2 a mirror-finished cemented carbide substrate (JIS-P type) and the same cemented carbide ball end mill (two blades, diameter: ⁇ 10 mm) were used. These were placed on the stage 14.
  • SiC target Si 0.3 C 0.7 is used for sample 1
  • Si 0.4 C 0.6 is used for sample 2
  • Si 0.5 C 0.5 is used for samples 3 and 6 to 25. 4
  • Si 0.6 C 0.4 is used
  • Sample 5 uses Si 0.7 C 0.3 .
  • the substrate 2 was heated to 550 ° C. by the heater 16. Thereafter, sputter cleaning (surface cleaning of the base material 2) using Ar ions was performed. Subsequently, N 2 gas was supplied into the chamber 10 so that the internal pressure was 4 Pa. In this state, a current of 150 A was supplied from the arc power source 28 to the arc evaporation source 22 in order to generate arc discharge. Thus, a TiAlN film layer as the first coating layer 4 was formed on the surface of the substrate 2.
  • Samples 26 to 47 have the structure shown in FIG. Table 2 shows the configuration of the manufactured sample.
  • An SiC target Si 0.5 C 0.5
  • the other sputter evaporation source 18 was equipped with a target made of the element M constituting the second coating layer 5 (see Table 2) in accordance with the target composition of the second coating layer 5 each time.
  • a target made of TiAl was attached to the arc evaporation source 22.
  • As the base material 2 a mirror-finished cemented carbide substrate (JIS-P type) and the same cemented carbide ball end mill (two blades, diameter: ⁇ 10 mm) were used. These were placed on the stage 14.
  • the substrate 2 was heated to 550 ° C. by the heater 16. Thereafter, sputter cleaning using Ar ions was performed. Next, N 2 gas was supplied to the chamber 10 so that the internal pressure was 4 Pa. In this state, a current of 150 A was supplied from the arc power source 28 to the arc evaporation source 22 in order to generate arc discharge. Thus, a TiAlN film layer as the first coating layer 4 was formed on the surface of the substrate 2.
  • Samples 48 to 61 have the structure shown in FIG. Table 3 shows the configuration of the manufactured sample.
  • a SiC target was mounted on the sputter evaporation source 18.
  • a target made of a metal or an alloy shown in the column of “first coating layer-composition” in Table 3 was appropriately attached to the arc evaporation source 22.
  • As the base material 2 a mirror-finished cemented carbide substrate (JIS-P type) and the same cemented carbide ball end mill (two blades, diameter: ⁇ 10 mm) were used. These were placed on the stage 14.
  • the substrate 2 was heated to 550 ° C. by the heater 16. Thereafter, sputter cleaning using Ar ions was performed.
  • N 2 gas was supplied to the chamber 10 so that the internal pressure was 4 Pa.
  • a current of 150 A was supplied from the arc power source 28 to the arc evaporation source 22 in order to generate arc discharge.
  • the first coating layer 4 made of nitride, carbonitride or carbide shown in Table 3 was formed on the surface of the substrate 2.
  • Ar gas was introduced into the chamber 10 so that the internal pressure was 0.6 Pa.
  • Magnetron sputtering was performed with a bias voltage of ⁇ 80 V and the temperature of the substrate 2 of 550 ° C., and an SiC film layer having a thickness of about 3 ⁇ m was formed as the second film layer 5 on the first film layer 4.
  • coat layer 5 shown by Table 3 is a composition analysis value by EDX mentioned later, and was the same as the composition of a SiC target.
  • Samples 62 to 75 have the structure shown in FIG. Table 4 shows the configuration of the manufactured sample.
  • a SiC target was mounted on the sputter evaporation source 18.
  • Various targets of metal or alloy shown in the column of “first coating layer—lowermost layer” and “first coating layer—intermediate layer—composition” in Table 4 are appropriately attached to the arc evaporation source 22. It was.
  • As the base material 2 a mirror-finished cemented carbide substrate (JIS-P type) and the same cemented carbide ball end mill (two blades, diameter: ⁇ 10 mm) were used. These were placed on the stage 14.
  • the substrate 2 was heated to 550 ° C. by the heater 16. Thereafter, sputter cleaning using Ar ions was performed. In this state, a current of 150 A was supplied from the arc power source 28 to the arc evaporation source 22 in order to generate arc discharge. Thus, a TiAlN film layer was formed on the surface of the substrate 2 as the lowermost layer of the first coating layer 4. After the N 2 gas in the chamber 10 was exhausted, Ar gas was introduced into the chamber 10 so that the internal pressure was 0.6 Pa.
  • Magnetron sputtering was performed with a bias voltage of ⁇ 80 V and the temperature of the substrate 2 set to 550 ° C., and an SiC film layer having a thickness shown in the column of “Second coating layer” in Table 4 was formed on the TiAlN film layer previously formed. Was formed as the second coating layer 5.
  • the nitride, carbonitride, or carbide shown in the column of “first coating layer-intermediate layer” in Table 4 was formed on the formed SiC film layer.
  • the intermediate layer was formed under the same conditions as when the TiAlN film layer was formed as the lowermost layer of the first coating layer 4.
  • the formation of the SiC film layer as the second coating layer 5 and the formation of the intermediate layer were repeated until the total film thickness became 3 ⁇ m.
  • a hard coating layer 7 having a multilayer structure was formed.
  • coat layer 5 shown by Table 4 is a composition analysis value by EDX mentioned later, and was the same as the composition of a SiC target.
  • composition analysis of the formed second coating layer About each sample, the composition of the 2nd membrane
  • the crystallinity of the second coating layer 5 formed on the substrate used as the base material 2 is determined by X-ray diffraction (Cuk ⁇ ray, 40 kV-40 mA, ⁇ -2 ⁇ , divergence slit 1 °, divergence longitudinal restriction slit). 10 mm, scattering slit 1 °, light receiving slit 0.15 mm, monochrome light receiving slit 0.8 mm).
  • FIG. 3 shows an X-ray diffraction pattern of a typical crystalline SiC (cubic) film.
  • the second coating layer 5 has a half-value width of 3 ° or less of a SiC peak (denoted as SiC in FIG.
  • the second coating layer 5 is made of crystalline SiC (cubic) and amorphous. It is defined that high-quality SiC exists and forms a composite structure, and this is included in the crystalline structure. On the other hand, when the half width exceeded 3 °, it was defined as amorphous.
  • the peaks of the WC—Co as the base material 2 and the TiAlN film formed as the first coating layer 4 also appear.
  • sample 30 since the atomic ratio z of the element M contained in the second coating layer 5 exceeded 0.2, the hardness of the second coating layer 5 was reduced to 31 GPa and the wear amount was 100 ⁇ m or more.
  • the hardness of the second coating layer 5 in the examples shown in Table 1 is 36 to 44 GPa, but the hardness of the second coating layer 5 in the samples 26 to 29 and 31 to 47 is 43 to 50 GPa.
  • the sample 30 was determined as a comparative example, and samples other than the sample 30 were determined as examples as shown in Table 1.
  • Samples 48 to 61 were judged as examples.
  • the samples 51 to 57 are compared, if the thickness of the first coating layer 4 is 2 to 5 ⁇ m, the critical load is large and the wear amount is small.
  • the thickness of the first coating layer 4 became thinner than 2 ⁇ m, the tendency for the adhesiveness to decrease appeared. This is because the base material 2 may not be completely covered when the thickness of the first coating layer 4 is thin due to surface roughness and defects of the base material 2.
  • the thickness of the 1st coating layer 4 exceeded 5 micrometers, the tendency for adhesiveness to fall appeared.
  • Samples 62 to 75 As shown in Table 4, Samples 62 to 75 were judged as examples. In the examples shown in Table 1, the hardness of the second coating layer 5 is 36 to 44 GPa, but the hardness of the hard coating layer 7 having a multilayer structure of Samples 62 to 75 is 45 to 50 GPa. It was confirmed that the hardness was improved by forming the first coating layer 4 and the second coating layer 5 into a multilayer structure.
  • Second cutting test >> Inserts (model: CNMG 120408 TF, ADCT 1505 PDFR) made of cemented carbide (materials will be described later) were used as the base material 2, and these were set in the chamber 10. After the pressure in the chamber was reduced to 1 ⁇ 10 ⁇ 3 Pa or less, the substrate 2 was heated to 550 ° C. by the heater 16. Thereafter, sputter cleaning using Ar ions was performed. In this state, to generate arc discharge, a current of 150 A is supplied from the arc power source 28 to the arc evaporation source 22, and thus a TiAlN film layer of about 1 ⁇ m is formed on the surface of the substrate 2 as the first coating layer 4. Formed in the lower layer.
  • a current of 150 A is supplied from the arc power source 28 to the arc evaporation source 22, and thus a TiAlN film layer of about 1 ⁇ m is formed on the surface of the substrate 2 as the first coating layer 4. Formed in the lower layer.
  • the life of the insert according to the comparative example was 9 minutes. In contrast, the life of the insert according to the example is 13 minutes, which is about 1.44 times the life of the insert according to the comparative example.
  • the life of the insert according to the comparative example was 8 minutes. In contrast, the life of the insert according to the example is 14 minutes, which is about 1.75 times the life of the insert according to the comparative example.
  • the life of the insert according to the comparative example was 34 minutes. In contrast, the life of the insert according to the example was 53 minutes, which was about 1.56 times the life of the insert according to the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 結晶質でクラックを有さず、高い硬さと優れた耐摩耗性とを兼ね備えた硬質皮膜層及びその形成方法を提供するため、基材(2)を被覆する結晶質の硬質皮膜層(3)は、PVD法により形成され,SiとCとを必須成分とし、元素M[3A族元素,4A族元素,5A族元素,6A族元素,B,Al及びRuの中から選ばれた1種以上の元素]とNとを選択成分とし、Si1-x-y-z(0.4≦x≦0.6、0≦y≦0.1、0≦z≦0.2)の組成を有する。

Description

硬質皮膜層及びその形成方法
 本発明は、優れた耐摩耗性が要求される用途、例えば切削工具や摺動部材等に用いられる硬質皮膜層及びその形成方法に関する。
 SiC(炭化珪素)は、バルクのセラミックでは40GPa以上の高い硬さを有し、耐酸化性と耐摩耗性に優れることから、切削工具等への応用が期待されている(例えば、特許文献1、非特許文献1参照)。特許文献1では、RFマグネトロンスパッタ法等によりSiC焼結体からクラスターイオンを励起させ、生成したクラスターイオンを基材に堆積させることにより、基材の表面にSiC膜層を形成している。また、非特許文献1では、マグネトロンスパッタイオンプレーティング法によりSiC膜層を形成している。
特開2007-90483号公報(段落[0031]、[0035]、実施例1,2等) Knotek et al.,"Amorphous SiC PVD Coatings", Diamond and Related Materials, 2(1993), pp528-530
 しかしながら、特許文献1及び非特許文献1に開示されたSiC膜層は非晶質であるため、硬さと耐摩耗性が十分ではない。非特許文献1には、非晶質SiC膜層は、高温で熱処理されることによって結晶化する旨が記載されている。しかし、非特許文献1には、SiC膜層を結晶化させるとSiC膜層にクラックが発生するという問題が生じる旨が記載されている。このようなクラックを有するSiC膜層を実用に供することはできない。
 本発明はかかる事情に鑑みてなされたものであり、クラックの発生がなく、高い硬さと優れた耐摩耗性とを兼ね備えた硬質皮膜層及びその形成方法を提供することを目的とする。
 発明者らは、上記課題について鋭意検討した結果、PVD法の成膜条件を制御することにより、クラックを発生させることなく、結晶質のSiC膜を成膜することができることを見いだし、本発明を完成させるに至った。なお、本発明において「結晶質」とは、CuKα線を使用してX線回折(XRD)を行った場合に回折角度34~36°に観察されるSiCピークの半値幅が3°以下であるものをいい、実質的にSiC結晶とみなすことができるものに限らず、SiC結晶と非晶質SiCとが存在して複合組織を形成しているものを含む。
 すなわち、本発明の請求の範囲第1項に係る硬質皮膜層は、PVD法により形成され,所定の基材を被覆する硬質皮膜層であって、
 SiとCとを必須成分とし、元素M[3A族元素,4A族元素,5A族元素,6A族元素,B,Al及びRuの中から選ばれた1種以上の元素]とNとを選択成分とし、Si1-x-y-z(0.4≦x≦0.6、0≦y≦0.1、0≦z≦0.2)の組成を有し、CuKα線を使用してX線回折を行った場合に回折角度34~36°に観察されるSiCピークの半値幅が3°以下であることを特徴とする。
 このように、基材を被覆する硬質皮膜層を、結晶質のSiC皮膜層とすることにより、飛躍的に硬質皮膜層の硬さが高められ、優れた耐摩耗性が得られる。硬質皮膜層に前記規定範囲内の量のNを添加することにより、硬質皮膜層の硬さを保ちながら、硬質皮膜層のヤング率のみを小さくすることができる。これにより、硬質皮膜層に外部応力が加わったときの弾性変形量が増加し、硬質皮膜層における割れ等の発生が抑制される。また、元素Mは、非金属元素であるC,Nと強く結合するため、元素Mが前記規定範囲内で硬質皮膜層に添加されることにより、硬質皮膜層の硬さを高くすることができる。
 本発明の請求の範囲第2項に係る硬質皮膜層は、請求の範囲第1項に係る硬質皮膜層において、Si1-x-y-zの結晶構造が立方晶系に属することを特徴とする。
 このような構成によれば、硬質皮膜層の硬さをより高くすることができる。
 本発明の請求の範囲第3項に係る硬質皮膜層は、PVD法により形成され,少なくとも1層の第1皮膜層と少なくとも1層の第2皮膜層とが交互に積層された構造を有し、前記第1皮膜層が所定の基材の表面に形成されて、前記基材を被覆する硬質皮膜層であって、前記第1皮膜層は、4A族元素,5A族元素及び6A族元素の中から選ばれた1種以上の元素を必須成分とし、3A族元素,Si,Al及びBから選ばれた1種以上の元素を選択成分として含有する窒化物,炭窒化物または炭化物からなり、 前記第2皮膜層は、SiとCとを必須成分とし、元素M[3A族元素,4A族元素,5A族元素,6A族元素,B,Al及びRuの中から選ばれた1種以上の元素]とNとを選択成分として、Si1-x-y-z(0.4≦x≦0.6、0≦y≦0.1、0≦z≦0.2)の組成を有し、CuKα線を使用してX線回折を行った場合に回折角度34~36°に観察されるSiCピークの半値幅が3°以下であることを特徴とする。
 第1皮膜層を構成する化合物は、第2皮膜層と比較して、基材との密着性に優れている。そのため、このような構成とすることにより、基材と硬質皮膜層との密着性が高められる。また、第1皮膜層は、通常の切削工具に用いられている超硬合金や高速度工具鋼よりも硬さが高いため、本発明に係る硬質皮膜層を切削工具に応用した場合には、第1皮膜層を有することによって外力に対する基材の変形が減少する。これにより、硬質皮膜層全体の割れや剥離が抑制され、優れた耐久性が得られる。さらに、硬質皮膜層を、第1皮膜層と第2皮膜層とをそれぞれ2層以上有する多層構造とした場合には、硬質皮膜層の内部に界面構造が導入されることによって、硬質皮膜層全体の硬さが高められる。
 本発明において、請求の範囲第4項及び請求の範囲第5項に係る発明は、前記請求の範囲第1項及び請求の範囲第2項に係る硬質皮膜層の形成方法であると共に、前記請求の範囲第3項に係る硬質皮膜層を構成する第2皮膜層の形成方法でもある。
 すなわち、本発明の請求の範囲第4項に係る硬質皮膜層の形成方法は、所定の基材の表面にSi1-x-y-z[0.4≦x≦0.6、0≦y≦0.1、0≦z≦0.2、元素Mは3A族元素,4A族元素,5A族元素,6A族元素,B,Al及びRuの中から選ばれた1種以上の元素]の組成を有し、かつ、CuKα線を使用してX線回折を行った場合に回折角度34~36°に観察されるSiCピークの半値幅が3°以下である硬質皮膜層を形成する方法であって、前記基材を400~800℃の所定温度に保持し、かつ、前記基材に-30~-300Vの所定のバイアス電圧を印加して保持し、PVD法により、前記基材の表面に前記硬質皮膜層を成膜することを特徴とする。
 このような方法によれば、基材を所定の温度に保持し、かつ、所定のバイアス電圧を印加してPVD法による成膜を行っているため、クラックを発生させることなく、高い硬さを有する結晶質の硬質皮膜層を形成することができる。
 本発明の請求の範囲第5項に係る発明は、PVD法として、マグネトロンスパッタリング法を用
いるものであり、前記した効果、すなわち、クラック発生の抑制及び高い硬さを有する結晶質の硬質皮膜層の形成効果を顕著に得ることができる。
 本発明の請求の範囲第6項に係る発明は、前記請求の範囲第3項に係る硬質皮膜層を構成する第1皮膜層の形成方法である。すなわち、本発明の請求の範囲第6項に係る硬質皮膜層の形成方法は、前記硬質皮膜層の成膜前に、4A族元素,5A族元素及び6A族元素の中から選ばれた1種以上の元素を必須成分とし、かつ、3A族元素,Si,Al及びBから選ばれた1種以上の元素を選択成分として含有する窒化物、炭窒化物または炭化物からなる別の硬質皮膜層を形成することを特徴とする。ここで、「別の硬質皮膜層」が前記第1皮膜層に相当する。
 このような方法によれば、基材との密着性に優れた別の硬質皮膜層(第1皮膜層)を形成することができる。
 本発明の請求の範囲第7項に係る発明は、前記請求の範囲第6項に係る硬質皮膜層の形成方法において、別の硬質皮膜層の成膜と前記硬質皮膜層の成膜とを交互に複数回行うことを特徴とする。
 このような方法によれば、硬質皮膜層の内部に多くの界面構造が導入されるため、さらに硬さの高い硬質皮膜層を形成することができる。
 請求の範囲第1項及び請求の範囲第2項に係る硬質皮膜層によれば、クラックがなく、高い硬さを有するSiC皮膜層が基材に形成されているために、優れた耐摩耗性が得られる。請求の範囲第3項に係る硬質皮膜層によれば、基材の表面に第1皮膜層が形成され、この第1皮膜層上に第2皮膜層として高い硬さを有するSiC皮膜層が形成されていることによって、密着性に優れた硬質皮膜層が得られる。また、第1皮膜層と第2皮膜層とをそれぞれ2層以上備えた構造とすることにより、硬質皮膜層全体の硬さをさらに高めることができる。
 請求の範囲第4項及び請求の範囲第5項に係る各硬質皮膜層の形成方法によれば、クラックを発生させることなく、高い硬さと優れた耐摩耗性を有する結晶質の硬質皮膜層を形成することができる。請求の範囲第6項に係る硬質皮膜層の形成方法によれば、第1皮膜層たる別の硬質皮膜層を形成することによって、基材との密着性に優れた硬質皮膜層を形成することができる。請求の範囲第7項に係る硬質皮膜層の形成方法によれば、硬質皮膜層と別の硬質皮膜層とをそれぞれ複数備えた多層構造とすることにより、さらに高い硬さの硬質皮膜層を形成することができる。
(a)は本発明の第1実施形態に係る硬質皮膜層を備えた部材の概略断面図であり、(b)は本発明の第2実施形態に係る硬質皮膜層を備えた部材の概略断面図であり、(c)は本発明の第3実施形態に係る硬質皮膜層を備えた部材の概略断面図である。 複合成膜装置の概略構成図である。 超硬合金からなる基材の表面にTiAlN膜と立方晶SiC膜とが形成された試料のXRDチャートである。
符号の説明
  1A,1B,1C    部材
  2    基材
  3    硬質皮膜層(単層構造)
  4    第1皮膜層
  5    第2皮膜層
  6    硬質皮膜層(2層構造)
  7    硬質皮膜層(多層構造)
  10   チャンバ
  12   ガス供給機構
  14   ステージ
  16   ヒータ
  18   スパッタ蒸発源
  22   アーク蒸発源
  24   バイアス電源
  26   スパッタ電源
  28   アーク電源
  100  複合成膜装置
 《第1実施形態》
 図1(a)に本発明の第1実施形態に係る硬質皮膜層を備えた部材の概略断面図を示す。この部材1Aは、基材2の表面が硬質皮膜層3により被覆された構造を有している。
 基材2としては、鉄基合金や超硬合金等の金属材料、サーメット、セラミックスが好適に用いられる。部材1Aを切削工具として用いる場合には、基材2としては、超硬合金が特に好適に用いられる。
 硬質皮膜層3は単層構造を有している。硬質皮膜層3は、Si(珪素)とC(炭素)とを必須成分とし、N(窒素)と元素Mとを選択成分として、Si1-x-y-z(0.4≦x≦0.6、0≦y≦0.1、0≦z≦0.2)の組成を有する。元素Mは、周期律表の3A族元素,4A族元素,5A族元素,6A族元素,B,Al及びRuの中から選ばれた1種以上の元素である。
 硬質皮膜層3は結晶質である。ここで、「結晶質」とは、CuKα線を使用してX線回折(XRD)を行った場合に、回折角度(2θ)34~36°に観察されるSiCピークの半値幅(FWHM:Full Width Half Maximum)が3°以下であるものをいい、実質的にSiC結晶とみなすことができるものに限られず、SiC結晶と非晶質SiCとが存在して複合組織を形成しているものをも含む。この回折角度34~36°に観察されるピークは、具体的には、立方晶SiCの[111]面のピークに相当する。硬質皮膜層3としてのSi1-x-y-zは、結晶構造が立方晶系に属する場合に高い硬さを示す。
 そこで、硬質皮膜層3を結晶質とするために、Siの原子比xは、0.4以上0.6以下とされる。また、Nは必要に応じて硬質皮膜層3に添加される。Nは、Si1-xに固溶して、Cのサイトを占有する。Nの原子比yを0<y≦0.1として、硬質皮膜層3の組成をSi1-x-yとすることにより、硬質皮膜層3の硬さを維持しながら、ヤング率のみを小さくすることができる。硬質皮膜層3のヤング率が小さくなると、硬質皮膜層3に外部応力が加わったときの弾性変形量が増加するため、硬質皮膜層3におけるクラックの発生が抑制される。Nの原子比yが0.1を越えると、硬質皮膜層3が非晶質化するため、硬さが低下する。そのため、Nを添加する場合の原子比yを0.1以下とする。Nの原子比yは、好ましくは0.05以下とされる。
 元素Mは、非金属元素であるC,Nと強く結合する。元素Mの原子比zを0<z≦0.2として硬質皮膜層3の組成を、Si1-x-zとすることにより、硬質皮膜層3の硬さを高くすることができる。元素Mの原子比zが0.2を越えると、硬質皮膜層3の硬さが低下する。そのため、元素Mを添加する場合の原子比zを0.2以下とする。元素Mの原子比zは、好ましくは0.05以下とされる。元素Mのうち好ましい元素としては、B,Cr,V,Tiが挙げられ、中でも、Bが最も好ましい。
 Nと元素Mの両方をSi1-xに添加して、硬質皮膜層3の組成をSi1-x-y-zとすることにより、前記したNの添加効果と元素Mの添加効果の両効果が得られる。Si1-x-y-zにおいて、Nの原子比yと元素Mの原子比zの合計量(y+z)は、硬質皮膜層3を立方晶SiCの結晶構造に維持する観点から、0.1以下とすることが好ましい。
 硬質皮膜層3の厚さは、部材1Aの用途に応じて適宜定められる。例えば、部材1Aをチップやドリル、エンドミル等の切削工具として用いる場合には、硬質皮膜層3の厚さは0.5μm以上であることが好ましい。また、部材1Aを鋳造金型や抜き打ちパンチ等の治工具として用いる場合には、硬質皮膜層3の厚さは1μm以上であることが好ましい。以下に説明する成膜プロセスを考慮すると、生産性を高める観点から、硬質皮膜層3の厚さは5μm以下とすることが好ましい。
 硬質皮膜層3は、その組成の成分を用いたPVD法を用いて形成される。PVD法では、所定の成分よりなるターゲットが、必ず用いられる。ここで、ターゲットには、硬質皮膜層3を構成する成分の全てが含まれている必要はなく、一部の成分をガスとして処理雰囲気に供給することができる。「その組成の成分を用いた」とは、その組成の成分がスパッタターゲットまたはガスに含まれることをいう。
 前記PVD法としては、例えばSiCターゲットを使用したカソード放電型のアークイオンプレーティングや、Siを炭化水素雰囲気中で電子ビーム溶解・蒸発させる反応性蒸着等も用いることができるが、イオン照射による硬質皮膜層3の結晶化を促進する観点から、マグネトロンスパッタリング、特にアンバランスドマグネトロンスパッタリングが好適に用いられる。アンバランスドマグネトロンスパッタリングは、スパッタターゲットの背面に設けられた磁石のバランスを意図的に崩して、基材2へのイオン照射を強化するものである。以下ではマグネトロンスパッタリングを例にとって成膜方法を説明する。
 硬質皮膜層3を形成するためのマグネトロンスパッタリングでは、硬質皮膜層3の組成であるSi1-x-y-zの成分のうち、必須成分であるSiを少なくとも含むスパッタターゲットが用いられる。このSiを少なくとも含むスパッタターゲットに含まれていない他の成分の成分源としては、別のスパッタターゲットまたはガスが用いられる。Siを少なくとも含むスパッタターゲットにC,Nの一方または両方が含まれている場合に、Cを含むガスやNを含むガスを併用してもよい。硬質皮膜層3の形成に好適に用いられるマグネトロンスパッタリング装置の概要については、後記する実施例において、詳細に説明する。
 基材2の表面にSi1-x(0.4≦x≦0.6)の組成を有する結晶質の硬質皮膜層3を形成する場合の具体例について説明する。まず、基材2を、所定の減圧雰囲気下において、400~800℃の範囲の所定温度に保持し、かつ、基材2に-30~-300Vの範囲の所定のバイアス電圧を印加した状態に保持する。この状態において、Si1-x組成を有する焼結体をスパッタターゲットとして用いたマグネトロンスパッタリングにより、基材2の表面に硬質皮膜層3を成膜する。
 硬質皮膜層3を成膜する際に、基材2の温度が400℃未満であると、非晶質のSi1-x膜層が形成されやすくなる。一方、基材2の温度が800℃を超えると、基材2に熱劣化が生じる可能性が高くなる。そのため、基材2の温度は、400~800℃の範囲の所定温度に維持される。硬質皮膜層3の結晶化を促進する観点から、基材2の温度を500℃以上とすることが好ましい。また、基材2の熱劣化を抑制する観点から、基材2の温度を700℃以下とすることが好ましい。
 基材2に印加するバイアス電圧の絶対値が30V未満である場合には、マグネトロンスパッタリングにより発生するイオンを、十分に加速させて基材2に衝突させることができない。この場合には、非晶質のSi1-x膜層が形成されやすくなる。一方、絶対値で300Vを超えるバイアス電圧を印加すると、成膜中のイオン衝撃が強すぎるために、成膜されるSi1-x膜層が非晶質化、軟質化すると共に、基材2の温度が上昇したり、イオンによるエッチング作用が強くなったりすることにより、成膜レートが低下する
等の問題が生じる。
 Si1-xの組成を有する硬質皮膜層3を形成する場合に、必ずしも、スパッタターゲットとしてSi1-xの組成を有する焼結体を用いなければならないわけではない。例えば、スパッタターゲットとしてSiよりなるもののみを用い、炭素を含むガス(例えば、アセチレン(C),メタン(CH)等)をC源としてスパッタ処理雰囲気に供給して、マグネトロンスパッタリングを行ってもよい。
 スパッタターゲットに全ての成分が含まれている場合であっても、特定の成分を含むガスをスパッタ処理雰囲気に供給して、マグネトロンスパッタリングを行うこともできる。このような方法によれば、スパッタターゲットの組成と異なる組成を有する硬質皮膜層3を形成することができる。例えば、SiC(Si1-xにおいてx=0.5)の組成を有する焼結体をスパッタターゲットとして用い、かつ、炭素を含むガスをスパッタ処理雰囲気にC源として供給し、マグネトロンスパッタリングを行う。これにより、Si1-x(0.4≦x<0.5)の組成を有する硬質皮膜層3を成膜することができる。
 Nを添加して、Si1-x-y-z(0<y≦0.1)の組成を有する硬質皮膜層3を形成する方法としては、例えば、スパッタターゲットとしてSi1-x-y焼結体を用いて、マグネトロンスパッタリングを行う方法がある。また、SiC焼結体をスパッタターゲットとして用い、処理雰囲気にNガスをN源として供給して、マグネトロンスパッタリングを行う方法を用いることもできる。さらに、Siよりなるスパッタターゲットを用い、C源としての炭素を含むガスと、N源としてのNガスとを処理雰囲気に供給して、マグネトロンスパッタリングを行う方法がある。
 元素Mを添加して、Si1-x-z(0<z≦0.2)の組成を有する硬質皮膜層3を形成する方法としては、例えば、スパッタターゲットとしてSi1-x-z焼結体を用いて、マグネトロンスパッタリングを行う方法がある。また、Si1-x焼結体よりなるスパッタターゲットと、元素Mよりなるスパッタターゲットを同時に用いて、マグネトロンスパッタリングを行ってもよい。さらに、Siよりなるスパッタターゲットと、元素Mよりなるスパッタターゲットを用い、炭素を含むガスを処理雰囲気にC源として供給して、マグネトロンスパッタリングを行う方法がある。
 Nと元素Mを添加して、Si1-x-y-z(0<y≦0.1、0<z≦0.2)の組成を有する結晶質の硬質皮膜層3を形成する方法としては、例えば、前記したSi1-x-z(0<z≦0.2)の成膜方法において、処理雰囲気にNガスをN源として供給して、マグネトロンスパッタリングを行う方法が挙げられる。また、Si1-x-y-z焼結体をスパッタターゲットとして用いて、マグネトロンスパッタリングを行ってもよい。
 《第2実施形態》
 図1(b)に本発明の第2実施形態に係る硬質皮膜層を備えた部材の概略断面図を示す。この部材1Bは、基材2の表面が硬質皮膜層6によって被覆された構造を有している。この硬質皮膜層6は、基材2の表面に形成された第1皮膜層4と、第1皮膜層4上に設けられた第2皮膜層5とを有する2層構造を有している。
 部材1Bを構成する基材2は、前記した部材1A(図1(a))を構成する基材2と同じである。硬質皮膜層6を構成する第2皮膜層5は、前記した部材1A(図1(a))を構成する硬質皮膜層3と実質的に同じである。つまり、部材1Bは、部材1Aを構成する基材2と硬質皮膜層3との間に、第1皮膜層4に相当する層を介在させた構成と考えることができる。ここでは、基材2及び第2皮膜層5についての詳細な説明を省略する。
 第1皮膜層4は、4A族元素,5A族元素及び6A族元素の中から選ばれた1種以上の元素を必須成分とし、3A族元素,Si,Al及びBから選ばれた1種以上の元素を選択成分として含有する窒化物,炭窒化物または炭化物からなる。このような第1皮膜層4は、第2皮膜層5よりも、基材2に対して優れた密着性を示す。また、第2皮膜層5は、基材2に対してよりも、第1皮膜層4に対して密着性がよい。したがって、基材2の表面に第1皮膜層4が設けられていることによって、硬質皮膜層6は基材2に対して優れた密着性を示す。つまり、部材1Bは、前記した部材1Aにおける基材2と硬質皮膜層3との間の密着性が改善された部材ということができる。部材1Bの構成が適用された切削工具や治工具、摩擦材は、優れた耐久性を示す。
 第1皮膜層4は、Ti及びCrの1種以上を必須成分とし、Y,Al及びSiから選ばれた1種以上を選択成分とする窒化物であることが好ましい。具体的には、第1皮膜層4は、TiN,CrN,TiC,TiAlN,CrAlN,TiCrAlN,TiCrAlSiN,TiAlSiN,TiCrAlSiYNのいずれかであることが好ましい。これらのうち、CrまたはAlを含むCrN,TiAlN,CrAlN,TiCrAlN,TiCrAlSiN,TiAlSiN,TiCrAlSiYNは、切削工具への応用に好適である。その理由は、第1皮膜層4がTiと選択成分との化合物からなり、かつ、Alを含有しない場合には、耐酸化性が低くなり、切削時の高温によって酸化劣化して、切削性能が低下するからである。
 第1皮膜層4の厚さが薄すぎると、基材2に対する密着性改善の効果が実質的に得られない。そのため、第1皮膜層4の厚さは5nm以上とすることが好ましい。部材1Bのように、第1皮膜層4を基材2の表面に1層のみ形成し、この第1皮膜層4上に第2皮膜層5を1層のみ形成する場合には、第1皮膜層4の厚さは1μm以上とすることが好ましく、2μm以上とすることがより好ましい。第1皮膜層4は、その厚さが7μmを越えた場合には、第1皮膜層4自身の応力によって剥離しやすくなる。したがって、第1皮膜層4の厚さは7μm以下とすることが好ましい。第2皮膜層5の厚さは、前記した部材1Aに形成される硬質皮膜層3の厚さに準ずる。
 基材2の表面への第1皮膜層4の形成には、第1皮膜層4の組成を有するターゲットを用いたアークイオンプレーティングが好適に用いられる。こうして形成された第1皮膜層4上に、第2皮膜層5としてのSi1-x-y-z膜層を、前記したマグネトロンスパッタリングにより形成する。このとき、成膜装置として、チャンバ内に載置された基材2に対して、マグネトロンスパッタリングとアークイオンプレーティングを選択的に行うことができる成膜装置を用いることが好ましい。このような成膜装置を用いると、第1皮膜層4の成膜後に、基材2を移動させることなく第2皮膜層5を成膜することができるため、生産性が向上する。なお、第1皮膜層4の形成にはCVD法を用いることもできる。
 《第3実施形態》
 図1(c)に本発明の第3実施形態に係る硬質皮膜層を備えた部材の概略断面図を示す。この部材1Cは、基材2の表面が硬質皮膜層7によって被覆された構造を有している。硬質皮膜層7は、第1皮膜層4と第2皮膜層5とが交互に積層された多層構造を有している。硬質皮膜層7を構成する第1皮膜層4及び第2皮膜層5はそれぞれ、前記した部材1Bに形成されている硬質皮膜層6を構成する第1皮膜層4及び第2皮膜層5と実質的に同じである。基材2の表面には、基材2との密着性に優れる第1皮膜層4が形成される。第1皮膜層4と第2皮膜層5それぞれについての組成や結晶構造、選択される材料等については、前記しているため、ここでの説明は省略する。
 「多層構造」とは、第1皮膜層4と第2皮膜層5の合計の層数が3層以上であることをいう。部材1Cを切削工具へ応用する場合には、耐摩耗性に優れる第2皮膜層5を表層として形成することが好ましいため、実質的に、硬質皮膜層7において、第1皮膜層4と第2皮膜層5の合計の層数は、4以上の偶数であることが好ましい。硬質皮膜層7は、その内部に多くの界面構造が導入された構造となるため、さらに硬さが高められ、耐摩耗性が向上する。そのため、部材1Cを用いてなる切削工具等は優れた耐久性を示す。
 第1皮膜層4と第2皮膜層5の各厚さは、硬質皮膜層7の全体の厚さに対して十分に小さいことが好ましい。多くの界面構造が硬質皮膜層7内に形成されることにより、硬さを高くすることができる。第1皮膜層4と第2皮膜層5の厚さはそれぞれ、5~500nmの範囲内であることが好ましく、10~30nmの範囲内であることが、より好ましい。第1皮膜層4の厚さと第2皮膜層5の厚さは同じである必要はない。複数の第1皮膜層4の各厚さも同じである必要はなく、複数の第2皮膜層5の各厚さも同じである必要はない。さらに、複数の第1皮膜層4の各組成は同じである必要はなく、複数の第2皮膜層5の各組成も同じである必要はない。第1皮膜層4と第2皮膜層5の各組成、各厚さ、積層数は、多層化により硬質皮膜層7内に発生する内部応力が小さくなるように、適宜、設定されることが好ましい。
 前記した通り、好ましくは、第1皮膜層4はアークイオンプレーティングにより成膜され、第2皮膜層5はマグネトロンスパッタリングにより成膜される。硬質皮膜層7は、第1皮膜層4の成膜と第2皮膜層5の成膜を交互に所定回数行うことにより形成される。
 以下、本発明に係る実施例について説明する。本発明は以下の実施例に限定されるものでない。本実施例では、前記した部材1B及び部材1Cの構造を有する試料を作製し、評価することとした。
 《基材の表面への硬質皮膜層の成膜》
 [成膜装置の概要]
 図2に、基材に第1皮膜層4及び第2皮膜層5を形成するために用いられた複合成膜装置の概略構成を示す。複合成膜装置100は、チャンバ10と、真空ポンプ(図示せず)と、ガス供給機構12と、ステージ14と、ヒータ16と、アンバランスドマグネトロンスパッタリング蒸発源(神戸製鋼所製,型番:UBMS202)18(以下「スパッタ蒸発源18」と記す)と、カソード放電型のアークイオンプレーティング蒸発源22(以下「アーク蒸発源22」と記す)と、バイアス電源24と、スパッタ電源26と、アーク電源28とを備えている。
 実施する成膜プロセスに応じて、Ar,N,CH等のガスが、ガス供給機構12からチャンバ10に供給される。なお、図2に示されるMFC1~MFC4は、マスフローコントローラである。真空ポンプ(図示せず)によって、チャンバ10の内部は、必要な真空度に調節される。ステージ14に、第1皮膜層4及び第2皮膜層5を形成するための基材2が載置される。ステージ14に載置された基材2は、ヒータ16によって加熱される。スパッタ蒸発源18には、第2皮膜層5を成膜するためのスパッタターゲットが取り付けられる。例えば、一方のスパッタ蒸発源18には、Si1-xよりなるスパッタターゲットが取り付けられ、他方のスパッタ蒸発源18には、元素Mよりなるスパッタターゲットが取り付けられる。アーク蒸発源22には、第1皮膜層4を形成するための金属または合金よりなるターゲットが取り付けられる。
 バイアス電源24によってステージ14にバイアス電圧が印加される。このバイアス電圧は、ステージ14に載置された基材2に印加されることとなる。スパッタ蒸発源18から原子,イオンまたはクラスタが発生するように、スパッタ蒸発源18の電位がスパッタ電源26によって制御される。アーク蒸発源22から原子,イオンまたはクラスタが発生するように、アーク蒸発源22の電位がアーク電源28によって制御される。
 なお、複合成膜装置100は、さらに、フィラメント型のイオン源42と、フィラメントイオン源42を交流加熱する際に用いられる加熱用交流電源44と、フィラメントイオン源42に放電を生じさせるための放電用直流電源46とを備えている。ここでは、イオン源42は用いない。
 [試料1~25の作製]
 試料1~25は図1(b)に示された構造を有する。表1に作製した試料の構成を示す。SiとCの組成比の異なるスパッタターゲット(以下纏めて「SiCターゲット」という)がスパッタ蒸発源18に装着された。また、TiAlよりなるターゲットがアーク蒸発源22に装着された。基材2として、鏡面研磨した超硬合金製の基板(JIS-P種)と、同じ超硬合金製のボールエンドミル(2枚刃、直径:φ10mm)とが用いられた。これらはステージ14に載置された。なお、SiCターゲットとして、試料1ではSi0.30.7が、試料2ではSi0.40.6が、試料3,6~25ではSi0.50.5が、試料4ではSi0.60.4が、試料5ではSi0.70.3がそれぞれ使用されている。
 チャンバ10内が1×10-3Pa以下に減圧された後、基材2はヒータ16により550℃に加熱された。その後、Arイオンを用いたスパッタクリーニング(基材2の表面クリーニング)が実施された。続いて、内圧が4PaとなるようにNガスがチャンバ10内に供給された。この状態において、アーク放電を発生させるために、アーク電源28からアーク蒸発源22に150Aの電流が供給された。こうして、基材2の表面に第1皮膜層4としてのTiAlN膜層が形成された。
 試料1~21の場合、チャンバ10内のNガスが排気された後、内圧が0.6Paとなるようにチャンバ10内にArガスが導入された。試料22~25の場合、チャンバ10内のNガスが排気された後、内圧が0.6Paとなるようにチャンバ10内にArガスとNガスとが供給された。マグネトロンスパッタリングは表1の「成膜条件」の欄に示されるバイアス電圧(基材2に印加されるバイアス電圧)及び温度(基材2の温度)で行われた。こうして、厚さ約3μmの第2皮膜層5(組成は表1参照)が第1皮膜層4上に形成された。なお、表1に示されている第2皮膜層5の組成は、後述するEDXによる組成分析値である。
Figure JPOXMLDOC01-appb-T000001
 
 [試料26~47の作製]
 試料26~47は図1(b)に示された構造を有する。表2に作製した試料の構成を示す。一方のスパッタ蒸発源18にSiCターゲット(Si0.50.5)が装着された。他方のスパッタ蒸発源18には、第2皮膜層5を構成する元素M(表2参照)よりなるターゲットが、第2皮膜層5の目的組成に応じてその都度、装着された。また、TiAlよりなるターゲットがアーク蒸発源22に装着された。基材2として、鏡面研磨した超硬合金製の基板(JIS-P種)と、同じ超硬合金製のボールエンドミル(2枚刃、直径:φ10mm)とが用いられた。これらはステージ14に載置された。
 チャンバ10内が1×10-3Pa以下に減圧された後、基材2はヒータ16により550℃に加熱された。その後、Arイオンを用いたスパッタクリーニングが実施された。次に、内圧が4PaとなるようにNガスがチャンバ10に供給された。この状態において、アーク放電を発生させるために、アーク電源28からアーク蒸発源22に150Aの電流が供給された。こうして、基材2の表面に第1皮膜層4としてのTiAlN膜層が形成された。
 試料26~43の場合、チャンバ10内のNガスが排気された後、内圧が0.6Paとなるようにチャンバ10内にArガスが導入された。試料44~47の処理の場合、チャンバ10内のNガスが排気された後、内圧が0.6Paとなるようにチャンバ10内にArガスとNガスとが供給された。マグネトロンスパッタリングは表2の「成膜条件」の欄に示されるバイアス電圧及び温度で行われた。こうして、厚さ約3μmの第2皮膜層5(組成は表2参照)が、第1皮膜層4上に形成された。なお、表2に示されている第2皮膜層5の組成は、後述するEDXによる組成分析値である。
Figure JPOXMLDOC01-appb-T000002
 
 [試料48~61の作製]
 試料48~61は図1(b)に示された構造を有する。表3に作製した試料の構成を示す。スパッタ蒸発源18にSiCターゲットが装着された。アーク蒸発源22に、表3の「第1皮膜層-組成」の欄に示される金属または合金よりなるターゲットが、適宜、装着された。基材2として、鏡面研磨した超硬合金製の基板(JIS-P種)と、同じ超硬合金製のボールエンドミル(2枚刃、直径:φ10mm)とが用いられた。これらはステージ14に載置された。
 チャンバ10内が1×10-3Pa以下に減圧された後、基材2はヒータ16により550℃に加熱された。その後、Arイオンを用いたスパッタクリーニングが実施された。次に、内圧が4PaとなるようにNガスがチャンバ10に供給された。この状態において、アーク放電を発生させるために、アーク電源28からアーク蒸発源22に150Aの電流が供給された。こうして、基材2の表面に、表3に示す窒化物,炭窒化物または炭化物からなる第1皮膜層4が形成された。チャンバ10内のNガスが排気された後、内圧が0.6Paとなるようにチャンバ10内にArガスが導入された。バイアス電圧を-80V、基材2の温度を550℃としてマグネトロンスパッタリングが行われ、第1皮膜層4上に、厚さが約3μmのSiC膜層が、第2皮膜層5として形成された。なお、表3に示されている第2皮膜層5の組成は、後述するEDXによる組成分析値であり、SiCターゲットの組成と同じであった。
Figure JPOXMLDOC01-appb-T000003
 
 [試料62~75の作製]
 試料62~75は図1(c)に示された構造を有する。表4に作製した試料の構成を示す。スパッタ蒸発源18にSiCターゲットが装着された。アーク蒸発源22に、表4の「第1皮膜層-最下層」の欄及び「第1皮膜層-中間層-組成」の欄に示される種々の金属または合金のターゲットが、適宜、装着された。基材2として、鏡面研磨した超硬合金製の基板(JIS-P種)と、同じ超硬合金製のボールエンドミル(2枚刃、直径:φ10mm)とが用いられた。これらはステージ14に載置された。
 チャンバ10内が1×10-3Pa以下に減圧された後、基材2はヒータ16により550℃に加熱された。その後、Arイオンを用いたスパッタクリーニングが実施された。この状態において、アーク放電を発生させるために、アーク電源28からアーク蒸発源22に150Aの電流が供給された。こうして基材2の表面に、第1皮膜層4の最下層として、TiAlN膜層が形成された。チャンバ10内のNガスが排気された後、内圧が0.6Paとなるようにチャンバ10内にArガスが導入された。バイアス電圧を-80V、基材2の温度を550℃としてマグネトロンスパッタリングを行い、先に形成したTiAlN膜層上に、表4の「第2皮膜層」の欄に示される厚さのSiC膜層が、第2皮膜層5として形成された。
 続いて、形成されたSiC膜層上に、表4の「第1皮膜層-中間層」の欄に示される窒化物,炭窒化物または炭化物が、成膜された。この中間層の成膜は、第1皮膜層4の最下層としてTiAlN膜層を成膜したときと同等の条件で行われた。その後、第2皮膜層5としてのSiC膜層の形成と中間層の形成とが、全体の膜厚が3μmとなるまで繰り返された。こうして、多層構造の硬質皮膜層7が形成された。なお、表4に示されている第2皮膜層5の組成は、後述するEDXによる組成分析値であり、SiCターゲットの組成と同じであった。
Figure JPOXMLDOC01-appb-T000004
 
 《試料の評価》
 [形成された硬質皮膜層の硬さとヤング率の評価]
 試料1~47に形成された硬質皮膜層6及び試料62~75に形成された硬質皮膜層7の硬さ及びヤング率は、ナノインデンテーション法により求められた。ここでは、ナノインデンテーションに関する国際規格(ISO14577-1~ISO14577-4)に準拠した測定方法及び算出方法が用いられた。ナノインデンテーション測定においては、ダイヤモンド製のBerkovich圧子が用いられ、最大押込み荷重は、押込み深さが測定対象となっている硬質皮膜層6,7の厚さの1/10以下となるように調整された。ここで求められた硬さは、ISOに規定されたHIT(インデンテーション硬さ)である。測定結果は表1,2及び4に示されている。なお、試料48~61については、硬質皮膜層6の硬さ及びヤング率を求めていない。
 [形成された第2皮膜層の組成分析]
 各試料について、基材2として用いられた基板に形成された第2皮膜層5の組成が、エネルギー分散型X線分析装置(EDX)により、測定された。測定結果は表1~4にそれぞれ併記されている。
 [形成された第2皮膜層の結晶性の判定]
 各試料について、基材2として用いられた基板に形成された第2皮膜層5の結晶性を、X線回折(Cukα線、40kV-40mA、θ-2θ、発散スリット1°、発散縦制限スリット10mm、散乱スリット1°、受光スリット0.15mm、モノクロ受光スリット0.8mm)により、調べた。図3は代表的な結晶質SiC(立方晶)皮膜のX線回折パターンを示している。第2皮膜層5は、X線回折パターンにおいて回折角度(2θ)が35°付近(34~36°)に観測されるSiCのピーク(図3にSiCと記す)の半値幅が3°以下である場合に、結晶質であると判断した。なお、35°付近に結晶質SiC(立方晶)のピークは現れるが、その半値幅が2°以上3°以下の場合には、第2皮膜層5は結晶質SiC(立方晶)と非晶質SiCとが存在して複合組織を形成していると定義し、これを結晶質に含むものとする。一方、その半値幅が3°を超える場合には、非晶質であると定義した。なお、図3に示されるXRDチャートには、基材2であるWC-Co及び第1皮膜層4として形成されたTiAlN膜のピークも現れている。
 [硬質皮膜層の密着性評価]
 試料48~75について、基材2として用いられた基板に形成された硬質皮膜層6,7の密着性を、スクラッチ試験により評価した。このスクラッチ試験は、200μmRのダイヤモンド圧子を、荷重増加速度を100N/分とし、圧子移動速度を10mm/分として移動させることによって行った。臨界荷重値としては、摩擦力による臨界荷重を採用した。この評価結果は表3,4に併記されている。
 [耐摩耗性評価-第1の切削試験]
 試料番号1~75の各皮膜を備えたボールエンドミルを作製し、以下に記す条件で切削試験を実施した。試験後に、ボールエンドミル先端からの硬質皮膜層6,7の摩耗領域長さを測定し、この長さが100μm以上の場合に、耐摩耗性が不合格であると判断した。試験後試験結果は表1~4にそれぞれ併記されている。
  被削材     :SKD61(HRC50)
  切削速度    :220m/分
  刃送り     :0.06mm/刃
  軸切り込み   :5mm
  径方向切り込み :0.6mm
  切削長     :100m
  切削環境    :ダウンカット、ドライ雰囲気(エアブローのみ)
 《試験結果》
 [試料1~25]
 試料1では、Si量xが0.4未満であるために、第2皮膜層5が非晶質となった。試料5では、Si量xが0.6を超えているために、第2皮膜層5が非晶質となった。試料6では、第2皮膜層5の成膜時におけるバイアス電圧を0Vとしたために、第2皮膜層5が非晶質となった。試料12では、第2皮膜層5の成膜時におけるバイアス電圧を-400Vとしたために、第2皮膜層5が非晶質となった。試料13では、第2皮膜層5の成膜時における基材2の温度が200℃と低かったために、第2皮膜層5が非晶質となった。試料14では、第2皮膜層5の成膜時における基材2の温度が300℃と低かったために、第2皮膜層5が非晶質となった。試料25では、Nの原子比yが0.1を超えたために、第2皮膜層5が非晶質となった。これらの試料では、表1に示されるように、第2皮膜層5の硬さは30GPa未満と小さく、摩耗量が100μm以上となった。また、試料21では、第2皮膜層5の成膜時における基材2の温度が800℃と高かったために、基材2が熱劣化した。このような結果から、これらの試料は本発明に属さない比較例と判断され、それ以外の試料は、表1に示される結果の通り、実施例と判断された。
 [試料26~47]
 試料30では、第2皮膜層5に含まれる元素Mの原子比zが0.2を超えたために、第2皮膜層5の硬さが31GPaと小さくなり、摩耗量が100μm以上となった。表1に示される実施例における第2皮膜層5の硬さは36~44GPaであるが、試料26~29,31~47における第2皮膜層5の硬さは43~50GPaとなっていることから、第2皮膜層5の硬さは元素Mの添加によって高められる傾向にあることが確認され、摩耗量も43μm以下に抑えられた。このような結果により、試料30は比較例と判断され、試料30以外の試料は、表1に示される通り、実施例と判断された。
 [試料48~61]
 表3に示す通り、試料48~61は実施例と判断された。試料51~57を対比すると、第1皮膜層4の厚さが2~5μmであると、臨界荷重が大きく、摩耗量も少ない。第1皮膜層4の厚さが2μmよりも薄くなるにしたがって、密着性が低下する傾向が現れた。これは、基材2の面粗さや欠陥に起因して、第1皮膜層4の厚さが薄い場合には、基材2を完全に被覆できない場合があるためである。また、第1皮膜層4の厚さが5μmを超えると、密着性が低下する傾向が現れた。これは、硬さの高い第2皮膜層5に対して硬さが低い層が相対的に厚くなると、下地である第1皮膜層4の内部で変形や破壊が生じ、結果として第2皮膜層5が剥離する場合があるからである。表3から、第1皮膜層4に成分としてAlが含まれている場合に、耐摩耗性が良好であることを確認することができる。
 [試料62~75]
 表4に示す通り、試料62~75は実施例と判断された。表1に示される実施例における第2皮膜層5の硬さは36~44GPaであるが、試料62~75の多層構造を有する硬質皮膜層7の硬さは、45~50GPaであることから、第1皮膜層4と第2皮膜層5を多層構造とすることにより、硬さが向上することが確認された。
 《第2の切削試験》
 超硬合金製(材質は後記する)のインサート(型式:CNMG 120408 TF、ADCT 1505 PDFR)が基材2として用いられ、これらがチャンバ10内にセットされた。チャンバ内が1×10-3Pa以下に減圧された後、基材2はヒータ16により550℃に加熱された。その後、Arイオンを用いたスパッタクリーニングが実施された。この状態において、アーク放電を発生させるために、アーク電源28からアーク蒸発源22に150Aの電流が供給され、こうして基材2の表面に、約1μmのTiAlN膜層が第1皮膜層4として最下層に形成された。チャンバ10内のNガスが排気された後、内圧が0.6Paとなるようにチャンバ10内にArガスが導入された。バイアス電圧を-80V、基材2の温度を600℃としてマグネトロンスパッタリングが行われ、第2皮膜層5として約3μmのSiC(Si0.5C0.5)膜層がTiAlN膜層上に形成された。こうして作製されたインサートを、以下、「実施例に係るインサート」という。また、比較のために、同基材2に4μmのTiAlN膜を形成したインサート(以下「比較例に係るインサート」という)を作製した。これらのインサートを使用して下記の切削試験1~3を行った。インサートの寿命は切削可能時間で評価された。
 [切削試験1:インコネル(登録商標)の旋削加工]
   被削材     :インコネル718(35HRC)
   工具の型式   :CNMG 120408 TF
   基材の材質   :WC+6%Co
   旋削条件    :ウェット切削(冷却)
   切削速度    :25m/min
   送り量     :0.08mm/rev
   切り込み量   :1mm
 切削試験1の場合、比較例に係るインサートの寿命は9分であった。これに対して、実施例に係るインサートの寿命は13分であり、比較例に係るインサートの寿命の約1.44倍の寿命を示した。
 [切削試験2:硬化ステンレスの旋削加工]
   被削材     :D2(62HRC)
   工具の型式   :CNMG 120408 TF
   基材の材質   :WC+6%Co
   旋削条件    :ウェット切削(冷却)
   切削速度    :40m/min
   送り量     :0.15mm/rev
   切り込み量   :0.3mm
 切削試験2の場合、比較例に係るインサートの寿命は8分であった。これに対して、実施例に係るインサートの寿命は14分であり、比較例に係るインサートの寿命の約1.75倍の寿命を示した。
 [切削試験3:ステンレスのフライス加工]
   被削材     :AISI316
   工具の型式   :ADCT 1505 PDFR
   基材の材質   :WC+12%Co
   旋削条件    :ドライ切削
   切削速度    :120m/min
   送り量     :0.12mm/rev
   切り込み量   :4mm
 切削試験3の場合、比較例に係るインサートの寿命は34分であった。これに対して、実施例に係るインサートの寿命は53分であり、比較例に係るインサートの寿命の約1.56倍の寿命を示した。

Claims (7)

  1.  PVD法により形成され、所定の基材を被覆する硬質皮膜層であって、
     SiとCとを必須成分とし、元素M[3A族元素,4A族元素,5A族元素,6A族元素,B,Al及びRuの中から選ばれた1種以上の元素]とNとを選択成分とし、
     Si1-x-y-z(0.4≦x≦0.6、0≦y≦0.1、0≦z≦0.2)の組成を有し、
     CuKα線を使用してX線回折を行った場合に回折角度34~36°に観察されるSiCピークの半値幅が3°以下であることを特徴とする硬質皮膜層。
  2.  前記Si1-x-y-zの結晶構造が立方晶系に属することを特徴とする請求の範囲第1項に記載の硬質皮膜層。
  3.  PVD法により形成され、少なくとも1層の第1皮膜層と少なくとも1層の第2皮膜層とが交互に積層された構造を有し、前記第1皮膜層が所定の基材の表面に形成されて、前記基材を被覆する硬質皮膜層であって、
     前記第1皮膜層は、4A族元素,5A族元素及び6A族元素の中から選ばれた1種以上の元素を必須成分とし、3A族元素,Si,Al及びBから選ばれた1種以上の元素を選択成分として含有する窒化物,炭窒化物または炭化物からなり、
     前記第2皮膜層は、SiとCとを必須成分とし、元素M[3A族元素,4A族元素,5A族元素,6A族元素,B,Al及びRuの中から選ばれた1種以上の元素]とNとを選択成分として、Si1-x-y-z(0.4≦x≦0.6、0≦y≦0.1、0≦z≦0.2)の組成を有し、かつ、CuKα線を使用してX線回折を行った場合に回折角度34~36°に観察されるSiCピークの半値幅が3°以下であることを特徴とする硬質皮膜層。
  4.  所定の基材の表面にSi1-x-y-z(0.4≦x≦0.6、0≦y≦0.1、0≦z≦0.2、元素Mは3A族元素,4A族元素,5A族元素,6A族元素,B,Al及びRuの中から選ばれた1種以上の元素)の組成を有し、かつ、CuKα線を使用してX線回折を行った場合に回折角度34~36°に観察されるSiCピークの半値幅が3°以下である硬質皮膜層を形成する方法であって、
     前記基材を400~800℃の所定温度に保持し、かつ、前記基材に-30~-300Vの所定のバイアス電圧を印加して保持し、
     PVD法により、前記基材の表面に前記硬質皮膜層を成膜することを特徴とする硬質皮膜層の形成方法。
  5.  前記PVD法がマグネトロンスパッタリング法であることを特徴とする請求の範囲第4項に記載の硬質皮膜層の形成方法。
  6.  前記硬質皮膜層の成膜前に、4A族元素,5A族元素及び6A族元素の中から選ばれた1種以上の元素を必須成分とし、かつ、3A族元素,Si,Al及びBから選ばれた1種以上の元素を選択成分として含有する窒化物、炭窒化物または炭化物からなる別の硬質皮膜層を形成することを特徴とする請求の範囲第4項または請求の範囲第5項に記載の硬質皮膜層の形成方法
  7.  前記別の硬質皮膜層の成膜と前記硬質皮膜層の成膜とを交互に複数回行うことを特徴とする請求の範囲第6項に記載の硬質皮膜層の形成方法。
PCT/JP2009/056706 2008-06-09 2009-03-31 硬質皮膜層及びその形成方法 WO2009150887A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN2009801214556A CN102057073B (zh) 2008-06-09 2009-03-31 硬质被膜层及其形成方法
KR1020117000373A KR101211256B1 (ko) 2008-06-09 2009-03-31 경질 피막층 및 그 형성 방법
US12/997,082 US8460803B2 (en) 2008-06-09 2009-03-31 Hard coating layer and method for forming the same
ES09762318T ES2730880T3 (es) 2008-06-09 2009-03-31 Capa de recubrimiento dura y método para la formación de la misma
PL09762318T PL2295616T3 (pl) 2008-06-09 2009-03-31 Twarda warstwa powlekająca oraz sposób jej wytwarzania
DE112009001396T DE112009001396T5 (de) 2008-06-09 2009-03-31 Hartbeschichtungsschicht und Verfahren zu deren Bildung
BRPI0913221 BRPI0913221B1 (pt) 2008-06-09 2009-03-31 camada de revestimento rígido e método para formação da mesma
EP09762318.5A EP2295616B1 (en) 2008-06-09 2009-03-31 Hard coating layer and method for forming the same
IL209811A IL209811A (en) 2008-06-09 2010-12-07 Hard coating and method of forming

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-150662 2008-06-09
JP2008150662A JP4388582B2 (ja) 2008-06-09 2008-06-09 硬質皮膜層及びその形成方法

Publications (1)

Publication Number Publication Date
WO2009150887A1 true WO2009150887A1 (ja) 2009-12-17

Family

ID=41416598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056706 WO2009150887A1 (ja) 2008-06-09 2009-03-31 硬質皮膜層及びその形成方法

Country Status (12)

Country Link
US (1) US8460803B2 (ja)
EP (1) EP2295616B1 (ja)
JP (1) JP4388582B2 (ja)
KR (1) KR101211256B1 (ja)
CN (1) CN102057073B (ja)
BR (1) BRPI0913221B1 (ja)
DE (1) DE112009001396T5 (ja)
ES (1) ES2730880T3 (ja)
IL (1) IL209811A (ja)
PL (1) PL2295616T3 (ja)
PT (1) PT2295616T (ja)
WO (1) WO2009150887A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4388582B2 (ja) 2008-06-09 2009-12-24 株式会社神戸製鋼所 硬質皮膜層及びその形成方法
IL202549A (en) * 2009-12-06 2015-02-26 Iscar Ltd Coated product and method of making coated product
IL205090A0 (en) * 2010-04-14 2010-11-30 Iscar Ltd Hard carbon coating and method of forming the same
JP5568789B2 (ja) * 2010-07-08 2014-08-13 新潟県 超耐熱合金の切削加工方法
CA2831780C (en) * 2011-06-17 2016-07-12 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Member covered with hard coating
DE102013019691A1 (de) * 2013-11-26 2015-05-28 Oerlikon Trading Ag, Trübbach Hartstoffschicht zur Reduzierung eines Wärmeeintrags in das beschichtete Substrat
JP2016211057A (ja) * 2015-05-12 2016-12-15 イビデン株式会社 自動車用外板パネル及び自動車用外板パネルの製造方法
RU2715267C2 (ru) * 2015-12-22 2020-02-26 Сандвик Интеллекчуал Проперти Аб Режущий инструмент с покрытием и способ
ES2960821T3 (es) * 2018-03-29 2024-03-06 Oerlikon Surface Solutions Ag Pfaeffikon Dispositivo y método para el recubrimiento selectivo de vapor de un sustrato
DE102019103363A1 (de) * 2019-02-11 2020-08-13 Oerlikon Surface Solutions Ag Beschichtetes Werkzeug für die Bearbeitung von schwer zu bearbeitenden Materialien
JP7381868B2 (ja) * 2019-12-05 2023-11-16 株式会社不二越 熱衝撃特性に優れた歯切工具
DE102022115550A1 (de) 2022-06-22 2023-12-28 Rainer Cremer Beschichtetes Werkzeug, Verfahren zu dessen Herstellung sowie Verwendung des Werkzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213637A (ja) * 2004-02-02 2005-08-11 Kobe Steel Ltd 微細結晶硬質皮膜およびその形成方法
JP2005213613A (ja) * 2004-01-30 2005-08-11 Nachi Fujikoshi Corp 高機能カーボン被覆膜
JP2006062075A (ja) * 2004-07-29 2006-03-09 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2007090483A (ja) 2005-09-28 2007-04-12 Sumitomo Metal Ind Ltd 切削工具及びその製造方法
JP2007222995A (ja) * 2006-02-24 2007-09-06 Hitachi Tool Engineering Ltd 被覆部材
JP2007291471A (ja) * 2006-04-27 2007-11-08 Hitachi Tool Engineering Ltd 耐酸化性皮膜及びその皮膜を被覆した部材

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462716A (ja) * 1990-06-29 1992-02-27 Matsushita Electric Ind Co Ltd 結晶性炭素系薄膜およびその堆積方法
US5225032A (en) * 1991-08-09 1993-07-06 Allied-Signal Inc. Method of producing stoichiometric, epitaxial, monocrystalline films of silicon carbide at temperatures below 900 degrees centigrade
US6506483B1 (en) * 2000-04-28 2003-01-14 Technology Assessment & Transfer, Inc. Ceramic fiber debond coatings
JP4038448B2 (ja) * 2003-03-25 2008-01-23 株式会社神戸製鋼所 硬質皮膜
JP4734557B2 (ja) * 2003-11-26 2011-07-27 独立行政法人産業技術総合研究所 3C−SiCエピタキシャル薄膜の作製方法及び同方法で作製したSiCエピタキシャル薄膜
CN100419117C (zh) 2004-02-02 2008-09-17 株式会社神户制钢所 硬质叠层被膜、其制造方法及成膜装置
EP1764174B1 (en) 2004-07-08 2017-01-18 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool having film with compressive stress intensity distribution
US20070021242A1 (en) * 2005-07-15 2007-01-25 Krickler Roger D Method and system for optimiza of baseball bats and the like
JP4388582B2 (ja) 2008-06-09 2009-12-24 株式会社神戸製鋼所 硬質皮膜層及びその形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213613A (ja) * 2004-01-30 2005-08-11 Nachi Fujikoshi Corp 高機能カーボン被覆膜
JP2005213637A (ja) * 2004-02-02 2005-08-11 Kobe Steel Ltd 微細結晶硬質皮膜およびその形成方法
JP2006062075A (ja) * 2004-07-29 2006-03-09 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2007090483A (ja) 2005-09-28 2007-04-12 Sumitomo Metal Ind Ltd 切削工具及びその製造方法
JP2007222995A (ja) * 2006-02-24 2007-09-06 Hitachi Tool Engineering Ltd 被覆部材
JP2007291471A (ja) * 2006-04-27 2007-11-08 Hitachi Tool Engineering Ltd 耐酸化性皮膜及びその皮膜を被覆した部材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KNOTEK ET AL.: "Amorphous SiC PVD Coatings", DIAMOND AND RELATED MATERIALS, vol. 2, 1993, pages 528 - 530, XP024347778, DOI: doi:10.1016/0925-9635(93)90114-H
See also references of EP2295616A4

Also Published As

Publication number Publication date
EP2295616B1 (en) 2019-06-05
JP4388582B2 (ja) 2009-12-24
PT2295616T (pt) 2019-06-27
US20110086233A1 (en) 2011-04-14
IL209811A0 (en) 2011-02-28
KR20110018417A (ko) 2011-02-23
IL209811A (en) 2014-06-30
ES2730880T3 (es) 2019-11-13
US8460803B2 (en) 2013-06-11
CN102057073A (zh) 2011-05-11
EP2295616A4 (en) 2011-11-02
EP2295616A1 (en) 2011-03-16
JP2009293111A (ja) 2009-12-17
KR101211256B1 (ko) 2012-12-11
BRPI0913221B1 (pt) 2019-12-03
CN102057073B (zh) 2013-09-11
DE112009001396T5 (de) 2011-04-28
PL2295616T3 (pl) 2020-01-31
BRPI0913221A2 (pt) 2016-01-19

Similar Documents

Publication Publication Date Title
JP4388582B2 (ja) 硬質皮膜層及びその形成方法
CN109304489B (zh) 被覆切削工具
WO2017169498A1 (ja) 表面被覆切削工具、およびその製造方法
JP5297388B2 (ja) 表面被覆切削工具
JP5321975B2 (ja) 表面被覆切削工具
JP2008162008A (ja) 被覆された切削工具
JP2010099769A (ja) 表面被覆工具
JP3963354B2 (ja) 被覆切削工具
JP4970886B2 (ja) 表面被覆切削工具
CN109513972B (zh) 被覆钻头
JPWO2020075356A1 (ja) 切削工具及びその製造方法
JP2010188460A (ja) 表面被覆切削工具
WO2012057000A1 (ja) 硬質皮膜形成部材および硬質皮膜の形成方法
JP2008284636A (ja) 被覆切削工具
JP5065758B2 (ja) 被覆切削工具
JP6984108B2 (ja) 表面被覆切削工具及びその製造方法
JP7067689B2 (ja) 表面被覆切削工具及びその製造方法
EP4316707A1 (en) Coated cutting tool
JP2007283478A (ja) 表面被覆切削工具
JP5094348B2 (ja) 表面被覆工具
JP7055961B2 (ja) 表面被覆切削工具及びその製造方法
JP7420318B1 (ja) 切削工具
JP7409561B1 (ja) 切削工具
JP2024047170A (ja) 被覆切削工具
JP2005138211A (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121455.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 209811

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 12997082

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009762318

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117000373

Country of ref document: KR

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 112009001396

Country of ref document: DE

Date of ref document: 20110428

Kind code of ref document: P

ENP Entry into the national phase

Ref document number: PI0913221

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101130